• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===-- ARMSubtarget.cpp - ARM Subtarget Information ----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the ARM specific subclass of TargetSubtargetInfo.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "ARM.h"
14 
15 #include "ARMCallLowering.h"
16 #include "ARMLegalizerInfo.h"
17 #include "ARMRegisterBankInfo.h"
18 #include "ARMSubtarget.h"
19 #include "ARMFrameLowering.h"
20 #include "ARMInstrInfo.h"
21 #include "ARMSubtarget.h"
22 #include "ARMTargetMachine.h"
23 #include "MCTargetDesc/ARMMCTargetDesc.h"
24 #include "Thumb1FrameLowering.h"
25 #include "Thumb1InstrInfo.h"
26 #include "Thumb2InstrInfo.h"
27 #include "llvm/ADT/StringRef.h"
28 #include "llvm/ADT/Triple.h"
29 #include "llvm/ADT/Twine.h"
30 #include "llvm/CodeGen/GlobalISel/InstructionSelect.h"
31 #include "llvm/CodeGen/MachineFunction.h"
32 #include "llvm/IR/Function.h"
33 #include "llvm/IR/GlobalValue.h"
34 #include "llvm/MC/MCAsmInfo.h"
35 #include "llvm/MC/MCTargetOptions.h"
36 #include "llvm/Support/CodeGen.h"
37 #include "llvm/Support/CommandLine.h"
38 #include "llvm/Support/TargetParser.h"
39 #include "llvm/Target/TargetOptions.h"
40 
41 using namespace llvm;
42 
43 #define DEBUG_TYPE "arm-subtarget"
44 
45 #define GET_SUBTARGETINFO_TARGET_DESC
46 #define GET_SUBTARGETINFO_CTOR
47 #include "ARMGenSubtargetInfo.inc"
48 
49 static cl::opt<bool>
50 UseFusedMulOps("arm-use-mulops",
51                cl::init(true), cl::Hidden);
52 
53 enum ITMode {
54   DefaultIT,
55   RestrictedIT,
56   NoRestrictedIT
57 };
58 
59 static cl::opt<ITMode>
60 IT(cl::desc("IT block support"), cl::Hidden, cl::init(DefaultIT),
61    cl::ZeroOrMore,
62    cl::values(clEnumValN(DefaultIT, "arm-default-it",
63                          "Generate IT block based on arch"),
64               clEnumValN(RestrictedIT, "arm-restrict-it",
65                          "Disallow deprecated IT based on ARMv8"),
66               clEnumValN(NoRestrictedIT, "arm-no-restrict-it",
67                          "Allow IT blocks based on ARMv7")));
68 
69 /// ForceFastISel - Use the fast-isel, even for subtargets where it is not
70 /// currently supported (for testing only).
71 static cl::opt<bool>
72 ForceFastISel("arm-force-fast-isel",
73                cl::init(false), cl::Hidden);
74 
75 static cl::opt<bool> EnableSubRegLiveness("arm-enable-subreg-liveness",
76                                           cl::init(false), cl::Hidden);
77 
78 /// initializeSubtargetDependencies - Initializes using a CPU and feature string
79 /// so that we can use initializer lists for subtarget initialization.
initializeSubtargetDependencies(StringRef CPU,StringRef FS)80 ARMSubtarget &ARMSubtarget::initializeSubtargetDependencies(StringRef CPU,
81                                                             StringRef FS) {
82   initializeEnvironment();
83   initSubtargetFeatures(CPU, FS);
84   return *this;
85 }
86 
initializeFrameLowering(StringRef CPU,StringRef FS)87 ARMFrameLowering *ARMSubtarget::initializeFrameLowering(StringRef CPU,
88                                                         StringRef FS) {
89   ARMSubtarget &STI = initializeSubtargetDependencies(CPU, FS);
90   if (STI.isThumb1Only())
91     return (ARMFrameLowering *)new Thumb1FrameLowering(STI);
92 
93   return new ARMFrameLowering(STI);
94 }
95 
ARMSubtarget(const Triple & TT,const std::string & CPU,const std::string & FS,const ARMBaseTargetMachine & TM,bool IsLittle,bool MinSize)96 ARMSubtarget::ARMSubtarget(const Triple &TT, const std::string &CPU,
97                            const std::string &FS,
98                            const ARMBaseTargetMachine &TM, bool IsLittle,
99                            bool MinSize)
100     : ARMGenSubtargetInfo(TT, CPU, FS), UseMulOps(UseFusedMulOps),
101       CPUString(CPU), OptMinSize(MinSize), IsLittle(IsLittle),
102       TargetTriple(TT), Options(TM.Options), TM(TM),
103       FrameLowering(initializeFrameLowering(CPU, FS)),
104       // At this point initializeSubtargetDependencies has been called so
105       // we can query directly.
106       InstrInfo(isThumb1Only()
107                     ? (ARMBaseInstrInfo *)new Thumb1InstrInfo(*this)
108                     : !isThumb()
109                           ? (ARMBaseInstrInfo *)new ARMInstrInfo(*this)
110                           : (ARMBaseInstrInfo *)new Thumb2InstrInfo(*this)),
111       TLInfo(TM, *this) {
112 
113   CallLoweringInfo.reset(new ARMCallLowering(*getTargetLowering()));
114   Legalizer.reset(new ARMLegalizerInfo(*this));
115 
116   auto *RBI = new ARMRegisterBankInfo(*getRegisterInfo());
117 
118   // FIXME: At this point, we can't rely on Subtarget having RBI.
119   // It's awkward to mix passing RBI and the Subtarget; should we pass
120   // TII/TRI as well?
121   InstSelector.reset(createARMInstructionSelector(
122       *static_cast<const ARMBaseTargetMachine *>(&TM), *this, *RBI));
123 
124   RegBankInfo.reset(RBI);
125 }
126 
getCallLowering() const127 const CallLowering *ARMSubtarget::getCallLowering() const {
128   return CallLoweringInfo.get();
129 }
130 
getInstructionSelector() const131 InstructionSelector *ARMSubtarget::getInstructionSelector() const {
132   return InstSelector.get();
133 }
134 
getLegalizerInfo() const135 const LegalizerInfo *ARMSubtarget::getLegalizerInfo() const {
136   return Legalizer.get();
137 }
138 
getRegBankInfo() const139 const RegisterBankInfo *ARMSubtarget::getRegBankInfo() const {
140   return RegBankInfo.get();
141 }
142 
isXRaySupported() const143 bool ARMSubtarget::isXRaySupported() const {
144   // We don't currently suppport Thumb, but Windows requires Thumb.
145   return hasV6Ops() && hasARMOps() && !isTargetWindows();
146 }
147 
initializeEnvironment()148 void ARMSubtarget::initializeEnvironment() {
149   // MCAsmInfo isn't always present (e.g. in opt) so we can't initialize this
150   // directly from it, but we can try to make sure they're consistent when both
151   // available.
152   UseSjLjEH = (isTargetDarwin() && !isTargetWatchABI() &&
153                Options.ExceptionModel == ExceptionHandling::None) ||
154               Options.ExceptionModel == ExceptionHandling::SjLj;
155   assert((!TM.getMCAsmInfo() ||
156           (TM.getMCAsmInfo()->getExceptionHandlingType() ==
157            ExceptionHandling::SjLj) == UseSjLjEH) &&
158          "inconsistent sjlj choice between CodeGen and MC");
159 }
160 
initSubtargetFeatures(StringRef CPU,StringRef FS)161 void ARMSubtarget::initSubtargetFeatures(StringRef CPU, StringRef FS) {
162   if (CPUString.empty()) {
163     CPUString = "generic";
164 
165     if (isTargetDarwin()) {
166       StringRef ArchName = TargetTriple.getArchName();
167       ARM::ArchKind AK = ARM::parseArch(ArchName);
168       if (AK == ARM::ArchKind::ARMV7S)
169         // Default to the Swift CPU when targeting armv7s/thumbv7s.
170         CPUString = "swift";
171       else if (AK == ARM::ArchKind::ARMV7K)
172         // Default to the Cortex-a7 CPU when targeting armv7k/thumbv7k.
173         // ARMv7k does not use SjLj exception handling.
174         CPUString = "cortex-a7";
175     }
176   }
177 
178   // Insert the architecture feature derived from the target triple into the
179   // feature string. This is important for setting features that are implied
180   // based on the architecture version.
181   std::string ArchFS = ARM_MC::ParseARMTriple(TargetTriple, CPUString);
182   if (!FS.empty()) {
183     if (!ArchFS.empty())
184       ArchFS = (Twine(ArchFS) + "," + FS).str();
185     else
186       ArchFS = FS;
187   }
188   ParseSubtargetFeatures(CPUString, ArchFS);
189 
190   // FIXME: This used enable V6T2 support implicitly for Thumb2 mode.
191   // Assert this for now to make the change obvious.
192   assert(hasV6T2Ops() || !hasThumb2());
193 
194   // Execute only support requires movt support
195   if (genExecuteOnly()) {
196     NoMovt = false;
197     assert(hasV8MBaselineOps() && "Cannot generate execute-only code for this target");
198   }
199 
200   // Keep a pointer to static instruction cost data for the specified CPU.
201   SchedModel = getSchedModelForCPU(CPUString);
202 
203   // Initialize scheduling itinerary for the specified CPU.
204   InstrItins = getInstrItineraryForCPU(CPUString);
205 
206   // FIXME: this is invalid for WindowsCE
207   if (isTargetWindows())
208     NoARM = true;
209 
210   if (isAAPCS_ABI())
211     stackAlignment = Align(8);
212   if (isTargetNaCl() || isAAPCS16_ABI())
213     stackAlignment = Align(16);
214 
215   // FIXME: Completely disable sibcall for Thumb1 since ThumbRegisterInfo::
216   // emitEpilogue is not ready for them. Thumb tail calls also use t2B, as
217   // the Thumb1 16-bit unconditional branch doesn't have sufficient relocation
218   // support in the assembler and linker to be used. This would need to be
219   // fixed to fully support tail calls in Thumb1.
220   //
221   // For ARMv8-M, we /do/ implement tail calls.  Doing this is tricky for v8-M
222   // baseline, since the LDM/POP instruction on Thumb doesn't take LR.  This
223   // means if we need to reload LR, it takes extra instructions, which outweighs
224   // the value of the tail call; but here we don't know yet whether LR is going
225   // to be used. We take the optimistic approach of generating the tail call and
226   // perhaps taking a hit if we need to restore the LR.
227 
228   // Thumb1 PIC calls to external symbols use BX, so they can be tail calls,
229   // but we need to make sure there are enough registers; the only valid
230   // registers are the 4 used for parameters.  We don't currently do this
231   // case.
232 
233   SupportsTailCall = !isThumb() || hasV8MBaselineOps();
234 
235   if (isTargetMachO() && isTargetIOS() && getTargetTriple().isOSVersionLT(5, 0))
236     SupportsTailCall = false;
237 
238   switch (IT) {
239   case DefaultIT:
240     RestrictIT = hasV8Ops();
241     break;
242   case RestrictedIT:
243     RestrictIT = true;
244     break;
245   case NoRestrictedIT:
246     RestrictIT = false;
247     break;
248   }
249 
250   // NEON f32 ops are non-IEEE 754 compliant. Darwin is ok with it by default.
251   const FeatureBitset &Bits = getFeatureBits();
252   if ((Bits[ARM::ProcA5] || Bits[ARM::ProcA8]) && // Where this matters
253       (Options.UnsafeFPMath || isTargetDarwin()))
254     UseNEONForSinglePrecisionFP = true;
255 
256   if (isRWPI())
257     ReserveR9 = true;
258 
259   // If MVEVectorCostFactor is still 0 (has not been set to anything else), default it to 2
260   if (MVEVectorCostFactor == 0)
261     MVEVectorCostFactor = 2;
262 
263   // FIXME: Teach TableGen to deal with these instead of doing it manually here.
264   switch (ARMProcFamily) {
265   case Others:
266   case CortexA5:
267     break;
268   case CortexA7:
269     LdStMultipleTiming = DoubleIssue;
270     break;
271   case CortexA8:
272     LdStMultipleTiming = DoubleIssue;
273     break;
274   case CortexA9:
275     LdStMultipleTiming = DoubleIssueCheckUnalignedAccess;
276     PreISelOperandLatencyAdjustment = 1;
277     break;
278   case CortexA12:
279     break;
280   case CortexA15:
281     MaxInterleaveFactor = 2;
282     PreISelOperandLatencyAdjustment = 1;
283     PartialUpdateClearance = 12;
284     break;
285   case CortexA17:
286   case CortexA32:
287   case CortexA35:
288   case CortexA53:
289   case CortexA55:
290   case CortexA57:
291   case CortexA72:
292   case CortexA73:
293   case CortexA75:
294   case CortexA76:
295   case CortexR4:
296   case CortexR4F:
297   case CortexR5:
298   case CortexR7:
299   case CortexM3:
300   case CortexR52:
301     break;
302   case Exynos:
303     LdStMultipleTiming = SingleIssuePlusExtras;
304     MaxInterleaveFactor = 4;
305     if (!isThumb())
306       PrefLoopLogAlignment = 3;
307     break;
308   case Kryo:
309     break;
310   case Krait:
311     PreISelOperandLatencyAdjustment = 1;
312     break;
313   case NeoverseN1:
314     break;
315   case Swift:
316     MaxInterleaveFactor = 2;
317     LdStMultipleTiming = SingleIssuePlusExtras;
318     PreISelOperandLatencyAdjustment = 1;
319     PartialUpdateClearance = 12;
320     break;
321   }
322 }
323 
isTargetHardFloat() const324 bool ARMSubtarget::isTargetHardFloat() const { return TM.isTargetHardFloat(); }
325 
isAPCS_ABI() const326 bool ARMSubtarget::isAPCS_ABI() const {
327   assert(TM.TargetABI != ARMBaseTargetMachine::ARM_ABI_UNKNOWN);
328   return TM.TargetABI == ARMBaseTargetMachine::ARM_ABI_APCS;
329 }
isAAPCS_ABI() const330 bool ARMSubtarget::isAAPCS_ABI() const {
331   assert(TM.TargetABI != ARMBaseTargetMachine::ARM_ABI_UNKNOWN);
332   return TM.TargetABI == ARMBaseTargetMachine::ARM_ABI_AAPCS ||
333          TM.TargetABI == ARMBaseTargetMachine::ARM_ABI_AAPCS16;
334 }
isAAPCS16_ABI() const335 bool ARMSubtarget::isAAPCS16_ABI() const {
336   assert(TM.TargetABI != ARMBaseTargetMachine::ARM_ABI_UNKNOWN);
337   return TM.TargetABI == ARMBaseTargetMachine::ARM_ABI_AAPCS16;
338 }
339 
isROPI() const340 bool ARMSubtarget::isROPI() const {
341   return TM.getRelocationModel() == Reloc::ROPI ||
342          TM.getRelocationModel() == Reloc::ROPI_RWPI;
343 }
isRWPI() const344 bool ARMSubtarget::isRWPI() const {
345   return TM.getRelocationModel() == Reloc::RWPI ||
346          TM.getRelocationModel() == Reloc::ROPI_RWPI;
347 }
348 
isGVIndirectSymbol(const GlobalValue * GV) const349 bool ARMSubtarget::isGVIndirectSymbol(const GlobalValue *GV) const {
350   if (!TM.shouldAssumeDSOLocal(*GV->getParent(), GV))
351     return true;
352 
353   // 32 bit macho has no relocation for a-b if a is undefined, even if b is in
354   // the section that is being relocated. This means we have to use o load even
355   // for GVs that are known to be local to the dso.
356   if (isTargetMachO() && TM.isPositionIndependent() &&
357       (GV->isDeclarationForLinker() || GV->hasCommonLinkage()))
358     return true;
359 
360   return false;
361 }
362 
isGVInGOT(const GlobalValue * GV) const363 bool ARMSubtarget::isGVInGOT(const GlobalValue *GV) const {
364   return isTargetELF() && TM.isPositionIndependent() &&
365          !TM.shouldAssumeDSOLocal(*GV->getParent(), GV);
366 }
367 
getMispredictionPenalty() const368 unsigned ARMSubtarget::getMispredictionPenalty() const {
369   return SchedModel.MispredictPenalty;
370 }
371 
enableMachineScheduler() const372 bool ARMSubtarget::enableMachineScheduler() const {
373   // The MachineScheduler can increase register usage, so we use more high
374   // registers and end up with more T2 instructions that cannot be converted to
375   // T1 instructions. At least until we do better at converting to thumb1
376   // instructions, on cortex-m at Oz where we are size-paranoid, don't use the
377   // Machine scheduler, relying on the DAG register pressure scheduler instead.
378   if (isMClass() && hasMinSize())
379     return false;
380   // Enable the MachineScheduler before register allocation for subtargets
381   // with the use-misched feature.
382   return useMachineScheduler();
383 }
384 
enableSubRegLiveness() const385 bool ARMSubtarget::enableSubRegLiveness() const { return EnableSubRegLiveness; }
386 
387 // This overrides the PostRAScheduler bit in the SchedModel for any CPU.
enablePostRAScheduler() const388 bool ARMSubtarget::enablePostRAScheduler() const {
389   if (enableMachineScheduler())
390     return false;
391   if (disablePostRAScheduler())
392     return false;
393   // Thumb1 cores will generally not benefit from post-ra scheduling
394   return !isThumb1Only();
395 }
396 
enablePostRAMachineScheduler() const397 bool ARMSubtarget::enablePostRAMachineScheduler() const {
398   if (!enableMachineScheduler())
399     return false;
400   if (disablePostRAScheduler())
401     return false;
402   return !isThumb1Only();
403 }
404 
enableAtomicExpand() const405 bool ARMSubtarget::enableAtomicExpand() const { return hasAnyDataBarrier(); }
406 
useStride4VFPs() const407 bool ARMSubtarget::useStride4VFPs() const {
408   // For general targets, the prologue can grow when VFPs are allocated with
409   // stride 4 (more vpush instructions). But WatchOS uses a compact unwind
410   // format which it's more important to get right.
411   return isTargetWatchABI() ||
412          (useWideStrideVFP() && !OptMinSize);
413 }
414 
useMovt() const415 bool ARMSubtarget::useMovt() const {
416   // NOTE Windows on ARM needs to use mov.w/mov.t pairs to materialise 32-bit
417   // immediates as it is inherently position independent, and may be out of
418   // range otherwise.
419   return !NoMovt && hasV8MBaselineOps() &&
420          (isTargetWindows() || !OptMinSize || genExecuteOnly());
421 }
422 
useFastISel() const423 bool ARMSubtarget::useFastISel() const {
424   // Enable fast-isel for any target, for testing only.
425   if (ForceFastISel)
426     return true;
427 
428   // Limit fast-isel to the targets that are or have been tested.
429   if (!hasV6Ops())
430     return false;
431 
432   // Thumb2 support on iOS; ARM support on iOS, Linux and NaCl.
433   return TM.Options.EnableFastISel &&
434          ((isTargetMachO() && !isThumb1Only()) ||
435           (isTargetLinux() && !isThumb()) || (isTargetNaCl() && !isThumb()));
436 }
437 
getGPRAllocationOrder(const MachineFunction & MF) const438 unsigned ARMSubtarget::getGPRAllocationOrder(const MachineFunction &MF) const {
439   // The GPR register class has multiple possible allocation orders, with
440   // tradeoffs preferred by different sub-architectures and optimisation goals.
441   // The allocation orders are:
442   // 0: (the default tablegen order, not used)
443   // 1: r14, r0-r13
444   // 2: r0-r7
445   // 3: r0-r7, r12, lr, r8-r11
446   // Note that the register allocator will change this order so that
447   // callee-saved registers are used later, as they require extra work in the
448   // prologue/epilogue (though we sometimes override that).
449 
450   // For thumb1-only targets, only the low registers are allocatable.
451   if (isThumb1Only())
452     return 2;
453 
454   // Allocate low registers first, so we can select more 16-bit instructions.
455   // We also (in ignoreCSRForAllocationOrder) override  the default behaviour
456   // with regards to callee-saved registers, because pushing extra registers is
457   // much cheaper (in terms of code size) than using high registers. After
458   // that, we allocate r12 (doesn't need to be saved), lr (saving it means we
459   // can return with the pop, don't need an extra "bx lr") and then the rest of
460   // the high registers.
461   if (isThumb2() && MF.getFunction().hasMinSize())
462     return 3;
463 
464   // Otherwise, allocate in the default order, using LR first because saving it
465   // allows a shorter epilogue sequence.
466   return 1;
467 }
468 
ignoreCSRForAllocationOrder(const MachineFunction & MF,unsigned PhysReg) const469 bool ARMSubtarget::ignoreCSRForAllocationOrder(const MachineFunction &MF,
470                                                unsigned PhysReg) const {
471   // To minimize code size in Thumb2, we prefer the usage of low regs (lower
472   // cost per use) so we can  use narrow encoding. By default, caller-saved
473   // registers (e.g. lr, r12) are always  allocated first, regardless of
474   // their cost per use. When optForMinSize, we prefer the low regs even if
475   // they are CSR because usually push/pop can be folded into existing ones.
476   return isThumb2() && MF.getFunction().hasMinSize() &&
477          ARM::GPRRegClass.contains(PhysReg);
478 }
479