1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/kernel/exit.c
4 *
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 */
7
8 #include <linux/mm.h>
9 #include <linux/slab.h>
10 #include <linux/sched/autogroup.h>
11 #include <linux/sched/mm.h>
12 #include <linux/sched/stat.h>
13 #include <linux/sched/task.h>
14 #include <linux/sched/task_stack.h>
15 #include <linux/sched/cputime.h>
16 #include <linux/interrupt.h>
17 #include <linux/module.h>
18 #include <linux/capability.h>
19 #include <linux/completion.h>
20 #include <linux/personality.h>
21 #include <linux/tty.h>
22 #include <linux/iocontext.h>
23 #include <linux/key.h>
24 #include <linux/cpu.h>
25 #include <linux/acct.h>
26 #include <linux/tsacct_kern.h>
27 #include <linux/file.h>
28 #include <linux/fdtable.h>
29 #include <linux/freezer.h>
30 #include <linux/binfmts.h>
31 #include <linux/nsproxy.h>
32 #include <linux/pid_namespace.h>
33 #include <linux/ptrace.h>
34 #include <linux/profile.h>
35 #include <linux/mount.h>
36 #include <linux/proc_fs.h>
37 #include <linux/kthread.h>
38 #include <linux/mempolicy.h>
39 #include <linux/taskstats_kern.h>
40 #include <linux/delayacct.h>
41 #include <linux/cgroup.h>
42 #include <linux/syscalls.h>
43 #include <linux/signal.h>
44 #include <linux/posix-timers.h>
45 #include <linux/cn_proc.h>
46 #include <linux/mutex.h>
47 #include <linux/futex.h>
48 #include <linux/pipe_fs_i.h>
49 #include <linux/audit.h> /* for audit_free() */
50 #include <linux/resource.h>
51 #include <linux/blkdev.h>
52 #include <linux/task_io_accounting_ops.h>
53 #include <linux/tracehook.h>
54 #include <linux/fs_struct.h>
55 #include <linux/init_task.h>
56 #include <linux/perf_event.h>
57 #include <trace/events/sched.h>
58 #include <linux/hw_breakpoint.h>
59 #include <linux/oom.h>
60 #include <linux/writeback.h>
61 #include <linux/shm.h>
62 #include <linux/kcov.h>
63 #include <linux/random.h>
64 #include <linux/rcuwait.h>
65 #include <linux/compat.h>
66 #include <linux/io_uring.h>
67
68 #include <linux/uaccess.h>
69 #include <asm/unistd.h>
70 #include <asm/mmu_context.h>
71
__unhash_process(struct task_struct * p,bool group_dead)72 static void __unhash_process(struct task_struct *p, bool group_dead)
73 {
74 nr_threads--;
75 detach_pid(p, PIDTYPE_PID);
76 if (group_dead) {
77 detach_pid(p, PIDTYPE_TGID);
78 detach_pid(p, PIDTYPE_PGID);
79 detach_pid(p, PIDTYPE_SID);
80
81 list_del_rcu(&p->tasks);
82 list_del_init(&p->sibling);
83 __this_cpu_dec(process_counts);
84 }
85 list_del_rcu(&p->thread_group);
86 list_del_rcu(&p->thread_node);
87 }
88
89 /*
90 * This function expects the tasklist_lock write-locked.
91 */
__exit_signal(struct task_struct * tsk)92 static void __exit_signal(struct task_struct *tsk)
93 {
94 struct signal_struct *sig = tsk->signal;
95 bool group_dead = thread_group_leader(tsk);
96 struct sighand_struct *sighand;
97 struct tty_struct *tty;
98 u64 utime, stime;
99
100 sighand = rcu_dereference_check(tsk->sighand,
101 lockdep_tasklist_lock_is_held());
102 spin_lock(&sighand->siglock);
103
104 #ifdef CONFIG_POSIX_TIMERS
105 posix_cpu_timers_exit(tsk);
106 if (group_dead)
107 posix_cpu_timers_exit_group(tsk);
108 #endif
109
110 if (group_dead) {
111 tty = sig->tty;
112 sig->tty = NULL;
113 } else {
114 /*
115 * If there is any task waiting for the group exit
116 * then notify it:
117 */
118 if (sig->notify_count > 0 && !--sig->notify_count)
119 wake_up_process(sig->group_exit_task);
120
121 if (tsk == sig->curr_target)
122 sig->curr_target = next_thread(tsk);
123 }
124
125 add_device_randomness((const void*) &tsk->se.sum_exec_runtime,
126 sizeof(unsigned long long));
127
128 /*
129 * Accumulate here the counters for all threads as they die. We could
130 * skip the group leader because it is the last user of signal_struct,
131 * but we want to avoid the race with thread_group_cputime() which can
132 * see the empty ->thread_head list.
133 */
134 task_cputime(tsk, &utime, &stime);
135 write_seqlock(&sig->stats_lock);
136 sig->utime += utime;
137 sig->stime += stime;
138 sig->gtime += task_gtime(tsk);
139 sig->min_flt += tsk->min_flt;
140 sig->maj_flt += tsk->maj_flt;
141 sig->nvcsw += tsk->nvcsw;
142 sig->nivcsw += tsk->nivcsw;
143 sig->inblock += task_io_get_inblock(tsk);
144 sig->oublock += task_io_get_oublock(tsk);
145 task_io_accounting_add(&sig->ioac, &tsk->ioac);
146 sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
147 sig->nr_threads--;
148 __unhash_process(tsk, group_dead);
149 write_sequnlock(&sig->stats_lock);
150
151 /*
152 * Do this under ->siglock, we can race with another thread
153 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
154 */
155 flush_sigqueue(&tsk->pending);
156 tsk->sighand = NULL;
157 spin_unlock(&sighand->siglock);
158
159 __cleanup_sighand(sighand);
160 clear_tsk_thread_flag(tsk, TIF_SIGPENDING);
161 if (group_dead) {
162 flush_sigqueue(&sig->shared_pending);
163 tty_kref_put(tty);
164 }
165 }
166
delayed_put_task_struct(struct rcu_head * rhp)167 static void delayed_put_task_struct(struct rcu_head *rhp)
168 {
169 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
170
171 perf_event_delayed_put(tsk);
172 trace_sched_process_free(tsk);
173 put_task_struct(tsk);
174 }
175
put_task_struct_rcu_user(struct task_struct * task)176 void put_task_struct_rcu_user(struct task_struct *task)
177 {
178 if (refcount_dec_and_test(&task->rcu_users))
179 call_rcu(&task->rcu, delayed_put_task_struct);
180 }
181
release_task(struct task_struct * p)182 void release_task(struct task_struct *p)
183 {
184 struct task_struct *leader;
185 struct pid *thread_pid;
186 int zap_leader;
187 repeat:
188 /* don't need to get the RCU readlock here - the process is dead and
189 * can't be modifying its own credentials. But shut RCU-lockdep up */
190 rcu_read_lock();
191 atomic_dec(&__task_cred(p)->user->processes);
192 rcu_read_unlock();
193
194 cgroup_release(p);
195
196 write_lock_irq(&tasklist_lock);
197 ptrace_release_task(p);
198 thread_pid = get_pid(p->thread_pid);
199 __exit_signal(p);
200
201 /*
202 * If we are the last non-leader member of the thread
203 * group, and the leader is zombie, then notify the
204 * group leader's parent process. (if it wants notification.)
205 */
206 zap_leader = 0;
207 leader = p->group_leader;
208 if (leader != p && thread_group_empty(leader)
209 && leader->exit_state == EXIT_ZOMBIE) {
210 /*
211 * If we were the last child thread and the leader has
212 * exited already, and the leader's parent ignores SIGCHLD,
213 * then we are the one who should release the leader.
214 */
215 zap_leader = do_notify_parent(leader, leader->exit_signal);
216 if (zap_leader)
217 leader->exit_state = EXIT_DEAD;
218 }
219
220 write_unlock_irq(&tasklist_lock);
221 seccomp_filter_release(p);
222 proc_flush_pid(thread_pid);
223 put_pid(thread_pid);
224 release_thread(p);
225 put_task_struct_rcu_user(p);
226
227 p = leader;
228 if (unlikely(zap_leader))
229 goto repeat;
230 }
231
rcuwait_wake_up(struct rcuwait * w)232 int rcuwait_wake_up(struct rcuwait *w)
233 {
234 int ret = 0;
235 struct task_struct *task;
236
237 rcu_read_lock();
238
239 /*
240 * Order condition vs @task, such that everything prior to the load
241 * of @task is visible. This is the condition as to why the user called
242 * rcuwait_wake() in the first place. Pairs with set_current_state()
243 * barrier (A) in rcuwait_wait_event().
244 *
245 * WAIT WAKE
246 * [S] tsk = current [S] cond = true
247 * MB (A) MB (B)
248 * [L] cond [L] tsk
249 */
250 smp_mb(); /* (B) */
251
252 task = rcu_dereference(w->task);
253 if (task)
254 ret = wake_up_process(task);
255 rcu_read_unlock();
256
257 return ret;
258 }
259 EXPORT_SYMBOL_GPL(rcuwait_wake_up);
260
261 /*
262 * Determine if a process group is "orphaned", according to the POSIX
263 * definition in 2.2.2.52. Orphaned process groups are not to be affected
264 * by terminal-generated stop signals. Newly orphaned process groups are
265 * to receive a SIGHUP and a SIGCONT.
266 *
267 * "I ask you, have you ever known what it is to be an orphan?"
268 */
will_become_orphaned_pgrp(struct pid * pgrp,struct task_struct * ignored_task)269 static int will_become_orphaned_pgrp(struct pid *pgrp,
270 struct task_struct *ignored_task)
271 {
272 struct task_struct *p;
273
274 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
275 if ((p == ignored_task) ||
276 (p->exit_state && thread_group_empty(p)) ||
277 is_global_init(p->real_parent))
278 continue;
279
280 if (task_pgrp(p->real_parent) != pgrp &&
281 task_session(p->real_parent) == task_session(p))
282 return 0;
283 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
284
285 return 1;
286 }
287
is_current_pgrp_orphaned(void)288 int is_current_pgrp_orphaned(void)
289 {
290 int retval;
291
292 read_lock(&tasklist_lock);
293 retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
294 read_unlock(&tasklist_lock);
295
296 return retval;
297 }
298
has_stopped_jobs(struct pid * pgrp)299 static bool has_stopped_jobs(struct pid *pgrp)
300 {
301 struct task_struct *p;
302
303 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
304 if (p->signal->flags & SIGNAL_STOP_STOPPED)
305 return true;
306 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
307
308 return false;
309 }
310
311 /*
312 * Check to see if any process groups have become orphaned as
313 * a result of our exiting, and if they have any stopped jobs,
314 * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
315 */
316 static void
kill_orphaned_pgrp(struct task_struct * tsk,struct task_struct * parent)317 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
318 {
319 struct pid *pgrp = task_pgrp(tsk);
320 struct task_struct *ignored_task = tsk;
321
322 if (!parent)
323 /* exit: our father is in a different pgrp than
324 * we are and we were the only connection outside.
325 */
326 parent = tsk->real_parent;
327 else
328 /* reparent: our child is in a different pgrp than
329 * we are, and it was the only connection outside.
330 */
331 ignored_task = NULL;
332
333 if (task_pgrp(parent) != pgrp &&
334 task_session(parent) == task_session(tsk) &&
335 will_become_orphaned_pgrp(pgrp, ignored_task) &&
336 has_stopped_jobs(pgrp)) {
337 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
338 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
339 }
340 }
341
342 #ifdef CONFIG_MEMCG
343 /*
344 * A task is exiting. If it owned this mm, find a new owner for the mm.
345 */
mm_update_next_owner(struct mm_struct * mm)346 void mm_update_next_owner(struct mm_struct *mm)
347 {
348 struct task_struct *c, *g, *p = current;
349
350 retry:
351 /*
352 * If the exiting or execing task is not the owner, it's
353 * someone else's problem.
354 */
355 if (mm->owner != p)
356 return;
357 /*
358 * The current owner is exiting/execing and there are no other
359 * candidates. Do not leave the mm pointing to a possibly
360 * freed task structure.
361 */
362 if (atomic_read(&mm->mm_users) <= 1) {
363 WRITE_ONCE(mm->owner, NULL);
364 return;
365 }
366
367 read_lock(&tasklist_lock);
368 /*
369 * Search in the children
370 */
371 list_for_each_entry(c, &p->children, sibling) {
372 if (c->mm == mm)
373 goto assign_new_owner;
374 }
375
376 /*
377 * Search in the siblings
378 */
379 list_for_each_entry(c, &p->real_parent->children, sibling) {
380 if (c->mm == mm)
381 goto assign_new_owner;
382 }
383
384 /*
385 * Search through everything else, we should not get here often.
386 */
387 for_each_process(g) {
388 if (g->flags & PF_KTHREAD)
389 continue;
390 for_each_thread(g, c) {
391 if (c->mm == mm)
392 goto assign_new_owner;
393 if (c->mm)
394 break;
395 }
396 }
397 read_unlock(&tasklist_lock);
398 /*
399 * We found no owner yet mm_users > 1: this implies that we are
400 * most likely racing with swapoff (try_to_unuse()) or /proc or
401 * ptrace or page migration (get_task_mm()). Mark owner as NULL.
402 */
403 WRITE_ONCE(mm->owner, NULL);
404 return;
405
406 assign_new_owner:
407 BUG_ON(c == p);
408 get_task_struct(c);
409 /*
410 * The task_lock protects c->mm from changing.
411 * We always want mm->owner->mm == mm
412 */
413 task_lock(c);
414 /*
415 * Delay read_unlock() till we have the task_lock()
416 * to ensure that c does not slip away underneath us
417 */
418 read_unlock(&tasklist_lock);
419 if (c->mm != mm) {
420 task_unlock(c);
421 put_task_struct(c);
422 goto retry;
423 }
424 WRITE_ONCE(mm->owner, c);
425 task_unlock(c);
426 put_task_struct(c);
427 }
428 #endif /* CONFIG_MEMCG */
429
430 /*
431 * Turn us into a lazy TLB process if we
432 * aren't already..
433 */
exit_mm(void)434 static void exit_mm(void)
435 {
436 struct mm_struct *mm = current->mm;
437 struct core_state *core_state;
438
439 exit_mm_release(current, mm);
440 if (!mm)
441 return;
442 sync_mm_rss(mm);
443 /*
444 * Serialize with any possible pending coredump.
445 * We must hold mmap_lock around checking core_state
446 * and clearing tsk->mm. The core-inducing thread
447 * will increment ->nr_threads for each thread in the
448 * group with ->mm != NULL.
449 */
450 mmap_read_lock(mm);
451 core_state = mm->core_state;
452 if (core_state) {
453 struct core_thread self;
454
455 mmap_read_unlock(mm);
456
457 self.task = current;
458 if (self.task->flags & PF_SIGNALED)
459 self.next = xchg(&core_state->dumper.next, &self);
460 else
461 self.task = NULL;
462 /*
463 * Implies mb(), the result of xchg() must be visible
464 * to core_state->dumper.
465 */
466 if (atomic_dec_and_test(&core_state->nr_threads))
467 complete(&core_state->startup);
468
469 for (;;) {
470 set_current_state(TASK_UNINTERRUPTIBLE);
471 if (!self.task) /* see coredump_finish() */
472 break;
473 freezable_schedule();
474 }
475 __set_current_state(TASK_RUNNING);
476 mmap_read_lock(mm);
477 }
478 mmgrab(mm);
479 BUG_ON(mm != current->active_mm);
480 /* more a memory barrier than a real lock */
481 task_lock(current);
482 current->mm = NULL;
483 mmap_read_unlock(mm);
484 enter_lazy_tlb(mm, current);
485 task_unlock(current);
486 mm_update_next_owner(mm);
487 mmput(mm);
488 if (test_thread_flag(TIF_MEMDIE))
489 exit_oom_victim();
490 }
491
find_alive_thread(struct task_struct * p)492 static struct task_struct *find_alive_thread(struct task_struct *p)
493 {
494 struct task_struct *t;
495
496 for_each_thread(p, t) {
497 if (!(t->flags & PF_EXITING))
498 return t;
499 }
500 return NULL;
501 }
502
find_child_reaper(struct task_struct * father,struct list_head * dead)503 static struct task_struct *find_child_reaper(struct task_struct *father,
504 struct list_head *dead)
505 __releases(&tasklist_lock)
506 __acquires(&tasklist_lock)
507 {
508 struct pid_namespace *pid_ns = task_active_pid_ns(father);
509 struct task_struct *reaper = pid_ns->child_reaper;
510 struct task_struct *p, *n;
511
512 if (likely(reaper != father))
513 return reaper;
514
515 reaper = find_alive_thread(father);
516 if (reaper) {
517 pid_ns->child_reaper = reaper;
518 return reaper;
519 }
520
521 write_unlock_irq(&tasklist_lock);
522
523 list_for_each_entry_safe(p, n, dead, ptrace_entry) {
524 list_del_init(&p->ptrace_entry);
525 release_task(p);
526 }
527
528 zap_pid_ns_processes(pid_ns);
529 write_lock_irq(&tasklist_lock);
530
531 return father;
532 }
533
534 /*
535 * When we die, we re-parent all our children, and try to:
536 * 1. give them to another thread in our thread group, if such a member exists
537 * 2. give it to the first ancestor process which prctl'd itself as a
538 * child_subreaper for its children (like a service manager)
539 * 3. give it to the init process (PID 1) in our pid namespace
540 */
find_new_reaper(struct task_struct * father,struct task_struct * child_reaper)541 static struct task_struct *find_new_reaper(struct task_struct *father,
542 struct task_struct *child_reaper)
543 {
544 struct task_struct *thread, *reaper;
545
546 thread = find_alive_thread(father);
547 if (thread)
548 return thread;
549
550 if (father->signal->has_child_subreaper) {
551 unsigned int ns_level = task_pid(father)->level;
552 /*
553 * Find the first ->is_child_subreaper ancestor in our pid_ns.
554 * We can't check reaper != child_reaper to ensure we do not
555 * cross the namespaces, the exiting parent could be injected
556 * by setns() + fork().
557 * We check pid->level, this is slightly more efficient than
558 * task_active_pid_ns(reaper) != task_active_pid_ns(father).
559 */
560 for (reaper = father->real_parent;
561 task_pid(reaper)->level == ns_level;
562 reaper = reaper->real_parent) {
563 if (reaper == &init_task)
564 break;
565 if (!reaper->signal->is_child_subreaper)
566 continue;
567 thread = find_alive_thread(reaper);
568 if (thread)
569 return thread;
570 }
571 }
572
573 return child_reaper;
574 }
575
576 /*
577 * Any that need to be release_task'd are put on the @dead list.
578 */
reparent_leader(struct task_struct * father,struct task_struct * p,struct list_head * dead)579 static void reparent_leader(struct task_struct *father, struct task_struct *p,
580 struct list_head *dead)
581 {
582 if (unlikely(p->exit_state == EXIT_DEAD))
583 return;
584
585 /* We don't want people slaying init. */
586 p->exit_signal = SIGCHLD;
587
588 /* If it has exited notify the new parent about this child's death. */
589 if (!p->ptrace &&
590 p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
591 if (do_notify_parent(p, p->exit_signal)) {
592 p->exit_state = EXIT_DEAD;
593 list_add(&p->ptrace_entry, dead);
594 }
595 }
596
597 kill_orphaned_pgrp(p, father);
598 }
599
600 /*
601 * This does two things:
602 *
603 * A. Make init inherit all the child processes
604 * B. Check to see if any process groups have become orphaned
605 * as a result of our exiting, and if they have any stopped
606 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
607 */
forget_original_parent(struct task_struct * father,struct list_head * dead)608 static void forget_original_parent(struct task_struct *father,
609 struct list_head *dead)
610 {
611 struct task_struct *p, *t, *reaper;
612
613 if (unlikely(!list_empty(&father->ptraced)))
614 exit_ptrace(father, dead);
615
616 /* Can drop and reacquire tasklist_lock */
617 reaper = find_child_reaper(father, dead);
618 if (list_empty(&father->children))
619 return;
620
621 reaper = find_new_reaper(father, reaper);
622 list_for_each_entry(p, &father->children, sibling) {
623 for_each_thread(p, t) {
624 RCU_INIT_POINTER(t->real_parent, reaper);
625 BUG_ON((!t->ptrace) != (rcu_access_pointer(t->parent) == father));
626 if (likely(!t->ptrace))
627 t->parent = t->real_parent;
628 if (t->pdeath_signal)
629 group_send_sig_info(t->pdeath_signal,
630 SEND_SIG_NOINFO, t,
631 PIDTYPE_TGID);
632 }
633 /*
634 * If this is a threaded reparent there is no need to
635 * notify anyone anything has happened.
636 */
637 if (!same_thread_group(reaper, father))
638 reparent_leader(father, p, dead);
639 }
640 list_splice_tail_init(&father->children, &reaper->children);
641 }
642
643 /*
644 * Send signals to all our closest relatives so that they know
645 * to properly mourn us..
646 */
exit_notify(struct task_struct * tsk,int group_dead)647 static void exit_notify(struct task_struct *tsk, int group_dead)
648 {
649 bool autoreap;
650 struct task_struct *p, *n;
651 LIST_HEAD(dead);
652
653 write_lock_irq(&tasklist_lock);
654 forget_original_parent(tsk, &dead);
655
656 if (group_dead)
657 kill_orphaned_pgrp(tsk->group_leader, NULL);
658
659 tsk->exit_state = EXIT_ZOMBIE;
660 if (unlikely(tsk->ptrace)) {
661 int sig = thread_group_leader(tsk) &&
662 thread_group_empty(tsk) &&
663 !ptrace_reparented(tsk) ?
664 tsk->exit_signal : SIGCHLD;
665 autoreap = do_notify_parent(tsk, sig);
666 } else if (thread_group_leader(tsk)) {
667 autoreap = thread_group_empty(tsk) &&
668 do_notify_parent(tsk, tsk->exit_signal);
669 } else {
670 autoreap = true;
671 }
672
673 if (autoreap) {
674 tsk->exit_state = EXIT_DEAD;
675 list_add(&tsk->ptrace_entry, &dead);
676 }
677
678 /* mt-exec, de_thread() is waiting for group leader */
679 if (unlikely(tsk->signal->notify_count < 0))
680 wake_up_process(tsk->signal->group_exit_task);
681 write_unlock_irq(&tasklist_lock);
682
683 list_for_each_entry_safe(p, n, &dead, ptrace_entry) {
684 list_del_init(&p->ptrace_entry);
685 release_task(p);
686 }
687 }
688
689 #ifdef CONFIG_DEBUG_STACK_USAGE
check_stack_usage(void)690 static void check_stack_usage(void)
691 {
692 static DEFINE_SPINLOCK(low_water_lock);
693 static int lowest_to_date = THREAD_SIZE;
694 unsigned long free;
695
696 free = stack_not_used(current);
697
698 if (free >= lowest_to_date)
699 return;
700
701 spin_lock(&low_water_lock);
702 if (free < lowest_to_date) {
703 pr_info("%s (%d) used greatest stack depth: %lu bytes left\n",
704 current->comm, task_pid_nr(current), free);
705 lowest_to_date = free;
706 }
707 spin_unlock(&low_water_lock);
708 }
709 #else
check_stack_usage(void)710 static inline void check_stack_usage(void) {}
711 #endif
712
do_exit(long code)713 void __noreturn do_exit(long code)
714 {
715 struct task_struct *tsk = current;
716 int group_dead;
717
718 /*
719 * We can get here from a kernel oops, sometimes with preemption off.
720 * Start by checking for critical errors.
721 * Then fix up important state like USER_DS and preemption.
722 * Then do everything else.
723 */
724
725 WARN_ON(blk_needs_flush_plug(tsk));
726
727 if (unlikely(in_interrupt()))
728 panic("Aiee, killing interrupt handler!");
729 if (unlikely(!tsk->pid))
730 panic("Attempted to kill the idle task!");
731
732 /*
733 * If do_exit is called because this processes oopsed, it's possible
734 * that get_fs() was left as KERNEL_DS, so reset it to USER_DS before
735 * continuing. Amongst other possible reasons, this is to prevent
736 * mm_release()->clear_child_tid() from writing to a user-controlled
737 * kernel address.
738 */
739 force_uaccess_begin();
740
741 if (unlikely(in_atomic())) {
742 pr_info("note: %s[%d] exited with preempt_count %d\n",
743 current->comm, task_pid_nr(current),
744 preempt_count());
745 preempt_count_set(PREEMPT_ENABLED);
746 }
747
748 profile_task_exit(tsk);
749 kcov_task_exit(tsk);
750
751 ptrace_event(PTRACE_EVENT_EXIT, code);
752
753 validate_creds_for_do_exit(tsk);
754
755 /*
756 * We're taking recursive faults here in do_exit. Safest is to just
757 * leave this task alone and wait for reboot.
758 */
759 if (unlikely(tsk->flags & PF_EXITING)) {
760 pr_alert("Fixing recursive fault but reboot is needed!\n");
761 futex_exit_recursive(tsk);
762 set_current_state(TASK_UNINTERRUPTIBLE);
763 schedule();
764 }
765
766 io_uring_files_cancel(tsk->files);
767 exit_signals(tsk); /* sets PF_EXITING */
768 sched_exit(tsk);
769
770 /* sync mm's RSS info before statistics gathering */
771 if (tsk->mm)
772 sync_mm_rss(tsk->mm);
773 acct_update_integrals(tsk);
774 group_dead = atomic_dec_and_test(&tsk->signal->live);
775 if (group_dead) {
776 /*
777 * If the last thread of global init has exited, panic
778 * immediately to get a useable coredump.
779 */
780 if (unlikely(is_global_init(tsk)))
781 panic("Attempted to kill init! exitcode=0x%08x\n",
782 tsk->signal->group_exit_code ?: (int)code);
783
784 #ifdef CONFIG_POSIX_TIMERS
785 hrtimer_cancel(&tsk->signal->real_timer);
786 exit_itimers(tsk->signal);
787 #endif
788 if (tsk->mm)
789 setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm);
790 }
791 acct_collect(code, group_dead);
792 if (group_dead)
793 tty_audit_exit();
794 audit_free(tsk);
795
796 tsk->exit_code = code;
797 taskstats_exit(tsk, group_dead);
798
799 exit_mm();
800
801 if (group_dead)
802 acct_process();
803 trace_sched_process_exit(tsk);
804
805 exit_sem(tsk);
806 exit_shm(tsk);
807 exit_files(tsk);
808 exit_fs(tsk);
809 if (group_dead)
810 disassociate_ctty(1);
811 exit_task_namespaces(tsk);
812 exit_task_work(tsk);
813 exit_thread(tsk);
814
815 /*
816 * Flush inherited counters to the parent - before the parent
817 * gets woken up by child-exit notifications.
818 *
819 * because of cgroup mode, must be called before cgroup_exit()
820 */
821 perf_event_exit_task(tsk);
822
823 sched_autogroup_exit_task(tsk);
824 cgroup_exit(tsk);
825
826 /*
827 * FIXME: do that only when needed, using sched_exit tracepoint
828 */
829 flush_ptrace_hw_breakpoint(tsk);
830
831 exit_tasks_rcu_start();
832 exit_notify(tsk, group_dead);
833 proc_exit_connector(tsk);
834 mpol_put_task_policy(tsk);
835 #ifdef CONFIG_FUTEX
836 if (unlikely(current->pi_state_cache))
837 kfree(current->pi_state_cache);
838 #endif
839 /*
840 * Make sure we are holding no locks:
841 */
842 debug_check_no_locks_held();
843
844 if (tsk->io_context)
845 exit_io_context(tsk);
846
847 if (tsk->splice_pipe)
848 free_pipe_info(tsk->splice_pipe);
849
850 if (tsk->task_frag.page)
851 put_page(tsk->task_frag.page);
852
853 validate_creds_for_do_exit(tsk);
854
855 check_stack_usage();
856 preempt_disable();
857 if (tsk->nr_dirtied)
858 __this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied);
859 exit_rcu();
860 exit_tasks_rcu_finish();
861
862 lockdep_free_task(tsk);
863 do_task_dead();
864 }
865 EXPORT_SYMBOL_GPL(do_exit);
866
complete_and_exit(struct completion * comp,long code)867 void complete_and_exit(struct completion *comp, long code)
868 {
869 if (comp)
870 complete(comp);
871
872 do_exit(code);
873 }
874 EXPORT_SYMBOL(complete_and_exit);
875
SYSCALL_DEFINE1(exit,int,error_code)876 SYSCALL_DEFINE1(exit, int, error_code)
877 {
878 do_exit((error_code&0xff)<<8);
879 }
880
881 /*
882 * Take down every thread in the group. This is called by fatal signals
883 * as well as by sys_exit_group (below).
884 */
885 void
do_group_exit(int exit_code)886 do_group_exit(int exit_code)
887 {
888 struct signal_struct *sig = current->signal;
889
890 BUG_ON(exit_code & 0x80); /* core dumps don't get here */
891
892 if (signal_group_exit(sig))
893 exit_code = sig->group_exit_code;
894 else if (!thread_group_empty(current)) {
895 struct sighand_struct *const sighand = current->sighand;
896
897 spin_lock_irq(&sighand->siglock);
898 if (signal_group_exit(sig))
899 /* Another thread got here before we took the lock. */
900 exit_code = sig->group_exit_code;
901 else {
902 sig->group_exit_code = exit_code;
903 sig->flags = SIGNAL_GROUP_EXIT;
904 zap_other_threads(current);
905 }
906 spin_unlock_irq(&sighand->siglock);
907 }
908
909 do_exit(exit_code);
910 /* NOTREACHED */
911 }
912
913 /*
914 * this kills every thread in the thread group. Note that any externally
915 * wait4()-ing process will get the correct exit code - even if this
916 * thread is not the thread group leader.
917 */
SYSCALL_DEFINE1(exit_group,int,error_code)918 SYSCALL_DEFINE1(exit_group, int, error_code)
919 {
920 do_group_exit((error_code & 0xff) << 8);
921 /* NOTREACHED */
922 return 0;
923 }
924
925 struct waitid_info {
926 pid_t pid;
927 uid_t uid;
928 int status;
929 int cause;
930 };
931
932 struct wait_opts {
933 enum pid_type wo_type;
934 int wo_flags;
935 struct pid *wo_pid;
936
937 struct waitid_info *wo_info;
938 int wo_stat;
939 struct rusage *wo_rusage;
940
941 wait_queue_entry_t child_wait;
942 int notask_error;
943 };
944
eligible_pid(struct wait_opts * wo,struct task_struct * p)945 static int eligible_pid(struct wait_opts *wo, struct task_struct *p)
946 {
947 return wo->wo_type == PIDTYPE_MAX ||
948 task_pid_type(p, wo->wo_type) == wo->wo_pid;
949 }
950
951 static int
eligible_child(struct wait_opts * wo,bool ptrace,struct task_struct * p)952 eligible_child(struct wait_opts *wo, bool ptrace, struct task_struct *p)
953 {
954 if (!eligible_pid(wo, p))
955 return 0;
956
957 /*
958 * Wait for all children (clone and not) if __WALL is set or
959 * if it is traced by us.
960 */
961 if (ptrace || (wo->wo_flags & __WALL))
962 return 1;
963
964 /*
965 * Otherwise, wait for clone children *only* if __WCLONE is set;
966 * otherwise, wait for non-clone children *only*.
967 *
968 * Note: a "clone" child here is one that reports to its parent
969 * using a signal other than SIGCHLD, or a non-leader thread which
970 * we can only see if it is traced by us.
971 */
972 if ((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE))
973 return 0;
974
975 return 1;
976 }
977
978 /*
979 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold
980 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
981 * the lock and this task is uninteresting. If we return nonzero, we have
982 * released the lock and the system call should return.
983 */
wait_task_zombie(struct wait_opts * wo,struct task_struct * p)984 static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p)
985 {
986 int state, status;
987 pid_t pid = task_pid_vnr(p);
988 uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p));
989 struct waitid_info *infop;
990
991 if (!likely(wo->wo_flags & WEXITED))
992 return 0;
993
994 if (unlikely(wo->wo_flags & WNOWAIT)) {
995 status = p->exit_code;
996 get_task_struct(p);
997 read_unlock(&tasklist_lock);
998 sched_annotate_sleep();
999 if (wo->wo_rusage)
1000 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1001 put_task_struct(p);
1002 goto out_info;
1003 }
1004 /*
1005 * Move the task's state to DEAD/TRACE, only one thread can do this.
1006 */
1007 state = (ptrace_reparented(p) && thread_group_leader(p)) ?
1008 EXIT_TRACE : EXIT_DEAD;
1009 if (cmpxchg(&p->exit_state, EXIT_ZOMBIE, state) != EXIT_ZOMBIE)
1010 return 0;
1011 /*
1012 * We own this thread, nobody else can reap it.
1013 */
1014 read_unlock(&tasklist_lock);
1015 sched_annotate_sleep();
1016
1017 /*
1018 * Check thread_group_leader() to exclude the traced sub-threads.
1019 */
1020 if (state == EXIT_DEAD && thread_group_leader(p)) {
1021 struct signal_struct *sig = p->signal;
1022 struct signal_struct *psig = current->signal;
1023 unsigned long maxrss;
1024 u64 tgutime, tgstime;
1025
1026 /*
1027 * The resource counters for the group leader are in its
1028 * own task_struct. Those for dead threads in the group
1029 * are in its signal_struct, as are those for the child
1030 * processes it has previously reaped. All these
1031 * accumulate in the parent's signal_struct c* fields.
1032 *
1033 * We don't bother to take a lock here to protect these
1034 * p->signal fields because the whole thread group is dead
1035 * and nobody can change them.
1036 *
1037 * psig->stats_lock also protects us from our sub-theads
1038 * which can reap other children at the same time. Until
1039 * we change k_getrusage()-like users to rely on this lock
1040 * we have to take ->siglock as well.
1041 *
1042 * We use thread_group_cputime_adjusted() to get times for
1043 * the thread group, which consolidates times for all threads
1044 * in the group including the group leader.
1045 */
1046 thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1047 spin_lock_irq(¤t->sighand->siglock);
1048 write_seqlock(&psig->stats_lock);
1049 psig->cutime += tgutime + sig->cutime;
1050 psig->cstime += tgstime + sig->cstime;
1051 psig->cgtime += task_gtime(p) + sig->gtime + sig->cgtime;
1052 psig->cmin_flt +=
1053 p->min_flt + sig->min_flt + sig->cmin_flt;
1054 psig->cmaj_flt +=
1055 p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1056 psig->cnvcsw +=
1057 p->nvcsw + sig->nvcsw + sig->cnvcsw;
1058 psig->cnivcsw +=
1059 p->nivcsw + sig->nivcsw + sig->cnivcsw;
1060 psig->cinblock +=
1061 task_io_get_inblock(p) +
1062 sig->inblock + sig->cinblock;
1063 psig->coublock +=
1064 task_io_get_oublock(p) +
1065 sig->oublock + sig->coublock;
1066 maxrss = max(sig->maxrss, sig->cmaxrss);
1067 if (psig->cmaxrss < maxrss)
1068 psig->cmaxrss = maxrss;
1069 task_io_accounting_add(&psig->ioac, &p->ioac);
1070 task_io_accounting_add(&psig->ioac, &sig->ioac);
1071 write_sequnlock(&psig->stats_lock);
1072 spin_unlock_irq(¤t->sighand->siglock);
1073 }
1074
1075 if (wo->wo_rusage)
1076 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1077 status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1078 ? p->signal->group_exit_code : p->exit_code;
1079 wo->wo_stat = status;
1080
1081 if (state == EXIT_TRACE) {
1082 write_lock_irq(&tasklist_lock);
1083 /* We dropped tasklist, ptracer could die and untrace */
1084 ptrace_unlink(p);
1085
1086 /* If parent wants a zombie, don't release it now */
1087 state = EXIT_ZOMBIE;
1088 if (do_notify_parent(p, p->exit_signal))
1089 state = EXIT_DEAD;
1090 p->exit_state = state;
1091 write_unlock_irq(&tasklist_lock);
1092 }
1093 if (state == EXIT_DEAD)
1094 release_task(p);
1095
1096 out_info:
1097 infop = wo->wo_info;
1098 if (infop) {
1099 if ((status & 0x7f) == 0) {
1100 infop->cause = CLD_EXITED;
1101 infop->status = status >> 8;
1102 } else {
1103 infop->cause = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1104 infop->status = status & 0x7f;
1105 }
1106 infop->pid = pid;
1107 infop->uid = uid;
1108 }
1109
1110 return pid;
1111 }
1112
task_stopped_code(struct task_struct * p,bool ptrace)1113 static int *task_stopped_code(struct task_struct *p, bool ptrace)
1114 {
1115 if (ptrace) {
1116 if (task_is_traced(p) && !(p->jobctl & JOBCTL_LISTENING))
1117 return &p->exit_code;
1118 } else {
1119 if (p->signal->flags & SIGNAL_STOP_STOPPED)
1120 return &p->signal->group_exit_code;
1121 }
1122 return NULL;
1123 }
1124
1125 /**
1126 * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED
1127 * @wo: wait options
1128 * @ptrace: is the wait for ptrace
1129 * @p: task to wait for
1130 *
1131 * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED.
1132 *
1133 * CONTEXT:
1134 * read_lock(&tasklist_lock), which is released if return value is
1135 * non-zero. Also, grabs and releases @p->sighand->siglock.
1136 *
1137 * RETURNS:
1138 * 0 if wait condition didn't exist and search for other wait conditions
1139 * should continue. Non-zero return, -errno on failure and @p's pid on
1140 * success, implies that tasklist_lock is released and wait condition
1141 * search should terminate.
1142 */
wait_task_stopped(struct wait_opts * wo,int ptrace,struct task_struct * p)1143 static int wait_task_stopped(struct wait_opts *wo,
1144 int ptrace, struct task_struct *p)
1145 {
1146 struct waitid_info *infop;
1147 int exit_code, *p_code, why;
1148 uid_t uid = 0; /* unneeded, required by compiler */
1149 pid_t pid;
1150
1151 /*
1152 * Traditionally we see ptrace'd stopped tasks regardless of options.
1153 */
1154 if (!ptrace && !(wo->wo_flags & WUNTRACED))
1155 return 0;
1156
1157 if (!task_stopped_code(p, ptrace))
1158 return 0;
1159
1160 exit_code = 0;
1161 spin_lock_irq(&p->sighand->siglock);
1162
1163 p_code = task_stopped_code(p, ptrace);
1164 if (unlikely(!p_code))
1165 goto unlock_sig;
1166
1167 exit_code = *p_code;
1168 if (!exit_code)
1169 goto unlock_sig;
1170
1171 if (!unlikely(wo->wo_flags & WNOWAIT))
1172 *p_code = 0;
1173
1174 uid = from_kuid_munged(current_user_ns(), task_uid(p));
1175 unlock_sig:
1176 spin_unlock_irq(&p->sighand->siglock);
1177 if (!exit_code)
1178 return 0;
1179
1180 /*
1181 * Now we are pretty sure this task is interesting.
1182 * Make sure it doesn't get reaped out from under us while we
1183 * give up the lock and then examine it below. We don't want to
1184 * keep holding onto the tasklist_lock while we call getrusage and
1185 * possibly take page faults for user memory.
1186 */
1187 get_task_struct(p);
1188 pid = task_pid_vnr(p);
1189 why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1190 read_unlock(&tasklist_lock);
1191 sched_annotate_sleep();
1192 if (wo->wo_rusage)
1193 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1194 put_task_struct(p);
1195
1196 if (likely(!(wo->wo_flags & WNOWAIT)))
1197 wo->wo_stat = (exit_code << 8) | 0x7f;
1198
1199 infop = wo->wo_info;
1200 if (infop) {
1201 infop->cause = why;
1202 infop->status = exit_code;
1203 infop->pid = pid;
1204 infop->uid = uid;
1205 }
1206 return pid;
1207 }
1208
1209 /*
1210 * Handle do_wait work for one task in a live, non-stopped state.
1211 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1212 * the lock and this task is uninteresting. If we return nonzero, we have
1213 * released the lock and the system call should return.
1214 */
wait_task_continued(struct wait_opts * wo,struct task_struct * p)1215 static int wait_task_continued(struct wait_opts *wo, struct task_struct *p)
1216 {
1217 struct waitid_info *infop;
1218 pid_t pid;
1219 uid_t uid;
1220
1221 if (!unlikely(wo->wo_flags & WCONTINUED))
1222 return 0;
1223
1224 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1225 return 0;
1226
1227 spin_lock_irq(&p->sighand->siglock);
1228 /* Re-check with the lock held. */
1229 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1230 spin_unlock_irq(&p->sighand->siglock);
1231 return 0;
1232 }
1233 if (!unlikely(wo->wo_flags & WNOWAIT))
1234 p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1235 uid = from_kuid_munged(current_user_ns(), task_uid(p));
1236 spin_unlock_irq(&p->sighand->siglock);
1237
1238 pid = task_pid_vnr(p);
1239 get_task_struct(p);
1240 read_unlock(&tasklist_lock);
1241 sched_annotate_sleep();
1242 if (wo->wo_rusage)
1243 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1244 put_task_struct(p);
1245
1246 infop = wo->wo_info;
1247 if (!infop) {
1248 wo->wo_stat = 0xffff;
1249 } else {
1250 infop->cause = CLD_CONTINUED;
1251 infop->pid = pid;
1252 infop->uid = uid;
1253 infop->status = SIGCONT;
1254 }
1255 return pid;
1256 }
1257
1258 /*
1259 * Consider @p for a wait by @parent.
1260 *
1261 * -ECHILD should be in ->notask_error before the first call.
1262 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1263 * Returns zero if the search for a child should continue;
1264 * then ->notask_error is 0 if @p is an eligible child,
1265 * or still -ECHILD.
1266 */
wait_consider_task(struct wait_opts * wo,int ptrace,struct task_struct * p)1267 static int wait_consider_task(struct wait_opts *wo, int ptrace,
1268 struct task_struct *p)
1269 {
1270 /*
1271 * We can race with wait_task_zombie() from another thread.
1272 * Ensure that EXIT_ZOMBIE -> EXIT_DEAD/EXIT_TRACE transition
1273 * can't confuse the checks below.
1274 */
1275 int exit_state = READ_ONCE(p->exit_state);
1276 int ret;
1277
1278 if (unlikely(exit_state == EXIT_DEAD))
1279 return 0;
1280
1281 ret = eligible_child(wo, ptrace, p);
1282 if (!ret)
1283 return ret;
1284
1285 if (unlikely(exit_state == EXIT_TRACE)) {
1286 /*
1287 * ptrace == 0 means we are the natural parent. In this case
1288 * we should clear notask_error, debugger will notify us.
1289 */
1290 if (likely(!ptrace))
1291 wo->notask_error = 0;
1292 return 0;
1293 }
1294
1295 if (likely(!ptrace) && unlikely(p->ptrace)) {
1296 /*
1297 * If it is traced by its real parent's group, just pretend
1298 * the caller is ptrace_do_wait() and reap this child if it
1299 * is zombie.
1300 *
1301 * This also hides group stop state from real parent; otherwise
1302 * a single stop can be reported twice as group and ptrace stop.
1303 * If a ptracer wants to distinguish these two events for its
1304 * own children it should create a separate process which takes
1305 * the role of real parent.
1306 */
1307 if (!ptrace_reparented(p))
1308 ptrace = 1;
1309 }
1310
1311 /* slay zombie? */
1312 if (exit_state == EXIT_ZOMBIE) {
1313 /* we don't reap group leaders with subthreads */
1314 if (!delay_group_leader(p)) {
1315 /*
1316 * A zombie ptracee is only visible to its ptracer.
1317 * Notification and reaping will be cascaded to the
1318 * real parent when the ptracer detaches.
1319 */
1320 if (unlikely(ptrace) || likely(!p->ptrace))
1321 return wait_task_zombie(wo, p);
1322 }
1323
1324 /*
1325 * Allow access to stopped/continued state via zombie by
1326 * falling through. Clearing of notask_error is complex.
1327 *
1328 * When !@ptrace:
1329 *
1330 * If WEXITED is set, notask_error should naturally be
1331 * cleared. If not, subset of WSTOPPED|WCONTINUED is set,
1332 * so, if there are live subthreads, there are events to
1333 * wait for. If all subthreads are dead, it's still safe
1334 * to clear - this function will be called again in finite
1335 * amount time once all the subthreads are released and
1336 * will then return without clearing.
1337 *
1338 * When @ptrace:
1339 *
1340 * Stopped state is per-task and thus can't change once the
1341 * target task dies. Only continued and exited can happen.
1342 * Clear notask_error if WCONTINUED | WEXITED.
1343 */
1344 if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED)))
1345 wo->notask_error = 0;
1346 } else {
1347 /*
1348 * @p is alive and it's gonna stop, continue or exit, so
1349 * there always is something to wait for.
1350 */
1351 wo->notask_error = 0;
1352 }
1353
1354 /*
1355 * Wait for stopped. Depending on @ptrace, different stopped state
1356 * is used and the two don't interact with each other.
1357 */
1358 ret = wait_task_stopped(wo, ptrace, p);
1359 if (ret)
1360 return ret;
1361
1362 /*
1363 * Wait for continued. There's only one continued state and the
1364 * ptracer can consume it which can confuse the real parent. Don't
1365 * use WCONTINUED from ptracer. You don't need or want it.
1366 */
1367 return wait_task_continued(wo, p);
1368 }
1369
1370 /*
1371 * Do the work of do_wait() for one thread in the group, @tsk.
1372 *
1373 * -ECHILD should be in ->notask_error before the first call.
1374 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1375 * Returns zero if the search for a child should continue; then
1376 * ->notask_error is 0 if there were any eligible children,
1377 * or still -ECHILD.
1378 */
do_wait_thread(struct wait_opts * wo,struct task_struct * tsk)1379 static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk)
1380 {
1381 struct task_struct *p;
1382
1383 list_for_each_entry(p, &tsk->children, sibling) {
1384 int ret = wait_consider_task(wo, 0, p);
1385
1386 if (ret)
1387 return ret;
1388 }
1389
1390 return 0;
1391 }
1392
ptrace_do_wait(struct wait_opts * wo,struct task_struct * tsk)1393 static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk)
1394 {
1395 struct task_struct *p;
1396
1397 list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1398 int ret = wait_consider_task(wo, 1, p);
1399
1400 if (ret)
1401 return ret;
1402 }
1403
1404 return 0;
1405 }
1406
child_wait_callback(wait_queue_entry_t * wait,unsigned mode,int sync,void * key)1407 static int child_wait_callback(wait_queue_entry_t *wait, unsigned mode,
1408 int sync, void *key)
1409 {
1410 struct wait_opts *wo = container_of(wait, struct wait_opts,
1411 child_wait);
1412 struct task_struct *p = key;
1413
1414 if (!eligible_pid(wo, p))
1415 return 0;
1416
1417 if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent)
1418 return 0;
1419
1420 return default_wake_function(wait, mode, sync, key);
1421 }
1422
__wake_up_parent(struct task_struct * p,struct task_struct * parent)1423 void __wake_up_parent(struct task_struct *p, struct task_struct *parent)
1424 {
1425 __wake_up_sync_key(&parent->signal->wait_chldexit,
1426 TASK_INTERRUPTIBLE, p);
1427 }
1428
do_wait(struct wait_opts * wo)1429 static long do_wait(struct wait_opts *wo)
1430 {
1431 struct task_struct *tsk;
1432 int retval;
1433
1434 trace_sched_process_wait(wo->wo_pid);
1435
1436 init_waitqueue_func_entry(&wo->child_wait, child_wait_callback);
1437 wo->child_wait.private = current;
1438 add_wait_queue(¤t->signal->wait_chldexit, &wo->child_wait);
1439 repeat:
1440 /*
1441 * If there is nothing that can match our criteria, just get out.
1442 * We will clear ->notask_error to zero if we see any child that
1443 * might later match our criteria, even if we are not able to reap
1444 * it yet.
1445 */
1446 wo->notask_error = -ECHILD;
1447 if ((wo->wo_type < PIDTYPE_MAX) &&
1448 (!wo->wo_pid || !pid_has_task(wo->wo_pid, wo->wo_type)))
1449 goto notask;
1450
1451 set_current_state(TASK_INTERRUPTIBLE);
1452 read_lock(&tasklist_lock);
1453 tsk = current;
1454 do {
1455 retval = do_wait_thread(wo, tsk);
1456 if (retval)
1457 goto end;
1458
1459 retval = ptrace_do_wait(wo, tsk);
1460 if (retval)
1461 goto end;
1462
1463 if (wo->wo_flags & __WNOTHREAD)
1464 break;
1465 } while_each_thread(current, tsk);
1466 read_unlock(&tasklist_lock);
1467
1468 notask:
1469 retval = wo->notask_error;
1470 if (!retval && !(wo->wo_flags & WNOHANG)) {
1471 retval = -ERESTARTSYS;
1472 if (!signal_pending(current)) {
1473 schedule();
1474 goto repeat;
1475 }
1476 }
1477 end:
1478 __set_current_state(TASK_RUNNING);
1479 remove_wait_queue(¤t->signal->wait_chldexit, &wo->child_wait);
1480 return retval;
1481 }
1482
kernel_waitid(int which,pid_t upid,struct waitid_info * infop,int options,struct rusage * ru)1483 static long kernel_waitid(int which, pid_t upid, struct waitid_info *infop,
1484 int options, struct rusage *ru)
1485 {
1486 struct wait_opts wo;
1487 struct pid *pid = NULL;
1488 enum pid_type type;
1489 long ret;
1490 unsigned int f_flags = 0;
1491
1492 if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED|
1493 __WNOTHREAD|__WCLONE|__WALL))
1494 return -EINVAL;
1495 if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1496 return -EINVAL;
1497
1498 switch (which) {
1499 case P_ALL:
1500 type = PIDTYPE_MAX;
1501 break;
1502 case P_PID:
1503 type = PIDTYPE_PID;
1504 if (upid <= 0)
1505 return -EINVAL;
1506
1507 pid = find_get_pid(upid);
1508 break;
1509 case P_PGID:
1510 type = PIDTYPE_PGID;
1511 if (upid < 0)
1512 return -EINVAL;
1513
1514 if (upid)
1515 pid = find_get_pid(upid);
1516 else
1517 pid = get_task_pid(current, PIDTYPE_PGID);
1518 break;
1519 case P_PIDFD:
1520 type = PIDTYPE_PID;
1521 if (upid < 0)
1522 return -EINVAL;
1523
1524 pid = pidfd_get_pid(upid, &f_flags);
1525 if (IS_ERR(pid))
1526 return PTR_ERR(pid);
1527
1528 break;
1529 default:
1530 return -EINVAL;
1531 }
1532
1533 wo.wo_type = type;
1534 wo.wo_pid = pid;
1535 wo.wo_flags = options;
1536 wo.wo_info = infop;
1537 wo.wo_rusage = ru;
1538 if (f_flags & O_NONBLOCK)
1539 wo.wo_flags |= WNOHANG;
1540
1541 ret = do_wait(&wo);
1542 if (!ret && !(options & WNOHANG) && (f_flags & O_NONBLOCK))
1543 ret = -EAGAIN;
1544
1545 put_pid(pid);
1546 return ret;
1547 }
1548
SYSCALL_DEFINE5(waitid,int,which,pid_t,upid,struct siginfo __user *,infop,int,options,struct rusage __user *,ru)1549 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
1550 infop, int, options, struct rusage __user *, ru)
1551 {
1552 struct rusage r;
1553 struct waitid_info info = {.status = 0};
1554 long err = kernel_waitid(which, upid, &info, options, ru ? &r : NULL);
1555 int signo = 0;
1556
1557 if (err > 0) {
1558 signo = SIGCHLD;
1559 err = 0;
1560 if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
1561 return -EFAULT;
1562 }
1563 if (!infop)
1564 return err;
1565
1566 if (!user_write_access_begin(infop, sizeof(*infop)))
1567 return -EFAULT;
1568
1569 unsafe_put_user(signo, &infop->si_signo, Efault);
1570 unsafe_put_user(0, &infop->si_errno, Efault);
1571 unsafe_put_user(info.cause, &infop->si_code, Efault);
1572 unsafe_put_user(info.pid, &infop->si_pid, Efault);
1573 unsafe_put_user(info.uid, &infop->si_uid, Efault);
1574 unsafe_put_user(info.status, &infop->si_status, Efault);
1575 user_write_access_end();
1576 return err;
1577 Efault:
1578 user_write_access_end();
1579 return -EFAULT;
1580 }
1581
kernel_wait4(pid_t upid,int __user * stat_addr,int options,struct rusage * ru)1582 long kernel_wait4(pid_t upid, int __user *stat_addr, int options,
1583 struct rusage *ru)
1584 {
1585 struct wait_opts wo;
1586 struct pid *pid = NULL;
1587 enum pid_type type;
1588 long ret;
1589
1590 if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1591 __WNOTHREAD|__WCLONE|__WALL))
1592 return -EINVAL;
1593
1594 /* -INT_MIN is not defined */
1595 if (upid == INT_MIN)
1596 return -ESRCH;
1597
1598 if (upid == -1)
1599 type = PIDTYPE_MAX;
1600 else if (upid < 0) {
1601 type = PIDTYPE_PGID;
1602 pid = find_get_pid(-upid);
1603 } else if (upid == 0) {
1604 type = PIDTYPE_PGID;
1605 pid = get_task_pid(current, PIDTYPE_PGID);
1606 } else /* upid > 0 */ {
1607 type = PIDTYPE_PID;
1608 pid = find_get_pid(upid);
1609 }
1610
1611 wo.wo_type = type;
1612 wo.wo_pid = pid;
1613 wo.wo_flags = options | WEXITED;
1614 wo.wo_info = NULL;
1615 wo.wo_stat = 0;
1616 wo.wo_rusage = ru;
1617 ret = do_wait(&wo);
1618 put_pid(pid);
1619 if (ret > 0 && stat_addr && put_user(wo.wo_stat, stat_addr))
1620 ret = -EFAULT;
1621
1622 return ret;
1623 }
1624
kernel_wait(pid_t pid,int * stat)1625 int kernel_wait(pid_t pid, int *stat)
1626 {
1627 struct wait_opts wo = {
1628 .wo_type = PIDTYPE_PID,
1629 .wo_pid = find_get_pid(pid),
1630 .wo_flags = WEXITED,
1631 };
1632 int ret;
1633
1634 ret = do_wait(&wo);
1635 if (ret > 0 && wo.wo_stat)
1636 *stat = wo.wo_stat;
1637 put_pid(wo.wo_pid);
1638 return ret;
1639 }
1640
SYSCALL_DEFINE4(wait4,pid_t,upid,int __user *,stat_addr,int,options,struct rusage __user *,ru)1641 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
1642 int, options, struct rusage __user *, ru)
1643 {
1644 struct rusage r;
1645 long err = kernel_wait4(upid, stat_addr, options, ru ? &r : NULL);
1646
1647 if (err > 0) {
1648 if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
1649 return -EFAULT;
1650 }
1651 return err;
1652 }
1653
1654 #ifdef __ARCH_WANT_SYS_WAITPID
1655
1656 /*
1657 * sys_waitpid() remains for compatibility. waitpid() should be
1658 * implemented by calling sys_wait4() from libc.a.
1659 */
SYSCALL_DEFINE3(waitpid,pid_t,pid,int __user *,stat_addr,int,options)1660 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
1661 {
1662 return kernel_wait4(pid, stat_addr, options, NULL);
1663 }
1664
1665 #endif
1666
1667 #ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE4(wait4,compat_pid_t,pid,compat_uint_t __user *,stat_addr,int,options,struct compat_rusage __user *,ru)1668 COMPAT_SYSCALL_DEFINE4(wait4,
1669 compat_pid_t, pid,
1670 compat_uint_t __user *, stat_addr,
1671 int, options,
1672 struct compat_rusage __user *, ru)
1673 {
1674 struct rusage r;
1675 long err = kernel_wait4(pid, stat_addr, options, ru ? &r : NULL);
1676 if (err > 0) {
1677 if (ru && put_compat_rusage(&r, ru))
1678 return -EFAULT;
1679 }
1680 return err;
1681 }
1682
COMPAT_SYSCALL_DEFINE5(waitid,int,which,compat_pid_t,pid,struct compat_siginfo __user *,infop,int,options,struct compat_rusage __user *,uru)1683 COMPAT_SYSCALL_DEFINE5(waitid,
1684 int, which, compat_pid_t, pid,
1685 struct compat_siginfo __user *, infop, int, options,
1686 struct compat_rusage __user *, uru)
1687 {
1688 struct rusage ru;
1689 struct waitid_info info = {.status = 0};
1690 long err = kernel_waitid(which, pid, &info, options, uru ? &ru : NULL);
1691 int signo = 0;
1692 if (err > 0) {
1693 signo = SIGCHLD;
1694 err = 0;
1695 if (uru) {
1696 /* kernel_waitid() overwrites everything in ru */
1697 if (COMPAT_USE_64BIT_TIME)
1698 err = copy_to_user(uru, &ru, sizeof(ru));
1699 else
1700 err = put_compat_rusage(&ru, uru);
1701 if (err)
1702 return -EFAULT;
1703 }
1704 }
1705
1706 if (!infop)
1707 return err;
1708
1709 if (!user_write_access_begin(infop, sizeof(*infop)))
1710 return -EFAULT;
1711
1712 unsafe_put_user(signo, &infop->si_signo, Efault);
1713 unsafe_put_user(0, &infop->si_errno, Efault);
1714 unsafe_put_user(info.cause, &infop->si_code, Efault);
1715 unsafe_put_user(info.pid, &infop->si_pid, Efault);
1716 unsafe_put_user(info.uid, &infop->si_uid, Efault);
1717 unsafe_put_user(info.status, &infop->si_status, Efault);
1718 user_write_access_end();
1719 return err;
1720 Efault:
1721 user_write_access_end();
1722 return -EFAULT;
1723 }
1724 #endif
1725
1726 /**
1727 * thread_group_exited - check that a thread group has exited
1728 * @pid: tgid of thread group to be checked.
1729 *
1730 * Test if the thread group represented by tgid has exited (all
1731 * threads are zombies, dead or completely gone).
1732 *
1733 * Return: true if the thread group has exited. false otherwise.
1734 */
thread_group_exited(struct pid * pid)1735 bool thread_group_exited(struct pid *pid)
1736 {
1737 struct task_struct *task;
1738 bool exited;
1739
1740 rcu_read_lock();
1741 task = pid_task(pid, PIDTYPE_PID);
1742 exited = !task ||
1743 (READ_ONCE(task->exit_state) && thread_group_empty(task));
1744 rcu_read_unlock();
1745
1746 return exited;
1747 }
1748 EXPORT_SYMBOL(thread_group_exited);
1749
abort(void)1750 __weak void abort(void)
1751 {
1752 BUG();
1753
1754 /* if that doesn't kill us, halt */
1755 panic("Oops failed to kill thread");
1756 }
1757 EXPORT_SYMBOL(abort);
1758