• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * NET		An implementation of the SOCKET network access protocol.
4  *
5  * Version:	@(#)socket.c	1.1.93	18/02/95
6  *
7  * Authors:	Orest Zborowski, <obz@Kodak.COM>
8  *		Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *
11  * Fixes:
12  *		Anonymous	:	NOTSOCK/BADF cleanup. Error fix in
13  *					shutdown()
14  *		Alan Cox	:	verify_area() fixes
15  *		Alan Cox	:	Removed DDI
16  *		Jonathan Kamens	:	SOCK_DGRAM reconnect bug
17  *		Alan Cox	:	Moved a load of checks to the very
18  *					top level.
19  *		Alan Cox	:	Move address structures to/from user
20  *					mode above the protocol layers.
21  *		Rob Janssen	:	Allow 0 length sends.
22  *		Alan Cox	:	Asynchronous I/O support (cribbed from the
23  *					tty drivers).
24  *		Niibe Yutaka	:	Asynchronous I/O for writes (4.4BSD style)
25  *		Jeff Uphoff	:	Made max number of sockets command-line
26  *					configurable.
27  *		Matti Aarnio	:	Made the number of sockets dynamic,
28  *					to be allocated when needed, and mr.
29  *					Uphoff's max is used as max to be
30  *					allowed to allocate.
31  *		Linus		:	Argh. removed all the socket allocation
32  *					altogether: it's in the inode now.
33  *		Alan Cox	:	Made sock_alloc()/sock_release() public
34  *					for NetROM and future kernel nfsd type
35  *					stuff.
36  *		Alan Cox	:	sendmsg/recvmsg basics.
37  *		Tom Dyas	:	Export net symbols.
38  *		Marcin Dalecki	:	Fixed problems with CONFIG_NET="n".
39  *		Alan Cox	:	Added thread locking to sys_* calls
40  *					for sockets. May have errors at the
41  *					moment.
42  *		Kevin Buhr	:	Fixed the dumb errors in the above.
43  *		Andi Kleen	:	Some small cleanups, optimizations,
44  *					and fixed a copy_from_user() bug.
45  *		Tigran Aivazian	:	sys_send(args) calls sys_sendto(args, NULL, 0)
46  *		Tigran Aivazian	:	Made listen(2) backlog sanity checks
47  *					protocol-independent
48  *
49  *	This module is effectively the top level interface to the BSD socket
50  *	paradigm.
51  *
52  *	Based upon Swansea University Computer Society NET3.039
53  */
54 
55 #include <linux/mm.h>
56 #include <linux/socket.h>
57 #include <linux/file.h>
58 #include <linux/net.h>
59 #include <linux/interrupt.h>
60 #include <linux/thread_info.h>
61 #include <linux/rcupdate.h>
62 #include <linux/netdevice.h>
63 #include <linux/proc_fs.h>
64 #include <linux/seq_file.h>
65 #include <linux/mutex.h>
66 #include <linux/if_bridge.h>
67 #include <linux/if_frad.h>
68 #include <linux/if_vlan.h>
69 #include <linux/ptp_classify.h>
70 #include <linux/init.h>
71 #include <linux/poll.h>
72 #include <linux/cache.h>
73 #include <linux/module.h>
74 #include <linux/highmem.h>
75 #include <linux/mount.h>
76 #include <linux/pseudo_fs.h>
77 #include <linux/security.h>
78 #include <linux/syscalls.h>
79 #include <linux/compat.h>
80 #include <linux/kmod.h>
81 #include <linux/audit.h>
82 #include <linux/wireless.h>
83 #include <linux/nsproxy.h>
84 #include <linux/magic.h>
85 #include <linux/slab.h>
86 #include <linux/xattr.h>
87 #include <linux/nospec.h>
88 #include <linux/indirect_call_wrapper.h>
89 
90 #include <linux/uaccess.h>
91 #include <asm/unistd.h>
92 
93 #include <net/compat.h>
94 #include <net/wext.h>
95 #include <net/cls_cgroup.h>
96 
97 #include <net/sock.h>
98 #include <linux/netfilter.h>
99 
100 #include <linux/if_tun.h>
101 #include <linux/ipv6_route.h>
102 #include <linux/route.h>
103 #include <linux/termios.h>
104 #include <linux/sockios.h>
105 #include <net/busy_poll.h>
106 #include <linux/errqueue.h>
107 
108 #ifdef CONFIG_NET_RX_BUSY_POLL
109 unsigned int sysctl_net_busy_read __read_mostly;
110 unsigned int sysctl_net_busy_poll __read_mostly;
111 #endif
112 
113 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to);
114 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from);
115 static int sock_mmap(struct file *file, struct vm_area_struct *vma);
116 
117 static int sock_close(struct inode *inode, struct file *file);
118 static __poll_t sock_poll(struct file *file,
119 			      struct poll_table_struct *wait);
120 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
121 #ifdef CONFIG_COMPAT
122 static long compat_sock_ioctl(struct file *file,
123 			      unsigned int cmd, unsigned long arg);
124 #endif
125 static int sock_fasync(int fd, struct file *filp, int on);
126 static ssize_t sock_sendpage(struct file *file, struct page *page,
127 			     int offset, size_t size, loff_t *ppos, int more);
128 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
129 				struct pipe_inode_info *pipe, size_t len,
130 				unsigned int flags);
131 
132 #ifdef CONFIG_PROC_FS
sock_show_fdinfo(struct seq_file * m,struct file * f)133 static void sock_show_fdinfo(struct seq_file *m, struct file *f)
134 {
135 	struct socket *sock = f->private_data;
136 
137 	if (sock->ops->show_fdinfo)
138 		sock->ops->show_fdinfo(m, sock);
139 }
140 #else
141 #define sock_show_fdinfo NULL
142 #endif
143 
144 /*
145  *	Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
146  *	in the operation structures but are done directly via the socketcall() multiplexor.
147  */
148 
149 static const struct file_operations socket_file_ops = {
150 	.owner =	THIS_MODULE,
151 	.llseek =	no_llseek,
152 	.read_iter =	sock_read_iter,
153 	.write_iter =	sock_write_iter,
154 	.poll =		sock_poll,
155 	.unlocked_ioctl = sock_ioctl,
156 #ifdef CONFIG_COMPAT
157 	.compat_ioctl = compat_sock_ioctl,
158 #endif
159 	.mmap =		sock_mmap,
160 	.release =	sock_close,
161 	.fasync =	sock_fasync,
162 	.sendpage =	sock_sendpage,
163 	.splice_write = generic_splice_sendpage,
164 	.splice_read =	sock_splice_read,
165 	.show_fdinfo =	sock_show_fdinfo,
166 };
167 
168 /*
169  *	The protocol list. Each protocol is registered in here.
170  */
171 
172 static DEFINE_SPINLOCK(net_family_lock);
173 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
174 
175 /*
176  * Support routines.
177  * Move socket addresses back and forth across the kernel/user
178  * divide and look after the messy bits.
179  */
180 
181 /**
182  *	move_addr_to_kernel	-	copy a socket address into kernel space
183  *	@uaddr: Address in user space
184  *	@kaddr: Address in kernel space
185  *	@ulen: Length in user space
186  *
187  *	The address is copied into kernel space. If the provided address is
188  *	too long an error code of -EINVAL is returned. If the copy gives
189  *	invalid addresses -EFAULT is returned. On a success 0 is returned.
190  */
191 
move_addr_to_kernel(void __user * uaddr,int ulen,struct sockaddr_storage * kaddr)192 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
193 {
194 	if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
195 		return -EINVAL;
196 	if (ulen == 0)
197 		return 0;
198 	if (copy_from_user(kaddr, uaddr, ulen))
199 		return -EFAULT;
200 	return audit_sockaddr(ulen, kaddr);
201 }
202 
203 /**
204  *	move_addr_to_user	-	copy an address to user space
205  *	@kaddr: kernel space address
206  *	@klen: length of address in kernel
207  *	@uaddr: user space address
208  *	@ulen: pointer to user length field
209  *
210  *	The value pointed to by ulen on entry is the buffer length available.
211  *	This is overwritten with the buffer space used. -EINVAL is returned
212  *	if an overlong buffer is specified or a negative buffer size. -EFAULT
213  *	is returned if either the buffer or the length field are not
214  *	accessible.
215  *	After copying the data up to the limit the user specifies, the true
216  *	length of the data is written over the length limit the user
217  *	specified. Zero is returned for a success.
218  */
219 
move_addr_to_user(struct sockaddr_storage * kaddr,int klen,void __user * uaddr,int __user * ulen)220 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
221 			     void __user *uaddr, int __user *ulen)
222 {
223 	int err;
224 	int len;
225 
226 	BUG_ON(klen > sizeof(struct sockaddr_storage));
227 	err = get_user(len, ulen);
228 	if (err)
229 		return err;
230 	if (len > klen)
231 		len = klen;
232 	if (len < 0)
233 		return -EINVAL;
234 	if (len) {
235 		if (audit_sockaddr(klen, kaddr))
236 			return -ENOMEM;
237 		if (copy_to_user(uaddr, kaddr, len))
238 			return -EFAULT;
239 	}
240 	/*
241 	 *      "fromlen shall refer to the value before truncation.."
242 	 *                      1003.1g
243 	 */
244 	return __put_user(klen, ulen);
245 }
246 
247 static struct kmem_cache *sock_inode_cachep __ro_after_init;
248 
sock_alloc_inode(struct super_block * sb)249 static struct inode *sock_alloc_inode(struct super_block *sb)
250 {
251 	struct socket_alloc *ei;
252 
253 	ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
254 	if (!ei)
255 		return NULL;
256 	init_waitqueue_head(&ei->socket.wq.wait);
257 	ei->socket.wq.fasync_list = NULL;
258 	ei->socket.wq.flags = 0;
259 
260 	ei->socket.state = SS_UNCONNECTED;
261 	ei->socket.flags = 0;
262 	ei->socket.ops = NULL;
263 	ei->socket.sk = NULL;
264 	ei->socket.file = NULL;
265 
266 	return &ei->vfs_inode;
267 }
268 
sock_free_inode(struct inode * inode)269 static void sock_free_inode(struct inode *inode)
270 {
271 	struct socket_alloc *ei;
272 
273 	ei = container_of(inode, struct socket_alloc, vfs_inode);
274 	kmem_cache_free(sock_inode_cachep, ei);
275 }
276 
init_once(void * foo)277 static void init_once(void *foo)
278 {
279 	struct socket_alloc *ei = (struct socket_alloc *)foo;
280 
281 	inode_init_once(&ei->vfs_inode);
282 }
283 
init_inodecache(void)284 static void init_inodecache(void)
285 {
286 	sock_inode_cachep = kmem_cache_create("sock_inode_cache",
287 					      sizeof(struct socket_alloc),
288 					      0,
289 					      (SLAB_HWCACHE_ALIGN |
290 					       SLAB_RECLAIM_ACCOUNT |
291 					       SLAB_MEM_SPREAD | SLAB_ACCOUNT),
292 					      init_once);
293 	BUG_ON(sock_inode_cachep == NULL);
294 }
295 
296 static const struct super_operations sockfs_ops = {
297 	.alloc_inode	= sock_alloc_inode,
298 	.free_inode	= sock_free_inode,
299 	.statfs		= simple_statfs,
300 };
301 
302 /*
303  * sockfs_dname() is called from d_path().
304  */
sockfs_dname(struct dentry * dentry,char * buffer,int buflen)305 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
306 {
307 	return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
308 				d_inode(dentry)->i_ino);
309 }
310 
311 static const struct dentry_operations sockfs_dentry_operations = {
312 	.d_dname  = sockfs_dname,
313 };
314 
sockfs_xattr_get(const struct xattr_handler * handler,struct dentry * dentry,struct inode * inode,const char * suffix,void * value,size_t size)315 static int sockfs_xattr_get(const struct xattr_handler *handler,
316 			    struct dentry *dentry, struct inode *inode,
317 			    const char *suffix, void *value, size_t size)
318 {
319 	if (value) {
320 		if (dentry->d_name.len + 1 > size)
321 			return -ERANGE;
322 		memcpy(value, dentry->d_name.name, dentry->d_name.len + 1);
323 	}
324 	return dentry->d_name.len + 1;
325 }
326 
327 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
328 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
329 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
330 
331 static const struct xattr_handler sockfs_xattr_handler = {
332 	.name = XATTR_NAME_SOCKPROTONAME,
333 	.get = sockfs_xattr_get,
334 };
335 
sockfs_security_xattr_set(const struct xattr_handler * handler,struct dentry * dentry,struct inode * inode,const char * suffix,const void * value,size_t size,int flags)336 static int sockfs_security_xattr_set(const struct xattr_handler *handler,
337 				     struct dentry *dentry, struct inode *inode,
338 				     const char *suffix, const void *value,
339 				     size_t size, int flags)
340 {
341 	/* Handled by LSM. */
342 	return -EAGAIN;
343 }
344 
345 static const struct xattr_handler sockfs_security_xattr_handler = {
346 	.prefix = XATTR_SECURITY_PREFIX,
347 	.set = sockfs_security_xattr_set,
348 };
349 
350 static const struct xattr_handler *sockfs_xattr_handlers[] = {
351 	&sockfs_xattr_handler,
352 	&sockfs_security_xattr_handler,
353 	NULL
354 };
355 
sockfs_init_fs_context(struct fs_context * fc)356 static int sockfs_init_fs_context(struct fs_context *fc)
357 {
358 	struct pseudo_fs_context *ctx = init_pseudo(fc, SOCKFS_MAGIC);
359 	if (!ctx)
360 		return -ENOMEM;
361 	ctx->ops = &sockfs_ops;
362 	ctx->dops = &sockfs_dentry_operations;
363 	ctx->xattr = sockfs_xattr_handlers;
364 	return 0;
365 }
366 
367 static struct vfsmount *sock_mnt __read_mostly;
368 
369 static struct file_system_type sock_fs_type = {
370 	.name =		"sockfs",
371 	.init_fs_context = sockfs_init_fs_context,
372 	.kill_sb =	kill_anon_super,
373 };
374 
375 /*
376  *	Obtains the first available file descriptor and sets it up for use.
377  *
378  *	These functions create file structures and maps them to fd space
379  *	of the current process. On success it returns file descriptor
380  *	and file struct implicitly stored in sock->file.
381  *	Note that another thread may close file descriptor before we return
382  *	from this function. We use the fact that now we do not refer
383  *	to socket after mapping. If one day we will need it, this
384  *	function will increment ref. count on file by 1.
385  *
386  *	In any case returned fd MAY BE not valid!
387  *	This race condition is unavoidable
388  *	with shared fd spaces, we cannot solve it inside kernel,
389  *	but we take care of internal coherence yet.
390  */
391 
392 /**
393  *	sock_alloc_file - Bind a &socket to a &file
394  *	@sock: socket
395  *	@flags: file status flags
396  *	@dname: protocol name
397  *
398  *	Returns the &file bound with @sock, implicitly storing it
399  *	in sock->file. If dname is %NULL, sets to "".
400  *	On failure the return is a ERR pointer (see linux/err.h).
401  *	This function uses GFP_KERNEL internally.
402  */
403 
sock_alloc_file(struct socket * sock,int flags,const char * dname)404 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname)
405 {
406 	struct file *file;
407 
408 	if (!dname)
409 		dname = sock->sk ? sock->sk->sk_prot_creator->name : "";
410 
411 	file = alloc_file_pseudo(SOCK_INODE(sock), sock_mnt, dname,
412 				O_RDWR | (flags & O_NONBLOCK),
413 				&socket_file_ops);
414 	if (IS_ERR(file)) {
415 		sock_release(sock);
416 		return file;
417 	}
418 
419 	sock->file = file;
420 	file->private_data = sock;
421 	stream_open(SOCK_INODE(sock), file);
422 	return file;
423 }
424 EXPORT_SYMBOL(sock_alloc_file);
425 
sock_map_fd(struct socket * sock,int flags)426 static int sock_map_fd(struct socket *sock, int flags)
427 {
428 	struct file *newfile;
429 	int fd = get_unused_fd_flags(flags);
430 	if (unlikely(fd < 0)) {
431 		sock_release(sock);
432 		return fd;
433 	}
434 
435 	newfile = sock_alloc_file(sock, flags, NULL);
436 	if (!IS_ERR(newfile)) {
437 		fd_install(fd, newfile);
438 		return fd;
439 	}
440 
441 	put_unused_fd(fd);
442 	return PTR_ERR(newfile);
443 }
444 
445 /**
446  *	sock_from_file - Return the &socket bounded to @file.
447  *	@file: file
448  *	@err: pointer to an error code return
449  *
450  *	On failure returns %NULL and assigns -ENOTSOCK to @err.
451  */
452 
sock_from_file(struct file * file,int * err)453 struct socket *sock_from_file(struct file *file, int *err)
454 {
455 	if (file->f_op == &socket_file_ops)
456 		return file->private_data;	/* set in sock_map_fd */
457 
458 	*err = -ENOTSOCK;
459 	return NULL;
460 }
461 EXPORT_SYMBOL(sock_from_file);
462 
463 /**
464  *	sockfd_lookup - Go from a file number to its socket slot
465  *	@fd: file handle
466  *	@err: pointer to an error code return
467  *
468  *	The file handle passed in is locked and the socket it is bound
469  *	to is returned. If an error occurs the err pointer is overwritten
470  *	with a negative errno code and NULL is returned. The function checks
471  *	for both invalid handles and passing a handle which is not a socket.
472  *
473  *	On a success the socket object pointer is returned.
474  */
475 
sockfd_lookup(int fd,int * err)476 struct socket *sockfd_lookup(int fd, int *err)
477 {
478 	struct file *file;
479 	struct socket *sock;
480 
481 	file = fget(fd);
482 	if (!file) {
483 		*err = -EBADF;
484 		return NULL;
485 	}
486 
487 	sock = sock_from_file(file, err);
488 	if (!sock)
489 		fput(file);
490 	return sock;
491 }
492 EXPORT_SYMBOL(sockfd_lookup);
493 
sockfd_lookup_light(int fd,int * err,int * fput_needed)494 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
495 {
496 	struct fd f = fdget(fd);
497 	struct socket *sock;
498 
499 	*err = -EBADF;
500 	if (f.file) {
501 		sock = sock_from_file(f.file, err);
502 		if (likely(sock)) {
503 			*fput_needed = f.flags & FDPUT_FPUT;
504 			return sock;
505 		}
506 		fdput(f);
507 	}
508 	return NULL;
509 }
510 
sockfs_listxattr(struct dentry * dentry,char * buffer,size_t size)511 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer,
512 				size_t size)
513 {
514 	ssize_t len;
515 	ssize_t used = 0;
516 
517 	len = security_inode_listsecurity(d_inode(dentry), buffer, size);
518 	if (len < 0)
519 		return len;
520 	used += len;
521 	if (buffer) {
522 		if (size < used)
523 			return -ERANGE;
524 		buffer += len;
525 	}
526 
527 	len = (XATTR_NAME_SOCKPROTONAME_LEN + 1);
528 	used += len;
529 	if (buffer) {
530 		if (size < used)
531 			return -ERANGE;
532 		memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len);
533 		buffer += len;
534 	}
535 
536 	return used;
537 }
538 
sockfs_setattr(struct dentry * dentry,struct iattr * iattr)539 static int sockfs_setattr(struct dentry *dentry, struct iattr *iattr)
540 {
541 	int err = simple_setattr(dentry, iattr);
542 
543 	if (!err && (iattr->ia_valid & ATTR_UID)) {
544 		struct socket *sock = SOCKET_I(d_inode(dentry));
545 
546 		if (sock->sk)
547 			sock->sk->sk_uid = iattr->ia_uid;
548 		else
549 			err = -ENOENT;
550 	}
551 
552 	return err;
553 }
554 
555 static const struct inode_operations sockfs_inode_ops = {
556 	.listxattr = sockfs_listxattr,
557 	.setattr = sockfs_setattr,
558 };
559 
560 /**
561  *	sock_alloc - allocate a socket
562  *
563  *	Allocate a new inode and socket object. The two are bound together
564  *	and initialised. The socket is then returned. If we are out of inodes
565  *	NULL is returned. This functions uses GFP_KERNEL internally.
566  */
567 
sock_alloc(void)568 struct socket *sock_alloc(void)
569 {
570 	struct inode *inode;
571 	struct socket *sock;
572 
573 	inode = new_inode_pseudo(sock_mnt->mnt_sb);
574 	if (!inode)
575 		return NULL;
576 
577 	sock = SOCKET_I(inode);
578 
579 	inode->i_ino = get_next_ino();
580 	inode->i_mode = S_IFSOCK | S_IRWXUGO;
581 	inode->i_uid = current_fsuid();
582 	inode->i_gid = current_fsgid();
583 	inode->i_op = &sockfs_inode_ops;
584 
585 	return sock;
586 }
587 EXPORT_SYMBOL(sock_alloc);
588 
__sock_release(struct socket * sock,struct inode * inode)589 static void __sock_release(struct socket *sock, struct inode *inode)
590 {
591 	if (sock->ops) {
592 		struct module *owner = sock->ops->owner;
593 
594 		if (inode)
595 			inode_lock(inode);
596 		sock->ops->release(sock);
597 		sock->sk = NULL;
598 		if (inode)
599 			inode_unlock(inode);
600 		sock->ops = NULL;
601 		module_put(owner);
602 	}
603 
604 	if (sock->wq.fasync_list)
605 		pr_err("%s: fasync list not empty!\n", __func__);
606 
607 	if (!sock->file) {
608 		iput(SOCK_INODE(sock));
609 		return;
610 	}
611 	sock->file = NULL;
612 }
613 
614 /**
615  *	sock_release - close a socket
616  *	@sock: socket to close
617  *
618  *	The socket is released from the protocol stack if it has a release
619  *	callback, and the inode is then released if the socket is bound to
620  *	an inode not a file.
621  */
sock_release(struct socket * sock)622 void sock_release(struct socket *sock)
623 {
624 	__sock_release(sock, NULL);
625 }
626 EXPORT_SYMBOL(sock_release);
627 
__sock_tx_timestamp(__u16 tsflags,__u8 * tx_flags)628 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags)
629 {
630 	u8 flags = *tx_flags;
631 
632 	if (tsflags & SOF_TIMESTAMPING_TX_HARDWARE)
633 		flags |= SKBTX_HW_TSTAMP;
634 
635 	if (tsflags & SOF_TIMESTAMPING_TX_SOFTWARE)
636 		flags |= SKBTX_SW_TSTAMP;
637 
638 	if (tsflags & SOF_TIMESTAMPING_TX_SCHED)
639 		flags |= SKBTX_SCHED_TSTAMP;
640 
641 	*tx_flags = flags;
642 }
643 EXPORT_SYMBOL(__sock_tx_timestamp);
644 
645 INDIRECT_CALLABLE_DECLARE(int inet_sendmsg(struct socket *, struct msghdr *,
646 					   size_t));
647 INDIRECT_CALLABLE_DECLARE(int inet6_sendmsg(struct socket *, struct msghdr *,
648 					    size_t));
sock_sendmsg_nosec(struct socket * sock,struct msghdr * msg)649 static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg)
650 {
651 	int ret = INDIRECT_CALL_INET(sock->ops->sendmsg, inet6_sendmsg,
652 				     inet_sendmsg, sock, msg,
653 				     msg_data_left(msg));
654 	BUG_ON(ret == -EIOCBQUEUED);
655 	return ret;
656 }
657 
658 /**
659  *	sock_sendmsg - send a message through @sock
660  *	@sock: socket
661  *	@msg: message to send
662  *
663  *	Sends @msg through @sock, passing through LSM.
664  *	Returns the number of bytes sent, or an error code.
665  */
sock_sendmsg(struct socket * sock,struct msghdr * msg)666 int sock_sendmsg(struct socket *sock, struct msghdr *msg)
667 {
668 	int err = security_socket_sendmsg(sock, msg,
669 					  msg_data_left(msg));
670 
671 	return err ?: sock_sendmsg_nosec(sock, msg);
672 }
673 EXPORT_SYMBOL(sock_sendmsg);
674 
675 /**
676  *	kernel_sendmsg - send a message through @sock (kernel-space)
677  *	@sock: socket
678  *	@msg: message header
679  *	@vec: kernel vec
680  *	@num: vec array length
681  *	@size: total message data size
682  *
683  *	Builds the message data with @vec and sends it through @sock.
684  *	Returns the number of bytes sent, or an error code.
685  */
686 
kernel_sendmsg(struct socket * sock,struct msghdr * msg,struct kvec * vec,size_t num,size_t size)687 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
688 		   struct kvec *vec, size_t num, size_t size)
689 {
690 	iov_iter_kvec(&msg->msg_iter, WRITE, vec, num, size);
691 	return sock_sendmsg(sock, msg);
692 }
693 EXPORT_SYMBOL(kernel_sendmsg);
694 
695 /**
696  *	kernel_sendmsg_locked - send a message through @sock (kernel-space)
697  *	@sk: sock
698  *	@msg: message header
699  *	@vec: output s/g array
700  *	@num: output s/g array length
701  *	@size: total message data size
702  *
703  *	Builds the message data with @vec and sends it through @sock.
704  *	Returns the number of bytes sent, or an error code.
705  *	Caller must hold @sk.
706  */
707 
kernel_sendmsg_locked(struct sock * sk,struct msghdr * msg,struct kvec * vec,size_t num,size_t size)708 int kernel_sendmsg_locked(struct sock *sk, struct msghdr *msg,
709 			  struct kvec *vec, size_t num, size_t size)
710 {
711 	struct socket *sock = sk->sk_socket;
712 
713 	if (!sock->ops->sendmsg_locked)
714 		return sock_no_sendmsg_locked(sk, msg, size);
715 
716 	iov_iter_kvec(&msg->msg_iter, WRITE, vec, num, size);
717 
718 	return sock->ops->sendmsg_locked(sk, msg, msg_data_left(msg));
719 }
720 EXPORT_SYMBOL(kernel_sendmsg_locked);
721 
skb_is_err_queue(const struct sk_buff * skb)722 static bool skb_is_err_queue(const struct sk_buff *skb)
723 {
724 	/* pkt_type of skbs enqueued on the error queue are set to
725 	 * PACKET_OUTGOING in skb_set_err_queue(). This is only safe to do
726 	 * in recvmsg, since skbs received on a local socket will never
727 	 * have a pkt_type of PACKET_OUTGOING.
728 	 */
729 	return skb->pkt_type == PACKET_OUTGOING;
730 }
731 
732 /* On transmit, software and hardware timestamps are returned independently.
733  * As the two skb clones share the hardware timestamp, which may be updated
734  * before the software timestamp is received, a hardware TX timestamp may be
735  * returned only if there is no software TX timestamp. Ignore false software
736  * timestamps, which may be made in the __sock_recv_timestamp() call when the
737  * option SO_TIMESTAMP_OLD(NS) is enabled on the socket, even when the skb has a
738  * hardware timestamp.
739  */
skb_is_swtx_tstamp(const struct sk_buff * skb,int false_tstamp)740 static bool skb_is_swtx_tstamp(const struct sk_buff *skb, int false_tstamp)
741 {
742 	return skb->tstamp && !false_tstamp && skb_is_err_queue(skb);
743 }
744 
put_ts_pktinfo(struct msghdr * msg,struct sk_buff * skb)745 static void put_ts_pktinfo(struct msghdr *msg, struct sk_buff *skb)
746 {
747 	struct scm_ts_pktinfo ts_pktinfo;
748 	struct net_device *orig_dev;
749 
750 	if (!skb_mac_header_was_set(skb))
751 		return;
752 
753 	memset(&ts_pktinfo, 0, sizeof(ts_pktinfo));
754 
755 	rcu_read_lock();
756 	orig_dev = dev_get_by_napi_id(skb_napi_id(skb));
757 	if (orig_dev)
758 		ts_pktinfo.if_index = orig_dev->ifindex;
759 	rcu_read_unlock();
760 
761 	ts_pktinfo.pkt_length = skb->len - skb_mac_offset(skb);
762 	put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_PKTINFO,
763 		 sizeof(ts_pktinfo), &ts_pktinfo);
764 }
765 
766 /*
767  * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
768  */
__sock_recv_timestamp(struct msghdr * msg,struct sock * sk,struct sk_buff * skb)769 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
770 	struct sk_buff *skb)
771 {
772 	int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
773 	int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW);
774 	struct scm_timestamping_internal tss;
775 
776 	int empty = 1, false_tstamp = 0;
777 	struct skb_shared_hwtstamps *shhwtstamps =
778 		skb_hwtstamps(skb);
779 
780 	/* Race occurred between timestamp enabling and packet
781 	   receiving.  Fill in the current time for now. */
782 	if (need_software_tstamp && skb->tstamp == 0) {
783 		__net_timestamp(skb);
784 		false_tstamp = 1;
785 	}
786 
787 	if (need_software_tstamp) {
788 		if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
789 			if (new_tstamp) {
790 				struct __kernel_sock_timeval tv;
791 
792 				skb_get_new_timestamp(skb, &tv);
793 				put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW,
794 					 sizeof(tv), &tv);
795 			} else {
796 				struct __kernel_old_timeval tv;
797 
798 				skb_get_timestamp(skb, &tv);
799 				put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD,
800 					 sizeof(tv), &tv);
801 			}
802 		} else {
803 			if (new_tstamp) {
804 				struct __kernel_timespec ts;
805 
806 				skb_get_new_timestampns(skb, &ts);
807 				put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW,
808 					 sizeof(ts), &ts);
809 			} else {
810 				struct __kernel_old_timespec ts;
811 
812 				skb_get_timestampns(skb, &ts);
813 				put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD,
814 					 sizeof(ts), &ts);
815 			}
816 		}
817 	}
818 
819 	memset(&tss, 0, sizeof(tss));
820 	if ((sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) &&
821 	    ktime_to_timespec64_cond(skb->tstamp, tss.ts + 0))
822 		empty = 0;
823 	if (shhwtstamps &&
824 	    (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) &&
825 	    !skb_is_swtx_tstamp(skb, false_tstamp) &&
826 	    ktime_to_timespec64_cond(shhwtstamps->hwtstamp, tss.ts + 2)) {
827 		empty = 0;
828 		if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_PKTINFO) &&
829 		    !skb_is_err_queue(skb))
830 			put_ts_pktinfo(msg, skb);
831 	}
832 	if (!empty) {
833 		if (sock_flag(sk, SOCK_TSTAMP_NEW))
834 			put_cmsg_scm_timestamping64(msg, &tss);
835 		else
836 			put_cmsg_scm_timestamping(msg, &tss);
837 
838 		if (skb_is_err_queue(skb) && skb->len &&
839 		    SKB_EXT_ERR(skb)->opt_stats)
840 			put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_OPT_STATS,
841 				 skb->len, skb->data);
842 	}
843 }
844 EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
845 
__sock_recv_wifi_status(struct msghdr * msg,struct sock * sk,struct sk_buff * skb)846 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
847 	struct sk_buff *skb)
848 {
849 	int ack;
850 
851 	if (!sock_flag(sk, SOCK_WIFI_STATUS))
852 		return;
853 	if (!skb->wifi_acked_valid)
854 		return;
855 
856 	ack = skb->wifi_acked;
857 
858 	put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
859 }
860 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
861 
sock_recv_drops(struct msghdr * msg,struct sock * sk,struct sk_buff * skb)862 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
863 				   struct sk_buff *skb)
864 {
865 	if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount)
866 		put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
867 			sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount);
868 }
869 
__sock_recv_ts_and_drops(struct msghdr * msg,struct sock * sk,struct sk_buff * skb)870 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
871 	struct sk_buff *skb)
872 {
873 	sock_recv_timestamp(msg, sk, skb);
874 	sock_recv_drops(msg, sk, skb);
875 }
876 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops);
877 
878 INDIRECT_CALLABLE_DECLARE(int inet_recvmsg(struct socket *, struct msghdr *,
879 					   size_t, int));
880 INDIRECT_CALLABLE_DECLARE(int inet6_recvmsg(struct socket *, struct msghdr *,
881 					    size_t, int));
sock_recvmsg_nosec(struct socket * sock,struct msghdr * msg,int flags)882 static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
883 				     int flags)
884 {
885 	return INDIRECT_CALL_INET(sock->ops->recvmsg, inet6_recvmsg,
886 				  inet_recvmsg, sock, msg, msg_data_left(msg),
887 				  flags);
888 }
889 
890 /**
891  *	sock_recvmsg - receive a message from @sock
892  *	@sock: socket
893  *	@msg: message to receive
894  *	@flags: message flags
895  *
896  *	Receives @msg from @sock, passing through LSM. Returns the total number
897  *	of bytes received, or an error.
898  */
sock_recvmsg(struct socket * sock,struct msghdr * msg,int flags)899 int sock_recvmsg(struct socket *sock, struct msghdr *msg, int flags)
900 {
901 	int err = security_socket_recvmsg(sock, msg, msg_data_left(msg), flags);
902 
903 	return err ?: sock_recvmsg_nosec(sock, msg, flags);
904 }
905 EXPORT_SYMBOL(sock_recvmsg);
906 
907 /**
908  *	kernel_recvmsg - Receive a message from a socket (kernel space)
909  *	@sock: The socket to receive the message from
910  *	@msg: Received message
911  *	@vec: Input s/g array for message data
912  *	@num: Size of input s/g array
913  *	@size: Number of bytes to read
914  *	@flags: Message flags (MSG_DONTWAIT, etc...)
915  *
916  *	On return the msg structure contains the scatter/gather array passed in the
917  *	vec argument. The array is modified so that it consists of the unfilled
918  *	portion of the original array.
919  *
920  *	The returned value is the total number of bytes received, or an error.
921  */
922 
kernel_recvmsg(struct socket * sock,struct msghdr * msg,struct kvec * vec,size_t num,size_t size,int flags)923 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
924 		   struct kvec *vec, size_t num, size_t size, int flags)
925 {
926 	msg->msg_control_is_user = false;
927 	iov_iter_kvec(&msg->msg_iter, READ, vec, num, size);
928 	return sock_recvmsg(sock, msg, flags);
929 }
930 EXPORT_SYMBOL(kernel_recvmsg);
931 
sock_sendpage(struct file * file,struct page * page,int offset,size_t size,loff_t * ppos,int more)932 static ssize_t sock_sendpage(struct file *file, struct page *page,
933 			     int offset, size_t size, loff_t *ppos, int more)
934 {
935 	struct socket *sock;
936 	int flags;
937 
938 	sock = file->private_data;
939 
940 	flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
941 	/* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */
942 	flags |= more;
943 
944 	return kernel_sendpage(sock, page, offset, size, flags);
945 }
946 
sock_splice_read(struct file * file,loff_t * ppos,struct pipe_inode_info * pipe,size_t len,unsigned int flags)947 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
948 				struct pipe_inode_info *pipe, size_t len,
949 				unsigned int flags)
950 {
951 	struct socket *sock = file->private_data;
952 
953 	if (unlikely(!sock->ops->splice_read))
954 		return generic_file_splice_read(file, ppos, pipe, len, flags);
955 
956 	return sock->ops->splice_read(sock, ppos, pipe, len, flags);
957 }
958 
sock_read_iter(struct kiocb * iocb,struct iov_iter * to)959 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to)
960 {
961 	struct file *file = iocb->ki_filp;
962 	struct socket *sock = file->private_data;
963 	struct msghdr msg = {.msg_iter = *to,
964 			     .msg_iocb = iocb};
965 	ssize_t res;
966 
967 	if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT))
968 		msg.msg_flags = MSG_DONTWAIT;
969 
970 	if (iocb->ki_pos != 0)
971 		return -ESPIPE;
972 
973 	if (!iov_iter_count(to))	/* Match SYS5 behaviour */
974 		return 0;
975 
976 	res = sock_recvmsg(sock, &msg, msg.msg_flags);
977 	*to = msg.msg_iter;
978 	return res;
979 }
980 
sock_write_iter(struct kiocb * iocb,struct iov_iter * from)981 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from)
982 {
983 	struct file *file = iocb->ki_filp;
984 	struct socket *sock = file->private_data;
985 	struct msghdr msg = {.msg_iter = *from,
986 			     .msg_iocb = iocb};
987 	ssize_t res;
988 
989 	if (iocb->ki_pos != 0)
990 		return -ESPIPE;
991 
992 	if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT))
993 		msg.msg_flags = MSG_DONTWAIT;
994 
995 	if (sock->type == SOCK_SEQPACKET)
996 		msg.msg_flags |= MSG_EOR;
997 
998 	res = sock_sendmsg(sock, &msg);
999 	*from = msg.msg_iter;
1000 	return res;
1001 }
1002 
1003 /*
1004  * Atomic setting of ioctl hooks to avoid race
1005  * with module unload.
1006  */
1007 
1008 static DEFINE_MUTEX(br_ioctl_mutex);
1009 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg);
1010 
brioctl_set(int (* hook)(struct net *,unsigned int,void __user *))1011 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))
1012 {
1013 	mutex_lock(&br_ioctl_mutex);
1014 	br_ioctl_hook = hook;
1015 	mutex_unlock(&br_ioctl_mutex);
1016 }
1017 EXPORT_SYMBOL(brioctl_set);
1018 
1019 static DEFINE_MUTEX(vlan_ioctl_mutex);
1020 static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
1021 
vlan_ioctl_set(int (* hook)(struct net *,void __user *))1022 void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
1023 {
1024 	mutex_lock(&vlan_ioctl_mutex);
1025 	vlan_ioctl_hook = hook;
1026 	mutex_unlock(&vlan_ioctl_mutex);
1027 }
1028 EXPORT_SYMBOL(vlan_ioctl_set);
1029 
1030 static DEFINE_MUTEX(dlci_ioctl_mutex);
1031 static int (*dlci_ioctl_hook) (unsigned int, void __user *);
1032 
dlci_ioctl_set(int (* hook)(unsigned int,void __user *))1033 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *))
1034 {
1035 	mutex_lock(&dlci_ioctl_mutex);
1036 	dlci_ioctl_hook = hook;
1037 	mutex_unlock(&dlci_ioctl_mutex);
1038 }
1039 EXPORT_SYMBOL(dlci_ioctl_set);
1040 
sock_do_ioctl(struct net * net,struct socket * sock,unsigned int cmd,unsigned long arg)1041 static long sock_do_ioctl(struct net *net, struct socket *sock,
1042 			  unsigned int cmd, unsigned long arg)
1043 {
1044 	int err;
1045 	void __user *argp = (void __user *)arg;
1046 
1047 	err = sock->ops->ioctl(sock, cmd, arg);
1048 
1049 	/*
1050 	 * If this ioctl is unknown try to hand it down
1051 	 * to the NIC driver.
1052 	 */
1053 	if (err != -ENOIOCTLCMD)
1054 		return err;
1055 
1056 	if (cmd == SIOCGIFCONF) {
1057 		struct ifconf ifc;
1058 		if (copy_from_user(&ifc, argp, sizeof(struct ifconf)))
1059 			return -EFAULT;
1060 		rtnl_lock();
1061 		err = dev_ifconf(net, &ifc, sizeof(struct ifreq));
1062 		rtnl_unlock();
1063 		if (!err && copy_to_user(argp, &ifc, sizeof(struct ifconf)))
1064 			err = -EFAULT;
1065 	} else if (is_socket_ioctl_cmd(cmd)) {
1066 		struct ifreq ifr;
1067 		bool need_copyout;
1068 		if (copy_from_user(&ifr, argp, sizeof(struct ifreq)))
1069 			return -EFAULT;
1070 		err = dev_ioctl(net, cmd, &ifr, &need_copyout);
1071 		if (!err && need_copyout)
1072 			if (copy_to_user(argp, &ifr, sizeof(struct ifreq)))
1073 				return -EFAULT;
1074 	} else {
1075 		err = -ENOTTY;
1076 	}
1077 	return err;
1078 }
1079 
1080 /*
1081  *	With an ioctl, arg may well be a user mode pointer, but we don't know
1082  *	what to do with it - that's up to the protocol still.
1083  */
1084 
sock_ioctl(struct file * file,unsigned cmd,unsigned long arg)1085 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
1086 {
1087 	struct socket *sock;
1088 	struct sock *sk;
1089 	void __user *argp = (void __user *)arg;
1090 	int pid, err;
1091 	struct net *net;
1092 
1093 	sock = file->private_data;
1094 	sk = sock->sk;
1095 	net = sock_net(sk);
1096 	if (unlikely(cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))) {
1097 		struct ifreq ifr;
1098 		bool need_copyout;
1099 		if (copy_from_user(&ifr, argp, sizeof(struct ifreq)))
1100 			return -EFAULT;
1101 		err = dev_ioctl(net, cmd, &ifr, &need_copyout);
1102 		if (!err && need_copyout)
1103 			if (copy_to_user(argp, &ifr, sizeof(struct ifreq)))
1104 				return -EFAULT;
1105 	} else
1106 #ifdef CONFIG_WEXT_CORE
1107 	if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
1108 		err = wext_handle_ioctl(net, cmd, argp);
1109 	} else
1110 #endif
1111 		switch (cmd) {
1112 		case FIOSETOWN:
1113 		case SIOCSPGRP:
1114 			err = -EFAULT;
1115 			if (get_user(pid, (int __user *)argp))
1116 				break;
1117 			err = f_setown(sock->file, pid, 1);
1118 			break;
1119 		case FIOGETOWN:
1120 		case SIOCGPGRP:
1121 			err = put_user(f_getown(sock->file),
1122 				       (int __user *)argp);
1123 			break;
1124 		case SIOCGIFBR:
1125 		case SIOCSIFBR:
1126 		case SIOCBRADDBR:
1127 		case SIOCBRDELBR:
1128 			err = -ENOPKG;
1129 			if (!br_ioctl_hook)
1130 				request_module("bridge");
1131 
1132 			mutex_lock(&br_ioctl_mutex);
1133 			if (br_ioctl_hook)
1134 				err = br_ioctl_hook(net, cmd, argp);
1135 			mutex_unlock(&br_ioctl_mutex);
1136 			break;
1137 		case SIOCGIFVLAN:
1138 		case SIOCSIFVLAN:
1139 			err = -ENOPKG;
1140 			if (!vlan_ioctl_hook)
1141 				request_module("8021q");
1142 
1143 			mutex_lock(&vlan_ioctl_mutex);
1144 			if (vlan_ioctl_hook)
1145 				err = vlan_ioctl_hook(net, argp);
1146 			mutex_unlock(&vlan_ioctl_mutex);
1147 			break;
1148 		case SIOCADDDLCI:
1149 		case SIOCDELDLCI:
1150 			err = -ENOPKG;
1151 			if (!dlci_ioctl_hook)
1152 				request_module("dlci");
1153 
1154 			mutex_lock(&dlci_ioctl_mutex);
1155 			if (dlci_ioctl_hook)
1156 				err = dlci_ioctl_hook(cmd, argp);
1157 			mutex_unlock(&dlci_ioctl_mutex);
1158 			break;
1159 		case SIOCGSKNS:
1160 			err = -EPERM;
1161 			if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
1162 				break;
1163 
1164 			err = open_related_ns(&net->ns, get_net_ns);
1165 			break;
1166 		case SIOCGSTAMP_OLD:
1167 		case SIOCGSTAMPNS_OLD:
1168 			if (!sock->ops->gettstamp) {
1169 				err = -ENOIOCTLCMD;
1170 				break;
1171 			}
1172 			err = sock->ops->gettstamp(sock, argp,
1173 						   cmd == SIOCGSTAMP_OLD,
1174 						   !IS_ENABLED(CONFIG_64BIT));
1175 			break;
1176 		case SIOCGSTAMP_NEW:
1177 		case SIOCGSTAMPNS_NEW:
1178 			if (!sock->ops->gettstamp) {
1179 				err = -ENOIOCTLCMD;
1180 				break;
1181 			}
1182 			err = sock->ops->gettstamp(sock, argp,
1183 						   cmd == SIOCGSTAMP_NEW,
1184 						   false);
1185 			break;
1186 		default:
1187 			err = sock_do_ioctl(net, sock, cmd, arg);
1188 			break;
1189 		}
1190 	return err;
1191 }
1192 
1193 /**
1194  *	sock_create_lite - creates a socket
1195  *	@family: protocol family (AF_INET, ...)
1196  *	@type: communication type (SOCK_STREAM, ...)
1197  *	@protocol: protocol (0, ...)
1198  *	@res: new socket
1199  *
1200  *	Creates a new socket and assigns it to @res, passing through LSM.
1201  *	The new socket initialization is not complete, see kernel_accept().
1202  *	Returns 0 or an error. On failure @res is set to %NULL.
1203  *	This function internally uses GFP_KERNEL.
1204  */
1205 
sock_create_lite(int family,int type,int protocol,struct socket ** res)1206 int sock_create_lite(int family, int type, int protocol, struct socket **res)
1207 {
1208 	int err;
1209 	struct socket *sock = NULL;
1210 
1211 	err = security_socket_create(family, type, protocol, 1);
1212 	if (err)
1213 		goto out;
1214 
1215 	sock = sock_alloc();
1216 	if (!sock) {
1217 		err = -ENOMEM;
1218 		goto out;
1219 	}
1220 
1221 	sock->type = type;
1222 	err = security_socket_post_create(sock, family, type, protocol, 1);
1223 	if (err)
1224 		goto out_release;
1225 
1226 out:
1227 	*res = sock;
1228 	return err;
1229 out_release:
1230 	sock_release(sock);
1231 	sock = NULL;
1232 	goto out;
1233 }
1234 EXPORT_SYMBOL(sock_create_lite);
1235 
1236 /* No kernel lock held - perfect */
sock_poll(struct file * file,poll_table * wait)1237 static __poll_t sock_poll(struct file *file, poll_table *wait)
1238 {
1239 	struct socket *sock = file->private_data;
1240 	__poll_t events = poll_requested_events(wait), flag = 0;
1241 
1242 	if (!sock->ops->poll)
1243 		return 0;
1244 
1245 	if (sk_can_busy_loop(sock->sk)) {
1246 		/* poll once if requested by the syscall */
1247 		if (events & POLL_BUSY_LOOP)
1248 			sk_busy_loop(sock->sk, 1);
1249 
1250 		/* if this socket can poll_ll, tell the system call */
1251 		flag = POLL_BUSY_LOOP;
1252 	}
1253 
1254 	return sock->ops->poll(file, sock, wait) | flag;
1255 }
1256 
sock_mmap(struct file * file,struct vm_area_struct * vma)1257 static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1258 {
1259 	struct socket *sock = file->private_data;
1260 
1261 	return sock->ops->mmap(file, sock, vma);
1262 }
1263 
sock_close(struct inode * inode,struct file * filp)1264 static int sock_close(struct inode *inode, struct file *filp)
1265 {
1266 	__sock_release(SOCKET_I(inode), inode);
1267 	return 0;
1268 }
1269 
1270 /*
1271  *	Update the socket async list
1272  *
1273  *	Fasync_list locking strategy.
1274  *
1275  *	1. fasync_list is modified only under process context socket lock
1276  *	   i.e. under semaphore.
1277  *	2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1278  *	   or under socket lock
1279  */
1280 
sock_fasync(int fd,struct file * filp,int on)1281 static int sock_fasync(int fd, struct file *filp, int on)
1282 {
1283 	struct socket *sock = filp->private_data;
1284 	struct sock *sk = sock->sk;
1285 	struct socket_wq *wq = &sock->wq;
1286 
1287 	if (sk == NULL)
1288 		return -EINVAL;
1289 
1290 	lock_sock(sk);
1291 	fasync_helper(fd, filp, on, &wq->fasync_list);
1292 
1293 	if (!wq->fasync_list)
1294 		sock_reset_flag(sk, SOCK_FASYNC);
1295 	else
1296 		sock_set_flag(sk, SOCK_FASYNC);
1297 
1298 	release_sock(sk);
1299 	return 0;
1300 }
1301 
1302 /* This function may be called only under rcu_lock */
1303 
sock_wake_async(struct socket_wq * wq,int how,int band)1304 int sock_wake_async(struct socket_wq *wq, int how, int band)
1305 {
1306 	if (!wq || !wq->fasync_list)
1307 		return -1;
1308 
1309 	switch (how) {
1310 	case SOCK_WAKE_WAITD:
1311 		if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags))
1312 			break;
1313 		goto call_kill;
1314 	case SOCK_WAKE_SPACE:
1315 		if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags))
1316 			break;
1317 		fallthrough;
1318 	case SOCK_WAKE_IO:
1319 call_kill:
1320 		kill_fasync(&wq->fasync_list, SIGIO, band);
1321 		break;
1322 	case SOCK_WAKE_URG:
1323 		kill_fasync(&wq->fasync_list, SIGURG, band);
1324 	}
1325 
1326 	return 0;
1327 }
1328 EXPORT_SYMBOL(sock_wake_async);
1329 
1330 /**
1331  *	__sock_create - creates a socket
1332  *	@net: net namespace
1333  *	@family: protocol family (AF_INET, ...)
1334  *	@type: communication type (SOCK_STREAM, ...)
1335  *	@protocol: protocol (0, ...)
1336  *	@res: new socket
1337  *	@kern: boolean for kernel space sockets
1338  *
1339  *	Creates a new socket and assigns it to @res, passing through LSM.
1340  *	Returns 0 or an error. On failure @res is set to %NULL. @kern must
1341  *	be set to true if the socket resides in kernel space.
1342  *	This function internally uses GFP_KERNEL.
1343  */
1344 
__sock_create(struct net * net,int family,int type,int protocol,struct socket ** res,int kern)1345 int __sock_create(struct net *net, int family, int type, int protocol,
1346 			 struct socket **res, int kern)
1347 {
1348 	int err;
1349 	struct socket *sock;
1350 	const struct net_proto_family *pf;
1351 
1352 	/*
1353 	 *      Check protocol is in range
1354 	 */
1355 	if (family < 0 || family >= NPROTO)
1356 		return -EAFNOSUPPORT;
1357 	if (type < 0 || type >= SOCK_MAX)
1358 		return -EINVAL;
1359 
1360 	/* Compatibility.
1361 
1362 	   This uglymoron is moved from INET layer to here to avoid
1363 	   deadlock in module load.
1364 	 */
1365 	if (family == PF_INET && type == SOCK_PACKET) {
1366 		pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1367 			     current->comm);
1368 		family = PF_PACKET;
1369 	}
1370 
1371 	err = security_socket_create(family, type, protocol, kern);
1372 	if (err)
1373 		return err;
1374 
1375 	/*
1376 	 *	Allocate the socket and allow the family to set things up. if
1377 	 *	the protocol is 0, the family is instructed to select an appropriate
1378 	 *	default.
1379 	 */
1380 	sock = sock_alloc();
1381 	if (!sock) {
1382 		net_warn_ratelimited("socket: no more sockets\n");
1383 		return -ENFILE;	/* Not exactly a match, but its the
1384 				   closest posix thing */
1385 	}
1386 
1387 	sock->type = type;
1388 
1389 #ifdef CONFIG_MODULES
1390 	/* Attempt to load a protocol module if the find failed.
1391 	 *
1392 	 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1393 	 * requested real, full-featured networking support upon configuration.
1394 	 * Otherwise module support will break!
1395 	 */
1396 	if (rcu_access_pointer(net_families[family]) == NULL)
1397 		request_module("net-pf-%d", family);
1398 #endif
1399 
1400 	rcu_read_lock();
1401 	pf = rcu_dereference(net_families[family]);
1402 	err = -EAFNOSUPPORT;
1403 	if (!pf)
1404 		goto out_release;
1405 
1406 	/*
1407 	 * We will call the ->create function, that possibly is in a loadable
1408 	 * module, so we have to bump that loadable module refcnt first.
1409 	 */
1410 	if (!try_module_get(pf->owner))
1411 		goto out_release;
1412 
1413 	/* Now protected by module ref count */
1414 	rcu_read_unlock();
1415 
1416 	err = pf->create(net, sock, protocol, kern);
1417 	if (err < 0)
1418 		goto out_module_put;
1419 
1420 	/*
1421 	 * Now to bump the refcnt of the [loadable] module that owns this
1422 	 * socket at sock_release time we decrement its refcnt.
1423 	 */
1424 	if (!try_module_get(sock->ops->owner))
1425 		goto out_module_busy;
1426 
1427 	/*
1428 	 * Now that we're done with the ->create function, the [loadable]
1429 	 * module can have its refcnt decremented
1430 	 */
1431 	module_put(pf->owner);
1432 	err = security_socket_post_create(sock, family, type, protocol, kern);
1433 	if (err)
1434 		goto out_sock_release;
1435 	*res = sock;
1436 
1437 	return 0;
1438 
1439 out_module_busy:
1440 	err = -EAFNOSUPPORT;
1441 out_module_put:
1442 	sock->ops = NULL;
1443 	module_put(pf->owner);
1444 out_sock_release:
1445 	sock_release(sock);
1446 	return err;
1447 
1448 out_release:
1449 	rcu_read_unlock();
1450 	goto out_sock_release;
1451 }
1452 EXPORT_SYMBOL(__sock_create);
1453 
1454 /**
1455  *	sock_create - creates a socket
1456  *	@family: protocol family (AF_INET, ...)
1457  *	@type: communication type (SOCK_STREAM, ...)
1458  *	@protocol: protocol (0, ...)
1459  *	@res: new socket
1460  *
1461  *	A wrapper around __sock_create().
1462  *	Returns 0 or an error. This function internally uses GFP_KERNEL.
1463  */
1464 
sock_create(int family,int type,int protocol,struct socket ** res)1465 int sock_create(int family, int type, int protocol, struct socket **res)
1466 {
1467 	return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1468 }
1469 EXPORT_SYMBOL(sock_create);
1470 
1471 /**
1472  *	sock_create_kern - creates a socket (kernel space)
1473  *	@net: net namespace
1474  *	@family: protocol family (AF_INET, ...)
1475  *	@type: communication type (SOCK_STREAM, ...)
1476  *	@protocol: protocol (0, ...)
1477  *	@res: new socket
1478  *
1479  *	A wrapper around __sock_create().
1480  *	Returns 0 or an error. This function internally uses GFP_KERNEL.
1481  */
1482 
sock_create_kern(struct net * net,int family,int type,int protocol,struct socket ** res)1483 int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res)
1484 {
1485 	return __sock_create(net, family, type, protocol, res, 1);
1486 }
1487 EXPORT_SYMBOL(sock_create_kern);
1488 
__sys_socket(int family,int type,int protocol)1489 int __sys_socket(int family, int type, int protocol)
1490 {
1491 	int retval;
1492 	struct socket *sock;
1493 	int flags;
1494 
1495 	/* Check the SOCK_* constants for consistency.  */
1496 	BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1497 	BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1498 	BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1499 	BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1500 
1501 	flags = type & ~SOCK_TYPE_MASK;
1502 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1503 		return -EINVAL;
1504 	type &= SOCK_TYPE_MASK;
1505 
1506 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1507 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1508 
1509 	retval = sock_create(family, type, protocol, &sock);
1510 	if (retval < 0)
1511 		return retval;
1512 
1513 	return sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1514 }
1515 
SYSCALL_DEFINE3(socket,int,family,int,type,int,protocol)1516 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1517 {
1518 	return __sys_socket(family, type, protocol);
1519 }
1520 
1521 /*
1522  *	Create a pair of connected sockets.
1523  */
1524 
__sys_socketpair(int family,int type,int protocol,int __user * usockvec)1525 int __sys_socketpair(int family, int type, int protocol, int __user *usockvec)
1526 {
1527 	struct socket *sock1, *sock2;
1528 	int fd1, fd2, err;
1529 	struct file *newfile1, *newfile2;
1530 	int flags;
1531 
1532 	flags = type & ~SOCK_TYPE_MASK;
1533 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1534 		return -EINVAL;
1535 	type &= SOCK_TYPE_MASK;
1536 
1537 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1538 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1539 
1540 	/*
1541 	 * reserve descriptors and make sure we won't fail
1542 	 * to return them to userland.
1543 	 */
1544 	fd1 = get_unused_fd_flags(flags);
1545 	if (unlikely(fd1 < 0))
1546 		return fd1;
1547 
1548 	fd2 = get_unused_fd_flags(flags);
1549 	if (unlikely(fd2 < 0)) {
1550 		put_unused_fd(fd1);
1551 		return fd2;
1552 	}
1553 
1554 	err = put_user(fd1, &usockvec[0]);
1555 	if (err)
1556 		goto out;
1557 
1558 	err = put_user(fd2, &usockvec[1]);
1559 	if (err)
1560 		goto out;
1561 
1562 	/*
1563 	 * Obtain the first socket and check if the underlying protocol
1564 	 * supports the socketpair call.
1565 	 */
1566 
1567 	err = sock_create(family, type, protocol, &sock1);
1568 	if (unlikely(err < 0))
1569 		goto out;
1570 
1571 	err = sock_create(family, type, protocol, &sock2);
1572 	if (unlikely(err < 0)) {
1573 		sock_release(sock1);
1574 		goto out;
1575 	}
1576 
1577 	err = security_socket_socketpair(sock1, sock2);
1578 	if (unlikely(err)) {
1579 		sock_release(sock2);
1580 		sock_release(sock1);
1581 		goto out;
1582 	}
1583 
1584 	err = sock1->ops->socketpair(sock1, sock2);
1585 	if (unlikely(err < 0)) {
1586 		sock_release(sock2);
1587 		sock_release(sock1);
1588 		goto out;
1589 	}
1590 
1591 	newfile1 = sock_alloc_file(sock1, flags, NULL);
1592 	if (IS_ERR(newfile1)) {
1593 		err = PTR_ERR(newfile1);
1594 		sock_release(sock2);
1595 		goto out;
1596 	}
1597 
1598 	newfile2 = sock_alloc_file(sock2, flags, NULL);
1599 	if (IS_ERR(newfile2)) {
1600 		err = PTR_ERR(newfile2);
1601 		fput(newfile1);
1602 		goto out;
1603 	}
1604 
1605 	audit_fd_pair(fd1, fd2);
1606 
1607 	fd_install(fd1, newfile1);
1608 	fd_install(fd2, newfile2);
1609 	return 0;
1610 
1611 out:
1612 	put_unused_fd(fd2);
1613 	put_unused_fd(fd1);
1614 	return err;
1615 }
1616 
SYSCALL_DEFINE4(socketpair,int,family,int,type,int,protocol,int __user *,usockvec)1617 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1618 		int __user *, usockvec)
1619 {
1620 	return __sys_socketpair(family, type, protocol, usockvec);
1621 }
1622 
1623 /*
1624  *	Bind a name to a socket. Nothing much to do here since it's
1625  *	the protocol's responsibility to handle the local address.
1626  *
1627  *	We move the socket address to kernel space before we call
1628  *	the protocol layer (having also checked the address is ok).
1629  */
1630 
__sys_bind(int fd,struct sockaddr __user * umyaddr,int addrlen)1631 int __sys_bind(int fd, struct sockaddr __user *umyaddr, int addrlen)
1632 {
1633 	struct socket *sock;
1634 	struct sockaddr_storage address;
1635 	int err, fput_needed;
1636 
1637 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1638 	if (sock) {
1639 		err = move_addr_to_kernel(umyaddr, addrlen, &address);
1640 		if (!err) {
1641 			err = security_socket_bind(sock,
1642 						   (struct sockaddr *)&address,
1643 						   addrlen);
1644 			if (!err)
1645 				err = sock->ops->bind(sock,
1646 						      (struct sockaddr *)
1647 						      &address, addrlen);
1648 		}
1649 		fput_light(sock->file, fput_needed);
1650 	}
1651 	return err;
1652 }
1653 
SYSCALL_DEFINE3(bind,int,fd,struct sockaddr __user *,umyaddr,int,addrlen)1654 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1655 {
1656 	return __sys_bind(fd, umyaddr, addrlen);
1657 }
1658 
1659 /*
1660  *	Perform a listen. Basically, we allow the protocol to do anything
1661  *	necessary for a listen, and if that works, we mark the socket as
1662  *	ready for listening.
1663  */
1664 
__sys_listen(int fd,int backlog)1665 int __sys_listen(int fd, int backlog)
1666 {
1667 	struct socket *sock;
1668 	int err, fput_needed;
1669 	int somaxconn;
1670 
1671 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1672 	if (sock) {
1673 		somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn;
1674 		if ((unsigned int)backlog > somaxconn)
1675 			backlog = somaxconn;
1676 
1677 		err = security_socket_listen(sock, backlog);
1678 		if (!err)
1679 			err = sock->ops->listen(sock, backlog);
1680 
1681 		fput_light(sock->file, fput_needed);
1682 	}
1683 	return err;
1684 }
1685 
SYSCALL_DEFINE2(listen,int,fd,int,backlog)1686 SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1687 {
1688 	return __sys_listen(fd, backlog);
1689 }
1690 
__sys_accept4_file(struct file * file,unsigned file_flags,struct sockaddr __user * upeer_sockaddr,int __user * upeer_addrlen,int flags,unsigned long nofile)1691 int __sys_accept4_file(struct file *file, unsigned file_flags,
1692 		       struct sockaddr __user *upeer_sockaddr,
1693 		       int __user *upeer_addrlen, int flags,
1694 		       unsigned long nofile)
1695 {
1696 	struct socket *sock, *newsock;
1697 	struct file *newfile;
1698 	int err, len, newfd;
1699 	struct sockaddr_storage address;
1700 
1701 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1702 		return -EINVAL;
1703 
1704 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1705 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1706 
1707 	sock = sock_from_file(file, &err);
1708 	if (!sock)
1709 		goto out;
1710 
1711 	err = -ENFILE;
1712 	newsock = sock_alloc();
1713 	if (!newsock)
1714 		goto out;
1715 
1716 	newsock->type = sock->type;
1717 	newsock->ops = sock->ops;
1718 
1719 	/*
1720 	 * We don't need try_module_get here, as the listening socket (sock)
1721 	 * has the protocol module (sock->ops->owner) held.
1722 	 */
1723 	__module_get(newsock->ops->owner);
1724 
1725 	newfd = __get_unused_fd_flags(flags, nofile);
1726 	if (unlikely(newfd < 0)) {
1727 		err = newfd;
1728 		sock_release(newsock);
1729 		goto out;
1730 	}
1731 	newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name);
1732 	if (IS_ERR(newfile)) {
1733 		err = PTR_ERR(newfile);
1734 		put_unused_fd(newfd);
1735 		goto out;
1736 	}
1737 
1738 	err = security_socket_accept(sock, newsock);
1739 	if (err)
1740 		goto out_fd;
1741 
1742 	err = sock->ops->accept(sock, newsock, sock->file->f_flags | file_flags,
1743 					false);
1744 	if (err < 0)
1745 		goto out_fd;
1746 
1747 	if (upeer_sockaddr) {
1748 		len = newsock->ops->getname(newsock,
1749 					(struct sockaddr *)&address, 2);
1750 		if (len < 0) {
1751 			err = -ECONNABORTED;
1752 			goto out_fd;
1753 		}
1754 		err = move_addr_to_user(&address,
1755 					len, upeer_sockaddr, upeer_addrlen);
1756 		if (err < 0)
1757 			goto out_fd;
1758 	}
1759 
1760 	/* File flags are not inherited via accept() unlike another OSes. */
1761 
1762 	fd_install(newfd, newfile);
1763 	err = newfd;
1764 out:
1765 	return err;
1766 out_fd:
1767 	fput(newfile);
1768 	put_unused_fd(newfd);
1769 	goto out;
1770 
1771 }
1772 
1773 /*
1774  *	For accept, we attempt to create a new socket, set up the link
1775  *	with the client, wake up the client, then return the new
1776  *	connected fd. We collect the address of the connector in kernel
1777  *	space and move it to user at the very end. This is unclean because
1778  *	we open the socket then return an error.
1779  *
1780  *	1003.1g adds the ability to recvmsg() to query connection pending
1781  *	status to recvmsg. We need to add that support in a way thats
1782  *	clean when we restructure accept also.
1783  */
1784 
__sys_accept4(int fd,struct sockaddr __user * upeer_sockaddr,int __user * upeer_addrlen,int flags)1785 int __sys_accept4(int fd, struct sockaddr __user *upeer_sockaddr,
1786 		  int __user *upeer_addrlen, int flags)
1787 {
1788 	int ret = -EBADF;
1789 	struct fd f;
1790 
1791 	f = fdget(fd);
1792 	if (f.file) {
1793 		ret = __sys_accept4_file(f.file, 0, upeer_sockaddr,
1794 						upeer_addrlen, flags,
1795 						rlimit(RLIMIT_NOFILE));
1796 		fdput(f);
1797 	}
1798 
1799 	return ret;
1800 }
1801 
SYSCALL_DEFINE4(accept4,int,fd,struct sockaddr __user *,upeer_sockaddr,int __user *,upeer_addrlen,int,flags)1802 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1803 		int __user *, upeer_addrlen, int, flags)
1804 {
1805 	return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, flags);
1806 }
1807 
SYSCALL_DEFINE3(accept,int,fd,struct sockaddr __user *,upeer_sockaddr,int __user *,upeer_addrlen)1808 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1809 		int __user *, upeer_addrlen)
1810 {
1811 	return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1812 }
1813 
1814 /*
1815  *	Attempt to connect to a socket with the server address.  The address
1816  *	is in user space so we verify it is OK and move it to kernel space.
1817  *
1818  *	For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1819  *	break bindings
1820  *
1821  *	NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1822  *	other SEQPACKET protocols that take time to connect() as it doesn't
1823  *	include the -EINPROGRESS status for such sockets.
1824  */
1825 
__sys_connect_file(struct file * file,struct sockaddr_storage * address,int addrlen,int file_flags)1826 int __sys_connect_file(struct file *file, struct sockaddr_storage *address,
1827 		       int addrlen, int file_flags)
1828 {
1829 	struct socket *sock;
1830 	int err;
1831 
1832 	sock = sock_from_file(file, &err);
1833 	if (!sock)
1834 		goto out;
1835 
1836 	err =
1837 	    security_socket_connect(sock, (struct sockaddr *)address, addrlen);
1838 	if (err)
1839 		goto out;
1840 
1841 	err = sock->ops->connect(sock, (struct sockaddr *)address, addrlen,
1842 				 sock->file->f_flags | file_flags);
1843 out:
1844 	return err;
1845 }
1846 
__sys_connect(int fd,struct sockaddr __user * uservaddr,int addrlen)1847 int __sys_connect(int fd, struct sockaddr __user *uservaddr, int addrlen)
1848 {
1849 	int ret = -EBADF;
1850 	struct fd f;
1851 
1852 	f = fdget(fd);
1853 	if (f.file) {
1854 		struct sockaddr_storage address;
1855 
1856 		ret = move_addr_to_kernel(uservaddr, addrlen, &address);
1857 		if (!ret)
1858 			ret = __sys_connect_file(f.file, &address, addrlen, 0);
1859 		fdput(f);
1860 	}
1861 
1862 	return ret;
1863 }
1864 
SYSCALL_DEFINE3(connect,int,fd,struct sockaddr __user *,uservaddr,int,addrlen)1865 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
1866 		int, addrlen)
1867 {
1868 	return __sys_connect(fd, uservaddr, addrlen);
1869 }
1870 
1871 /*
1872  *	Get the local address ('name') of a socket object. Move the obtained
1873  *	name to user space.
1874  */
1875 
__sys_getsockname(int fd,struct sockaddr __user * usockaddr,int __user * usockaddr_len)1876 int __sys_getsockname(int fd, struct sockaddr __user *usockaddr,
1877 		      int __user *usockaddr_len)
1878 {
1879 	struct socket *sock;
1880 	struct sockaddr_storage address;
1881 	int err, fput_needed;
1882 
1883 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1884 	if (!sock)
1885 		goto out;
1886 
1887 	err = security_socket_getsockname(sock);
1888 	if (err)
1889 		goto out_put;
1890 
1891 	err = sock->ops->getname(sock, (struct sockaddr *)&address, 0);
1892 	if (err < 0)
1893 		goto out_put;
1894         /* "err" is actually length in this case */
1895 	err = move_addr_to_user(&address, err, usockaddr, usockaddr_len);
1896 
1897 out_put:
1898 	fput_light(sock->file, fput_needed);
1899 out:
1900 	return err;
1901 }
1902 
SYSCALL_DEFINE3(getsockname,int,fd,struct sockaddr __user *,usockaddr,int __user *,usockaddr_len)1903 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
1904 		int __user *, usockaddr_len)
1905 {
1906 	return __sys_getsockname(fd, usockaddr, usockaddr_len);
1907 }
1908 
1909 /*
1910  *	Get the remote address ('name') of a socket object. Move the obtained
1911  *	name to user space.
1912  */
1913 
__sys_getpeername(int fd,struct sockaddr __user * usockaddr,int __user * usockaddr_len)1914 int __sys_getpeername(int fd, struct sockaddr __user *usockaddr,
1915 		      int __user *usockaddr_len)
1916 {
1917 	struct socket *sock;
1918 	struct sockaddr_storage address;
1919 	int err, fput_needed;
1920 
1921 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1922 	if (sock != NULL) {
1923 		err = security_socket_getpeername(sock);
1924 		if (err) {
1925 			fput_light(sock->file, fput_needed);
1926 			return err;
1927 		}
1928 
1929 		err = sock->ops->getname(sock, (struct sockaddr *)&address, 1);
1930 		if (err >= 0)
1931 			/* "err" is actually length in this case */
1932 			err = move_addr_to_user(&address, err, usockaddr,
1933 						usockaddr_len);
1934 		fput_light(sock->file, fput_needed);
1935 	}
1936 	return err;
1937 }
1938 
SYSCALL_DEFINE3(getpeername,int,fd,struct sockaddr __user *,usockaddr,int __user *,usockaddr_len)1939 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
1940 		int __user *, usockaddr_len)
1941 {
1942 	return __sys_getpeername(fd, usockaddr, usockaddr_len);
1943 }
1944 
1945 /*
1946  *	Send a datagram to a given address. We move the address into kernel
1947  *	space and check the user space data area is readable before invoking
1948  *	the protocol.
1949  */
__sys_sendto(int fd,void __user * buff,size_t len,unsigned int flags,struct sockaddr __user * addr,int addr_len)1950 int __sys_sendto(int fd, void __user *buff, size_t len, unsigned int flags,
1951 		 struct sockaddr __user *addr,  int addr_len)
1952 {
1953 	struct socket *sock;
1954 	struct sockaddr_storage address;
1955 	int err;
1956 	struct msghdr msg;
1957 	struct iovec iov;
1958 	int fput_needed;
1959 
1960 	err = import_single_range(WRITE, buff, len, &iov, &msg.msg_iter);
1961 	if (unlikely(err))
1962 		return err;
1963 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1964 	if (!sock)
1965 		goto out;
1966 
1967 	msg.msg_name = NULL;
1968 	msg.msg_control = NULL;
1969 	msg.msg_controllen = 0;
1970 	msg.msg_namelen = 0;
1971 	if (addr) {
1972 		err = move_addr_to_kernel(addr, addr_len, &address);
1973 		if (err < 0)
1974 			goto out_put;
1975 		msg.msg_name = (struct sockaddr *)&address;
1976 		msg.msg_namelen = addr_len;
1977 	}
1978 	if (sock->file->f_flags & O_NONBLOCK)
1979 		flags |= MSG_DONTWAIT;
1980 	msg.msg_flags = flags;
1981 	err = sock_sendmsg(sock, &msg);
1982 
1983 out_put:
1984 	fput_light(sock->file, fput_needed);
1985 out:
1986 	return err;
1987 }
1988 
SYSCALL_DEFINE6(sendto,int,fd,void __user *,buff,size_t,len,unsigned int,flags,struct sockaddr __user *,addr,int,addr_len)1989 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
1990 		unsigned int, flags, struct sockaddr __user *, addr,
1991 		int, addr_len)
1992 {
1993 	return __sys_sendto(fd, buff, len, flags, addr, addr_len);
1994 }
1995 
1996 /*
1997  *	Send a datagram down a socket.
1998  */
1999 
SYSCALL_DEFINE4(send,int,fd,void __user *,buff,size_t,len,unsigned int,flags)2000 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
2001 		unsigned int, flags)
2002 {
2003 	return __sys_sendto(fd, buff, len, flags, NULL, 0);
2004 }
2005 
2006 /*
2007  *	Receive a frame from the socket and optionally record the address of the
2008  *	sender. We verify the buffers are writable and if needed move the
2009  *	sender address from kernel to user space.
2010  */
__sys_recvfrom(int fd,void __user * ubuf,size_t size,unsigned int flags,struct sockaddr __user * addr,int __user * addr_len)2011 int __sys_recvfrom(int fd, void __user *ubuf, size_t size, unsigned int flags,
2012 		   struct sockaddr __user *addr, int __user *addr_len)
2013 {
2014 	struct socket *sock;
2015 	struct iovec iov;
2016 	struct msghdr msg;
2017 	struct sockaddr_storage address;
2018 	int err, err2;
2019 	int fput_needed;
2020 
2021 	err = import_single_range(READ, ubuf, size, &iov, &msg.msg_iter);
2022 	if (unlikely(err))
2023 		return err;
2024 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2025 	if (!sock)
2026 		goto out;
2027 
2028 	msg.msg_control = NULL;
2029 	msg.msg_controllen = 0;
2030 	/* Save some cycles and don't copy the address if not needed */
2031 	msg.msg_name = addr ? (struct sockaddr *)&address : NULL;
2032 	/* We assume all kernel code knows the size of sockaddr_storage */
2033 	msg.msg_namelen = 0;
2034 	msg.msg_iocb = NULL;
2035 	msg.msg_flags = 0;
2036 	if (sock->file->f_flags & O_NONBLOCK)
2037 		flags |= MSG_DONTWAIT;
2038 	err = sock_recvmsg(sock, &msg, flags);
2039 
2040 	if (err >= 0 && addr != NULL) {
2041 		err2 = move_addr_to_user(&address,
2042 					 msg.msg_namelen, addr, addr_len);
2043 		if (err2 < 0)
2044 			err = err2;
2045 	}
2046 
2047 	fput_light(sock->file, fput_needed);
2048 out:
2049 	return err;
2050 }
2051 
SYSCALL_DEFINE6(recvfrom,int,fd,void __user *,ubuf,size_t,size,unsigned int,flags,struct sockaddr __user *,addr,int __user *,addr_len)2052 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
2053 		unsigned int, flags, struct sockaddr __user *, addr,
2054 		int __user *, addr_len)
2055 {
2056 	return __sys_recvfrom(fd, ubuf, size, flags, addr, addr_len);
2057 }
2058 
2059 /*
2060  *	Receive a datagram from a socket.
2061  */
2062 
SYSCALL_DEFINE4(recv,int,fd,void __user *,ubuf,size_t,size,unsigned int,flags)2063 SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size,
2064 		unsigned int, flags)
2065 {
2066 	return __sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
2067 }
2068 
sock_use_custom_sol_socket(const struct socket * sock)2069 static bool sock_use_custom_sol_socket(const struct socket *sock)
2070 {
2071 	const struct sock *sk = sock->sk;
2072 
2073 	/* Use sock->ops->setsockopt() for MPTCP */
2074 	return IS_ENABLED(CONFIG_MPTCP) &&
2075 	       sk->sk_protocol == IPPROTO_MPTCP &&
2076 	       sk->sk_type == SOCK_STREAM &&
2077 	       (sk->sk_family == AF_INET || sk->sk_family == AF_INET6);
2078 }
2079 
2080 /*
2081  *	Set a socket option. Because we don't know the option lengths we have
2082  *	to pass the user mode parameter for the protocols to sort out.
2083  */
__sys_setsockopt(int fd,int level,int optname,char __user * user_optval,int optlen)2084 int __sys_setsockopt(int fd, int level, int optname, char __user *user_optval,
2085 		int optlen)
2086 {
2087 	sockptr_t optval = USER_SOCKPTR(user_optval);
2088 	char *kernel_optval = NULL;
2089 	int err, fput_needed;
2090 	struct socket *sock;
2091 
2092 	if (optlen < 0)
2093 		return -EINVAL;
2094 
2095 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2096 	if (!sock)
2097 		return err;
2098 
2099 	err = security_socket_setsockopt(sock, level, optname);
2100 	if (err)
2101 		goto out_put;
2102 
2103 	if (!in_compat_syscall())
2104 		err = BPF_CGROUP_RUN_PROG_SETSOCKOPT(sock->sk, &level, &optname,
2105 						     user_optval, &optlen,
2106 						     &kernel_optval);
2107 	if (err < 0)
2108 		goto out_put;
2109 	if (err > 0) {
2110 		err = 0;
2111 		goto out_put;
2112 	}
2113 
2114 	if (kernel_optval)
2115 		optval = KERNEL_SOCKPTR(kernel_optval);
2116 	if (level == SOL_SOCKET && !sock_use_custom_sol_socket(sock))
2117 		err = sock_setsockopt(sock, level, optname, optval, optlen);
2118 	else if (unlikely(!sock->ops->setsockopt))
2119 		err = -EOPNOTSUPP;
2120 	else
2121 		err = sock->ops->setsockopt(sock, level, optname, optval,
2122 					    optlen);
2123 	kfree(kernel_optval);
2124 out_put:
2125 	fput_light(sock->file, fput_needed);
2126 	return err;
2127 }
2128 
SYSCALL_DEFINE5(setsockopt,int,fd,int,level,int,optname,char __user *,optval,int,optlen)2129 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
2130 		char __user *, optval, int, optlen)
2131 {
2132 	return __sys_setsockopt(fd, level, optname, optval, optlen);
2133 }
2134 
2135 /*
2136  *	Get a socket option. Because we don't know the option lengths we have
2137  *	to pass a user mode parameter for the protocols to sort out.
2138  */
__sys_getsockopt(int fd,int level,int optname,char __user * optval,int __user * optlen)2139 int __sys_getsockopt(int fd, int level, int optname, char __user *optval,
2140 		int __user *optlen)
2141 {
2142 	int err, fput_needed;
2143 	struct socket *sock;
2144 	int max_optlen;
2145 
2146 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2147 	if (!sock)
2148 		return err;
2149 
2150 	err = security_socket_getsockopt(sock, level, optname);
2151 	if (err)
2152 		goto out_put;
2153 
2154 	if (!in_compat_syscall())
2155 		max_optlen = BPF_CGROUP_GETSOCKOPT_MAX_OPTLEN(optlen);
2156 
2157 	if (level == SOL_SOCKET)
2158 		err = sock_getsockopt(sock, level, optname, optval, optlen);
2159 	else if (unlikely(!sock->ops->getsockopt))
2160 		err = -EOPNOTSUPP;
2161 	else
2162 		err = sock->ops->getsockopt(sock, level, optname, optval,
2163 					    optlen);
2164 
2165 	if (!in_compat_syscall())
2166 		err = BPF_CGROUP_RUN_PROG_GETSOCKOPT(sock->sk, level, optname,
2167 						     optval, optlen, max_optlen,
2168 						     err);
2169 out_put:
2170 	fput_light(sock->file, fput_needed);
2171 	return err;
2172 }
2173 
SYSCALL_DEFINE5(getsockopt,int,fd,int,level,int,optname,char __user *,optval,int __user *,optlen)2174 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
2175 		char __user *, optval, int __user *, optlen)
2176 {
2177 	return __sys_getsockopt(fd, level, optname, optval, optlen);
2178 }
2179 
2180 /*
2181  *	Shutdown a socket.
2182  */
2183 
__sys_shutdown(int fd,int how)2184 int __sys_shutdown(int fd, int how)
2185 {
2186 	int err, fput_needed;
2187 	struct socket *sock;
2188 
2189 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2190 	if (sock != NULL) {
2191 		err = security_socket_shutdown(sock, how);
2192 		if (!err)
2193 			err = sock->ops->shutdown(sock, how);
2194 		fput_light(sock->file, fput_needed);
2195 	}
2196 	return err;
2197 }
2198 
SYSCALL_DEFINE2(shutdown,int,fd,int,how)2199 SYSCALL_DEFINE2(shutdown, int, fd, int, how)
2200 {
2201 	return __sys_shutdown(fd, how);
2202 }
2203 
2204 /* A couple of helpful macros for getting the address of the 32/64 bit
2205  * fields which are the same type (int / unsigned) on our platforms.
2206  */
2207 #define COMPAT_MSG(msg, member)	((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
2208 #define COMPAT_NAMELEN(msg)	COMPAT_MSG(msg, msg_namelen)
2209 #define COMPAT_FLAGS(msg)	COMPAT_MSG(msg, msg_flags)
2210 
2211 struct used_address {
2212 	struct sockaddr_storage name;
2213 	unsigned int name_len;
2214 };
2215 
__copy_msghdr_from_user(struct msghdr * kmsg,struct user_msghdr __user * umsg,struct sockaddr __user ** save_addr,struct iovec __user ** uiov,size_t * nsegs)2216 int __copy_msghdr_from_user(struct msghdr *kmsg,
2217 			    struct user_msghdr __user *umsg,
2218 			    struct sockaddr __user **save_addr,
2219 			    struct iovec __user **uiov, size_t *nsegs)
2220 {
2221 	struct user_msghdr msg;
2222 	ssize_t err;
2223 
2224 	if (copy_from_user(&msg, umsg, sizeof(*umsg)))
2225 		return -EFAULT;
2226 
2227 	kmsg->msg_control_is_user = true;
2228 	kmsg->msg_control_user = msg.msg_control;
2229 	kmsg->msg_controllen = msg.msg_controllen;
2230 	kmsg->msg_flags = msg.msg_flags;
2231 
2232 	kmsg->msg_namelen = msg.msg_namelen;
2233 	if (!msg.msg_name)
2234 		kmsg->msg_namelen = 0;
2235 
2236 	if (kmsg->msg_namelen < 0)
2237 		return -EINVAL;
2238 
2239 	if (kmsg->msg_namelen > sizeof(struct sockaddr_storage))
2240 		kmsg->msg_namelen = sizeof(struct sockaddr_storage);
2241 
2242 	if (save_addr)
2243 		*save_addr = msg.msg_name;
2244 
2245 	if (msg.msg_name && kmsg->msg_namelen) {
2246 		if (!save_addr) {
2247 			err = move_addr_to_kernel(msg.msg_name,
2248 						  kmsg->msg_namelen,
2249 						  kmsg->msg_name);
2250 			if (err < 0)
2251 				return err;
2252 		}
2253 	} else {
2254 		kmsg->msg_name = NULL;
2255 		kmsg->msg_namelen = 0;
2256 	}
2257 
2258 	if (msg.msg_iovlen > UIO_MAXIOV)
2259 		return -EMSGSIZE;
2260 
2261 	kmsg->msg_iocb = NULL;
2262 	*uiov = msg.msg_iov;
2263 	*nsegs = msg.msg_iovlen;
2264 	return 0;
2265 }
2266 
copy_msghdr_from_user(struct msghdr * kmsg,struct user_msghdr __user * umsg,struct sockaddr __user ** save_addr,struct iovec ** iov)2267 static int copy_msghdr_from_user(struct msghdr *kmsg,
2268 				 struct user_msghdr __user *umsg,
2269 				 struct sockaddr __user **save_addr,
2270 				 struct iovec **iov)
2271 {
2272 	struct user_msghdr msg;
2273 	ssize_t err;
2274 
2275 	err = __copy_msghdr_from_user(kmsg, umsg, save_addr, &msg.msg_iov,
2276 					&msg.msg_iovlen);
2277 	if (err)
2278 		return err;
2279 
2280 	err = import_iovec(save_addr ? READ : WRITE,
2281 			    msg.msg_iov, msg.msg_iovlen,
2282 			    UIO_FASTIOV, iov, &kmsg->msg_iter);
2283 	return err < 0 ? err : 0;
2284 }
2285 
____sys_sendmsg(struct socket * sock,struct msghdr * msg_sys,unsigned int flags,struct used_address * used_address,unsigned int allowed_msghdr_flags)2286 static int ____sys_sendmsg(struct socket *sock, struct msghdr *msg_sys,
2287 			   unsigned int flags, struct used_address *used_address,
2288 			   unsigned int allowed_msghdr_flags)
2289 {
2290 	unsigned char ctl[sizeof(struct cmsghdr) + 20]
2291 				__aligned(sizeof(__kernel_size_t));
2292 	/* 20 is size of ipv6_pktinfo */
2293 	unsigned char *ctl_buf = ctl;
2294 	int ctl_len;
2295 	ssize_t err;
2296 
2297 	err = -ENOBUFS;
2298 
2299 	if (msg_sys->msg_controllen > INT_MAX)
2300 		goto out;
2301 	flags |= (msg_sys->msg_flags & allowed_msghdr_flags);
2302 	ctl_len = msg_sys->msg_controllen;
2303 	if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
2304 		err =
2305 		    cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
2306 						     sizeof(ctl));
2307 		if (err)
2308 			goto out;
2309 		ctl_buf = msg_sys->msg_control;
2310 		ctl_len = msg_sys->msg_controllen;
2311 	} else if (ctl_len) {
2312 		BUILD_BUG_ON(sizeof(struct cmsghdr) !=
2313 			     CMSG_ALIGN(sizeof(struct cmsghdr)));
2314 		if (ctl_len > sizeof(ctl)) {
2315 			ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
2316 			if (ctl_buf == NULL)
2317 				goto out;
2318 		}
2319 		err = -EFAULT;
2320 		if (copy_from_user(ctl_buf, msg_sys->msg_control_user, ctl_len))
2321 			goto out_freectl;
2322 		msg_sys->msg_control = ctl_buf;
2323 		msg_sys->msg_control_is_user = false;
2324 	}
2325 	msg_sys->msg_flags = flags;
2326 
2327 	if (sock->file->f_flags & O_NONBLOCK)
2328 		msg_sys->msg_flags |= MSG_DONTWAIT;
2329 	/*
2330 	 * If this is sendmmsg() and current destination address is same as
2331 	 * previously succeeded address, omit asking LSM's decision.
2332 	 * used_address->name_len is initialized to UINT_MAX so that the first
2333 	 * destination address never matches.
2334 	 */
2335 	if (used_address && msg_sys->msg_name &&
2336 	    used_address->name_len == msg_sys->msg_namelen &&
2337 	    !memcmp(&used_address->name, msg_sys->msg_name,
2338 		    used_address->name_len)) {
2339 		err = sock_sendmsg_nosec(sock, msg_sys);
2340 		goto out_freectl;
2341 	}
2342 	err = sock_sendmsg(sock, msg_sys);
2343 	/*
2344 	 * If this is sendmmsg() and sending to current destination address was
2345 	 * successful, remember it.
2346 	 */
2347 	if (used_address && err >= 0) {
2348 		used_address->name_len = msg_sys->msg_namelen;
2349 		if (msg_sys->msg_name)
2350 			memcpy(&used_address->name, msg_sys->msg_name,
2351 			       used_address->name_len);
2352 	}
2353 
2354 out_freectl:
2355 	if (ctl_buf != ctl)
2356 		sock_kfree_s(sock->sk, ctl_buf, ctl_len);
2357 out:
2358 	return err;
2359 }
2360 
sendmsg_copy_msghdr(struct msghdr * msg,struct user_msghdr __user * umsg,unsigned flags,struct iovec ** iov)2361 int sendmsg_copy_msghdr(struct msghdr *msg,
2362 			struct user_msghdr __user *umsg, unsigned flags,
2363 			struct iovec **iov)
2364 {
2365 	int err;
2366 
2367 	if (flags & MSG_CMSG_COMPAT) {
2368 		struct compat_msghdr __user *msg_compat;
2369 
2370 		msg_compat = (struct compat_msghdr __user *) umsg;
2371 		err = get_compat_msghdr(msg, msg_compat, NULL, iov);
2372 	} else {
2373 		err = copy_msghdr_from_user(msg, umsg, NULL, iov);
2374 	}
2375 	if (err < 0)
2376 		return err;
2377 
2378 	return 0;
2379 }
2380 
___sys_sendmsg(struct socket * sock,struct user_msghdr __user * msg,struct msghdr * msg_sys,unsigned int flags,struct used_address * used_address,unsigned int allowed_msghdr_flags)2381 static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg,
2382 			 struct msghdr *msg_sys, unsigned int flags,
2383 			 struct used_address *used_address,
2384 			 unsigned int allowed_msghdr_flags)
2385 {
2386 	struct sockaddr_storage address;
2387 	struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2388 	ssize_t err;
2389 
2390 	msg_sys->msg_name = &address;
2391 
2392 	err = sendmsg_copy_msghdr(msg_sys, msg, flags, &iov);
2393 	if (err < 0)
2394 		return err;
2395 
2396 	err = ____sys_sendmsg(sock, msg_sys, flags, used_address,
2397 				allowed_msghdr_flags);
2398 	kfree(iov);
2399 	return err;
2400 }
2401 
2402 /*
2403  *	BSD sendmsg interface
2404  */
__sys_sendmsg_sock(struct socket * sock,struct msghdr * msg,unsigned int flags)2405 long __sys_sendmsg_sock(struct socket *sock, struct msghdr *msg,
2406 			unsigned int flags)
2407 {
2408 	/* disallow ancillary data requests from this path */
2409 	if (msg->msg_control || msg->msg_controllen)
2410 		return -EINVAL;
2411 
2412 	return ____sys_sendmsg(sock, msg, flags, NULL, 0);
2413 }
2414 
__sys_sendmsg(int fd,struct user_msghdr __user * msg,unsigned int flags,bool forbid_cmsg_compat)2415 long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2416 		   bool forbid_cmsg_compat)
2417 {
2418 	int fput_needed, err;
2419 	struct msghdr msg_sys;
2420 	struct socket *sock;
2421 
2422 	if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2423 		return -EINVAL;
2424 
2425 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2426 	if (!sock)
2427 		goto out;
2428 
2429 	err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0);
2430 
2431 	fput_light(sock->file, fput_needed);
2432 out:
2433 	return err;
2434 }
2435 
SYSCALL_DEFINE3(sendmsg,int,fd,struct user_msghdr __user *,msg,unsigned int,flags)2436 SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags)
2437 {
2438 	return __sys_sendmsg(fd, msg, flags, true);
2439 }
2440 
2441 /*
2442  *	Linux sendmmsg interface
2443  */
2444 
__sys_sendmmsg(int fd,struct mmsghdr __user * mmsg,unsigned int vlen,unsigned int flags,bool forbid_cmsg_compat)2445 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2446 		   unsigned int flags, bool forbid_cmsg_compat)
2447 {
2448 	int fput_needed, err, datagrams;
2449 	struct socket *sock;
2450 	struct mmsghdr __user *entry;
2451 	struct compat_mmsghdr __user *compat_entry;
2452 	struct msghdr msg_sys;
2453 	struct used_address used_address;
2454 	unsigned int oflags = flags;
2455 
2456 	if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2457 		return -EINVAL;
2458 
2459 	if (vlen > UIO_MAXIOV)
2460 		vlen = UIO_MAXIOV;
2461 
2462 	datagrams = 0;
2463 
2464 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2465 	if (!sock)
2466 		return err;
2467 
2468 	used_address.name_len = UINT_MAX;
2469 	entry = mmsg;
2470 	compat_entry = (struct compat_mmsghdr __user *)mmsg;
2471 	err = 0;
2472 	flags |= MSG_BATCH;
2473 
2474 	while (datagrams < vlen) {
2475 		if (datagrams == vlen - 1)
2476 			flags = oflags;
2477 
2478 		if (MSG_CMSG_COMPAT & flags) {
2479 			err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry,
2480 					     &msg_sys, flags, &used_address, MSG_EOR);
2481 			if (err < 0)
2482 				break;
2483 			err = __put_user(err, &compat_entry->msg_len);
2484 			++compat_entry;
2485 		} else {
2486 			err = ___sys_sendmsg(sock,
2487 					     (struct user_msghdr __user *)entry,
2488 					     &msg_sys, flags, &used_address, MSG_EOR);
2489 			if (err < 0)
2490 				break;
2491 			err = put_user(err, &entry->msg_len);
2492 			++entry;
2493 		}
2494 
2495 		if (err)
2496 			break;
2497 		++datagrams;
2498 		if (msg_data_left(&msg_sys))
2499 			break;
2500 		cond_resched();
2501 	}
2502 
2503 	fput_light(sock->file, fput_needed);
2504 
2505 	/* We only return an error if no datagrams were able to be sent */
2506 	if (datagrams != 0)
2507 		return datagrams;
2508 
2509 	return err;
2510 }
2511 
SYSCALL_DEFINE4(sendmmsg,int,fd,struct mmsghdr __user *,mmsg,unsigned int,vlen,unsigned int,flags)2512 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2513 		unsigned int, vlen, unsigned int, flags)
2514 {
2515 	return __sys_sendmmsg(fd, mmsg, vlen, flags, true);
2516 }
2517 
recvmsg_copy_msghdr(struct msghdr * msg,struct user_msghdr __user * umsg,unsigned flags,struct sockaddr __user ** uaddr,struct iovec ** iov)2518 int recvmsg_copy_msghdr(struct msghdr *msg,
2519 			struct user_msghdr __user *umsg, unsigned flags,
2520 			struct sockaddr __user **uaddr,
2521 			struct iovec **iov)
2522 {
2523 	ssize_t err;
2524 
2525 	if (MSG_CMSG_COMPAT & flags) {
2526 		struct compat_msghdr __user *msg_compat;
2527 
2528 		msg_compat = (struct compat_msghdr __user *) umsg;
2529 		err = get_compat_msghdr(msg, msg_compat, uaddr, iov);
2530 	} else {
2531 		err = copy_msghdr_from_user(msg, umsg, uaddr, iov);
2532 	}
2533 	if (err < 0)
2534 		return err;
2535 
2536 	return 0;
2537 }
2538 
____sys_recvmsg(struct socket * sock,struct msghdr * msg_sys,struct user_msghdr __user * msg,struct sockaddr __user * uaddr,unsigned int flags,int nosec)2539 static int ____sys_recvmsg(struct socket *sock, struct msghdr *msg_sys,
2540 			   struct user_msghdr __user *msg,
2541 			   struct sockaddr __user *uaddr,
2542 			   unsigned int flags, int nosec)
2543 {
2544 	struct compat_msghdr __user *msg_compat =
2545 					(struct compat_msghdr __user *) msg;
2546 	int __user *uaddr_len = COMPAT_NAMELEN(msg);
2547 	struct sockaddr_storage addr;
2548 	unsigned long cmsg_ptr;
2549 	int len;
2550 	ssize_t err;
2551 
2552 	msg_sys->msg_name = &addr;
2553 	cmsg_ptr = (unsigned long)msg_sys->msg_control;
2554 	msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2555 
2556 	/* We assume all kernel code knows the size of sockaddr_storage */
2557 	msg_sys->msg_namelen = 0;
2558 
2559 	if (sock->file->f_flags & O_NONBLOCK)
2560 		flags |= MSG_DONTWAIT;
2561 
2562 	if (unlikely(nosec))
2563 		err = sock_recvmsg_nosec(sock, msg_sys, flags);
2564 	else
2565 		err = sock_recvmsg(sock, msg_sys, flags);
2566 
2567 	if (err < 0)
2568 		goto out;
2569 	len = err;
2570 
2571 	if (uaddr != NULL) {
2572 		err = move_addr_to_user(&addr,
2573 					msg_sys->msg_namelen, uaddr,
2574 					uaddr_len);
2575 		if (err < 0)
2576 			goto out;
2577 	}
2578 	err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2579 			 COMPAT_FLAGS(msg));
2580 	if (err)
2581 		goto out;
2582 	if (MSG_CMSG_COMPAT & flags)
2583 		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2584 				 &msg_compat->msg_controllen);
2585 	else
2586 		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2587 				 &msg->msg_controllen);
2588 	if (err)
2589 		goto out;
2590 	err = len;
2591 out:
2592 	return err;
2593 }
2594 
___sys_recvmsg(struct socket * sock,struct user_msghdr __user * msg,struct msghdr * msg_sys,unsigned int flags,int nosec)2595 static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg,
2596 			 struct msghdr *msg_sys, unsigned int flags, int nosec)
2597 {
2598 	struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2599 	/* user mode address pointers */
2600 	struct sockaddr __user *uaddr;
2601 	ssize_t err;
2602 
2603 	err = recvmsg_copy_msghdr(msg_sys, msg, flags, &uaddr, &iov);
2604 	if (err < 0)
2605 		return err;
2606 
2607 	err = ____sys_recvmsg(sock, msg_sys, msg, uaddr, flags, nosec);
2608 	kfree(iov);
2609 	return err;
2610 }
2611 
2612 /*
2613  *	BSD recvmsg interface
2614  */
2615 
__sys_recvmsg_sock(struct socket * sock,struct msghdr * msg,struct user_msghdr __user * umsg,struct sockaddr __user * uaddr,unsigned int flags)2616 long __sys_recvmsg_sock(struct socket *sock, struct msghdr *msg,
2617 			struct user_msghdr __user *umsg,
2618 			struct sockaddr __user *uaddr, unsigned int flags)
2619 {
2620 	if (msg->msg_control || msg->msg_controllen) {
2621 		/* disallow ancillary data reqs unless cmsg is plain data */
2622 		if (!(sock->ops->flags & PROTO_CMSG_DATA_ONLY))
2623 			return -EINVAL;
2624 	}
2625 
2626 	return ____sys_recvmsg(sock, msg, umsg, uaddr, flags, 0);
2627 }
2628 
__sys_recvmsg(int fd,struct user_msghdr __user * msg,unsigned int flags,bool forbid_cmsg_compat)2629 long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2630 		   bool forbid_cmsg_compat)
2631 {
2632 	int fput_needed, err;
2633 	struct msghdr msg_sys;
2634 	struct socket *sock;
2635 
2636 	if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2637 		return -EINVAL;
2638 
2639 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2640 	if (!sock)
2641 		goto out;
2642 
2643 	err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2644 
2645 	fput_light(sock->file, fput_needed);
2646 out:
2647 	return err;
2648 }
2649 
SYSCALL_DEFINE3(recvmsg,int,fd,struct user_msghdr __user *,msg,unsigned int,flags)2650 SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg,
2651 		unsigned int, flags)
2652 {
2653 	return __sys_recvmsg(fd, msg, flags, true);
2654 }
2655 
2656 /*
2657  *     Linux recvmmsg interface
2658  */
2659 
do_recvmmsg(int fd,struct mmsghdr __user * mmsg,unsigned int vlen,unsigned int flags,struct timespec64 * timeout)2660 static int do_recvmmsg(int fd, struct mmsghdr __user *mmsg,
2661 			  unsigned int vlen, unsigned int flags,
2662 			  struct timespec64 *timeout)
2663 {
2664 	int fput_needed, err, datagrams;
2665 	struct socket *sock;
2666 	struct mmsghdr __user *entry;
2667 	struct compat_mmsghdr __user *compat_entry;
2668 	struct msghdr msg_sys;
2669 	struct timespec64 end_time;
2670 	struct timespec64 timeout64;
2671 
2672 	if (timeout &&
2673 	    poll_select_set_timeout(&end_time, timeout->tv_sec,
2674 				    timeout->tv_nsec))
2675 		return -EINVAL;
2676 
2677 	datagrams = 0;
2678 
2679 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2680 	if (!sock)
2681 		return err;
2682 
2683 	if (likely(!(flags & MSG_ERRQUEUE))) {
2684 		err = sock_error(sock->sk);
2685 		if (err) {
2686 			datagrams = err;
2687 			goto out_put;
2688 		}
2689 	}
2690 
2691 	entry = mmsg;
2692 	compat_entry = (struct compat_mmsghdr __user *)mmsg;
2693 
2694 	while (datagrams < vlen) {
2695 		/*
2696 		 * No need to ask LSM for more than the first datagram.
2697 		 */
2698 		if (MSG_CMSG_COMPAT & flags) {
2699 			err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry,
2700 					     &msg_sys, flags & ~MSG_WAITFORONE,
2701 					     datagrams);
2702 			if (err < 0)
2703 				break;
2704 			err = __put_user(err, &compat_entry->msg_len);
2705 			++compat_entry;
2706 		} else {
2707 			err = ___sys_recvmsg(sock,
2708 					     (struct user_msghdr __user *)entry,
2709 					     &msg_sys, flags & ~MSG_WAITFORONE,
2710 					     datagrams);
2711 			if (err < 0)
2712 				break;
2713 			err = put_user(err, &entry->msg_len);
2714 			++entry;
2715 		}
2716 
2717 		if (err)
2718 			break;
2719 		++datagrams;
2720 
2721 		/* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2722 		if (flags & MSG_WAITFORONE)
2723 			flags |= MSG_DONTWAIT;
2724 
2725 		if (timeout) {
2726 			ktime_get_ts64(&timeout64);
2727 			*timeout = timespec64_sub(end_time, timeout64);
2728 			if (timeout->tv_sec < 0) {
2729 				timeout->tv_sec = timeout->tv_nsec = 0;
2730 				break;
2731 			}
2732 
2733 			/* Timeout, return less than vlen datagrams */
2734 			if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2735 				break;
2736 		}
2737 
2738 		/* Out of band data, return right away */
2739 		if (msg_sys.msg_flags & MSG_OOB)
2740 			break;
2741 		cond_resched();
2742 	}
2743 
2744 	if (err == 0)
2745 		goto out_put;
2746 
2747 	if (datagrams == 0) {
2748 		datagrams = err;
2749 		goto out_put;
2750 	}
2751 
2752 	/*
2753 	 * We may return less entries than requested (vlen) if the
2754 	 * sock is non block and there aren't enough datagrams...
2755 	 */
2756 	if (err != -EAGAIN) {
2757 		/*
2758 		 * ... or  if recvmsg returns an error after we
2759 		 * received some datagrams, where we record the
2760 		 * error to return on the next call or if the
2761 		 * app asks about it using getsockopt(SO_ERROR).
2762 		 */
2763 		sock->sk->sk_err = -err;
2764 	}
2765 out_put:
2766 	fput_light(sock->file, fput_needed);
2767 
2768 	return datagrams;
2769 }
2770 
__sys_recvmmsg(int fd,struct mmsghdr __user * mmsg,unsigned int vlen,unsigned int flags,struct __kernel_timespec __user * timeout,struct old_timespec32 __user * timeout32)2771 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg,
2772 		   unsigned int vlen, unsigned int flags,
2773 		   struct __kernel_timespec __user *timeout,
2774 		   struct old_timespec32 __user *timeout32)
2775 {
2776 	int datagrams;
2777 	struct timespec64 timeout_sys;
2778 
2779 	if (timeout && get_timespec64(&timeout_sys, timeout))
2780 		return -EFAULT;
2781 
2782 	if (timeout32 && get_old_timespec32(&timeout_sys, timeout32))
2783 		return -EFAULT;
2784 
2785 	if (!timeout && !timeout32)
2786 		return do_recvmmsg(fd, mmsg, vlen, flags, NULL);
2787 
2788 	datagrams = do_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
2789 
2790 	if (datagrams <= 0)
2791 		return datagrams;
2792 
2793 	if (timeout && put_timespec64(&timeout_sys, timeout))
2794 		datagrams = -EFAULT;
2795 
2796 	if (timeout32 && put_old_timespec32(&timeout_sys, timeout32))
2797 		datagrams = -EFAULT;
2798 
2799 	return datagrams;
2800 }
2801 
SYSCALL_DEFINE5(recvmmsg,int,fd,struct mmsghdr __user *,mmsg,unsigned int,vlen,unsigned int,flags,struct __kernel_timespec __user *,timeout)2802 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2803 		unsigned int, vlen, unsigned int, flags,
2804 		struct __kernel_timespec __user *, timeout)
2805 {
2806 	if (flags & MSG_CMSG_COMPAT)
2807 		return -EINVAL;
2808 
2809 	return __sys_recvmmsg(fd, mmsg, vlen, flags, timeout, NULL);
2810 }
2811 
2812 #ifdef CONFIG_COMPAT_32BIT_TIME
SYSCALL_DEFINE5(recvmmsg_time32,int,fd,struct mmsghdr __user *,mmsg,unsigned int,vlen,unsigned int,flags,struct old_timespec32 __user *,timeout)2813 SYSCALL_DEFINE5(recvmmsg_time32, int, fd, struct mmsghdr __user *, mmsg,
2814 		unsigned int, vlen, unsigned int, flags,
2815 		struct old_timespec32 __user *, timeout)
2816 {
2817 	if (flags & MSG_CMSG_COMPAT)
2818 		return -EINVAL;
2819 
2820 	return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL, timeout);
2821 }
2822 #endif
2823 
2824 #ifdef __ARCH_WANT_SYS_SOCKETCALL
2825 /* Argument list sizes for sys_socketcall */
2826 #define AL(x) ((x) * sizeof(unsigned long))
2827 static const unsigned char nargs[21] = {
2828 	AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2829 	AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2830 	AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2831 	AL(4), AL(5), AL(4)
2832 };
2833 
2834 #undef AL
2835 
2836 /*
2837  *	System call vectors.
2838  *
2839  *	Argument checking cleaned up. Saved 20% in size.
2840  *  This function doesn't need to set the kernel lock because
2841  *  it is set by the callees.
2842  */
2843 
SYSCALL_DEFINE2(socketcall,int,call,unsigned long __user *,args)2844 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2845 {
2846 	unsigned long a[AUDITSC_ARGS];
2847 	unsigned long a0, a1;
2848 	int err;
2849 	unsigned int len;
2850 
2851 	if (call < 1 || call > SYS_SENDMMSG)
2852 		return -EINVAL;
2853 	call = array_index_nospec(call, SYS_SENDMMSG + 1);
2854 
2855 	len = nargs[call];
2856 	if (len > sizeof(a))
2857 		return -EINVAL;
2858 
2859 	/* copy_from_user should be SMP safe. */
2860 	if (copy_from_user(a, args, len))
2861 		return -EFAULT;
2862 
2863 	err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2864 	if (err)
2865 		return err;
2866 
2867 	a0 = a[0];
2868 	a1 = a[1];
2869 
2870 	switch (call) {
2871 	case SYS_SOCKET:
2872 		err = __sys_socket(a0, a1, a[2]);
2873 		break;
2874 	case SYS_BIND:
2875 		err = __sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2876 		break;
2877 	case SYS_CONNECT:
2878 		err = __sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2879 		break;
2880 	case SYS_LISTEN:
2881 		err = __sys_listen(a0, a1);
2882 		break;
2883 	case SYS_ACCEPT:
2884 		err = __sys_accept4(a0, (struct sockaddr __user *)a1,
2885 				    (int __user *)a[2], 0);
2886 		break;
2887 	case SYS_GETSOCKNAME:
2888 		err =
2889 		    __sys_getsockname(a0, (struct sockaddr __user *)a1,
2890 				      (int __user *)a[2]);
2891 		break;
2892 	case SYS_GETPEERNAME:
2893 		err =
2894 		    __sys_getpeername(a0, (struct sockaddr __user *)a1,
2895 				      (int __user *)a[2]);
2896 		break;
2897 	case SYS_SOCKETPAIR:
2898 		err = __sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2899 		break;
2900 	case SYS_SEND:
2901 		err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
2902 				   NULL, 0);
2903 		break;
2904 	case SYS_SENDTO:
2905 		err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
2906 				   (struct sockaddr __user *)a[4], a[5]);
2907 		break;
2908 	case SYS_RECV:
2909 		err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2910 				     NULL, NULL);
2911 		break;
2912 	case SYS_RECVFROM:
2913 		err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2914 				     (struct sockaddr __user *)a[4],
2915 				     (int __user *)a[5]);
2916 		break;
2917 	case SYS_SHUTDOWN:
2918 		err = __sys_shutdown(a0, a1);
2919 		break;
2920 	case SYS_SETSOCKOPT:
2921 		err = __sys_setsockopt(a0, a1, a[2], (char __user *)a[3],
2922 				       a[4]);
2923 		break;
2924 	case SYS_GETSOCKOPT:
2925 		err =
2926 		    __sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2927 				     (int __user *)a[4]);
2928 		break;
2929 	case SYS_SENDMSG:
2930 		err = __sys_sendmsg(a0, (struct user_msghdr __user *)a1,
2931 				    a[2], true);
2932 		break;
2933 	case SYS_SENDMMSG:
2934 		err = __sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2],
2935 				     a[3], true);
2936 		break;
2937 	case SYS_RECVMSG:
2938 		err = __sys_recvmsg(a0, (struct user_msghdr __user *)a1,
2939 				    a[2], true);
2940 		break;
2941 	case SYS_RECVMMSG:
2942 		if (IS_ENABLED(CONFIG_64BIT))
2943 			err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1,
2944 					     a[2], a[3],
2945 					     (struct __kernel_timespec __user *)a[4],
2946 					     NULL);
2947 		else
2948 			err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1,
2949 					     a[2], a[3], NULL,
2950 					     (struct old_timespec32 __user *)a[4]);
2951 		break;
2952 	case SYS_ACCEPT4:
2953 		err = __sys_accept4(a0, (struct sockaddr __user *)a1,
2954 				    (int __user *)a[2], a[3]);
2955 		break;
2956 	default:
2957 		err = -EINVAL;
2958 		break;
2959 	}
2960 	return err;
2961 }
2962 
2963 #endif				/* __ARCH_WANT_SYS_SOCKETCALL */
2964 
2965 /**
2966  *	sock_register - add a socket protocol handler
2967  *	@ops: description of protocol
2968  *
2969  *	This function is called by a protocol handler that wants to
2970  *	advertise its address family, and have it linked into the
2971  *	socket interface. The value ops->family corresponds to the
2972  *	socket system call protocol family.
2973  */
sock_register(const struct net_proto_family * ops)2974 int sock_register(const struct net_proto_family *ops)
2975 {
2976 	int err;
2977 
2978 	if (ops->family >= NPROTO) {
2979 		pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO);
2980 		return -ENOBUFS;
2981 	}
2982 
2983 	spin_lock(&net_family_lock);
2984 	if (rcu_dereference_protected(net_families[ops->family],
2985 				      lockdep_is_held(&net_family_lock)))
2986 		err = -EEXIST;
2987 	else {
2988 		rcu_assign_pointer(net_families[ops->family], ops);
2989 		err = 0;
2990 	}
2991 	spin_unlock(&net_family_lock);
2992 
2993 	pr_info("NET: Registered protocol family %d\n", ops->family);
2994 	return err;
2995 }
2996 EXPORT_SYMBOL(sock_register);
2997 
2998 /**
2999  *	sock_unregister - remove a protocol handler
3000  *	@family: protocol family to remove
3001  *
3002  *	This function is called by a protocol handler that wants to
3003  *	remove its address family, and have it unlinked from the
3004  *	new socket creation.
3005  *
3006  *	If protocol handler is a module, then it can use module reference
3007  *	counts to protect against new references. If protocol handler is not
3008  *	a module then it needs to provide its own protection in
3009  *	the ops->create routine.
3010  */
sock_unregister(int family)3011 void sock_unregister(int family)
3012 {
3013 	BUG_ON(family < 0 || family >= NPROTO);
3014 
3015 	spin_lock(&net_family_lock);
3016 	RCU_INIT_POINTER(net_families[family], NULL);
3017 	spin_unlock(&net_family_lock);
3018 
3019 	synchronize_rcu();
3020 
3021 	pr_info("NET: Unregistered protocol family %d\n", family);
3022 }
3023 EXPORT_SYMBOL(sock_unregister);
3024 
sock_is_registered(int family)3025 bool sock_is_registered(int family)
3026 {
3027 	return family < NPROTO && rcu_access_pointer(net_families[family]);
3028 }
3029 
sock_init(void)3030 static int __init sock_init(void)
3031 {
3032 	int err;
3033 	/*
3034 	 *      Initialize the network sysctl infrastructure.
3035 	 */
3036 	err = net_sysctl_init();
3037 	if (err)
3038 		goto out;
3039 
3040 	/*
3041 	 *      Initialize skbuff SLAB cache
3042 	 */
3043 	skb_init();
3044 
3045 	/*
3046 	 *      Initialize the protocols module.
3047 	 */
3048 
3049 	init_inodecache();
3050 
3051 	err = register_filesystem(&sock_fs_type);
3052 	if (err)
3053 		goto out;
3054 	sock_mnt = kern_mount(&sock_fs_type);
3055 	if (IS_ERR(sock_mnt)) {
3056 		err = PTR_ERR(sock_mnt);
3057 		goto out_mount;
3058 	}
3059 
3060 	/* The real protocol initialization is performed in later initcalls.
3061 	 */
3062 
3063 #ifdef CONFIG_NETFILTER
3064 	err = netfilter_init();
3065 	if (err)
3066 		goto out;
3067 #endif
3068 
3069 	ptp_classifier_init();
3070 
3071 out:
3072 	return err;
3073 
3074 out_mount:
3075 	unregister_filesystem(&sock_fs_type);
3076 	goto out;
3077 }
3078 
3079 core_initcall(sock_init);	/* early initcall */
3080 
3081 #ifdef CONFIG_PROC_FS
socket_seq_show(struct seq_file * seq)3082 void socket_seq_show(struct seq_file *seq)
3083 {
3084 	seq_printf(seq, "sockets: used %d\n",
3085 		   sock_inuse_get(seq->private));
3086 }
3087 #endif				/* CONFIG_PROC_FS */
3088 
3089 #ifdef CONFIG_COMPAT
compat_dev_ifconf(struct net * net,struct compat_ifconf __user * uifc32)3090 static int compat_dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32)
3091 {
3092 	struct compat_ifconf ifc32;
3093 	struct ifconf ifc;
3094 	int err;
3095 
3096 	if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf)))
3097 		return -EFAULT;
3098 
3099 	ifc.ifc_len = ifc32.ifc_len;
3100 	ifc.ifc_req = compat_ptr(ifc32.ifcbuf);
3101 
3102 	rtnl_lock();
3103 	err = dev_ifconf(net, &ifc, sizeof(struct compat_ifreq));
3104 	rtnl_unlock();
3105 	if (err)
3106 		return err;
3107 
3108 	ifc32.ifc_len = ifc.ifc_len;
3109 	if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf)))
3110 		return -EFAULT;
3111 
3112 	return 0;
3113 }
3114 
compat_siocwandev(struct net * net,struct compat_ifreq __user * uifr32)3115 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
3116 {
3117 	compat_uptr_t uptr32;
3118 	struct ifreq ifr;
3119 	void __user *saved;
3120 	int err;
3121 
3122 	if (copy_from_user(&ifr, uifr32, sizeof(struct compat_ifreq)))
3123 		return -EFAULT;
3124 
3125 	if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
3126 		return -EFAULT;
3127 
3128 	saved = ifr.ifr_settings.ifs_ifsu.raw_hdlc;
3129 	ifr.ifr_settings.ifs_ifsu.raw_hdlc = compat_ptr(uptr32);
3130 
3131 	err = dev_ioctl(net, SIOCWANDEV, &ifr, NULL);
3132 	if (!err) {
3133 		ifr.ifr_settings.ifs_ifsu.raw_hdlc = saved;
3134 		if (copy_to_user(uifr32, &ifr, sizeof(struct compat_ifreq)))
3135 			err = -EFAULT;
3136 	}
3137 	return err;
3138 }
3139 
3140 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */
compat_ifr_data_ioctl(struct net * net,unsigned int cmd,struct compat_ifreq __user * u_ifreq32)3141 static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd,
3142 				 struct compat_ifreq __user *u_ifreq32)
3143 {
3144 	struct ifreq ifreq;
3145 	u32 data32;
3146 
3147 	if (!is_socket_ioctl_cmd(cmd))
3148 		return -ENOTTY;
3149 	if (copy_from_user(ifreq.ifr_name, u_ifreq32->ifr_name, IFNAMSIZ))
3150 		return -EFAULT;
3151 	if (get_user(data32, &u_ifreq32->ifr_data))
3152 		return -EFAULT;
3153 	ifreq.ifr_data = compat_ptr(data32);
3154 
3155 	return dev_ioctl(net, cmd, &ifreq, NULL);
3156 }
3157 
compat_ifreq_ioctl(struct net * net,struct socket * sock,unsigned int cmd,struct compat_ifreq __user * uifr32)3158 static int compat_ifreq_ioctl(struct net *net, struct socket *sock,
3159 			      unsigned int cmd,
3160 			      struct compat_ifreq __user *uifr32)
3161 {
3162 	struct ifreq __user *uifr;
3163 	int err;
3164 
3165 	/* Handle the fact that while struct ifreq has the same *layout* on
3166 	 * 32/64 for everything but ifreq::ifru_ifmap and ifreq::ifru_data,
3167 	 * which are handled elsewhere, it still has different *size* due to
3168 	 * ifreq::ifru_ifmap (which is 16 bytes on 32 bit, 24 bytes on 64-bit,
3169 	 * resulting in struct ifreq being 32 and 40 bytes respectively).
3170 	 * As a result, if the struct happens to be at the end of a page and
3171 	 * the next page isn't readable/writable, we get a fault. To prevent
3172 	 * that, copy back and forth to the full size.
3173 	 */
3174 
3175 	uifr = compat_alloc_user_space(sizeof(*uifr));
3176 	if (copy_in_user(uifr, uifr32, sizeof(*uifr32)))
3177 		return -EFAULT;
3178 
3179 	err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr);
3180 
3181 	if (!err) {
3182 		switch (cmd) {
3183 		case SIOCGIFFLAGS:
3184 		case SIOCGIFMETRIC:
3185 		case SIOCGIFMTU:
3186 		case SIOCGIFMEM:
3187 		case SIOCGIFHWADDR:
3188 		case SIOCGIFINDEX:
3189 		case SIOCGIFADDR:
3190 		case SIOCGIFBRDADDR:
3191 		case SIOCGIFDSTADDR:
3192 		case SIOCGIFNETMASK:
3193 		case SIOCGIFPFLAGS:
3194 		case SIOCGIFTXQLEN:
3195 		case SIOCGMIIPHY:
3196 		case SIOCGMIIREG:
3197 		case SIOCGIFNAME:
3198 			if (copy_in_user(uifr32, uifr, sizeof(*uifr32)))
3199 				err = -EFAULT;
3200 			break;
3201 		}
3202 	}
3203 	return err;
3204 }
3205 
compat_sioc_ifmap(struct net * net,unsigned int cmd,struct compat_ifreq __user * uifr32)3206 static int compat_sioc_ifmap(struct net *net, unsigned int cmd,
3207 			struct compat_ifreq __user *uifr32)
3208 {
3209 	struct ifreq ifr;
3210 	struct compat_ifmap __user *uifmap32;
3211 	int err;
3212 
3213 	uifmap32 = &uifr32->ifr_ifru.ifru_map;
3214 	err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name));
3215 	err |= get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3216 	err |= get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3217 	err |= get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3218 	err |= get_user(ifr.ifr_map.irq, &uifmap32->irq);
3219 	err |= get_user(ifr.ifr_map.dma, &uifmap32->dma);
3220 	err |= get_user(ifr.ifr_map.port, &uifmap32->port);
3221 	if (err)
3222 		return -EFAULT;
3223 
3224 	err = dev_ioctl(net, cmd, &ifr, NULL);
3225 
3226 	if (cmd == SIOCGIFMAP && !err) {
3227 		err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name));
3228 		err |= put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3229 		err |= put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3230 		err |= put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3231 		err |= put_user(ifr.ifr_map.irq, &uifmap32->irq);
3232 		err |= put_user(ifr.ifr_map.dma, &uifmap32->dma);
3233 		err |= put_user(ifr.ifr_map.port, &uifmap32->port);
3234 		if (err)
3235 			err = -EFAULT;
3236 	}
3237 	return err;
3238 }
3239 
3240 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
3241  * for some operations; this forces use of the newer bridge-utils that
3242  * use compatible ioctls
3243  */
old_bridge_ioctl(compat_ulong_t __user * argp)3244 static int old_bridge_ioctl(compat_ulong_t __user *argp)
3245 {
3246 	compat_ulong_t tmp;
3247 
3248 	if (get_user(tmp, argp))
3249 		return -EFAULT;
3250 	if (tmp == BRCTL_GET_VERSION)
3251 		return BRCTL_VERSION + 1;
3252 	return -EINVAL;
3253 }
3254 
compat_sock_ioctl_trans(struct file * file,struct socket * sock,unsigned int cmd,unsigned long arg)3255 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3256 			 unsigned int cmd, unsigned long arg)
3257 {
3258 	void __user *argp = compat_ptr(arg);
3259 	struct sock *sk = sock->sk;
3260 	struct net *net = sock_net(sk);
3261 
3262 	if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3263 		return compat_ifr_data_ioctl(net, cmd, argp);
3264 
3265 	switch (cmd) {
3266 	case SIOCSIFBR:
3267 	case SIOCGIFBR:
3268 		return old_bridge_ioctl(argp);
3269 	case SIOCGIFCONF:
3270 		return compat_dev_ifconf(net, argp);
3271 	case SIOCWANDEV:
3272 		return compat_siocwandev(net, argp);
3273 	case SIOCGIFMAP:
3274 	case SIOCSIFMAP:
3275 		return compat_sioc_ifmap(net, cmd, argp);
3276 	case SIOCGSTAMP_OLD:
3277 	case SIOCGSTAMPNS_OLD:
3278 		if (!sock->ops->gettstamp)
3279 			return -ENOIOCTLCMD;
3280 		return sock->ops->gettstamp(sock, argp, cmd == SIOCGSTAMP_OLD,
3281 					    !COMPAT_USE_64BIT_TIME);
3282 
3283 	case SIOCETHTOOL:
3284 	case SIOCBONDSLAVEINFOQUERY:
3285 	case SIOCBONDINFOQUERY:
3286 	case SIOCSHWTSTAMP:
3287 	case SIOCGHWTSTAMP:
3288 		return compat_ifr_data_ioctl(net, cmd, argp);
3289 
3290 	case FIOSETOWN:
3291 	case SIOCSPGRP:
3292 	case FIOGETOWN:
3293 	case SIOCGPGRP:
3294 	case SIOCBRADDBR:
3295 	case SIOCBRDELBR:
3296 	case SIOCGIFVLAN:
3297 	case SIOCSIFVLAN:
3298 	case SIOCADDDLCI:
3299 	case SIOCDELDLCI:
3300 	case SIOCGSKNS:
3301 	case SIOCGSTAMP_NEW:
3302 	case SIOCGSTAMPNS_NEW:
3303 		return sock_ioctl(file, cmd, arg);
3304 
3305 	case SIOCGIFFLAGS:
3306 	case SIOCSIFFLAGS:
3307 	case SIOCGIFMETRIC:
3308 	case SIOCSIFMETRIC:
3309 	case SIOCGIFMTU:
3310 	case SIOCSIFMTU:
3311 	case SIOCGIFMEM:
3312 	case SIOCSIFMEM:
3313 	case SIOCGIFHWADDR:
3314 	case SIOCSIFHWADDR:
3315 	case SIOCADDMULTI:
3316 	case SIOCDELMULTI:
3317 	case SIOCGIFINDEX:
3318 	case SIOCGIFADDR:
3319 	case SIOCSIFADDR:
3320 	case SIOCSIFHWBROADCAST:
3321 	case SIOCDIFADDR:
3322 	case SIOCGIFBRDADDR:
3323 	case SIOCSIFBRDADDR:
3324 	case SIOCGIFDSTADDR:
3325 	case SIOCSIFDSTADDR:
3326 	case SIOCGIFNETMASK:
3327 	case SIOCSIFNETMASK:
3328 	case SIOCSIFPFLAGS:
3329 	case SIOCGIFPFLAGS:
3330 	case SIOCGIFTXQLEN:
3331 	case SIOCSIFTXQLEN:
3332 	case SIOCBRADDIF:
3333 	case SIOCBRDELIF:
3334 	case SIOCGIFNAME:
3335 	case SIOCSIFNAME:
3336 	case SIOCGMIIPHY:
3337 	case SIOCGMIIREG:
3338 	case SIOCSMIIREG:
3339 	case SIOCBONDENSLAVE:
3340 	case SIOCBONDRELEASE:
3341 	case SIOCBONDSETHWADDR:
3342 	case SIOCBONDCHANGEACTIVE:
3343 		return compat_ifreq_ioctl(net, sock, cmd, argp);
3344 
3345 	case SIOCSARP:
3346 	case SIOCGARP:
3347 	case SIOCDARP:
3348 	case SIOCOUTQ:
3349 	case SIOCOUTQNSD:
3350 	case SIOCATMARK:
3351 		return sock_do_ioctl(net, sock, cmd, arg);
3352 	}
3353 
3354 	return -ENOIOCTLCMD;
3355 }
3356 
compat_sock_ioctl(struct file * file,unsigned int cmd,unsigned long arg)3357 static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3358 			      unsigned long arg)
3359 {
3360 	struct socket *sock = file->private_data;
3361 	int ret = -ENOIOCTLCMD;
3362 	struct sock *sk;
3363 	struct net *net;
3364 
3365 	sk = sock->sk;
3366 	net = sock_net(sk);
3367 
3368 	if (sock->ops->compat_ioctl)
3369 		ret = sock->ops->compat_ioctl(sock, cmd, arg);
3370 
3371 	if (ret == -ENOIOCTLCMD &&
3372 	    (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3373 		ret = compat_wext_handle_ioctl(net, cmd, arg);
3374 
3375 	if (ret == -ENOIOCTLCMD)
3376 		ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3377 
3378 	return ret;
3379 }
3380 #endif
3381 
3382 /**
3383  *	kernel_bind - bind an address to a socket (kernel space)
3384  *	@sock: socket
3385  *	@addr: address
3386  *	@addrlen: length of address
3387  *
3388  *	Returns 0 or an error.
3389  */
3390 
kernel_bind(struct socket * sock,struct sockaddr * addr,int addrlen)3391 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3392 {
3393 	return sock->ops->bind(sock, addr, addrlen);
3394 }
3395 EXPORT_SYMBOL(kernel_bind);
3396 
3397 /**
3398  *	kernel_listen - move socket to listening state (kernel space)
3399  *	@sock: socket
3400  *	@backlog: pending connections queue size
3401  *
3402  *	Returns 0 or an error.
3403  */
3404 
kernel_listen(struct socket * sock,int backlog)3405 int kernel_listen(struct socket *sock, int backlog)
3406 {
3407 	return sock->ops->listen(sock, backlog);
3408 }
3409 EXPORT_SYMBOL(kernel_listen);
3410 
3411 /**
3412  *	kernel_accept - accept a connection (kernel space)
3413  *	@sock: listening socket
3414  *	@newsock: new connected socket
3415  *	@flags: flags
3416  *
3417  *	@flags must be SOCK_CLOEXEC, SOCK_NONBLOCK or 0.
3418  *	If it fails, @newsock is guaranteed to be %NULL.
3419  *	Returns 0 or an error.
3420  */
3421 
kernel_accept(struct socket * sock,struct socket ** newsock,int flags)3422 int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3423 {
3424 	struct sock *sk = sock->sk;
3425 	int err;
3426 
3427 	err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3428 			       newsock);
3429 	if (err < 0)
3430 		goto done;
3431 
3432 	err = sock->ops->accept(sock, *newsock, flags, true);
3433 	if (err < 0) {
3434 		sock_release(*newsock);
3435 		*newsock = NULL;
3436 		goto done;
3437 	}
3438 
3439 	(*newsock)->ops = sock->ops;
3440 	__module_get((*newsock)->ops->owner);
3441 
3442 done:
3443 	return err;
3444 }
3445 EXPORT_SYMBOL(kernel_accept);
3446 
3447 /**
3448  *	kernel_connect - connect a socket (kernel space)
3449  *	@sock: socket
3450  *	@addr: address
3451  *	@addrlen: address length
3452  *	@flags: flags (O_NONBLOCK, ...)
3453  *
3454  *	For datagram sockets, @addr is the addres to which datagrams are sent
3455  *	by default, and the only address from which datagrams are received.
3456  *	For stream sockets, attempts to connect to @addr.
3457  *	Returns 0 or an error code.
3458  */
3459 
kernel_connect(struct socket * sock,struct sockaddr * addr,int addrlen,int flags)3460 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3461 		   int flags)
3462 {
3463 	return sock->ops->connect(sock, addr, addrlen, flags);
3464 }
3465 EXPORT_SYMBOL(kernel_connect);
3466 
3467 /**
3468  *	kernel_getsockname - get the address which the socket is bound (kernel space)
3469  *	@sock: socket
3470  *	@addr: address holder
3471  *
3472  * 	Fills the @addr pointer with the address which the socket is bound.
3473  *	Returns 0 or an error code.
3474  */
3475 
kernel_getsockname(struct socket * sock,struct sockaddr * addr)3476 int kernel_getsockname(struct socket *sock, struct sockaddr *addr)
3477 {
3478 	return sock->ops->getname(sock, addr, 0);
3479 }
3480 EXPORT_SYMBOL(kernel_getsockname);
3481 
3482 /**
3483  *	kernel_getpeername - get the address which the socket is connected (kernel space)
3484  *	@sock: socket
3485  *	@addr: address holder
3486  *
3487  * 	Fills the @addr pointer with the address which the socket is connected.
3488  *	Returns 0 or an error code.
3489  */
3490 
kernel_getpeername(struct socket * sock,struct sockaddr * addr)3491 int kernel_getpeername(struct socket *sock, struct sockaddr *addr)
3492 {
3493 	return sock->ops->getname(sock, addr, 1);
3494 }
3495 EXPORT_SYMBOL(kernel_getpeername);
3496 
3497 /**
3498  *	kernel_sendpage - send a &page through a socket (kernel space)
3499  *	@sock: socket
3500  *	@page: page
3501  *	@offset: page offset
3502  *	@size: total size in bytes
3503  *	@flags: flags (MSG_DONTWAIT, ...)
3504  *
3505  *	Returns the total amount sent in bytes or an error.
3506  */
3507 
kernel_sendpage(struct socket * sock,struct page * page,int offset,size_t size,int flags)3508 int kernel_sendpage(struct socket *sock, struct page *page, int offset,
3509 		    size_t size, int flags)
3510 {
3511 	if (sock->ops->sendpage) {
3512 		/* Warn in case the improper page to zero-copy send */
3513 		WARN_ONCE(!sendpage_ok(page), "improper page for zero-copy send");
3514 		return sock->ops->sendpage(sock, page, offset, size, flags);
3515 	}
3516 	return sock_no_sendpage(sock, page, offset, size, flags);
3517 }
3518 EXPORT_SYMBOL(kernel_sendpage);
3519 
3520 /**
3521  *	kernel_sendpage_locked - send a &page through the locked sock (kernel space)
3522  *	@sk: sock
3523  *	@page: page
3524  *	@offset: page offset
3525  *	@size: total size in bytes
3526  *	@flags: flags (MSG_DONTWAIT, ...)
3527  *
3528  *	Returns the total amount sent in bytes or an error.
3529  *	Caller must hold @sk.
3530  */
3531 
kernel_sendpage_locked(struct sock * sk,struct page * page,int offset,size_t size,int flags)3532 int kernel_sendpage_locked(struct sock *sk, struct page *page, int offset,
3533 			   size_t size, int flags)
3534 {
3535 	struct socket *sock = sk->sk_socket;
3536 
3537 	if (sock->ops->sendpage_locked)
3538 		return sock->ops->sendpage_locked(sk, page, offset, size,
3539 						  flags);
3540 
3541 	return sock_no_sendpage_locked(sk, page, offset, size, flags);
3542 }
3543 EXPORT_SYMBOL(kernel_sendpage_locked);
3544 
3545 /**
3546  *	kernel_sock_shutdown - shut down part of a full-duplex connection (kernel space)
3547  *	@sock: socket
3548  *	@how: connection part
3549  *
3550  *	Returns 0 or an error.
3551  */
3552 
kernel_sock_shutdown(struct socket * sock,enum sock_shutdown_cmd how)3553 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3554 {
3555 	return sock->ops->shutdown(sock, how);
3556 }
3557 EXPORT_SYMBOL(kernel_sock_shutdown);
3558 
3559 /**
3560  *	kernel_sock_ip_overhead - returns the IP overhead imposed by a socket
3561  *	@sk: socket
3562  *
3563  *	This routine returns the IP overhead imposed by a socket i.e.
3564  *	the length of the underlying IP header, depending on whether
3565  *	this is an IPv4 or IPv6 socket and the length from IP options turned
3566  *	on at the socket. Assumes that the caller has a lock on the socket.
3567  */
3568 
kernel_sock_ip_overhead(struct sock * sk)3569 u32 kernel_sock_ip_overhead(struct sock *sk)
3570 {
3571 	struct inet_sock *inet;
3572 	struct ip_options_rcu *opt;
3573 	u32 overhead = 0;
3574 #if IS_ENABLED(CONFIG_IPV6)
3575 	struct ipv6_pinfo *np;
3576 	struct ipv6_txoptions *optv6 = NULL;
3577 #endif /* IS_ENABLED(CONFIG_IPV6) */
3578 
3579 	if (!sk)
3580 		return overhead;
3581 
3582 	switch (sk->sk_family) {
3583 	case AF_INET:
3584 		inet = inet_sk(sk);
3585 		overhead += sizeof(struct iphdr);
3586 		opt = rcu_dereference_protected(inet->inet_opt,
3587 						sock_owned_by_user(sk));
3588 		if (opt)
3589 			overhead += opt->opt.optlen;
3590 		return overhead;
3591 #if IS_ENABLED(CONFIG_IPV6)
3592 	case AF_INET6:
3593 		np = inet6_sk(sk);
3594 		overhead += sizeof(struct ipv6hdr);
3595 		if (np)
3596 			optv6 = rcu_dereference_protected(np->opt,
3597 							  sock_owned_by_user(sk));
3598 		if (optv6)
3599 			overhead += (optv6->opt_flen + optv6->opt_nflen);
3600 		return overhead;
3601 #endif /* IS_ENABLED(CONFIG_IPV6) */
3602 	default: /* Returns 0 overhead if the socket is not ipv4 or ipv6 */
3603 		return overhead;
3604 	}
3605 }
3606 EXPORT_SYMBOL(kernel_sock_ip_overhead);
3607