1 /*
2 * Copyright (c) 2021 Paul B Mahol
3 *
4 * This file is part of FFmpeg.
5 *
6 * FFmpeg is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
10 *
11 * FFmpeg is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with FFmpeg; if not, write to the Free Software
18 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
19 */
20
21 #include <float.h>
22
23 #include "libavutil/opt.h"
24 #include "libavutil/imgutils.h"
25 #include "avfilter.h"
26 #include "drawutils.h"
27 #include "formats.h"
28 #include "internal.h"
29 #include "video.h"
30
31 #define R 0
32 #define G 1
33 #define B 2
34
35 typedef struct ColorTemperatureContext {
36 const AVClass *class;
37
38 float temperature;
39 float mix;
40 float preserve;
41
42 float color[3];
43
44 int step;
45 int depth;
46 uint8_t rgba_map[4];
47
48 int (*do_slice)(AVFilterContext *s, void *arg,
49 int jobnr, int nb_jobs);
50 } ColorTemperatureContext;
51
saturate(float input)52 static float saturate(float input)
53 {
54 return av_clipf(input, 0.f, 1.f);
55 }
56
kelvin2rgb(float k,float * rgb)57 static void kelvin2rgb(float k, float *rgb)
58 {
59 float kelvin = k / 100.0f;
60
61 if (kelvin <= 66.0f) {
62 rgb[0] = 1.0f;
63 rgb[1] = saturate(0.39008157876901960784f * logf(kelvin) - 0.63184144378862745098f);
64 } else {
65 const float t = fmaxf(kelvin - 60.0f, 0.0f);
66 rgb[0] = saturate(1.29293618606274509804f * powf(t, -0.1332047592f));
67 rgb[1] = saturate(1.12989086089529411765f * powf(t, -0.0755148492f));
68 }
69
70 if (kelvin >= 66.0f)
71 rgb[2] = 1.0f;
72 else if (kelvin <= 19.0f)
73 rgb[2] = 0.0f;
74 else
75 rgb[2] = saturate(0.54320678911019607843f * logf(kelvin - 10.0f) - 1.19625408914f);
76 }
77
lerpf(float v0,float v1,float f)78 static float lerpf(float v0, float v1, float f)
79 {
80 return v0 + (v1 - v0) * f;
81 }
82
83 #define PROCESS() \
84 nr = r * color[0]; \
85 ng = g * color[1]; \
86 nb = b * color[2]; \
87 \
88 nr = lerpf(r, nr, mix); \
89 ng = lerpf(g, ng, mix); \
90 nb = lerpf(b, nb, mix); \
91 \
92 l0 = (FFMAX3(r, g, b) + FFMIN3(r, g, b)) + FLT_EPSILON; \
93 l1 = (FFMAX3(nr, ng, nb) + FFMIN3(nr, ng, nb)) + FLT_EPSILON; \
94 l = l0 / l1; \
95 \
96 r = nr * l; \
97 g = ng * l; \
98 b = nb * l; \
99 \
100 nr = lerpf(nr, r, preserve); \
101 ng = lerpf(ng, g, preserve); \
102 nb = lerpf(nb, b, preserve);
103
temperature_slice8(AVFilterContext * ctx,void * arg,int jobnr,int nb_jobs)104 static int temperature_slice8(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
105 {
106 ColorTemperatureContext *s = ctx->priv;
107 AVFrame *frame = arg;
108 const int width = frame->width;
109 const int height = frame->height;
110 const float mix = s->mix;
111 const float preserve = s->preserve;
112 const float *color = s->color;
113 const int slice_start = (height * jobnr) / nb_jobs;
114 const int slice_end = (height * (jobnr + 1)) / nb_jobs;
115 const int glinesize = frame->linesize[0];
116 const int blinesize = frame->linesize[1];
117 const int rlinesize = frame->linesize[2];
118 uint8_t *gptr = frame->data[0] + slice_start * glinesize;
119 uint8_t *bptr = frame->data[1] + slice_start * blinesize;
120 uint8_t *rptr = frame->data[2] + slice_start * rlinesize;
121
122 for (int y = slice_start; y < slice_end; y++) {
123 for (int x = 0; x < width; x++) {
124 float g = gptr[x];
125 float b = bptr[x];
126 float r = rptr[x];
127 float nr, ng, nb;
128 float l0, l1, l;
129
130 PROCESS()
131
132 gptr[x] = av_clip_uint8(ng);
133 bptr[x] = av_clip_uint8(nb);
134 rptr[x] = av_clip_uint8(nr);
135 }
136
137 gptr += glinesize;
138 bptr += blinesize;
139 rptr += rlinesize;
140 }
141
142 return 0;
143 }
144
temperature_slice16(AVFilterContext * ctx,void * arg,int jobnr,int nb_jobs)145 static int temperature_slice16(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
146 {
147 ColorTemperatureContext *s = ctx->priv;
148 AVFrame *frame = arg;
149 const int depth = s->depth;
150 const int width = frame->width;
151 const int height = frame->height;
152 const float preserve = s->preserve;
153 const float mix = s->mix;
154 const float *color = s->color;
155 const int slice_start = (height * jobnr) / nb_jobs;
156 const int slice_end = (height * (jobnr + 1)) / nb_jobs;
157 const int glinesize = frame->linesize[0] / sizeof(uint16_t);
158 const int blinesize = frame->linesize[1] / sizeof(uint16_t);
159 const int rlinesize = frame->linesize[2] / sizeof(uint16_t);
160 uint16_t *gptr = (uint16_t *)frame->data[0] + slice_start * glinesize;
161 uint16_t *bptr = (uint16_t *)frame->data[1] + slice_start * blinesize;
162 uint16_t *rptr = (uint16_t *)frame->data[2] + slice_start * rlinesize;
163
164 for (int y = slice_start; y < slice_end; y++) {
165 for (int x = 0; x < width; x++) {
166 float g = gptr[x];
167 float b = bptr[x];
168 float r = rptr[x];
169 float nr, ng, nb;
170 float l0, l1, l;
171
172 PROCESS()
173
174 gptr[x] = av_clip_uintp2_c(ng, depth);
175 bptr[x] = av_clip_uintp2_c(nb, depth);
176 rptr[x] = av_clip_uintp2_c(nr, depth);
177 }
178
179 gptr += glinesize;
180 bptr += blinesize;
181 rptr += rlinesize;
182 }
183
184 return 0;
185 }
186
temperature_slice8p(AVFilterContext * ctx,void * arg,int jobnr,int nb_jobs)187 static int temperature_slice8p(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
188 {
189 ColorTemperatureContext *s = ctx->priv;
190 AVFrame *frame = arg;
191 const int step = s->step;
192 const int width = frame->width;
193 const int height = frame->height;
194 const float mix = s->mix;
195 const float preserve = s->preserve;
196 const float *color = s->color;
197 const uint8_t roffset = s->rgba_map[R];
198 const uint8_t goffset = s->rgba_map[G];
199 const uint8_t boffset = s->rgba_map[B];
200 const int slice_start = (height * jobnr) / nb_jobs;
201 const int slice_end = (height * (jobnr + 1)) / nb_jobs;
202 const int linesize = frame->linesize[0];
203 uint8_t *ptr = frame->data[0] + slice_start * linesize;
204
205 for (int y = slice_start; y < slice_end; y++) {
206 for (int x = 0; x < width; x++) {
207 float g = ptr[x * step + goffset];
208 float b = ptr[x * step + boffset];
209 float r = ptr[x * step + roffset];
210 float nr, ng, nb;
211 float l0, l1, l;
212
213 PROCESS()
214
215 ptr[x * step + goffset] = av_clip_uint8(ng);
216 ptr[x * step + boffset] = av_clip_uint8(nb);
217 ptr[x * step + roffset] = av_clip_uint8(nr);
218 }
219
220 ptr += linesize;
221 }
222
223 return 0;
224 }
225
temperature_slice16p(AVFilterContext * ctx,void * arg,int jobnr,int nb_jobs)226 static int temperature_slice16p(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
227 {
228 ColorTemperatureContext *s = ctx->priv;
229 AVFrame *frame = arg;
230 const int step = s->step;
231 const int depth = s->depth;
232 const int width = frame->width;
233 const int height = frame->height;
234 const float preserve = s->preserve;
235 const float mix = s->mix;
236 const float *color = s->color;
237 const uint8_t roffset = s->rgba_map[R];
238 const uint8_t goffset = s->rgba_map[G];
239 const uint8_t boffset = s->rgba_map[B];
240 const int slice_start = (height * jobnr) / nb_jobs;
241 const int slice_end = (height * (jobnr + 1)) / nb_jobs;
242 const int linesize = frame->linesize[0] / sizeof(uint16_t);
243 uint16_t *ptr = (uint16_t *)frame->data[0] + slice_start * linesize;
244
245 for (int y = slice_start; y < slice_end; y++) {
246 for (int x = 0; x < width; x++) {
247 float g = ptr[x * step + goffset];
248 float b = ptr[x * step + boffset];
249 float r = ptr[x * step + roffset];
250 float nr, ng, nb;
251 float l0, l1, l;
252
253 PROCESS()
254
255 ptr[x * step + goffset] = av_clip_uintp2_c(ng, depth);
256 ptr[x * step + boffset] = av_clip_uintp2_c(nb, depth);
257 ptr[x * step + roffset] = av_clip_uintp2_c(nr, depth);
258 }
259
260 ptr += linesize;
261 }
262
263 return 0;
264 }
265
filter_frame(AVFilterLink * inlink,AVFrame * frame)266 static int filter_frame(AVFilterLink *inlink, AVFrame *frame)
267 {
268 AVFilterContext *ctx = inlink->dst;
269 ColorTemperatureContext *s = ctx->priv;
270
271 kelvin2rgb(s->temperature, s->color);
272
273 ctx->internal->execute(ctx, s->do_slice, frame, NULL,
274 FFMIN(frame->height, ff_filter_get_nb_threads(ctx)));
275
276 return ff_filter_frame(ctx->outputs[0], frame);
277 }
278
query_formats(AVFilterContext * ctx)279 static av_cold int query_formats(AVFilterContext *ctx)
280 {
281 static const enum AVPixelFormat pixel_fmts[] = {
282 AV_PIX_FMT_RGB24, AV_PIX_FMT_BGR24,
283 AV_PIX_FMT_RGBA, AV_PIX_FMT_BGRA,
284 AV_PIX_FMT_ARGB, AV_PIX_FMT_ABGR,
285 AV_PIX_FMT_0RGB, AV_PIX_FMT_0BGR,
286 AV_PIX_FMT_RGB0, AV_PIX_FMT_BGR0,
287 AV_PIX_FMT_GBRP, AV_PIX_FMT_GBRAP,
288 AV_PIX_FMT_GBRP9, AV_PIX_FMT_GBRP10, AV_PIX_FMT_GBRP12,
289 AV_PIX_FMT_GBRP14, AV_PIX_FMT_GBRP16,
290 AV_PIX_FMT_GBRAP10, AV_PIX_FMT_GBRAP12, AV_PIX_FMT_GBRAP16,
291 AV_PIX_FMT_RGB48, AV_PIX_FMT_BGR48,
292 AV_PIX_FMT_RGBA64, AV_PIX_FMT_BGRA64,
293 AV_PIX_FMT_NONE
294 };
295
296 AVFilterFormats *formats = NULL;
297
298 formats = ff_make_format_list(pixel_fmts);
299 if (!formats)
300 return AVERROR(ENOMEM);
301
302 return ff_set_common_formats(ctx, formats);
303 }
304
config_input(AVFilterLink * inlink)305 static av_cold int config_input(AVFilterLink *inlink)
306 {
307 AVFilterContext *ctx = inlink->dst;
308 ColorTemperatureContext *s = ctx->priv;
309 const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(inlink->format);
310 int planar = desc->flags & AV_PIX_FMT_FLAG_PLANAR;
311
312 s->step = desc->nb_components;
313 if (inlink->format == AV_PIX_FMT_RGB0 ||
314 inlink->format == AV_PIX_FMT_0RGB ||
315 inlink->format == AV_PIX_FMT_BGR0 ||
316 inlink->format == AV_PIX_FMT_0BGR)
317 s->step = 4;
318
319 s->depth = desc->comp[0].depth;
320 s->do_slice = s->depth <= 8 ? temperature_slice8 : temperature_slice16;
321 if (!planar)
322 s->do_slice = s->depth <= 8 ? temperature_slice8p : temperature_slice16p;
323
324 ff_fill_rgba_map(s->rgba_map, inlink->format);
325
326 return 0;
327 }
328
329 static const AVFilterPad inputs[] = {
330 {
331 .name = "default",
332 .type = AVMEDIA_TYPE_VIDEO,
333 .filter_frame = filter_frame,
334 .config_props = config_input,
335 .needs_writable = 1,
336 },
337 { NULL }
338 };
339
340 static const AVFilterPad outputs[] = {
341 {
342 .name = "default",
343 .type = AVMEDIA_TYPE_VIDEO,
344 },
345 { NULL }
346 };
347
348 #define OFFSET(x) offsetof(ColorTemperatureContext, x)
349 #define VF AV_OPT_FLAG_FILTERING_PARAM|AV_OPT_FLAG_VIDEO_PARAM|AV_OPT_FLAG_RUNTIME_PARAM
350
351 static const AVOption colortemperature_options[] = {
352 { "temperature", "set the temperature in Kelvin", OFFSET(temperature), AV_OPT_TYPE_FLOAT, {.dbl=6500}, 1000, 40000, VF },
353 { "mix", "set the mix with filtered output", OFFSET(mix), AV_OPT_TYPE_FLOAT, {.dbl=1}, 0, 1, VF },
354 { "pl", "set the amount of preserving lightness", OFFSET(preserve), AV_OPT_TYPE_FLOAT, {.dbl=0}, 0, 1, VF },
355 { NULL }
356 };
357
358 AVFILTER_DEFINE_CLASS(colortemperature);
359
360 AVFilter ff_vf_colortemperature = {
361 .name = "colortemperature",
362 .description = NULL_IF_CONFIG_SMALL("Adjust color temperature of video."),
363 .priv_size = sizeof(ColorTemperatureContext),
364 .priv_class = &colortemperature_class,
365 .query_formats = query_formats,
366 .inputs = inputs,
367 .outputs = outputs,
368 .flags = AVFILTER_FLAG_SUPPORT_TIMELINE_GENERIC | AVFILTER_FLAG_SLICE_THREADS,
369 .process_command = ff_filter_process_command,
370 };
371