1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * NET An implementation of the SOCKET network access protocol.
4 *
5 * Version: @(#)socket.c 1.1.93 18/02/95
6 *
7 * Authors: Orest Zborowski, <obz@Kodak.COM>
8 * Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 *
11 * Fixes:
12 * Anonymous : NOTSOCK/BADF cleanup. Error fix in
13 * shutdown()
14 * Alan Cox : verify_area() fixes
15 * Alan Cox : Removed DDI
16 * Jonathan Kamens : SOCK_DGRAM reconnect bug
17 * Alan Cox : Moved a load of checks to the very
18 * top level.
19 * Alan Cox : Move address structures to/from user
20 * mode above the protocol layers.
21 * Rob Janssen : Allow 0 length sends.
22 * Alan Cox : Asynchronous I/O support (cribbed from the
23 * tty drivers).
24 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style)
25 * Jeff Uphoff : Made max number of sockets command-line
26 * configurable.
27 * Matti Aarnio : Made the number of sockets dynamic,
28 * to be allocated when needed, and mr.
29 * Uphoff's max is used as max to be
30 * allowed to allocate.
31 * Linus : Argh. removed all the socket allocation
32 * altogether: it's in the inode now.
33 * Alan Cox : Made sock_alloc()/sock_release() public
34 * for NetROM and future kernel nfsd type
35 * stuff.
36 * Alan Cox : sendmsg/recvmsg basics.
37 * Tom Dyas : Export net symbols.
38 * Marcin Dalecki : Fixed problems with CONFIG_NET="n".
39 * Alan Cox : Added thread locking to sys_* calls
40 * for sockets. May have errors at the
41 * moment.
42 * Kevin Buhr : Fixed the dumb errors in the above.
43 * Andi Kleen : Some small cleanups, optimizations,
44 * and fixed a copy_from_user() bug.
45 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0)
46 * Tigran Aivazian : Made listen(2) backlog sanity checks
47 * protocol-independent
48 *
49 * This module is effectively the top level interface to the BSD socket
50 * paradigm.
51 *
52 * Based upon Swansea University Computer Society NET3.039
53 */
54
55 #include <linux/mm.h>
56 #include <linux/socket.h>
57 #include <linux/file.h>
58 #include <linux/net.h>
59 #include <linux/interrupt.h>
60 #include <linux/thread_info.h>
61 #include <linux/rcupdate.h>
62 #include <linux/netdevice.h>
63 #include <linux/proc_fs.h>
64 #include <linux/seq_file.h>
65 #include <linux/mutex.h>
66 #include <linux/if_bridge.h>
67 #include <linux/if_frad.h>
68 #include <linux/if_vlan.h>
69 #include <linux/ptp_classify.h>
70 #include <linux/init.h>
71 #include <linux/poll.h>
72 #include <linux/cache.h>
73 #include <linux/module.h>
74 #include <linux/highmem.h>
75 #include <linux/mount.h>
76 #include <linux/pseudo_fs.h>
77 #include <linux/security.h>
78 #include <linux/syscalls.h>
79 #include <linux/compat.h>
80 #include <linux/kmod.h>
81 #include <linux/audit.h>
82 #include <linux/wireless.h>
83 #include <linux/nsproxy.h>
84 #include <linux/magic.h>
85 #include <linux/slab.h>
86 #include <linux/xattr.h>
87 #include <linux/nospec.h>
88 #include <linux/indirect_call_wrapper.h>
89
90 #include <linux/uaccess.h>
91 #include <asm/unistd.h>
92
93 #include <net/compat.h>
94 #include <net/wext.h>
95 #include <net/cls_cgroup.h>
96
97 #include <net/sock.h>
98 #include <linux/netfilter.h>
99
100 #include <linux/if_tun.h>
101 #include <linux/ipv6_route.h>
102 #include <linux/route.h>
103 #include <linux/termios.h>
104 #include <linux/sockios.h>
105 #include <net/busy_poll.h>
106 #include <linux/errqueue.h>
107
108 #ifdef CONFIG_NET_RX_BUSY_POLL
109 unsigned int sysctl_net_busy_read __read_mostly;
110 unsigned int sysctl_net_busy_poll __read_mostly;
111 #endif
112
113 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to);
114 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from);
115 static int sock_mmap(struct file *file, struct vm_area_struct *vma);
116
117 static int sock_close(struct inode *inode, struct file *file);
118 static __poll_t sock_poll(struct file *file,
119 struct poll_table_struct *wait);
120 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
121 #ifdef CONFIG_COMPAT
122 static long compat_sock_ioctl(struct file *file,
123 unsigned int cmd, unsigned long arg);
124 #endif
125 static int sock_fasync(int fd, struct file *filp, int on);
126 static ssize_t sock_sendpage(struct file *file, struct page *page,
127 int offset, size_t size, loff_t *ppos, int more);
128 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
129 struct pipe_inode_info *pipe, size_t len,
130 unsigned int flags);
131
132 #ifdef CONFIG_PROC_FS
sock_show_fdinfo(struct seq_file * m,struct file * f)133 static void sock_show_fdinfo(struct seq_file *m, struct file *f)
134 {
135 struct socket *sock = f->private_data;
136
137 if (sock->ops->show_fdinfo)
138 sock->ops->show_fdinfo(m, sock);
139 }
140 #else
141 #define sock_show_fdinfo NULL
142 #endif
143
144 /*
145 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
146 * in the operation structures but are done directly via the socketcall() multiplexor.
147 */
148
149 static const struct file_operations socket_file_ops = {
150 .owner = THIS_MODULE,
151 .llseek = no_llseek,
152 .read_iter = sock_read_iter,
153 .write_iter = sock_write_iter,
154 .poll = sock_poll,
155 .unlocked_ioctl = sock_ioctl,
156 #ifdef CONFIG_COMPAT
157 .compat_ioctl = compat_sock_ioctl,
158 #endif
159 .mmap = sock_mmap,
160 .release = sock_close,
161 .fasync = sock_fasync,
162 .sendpage = sock_sendpage,
163 .splice_write = generic_splice_sendpage,
164 .splice_read = sock_splice_read,
165 .show_fdinfo = sock_show_fdinfo,
166 };
167
168 /*
169 * The protocol list. Each protocol is registered in here.
170 */
171
172 static DEFINE_SPINLOCK(net_family_lock);
173 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
174
175 /*
176 * Support routines.
177 * Move socket addresses back and forth across the kernel/user
178 * divide and look after the messy bits.
179 */
180
181 /**
182 * move_addr_to_kernel - copy a socket address into kernel space
183 * @uaddr: Address in user space
184 * @kaddr: Address in kernel space
185 * @ulen: Length in user space
186 *
187 * The address is copied into kernel space. If the provided address is
188 * too long an error code of -EINVAL is returned. If the copy gives
189 * invalid addresses -EFAULT is returned. On a success 0 is returned.
190 */
191
move_addr_to_kernel(void __user * uaddr,int ulen,struct sockaddr_storage * kaddr)192 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
193 {
194 if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
195 return -EINVAL;
196 if (ulen == 0)
197 return 0;
198 if (copy_from_user(kaddr, uaddr, ulen))
199 return -EFAULT;
200 return audit_sockaddr(ulen, kaddr);
201 }
202
203 /**
204 * move_addr_to_user - copy an address to user space
205 * @kaddr: kernel space address
206 * @klen: length of address in kernel
207 * @uaddr: user space address
208 * @ulen: pointer to user length field
209 *
210 * The value pointed to by ulen on entry is the buffer length available.
211 * This is overwritten with the buffer space used. -EINVAL is returned
212 * if an overlong buffer is specified or a negative buffer size. -EFAULT
213 * is returned if either the buffer or the length field are not
214 * accessible.
215 * After copying the data up to the limit the user specifies, the true
216 * length of the data is written over the length limit the user
217 * specified. Zero is returned for a success.
218 */
219
move_addr_to_user(struct sockaddr_storage * kaddr,int klen,void __user * uaddr,int __user * ulen)220 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
221 void __user *uaddr, int __user *ulen)
222 {
223 int err;
224 int len;
225
226 BUG_ON(klen > sizeof(struct sockaddr_storage));
227 err = get_user(len, ulen);
228 if (err)
229 return err;
230 if (len > klen)
231 len = klen;
232 if (len < 0)
233 return -EINVAL;
234 if (len) {
235 if (audit_sockaddr(klen, kaddr))
236 return -ENOMEM;
237 if (copy_to_user(uaddr, kaddr, len))
238 return -EFAULT;
239 }
240 /*
241 * "fromlen shall refer to the value before truncation.."
242 * 1003.1g
243 */
244 return __put_user(klen, ulen);
245 }
246
247 static struct kmem_cache *sock_inode_cachep __ro_after_init;
248
sock_alloc_inode(struct super_block * sb)249 static struct inode *sock_alloc_inode(struct super_block *sb)
250 {
251 struct socket_alloc *ei;
252
253 ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
254 if (!ei)
255 return NULL;
256 init_waitqueue_head(&ei->socket.wq.wait);
257 ei->socket.wq.fasync_list = NULL;
258 ei->socket.wq.flags = 0;
259
260 ei->socket.state = SS_UNCONNECTED;
261 ei->socket.flags = 0;
262 ei->socket.ops = NULL;
263 ei->socket.sk = NULL;
264 ei->socket.file = NULL;
265
266 return &ei->vfs_inode;
267 }
268
sock_free_inode(struct inode * inode)269 static void sock_free_inode(struct inode *inode)
270 {
271 struct socket_alloc *ei;
272
273 ei = container_of(inode, struct socket_alloc, vfs_inode);
274 kmem_cache_free(sock_inode_cachep, ei);
275 }
276
init_once(void * foo)277 static void init_once(void *foo)
278 {
279 struct socket_alloc *ei = (struct socket_alloc *)foo;
280
281 inode_init_once(&ei->vfs_inode);
282 }
283
init_inodecache(void)284 static void init_inodecache(void)
285 {
286 sock_inode_cachep = kmem_cache_create("sock_inode_cache",
287 sizeof(struct socket_alloc),
288 0,
289 (SLAB_HWCACHE_ALIGN |
290 SLAB_RECLAIM_ACCOUNT |
291 SLAB_MEM_SPREAD | SLAB_ACCOUNT),
292 init_once);
293 BUG_ON(sock_inode_cachep == NULL);
294 }
295
296 static const struct super_operations sockfs_ops = {
297 .alloc_inode = sock_alloc_inode,
298 .free_inode = sock_free_inode,
299 .statfs = simple_statfs,
300 };
301
302 /*
303 * sockfs_dname() is called from d_path().
304 */
sockfs_dname(struct dentry * dentry,char * buffer,int buflen)305 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
306 {
307 return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
308 d_inode(dentry)->i_ino);
309 }
310
311 static const struct dentry_operations sockfs_dentry_operations = {
312 .d_dname = sockfs_dname,
313 };
314
sockfs_xattr_get(const struct xattr_handler * handler,struct dentry * dentry,struct inode * inode,const char * suffix,void * value,size_t size)315 static int sockfs_xattr_get(const struct xattr_handler *handler,
316 struct dentry *dentry, struct inode *inode,
317 const char *suffix, void *value, size_t size)
318 {
319 if (value) {
320 if (dentry->d_name.len + 1 > size)
321 return -ERANGE;
322 memcpy(value, dentry->d_name.name, dentry->d_name.len + 1);
323 }
324 return dentry->d_name.len + 1;
325 }
326
327 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
328 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
329 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
330
331 static const struct xattr_handler sockfs_xattr_handler = {
332 .name = XATTR_NAME_SOCKPROTONAME,
333 .get = sockfs_xattr_get,
334 };
335
sockfs_security_xattr_set(const struct xattr_handler * handler,struct dentry * dentry,struct inode * inode,const char * suffix,const void * value,size_t size,int flags)336 static int sockfs_security_xattr_set(const struct xattr_handler *handler,
337 struct dentry *dentry, struct inode *inode,
338 const char *suffix, const void *value,
339 size_t size, int flags)
340 {
341 /* Handled by LSM. */
342 return -EAGAIN;
343 }
344
345 static const struct xattr_handler sockfs_security_xattr_handler = {
346 .prefix = XATTR_SECURITY_PREFIX,
347 .set = sockfs_security_xattr_set,
348 };
349
350 static const struct xattr_handler *sockfs_xattr_handlers[] = {
351 &sockfs_xattr_handler,
352 &sockfs_security_xattr_handler,
353 NULL
354 };
355
sockfs_init_fs_context(struct fs_context * fc)356 static int sockfs_init_fs_context(struct fs_context *fc)
357 {
358 struct pseudo_fs_context *ctx = init_pseudo(fc, SOCKFS_MAGIC);
359 if (!ctx)
360 return -ENOMEM;
361 ctx->ops = &sockfs_ops;
362 ctx->dops = &sockfs_dentry_operations;
363 ctx->xattr = sockfs_xattr_handlers;
364 return 0;
365 }
366
367 static struct vfsmount *sock_mnt __read_mostly;
368
369 static struct file_system_type sock_fs_type = {
370 .name = "sockfs",
371 .init_fs_context = sockfs_init_fs_context,
372 .kill_sb = kill_anon_super,
373 };
374
375 /*
376 * Obtains the first available file descriptor and sets it up for use.
377 *
378 * These functions create file structures and maps them to fd space
379 * of the current process. On success it returns file descriptor
380 * and file struct implicitly stored in sock->file.
381 * Note that another thread may close file descriptor before we return
382 * from this function. We use the fact that now we do not refer
383 * to socket after mapping. If one day we will need it, this
384 * function will increment ref. count on file by 1.
385 *
386 * In any case returned fd MAY BE not valid!
387 * This race condition is unavoidable
388 * with shared fd spaces, we cannot solve it inside kernel,
389 * but we take care of internal coherence yet.
390 */
391
392 /**
393 * sock_alloc_file - Bind a &socket to a &file
394 * @sock: socket
395 * @flags: file status flags
396 * @dname: protocol name
397 *
398 * Returns the &file bound with @sock, implicitly storing it
399 * in sock->file. If dname is %NULL, sets to "".
400 * On failure the return is a ERR pointer (see linux/err.h).
401 * This function uses GFP_KERNEL internally.
402 */
403
sock_alloc_file(struct socket * sock,int flags,const char * dname)404 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname)
405 {
406 struct file *file;
407
408 if (!dname)
409 dname = sock->sk ? sock->sk->sk_prot_creator->name : "";
410
411 file = alloc_file_pseudo(SOCK_INODE(sock), sock_mnt, dname,
412 O_RDWR | (flags & O_NONBLOCK),
413 &socket_file_ops);
414 if (IS_ERR(file)) {
415 sock_release(sock);
416 return file;
417 }
418
419 sock->file = file;
420 file->private_data = sock;
421 stream_open(SOCK_INODE(sock), file);
422 return file;
423 }
424 EXPORT_SYMBOL(sock_alloc_file);
425
sock_map_fd(struct socket * sock,int flags)426 static int sock_map_fd(struct socket *sock, int flags)
427 {
428 struct file *newfile;
429 int fd = get_unused_fd_flags(flags);
430 if (unlikely(fd < 0)) {
431 sock_release(sock);
432 return fd;
433 }
434
435 newfile = sock_alloc_file(sock, flags, NULL);
436 if (!IS_ERR(newfile)) {
437 fd_install(fd, newfile);
438 return fd;
439 }
440
441 put_unused_fd(fd);
442 return PTR_ERR(newfile);
443 }
444
445 /**
446 * sock_from_file - Return the &socket bounded to @file.
447 * @file: file
448 * @err: pointer to an error code return
449 *
450 * On failure returns %NULL and assigns -ENOTSOCK to @err.
451 */
452
sock_from_file(struct file * file,int * err)453 struct socket *sock_from_file(struct file *file, int *err)
454 {
455 if (file->f_op == &socket_file_ops)
456 return file->private_data; /* set in sock_map_fd */
457
458 *err = -ENOTSOCK;
459 return NULL;
460 }
461 EXPORT_SYMBOL(sock_from_file);
462
463 /**
464 * sockfd_lookup - Go from a file number to its socket slot
465 * @fd: file handle
466 * @err: pointer to an error code return
467 *
468 * The file handle passed in is locked and the socket it is bound
469 * to is returned. If an error occurs the err pointer is overwritten
470 * with a negative errno code and NULL is returned. The function checks
471 * for both invalid handles and passing a handle which is not a socket.
472 *
473 * On a success the socket object pointer is returned.
474 */
475
sockfd_lookup(int fd,int * err)476 struct socket *sockfd_lookup(int fd, int *err)
477 {
478 struct file *file;
479 struct socket *sock;
480
481 file = fget(fd);
482 if (!file) {
483 *err = -EBADF;
484 return NULL;
485 }
486
487 sock = sock_from_file(file, err);
488 if (!sock)
489 fput(file);
490 return sock;
491 }
492 EXPORT_SYMBOL(sockfd_lookup);
493
sockfd_lookup_light(int fd,int * err,int * fput_needed)494 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
495 {
496 struct fd f = fdget(fd);
497 struct socket *sock;
498
499 *err = -EBADF;
500 if (f.file) {
501 sock = sock_from_file(f.file, err);
502 if (likely(sock)) {
503 *fput_needed = f.flags & FDPUT_FPUT;
504 return sock;
505 }
506 fdput(f);
507 }
508 return NULL;
509 }
510
sockfs_listxattr(struct dentry * dentry,char * buffer,size_t size)511 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer,
512 size_t size)
513 {
514 ssize_t len;
515 ssize_t used = 0;
516
517 len = security_inode_listsecurity(d_inode(dentry), buffer, size);
518 if (len < 0)
519 return len;
520 used += len;
521 if (buffer) {
522 if (size < used)
523 return -ERANGE;
524 buffer += len;
525 }
526
527 len = (XATTR_NAME_SOCKPROTONAME_LEN + 1);
528 used += len;
529 if (buffer) {
530 if (size < used)
531 return -ERANGE;
532 memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len);
533 buffer += len;
534 }
535
536 return used;
537 }
538
sockfs_setattr(struct dentry * dentry,struct iattr * iattr)539 static int sockfs_setattr(struct dentry *dentry, struct iattr *iattr)
540 {
541 int err = simple_setattr(dentry, iattr);
542
543 if (!err && (iattr->ia_valid & ATTR_UID)) {
544 struct socket *sock = SOCKET_I(d_inode(dentry));
545
546 if (sock->sk)
547 sock->sk->sk_uid = iattr->ia_uid;
548 else
549 err = -ENOENT;
550 }
551
552 return err;
553 }
554
555 static const struct inode_operations sockfs_inode_ops = {
556 .listxattr = sockfs_listxattr,
557 .setattr = sockfs_setattr,
558 };
559
560 /**
561 * sock_alloc - allocate a socket
562 *
563 * Allocate a new inode and socket object. The two are bound together
564 * and initialised. The socket is then returned. If we are out of inodes
565 * NULL is returned. This functions uses GFP_KERNEL internally.
566 */
567
sock_alloc(void)568 struct socket *sock_alloc(void)
569 {
570 struct inode *inode;
571 struct socket *sock;
572
573 inode = new_inode_pseudo(sock_mnt->mnt_sb);
574 if (!inode)
575 return NULL;
576
577 sock = SOCKET_I(inode);
578
579 inode->i_ino = get_next_ino();
580 inode->i_mode = S_IFSOCK | S_IRWXUGO;
581 inode->i_uid = current_fsuid();
582 inode->i_gid = current_fsgid();
583 inode->i_op = &sockfs_inode_ops;
584
585 return sock;
586 }
587 EXPORT_SYMBOL(sock_alloc);
588
__sock_release(struct socket * sock,struct inode * inode)589 static void __sock_release(struct socket *sock, struct inode *inode)
590 {
591 if (sock->ops) {
592 struct module *owner = sock->ops->owner;
593
594 if (inode)
595 inode_lock(inode);
596 sock->ops->release(sock);
597 sock->sk = NULL;
598 if (inode)
599 inode_unlock(inode);
600 sock->ops = NULL;
601 module_put(owner);
602 }
603
604 if (sock->wq.fasync_list)
605 pr_err("%s: fasync list not empty!\n", __func__);
606
607 if (!sock->file) {
608 iput(SOCK_INODE(sock));
609 return;
610 }
611 sock->file = NULL;
612 }
613
614 /**
615 * sock_release - close a socket
616 * @sock: socket to close
617 *
618 * The socket is released from the protocol stack if it has a release
619 * callback, and the inode is then released if the socket is bound to
620 * an inode not a file.
621 */
sock_release(struct socket * sock)622 void sock_release(struct socket *sock)
623 {
624 __sock_release(sock, NULL);
625 }
626 EXPORT_SYMBOL(sock_release);
627
__sock_tx_timestamp(__u16 tsflags,__u8 * tx_flags)628 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags)
629 {
630 u8 flags = *tx_flags;
631
632 if (tsflags & SOF_TIMESTAMPING_TX_HARDWARE)
633 flags |= SKBTX_HW_TSTAMP;
634
635 if (tsflags & SOF_TIMESTAMPING_TX_SOFTWARE)
636 flags |= SKBTX_SW_TSTAMP;
637
638 if (tsflags & SOF_TIMESTAMPING_TX_SCHED)
639 flags |= SKBTX_SCHED_TSTAMP;
640
641 *tx_flags = flags;
642 }
643 EXPORT_SYMBOL(__sock_tx_timestamp);
644
645 INDIRECT_CALLABLE_DECLARE(int inet_sendmsg(struct socket *, struct msghdr *,
646 size_t));
647 INDIRECT_CALLABLE_DECLARE(int inet6_sendmsg(struct socket *, struct msghdr *,
648 size_t));
sock_sendmsg_nosec(struct socket * sock,struct msghdr * msg)649 static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg)
650 {
651 int ret = INDIRECT_CALL_INET(sock->ops->sendmsg, inet6_sendmsg,
652 inet_sendmsg, sock, msg,
653 msg_data_left(msg));
654 BUG_ON(ret == -EIOCBQUEUED);
655 return ret;
656 }
657
658 /**
659 * sock_sendmsg - send a message through @sock
660 * @sock: socket
661 * @msg: message to send
662 *
663 * Sends @msg through @sock, passing through LSM.
664 * Returns the number of bytes sent, or an error code.
665 */
sock_sendmsg(struct socket * sock,struct msghdr * msg)666 int sock_sendmsg(struct socket *sock, struct msghdr *msg)
667 {
668 int err = security_socket_sendmsg(sock, msg,
669 msg_data_left(msg));
670
671 return err ?: sock_sendmsg_nosec(sock, msg);
672 }
673 EXPORT_SYMBOL(sock_sendmsg);
674
675 /**
676 * kernel_sendmsg - send a message through @sock (kernel-space)
677 * @sock: socket
678 * @msg: message header
679 * @vec: kernel vec
680 * @num: vec array length
681 * @size: total message data size
682 *
683 * Builds the message data with @vec and sends it through @sock.
684 * Returns the number of bytes sent, or an error code.
685 */
686
kernel_sendmsg(struct socket * sock,struct msghdr * msg,struct kvec * vec,size_t num,size_t size)687 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
688 struct kvec *vec, size_t num, size_t size)
689 {
690 iov_iter_kvec(&msg->msg_iter, WRITE, vec, num, size);
691 return sock_sendmsg(sock, msg);
692 }
693 EXPORT_SYMBOL(kernel_sendmsg);
694
695 /**
696 * kernel_sendmsg_locked - send a message through @sock (kernel-space)
697 * @sk: sock
698 * @msg: message header
699 * @vec: output s/g array
700 * @num: output s/g array length
701 * @size: total message data size
702 *
703 * Builds the message data with @vec and sends it through @sock.
704 * Returns the number of bytes sent, or an error code.
705 * Caller must hold @sk.
706 */
707
kernel_sendmsg_locked(struct sock * sk,struct msghdr * msg,struct kvec * vec,size_t num,size_t size)708 int kernel_sendmsg_locked(struct sock *sk, struct msghdr *msg,
709 struct kvec *vec, size_t num, size_t size)
710 {
711 struct socket *sock = sk->sk_socket;
712
713 if (!sock->ops->sendmsg_locked)
714 return sock_no_sendmsg_locked(sk, msg, size);
715
716 iov_iter_kvec(&msg->msg_iter, WRITE, vec, num, size);
717
718 return sock->ops->sendmsg_locked(sk, msg, msg_data_left(msg));
719 }
720 EXPORT_SYMBOL(kernel_sendmsg_locked);
721
skb_is_err_queue(const struct sk_buff * skb)722 static bool skb_is_err_queue(const struct sk_buff *skb)
723 {
724 /* pkt_type of skbs enqueued on the error queue are set to
725 * PACKET_OUTGOING in skb_set_err_queue(). This is only safe to do
726 * in recvmsg, since skbs received on a local socket will never
727 * have a pkt_type of PACKET_OUTGOING.
728 */
729 return skb->pkt_type == PACKET_OUTGOING;
730 }
731
732 /* On transmit, software and hardware timestamps are returned independently.
733 * As the two skb clones share the hardware timestamp, which may be updated
734 * before the software timestamp is received, a hardware TX timestamp may be
735 * returned only if there is no software TX timestamp. Ignore false software
736 * timestamps, which may be made in the __sock_recv_timestamp() call when the
737 * option SO_TIMESTAMP_OLD(NS) is enabled on the socket, even when the skb has a
738 * hardware timestamp.
739 */
skb_is_swtx_tstamp(const struct sk_buff * skb,int false_tstamp)740 static bool skb_is_swtx_tstamp(const struct sk_buff *skb, int false_tstamp)
741 {
742 return skb->tstamp && !false_tstamp && skb_is_err_queue(skb);
743 }
744
put_ts_pktinfo(struct msghdr * msg,struct sk_buff * skb)745 static void put_ts_pktinfo(struct msghdr *msg, struct sk_buff *skb)
746 {
747 struct scm_ts_pktinfo ts_pktinfo;
748 struct net_device *orig_dev;
749
750 if (!skb_mac_header_was_set(skb))
751 return;
752
753 memset(&ts_pktinfo, 0, sizeof(ts_pktinfo));
754
755 rcu_read_lock();
756 orig_dev = dev_get_by_napi_id(skb_napi_id(skb));
757 if (orig_dev)
758 ts_pktinfo.if_index = orig_dev->ifindex;
759 rcu_read_unlock();
760
761 ts_pktinfo.pkt_length = skb->len - skb_mac_offset(skb);
762 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_PKTINFO,
763 sizeof(ts_pktinfo), &ts_pktinfo);
764 }
765
766 /*
767 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
768 */
__sock_recv_timestamp(struct msghdr * msg,struct sock * sk,struct sk_buff * skb)769 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
770 struct sk_buff *skb)
771 {
772 int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
773 int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW);
774 struct scm_timestamping_internal tss;
775
776 int empty = 1, false_tstamp = 0;
777 struct skb_shared_hwtstamps *shhwtstamps =
778 skb_hwtstamps(skb);
779
780 /* Race occurred between timestamp enabling and packet
781 receiving. Fill in the current time for now. */
782 if (need_software_tstamp && skb->tstamp == 0) {
783 __net_timestamp(skb);
784 false_tstamp = 1;
785 }
786
787 if (need_software_tstamp) {
788 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
789 if (new_tstamp) {
790 struct __kernel_sock_timeval tv;
791
792 skb_get_new_timestamp(skb, &tv);
793 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW,
794 sizeof(tv), &tv);
795 } else {
796 struct __kernel_old_timeval tv;
797
798 skb_get_timestamp(skb, &tv);
799 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD,
800 sizeof(tv), &tv);
801 }
802 } else {
803 if (new_tstamp) {
804 struct __kernel_timespec ts;
805
806 skb_get_new_timestampns(skb, &ts);
807 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW,
808 sizeof(ts), &ts);
809 } else {
810 struct __kernel_old_timespec ts;
811
812 skb_get_timestampns(skb, &ts);
813 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD,
814 sizeof(ts), &ts);
815 }
816 }
817 }
818
819 memset(&tss, 0, sizeof(tss));
820 if ((sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) &&
821 ktime_to_timespec64_cond(skb->tstamp, tss.ts + 0))
822 empty = 0;
823 if (shhwtstamps &&
824 (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) &&
825 !skb_is_swtx_tstamp(skb, false_tstamp) &&
826 ktime_to_timespec64_cond(shhwtstamps->hwtstamp, tss.ts + 2)) {
827 empty = 0;
828 if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_PKTINFO) &&
829 !skb_is_err_queue(skb))
830 put_ts_pktinfo(msg, skb);
831 }
832 if (!empty) {
833 if (sock_flag(sk, SOCK_TSTAMP_NEW))
834 put_cmsg_scm_timestamping64(msg, &tss);
835 else
836 put_cmsg_scm_timestamping(msg, &tss);
837
838 if (skb_is_err_queue(skb) && skb->len &&
839 SKB_EXT_ERR(skb)->opt_stats)
840 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_OPT_STATS,
841 skb->len, skb->data);
842 }
843 }
844 EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
845
__sock_recv_wifi_status(struct msghdr * msg,struct sock * sk,struct sk_buff * skb)846 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
847 struct sk_buff *skb)
848 {
849 int ack;
850
851 if (!sock_flag(sk, SOCK_WIFI_STATUS))
852 return;
853 if (!skb->wifi_acked_valid)
854 return;
855
856 ack = skb->wifi_acked;
857
858 put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
859 }
860 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
861
sock_recv_drops(struct msghdr * msg,struct sock * sk,struct sk_buff * skb)862 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
863 struct sk_buff *skb)
864 {
865 if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount)
866 put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
867 sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount);
868 }
869
__sock_recv_ts_and_drops(struct msghdr * msg,struct sock * sk,struct sk_buff * skb)870 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
871 struct sk_buff *skb)
872 {
873 sock_recv_timestamp(msg, sk, skb);
874 sock_recv_drops(msg, sk, skb);
875 }
876 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops);
877
878 INDIRECT_CALLABLE_DECLARE(int inet_recvmsg(struct socket *, struct msghdr *,
879 size_t, int));
880 INDIRECT_CALLABLE_DECLARE(int inet6_recvmsg(struct socket *, struct msghdr *,
881 size_t, int));
sock_recvmsg_nosec(struct socket * sock,struct msghdr * msg,int flags)882 static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
883 int flags)
884 {
885 return INDIRECT_CALL_INET(sock->ops->recvmsg, inet6_recvmsg,
886 inet_recvmsg, sock, msg, msg_data_left(msg),
887 flags);
888 }
889
890 /**
891 * sock_recvmsg - receive a message from @sock
892 * @sock: socket
893 * @msg: message to receive
894 * @flags: message flags
895 *
896 * Receives @msg from @sock, passing through LSM. Returns the total number
897 * of bytes received, or an error.
898 */
sock_recvmsg(struct socket * sock,struct msghdr * msg,int flags)899 int sock_recvmsg(struct socket *sock, struct msghdr *msg, int flags)
900 {
901 int err = security_socket_recvmsg(sock, msg, msg_data_left(msg), flags);
902
903 return err ?: sock_recvmsg_nosec(sock, msg, flags);
904 }
905 EXPORT_SYMBOL(sock_recvmsg);
906
907 /**
908 * kernel_recvmsg - Receive a message from a socket (kernel space)
909 * @sock: The socket to receive the message from
910 * @msg: Received message
911 * @vec: Input s/g array for message data
912 * @num: Size of input s/g array
913 * @size: Number of bytes to read
914 * @flags: Message flags (MSG_DONTWAIT, etc...)
915 *
916 * On return the msg structure contains the scatter/gather array passed in the
917 * vec argument. The array is modified so that it consists of the unfilled
918 * portion of the original array.
919 *
920 * The returned value is the total number of bytes received, or an error.
921 */
922
kernel_recvmsg(struct socket * sock,struct msghdr * msg,struct kvec * vec,size_t num,size_t size,int flags)923 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
924 struct kvec *vec, size_t num, size_t size, int flags)
925 {
926 msg->msg_control_is_user = false;
927 iov_iter_kvec(&msg->msg_iter, READ, vec, num, size);
928 return sock_recvmsg(sock, msg, flags);
929 }
930 EXPORT_SYMBOL(kernel_recvmsg);
931
sock_sendpage(struct file * file,struct page * page,int offset,size_t size,loff_t * ppos,int more)932 static ssize_t sock_sendpage(struct file *file, struct page *page,
933 int offset, size_t size, loff_t *ppos, int more)
934 {
935 struct socket *sock;
936 int flags;
937
938 sock = file->private_data;
939
940 flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
941 /* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */
942 flags |= more;
943
944 return kernel_sendpage(sock, page, offset, size, flags);
945 }
946
sock_splice_read(struct file * file,loff_t * ppos,struct pipe_inode_info * pipe,size_t len,unsigned int flags)947 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
948 struct pipe_inode_info *pipe, size_t len,
949 unsigned int flags)
950 {
951 struct socket *sock = file->private_data;
952
953 if (unlikely(!sock->ops->splice_read))
954 return generic_file_splice_read(file, ppos, pipe, len, flags);
955
956 return sock->ops->splice_read(sock, ppos, pipe, len, flags);
957 }
958
sock_read_iter(struct kiocb * iocb,struct iov_iter * to)959 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to)
960 {
961 struct file *file = iocb->ki_filp;
962 struct socket *sock = file->private_data;
963 struct msghdr msg = {.msg_iter = *to,
964 .msg_iocb = iocb};
965 ssize_t res;
966
967 if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT))
968 msg.msg_flags = MSG_DONTWAIT;
969
970 if (iocb->ki_pos != 0)
971 return -ESPIPE;
972
973 if (!iov_iter_count(to)) /* Match SYS5 behaviour */
974 return 0;
975
976 res = sock_recvmsg(sock, &msg, msg.msg_flags);
977 *to = msg.msg_iter;
978 return res;
979 }
980
sock_write_iter(struct kiocb * iocb,struct iov_iter * from)981 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from)
982 {
983 struct file *file = iocb->ki_filp;
984 struct socket *sock = file->private_data;
985 struct msghdr msg = {.msg_iter = *from,
986 .msg_iocb = iocb};
987 ssize_t res;
988
989 if (iocb->ki_pos != 0)
990 return -ESPIPE;
991
992 if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT))
993 msg.msg_flags = MSG_DONTWAIT;
994
995 if (sock->type == SOCK_SEQPACKET)
996 msg.msg_flags |= MSG_EOR;
997
998 res = sock_sendmsg(sock, &msg);
999 *from = msg.msg_iter;
1000 return res;
1001 }
1002
1003 /*
1004 * Atomic setting of ioctl hooks to avoid race
1005 * with module unload.
1006 */
1007
1008 static DEFINE_MUTEX(br_ioctl_mutex);
1009 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg);
1010
brioctl_set(int (* hook)(struct net *,unsigned int,void __user *))1011 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))
1012 {
1013 mutex_lock(&br_ioctl_mutex);
1014 br_ioctl_hook = hook;
1015 mutex_unlock(&br_ioctl_mutex);
1016 }
1017 EXPORT_SYMBOL(brioctl_set);
1018
1019 static DEFINE_MUTEX(vlan_ioctl_mutex);
1020 static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
1021
vlan_ioctl_set(int (* hook)(struct net *,void __user *))1022 void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
1023 {
1024 mutex_lock(&vlan_ioctl_mutex);
1025 vlan_ioctl_hook = hook;
1026 mutex_unlock(&vlan_ioctl_mutex);
1027 }
1028 EXPORT_SYMBOL(vlan_ioctl_set);
1029
1030 static DEFINE_MUTEX(dlci_ioctl_mutex);
1031 static int (*dlci_ioctl_hook) (unsigned int, void __user *);
1032
dlci_ioctl_set(int (* hook)(unsigned int,void __user *))1033 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *))
1034 {
1035 mutex_lock(&dlci_ioctl_mutex);
1036 dlci_ioctl_hook = hook;
1037 mutex_unlock(&dlci_ioctl_mutex);
1038 }
1039 EXPORT_SYMBOL(dlci_ioctl_set);
1040
sock_do_ioctl(struct net * net,struct socket * sock,unsigned int cmd,unsigned long arg)1041 static long sock_do_ioctl(struct net *net, struct socket *sock,
1042 unsigned int cmd, unsigned long arg)
1043 {
1044 int err;
1045 void __user *argp = (void __user *)arg;
1046
1047 err = sock->ops->ioctl(sock, cmd, arg);
1048
1049 /*
1050 * If this ioctl is unknown try to hand it down
1051 * to the NIC driver.
1052 */
1053 if (err != -ENOIOCTLCMD)
1054 return err;
1055
1056 if (cmd == SIOCGIFCONF) {
1057 struct ifconf ifc;
1058 if (copy_from_user(&ifc, argp, sizeof(struct ifconf)))
1059 return -EFAULT;
1060 rtnl_lock();
1061 err = dev_ifconf(net, &ifc, sizeof(struct ifreq));
1062 rtnl_unlock();
1063 if (!err && copy_to_user(argp, &ifc, sizeof(struct ifconf)))
1064 err = -EFAULT;
1065 } else if (is_socket_ioctl_cmd(cmd)) {
1066 struct ifreq ifr;
1067 bool need_copyout;
1068 if (copy_from_user(&ifr, argp, sizeof(struct ifreq)))
1069 return -EFAULT;
1070 err = dev_ioctl(net, cmd, &ifr, &need_copyout);
1071 if (!err && need_copyout)
1072 if (copy_to_user(argp, &ifr, sizeof(struct ifreq)))
1073 return -EFAULT;
1074 } else {
1075 err = -ENOTTY;
1076 }
1077 return err;
1078 }
1079
1080 /*
1081 * With an ioctl, arg may well be a user mode pointer, but we don't know
1082 * what to do with it - that's up to the protocol still.
1083 */
1084
sock_ioctl(struct file * file,unsigned cmd,unsigned long arg)1085 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
1086 {
1087 struct socket *sock;
1088 struct sock *sk;
1089 void __user *argp = (void __user *)arg;
1090 int pid, err;
1091 struct net *net;
1092
1093 sock = file->private_data;
1094 sk = sock->sk;
1095 net = sock_net(sk);
1096 if (unlikely(cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))) {
1097 struct ifreq ifr;
1098 bool need_copyout;
1099 if (copy_from_user(&ifr, argp, sizeof(struct ifreq)))
1100 return -EFAULT;
1101 err = dev_ioctl(net, cmd, &ifr, &need_copyout);
1102 if (!err && need_copyout)
1103 if (copy_to_user(argp, &ifr, sizeof(struct ifreq)))
1104 return -EFAULT;
1105 } else
1106 #ifdef CONFIG_WEXT_CORE
1107 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
1108 err = wext_handle_ioctl(net, cmd, argp);
1109 } else
1110 #endif
1111 switch (cmd) {
1112 case FIOSETOWN:
1113 case SIOCSPGRP:
1114 err = -EFAULT;
1115 if (get_user(pid, (int __user *)argp))
1116 break;
1117 err = f_setown(sock->file, pid, 1);
1118 break;
1119 case FIOGETOWN:
1120 case SIOCGPGRP:
1121 err = put_user(f_getown(sock->file),
1122 (int __user *)argp);
1123 break;
1124 case SIOCGIFBR:
1125 case SIOCSIFBR:
1126 case SIOCBRADDBR:
1127 case SIOCBRDELBR:
1128 err = -ENOPKG;
1129 if (!br_ioctl_hook)
1130 request_module("bridge");
1131
1132 mutex_lock(&br_ioctl_mutex);
1133 if (br_ioctl_hook)
1134 err = br_ioctl_hook(net, cmd, argp);
1135 mutex_unlock(&br_ioctl_mutex);
1136 break;
1137 case SIOCGIFVLAN:
1138 case SIOCSIFVLAN:
1139 err = -ENOPKG;
1140 if (!vlan_ioctl_hook)
1141 request_module("8021q");
1142
1143 mutex_lock(&vlan_ioctl_mutex);
1144 if (vlan_ioctl_hook)
1145 err = vlan_ioctl_hook(net, argp);
1146 mutex_unlock(&vlan_ioctl_mutex);
1147 break;
1148 case SIOCADDDLCI:
1149 case SIOCDELDLCI:
1150 err = -ENOPKG;
1151 if (!dlci_ioctl_hook)
1152 request_module("dlci");
1153
1154 mutex_lock(&dlci_ioctl_mutex);
1155 if (dlci_ioctl_hook)
1156 err = dlci_ioctl_hook(cmd, argp);
1157 mutex_unlock(&dlci_ioctl_mutex);
1158 break;
1159 case SIOCGSKNS:
1160 err = -EPERM;
1161 if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
1162 break;
1163
1164 err = open_related_ns(&net->ns, get_net_ns);
1165 break;
1166 case SIOCGSTAMP_OLD:
1167 case SIOCGSTAMPNS_OLD:
1168 if (!sock->ops->gettstamp) {
1169 err = -ENOIOCTLCMD;
1170 break;
1171 }
1172 err = sock->ops->gettstamp(sock, argp,
1173 cmd == SIOCGSTAMP_OLD,
1174 !IS_ENABLED(CONFIG_64BIT));
1175 break;
1176 case SIOCGSTAMP_NEW:
1177 case SIOCGSTAMPNS_NEW:
1178 if (!sock->ops->gettstamp) {
1179 err = -ENOIOCTLCMD;
1180 break;
1181 }
1182 err = sock->ops->gettstamp(sock, argp,
1183 cmd == SIOCGSTAMP_NEW,
1184 false);
1185 break;
1186 default:
1187 err = sock_do_ioctl(net, sock, cmd, arg);
1188 break;
1189 }
1190 return err;
1191 }
1192
1193 /**
1194 * sock_create_lite - creates a socket
1195 * @family: protocol family (AF_INET, ...)
1196 * @type: communication type (SOCK_STREAM, ...)
1197 * @protocol: protocol (0, ...)
1198 * @res: new socket
1199 *
1200 * Creates a new socket and assigns it to @res, passing through LSM.
1201 * The new socket initialization is not complete, see kernel_accept().
1202 * Returns 0 or an error. On failure @res is set to %NULL.
1203 * This function internally uses GFP_KERNEL.
1204 */
1205
sock_create_lite(int family,int type,int protocol,struct socket ** res)1206 int sock_create_lite(int family, int type, int protocol, struct socket **res)
1207 {
1208 int err;
1209 struct socket *sock = NULL;
1210
1211 err = security_socket_create(family, type, protocol, 1);
1212 if (err)
1213 goto out;
1214
1215 sock = sock_alloc();
1216 if (!sock) {
1217 err = -ENOMEM;
1218 goto out;
1219 }
1220
1221 sock->type = type;
1222 err = security_socket_post_create(sock, family, type, protocol, 1);
1223 if (err)
1224 goto out_release;
1225
1226 out:
1227 *res = sock;
1228 return err;
1229 out_release:
1230 sock_release(sock);
1231 sock = NULL;
1232 goto out;
1233 }
1234 EXPORT_SYMBOL(sock_create_lite);
1235
1236 /* No kernel lock held - perfect */
sock_poll(struct file * file,poll_table * wait)1237 static __poll_t sock_poll(struct file *file, poll_table *wait)
1238 {
1239 struct socket *sock = file->private_data;
1240 __poll_t events = poll_requested_events(wait), flag = 0;
1241
1242 if (!sock->ops->poll)
1243 return 0;
1244
1245 if (sk_can_busy_loop(sock->sk)) {
1246 /* poll once if requested by the syscall */
1247 if (events & POLL_BUSY_LOOP)
1248 sk_busy_loop(sock->sk, 1);
1249
1250 /* if this socket can poll_ll, tell the system call */
1251 flag = POLL_BUSY_LOOP;
1252 }
1253
1254 return sock->ops->poll(file, sock, wait) | flag;
1255 }
1256
sock_mmap(struct file * file,struct vm_area_struct * vma)1257 static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1258 {
1259 struct socket *sock = file->private_data;
1260
1261 return sock->ops->mmap(file, sock, vma);
1262 }
1263
sock_close(struct inode * inode,struct file * filp)1264 static int sock_close(struct inode *inode, struct file *filp)
1265 {
1266 __sock_release(SOCKET_I(inode), inode);
1267 return 0;
1268 }
1269
1270 /*
1271 * Update the socket async list
1272 *
1273 * Fasync_list locking strategy.
1274 *
1275 * 1. fasync_list is modified only under process context socket lock
1276 * i.e. under semaphore.
1277 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1278 * or under socket lock
1279 */
1280
sock_fasync(int fd,struct file * filp,int on)1281 static int sock_fasync(int fd, struct file *filp, int on)
1282 {
1283 struct socket *sock = filp->private_data;
1284 struct sock *sk = sock->sk;
1285 struct socket_wq *wq = &sock->wq;
1286
1287 if (sk == NULL)
1288 return -EINVAL;
1289
1290 lock_sock(sk);
1291 fasync_helper(fd, filp, on, &wq->fasync_list);
1292
1293 if (!wq->fasync_list)
1294 sock_reset_flag(sk, SOCK_FASYNC);
1295 else
1296 sock_set_flag(sk, SOCK_FASYNC);
1297
1298 release_sock(sk);
1299 return 0;
1300 }
1301
1302 /* This function may be called only under rcu_lock */
1303
sock_wake_async(struct socket_wq * wq,int how,int band)1304 int sock_wake_async(struct socket_wq *wq, int how, int band)
1305 {
1306 if (!wq || !wq->fasync_list)
1307 return -1;
1308
1309 switch (how) {
1310 case SOCK_WAKE_WAITD:
1311 if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags))
1312 break;
1313 goto call_kill;
1314 case SOCK_WAKE_SPACE:
1315 if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags))
1316 break;
1317 fallthrough;
1318 case SOCK_WAKE_IO:
1319 call_kill:
1320 kill_fasync(&wq->fasync_list, SIGIO, band);
1321 break;
1322 case SOCK_WAKE_URG:
1323 kill_fasync(&wq->fasync_list, SIGURG, band);
1324 }
1325
1326 return 0;
1327 }
1328 EXPORT_SYMBOL(sock_wake_async);
1329
1330 /**
1331 * __sock_create - creates a socket
1332 * @net: net namespace
1333 * @family: protocol family (AF_INET, ...)
1334 * @type: communication type (SOCK_STREAM, ...)
1335 * @protocol: protocol (0, ...)
1336 * @res: new socket
1337 * @kern: boolean for kernel space sockets
1338 *
1339 * Creates a new socket and assigns it to @res, passing through LSM.
1340 * Returns 0 or an error. On failure @res is set to %NULL. @kern must
1341 * be set to true if the socket resides in kernel space.
1342 * This function internally uses GFP_KERNEL.
1343 */
1344
__sock_create(struct net * net,int family,int type,int protocol,struct socket ** res,int kern)1345 int __sock_create(struct net *net, int family, int type, int protocol,
1346 struct socket **res, int kern)
1347 {
1348 int err;
1349 struct socket *sock;
1350 const struct net_proto_family *pf;
1351
1352 /*
1353 * Check protocol is in range
1354 */
1355 if (family < 0 || family >= NPROTO)
1356 return -EAFNOSUPPORT;
1357 if (type < 0 || type >= SOCK_MAX)
1358 return -EINVAL;
1359
1360 /* Compatibility.
1361
1362 This uglymoron is moved from INET layer to here to avoid
1363 deadlock in module load.
1364 */
1365 if (family == PF_INET && type == SOCK_PACKET) {
1366 pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1367 current->comm);
1368 family = PF_PACKET;
1369 }
1370
1371 err = security_socket_create(family, type, protocol, kern);
1372 if (err)
1373 return err;
1374
1375 /*
1376 * Allocate the socket and allow the family to set things up. if
1377 * the protocol is 0, the family is instructed to select an appropriate
1378 * default.
1379 */
1380 sock = sock_alloc();
1381 if (!sock) {
1382 net_warn_ratelimited("socket: no more sockets\n");
1383 return -ENFILE; /* Not exactly a match, but its the
1384 closest posix thing */
1385 }
1386
1387 sock->type = type;
1388
1389 #ifdef CONFIG_MODULES
1390 /* Attempt to load a protocol module if the find failed.
1391 *
1392 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1393 * requested real, full-featured networking support upon configuration.
1394 * Otherwise module support will break!
1395 */
1396 if (rcu_access_pointer(net_families[family]) == NULL)
1397 request_module("net-pf-%d", family);
1398 #endif
1399
1400 rcu_read_lock();
1401 pf = rcu_dereference(net_families[family]);
1402 err = -EAFNOSUPPORT;
1403 if (!pf)
1404 goto out_release;
1405
1406 /*
1407 * We will call the ->create function, that possibly is in a loadable
1408 * module, so we have to bump that loadable module refcnt first.
1409 */
1410 if (!try_module_get(pf->owner))
1411 goto out_release;
1412
1413 /* Now protected by module ref count */
1414 rcu_read_unlock();
1415
1416 err = pf->create(net, sock, protocol, kern);
1417 if (err < 0)
1418 goto out_module_put;
1419
1420 /*
1421 * Now to bump the refcnt of the [loadable] module that owns this
1422 * socket at sock_release time we decrement its refcnt.
1423 */
1424 if (!try_module_get(sock->ops->owner))
1425 goto out_module_busy;
1426
1427 /*
1428 * Now that we're done with the ->create function, the [loadable]
1429 * module can have its refcnt decremented
1430 */
1431 module_put(pf->owner);
1432 err = security_socket_post_create(sock, family, type, protocol, kern);
1433 if (err)
1434 goto out_sock_release;
1435 *res = sock;
1436
1437 return 0;
1438
1439 out_module_busy:
1440 err = -EAFNOSUPPORT;
1441 out_module_put:
1442 sock->ops = NULL;
1443 module_put(pf->owner);
1444 out_sock_release:
1445 sock_release(sock);
1446 return err;
1447
1448 out_release:
1449 rcu_read_unlock();
1450 goto out_sock_release;
1451 }
1452 EXPORT_SYMBOL(__sock_create);
1453
1454 /**
1455 * sock_create - creates a socket
1456 * @family: protocol family (AF_INET, ...)
1457 * @type: communication type (SOCK_STREAM, ...)
1458 * @protocol: protocol (0, ...)
1459 * @res: new socket
1460 *
1461 * A wrapper around __sock_create().
1462 * Returns 0 or an error. This function internally uses GFP_KERNEL.
1463 */
1464
sock_create(int family,int type,int protocol,struct socket ** res)1465 int sock_create(int family, int type, int protocol, struct socket **res)
1466 {
1467 return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1468 }
1469 EXPORT_SYMBOL(sock_create);
1470
1471 /**
1472 * sock_create_kern - creates a socket (kernel space)
1473 * @net: net namespace
1474 * @family: protocol family (AF_INET, ...)
1475 * @type: communication type (SOCK_STREAM, ...)
1476 * @protocol: protocol (0, ...)
1477 * @res: new socket
1478 *
1479 * A wrapper around __sock_create().
1480 * Returns 0 or an error. This function internally uses GFP_KERNEL.
1481 */
1482
sock_create_kern(struct net * net,int family,int type,int protocol,struct socket ** res)1483 int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res)
1484 {
1485 return __sock_create(net, family, type, protocol, res, 1);
1486 }
1487 EXPORT_SYMBOL(sock_create_kern);
1488
__sys_socket(int family,int type,int protocol)1489 int __sys_socket(int family, int type, int protocol)
1490 {
1491 int retval;
1492 struct socket *sock;
1493 int flags;
1494
1495 /* Check the SOCK_* constants for consistency. */
1496 BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1497 BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1498 BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1499 BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1500
1501 flags = type & ~SOCK_TYPE_MASK;
1502 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1503 return -EINVAL;
1504 type &= SOCK_TYPE_MASK;
1505
1506 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1507 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1508
1509 retval = sock_create(family, type, protocol, &sock);
1510 if (retval < 0)
1511 return retval;
1512
1513 return sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1514 }
1515
SYSCALL_DEFINE3(socket,int,family,int,type,int,protocol)1516 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1517 {
1518 return __sys_socket(family, type, protocol);
1519 }
1520
1521 /*
1522 * Create a pair of connected sockets.
1523 */
1524
__sys_socketpair(int family,int type,int protocol,int __user * usockvec)1525 int __sys_socketpair(int family, int type, int protocol, int __user *usockvec)
1526 {
1527 struct socket *sock1, *sock2;
1528 int fd1, fd2, err;
1529 struct file *newfile1, *newfile2;
1530 int flags;
1531
1532 flags = type & ~SOCK_TYPE_MASK;
1533 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1534 return -EINVAL;
1535 type &= SOCK_TYPE_MASK;
1536
1537 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1538 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1539
1540 /*
1541 * reserve descriptors and make sure we won't fail
1542 * to return them to userland.
1543 */
1544 fd1 = get_unused_fd_flags(flags);
1545 if (unlikely(fd1 < 0))
1546 return fd1;
1547
1548 fd2 = get_unused_fd_flags(flags);
1549 if (unlikely(fd2 < 0)) {
1550 put_unused_fd(fd1);
1551 return fd2;
1552 }
1553
1554 err = put_user(fd1, &usockvec[0]);
1555 if (err)
1556 goto out;
1557
1558 err = put_user(fd2, &usockvec[1]);
1559 if (err)
1560 goto out;
1561
1562 /*
1563 * Obtain the first socket and check if the underlying protocol
1564 * supports the socketpair call.
1565 */
1566
1567 err = sock_create(family, type, protocol, &sock1);
1568 if (unlikely(err < 0))
1569 goto out;
1570
1571 err = sock_create(family, type, protocol, &sock2);
1572 if (unlikely(err < 0)) {
1573 sock_release(sock1);
1574 goto out;
1575 }
1576
1577 err = security_socket_socketpair(sock1, sock2);
1578 if (unlikely(err)) {
1579 sock_release(sock2);
1580 sock_release(sock1);
1581 goto out;
1582 }
1583
1584 err = sock1->ops->socketpair(sock1, sock2);
1585 if (unlikely(err < 0)) {
1586 sock_release(sock2);
1587 sock_release(sock1);
1588 goto out;
1589 }
1590
1591 newfile1 = sock_alloc_file(sock1, flags, NULL);
1592 if (IS_ERR(newfile1)) {
1593 err = PTR_ERR(newfile1);
1594 sock_release(sock2);
1595 goto out;
1596 }
1597
1598 newfile2 = sock_alloc_file(sock2, flags, NULL);
1599 if (IS_ERR(newfile2)) {
1600 err = PTR_ERR(newfile2);
1601 fput(newfile1);
1602 goto out;
1603 }
1604
1605 audit_fd_pair(fd1, fd2);
1606
1607 fd_install(fd1, newfile1);
1608 fd_install(fd2, newfile2);
1609 return 0;
1610
1611 out:
1612 put_unused_fd(fd2);
1613 put_unused_fd(fd1);
1614 return err;
1615 }
1616
SYSCALL_DEFINE4(socketpair,int,family,int,type,int,protocol,int __user *,usockvec)1617 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1618 int __user *, usockvec)
1619 {
1620 return __sys_socketpair(family, type, protocol, usockvec);
1621 }
1622
1623 /*
1624 * Bind a name to a socket. Nothing much to do here since it's
1625 * the protocol's responsibility to handle the local address.
1626 *
1627 * We move the socket address to kernel space before we call
1628 * the protocol layer (having also checked the address is ok).
1629 */
1630
__sys_bind(int fd,struct sockaddr __user * umyaddr,int addrlen)1631 int __sys_bind(int fd, struct sockaddr __user *umyaddr, int addrlen)
1632 {
1633 struct socket *sock;
1634 struct sockaddr_storage address;
1635 int err, fput_needed;
1636
1637 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1638 if (sock) {
1639 err = move_addr_to_kernel(umyaddr, addrlen, &address);
1640 if (!err) {
1641 err = security_socket_bind(sock,
1642 (struct sockaddr *)&address,
1643 addrlen);
1644 if (!err)
1645 err = sock->ops->bind(sock,
1646 (struct sockaddr *)
1647 &address, addrlen);
1648 }
1649 fput_light(sock->file, fput_needed);
1650 }
1651 return err;
1652 }
1653
SYSCALL_DEFINE3(bind,int,fd,struct sockaddr __user *,umyaddr,int,addrlen)1654 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1655 {
1656 return __sys_bind(fd, umyaddr, addrlen);
1657 }
1658
1659 /*
1660 * Perform a listen. Basically, we allow the protocol to do anything
1661 * necessary for a listen, and if that works, we mark the socket as
1662 * ready for listening.
1663 */
1664
__sys_listen(int fd,int backlog)1665 int __sys_listen(int fd, int backlog)
1666 {
1667 struct socket *sock;
1668 int err, fput_needed;
1669 int somaxconn;
1670
1671 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1672 if (sock) {
1673 somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn;
1674 if ((unsigned int)backlog > somaxconn)
1675 backlog = somaxconn;
1676
1677 err = security_socket_listen(sock, backlog);
1678 if (!err)
1679 err = sock->ops->listen(sock, backlog);
1680
1681 fput_light(sock->file, fput_needed);
1682 }
1683 return err;
1684 }
1685
SYSCALL_DEFINE2(listen,int,fd,int,backlog)1686 SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1687 {
1688 return __sys_listen(fd, backlog);
1689 }
1690
__sys_accept4_file(struct file * file,unsigned file_flags,struct sockaddr __user * upeer_sockaddr,int __user * upeer_addrlen,int flags,unsigned long nofile)1691 int __sys_accept4_file(struct file *file, unsigned file_flags,
1692 struct sockaddr __user *upeer_sockaddr,
1693 int __user *upeer_addrlen, int flags,
1694 unsigned long nofile)
1695 {
1696 struct socket *sock, *newsock;
1697 struct file *newfile;
1698 int err, len, newfd;
1699 struct sockaddr_storage address;
1700
1701 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1702 return -EINVAL;
1703
1704 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1705 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1706
1707 sock = sock_from_file(file, &err);
1708 if (!sock)
1709 goto out;
1710
1711 err = -ENFILE;
1712 newsock = sock_alloc();
1713 if (!newsock)
1714 goto out;
1715
1716 newsock->type = sock->type;
1717 newsock->ops = sock->ops;
1718
1719 /*
1720 * We don't need try_module_get here, as the listening socket (sock)
1721 * has the protocol module (sock->ops->owner) held.
1722 */
1723 __module_get(newsock->ops->owner);
1724
1725 newfd = __get_unused_fd_flags(flags, nofile);
1726 if (unlikely(newfd < 0)) {
1727 err = newfd;
1728 sock_release(newsock);
1729 goto out;
1730 }
1731 newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name);
1732 if (IS_ERR(newfile)) {
1733 err = PTR_ERR(newfile);
1734 put_unused_fd(newfd);
1735 goto out;
1736 }
1737
1738 err = security_socket_accept(sock, newsock);
1739 if (err)
1740 goto out_fd;
1741
1742 err = sock->ops->accept(sock, newsock, sock->file->f_flags | file_flags,
1743 false);
1744 if (err < 0)
1745 goto out_fd;
1746
1747 if (upeer_sockaddr) {
1748 len = newsock->ops->getname(newsock,
1749 (struct sockaddr *)&address, 2);
1750 if (len < 0) {
1751 err = -ECONNABORTED;
1752 goto out_fd;
1753 }
1754 err = move_addr_to_user(&address,
1755 len, upeer_sockaddr, upeer_addrlen);
1756 if (err < 0)
1757 goto out_fd;
1758 }
1759
1760 /* File flags are not inherited via accept() unlike another OSes. */
1761
1762 fd_install(newfd, newfile);
1763 err = newfd;
1764 out:
1765 return err;
1766 out_fd:
1767 fput(newfile);
1768 put_unused_fd(newfd);
1769 goto out;
1770
1771 }
1772
1773 /*
1774 * For accept, we attempt to create a new socket, set up the link
1775 * with the client, wake up the client, then return the new
1776 * connected fd. We collect the address of the connector in kernel
1777 * space and move it to user at the very end. This is unclean because
1778 * we open the socket then return an error.
1779 *
1780 * 1003.1g adds the ability to recvmsg() to query connection pending
1781 * status to recvmsg. We need to add that support in a way thats
1782 * clean when we restructure accept also.
1783 */
1784
__sys_accept4(int fd,struct sockaddr __user * upeer_sockaddr,int __user * upeer_addrlen,int flags)1785 int __sys_accept4(int fd, struct sockaddr __user *upeer_sockaddr,
1786 int __user *upeer_addrlen, int flags)
1787 {
1788 int ret = -EBADF;
1789 struct fd f;
1790
1791 f = fdget(fd);
1792 if (f.file) {
1793 ret = __sys_accept4_file(f.file, 0, upeer_sockaddr,
1794 upeer_addrlen, flags,
1795 rlimit(RLIMIT_NOFILE));
1796 fdput(f);
1797 }
1798
1799 return ret;
1800 }
1801
SYSCALL_DEFINE4(accept4,int,fd,struct sockaddr __user *,upeer_sockaddr,int __user *,upeer_addrlen,int,flags)1802 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1803 int __user *, upeer_addrlen, int, flags)
1804 {
1805 return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, flags);
1806 }
1807
SYSCALL_DEFINE3(accept,int,fd,struct sockaddr __user *,upeer_sockaddr,int __user *,upeer_addrlen)1808 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1809 int __user *, upeer_addrlen)
1810 {
1811 return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1812 }
1813
1814 /*
1815 * Attempt to connect to a socket with the server address. The address
1816 * is in user space so we verify it is OK and move it to kernel space.
1817 *
1818 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1819 * break bindings
1820 *
1821 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1822 * other SEQPACKET protocols that take time to connect() as it doesn't
1823 * include the -EINPROGRESS status for such sockets.
1824 */
1825
__sys_connect_file(struct file * file,struct sockaddr_storage * address,int addrlen,int file_flags)1826 int __sys_connect_file(struct file *file, struct sockaddr_storage *address,
1827 int addrlen, int file_flags)
1828 {
1829 struct socket *sock;
1830 int err;
1831
1832 sock = sock_from_file(file, &err);
1833 if (!sock)
1834 goto out;
1835
1836 err =
1837 security_socket_connect(sock, (struct sockaddr *)address, addrlen);
1838 if (err)
1839 goto out;
1840
1841 err = sock->ops->connect(sock, (struct sockaddr *)address, addrlen,
1842 sock->file->f_flags | file_flags);
1843 out:
1844 return err;
1845 }
1846
__sys_connect(int fd,struct sockaddr __user * uservaddr,int addrlen)1847 int __sys_connect(int fd, struct sockaddr __user *uservaddr, int addrlen)
1848 {
1849 int ret = -EBADF;
1850 struct fd f;
1851
1852 f = fdget(fd);
1853 if (f.file) {
1854 struct sockaddr_storage address;
1855
1856 ret = move_addr_to_kernel(uservaddr, addrlen, &address);
1857 if (!ret)
1858 ret = __sys_connect_file(f.file, &address, addrlen, 0);
1859 fdput(f);
1860 }
1861
1862 return ret;
1863 }
1864
SYSCALL_DEFINE3(connect,int,fd,struct sockaddr __user *,uservaddr,int,addrlen)1865 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
1866 int, addrlen)
1867 {
1868 return __sys_connect(fd, uservaddr, addrlen);
1869 }
1870
1871 /*
1872 * Get the local address ('name') of a socket object. Move the obtained
1873 * name to user space.
1874 */
1875
__sys_getsockname(int fd,struct sockaddr __user * usockaddr,int __user * usockaddr_len)1876 int __sys_getsockname(int fd, struct sockaddr __user *usockaddr,
1877 int __user *usockaddr_len)
1878 {
1879 struct socket *sock;
1880 struct sockaddr_storage address;
1881 int err, fput_needed;
1882
1883 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1884 if (!sock)
1885 goto out;
1886
1887 err = security_socket_getsockname(sock);
1888 if (err)
1889 goto out_put;
1890
1891 err = sock->ops->getname(sock, (struct sockaddr *)&address, 0);
1892 if (err < 0)
1893 goto out_put;
1894 /* "err" is actually length in this case */
1895 err = move_addr_to_user(&address, err, usockaddr, usockaddr_len);
1896
1897 out_put:
1898 fput_light(sock->file, fput_needed);
1899 out:
1900 return err;
1901 }
1902
SYSCALL_DEFINE3(getsockname,int,fd,struct sockaddr __user *,usockaddr,int __user *,usockaddr_len)1903 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
1904 int __user *, usockaddr_len)
1905 {
1906 return __sys_getsockname(fd, usockaddr, usockaddr_len);
1907 }
1908
1909 /*
1910 * Get the remote address ('name') of a socket object. Move the obtained
1911 * name to user space.
1912 */
1913
__sys_getpeername(int fd,struct sockaddr __user * usockaddr,int __user * usockaddr_len)1914 int __sys_getpeername(int fd, struct sockaddr __user *usockaddr,
1915 int __user *usockaddr_len)
1916 {
1917 struct socket *sock;
1918 struct sockaddr_storage address;
1919 int err, fput_needed;
1920
1921 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1922 if (sock != NULL) {
1923 err = security_socket_getpeername(sock);
1924 if (err) {
1925 fput_light(sock->file, fput_needed);
1926 return err;
1927 }
1928
1929 err = sock->ops->getname(sock, (struct sockaddr *)&address, 1);
1930 if (err >= 0)
1931 /* "err" is actually length in this case */
1932 err = move_addr_to_user(&address, err, usockaddr,
1933 usockaddr_len);
1934 fput_light(sock->file, fput_needed);
1935 }
1936 return err;
1937 }
1938
SYSCALL_DEFINE3(getpeername,int,fd,struct sockaddr __user *,usockaddr,int __user *,usockaddr_len)1939 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
1940 int __user *, usockaddr_len)
1941 {
1942 return __sys_getpeername(fd, usockaddr, usockaddr_len);
1943 }
1944
1945 /*
1946 * Send a datagram to a given address. We move the address into kernel
1947 * space and check the user space data area is readable before invoking
1948 * the protocol.
1949 */
__sys_sendto(int fd,void __user * buff,size_t len,unsigned int flags,struct sockaddr __user * addr,int addr_len)1950 int __sys_sendto(int fd, void __user *buff, size_t len, unsigned int flags,
1951 struct sockaddr __user *addr, int addr_len)
1952 {
1953 struct socket *sock;
1954 struct sockaddr_storage address;
1955 int err;
1956 struct msghdr msg;
1957 struct iovec iov;
1958 int fput_needed;
1959
1960 err = import_single_range(WRITE, buff, len, &iov, &msg.msg_iter);
1961 if (unlikely(err))
1962 return err;
1963 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1964 if (!sock)
1965 goto out;
1966
1967 msg.msg_name = NULL;
1968 msg.msg_control = NULL;
1969 msg.msg_controllen = 0;
1970 msg.msg_namelen = 0;
1971 if (addr) {
1972 err = move_addr_to_kernel(addr, addr_len, &address);
1973 if (err < 0)
1974 goto out_put;
1975 msg.msg_name = (struct sockaddr *)&address;
1976 msg.msg_namelen = addr_len;
1977 }
1978 if (sock->file->f_flags & O_NONBLOCK)
1979 flags |= MSG_DONTWAIT;
1980 msg.msg_flags = flags;
1981 err = sock_sendmsg(sock, &msg);
1982
1983 out_put:
1984 fput_light(sock->file, fput_needed);
1985 out:
1986 return err;
1987 }
1988
SYSCALL_DEFINE6(sendto,int,fd,void __user *,buff,size_t,len,unsigned int,flags,struct sockaddr __user *,addr,int,addr_len)1989 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
1990 unsigned int, flags, struct sockaddr __user *, addr,
1991 int, addr_len)
1992 {
1993 return __sys_sendto(fd, buff, len, flags, addr, addr_len);
1994 }
1995
1996 /*
1997 * Send a datagram down a socket.
1998 */
1999
SYSCALL_DEFINE4(send,int,fd,void __user *,buff,size_t,len,unsigned int,flags)2000 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
2001 unsigned int, flags)
2002 {
2003 return __sys_sendto(fd, buff, len, flags, NULL, 0);
2004 }
2005
2006 /*
2007 * Receive a frame from the socket and optionally record the address of the
2008 * sender. We verify the buffers are writable and if needed move the
2009 * sender address from kernel to user space.
2010 */
__sys_recvfrom(int fd,void __user * ubuf,size_t size,unsigned int flags,struct sockaddr __user * addr,int __user * addr_len)2011 int __sys_recvfrom(int fd, void __user *ubuf, size_t size, unsigned int flags,
2012 struct sockaddr __user *addr, int __user *addr_len)
2013 {
2014 struct socket *sock;
2015 struct iovec iov;
2016 struct msghdr msg;
2017 struct sockaddr_storage address;
2018 int err, err2;
2019 int fput_needed;
2020
2021 err = import_single_range(READ, ubuf, size, &iov, &msg.msg_iter);
2022 if (unlikely(err))
2023 return err;
2024 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2025 if (!sock)
2026 goto out;
2027
2028 msg.msg_control = NULL;
2029 msg.msg_controllen = 0;
2030 /* Save some cycles and don't copy the address if not needed */
2031 msg.msg_name = addr ? (struct sockaddr *)&address : NULL;
2032 /* We assume all kernel code knows the size of sockaddr_storage */
2033 msg.msg_namelen = 0;
2034 msg.msg_iocb = NULL;
2035 msg.msg_flags = 0;
2036 if (sock->file->f_flags & O_NONBLOCK)
2037 flags |= MSG_DONTWAIT;
2038 err = sock_recvmsg(sock, &msg, flags);
2039
2040 if (err >= 0 && addr != NULL) {
2041 err2 = move_addr_to_user(&address,
2042 msg.msg_namelen, addr, addr_len);
2043 if (err2 < 0)
2044 err = err2;
2045 }
2046
2047 fput_light(sock->file, fput_needed);
2048 out:
2049 return err;
2050 }
2051
SYSCALL_DEFINE6(recvfrom,int,fd,void __user *,ubuf,size_t,size,unsigned int,flags,struct sockaddr __user *,addr,int __user *,addr_len)2052 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
2053 unsigned int, flags, struct sockaddr __user *, addr,
2054 int __user *, addr_len)
2055 {
2056 return __sys_recvfrom(fd, ubuf, size, flags, addr, addr_len);
2057 }
2058
2059 /*
2060 * Receive a datagram from a socket.
2061 */
2062
SYSCALL_DEFINE4(recv,int,fd,void __user *,ubuf,size_t,size,unsigned int,flags)2063 SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size,
2064 unsigned int, flags)
2065 {
2066 return __sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
2067 }
2068
sock_use_custom_sol_socket(const struct socket * sock)2069 static bool sock_use_custom_sol_socket(const struct socket *sock)
2070 {
2071 const struct sock *sk = sock->sk;
2072
2073 /* Use sock->ops->setsockopt() for MPTCP */
2074 return IS_ENABLED(CONFIG_MPTCP) &&
2075 sk->sk_protocol == IPPROTO_MPTCP &&
2076 sk->sk_type == SOCK_STREAM &&
2077 (sk->sk_family == AF_INET || sk->sk_family == AF_INET6);
2078 }
2079
2080 /*
2081 * Set a socket option. Because we don't know the option lengths we have
2082 * to pass the user mode parameter for the protocols to sort out.
2083 */
__sys_setsockopt(int fd,int level,int optname,char __user * user_optval,int optlen)2084 int __sys_setsockopt(int fd, int level, int optname, char __user *user_optval,
2085 int optlen)
2086 {
2087 sockptr_t optval = USER_SOCKPTR(user_optval);
2088 char *kernel_optval = NULL;
2089 int err, fput_needed;
2090 struct socket *sock;
2091
2092 if (optlen < 0)
2093 return -EINVAL;
2094
2095 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2096 if (!sock)
2097 return err;
2098
2099 err = security_socket_setsockopt(sock, level, optname);
2100 if (err)
2101 goto out_put;
2102
2103 if (!in_compat_syscall())
2104 err = BPF_CGROUP_RUN_PROG_SETSOCKOPT(sock->sk, &level, &optname,
2105 user_optval, &optlen,
2106 &kernel_optval);
2107 if (err < 0)
2108 goto out_put;
2109 if (err > 0) {
2110 err = 0;
2111 goto out_put;
2112 }
2113
2114 if (kernel_optval)
2115 optval = KERNEL_SOCKPTR(kernel_optval);
2116 if (level == SOL_SOCKET && !sock_use_custom_sol_socket(sock))
2117 err = sock_setsockopt(sock, level, optname, optval, optlen);
2118 else if (unlikely(!sock->ops->setsockopt))
2119 err = -EOPNOTSUPP;
2120 else
2121 err = sock->ops->setsockopt(sock, level, optname, optval,
2122 optlen);
2123 kfree(kernel_optval);
2124 out_put:
2125 fput_light(sock->file, fput_needed);
2126 return err;
2127 }
2128
SYSCALL_DEFINE5(setsockopt,int,fd,int,level,int,optname,char __user *,optval,int,optlen)2129 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
2130 char __user *, optval, int, optlen)
2131 {
2132 return __sys_setsockopt(fd, level, optname, optval, optlen);
2133 }
2134
2135 /*
2136 * Get a socket option. Because we don't know the option lengths we have
2137 * to pass a user mode parameter for the protocols to sort out.
2138 */
__sys_getsockopt(int fd,int level,int optname,char __user * optval,int __user * optlen)2139 int __sys_getsockopt(int fd, int level, int optname, char __user *optval,
2140 int __user *optlen)
2141 {
2142 int err, fput_needed;
2143 struct socket *sock;
2144 int max_optlen;
2145
2146 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2147 if (!sock)
2148 return err;
2149
2150 err = security_socket_getsockopt(sock, level, optname);
2151 if (err)
2152 goto out_put;
2153
2154 if (!in_compat_syscall())
2155 max_optlen = BPF_CGROUP_GETSOCKOPT_MAX_OPTLEN(optlen);
2156
2157 if (level == SOL_SOCKET)
2158 err = sock_getsockopt(sock, level, optname, optval, optlen);
2159 else if (unlikely(!sock->ops->getsockopt))
2160 err = -EOPNOTSUPP;
2161 else
2162 err = sock->ops->getsockopt(sock, level, optname, optval,
2163 optlen);
2164
2165 if (!in_compat_syscall())
2166 err = BPF_CGROUP_RUN_PROG_GETSOCKOPT(sock->sk, level, optname,
2167 optval, optlen, max_optlen,
2168 err);
2169 out_put:
2170 fput_light(sock->file, fput_needed);
2171 return err;
2172 }
2173
SYSCALL_DEFINE5(getsockopt,int,fd,int,level,int,optname,char __user *,optval,int __user *,optlen)2174 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
2175 char __user *, optval, int __user *, optlen)
2176 {
2177 return __sys_getsockopt(fd, level, optname, optval, optlen);
2178 }
2179
2180 /*
2181 * Shutdown a socket.
2182 */
2183
__sys_shutdown(int fd,int how)2184 int __sys_shutdown(int fd, int how)
2185 {
2186 int err, fput_needed;
2187 struct socket *sock;
2188
2189 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2190 if (sock != NULL) {
2191 err = security_socket_shutdown(sock, how);
2192 if (!err)
2193 err = sock->ops->shutdown(sock, how);
2194 fput_light(sock->file, fput_needed);
2195 }
2196 return err;
2197 }
2198
SYSCALL_DEFINE2(shutdown,int,fd,int,how)2199 SYSCALL_DEFINE2(shutdown, int, fd, int, how)
2200 {
2201 return __sys_shutdown(fd, how);
2202 }
2203
2204 /* A couple of helpful macros for getting the address of the 32/64 bit
2205 * fields which are the same type (int / unsigned) on our platforms.
2206 */
2207 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
2208 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen)
2209 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags)
2210
2211 struct used_address {
2212 struct sockaddr_storage name;
2213 unsigned int name_len;
2214 };
2215
__copy_msghdr_from_user(struct msghdr * kmsg,struct user_msghdr __user * umsg,struct sockaddr __user ** save_addr,struct iovec __user ** uiov,size_t * nsegs)2216 int __copy_msghdr_from_user(struct msghdr *kmsg,
2217 struct user_msghdr __user *umsg,
2218 struct sockaddr __user **save_addr,
2219 struct iovec __user **uiov, size_t *nsegs)
2220 {
2221 struct user_msghdr msg;
2222 ssize_t err;
2223
2224 if (copy_from_user(&msg, umsg, sizeof(*umsg)))
2225 return -EFAULT;
2226
2227 kmsg->msg_control_is_user = true;
2228 kmsg->msg_control_user = msg.msg_control;
2229 kmsg->msg_controllen = msg.msg_controllen;
2230 kmsg->msg_flags = msg.msg_flags;
2231
2232 kmsg->msg_namelen = msg.msg_namelen;
2233 if (!msg.msg_name)
2234 kmsg->msg_namelen = 0;
2235
2236 if (kmsg->msg_namelen < 0)
2237 return -EINVAL;
2238
2239 if (kmsg->msg_namelen > sizeof(struct sockaddr_storage))
2240 kmsg->msg_namelen = sizeof(struct sockaddr_storage);
2241
2242 if (save_addr)
2243 *save_addr = msg.msg_name;
2244
2245 if (msg.msg_name && kmsg->msg_namelen) {
2246 if (!save_addr) {
2247 err = move_addr_to_kernel(msg.msg_name,
2248 kmsg->msg_namelen,
2249 kmsg->msg_name);
2250 if (err < 0)
2251 return err;
2252 }
2253 } else {
2254 kmsg->msg_name = NULL;
2255 kmsg->msg_namelen = 0;
2256 }
2257
2258 if (msg.msg_iovlen > UIO_MAXIOV)
2259 return -EMSGSIZE;
2260
2261 kmsg->msg_iocb = NULL;
2262 *uiov = msg.msg_iov;
2263 *nsegs = msg.msg_iovlen;
2264 return 0;
2265 }
2266
copy_msghdr_from_user(struct msghdr * kmsg,struct user_msghdr __user * umsg,struct sockaddr __user ** save_addr,struct iovec ** iov)2267 static int copy_msghdr_from_user(struct msghdr *kmsg,
2268 struct user_msghdr __user *umsg,
2269 struct sockaddr __user **save_addr,
2270 struct iovec **iov)
2271 {
2272 struct user_msghdr msg;
2273 ssize_t err;
2274
2275 err = __copy_msghdr_from_user(kmsg, umsg, save_addr, &msg.msg_iov,
2276 &msg.msg_iovlen);
2277 if (err)
2278 return err;
2279
2280 err = import_iovec(save_addr ? READ : WRITE,
2281 msg.msg_iov, msg.msg_iovlen,
2282 UIO_FASTIOV, iov, &kmsg->msg_iter);
2283 return err < 0 ? err : 0;
2284 }
2285
____sys_sendmsg(struct socket * sock,struct msghdr * msg_sys,unsigned int flags,struct used_address * used_address,unsigned int allowed_msghdr_flags)2286 static int ____sys_sendmsg(struct socket *sock, struct msghdr *msg_sys,
2287 unsigned int flags, struct used_address *used_address,
2288 unsigned int allowed_msghdr_flags)
2289 {
2290 unsigned char ctl[sizeof(struct cmsghdr) + 20]
2291 __aligned(sizeof(__kernel_size_t));
2292 /* 20 is size of ipv6_pktinfo */
2293 unsigned char *ctl_buf = ctl;
2294 int ctl_len;
2295 ssize_t err;
2296
2297 err = -ENOBUFS;
2298
2299 if (msg_sys->msg_controllen > INT_MAX)
2300 goto out;
2301 flags |= (msg_sys->msg_flags & allowed_msghdr_flags);
2302 ctl_len = msg_sys->msg_controllen;
2303 if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
2304 err =
2305 cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
2306 sizeof(ctl));
2307 if (err)
2308 goto out;
2309 ctl_buf = msg_sys->msg_control;
2310 ctl_len = msg_sys->msg_controllen;
2311 } else if (ctl_len) {
2312 BUILD_BUG_ON(sizeof(struct cmsghdr) !=
2313 CMSG_ALIGN(sizeof(struct cmsghdr)));
2314 if (ctl_len > sizeof(ctl)) {
2315 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
2316 if (ctl_buf == NULL)
2317 goto out;
2318 }
2319 err = -EFAULT;
2320 if (copy_from_user(ctl_buf, msg_sys->msg_control_user, ctl_len))
2321 goto out_freectl;
2322 msg_sys->msg_control = ctl_buf;
2323 msg_sys->msg_control_is_user = false;
2324 }
2325 msg_sys->msg_flags = flags;
2326
2327 if (sock->file->f_flags & O_NONBLOCK)
2328 msg_sys->msg_flags |= MSG_DONTWAIT;
2329 /*
2330 * If this is sendmmsg() and current destination address is same as
2331 * previously succeeded address, omit asking LSM's decision.
2332 * used_address->name_len is initialized to UINT_MAX so that the first
2333 * destination address never matches.
2334 */
2335 if (used_address && msg_sys->msg_name &&
2336 used_address->name_len == msg_sys->msg_namelen &&
2337 !memcmp(&used_address->name, msg_sys->msg_name,
2338 used_address->name_len)) {
2339 err = sock_sendmsg_nosec(sock, msg_sys);
2340 goto out_freectl;
2341 }
2342 err = sock_sendmsg(sock, msg_sys);
2343 /*
2344 * If this is sendmmsg() and sending to current destination address was
2345 * successful, remember it.
2346 */
2347 if (used_address && err >= 0) {
2348 used_address->name_len = msg_sys->msg_namelen;
2349 if (msg_sys->msg_name)
2350 memcpy(&used_address->name, msg_sys->msg_name,
2351 used_address->name_len);
2352 }
2353
2354 out_freectl:
2355 if (ctl_buf != ctl)
2356 sock_kfree_s(sock->sk, ctl_buf, ctl_len);
2357 out:
2358 return err;
2359 }
2360
sendmsg_copy_msghdr(struct msghdr * msg,struct user_msghdr __user * umsg,unsigned flags,struct iovec ** iov)2361 int sendmsg_copy_msghdr(struct msghdr *msg,
2362 struct user_msghdr __user *umsg, unsigned flags,
2363 struct iovec **iov)
2364 {
2365 int err;
2366
2367 if (flags & MSG_CMSG_COMPAT) {
2368 struct compat_msghdr __user *msg_compat;
2369
2370 msg_compat = (struct compat_msghdr __user *) umsg;
2371 err = get_compat_msghdr(msg, msg_compat, NULL, iov);
2372 } else {
2373 err = copy_msghdr_from_user(msg, umsg, NULL, iov);
2374 }
2375 if (err < 0)
2376 return err;
2377
2378 return 0;
2379 }
2380
___sys_sendmsg(struct socket * sock,struct user_msghdr __user * msg,struct msghdr * msg_sys,unsigned int flags,struct used_address * used_address,unsigned int allowed_msghdr_flags)2381 static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg,
2382 struct msghdr *msg_sys, unsigned int flags,
2383 struct used_address *used_address,
2384 unsigned int allowed_msghdr_flags)
2385 {
2386 struct sockaddr_storage address;
2387 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2388 ssize_t err;
2389
2390 msg_sys->msg_name = &address;
2391
2392 err = sendmsg_copy_msghdr(msg_sys, msg, flags, &iov);
2393 if (err < 0)
2394 return err;
2395
2396 err = ____sys_sendmsg(sock, msg_sys, flags, used_address,
2397 allowed_msghdr_flags);
2398 kfree(iov);
2399 return err;
2400 }
2401
2402 /*
2403 * BSD sendmsg interface
2404 */
__sys_sendmsg_sock(struct socket * sock,struct msghdr * msg,unsigned int flags)2405 long __sys_sendmsg_sock(struct socket *sock, struct msghdr *msg,
2406 unsigned int flags)
2407 {
2408 /* disallow ancillary data requests from this path */
2409 if (msg->msg_control || msg->msg_controllen)
2410 return -EINVAL;
2411
2412 return ____sys_sendmsg(sock, msg, flags, NULL, 0);
2413 }
2414
__sys_sendmsg(int fd,struct user_msghdr __user * msg,unsigned int flags,bool forbid_cmsg_compat)2415 long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2416 bool forbid_cmsg_compat)
2417 {
2418 int fput_needed, err;
2419 struct msghdr msg_sys;
2420 struct socket *sock;
2421
2422 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2423 return -EINVAL;
2424
2425 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2426 if (!sock)
2427 goto out;
2428
2429 err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0);
2430
2431 fput_light(sock->file, fput_needed);
2432 out:
2433 return err;
2434 }
2435
SYSCALL_DEFINE3(sendmsg,int,fd,struct user_msghdr __user *,msg,unsigned int,flags)2436 SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags)
2437 {
2438 return __sys_sendmsg(fd, msg, flags, true);
2439 }
2440
2441 /*
2442 * Linux sendmmsg interface
2443 */
2444
__sys_sendmmsg(int fd,struct mmsghdr __user * mmsg,unsigned int vlen,unsigned int flags,bool forbid_cmsg_compat)2445 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2446 unsigned int flags, bool forbid_cmsg_compat)
2447 {
2448 int fput_needed, err, datagrams;
2449 struct socket *sock;
2450 struct mmsghdr __user *entry;
2451 struct compat_mmsghdr __user *compat_entry;
2452 struct msghdr msg_sys;
2453 struct used_address used_address;
2454 unsigned int oflags = flags;
2455
2456 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2457 return -EINVAL;
2458
2459 if (vlen > UIO_MAXIOV)
2460 vlen = UIO_MAXIOV;
2461
2462 datagrams = 0;
2463
2464 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2465 if (!sock)
2466 return err;
2467
2468 used_address.name_len = UINT_MAX;
2469 entry = mmsg;
2470 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2471 err = 0;
2472 flags |= MSG_BATCH;
2473
2474 while (datagrams < vlen) {
2475 if (datagrams == vlen - 1)
2476 flags = oflags;
2477
2478 if (MSG_CMSG_COMPAT & flags) {
2479 err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry,
2480 &msg_sys, flags, &used_address, MSG_EOR);
2481 if (err < 0)
2482 break;
2483 err = __put_user(err, &compat_entry->msg_len);
2484 ++compat_entry;
2485 } else {
2486 err = ___sys_sendmsg(sock,
2487 (struct user_msghdr __user *)entry,
2488 &msg_sys, flags, &used_address, MSG_EOR);
2489 if (err < 0)
2490 break;
2491 err = put_user(err, &entry->msg_len);
2492 ++entry;
2493 }
2494
2495 if (err)
2496 break;
2497 ++datagrams;
2498 if (msg_data_left(&msg_sys))
2499 break;
2500 cond_resched();
2501 }
2502
2503 fput_light(sock->file, fput_needed);
2504
2505 /* We only return an error if no datagrams were able to be sent */
2506 if (datagrams != 0)
2507 return datagrams;
2508
2509 return err;
2510 }
2511
SYSCALL_DEFINE4(sendmmsg,int,fd,struct mmsghdr __user *,mmsg,unsigned int,vlen,unsigned int,flags)2512 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2513 unsigned int, vlen, unsigned int, flags)
2514 {
2515 return __sys_sendmmsg(fd, mmsg, vlen, flags, true);
2516 }
2517
recvmsg_copy_msghdr(struct msghdr * msg,struct user_msghdr __user * umsg,unsigned flags,struct sockaddr __user ** uaddr,struct iovec ** iov)2518 int recvmsg_copy_msghdr(struct msghdr *msg,
2519 struct user_msghdr __user *umsg, unsigned flags,
2520 struct sockaddr __user **uaddr,
2521 struct iovec **iov)
2522 {
2523 ssize_t err;
2524
2525 if (MSG_CMSG_COMPAT & flags) {
2526 struct compat_msghdr __user *msg_compat;
2527
2528 msg_compat = (struct compat_msghdr __user *) umsg;
2529 err = get_compat_msghdr(msg, msg_compat, uaddr, iov);
2530 } else {
2531 err = copy_msghdr_from_user(msg, umsg, uaddr, iov);
2532 }
2533 if (err < 0)
2534 return err;
2535
2536 return 0;
2537 }
2538
____sys_recvmsg(struct socket * sock,struct msghdr * msg_sys,struct user_msghdr __user * msg,struct sockaddr __user * uaddr,unsigned int flags,int nosec)2539 static int ____sys_recvmsg(struct socket *sock, struct msghdr *msg_sys,
2540 struct user_msghdr __user *msg,
2541 struct sockaddr __user *uaddr,
2542 unsigned int flags, int nosec)
2543 {
2544 struct compat_msghdr __user *msg_compat =
2545 (struct compat_msghdr __user *) msg;
2546 int __user *uaddr_len = COMPAT_NAMELEN(msg);
2547 struct sockaddr_storage addr;
2548 unsigned long cmsg_ptr;
2549 int len;
2550 ssize_t err;
2551
2552 msg_sys->msg_name = &addr;
2553 cmsg_ptr = (unsigned long)msg_sys->msg_control;
2554 msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2555
2556 /* We assume all kernel code knows the size of sockaddr_storage */
2557 msg_sys->msg_namelen = 0;
2558
2559 if (sock->file->f_flags & O_NONBLOCK)
2560 flags |= MSG_DONTWAIT;
2561
2562 if (unlikely(nosec))
2563 err = sock_recvmsg_nosec(sock, msg_sys, flags);
2564 else
2565 err = sock_recvmsg(sock, msg_sys, flags);
2566
2567 if (err < 0)
2568 goto out;
2569 len = err;
2570
2571 if (uaddr != NULL) {
2572 err = move_addr_to_user(&addr,
2573 msg_sys->msg_namelen, uaddr,
2574 uaddr_len);
2575 if (err < 0)
2576 goto out;
2577 }
2578 err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2579 COMPAT_FLAGS(msg));
2580 if (err)
2581 goto out;
2582 if (MSG_CMSG_COMPAT & flags)
2583 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2584 &msg_compat->msg_controllen);
2585 else
2586 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2587 &msg->msg_controllen);
2588 if (err)
2589 goto out;
2590 err = len;
2591 out:
2592 return err;
2593 }
2594
___sys_recvmsg(struct socket * sock,struct user_msghdr __user * msg,struct msghdr * msg_sys,unsigned int flags,int nosec)2595 static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg,
2596 struct msghdr *msg_sys, unsigned int flags, int nosec)
2597 {
2598 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2599 /* user mode address pointers */
2600 struct sockaddr __user *uaddr;
2601 ssize_t err;
2602
2603 err = recvmsg_copy_msghdr(msg_sys, msg, flags, &uaddr, &iov);
2604 if (err < 0)
2605 return err;
2606
2607 err = ____sys_recvmsg(sock, msg_sys, msg, uaddr, flags, nosec);
2608 kfree(iov);
2609 return err;
2610 }
2611
2612 /*
2613 * BSD recvmsg interface
2614 */
2615
__sys_recvmsg_sock(struct socket * sock,struct msghdr * msg,struct user_msghdr __user * umsg,struct sockaddr __user * uaddr,unsigned int flags)2616 long __sys_recvmsg_sock(struct socket *sock, struct msghdr *msg,
2617 struct user_msghdr __user *umsg,
2618 struct sockaddr __user *uaddr, unsigned int flags)
2619 {
2620 if (msg->msg_control || msg->msg_controllen) {
2621 /* disallow ancillary data reqs unless cmsg is plain data */
2622 if (!(sock->ops->flags & PROTO_CMSG_DATA_ONLY))
2623 return -EINVAL;
2624 }
2625
2626 return ____sys_recvmsg(sock, msg, umsg, uaddr, flags, 0);
2627 }
2628
__sys_recvmsg(int fd,struct user_msghdr __user * msg,unsigned int flags,bool forbid_cmsg_compat)2629 long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2630 bool forbid_cmsg_compat)
2631 {
2632 int fput_needed, err;
2633 struct msghdr msg_sys;
2634 struct socket *sock;
2635
2636 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2637 return -EINVAL;
2638
2639 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2640 if (!sock)
2641 goto out;
2642
2643 err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2644
2645 fput_light(sock->file, fput_needed);
2646 out:
2647 return err;
2648 }
2649
SYSCALL_DEFINE3(recvmsg,int,fd,struct user_msghdr __user *,msg,unsigned int,flags)2650 SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg,
2651 unsigned int, flags)
2652 {
2653 return __sys_recvmsg(fd, msg, flags, true);
2654 }
2655
2656 /*
2657 * Linux recvmmsg interface
2658 */
2659
do_recvmmsg(int fd,struct mmsghdr __user * mmsg,unsigned int vlen,unsigned int flags,struct timespec64 * timeout)2660 static int do_recvmmsg(int fd, struct mmsghdr __user *mmsg,
2661 unsigned int vlen, unsigned int flags,
2662 struct timespec64 *timeout)
2663 {
2664 int fput_needed, err, datagrams;
2665 struct socket *sock;
2666 struct mmsghdr __user *entry;
2667 struct compat_mmsghdr __user *compat_entry;
2668 struct msghdr msg_sys;
2669 struct timespec64 end_time;
2670 struct timespec64 timeout64;
2671
2672 if (timeout &&
2673 poll_select_set_timeout(&end_time, timeout->tv_sec,
2674 timeout->tv_nsec))
2675 return -EINVAL;
2676
2677 datagrams = 0;
2678
2679 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2680 if (!sock)
2681 return err;
2682
2683 if (likely(!(flags & MSG_ERRQUEUE))) {
2684 err = sock_error(sock->sk);
2685 if (err) {
2686 datagrams = err;
2687 goto out_put;
2688 }
2689 }
2690
2691 entry = mmsg;
2692 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2693
2694 while (datagrams < vlen) {
2695 /*
2696 * No need to ask LSM for more than the first datagram.
2697 */
2698 if (MSG_CMSG_COMPAT & flags) {
2699 err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry,
2700 &msg_sys, flags & ~MSG_WAITFORONE,
2701 datagrams);
2702 if (err < 0)
2703 break;
2704 err = __put_user(err, &compat_entry->msg_len);
2705 ++compat_entry;
2706 } else {
2707 err = ___sys_recvmsg(sock,
2708 (struct user_msghdr __user *)entry,
2709 &msg_sys, flags & ~MSG_WAITFORONE,
2710 datagrams);
2711 if (err < 0)
2712 break;
2713 err = put_user(err, &entry->msg_len);
2714 ++entry;
2715 }
2716
2717 if (err)
2718 break;
2719 ++datagrams;
2720
2721 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2722 if (flags & MSG_WAITFORONE)
2723 flags |= MSG_DONTWAIT;
2724
2725 if (timeout) {
2726 ktime_get_ts64(&timeout64);
2727 *timeout = timespec64_sub(end_time, timeout64);
2728 if (timeout->tv_sec < 0) {
2729 timeout->tv_sec = timeout->tv_nsec = 0;
2730 break;
2731 }
2732
2733 /* Timeout, return less than vlen datagrams */
2734 if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2735 break;
2736 }
2737
2738 /* Out of band data, return right away */
2739 if (msg_sys.msg_flags & MSG_OOB)
2740 break;
2741 cond_resched();
2742 }
2743
2744 if (err == 0)
2745 goto out_put;
2746
2747 if (datagrams == 0) {
2748 datagrams = err;
2749 goto out_put;
2750 }
2751
2752 /*
2753 * We may return less entries than requested (vlen) if the
2754 * sock is non block and there aren't enough datagrams...
2755 */
2756 if (err != -EAGAIN) {
2757 /*
2758 * ... or if recvmsg returns an error after we
2759 * received some datagrams, where we record the
2760 * error to return on the next call or if the
2761 * app asks about it using getsockopt(SO_ERROR).
2762 */
2763 sock->sk->sk_err = -err;
2764 }
2765 out_put:
2766 fput_light(sock->file, fput_needed);
2767
2768 return datagrams;
2769 }
2770
__sys_recvmmsg(int fd,struct mmsghdr __user * mmsg,unsigned int vlen,unsigned int flags,struct __kernel_timespec __user * timeout,struct old_timespec32 __user * timeout32)2771 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg,
2772 unsigned int vlen, unsigned int flags,
2773 struct __kernel_timespec __user *timeout,
2774 struct old_timespec32 __user *timeout32)
2775 {
2776 int datagrams;
2777 struct timespec64 timeout_sys;
2778
2779 if (timeout && get_timespec64(&timeout_sys, timeout))
2780 return -EFAULT;
2781
2782 if (timeout32 && get_old_timespec32(&timeout_sys, timeout32))
2783 return -EFAULT;
2784
2785 if (!timeout && !timeout32)
2786 return do_recvmmsg(fd, mmsg, vlen, flags, NULL);
2787
2788 datagrams = do_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
2789
2790 if (datagrams <= 0)
2791 return datagrams;
2792
2793 if (timeout && put_timespec64(&timeout_sys, timeout))
2794 datagrams = -EFAULT;
2795
2796 if (timeout32 && put_old_timespec32(&timeout_sys, timeout32))
2797 datagrams = -EFAULT;
2798
2799 return datagrams;
2800 }
2801
SYSCALL_DEFINE5(recvmmsg,int,fd,struct mmsghdr __user *,mmsg,unsigned int,vlen,unsigned int,flags,struct __kernel_timespec __user *,timeout)2802 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2803 unsigned int, vlen, unsigned int, flags,
2804 struct __kernel_timespec __user *, timeout)
2805 {
2806 if (flags & MSG_CMSG_COMPAT)
2807 return -EINVAL;
2808
2809 return __sys_recvmmsg(fd, mmsg, vlen, flags, timeout, NULL);
2810 }
2811
2812 #ifdef CONFIG_COMPAT_32BIT_TIME
SYSCALL_DEFINE5(recvmmsg_time32,int,fd,struct mmsghdr __user *,mmsg,unsigned int,vlen,unsigned int,flags,struct old_timespec32 __user *,timeout)2813 SYSCALL_DEFINE5(recvmmsg_time32, int, fd, struct mmsghdr __user *, mmsg,
2814 unsigned int, vlen, unsigned int, flags,
2815 struct old_timespec32 __user *, timeout)
2816 {
2817 if (flags & MSG_CMSG_COMPAT)
2818 return -EINVAL;
2819
2820 return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL, timeout);
2821 }
2822 #endif
2823
2824 #ifdef __ARCH_WANT_SYS_SOCKETCALL
2825 /* Argument list sizes for sys_socketcall */
2826 #define AL(x) ((x) * sizeof(unsigned long))
2827 static const unsigned char nargs[21] = {
2828 AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2829 AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2830 AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2831 AL(4), AL(5), AL(4)
2832 };
2833
2834 #undef AL
2835
2836 /*
2837 * System call vectors.
2838 *
2839 * Argument checking cleaned up. Saved 20% in size.
2840 * This function doesn't need to set the kernel lock because
2841 * it is set by the callees.
2842 */
2843
SYSCALL_DEFINE2(socketcall,int,call,unsigned long __user *,args)2844 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2845 {
2846 unsigned long a[AUDITSC_ARGS];
2847 unsigned long a0, a1;
2848 int err;
2849 unsigned int len;
2850
2851 if (call < 1 || call > SYS_SENDMMSG)
2852 return -EINVAL;
2853 call = array_index_nospec(call, SYS_SENDMMSG + 1);
2854
2855 len = nargs[call];
2856 if (len > sizeof(a))
2857 return -EINVAL;
2858
2859 /* copy_from_user should be SMP safe. */
2860 if (copy_from_user(a, args, len))
2861 return -EFAULT;
2862
2863 err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2864 if (err)
2865 return err;
2866
2867 a0 = a[0];
2868 a1 = a[1];
2869
2870 switch (call) {
2871 case SYS_SOCKET:
2872 err = __sys_socket(a0, a1, a[2]);
2873 break;
2874 case SYS_BIND:
2875 err = __sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2876 break;
2877 case SYS_CONNECT:
2878 err = __sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2879 break;
2880 case SYS_LISTEN:
2881 err = __sys_listen(a0, a1);
2882 break;
2883 case SYS_ACCEPT:
2884 err = __sys_accept4(a0, (struct sockaddr __user *)a1,
2885 (int __user *)a[2], 0);
2886 break;
2887 case SYS_GETSOCKNAME:
2888 err =
2889 __sys_getsockname(a0, (struct sockaddr __user *)a1,
2890 (int __user *)a[2]);
2891 break;
2892 case SYS_GETPEERNAME:
2893 err =
2894 __sys_getpeername(a0, (struct sockaddr __user *)a1,
2895 (int __user *)a[2]);
2896 break;
2897 case SYS_SOCKETPAIR:
2898 err = __sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2899 break;
2900 case SYS_SEND:
2901 err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
2902 NULL, 0);
2903 break;
2904 case SYS_SENDTO:
2905 err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
2906 (struct sockaddr __user *)a[4], a[5]);
2907 break;
2908 case SYS_RECV:
2909 err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2910 NULL, NULL);
2911 break;
2912 case SYS_RECVFROM:
2913 err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2914 (struct sockaddr __user *)a[4],
2915 (int __user *)a[5]);
2916 break;
2917 case SYS_SHUTDOWN:
2918 err = __sys_shutdown(a0, a1);
2919 break;
2920 case SYS_SETSOCKOPT:
2921 err = __sys_setsockopt(a0, a1, a[2], (char __user *)a[3],
2922 a[4]);
2923 break;
2924 case SYS_GETSOCKOPT:
2925 err =
2926 __sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2927 (int __user *)a[4]);
2928 break;
2929 case SYS_SENDMSG:
2930 err = __sys_sendmsg(a0, (struct user_msghdr __user *)a1,
2931 a[2], true);
2932 break;
2933 case SYS_SENDMMSG:
2934 err = __sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2],
2935 a[3], true);
2936 break;
2937 case SYS_RECVMSG:
2938 err = __sys_recvmsg(a0, (struct user_msghdr __user *)a1,
2939 a[2], true);
2940 break;
2941 case SYS_RECVMMSG:
2942 if (IS_ENABLED(CONFIG_64BIT))
2943 err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1,
2944 a[2], a[3],
2945 (struct __kernel_timespec __user *)a[4],
2946 NULL);
2947 else
2948 err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1,
2949 a[2], a[3], NULL,
2950 (struct old_timespec32 __user *)a[4]);
2951 break;
2952 case SYS_ACCEPT4:
2953 err = __sys_accept4(a0, (struct sockaddr __user *)a1,
2954 (int __user *)a[2], a[3]);
2955 break;
2956 default:
2957 err = -EINVAL;
2958 break;
2959 }
2960 return err;
2961 }
2962
2963 #endif /* __ARCH_WANT_SYS_SOCKETCALL */
2964
2965 /**
2966 * sock_register - add a socket protocol handler
2967 * @ops: description of protocol
2968 *
2969 * This function is called by a protocol handler that wants to
2970 * advertise its address family, and have it linked into the
2971 * socket interface. The value ops->family corresponds to the
2972 * socket system call protocol family.
2973 */
sock_register(const struct net_proto_family * ops)2974 int sock_register(const struct net_proto_family *ops)
2975 {
2976 int err;
2977
2978 if (ops->family >= NPROTO) {
2979 pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO);
2980 return -ENOBUFS;
2981 }
2982
2983 spin_lock(&net_family_lock);
2984 if (rcu_dereference_protected(net_families[ops->family],
2985 lockdep_is_held(&net_family_lock)))
2986 err = -EEXIST;
2987 else {
2988 rcu_assign_pointer(net_families[ops->family], ops);
2989 err = 0;
2990 }
2991 spin_unlock(&net_family_lock);
2992
2993 pr_info("NET: Registered protocol family %d\n", ops->family);
2994 return err;
2995 }
2996 EXPORT_SYMBOL(sock_register);
2997
2998 /**
2999 * sock_unregister - remove a protocol handler
3000 * @family: protocol family to remove
3001 *
3002 * This function is called by a protocol handler that wants to
3003 * remove its address family, and have it unlinked from the
3004 * new socket creation.
3005 *
3006 * If protocol handler is a module, then it can use module reference
3007 * counts to protect against new references. If protocol handler is not
3008 * a module then it needs to provide its own protection in
3009 * the ops->create routine.
3010 */
sock_unregister(int family)3011 void sock_unregister(int family)
3012 {
3013 BUG_ON(family < 0 || family >= NPROTO);
3014
3015 spin_lock(&net_family_lock);
3016 RCU_INIT_POINTER(net_families[family], NULL);
3017 spin_unlock(&net_family_lock);
3018
3019 synchronize_rcu();
3020
3021 pr_info("NET: Unregistered protocol family %d\n", family);
3022 }
3023 EXPORT_SYMBOL(sock_unregister);
3024
sock_is_registered(int family)3025 bool sock_is_registered(int family)
3026 {
3027 return family < NPROTO && rcu_access_pointer(net_families[family]);
3028 }
3029
sock_init(void)3030 static int __init sock_init(void)
3031 {
3032 int err;
3033 /*
3034 * Initialize the network sysctl infrastructure.
3035 */
3036 err = net_sysctl_init();
3037 if (err)
3038 goto out;
3039
3040 /*
3041 * Initialize skbuff SLAB cache
3042 */
3043 skb_init();
3044
3045 /*
3046 * Initialize the protocols module.
3047 */
3048
3049 init_inodecache();
3050
3051 err = register_filesystem(&sock_fs_type);
3052 if (err)
3053 goto out;
3054 sock_mnt = kern_mount(&sock_fs_type);
3055 if (IS_ERR(sock_mnt)) {
3056 err = PTR_ERR(sock_mnt);
3057 goto out_mount;
3058 }
3059
3060 /* The real protocol initialization is performed in later initcalls.
3061 */
3062
3063 #ifdef CONFIG_NETFILTER
3064 err = netfilter_init();
3065 if (err)
3066 goto out;
3067 #endif
3068
3069 ptp_classifier_init();
3070
3071 out:
3072 return err;
3073
3074 out_mount:
3075 unregister_filesystem(&sock_fs_type);
3076 goto out;
3077 }
3078
3079 core_initcall(sock_init); /* early initcall */
3080
3081 #ifdef CONFIG_PROC_FS
socket_seq_show(struct seq_file * seq)3082 void socket_seq_show(struct seq_file *seq)
3083 {
3084 seq_printf(seq, "sockets: used %d\n",
3085 sock_inuse_get(seq->private));
3086 }
3087 #endif /* CONFIG_PROC_FS */
3088
3089 #ifdef CONFIG_COMPAT
compat_dev_ifconf(struct net * net,struct compat_ifconf __user * uifc32)3090 static int compat_dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32)
3091 {
3092 struct compat_ifconf ifc32;
3093 struct ifconf ifc;
3094 int err;
3095
3096 if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf)))
3097 return -EFAULT;
3098
3099 ifc.ifc_len = ifc32.ifc_len;
3100 ifc.ifc_req = compat_ptr(ifc32.ifcbuf);
3101
3102 rtnl_lock();
3103 err = dev_ifconf(net, &ifc, sizeof(struct compat_ifreq));
3104 rtnl_unlock();
3105 if (err)
3106 return err;
3107
3108 ifc32.ifc_len = ifc.ifc_len;
3109 if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf)))
3110 return -EFAULT;
3111
3112 return 0;
3113 }
3114
compat_siocwandev(struct net * net,struct compat_ifreq __user * uifr32)3115 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
3116 {
3117 compat_uptr_t uptr32;
3118 struct ifreq ifr;
3119 void __user *saved;
3120 int err;
3121
3122 if (copy_from_user(&ifr, uifr32, sizeof(struct compat_ifreq)))
3123 return -EFAULT;
3124
3125 if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
3126 return -EFAULT;
3127
3128 saved = ifr.ifr_settings.ifs_ifsu.raw_hdlc;
3129 ifr.ifr_settings.ifs_ifsu.raw_hdlc = compat_ptr(uptr32);
3130
3131 err = dev_ioctl(net, SIOCWANDEV, &ifr, NULL);
3132 if (!err) {
3133 ifr.ifr_settings.ifs_ifsu.raw_hdlc = saved;
3134 if (copy_to_user(uifr32, &ifr, sizeof(struct compat_ifreq)))
3135 err = -EFAULT;
3136 }
3137 return err;
3138 }
3139
3140 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */
compat_ifr_data_ioctl(struct net * net,unsigned int cmd,struct compat_ifreq __user * u_ifreq32)3141 static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd,
3142 struct compat_ifreq __user *u_ifreq32)
3143 {
3144 struct ifreq ifreq;
3145 u32 data32;
3146
3147 if (!is_socket_ioctl_cmd(cmd))
3148 return -ENOTTY;
3149 if (copy_from_user(ifreq.ifr_name, u_ifreq32->ifr_name, IFNAMSIZ))
3150 return -EFAULT;
3151 if (get_user(data32, &u_ifreq32->ifr_data))
3152 return -EFAULT;
3153 ifreq.ifr_data = compat_ptr(data32);
3154
3155 return dev_ioctl(net, cmd, &ifreq, NULL);
3156 }
3157
compat_ifreq_ioctl(struct net * net,struct socket * sock,unsigned int cmd,struct compat_ifreq __user * uifr32)3158 static int compat_ifreq_ioctl(struct net *net, struct socket *sock,
3159 unsigned int cmd,
3160 struct compat_ifreq __user *uifr32)
3161 {
3162 struct ifreq __user *uifr;
3163 int err;
3164
3165 /* Handle the fact that while struct ifreq has the same *layout* on
3166 * 32/64 for everything but ifreq::ifru_ifmap and ifreq::ifru_data,
3167 * which are handled elsewhere, it still has different *size* due to
3168 * ifreq::ifru_ifmap (which is 16 bytes on 32 bit, 24 bytes on 64-bit,
3169 * resulting in struct ifreq being 32 and 40 bytes respectively).
3170 * As a result, if the struct happens to be at the end of a page and
3171 * the next page isn't readable/writable, we get a fault. To prevent
3172 * that, copy back and forth to the full size.
3173 */
3174
3175 uifr = compat_alloc_user_space(sizeof(*uifr));
3176 if (copy_in_user(uifr, uifr32, sizeof(*uifr32)))
3177 return -EFAULT;
3178
3179 err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr);
3180
3181 if (!err) {
3182 switch (cmd) {
3183 case SIOCGIFFLAGS:
3184 case SIOCGIFMETRIC:
3185 case SIOCGIFMTU:
3186 case SIOCGIFMEM:
3187 case SIOCGIFHWADDR:
3188 case SIOCGIFINDEX:
3189 case SIOCGIFADDR:
3190 case SIOCGIFBRDADDR:
3191 case SIOCGIFDSTADDR:
3192 case SIOCGIFNETMASK:
3193 case SIOCGIFPFLAGS:
3194 case SIOCGIFTXQLEN:
3195 case SIOCGMIIPHY:
3196 case SIOCGMIIREG:
3197 case SIOCGIFNAME:
3198 if (copy_in_user(uifr32, uifr, sizeof(*uifr32)))
3199 err = -EFAULT;
3200 break;
3201 }
3202 }
3203 return err;
3204 }
3205
compat_sioc_ifmap(struct net * net,unsigned int cmd,struct compat_ifreq __user * uifr32)3206 static int compat_sioc_ifmap(struct net *net, unsigned int cmd,
3207 struct compat_ifreq __user *uifr32)
3208 {
3209 struct ifreq ifr;
3210 struct compat_ifmap __user *uifmap32;
3211 int err;
3212
3213 uifmap32 = &uifr32->ifr_ifru.ifru_map;
3214 err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name));
3215 err |= get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3216 err |= get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3217 err |= get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3218 err |= get_user(ifr.ifr_map.irq, &uifmap32->irq);
3219 err |= get_user(ifr.ifr_map.dma, &uifmap32->dma);
3220 err |= get_user(ifr.ifr_map.port, &uifmap32->port);
3221 if (err)
3222 return -EFAULT;
3223
3224 err = dev_ioctl(net, cmd, &ifr, NULL);
3225
3226 if (cmd == SIOCGIFMAP && !err) {
3227 err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name));
3228 err |= put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3229 err |= put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3230 err |= put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3231 err |= put_user(ifr.ifr_map.irq, &uifmap32->irq);
3232 err |= put_user(ifr.ifr_map.dma, &uifmap32->dma);
3233 err |= put_user(ifr.ifr_map.port, &uifmap32->port);
3234 if (err)
3235 err = -EFAULT;
3236 }
3237 return err;
3238 }
3239
3240 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
3241 * for some operations; this forces use of the newer bridge-utils that
3242 * use compatible ioctls
3243 */
old_bridge_ioctl(compat_ulong_t __user * argp)3244 static int old_bridge_ioctl(compat_ulong_t __user *argp)
3245 {
3246 compat_ulong_t tmp;
3247
3248 if (get_user(tmp, argp))
3249 return -EFAULT;
3250 if (tmp == BRCTL_GET_VERSION)
3251 return BRCTL_VERSION + 1;
3252 return -EINVAL;
3253 }
3254
compat_sock_ioctl_trans(struct file * file,struct socket * sock,unsigned int cmd,unsigned long arg)3255 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3256 unsigned int cmd, unsigned long arg)
3257 {
3258 void __user *argp = compat_ptr(arg);
3259 struct sock *sk = sock->sk;
3260 struct net *net = sock_net(sk);
3261
3262 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3263 return compat_ifr_data_ioctl(net, cmd, argp);
3264
3265 switch (cmd) {
3266 case SIOCSIFBR:
3267 case SIOCGIFBR:
3268 return old_bridge_ioctl(argp);
3269 case SIOCGIFCONF:
3270 return compat_dev_ifconf(net, argp);
3271 case SIOCWANDEV:
3272 return compat_siocwandev(net, argp);
3273 case SIOCGIFMAP:
3274 case SIOCSIFMAP:
3275 return compat_sioc_ifmap(net, cmd, argp);
3276 case SIOCGSTAMP_OLD:
3277 case SIOCGSTAMPNS_OLD:
3278 if (!sock->ops->gettstamp)
3279 return -ENOIOCTLCMD;
3280 return sock->ops->gettstamp(sock, argp, cmd == SIOCGSTAMP_OLD,
3281 !COMPAT_USE_64BIT_TIME);
3282
3283 case SIOCETHTOOL:
3284 case SIOCBONDSLAVEINFOQUERY:
3285 case SIOCBONDINFOQUERY:
3286 case SIOCSHWTSTAMP:
3287 case SIOCGHWTSTAMP:
3288 return compat_ifr_data_ioctl(net, cmd, argp);
3289
3290 case FIOSETOWN:
3291 case SIOCSPGRP:
3292 case FIOGETOWN:
3293 case SIOCGPGRP:
3294 case SIOCBRADDBR:
3295 case SIOCBRDELBR:
3296 case SIOCGIFVLAN:
3297 case SIOCSIFVLAN:
3298 case SIOCADDDLCI:
3299 case SIOCDELDLCI:
3300 case SIOCGSKNS:
3301 case SIOCGSTAMP_NEW:
3302 case SIOCGSTAMPNS_NEW:
3303 return sock_ioctl(file, cmd, arg);
3304
3305 case SIOCGIFFLAGS:
3306 case SIOCSIFFLAGS:
3307 case SIOCGIFMETRIC:
3308 case SIOCSIFMETRIC:
3309 case SIOCGIFMTU:
3310 case SIOCSIFMTU:
3311 case SIOCGIFMEM:
3312 case SIOCSIFMEM:
3313 case SIOCGIFHWADDR:
3314 case SIOCSIFHWADDR:
3315 case SIOCADDMULTI:
3316 case SIOCDELMULTI:
3317 case SIOCGIFINDEX:
3318 case SIOCGIFADDR:
3319 case SIOCSIFADDR:
3320 case SIOCSIFHWBROADCAST:
3321 case SIOCDIFADDR:
3322 case SIOCGIFBRDADDR:
3323 case SIOCSIFBRDADDR:
3324 case SIOCGIFDSTADDR:
3325 case SIOCSIFDSTADDR:
3326 case SIOCGIFNETMASK:
3327 case SIOCSIFNETMASK:
3328 case SIOCSIFPFLAGS:
3329 case SIOCGIFPFLAGS:
3330 case SIOCGIFTXQLEN:
3331 case SIOCSIFTXQLEN:
3332 case SIOCBRADDIF:
3333 case SIOCBRDELIF:
3334 case SIOCGIFNAME:
3335 case SIOCSIFNAME:
3336 case SIOCGMIIPHY:
3337 case SIOCGMIIREG:
3338 case SIOCSMIIREG:
3339 case SIOCBONDENSLAVE:
3340 case SIOCBONDRELEASE:
3341 case SIOCBONDSETHWADDR:
3342 case SIOCBONDCHANGEACTIVE:
3343 return compat_ifreq_ioctl(net, sock, cmd, argp);
3344
3345 case SIOCSARP:
3346 case SIOCGARP:
3347 case SIOCDARP:
3348 case SIOCOUTQ:
3349 case SIOCOUTQNSD:
3350 case SIOCATMARK:
3351 return sock_do_ioctl(net, sock, cmd, arg);
3352 }
3353
3354 return -ENOIOCTLCMD;
3355 }
3356
compat_sock_ioctl(struct file * file,unsigned int cmd,unsigned long arg)3357 static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3358 unsigned long arg)
3359 {
3360 struct socket *sock = file->private_data;
3361 int ret = -ENOIOCTLCMD;
3362 struct sock *sk;
3363 struct net *net;
3364
3365 sk = sock->sk;
3366 net = sock_net(sk);
3367
3368 if (sock->ops->compat_ioctl)
3369 ret = sock->ops->compat_ioctl(sock, cmd, arg);
3370
3371 if (ret == -ENOIOCTLCMD &&
3372 (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3373 ret = compat_wext_handle_ioctl(net, cmd, arg);
3374
3375 if (ret == -ENOIOCTLCMD)
3376 ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3377
3378 return ret;
3379 }
3380 #endif
3381
3382 /**
3383 * kernel_bind - bind an address to a socket (kernel space)
3384 * @sock: socket
3385 * @addr: address
3386 * @addrlen: length of address
3387 *
3388 * Returns 0 or an error.
3389 */
3390
kernel_bind(struct socket * sock,struct sockaddr * addr,int addrlen)3391 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3392 {
3393 return sock->ops->bind(sock, addr, addrlen);
3394 }
3395 EXPORT_SYMBOL(kernel_bind);
3396
3397 /**
3398 * kernel_listen - move socket to listening state (kernel space)
3399 * @sock: socket
3400 * @backlog: pending connections queue size
3401 *
3402 * Returns 0 or an error.
3403 */
3404
kernel_listen(struct socket * sock,int backlog)3405 int kernel_listen(struct socket *sock, int backlog)
3406 {
3407 return sock->ops->listen(sock, backlog);
3408 }
3409 EXPORT_SYMBOL(kernel_listen);
3410
3411 /**
3412 * kernel_accept - accept a connection (kernel space)
3413 * @sock: listening socket
3414 * @newsock: new connected socket
3415 * @flags: flags
3416 *
3417 * @flags must be SOCK_CLOEXEC, SOCK_NONBLOCK or 0.
3418 * If it fails, @newsock is guaranteed to be %NULL.
3419 * Returns 0 or an error.
3420 */
3421
kernel_accept(struct socket * sock,struct socket ** newsock,int flags)3422 int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3423 {
3424 struct sock *sk = sock->sk;
3425 int err;
3426
3427 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3428 newsock);
3429 if (err < 0)
3430 goto done;
3431
3432 err = sock->ops->accept(sock, *newsock, flags, true);
3433 if (err < 0) {
3434 sock_release(*newsock);
3435 *newsock = NULL;
3436 goto done;
3437 }
3438
3439 (*newsock)->ops = sock->ops;
3440 __module_get((*newsock)->ops->owner);
3441
3442 done:
3443 return err;
3444 }
3445 EXPORT_SYMBOL(kernel_accept);
3446
3447 /**
3448 * kernel_connect - connect a socket (kernel space)
3449 * @sock: socket
3450 * @addr: address
3451 * @addrlen: address length
3452 * @flags: flags (O_NONBLOCK, ...)
3453 *
3454 * For datagram sockets, @addr is the addres to which datagrams are sent
3455 * by default, and the only address from which datagrams are received.
3456 * For stream sockets, attempts to connect to @addr.
3457 * Returns 0 or an error code.
3458 */
3459
kernel_connect(struct socket * sock,struct sockaddr * addr,int addrlen,int flags)3460 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3461 int flags)
3462 {
3463 return sock->ops->connect(sock, addr, addrlen, flags);
3464 }
3465 EXPORT_SYMBOL(kernel_connect);
3466
3467 /**
3468 * kernel_getsockname - get the address which the socket is bound (kernel space)
3469 * @sock: socket
3470 * @addr: address holder
3471 *
3472 * Fills the @addr pointer with the address which the socket is bound.
3473 * Returns 0 or an error code.
3474 */
3475
kernel_getsockname(struct socket * sock,struct sockaddr * addr)3476 int kernel_getsockname(struct socket *sock, struct sockaddr *addr)
3477 {
3478 return sock->ops->getname(sock, addr, 0);
3479 }
3480 EXPORT_SYMBOL(kernel_getsockname);
3481
3482 /**
3483 * kernel_getpeername - get the address which the socket is connected (kernel space)
3484 * @sock: socket
3485 * @addr: address holder
3486 *
3487 * Fills the @addr pointer with the address which the socket is connected.
3488 * Returns 0 or an error code.
3489 */
3490
kernel_getpeername(struct socket * sock,struct sockaddr * addr)3491 int kernel_getpeername(struct socket *sock, struct sockaddr *addr)
3492 {
3493 return sock->ops->getname(sock, addr, 1);
3494 }
3495 EXPORT_SYMBOL(kernel_getpeername);
3496
3497 /**
3498 * kernel_sendpage - send a &page through a socket (kernel space)
3499 * @sock: socket
3500 * @page: page
3501 * @offset: page offset
3502 * @size: total size in bytes
3503 * @flags: flags (MSG_DONTWAIT, ...)
3504 *
3505 * Returns the total amount sent in bytes or an error.
3506 */
3507
kernel_sendpage(struct socket * sock,struct page * page,int offset,size_t size,int flags)3508 int kernel_sendpage(struct socket *sock, struct page *page, int offset,
3509 size_t size, int flags)
3510 {
3511 if (sock->ops->sendpage) {
3512 /* Warn in case the improper page to zero-copy send */
3513 WARN_ONCE(!sendpage_ok(page), "improper page for zero-copy send");
3514 return sock->ops->sendpage(sock, page, offset, size, flags);
3515 }
3516 return sock_no_sendpage(sock, page, offset, size, flags);
3517 }
3518 EXPORT_SYMBOL(kernel_sendpage);
3519
3520 /**
3521 * kernel_sendpage_locked - send a &page through the locked sock (kernel space)
3522 * @sk: sock
3523 * @page: page
3524 * @offset: page offset
3525 * @size: total size in bytes
3526 * @flags: flags (MSG_DONTWAIT, ...)
3527 *
3528 * Returns the total amount sent in bytes or an error.
3529 * Caller must hold @sk.
3530 */
3531
kernel_sendpage_locked(struct sock * sk,struct page * page,int offset,size_t size,int flags)3532 int kernel_sendpage_locked(struct sock *sk, struct page *page, int offset,
3533 size_t size, int flags)
3534 {
3535 struct socket *sock = sk->sk_socket;
3536
3537 if (sock->ops->sendpage_locked)
3538 return sock->ops->sendpage_locked(sk, page, offset, size,
3539 flags);
3540
3541 return sock_no_sendpage_locked(sk, page, offset, size, flags);
3542 }
3543 EXPORT_SYMBOL(kernel_sendpage_locked);
3544
3545 /**
3546 * kernel_sock_shutdown - shut down part of a full-duplex connection (kernel space)
3547 * @sock: socket
3548 * @how: connection part
3549 *
3550 * Returns 0 or an error.
3551 */
3552
kernel_sock_shutdown(struct socket * sock,enum sock_shutdown_cmd how)3553 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3554 {
3555 return sock->ops->shutdown(sock, how);
3556 }
3557 EXPORT_SYMBOL(kernel_sock_shutdown);
3558
3559 /**
3560 * kernel_sock_ip_overhead - returns the IP overhead imposed by a socket
3561 * @sk: socket
3562 *
3563 * This routine returns the IP overhead imposed by a socket i.e.
3564 * the length of the underlying IP header, depending on whether
3565 * this is an IPv4 or IPv6 socket and the length from IP options turned
3566 * on at the socket. Assumes that the caller has a lock on the socket.
3567 */
3568
kernel_sock_ip_overhead(struct sock * sk)3569 u32 kernel_sock_ip_overhead(struct sock *sk)
3570 {
3571 struct inet_sock *inet;
3572 struct ip_options_rcu *opt;
3573 u32 overhead = 0;
3574 #if IS_ENABLED(CONFIG_IPV6)
3575 struct ipv6_pinfo *np;
3576 struct ipv6_txoptions *optv6 = NULL;
3577 #endif /* IS_ENABLED(CONFIG_IPV6) */
3578
3579 if (!sk)
3580 return overhead;
3581
3582 switch (sk->sk_family) {
3583 case AF_INET:
3584 inet = inet_sk(sk);
3585 overhead += sizeof(struct iphdr);
3586 opt = rcu_dereference_protected(inet->inet_opt,
3587 sock_owned_by_user(sk));
3588 if (opt)
3589 overhead += opt->opt.optlen;
3590 return overhead;
3591 #if IS_ENABLED(CONFIG_IPV6)
3592 case AF_INET6:
3593 np = inet6_sk(sk);
3594 overhead += sizeof(struct ipv6hdr);
3595 if (np)
3596 optv6 = rcu_dereference_protected(np->opt,
3597 sock_owned_by_user(sk));
3598 if (optv6)
3599 overhead += (optv6->opt_flen + optv6->opt_nflen);
3600 return overhead;
3601 #endif /* IS_ENABLED(CONFIG_IPV6) */
3602 default: /* Returns 0 overhead if the socket is not ipv4 or ipv6 */
3603 return overhead;
3604 }
3605 }
3606 EXPORT_SYMBOL(kernel_sock_ip_overhead);
3607