1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * linux/kernel/sys.c
4 *
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 */
7
8 #include <linux/export.h>
9 #include <linux/mm.h>
10 #include <linux/mm_inline.h>
11 #include <linux/utsname.h>
12 #include <linux/mman.h>
13 #include <linux/reboot.h>
14 #include <linux/prctl.h>
15 #include <linux/highuid.h>
16 #include <linux/fs.h>
17 #include <linux/kmod.h>
18 #include <linux/perf_event.h>
19 #include <linux/resource.h>
20 #include <linux/kernel.h>
21 #include <linux/workqueue.h>
22 #include <linux/capability.h>
23 #include <linux/device.h>
24 #include <linux/key.h>
25 #include <linux/times.h>
26 #include <linux/posix-timers.h>
27 #include <linux/security.h>
28 #include <linux/dcookies.h>
29 #include <linux/suspend.h>
30 #include <linux/tty.h>
31 #include <linux/signal.h>
32 #include <linux/cn_proc.h>
33 #include <linux/getcpu.h>
34 #include <linux/task_io_accounting_ops.h>
35 #include <linux/seccomp.h>
36 #include <linux/cpu.h>
37 #include <linux/personality.h>
38 #include <linux/ptrace.h>
39 #include <linux/fs_struct.h>
40 #include <linux/file.h>
41 #include <linux/mount.h>
42 #include <linux/gfp.h>
43 #include <linux/syscore_ops.h>
44 #include <linux/version.h>
45 #include <linux/ctype.h>
46
47 #include <linux/compat.h>
48 #include <linux/syscalls.h>
49 #include <linux/kprobes.h>
50 #include <linux/user_namespace.h>
51 #include <linux/time_namespace.h>
52 #include <linux/binfmts.h>
53
54 #include <linux/sched.h>
55 #include <linux/sched/autogroup.h>
56 #include <linux/sched/loadavg.h>
57 #include <linux/sched/stat.h>
58 #include <linux/sched/mm.h>
59 #include <linux/sched/coredump.h>
60 #include <linux/sched/task.h>
61 #include <linux/sched/cputime.h>
62 #include <linux/rcupdate.h>
63 #include <linux/uidgid.h>
64 #include <linux/cred.h>
65
66 #include <linux/nospec.h>
67
68 #include <linux/kmsg_dump.h>
69 /* Move somewhere else to avoid recompiling? */
70 #include <generated/utsrelease.h>
71
72 #include <linux/uaccess.h>
73 #include <asm/io.h>
74 #include <asm/unistd.h>
75
76 #include "uid16.h"
77
78 #ifndef SET_UNALIGN_CTL
79 # define SET_UNALIGN_CTL(a, b) (-EINVAL)
80 #endif
81 #ifndef GET_UNALIGN_CTL
82 # define GET_UNALIGN_CTL(a, b) (-EINVAL)
83 #endif
84 #ifndef SET_FPEMU_CTL
85 # define SET_FPEMU_CTL(a, b) (-EINVAL)
86 #endif
87 #ifndef GET_FPEMU_CTL
88 # define GET_FPEMU_CTL(a, b) (-EINVAL)
89 #endif
90 #ifndef SET_FPEXC_CTL
91 # define SET_FPEXC_CTL(a, b) (-EINVAL)
92 #endif
93 #ifndef GET_FPEXC_CTL
94 # define GET_FPEXC_CTL(a, b) (-EINVAL)
95 #endif
96 #ifndef GET_ENDIAN
97 # define GET_ENDIAN(a, b) (-EINVAL)
98 #endif
99 #ifndef SET_ENDIAN
100 # define SET_ENDIAN(a, b) (-EINVAL)
101 #endif
102 #ifndef GET_TSC_CTL
103 # define GET_TSC_CTL(a) (-EINVAL)
104 #endif
105 #ifndef SET_TSC_CTL
106 # define SET_TSC_CTL(a) (-EINVAL)
107 #endif
108 #ifndef GET_FP_MODE
109 # define GET_FP_MODE(a) (-EINVAL)
110 #endif
111 #ifndef SET_FP_MODE
112 # define SET_FP_MODE(a,b) (-EINVAL)
113 #endif
114 #ifndef SVE_SET_VL
115 # define SVE_SET_VL(a) (-EINVAL)
116 #endif
117 #ifndef SVE_GET_VL
118 # define SVE_GET_VL() (-EINVAL)
119 #endif
120 #ifndef PAC_RESET_KEYS
121 # define PAC_RESET_KEYS(a, b) (-EINVAL)
122 #endif
123 #ifndef SET_TAGGED_ADDR_CTRL
124 # define SET_TAGGED_ADDR_CTRL(a) (-EINVAL)
125 #endif
126 #ifndef GET_TAGGED_ADDR_CTRL
127 # define GET_TAGGED_ADDR_CTRL() (-EINVAL)
128 #endif
129
130 /*
131 * this is where the system-wide overflow UID and GID are defined, for
132 * architectures that now have 32-bit UID/GID but didn't in the past
133 */
134
135 int overflowuid = DEFAULT_OVERFLOWUID;
136 int overflowgid = DEFAULT_OVERFLOWGID;
137
138 EXPORT_SYMBOL(overflowuid);
139 EXPORT_SYMBOL(overflowgid);
140
141 /*
142 * the same as above, but for filesystems which can only store a 16-bit
143 * UID and GID. as such, this is needed on all architectures
144 */
145
146 int fs_overflowuid = DEFAULT_FS_OVERFLOWUID;
147 int fs_overflowgid = DEFAULT_FS_OVERFLOWGID;
148
149 EXPORT_SYMBOL(fs_overflowuid);
150 EXPORT_SYMBOL(fs_overflowgid);
151
152 /*
153 * Returns true if current's euid is same as p's uid or euid,
154 * or has CAP_SYS_NICE to p's user_ns.
155 *
156 * Called with rcu_read_lock, creds are safe
157 */
set_one_prio_perm(struct task_struct * p)158 static bool set_one_prio_perm(struct task_struct *p)
159 {
160 const struct cred *cred = current_cred(), *pcred = __task_cred(p);
161
162 if (uid_eq(pcred->uid, cred->euid) ||
163 uid_eq(pcred->euid, cred->euid))
164 return true;
165 if (ns_capable(pcred->user_ns, CAP_SYS_NICE))
166 return true;
167 return false;
168 }
169
170 /*
171 * set the priority of a task
172 * - the caller must hold the RCU read lock
173 */
set_one_prio(struct task_struct * p,int niceval,int error)174 static int set_one_prio(struct task_struct *p, int niceval, int error)
175 {
176 int no_nice;
177
178 if (!set_one_prio_perm(p)) {
179 error = -EPERM;
180 goto out;
181 }
182 if (niceval < task_nice(p) && !can_nice(p, niceval)) {
183 error = -EACCES;
184 goto out;
185 }
186 no_nice = security_task_setnice(p, niceval);
187 if (no_nice) {
188 error = no_nice;
189 goto out;
190 }
191 if (error == -ESRCH)
192 error = 0;
193 set_user_nice(p, niceval);
194 out:
195 return error;
196 }
197
SYSCALL_DEFINE3(setpriority,int,which,int,who,int,niceval)198 SYSCALL_DEFINE3(setpriority, int, which, int, who, int, niceval)
199 {
200 struct task_struct *g, *p;
201 struct user_struct *user;
202 const struct cred *cred = current_cred();
203 int error = -EINVAL;
204 struct pid *pgrp;
205 kuid_t uid;
206
207 if (which > PRIO_USER || which < PRIO_PROCESS)
208 goto out;
209
210 /* normalize: avoid signed division (rounding problems) */
211 error = -ESRCH;
212 if (niceval < MIN_NICE)
213 niceval = MIN_NICE;
214 if (niceval > MAX_NICE)
215 niceval = MAX_NICE;
216
217 rcu_read_lock();
218 read_lock(&tasklist_lock);
219 switch (which) {
220 case PRIO_PROCESS:
221 if (who)
222 p = find_task_by_vpid(who);
223 else
224 p = current;
225 if (p)
226 error = set_one_prio(p, niceval, error);
227 break;
228 case PRIO_PGRP:
229 if (who)
230 pgrp = find_vpid(who);
231 else
232 pgrp = task_pgrp(current);
233 do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
234 error = set_one_prio(p, niceval, error);
235 } while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
236 break;
237 case PRIO_USER:
238 uid = make_kuid(cred->user_ns, who);
239 user = cred->user;
240 if (!who)
241 uid = cred->uid;
242 else if (!uid_eq(uid, cred->uid)) {
243 user = find_user(uid);
244 if (!user)
245 goto out_unlock; /* No processes for this user */
246 }
247 do_each_thread(g, p) {
248 if (uid_eq(task_uid(p), uid) && task_pid_vnr(p))
249 error = set_one_prio(p, niceval, error);
250 } while_each_thread(g, p);
251 if (!uid_eq(uid, cred->uid))
252 free_uid(user); /* For find_user() */
253 break;
254 }
255 out_unlock:
256 read_unlock(&tasklist_lock);
257 rcu_read_unlock();
258 out:
259 return error;
260 }
261
262 /*
263 * Ugh. To avoid negative return values, "getpriority()" will
264 * not return the normal nice-value, but a negated value that
265 * has been offset by 20 (ie it returns 40..1 instead of -20..19)
266 * to stay compatible.
267 */
SYSCALL_DEFINE2(getpriority,int,which,int,who)268 SYSCALL_DEFINE2(getpriority, int, which, int, who)
269 {
270 struct task_struct *g, *p;
271 struct user_struct *user;
272 const struct cred *cred = current_cred();
273 long niceval, retval = -ESRCH;
274 struct pid *pgrp;
275 kuid_t uid;
276
277 if (which > PRIO_USER || which < PRIO_PROCESS)
278 return -EINVAL;
279
280 rcu_read_lock();
281 read_lock(&tasklist_lock);
282 switch (which) {
283 case PRIO_PROCESS:
284 if (who)
285 p = find_task_by_vpid(who);
286 else
287 p = current;
288 if (p) {
289 niceval = nice_to_rlimit(task_nice(p));
290 if (niceval > retval)
291 retval = niceval;
292 }
293 break;
294 case PRIO_PGRP:
295 if (who)
296 pgrp = find_vpid(who);
297 else
298 pgrp = task_pgrp(current);
299 do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
300 niceval = nice_to_rlimit(task_nice(p));
301 if (niceval > retval)
302 retval = niceval;
303 } while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
304 break;
305 case PRIO_USER:
306 uid = make_kuid(cred->user_ns, who);
307 user = cred->user;
308 if (!who)
309 uid = cred->uid;
310 else if (!uid_eq(uid, cred->uid)) {
311 user = find_user(uid);
312 if (!user)
313 goto out_unlock; /* No processes for this user */
314 }
315 do_each_thread(g, p) {
316 if (uid_eq(task_uid(p), uid) && task_pid_vnr(p)) {
317 niceval = nice_to_rlimit(task_nice(p));
318 if (niceval > retval)
319 retval = niceval;
320 }
321 } while_each_thread(g, p);
322 if (!uid_eq(uid, cred->uid))
323 free_uid(user); /* for find_user() */
324 break;
325 }
326 out_unlock:
327 read_unlock(&tasklist_lock);
328 rcu_read_unlock();
329
330 return retval;
331 }
332
333 /*
334 * Unprivileged users may change the real gid to the effective gid
335 * or vice versa. (BSD-style)
336 *
337 * If you set the real gid at all, or set the effective gid to a value not
338 * equal to the real gid, then the saved gid is set to the new effective gid.
339 *
340 * This makes it possible for a setgid program to completely drop its
341 * privileges, which is often a useful assertion to make when you are doing
342 * a security audit over a program.
343 *
344 * The general idea is that a program which uses just setregid() will be
345 * 100% compatible with BSD. A program which uses just setgid() will be
346 * 100% compatible with POSIX with saved IDs.
347 *
348 * SMP: There are not races, the GIDs are checked only by filesystem
349 * operations (as far as semantic preservation is concerned).
350 */
351 #ifdef CONFIG_MULTIUSER
__sys_setregid(gid_t rgid,gid_t egid)352 long __sys_setregid(gid_t rgid, gid_t egid)
353 {
354 struct user_namespace *ns = current_user_ns();
355 const struct cred *old;
356 struct cred *new;
357 int retval;
358 kgid_t krgid, kegid;
359
360 krgid = make_kgid(ns, rgid);
361 kegid = make_kgid(ns, egid);
362
363 if ((rgid != (gid_t) -1) && !gid_valid(krgid))
364 return -EINVAL;
365 if ((egid != (gid_t) -1) && !gid_valid(kegid))
366 return -EINVAL;
367
368 new = prepare_creds();
369 if (!new)
370 return -ENOMEM;
371 old = current_cred();
372
373 retval = -EPERM;
374 if (rgid != (gid_t) -1) {
375 if (gid_eq(old->gid, krgid) ||
376 gid_eq(old->egid, krgid) ||
377 ns_capable_setid(old->user_ns, CAP_SETGID))
378 new->gid = krgid;
379 else
380 goto error;
381 }
382 if (egid != (gid_t) -1) {
383 if (gid_eq(old->gid, kegid) ||
384 gid_eq(old->egid, kegid) ||
385 gid_eq(old->sgid, kegid) ||
386 ns_capable_setid(old->user_ns, CAP_SETGID))
387 new->egid = kegid;
388 else
389 goto error;
390 }
391
392 if (rgid != (gid_t) -1 ||
393 (egid != (gid_t) -1 && !gid_eq(kegid, old->gid)))
394 new->sgid = new->egid;
395 new->fsgid = new->egid;
396
397 retval = security_task_fix_setgid(new, old, LSM_SETID_RE);
398 if (retval < 0)
399 goto error;
400
401 return commit_creds(new);
402
403 error:
404 abort_creds(new);
405 return retval;
406 }
407
SYSCALL_DEFINE2(setregid,gid_t,rgid,gid_t,egid)408 SYSCALL_DEFINE2(setregid, gid_t, rgid, gid_t, egid)
409 {
410 return __sys_setregid(rgid, egid);
411 }
412
413 /*
414 * setgid() is implemented like SysV w/ SAVED_IDS
415 *
416 * SMP: Same implicit races as above.
417 */
__sys_setgid(gid_t gid)418 long __sys_setgid(gid_t gid)
419 {
420 struct user_namespace *ns = current_user_ns();
421 const struct cred *old;
422 struct cred *new;
423 int retval;
424 kgid_t kgid;
425
426 kgid = make_kgid(ns, gid);
427 if (!gid_valid(kgid))
428 return -EINVAL;
429
430 new = prepare_creds();
431 if (!new)
432 return -ENOMEM;
433 old = current_cred();
434
435 retval = -EPERM;
436 if (ns_capable_setid(old->user_ns, CAP_SETGID))
437 new->gid = new->egid = new->sgid = new->fsgid = kgid;
438 else if (gid_eq(kgid, old->gid) || gid_eq(kgid, old->sgid))
439 new->egid = new->fsgid = kgid;
440 else
441 goto error;
442
443 retval = security_task_fix_setgid(new, old, LSM_SETID_ID);
444 if (retval < 0)
445 goto error;
446
447 return commit_creds(new);
448
449 error:
450 abort_creds(new);
451 return retval;
452 }
453
SYSCALL_DEFINE1(setgid,gid_t,gid)454 SYSCALL_DEFINE1(setgid, gid_t, gid)
455 {
456 return __sys_setgid(gid);
457 }
458
459 /*
460 * change the user struct in a credentials set to match the new UID
461 */
set_user(struct cred * new)462 static int set_user(struct cred *new)
463 {
464 struct user_struct *new_user;
465
466 new_user = alloc_uid(new->uid);
467 if (!new_user)
468 return -EAGAIN;
469
470 /*
471 * We don't fail in case of NPROC limit excess here because too many
472 * poorly written programs don't check set*uid() return code, assuming
473 * it never fails if called by root. We may still enforce NPROC limit
474 * for programs doing set*uid()+execve() by harmlessly deferring the
475 * failure to the execve() stage.
476 */
477 if (atomic_read(&new_user->processes) >= rlimit(RLIMIT_NPROC) &&
478 new_user != INIT_USER)
479 current->flags |= PF_NPROC_EXCEEDED;
480 else
481 current->flags &= ~PF_NPROC_EXCEEDED;
482
483 free_uid(new->user);
484 new->user = new_user;
485 return 0;
486 }
487
488 /*
489 * Unprivileged users may change the real uid to the effective uid
490 * or vice versa. (BSD-style)
491 *
492 * If you set the real uid at all, or set the effective uid to a value not
493 * equal to the real uid, then the saved uid is set to the new effective uid.
494 *
495 * This makes it possible for a setuid program to completely drop its
496 * privileges, which is often a useful assertion to make when you are doing
497 * a security audit over a program.
498 *
499 * The general idea is that a program which uses just setreuid() will be
500 * 100% compatible with BSD. A program which uses just setuid() will be
501 * 100% compatible with POSIX with saved IDs.
502 */
__sys_setreuid(uid_t ruid,uid_t euid)503 long __sys_setreuid(uid_t ruid, uid_t euid)
504 {
505 struct user_namespace *ns = current_user_ns();
506 const struct cred *old;
507 struct cred *new;
508 int retval;
509 kuid_t kruid, keuid;
510
511 kruid = make_kuid(ns, ruid);
512 keuid = make_kuid(ns, euid);
513
514 if ((ruid != (uid_t) -1) && !uid_valid(kruid))
515 return -EINVAL;
516 if ((euid != (uid_t) -1) && !uid_valid(keuid))
517 return -EINVAL;
518
519 new = prepare_creds();
520 if (!new)
521 return -ENOMEM;
522 old = current_cred();
523
524 retval = -EPERM;
525 if (ruid != (uid_t) -1) {
526 new->uid = kruid;
527 if (!uid_eq(old->uid, kruid) &&
528 !uid_eq(old->euid, kruid) &&
529 !ns_capable_setid(old->user_ns, CAP_SETUID))
530 goto error;
531 }
532
533 if (euid != (uid_t) -1) {
534 new->euid = keuid;
535 if (!uid_eq(old->uid, keuid) &&
536 !uid_eq(old->euid, keuid) &&
537 !uid_eq(old->suid, keuid) &&
538 !ns_capable_setid(old->user_ns, CAP_SETUID))
539 goto error;
540 }
541
542 if (!uid_eq(new->uid, old->uid)) {
543 retval = set_user(new);
544 if (retval < 0)
545 goto error;
546 }
547 if (ruid != (uid_t) -1 ||
548 (euid != (uid_t) -1 && !uid_eq(keuid, old->uid)))
549 new->suid = new->euid;
550 new->fsuid = new->euid;
551
552 retval = security_task_fix_setuid(new, old, LSM_SETID_RE);
553 if (retval < 0)
554 goto error;
555
556 return commit_creds(new);
557
558 error:
559 abort_creds(new);
560 return retval;
561 }
562
SYSCALL_DEFINE2(setreuid,uid_t,ruid,uid_t,euid)563 SYSCALL_DEFINE2(setreuid, uid_t, ruid, uid_t, euid)
564 {
565 return __sys_setreuid(ruid, euid);
566 }
567
568 /*
569 * setuid() is implemented like SysV with SAVED_IDS
570 *
571 * Note that SAVED_ID's is deficient in that a setuid root program
572 * like sendmail, for example, cannot set its uid to be a normal
573 * user and then switch back, because if you're root, setuid() sets
574 * the saved uid too. If you don't like this, blame the bright people
575 * in the POSIX committee and/or USG. Note that the BSD-style setreuid()
576 * will allow a root program to temporarily drop privileges and be able to
577 * regain them by swapping the real and effective uid.
578 */
__sys_setuid(uid_t uid)579 long __sys_setuid(uid_t uid)
580 {
581 struct user_namespace *ns = current_user_ns();
582 const struct cred *old;
583 struct cred *new;
584 int retval;
585 kuid_t kuid;
586
587 kuid = make_kuid(ns, uid);
588 if (!uid_valid(kuid))
589 return -EINVAL;
590
591 new = prepare_creds();
592 if (!new)
593 return -ENOMEM;
594 old = current_cred();
595
596 retval = -EPERM;
597 if (ns_capable_setid(old->user_ns, CAP_SETUID)) {
598 new->suid = new->uid = kuid;
599 if (!uid_eq(kuid, old->uid)) {
600 retval = set_user(new);
601 if (retval < 0)
602 goto error;
603 }
604 } else if (!uid_eq(kuid, old->uid) && !uid_eq(kuid, new->suid)) {
605 goto error;
606 }
607
608 new->fsuid = new->euid = kuid;
609
610 retval = security_task_fix_setuid(new, old, LSM_SETID_ID);
611 if (retval < 0)
612 goto error;
613
614 return commit_creds(new);
615
616 error:
617 abort_creds(new);
618 return retval;
619 }
620
SYSCALL_DEFINE1(setuid,uid_t,uid)621 SYSCALL_DEFINE1(setuid, uid_t, uid)
622 {
623 return __sys_setuid(uid);
624 }
625
626
627 /*
628 * This function implements a generic ability to update ruid, euid,
629 * and suid. This allows you to implement the 4.4 compatible seteuid().
630 */
__sys_setresuid(uid_t ruid,uid_t euid,uid_t suid)631 long __sys_setresuid(uid_t ruid, uid_t euid, uid_t suid)
632 {
633 struct user_namespace *ns = current_user_ns();
634 const struct cred *old;
635 struct cred *new;
636 int retval;
637 kuid_t kruid, keuid, ksuid;
638
639 kruid = make_kuid(ns, ruid);
640 keuid = make_kuid(ns, euid);
641 ksuid = make_kuid(ns, suid);
642
643 if ((ruid != (uid_t) -1) && !uid_valid(kruid))
644 return -EINVAL;
645
646 if ((euid != (uid_t) -1) && !uid_valid(keuid))
647 return -EINVAL;
648
649 if ((suid != (uid_t) -1) && !uid_valid(ksuid))
650 return -EINVAL;
651
652 new = prepare_creds();
653 if (!new)
654 return -ENOMEM;
655
656 old = current_cred();
657
658 retval = -EPERM;
659 if (!ns_capable_setid(old->user_ns, CAP_SETUID)) {
660 if (ruid != (uid_t) -1 && !uid_eq(kruid, old->uid) &&
661 !uid_eq(kruid, old->euid) && !uid_eq(kruid, old->suid))
662 goto error;
663 if (euid != (uid_t) -1 && !uid_eq(keuid, old->uid) &&
664 !uid_eq(keuid, old->euid) && !uid_eq(keuid, old->suid))
665 goto error;
666 if (suid != (uid_t) -1 && !uid_eq(ksuid, old->uid) &&
667 !uid_eq(ksuid, old->euid) && !uid_eq(ksuid, old->suid))
668 goto error;
669 }
670
671 if (ruid != (uid_t) -1) {
672 new->uid = kruid;
673 if (!uid_eq(kruid, old->uid)) {
674 retval = set_user(new);
675 if (retval < 0)
676 goto error;
677 }
678 }
679 if (euid != (uid_t) -1)
680 new->euid = keuid;
681 if (suid != (uid_t) -1)
682 new->suid = ksuid;
683 new->fsuid = new->euid;
684
685 retval = security_task_fix_setuid(new, old, LSM_SETID_RES);
686 if (retval < 0)
687 goto error;
688
689 return commit_creds(new);
690
691 error:
692 abort_creds(new);
693 return retval;
694 }
695
SYSCALL_DEFINE3(setresuid,uid_t,ruid,uid_t,euid,uid_t,suid)696 SYSCALL_DEFINE3(setresuid, uid_t, ruid, uid_t, euid, uid_t, suid)
697 {
698 return __sys_setresuid(ruid, euid, suid);
699 }
700
SYSCALL_DEFINE3(getresuid,uid_t __user *,ruidp,uid_t __user *,euidp,uid_t __user *,suidp)701 SYSCALL_DEFINE3(getresuid, uid_t __user *, ruidp, uid_t __user *, euidp, uid_t __user *, suidp)
702 {
703 const struct cred *cred = current_cred();
704 int retval;
705 uid_t ruid, euid, suid;
706
707 ruid = from_kuid_munged(cred->user_ns, cred->uid);
708 euid = from_kuid_munged(cred->user_ns, cred->euid);
709 suid = from_kuid_munged(cred->user_ns, cred->suid);
710
711 retval = put_user(ruid, ruidp);
712 if (!retval) {
713 retval = put_user(euid, euidp);
714 if (!retval)
715 return put_user(suid, suidp);
716 }
717 return retval;
718 }
719
720 /*
721 * Same as above, but for rgid, egid, sgid.
722 */
__sys_setresgid(gid_t rgid,gid_t egid,gid_t sgid)723 long __sys_setresgid(gid_t rgid, gid_t egid, gid_t sgid)
724 {
725 struct user_namespace *ns = current_user_ns();
726 const struct cred *old;
727 struct cred *new;
728 int retval;
729 kgid_t krgid, kegid, ksgid;
730
731 krgid = make_kgid(ns, rgid);
732 kegid = make_kgid(ns, egid);
733 ksgid = make_kgid(ns, sgid);
734
735 if ((rgid != (gid_t) -1) && !gid_valid(krgid))
736 return -EINVAL;
737 if ((egid != (gid_t) -1) && !gid_valid(kegid))
738 return -EINVAL;
739 if ((sgid != (gid_t) -1) && !gid_valid(ksgid))
740 return -EINVAL;
741
742 new = prepare_creds();
743 if (!new)
744 return -ENOMEM;
745 old = current_cred();
746
747 retval = -EPERM;
748 if (!ns_capable_setid(old->user_ns, CAP_SETGID)) {
749 if (rgid != (gid_t) -1 && !gid_eq(krgid, old->gid) &&
750 !gid_eq(krgid, old->egid) && !gid_eq(krgid, old->sgid))
751 goto error;
752 if (egid != (gid_t) -1 && !gid_eq(kegid, old->gid) &&
753 !gid_eq(kegid, old->egid) && !gid_eq(kegid, old->sgid))
754 goto error;
755 if (sgid != (gid_t) -1 && !gid_eq(ksgid, old->gid) &&
756 !gid_eq(ksgid, old->egid) && !gid_eq(ksgid, old->sgid))
757 goto error;
758 }
759
760 if (rgid != (gid_t) -1)
761 new->gid = krgid;
762 if (egid != (gid_t) -1)
763 new->egid = kegid;
764 if (sgid != (gid_t) -1)
765 new->sgid = ksgid;
766 new->fsgid = new->egid;
767
768 retval = security_task_fix_setgid(new, old, LSM_SETID_RES);
769 if (retval < 0)
770 goto error;
771
772 return commit_creds(new);
773
774 error:
775 abort_creds(new);
776 return retval;
777 }
778
SYSCALL_DEFINE3(setresgid,gid_t,rgid,gid_t,egid,gid_t,sgid)779 SYSCALL_DEFINE3(setresgid, gid_t, rgid, gid_t, egid, gid_t, sgid)
780 {
781 return __sys_setresgid(rgid, egid, sgid);
782 }
783
SYSCALL_DEFINE3(getresgid,gid_t __user *,rgidp,gid_t __user *,egidp,gid_t __user *,sgidp)784 SYSCALL_DEFINE3(getresgid, gid_t __user *, rgidp, gid_t __user *, egidp, gid_t __user *, sgidp)
785 {
786 const struct cred *cred = current_cred();
787 int retval;
788 gid_t rgid, egid, sgid;
789
790 rgid = from_kgid_munged(cred->user_ns, cred->gid);
791 egid = from_kgid_munged(cred->user_ns, cred->egid);
792 sgid = from_kgid_munged(cred->user_ns, cred->sgid);
793
794 retval = put_user(rgid, rgidp);
795 if (!retval) {
796 retval = put_user(egid, egidp);
797 if (!retval)
798 retval = put_user(sgid, sgidp);
799 }
800
801 return retval;
802 }
803
804
805 /*
806 * "setfsuid()" sets the fsuid - the uid used for filesystem checks. This
807 * is used for "access()" and for the NFS daemon (letting nfsd stay at
808 * whatever uid it wants to). It normally shadows "euid", except when
809 * explicitly set by setfsuid() or for access..
810 */
__sys_setfsuid(uid_t uid)811 long __sys_setfsuid(uid_t uid)
812 {
813 const struct cred *old;
814 struct cred *new;
815 uid_t old_fsuid;
816 kuid_t kuid;
817
818 old = current_cred();
819 old_fsuid = from_kuid_munged(old->user_ns, old->fsuid);
820
821 kuid = make_kuid(old->user_ns, uid);
822 if (!uid_valid(kuid))
823 return old_fsuid;
824
825 new = prepare_creds();
826 if (!new)
827 return old_fsuid;
828
829 if (uid_eq(kuid, old->uid) || uid_eq(kuid, old->euid) ||
830 uid_eq(kuid, old->suid) || uid_eq(kuid, old->fsuid) ||
831 ns_capable_setid(old->user_ns, CAP_SETUID)) {
832 if (!uid_eq(kuid, old->fsuid)) {
833 new->fsuid = kuid;
834 if (security_task_fix_setuid(new, old, LSM_SETID_FS) == 0)
835 goto change_okay;
836 }
837 }
838
839 abort_creds(new);
840 return old_fsuid;
841
842 change_okay:
843 commit_creds(new);
844 return old_fsuid;
845 }
846
SYSCALL_DEFINE1(setfsuid,uid_t,uid)847 SYSCALL_DEFINE1(setfsuid, uid_t, uid)
848 {
849 return __sys_setfsuid(uid);
850 }
851
852 /*
853 * Samma på svenska..
854 */
__sys_setfsgid(gid_t gid)855 long __sys_setfsgid(gid_t gid)
856 {
857 const struct cred *old;
858 struct cred *new;
859 gid_t old_fsgid;
860 kgid_t kgid;
861
862 old = current_cred();
863 old_fsgid = from_kgid_munged(old->user_ns, old->fsgid);
864
865 kgid = make_kgid(old->user_ns, gid);
866 if (!gid_valid(kgid))
867 return old_fsgid;
868
869 new = prepare_creds();
870 if (!new)
871 return old_fsgid;
872
873 if (gid_eq(kgid, old->gid) || gid_eq(kgid, old->egid) ||
874 gid_eq(kgid, old->sgid) || gid_eq(kgid, old->fsgid) ||
875 ns_capable_setid(old->user_ns, CAP_SETGID)) {
876 if (!gid_eq(kgid, old->fsgid)) {
877 new->fsgid = kgid;
878 if (security_task_fix_setgid(new,old,LSM_SETID_FS) == 0)
879 goto change_okay;
880 }
881 }
882
883 abort_creds(new);
884 return old_fsgid;
885
886 change_okay:
887 commit_creds(new);
888 return old_fsgid;
889 }
890
SYSCALL_DEFINE1(setfsgid,gid_t,gid)891 SYSCALL_DEFINE1(setfsgid, gid_t, gid)
892 {
893 return __sys_setfsgid(gid);
894 }
895 #endif /* CONFIG_MULTIUSER */
896
897 /**
898 * sys_getpid - return the thread group id of the current process
899 *
900 * Note, despite the name, this returns the tgid not the pid. The tgid and
901 * the pid are identical unless CLONE_THREAD was specified on clone() in
902 * which case the tgid is the same in all threads of the same group.
903 *
904 * This is SMP safe as current->tgid does not change.
905 */
SYSCALL_DEFINE0(getpid)906 SYSCALL_DEFINE0(getpid)
907 {
908 return task_tgid_vnr(current);
909 }
910
911 /* Thread ID - the internal kernel "pid" */
SYSCALL_DEFINE0(gettid)912 SYSCALL_DEFINE0(gettid)
913 {
914 return task_pid_vnr(current);
915 }
916
917 /*
918 * Accessing ->real_parent is not SMP-safe, it could
919 * change from under us. However, we can use a stale
920 * value of ->real_parent under rcu_read_lock(), see
921 * release_task()->call_rcu(delayed_put_task_struct).
922 */
SYSCALL_DEFINE0(getppid)923 SYSCALL_DEFINE0(getppid)
924 {
925 int pid;
926
927 rcu_read_lock();
928 pid = task_tgid_vnr(rcu_dereference(current->real_parent));
929 rcu_read_unlock();
930
931 return pid;
932 }
933
SYSCALL_DEFINE0(getuid)934 SYSCALL_DEFINE0(getuid)
935 {
936 /* Only we change this so SMP safe */
937 return from_kuid_munged(current_user_ns(), current_uid());
938 }
939
SYSCALL_DEFINE0(geteuid)940 SYSCALL_DEFINE0(geteuid)
941 {
942 /* Only we change this so SMP safe */
943 return from_kuid_munged(current_user_ns(), current_euid());
944 }
945
SYSCALL_DEFINE0(getgid)946 SYSCALL_DEFINE0(getgid)
947 {
948 /* Only we change this so SMP safe */
949 return from_kgid_munged(current_user_ns(), current_gid());
950 }
951
SYSCALL_DEFINE0(getegid)952 SYSCALL_DEFINE0(getegid)
953 {
954 /* Only we change this so SMP safe */
955 return from_kgid_munged(current_user_ns(), current_egid());
956 }
957
do_sys_times(struct tms * tms)958 static void do_sys_times(struct tms *tms)
959 {
960 u64 tgutime, tgstime, cutime, cstime;
961
962 thread_group_cputime_adjusted(current, &tgutime, &tgstime);
963 cutime = current->signal->cutime;
964 cstime = current->signal->cstime;
965 tms->tms_utime = nsec_to_clock_t(tgutime);
966 tms->tms_stime = nsec_to_clock_t(tgstime);
967 tms->tms_cutime = nsec_to_clock_t(cutime);
968 tms->tms_cstime = nsec_to_clock_t(cstime);
969 }
970
SYSCALL_DEFINE1(times,struct tms __user *,tbuf)971 SYSCALL_DEFINE1(times, struct tms __user *, tbuf)
972 {
973 if (tbuf) {
974 struct tms tmp;
975
976 do_sys_times(&tmp);
977 if (copy_to_user(tbuf, &tmp, sizeof(struct tms)))
978 return -EFAULT;
979 }
980 force_successful_syscall_return();
981 return (long) jiffies_64_to_clock_t(get_jiffies_64());
982 }
983
984 #ifdef CONFIG_COMPAT
clock_t_to_compat_clock_t(clock_t x)985 static compat_clock_t clock_t_to_compat_clock_t(clock_t x)
986 {
987 return compat_jiffies_to_clock_t(clock_t_to_jiffies(x));
988 }
989
COMPAT_SYSCALL_DEFINE1(times,struct compat_tms __user *,tbuf)990 COMPAT_SYSCALL_DEFINE1(times, struct compat_tms __user *, tbuf)
991 {
992 if (tbuf) {
993 struct tms tms;
994 struct compat_tms tmp;
995
996 do_sys_times(&tms);
997 /* Convert our struct tms to the compat version. */
998 tmp.tms_utime = clock_t_to_compat_clock_t(tms.tms_utime);
999 tmp.tms_stime = clock_t_to_compat_clock_t(tms.tms_stime);
1000 tmp.tms_cutime = clock_t_to_compat_clock_t(tms.tms_cutime);
1001 tmp.tms_cstime = clock_t_to_compat_clock_t(tms.tms_cstime);
1002 if (copy_to_user(tbuf, &tmp, sizeof(tmp)))
1003 return -EFAULT;
1004 }
1005 force_successful_syscall_return();
1006 return compat_jiffies_to_clock_t(jiffies);
1007 }
1008 #endif
1009
1010 /*
1011 * This needs some heavy checking ...
1012 * I just haven't the stomach for it. I also don't fully
1013 * understand sessions/pgrp etc. Let somebody who does explain it.
1014 *
1015 * OK, I think I have the protection semantics right.... this is really
1016 * only important on a multi-user system anyway, to make sure one user
1017 * can't send a signal to a process owned by another. -TYT, 12/12/91
1018 *
1019 * !PF_FORKNOEXEC check to conform completely to POSIX.
1020 */
SYSCALL_DEFINE2(setpgid,pid_t,pid,pid_t,pgid)1021 SYSCALL_DEFINE2(setpgid, pid_t, pid, pid_t, pgid)
1022 {
1023 struct task_struct *p;
1024 struct task_struct *group_leader = current->group_leader;
1025 struct pid *pgrp;
1026 int err;
1027
1028 if (!pid)
1029 pid = task_pid_vnr(group_leader);
1030 if (!pgid)
1031 pgid = pid;
1032 if (pgid < 0)
1033 return -EINVAL;
1034 rcu_read_lock();
1035
1036 /* From this point forward we keep holding onto the tasklist lock
1037 * so that our parent does not change from under us. -DaveM
1038 */
1039 write_lock_irq(&tasklist_lock);
1040
1041 err = -ESRCH;
1042 p = find_task_by_vpid(pid);
1043 if (!p)
1044 goto out;
1045
1046 err = -EINVAL;
1047 if (!thread_group_leader(p))
1048 goto out;
1049
1050 if (same_thread_group(p->real_parent, group_leader)) {
1051 err = -EPERM;
1052 if (task_session(p) != task_session(group_leader))
1053 goto out;
1054 err = -EACCES;
1055 if (!(p->flags & PF_FORKNOEXEC))
1056 goto out;
1057 } else {
1058 err = -ESRCH;
1059 if (p != group_leader)
1060 goto out;
1061 }
1062
1063 err = -EPERM;
1064 if (p->signal->leader)
1065 goto out;
1066
1067 pgrp = task_pid(p);
1068 if (pgid != pid) {
1069 struct task_struct *g;
1070
1071 pgrp = find_vpid(pgid);
1072 g = pid_task(pgrp, PIDTYPE_PGID);
1073 if (!g || task_session(g) != task_session(group_leader))
1074 goto out;
1075 }
1076
1077 err = security_task_setpgid(p, pgid);
1078 if (err)
1079 goto out;
1080
1081 if (task_pgrp(p) != pgrp)
1082 change_pid(p, PIDTYPE_PGID, pgrp);
1083
1084 err = 0;
1085 out:
1086 /* All paths lead to here, thus we are safe. -DaveM */
1087 write_unlock_irq(&tasklist_lock);
1088 rcu_read_unlock();
1089 return err;
1090 }
1091
do_getpgid(pid_t pid)1092 static int do_getpgid(pid_t pid)
1093 {
1094 struct task_struct *p;
1095 struct pid *grp;
1096 int retval;
1097
1098 rcu_read_lock();
1099 if (!pid)
1100 grp = task_pgrp(current);
1101 else {
1102 retval = -ESRCH;
1103 p = find_task_by_vpid(pid);
1104 if (!p)
1105 goto out;
1106 grp = task_pgrp(p);
1107 if (!grp)
1108 goto out;
1109
1110 retval = security_task_getpgid(p);
1111 if (retval)
1112 goto out;
1113 }
1114 retval = pid_vnr(grp);
1115 out:
1116 rcu_read_unlock();
1117 return retval;
1118 }
1119
SYSCALL_DEFINE1(getpgid,pid_t,pid)1120 SYSCALL_DEFINE1(getpgid, pid_t, pid)
1121 {
1122 return do_getpgid(pid);
1123 }
1124
1125 #ifdef __ARCH_WANT_SYS_GETPGRP
1126
SYSCALL_DEFINE0(getpgrp)1127 SYSCALL_DEFINE0(getpgrp)
1128 {
1129 return do_getpgid(0);
1130 }
1131
1132 #endif
1133
SYSCALL_DEFINE1(getsid,pid_t,pid)1134 SYSCALL_DEFINE1(getsid, pid_t, pid)
1135 {
1136 struct task_struct *p;
1137 struct pid *sid;
1138 int retval;
1139
1140 rcu_read_lock();
1141 if (!pid)
1142 sid = task_session(current);
1143 else {
1144 retval = -ESRCH;
1145 p = find_task_by_vpid(pid);
1146 if (!p)
1147 goto out;
1148 sid = task_session(p);
1149 if (!sid)
1150 goto out;
1151
1152 retval = security_task_getsid(p);
1153 if (retval)
1154 goto out;
1155 }
1156 retval = pid_vnr(sid);
1157 out:
1158 rcu_read_unlock();
1159 return retval;
1160 }
1161
set_special_pids(struct pid * pid)1162 static void set_special_pids(struct pid *pid)
1163 {
1164 struct task_struct *curr = current->group_leader;
1165
1166 if (task_session(curr) != pid)
1167 change_pid(curr, PIDTYPE_SID, pid);
1168
1169 if (task_pgrp(curr) != pid)
1170 change_pid(curr, PIDTYPE_PGID, pid);
1171 }
1172
ksys_setsid(void)1173 int ksys_setsid(void)
1174 {
1175 struct task_struct *group_leader = current->group_leader;
1176 struct pid *sid = task_pid(group_leader);
1177 pid_t session = pid_vnr(sid);
1178 int err = -EPERM;
1179
1180 write_lock_irq(&tasklist_lock);
1181 /* Fail if I am already a session leader */
1182 if (group_leader->signal->leader)
1183 goto out;
1184
1185 /* Fail if a process group id already exists that equals the
1186 * proposed session id.
1187 */
1188 if (pid_task(sid, PIDTYPE_PGID))
1189 goto out;
1190
1191 group_leader->signal->leader = 1;
1192 set_special_pids(sid);
1193
1194 proc_clear_tty(group_leader);
1195
1196 err = session;
1197 out:
1198 write_unlock_irq(&tasklist_lock);
1199 if (err > 0) {
1200 proc_sid_connector(group_leader);
1201 sched_autogroup_create_attach(group_leader);
1202 }
1203 return err;
1204 }
1205
SYSCALL_DEFINE0(setsid)1206 SYSCALL_DEFINE0(setsid)
1207 {
1208 return ksys_setsid();
1209 }
1210
1211 DECLARE_RWSEM(uts_sem);
1212
1213 #ifdef COMPAT_UTS_MACHINE
1214 #define override_architecture(name) \
1215 (personality(current->personality) == PER_LINUX32 && \
1216 copy_to_user(name->machine, COMPAT_UTS_MACHINE, \
1217 sizeof(COMPAT_UTS_MACHINE)))
1218 #else
1219 #define override_architecture(name) 0
1220 #endif
1221
1222 /*
1223 * Work around broken programs that cannot handle "Linux 3.0".
1224 * Instead we map 3.x to 2.6.40+x, so e.g. 3.0 would be 2.6.40
1225 * And we map 4.x and later versions to 2.6.60+x, so 4.0/5.0/6.0/... would be
1226 * 2.6.60.
1227 */
override_release(char __user * release,size_t len)1228 static int override_release(char __user *release, size_t len)
1229 {
1230 int ret = 0;
1231
1232 if (current->personality & UNAME26) {
1233 const char *rest = UTS_RELEASE;
1234 char buf[65] = { 0 };
1235 int ndots = 0;
1236 unsigned v;
1237 size_t copy;
1238
1239 while (*rest) {
1240 if (*rest == '.' && ++ndots >= 3)
1241 break;
1242 if (!isdigit(*rest) && *rest != '.')
1243 break;
1244 rest++;
1245 }
1246 v = ((LINUX_VERSION_CODE >> 8) & 0xff) + 60;
1247 copy = clamp_t(size_t, len, 1, sizeof(buf));
1248 copy = scnprintf(buf, copy, "2.6.%u%s", v, rest);
1249 ret = copy_to_user(release, buf, copy + 1);
1250 }
1251 return ret;
1252 }
1253
SYSCALL_DEFINE1(newuname,struct new_utsname __user *,name)1254 SYSCALL_DEFINE1(newuname, struct new_utsname __user *, name)
1255 {
1256 struct new_utsname tmp;
1257
1258 down_read(&uts_sem);
1259 memcpy(&tmp, utsname(), sizeof(tmp));
1260 up_read(&uts_sem);
1261 if (copy_to_user(name, &tmp, sizeof(tmp)))
1262 return -EFAULT;
1263
1264 if (override_release(name->release, sizeof(name->release)))
1265 return -EFAULT;
1266 if (override_architecture(name))
1267 return -EFAULT;
1268 return 0;
1269 }
1270
1271 #ifdef __ARCH_WANT_SYS_OLD_UNAME
1272 /*
1273 * Old cruft
1274 */
SYSCALL_DEFINE1(uname,struct old_utsname __user *,name)1275 SYSCALL_DEFINE1(uname, struct old_utsname __user *, name)
1276 {
1277 struct old_utsname tmp;
1278
1279 if (!name)
1280 return -EFAULT;
1281
1282 down_read(&uts_sem);
1283 memcpy(&tmp, utsname(), sizeof(tmp));
1284 up_read(&uts_sem);
1285 if (copy_to_user(name, &tmp, sizeof(tmp)))
1286 return -EFAULT;
1287
1288 if (override_release(name->release, sizeof(name->release)))
1289 return -EFAULT;
1290 if (override_architecture(name))
1291 return -EFAULT;
1292 return 0;
1293 }
1294
SYSCALL_DEFINE1(olduname,struct oldold_utsname __user *,name)1295 SYSCALL_DEFINE1(olduname, struct oldold_utsname __user *, name)
1296 {
1297 struct oldold_utsname tmp;
1298
1299 if (!name)
1300 return -EFAULT;
1301
1302 memset(&tmp, 0, sizeof(tmp));
1303
1304 down_read(&uts_sem);
1305 memcpy(&tmp.sysname, &utsname()->sysname, __OLD_UTS_LEN);
1306 memcpy(&tmp.nodename, &utsname()->nodename, __OLD_UTS_LEN);
1307 memcpy(&tmp.release, &utsname()->release, __OLD_UTS_LEN);
1308 memcpy(&tmp.version, &utsname()->version, __OLD_UTS_LEN);
1309 memcpy(&tmp.machine, &utsname()->machine, __OLD_UTS_LEN);
1310 up_read(&uts_sem);
1311 if (copy_to_user(name, &tmp, sizeof(tmp)))
1312 return -EFAULT;
1313
1314 if (override_architecture(name))
1315 return -EFAULT;
1316 if (override_release(name->release, sizeof(name->release)))
1317 return -EFAULT;
1318 return 0;
1319 }
1320 #endif
1321
SYSCALL_DEFINE2(sethostname,char __user *,name,int,len)1322 SYSCALL_DEFINE2(sethostname, char __user *, name, int, len)
1323 {
1324 int errno;
1325 char tmp[__NEW_UTS_LEN];
1326
1327 if (!ns_capable(current->nsproxy->uts_ns->user_ns, CAP_SYS_ADMIN))
1328 return -EPERM;
1329
1330 if (len < 0 || len > __NEW_UTS_LEN)
1331 return -EINVAL;
1332 errno = -EFAULT;
1333 if (!copy_from_user(tmp, name, len)) {
1334 struct new_utsname *u;
1335
1336 down_write(&uts_sem);
1337 u = utsname();
1338 memcpy(u->nodename, tmp, len);
1339 memset(u->nodename + len, 0, sizeof(u->nodename) - len);
1340 errno = 0;
1341 uts_proc_notify(UTS_PROC_HOSTNAME);
1342 up_write(&uts_sem);
1343 }
1344 return errno;
1345 }
1346
1347 #ifdef __ARCH_WANT_SYS_GETHOSTNAME
1348
SYSCALL_DEFINE2(gethostname,char __user *,name,int,len)1349 SYSCALL_DEFINE2(gethostname, char __user *, name, int, len)
1350 {
1351 int i;
1352 struct new_utsname *u;
1353 char tmp[__NEW_UTS_LEN + 1];
1354
1355 if (len < 0)
1356 return -EINVAL;
1357 down_read(&uts_sem);
1358 u = utsname();
1359 i = 1 + strlen(u->nodename);
1360 if (i > len)
1361 i = len;
1362 memcpy(tmp, u->nodename, i);
1363 up_read(&uts_sem);
1364 if (copy_to_user(name, tmp, i))
1365 return -EFAULT;
1366 return 0;
1367 }
1368
1369 #endif
1370
1371 /*
1372 * Only setdomainname; getdomainname can be implemented by calling
1373 * uname()
1374 */
SYSCALL_DEFINE2(setdomainname,char __user *,name,int,len)1375 SYSCALL_DEFINE2(setdomainname, char __user *, name, int, len)
1376 {
1377 int errno;
1378 char tmp[__NEW_UTS_LEN];
1379
1380 if (!ns_capable(current->nsproxy->uts_ns->user_ns, CAP_SYS_ADMIN))
1381 return -EPERM;
1382 if (len < 0 || len > __NEW_UTS_LEN)
1383 return -EINVAL;
1384
1385 errno = -EFAULT;
1386 if (!copy_from_user(tmp, name, len)) {
1387 struct new_utsname *u;
1388
1389 down_write(&uts_sem);
1390 u = utsname();
1391 memcpy(u->domainname, tmp, len);
1392 memset(u->domainname + len, 0, sizeof(u->domainname) - len);
1393 errno = 0;
1394 uts_proc_notify(UTS_PROC_DOMAINNAME);
1395 up_write(&uts_sem);
1396 }
1397 return errno;
1398 }
1399
SYSCALL_DEFINE2(getrlimit,unsigned int,resource,struct rlimit __user *,rlim)1400 SYSCALL_DEFINE2(getrlimit, unsigned int, resource, struct rlimit __user *, rlim)
1401 {
1402 struct rlimit value;
1403 int ret;
1404
1405 ret = do_prlimit(current, resource, NULL, &value);
1406 if (!ret)
1407 ret = copy_to_user(rlim, &value, sizeof(*rlim)) ? -EFAULT : 0;
1408
1409 return ret;
1410 }
1411
1412 #ifdef CONFIG_COMPAT
1413
COMPAT_SYSCALL_DEFINE2(setrlimit,unsigned int,resource,struct compat_rlimit __user *,rlim)1414 COMPAT_SYSCALL_DEFINE2(setrlimit, unsigned int, resource,
1415 struct compat_rlimit __user *, rlim)
1416 {
1417 struct rlimit r;
1418 struct compat_rlimit r32;
1419
1420 if (copy_from_user(&r32, rlim, sizeof(struct compat_rlimit)))
1421 return -EFAULT;
1422
1423 if (r32.rlim_cur == COMPAT_RLIM_INFINITY)
1424 r.rlim_cur = RLIM_INFINITY;
1425 else
1426 r.rlim_cur = r32.rlim_cur;
1427 if (r32.rlim_max == COMPAT_RLIM_INFINITY)
1428 r.rlim_max = RLIM_INFINITY;
1429 else
1430 r.rlim_max = r32.rlim_max;
1431 return do_prlimit(current, resource, &r, NULL);
1432 }
1433
COMPAT_SYSCALL_DEFINE2(getrlimit,unsigned int,resource,struct compat_rlimit __user *,rlim)1434 COMPAT_SYSCALL_DEFINE2(getrlimit, unsigned int, resource,
1435 struct compat_rlimit __user *, rlim)
1436 {
1437 struct rlimit r;
1438 int ret;
1439
1440 ret = do_prlimit(current, resource, NULL, &r);
1441 if (!ret) {
1442 struct compat_rlimit r32;
1443 if (r.rlim_cur > COMPAT_RLIM_INFINITY)
1444 r32.rlim_cur = COMPAT_RLIM_INFINITY;
1445 else
1446 r32.rlim_cur = r.rlim_cur;
1447 if (r.rlim_max > COMPAT_RLIM_INFINITY)
1448 r32.rlim_max = COMPAT_RLIM_INFINITY;
1449 else
1450 r32.rlim_max = r.rlim_max;
1451
1452 if (copy_to_user(rlim, &r32, sizeof(struct compat_rlimit)))
1453 return -EFAULT;
1454 }
1455 return ret;
1456 }
1457
1458 #endif
1459
1460 #ifdef __ARCH_WANT_SYS_OLD_GETRLIMIT
1461
1462 /*
1463 * Back compatibility for getrlimit. Needed for some apps.
1464 */
SYSCALL_DEFINE2(old_getrlimit,unsigned int,resource,struct rlimit __user *,rlim)1465 SYSCALL_DEFINE2(old_getrlimit, unsigned int, resource,
1466 struct rlimit __user *, rlim)
1467 {
1468 struct rlimit x;
1469 if (resource >= RLIM_NLIMITS)
1470 return -EINVAL;
1471
1472 resource = array_index_nospec(resource, RLIM_NLIMITS);
1473 task_lock(current->group_leader);
1474 x = current->signal->rlim[resource];
1475 task_unlock(current->group_leader);
1476 if (x.rlim_cur > 0x7FFFFFFF)
1477 x.rlim_cur = 0x7FFFFFFF;
1478 if (x.rlim_max > 0x7FFFFFFF)
1479 x.rlim_max = 0x7FFFFFFF;
1480 return copy_to_user(rlim, &x, sizeof(x)) ? -EFAULT : 0;
1481 }
1482
1483 #ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE2(old_getrlimit,unsigned int,resource,struct compat_rlimit __user *,rlim)1484 COMPAT_SYSCALL_DEFINE2(old_getrlimit, unsigned int, resource,
1485 struct compat_rlimit __user *, rlim)
1486 {
1487 struct rlimit r;
1488
1489 if (resource >= RLIM_NLIMITS)
1490 return -EINVAL;
1491
1492 resource = array_index_nospec(resource, RLIM_NLIMITS);
1493 task_lock(current->group_leader);
1494 r = current->signal->rlim[resource];
1495 task_unlock(current->group_leader);
1496 if (r.rlim_cur > 0x7FFFFFFF)
1497 r.rlim_cur = 0x7FFFFFFF;
1498 if (r.rlim_max > 0x7FFFFFFF)
1499 r.rlim_max = 0x7FFFFFFF;
1500
1501 if (put_user(r.rlim_cur, &rlim->rlim_cur) ||
1502 put_user(r.rlim_max, &rlim->rlim_max))
1503 return -EFAULT;
1504 return 0;
1505 }
1506 #endif
1507
1508 #endif
1509
rlim64_is_infinity(__u64 rlim64)1510 static inline bool rlim64_is_infinity(__u64 rlim64)
1511 {
1512 #if BITS_PER_LONG < 64
1513 return rlim64 >= ULONG_MAX;
1514 #else
1515 return rlim64 == RLIM64_INFINITY;
1516 #endif
1517 }
1518
rlim_to_rlim64(const struct rlimit * rlim,struct rlimit64 * rlim64)1519 static void rlim_to_rlim64(const struct rlimit *rlim, struct rlimit64 *rlim64)
1520 {
1521 if (rlim->rlim_cur == RLIM_INFINITY)
1522 rlim64->rlim_cur = RLIM64_INFINITY;
1523 else
1524 rlim64->rlim_cur = rlim->rlim_cur;
1525 if (rlim->rlim_max == RLIM_INFINITY)
1526 rlim64->rlim_max = RLIM64_INFINITY;
1527 else
1528 rlim64->rlim_max = rlim->rlim_max;
1529 }
1530
rlim64_to_rlim(const struct rlimit64 * rlim64,struct rlimit * rlim)1531 static void rlim64_to_rlim(const struct rlimit64 *rlim64, struct rlimit *rlim)
1532 {
1533 if (rlim64_is_infinity(rlim64->rlim_cur))
1534 rlim->rlim_cur = RLIM_INFINITY;
1535 else
1536 rlim->rlim_cur = (unsigned long)rlim64->rlim_cur;
1537 if (rlim64_is_infinity(rlim64->rlim_max))
1538 rlim->rlim_max = RLIM_INFINITY;
1539 else
1540 rlim->rlim_max = (unsigned long)rlim64->rlim_max;
1541 }
1542
1543 /* make sure you are allowed to change @tsk limits before calling this */
do_prlimit(struct task_struct * tsk,unsigned int resource,struct rlimit * new_rlim,struct rlimit * old_rlim)1544 int do_prlimit(struct task_struct *tsk, unsigned int resource,
1545 struct rlimit *new_rlim, struct rlimit *old_rlim)
1546 {
1547 struct rlimit *rlim;
1548 int retval = 0;
1549
1550 if (resource >= RLIM_NLIMITS)
1551 return -EINVAL;
1552 resource = array_index_nospec(resource, RLIM_NLIMITS);
1553
1554 if (new_rlim) {
1555 if (new_rlim->rlim_cur > new_rlim->rlim_max)
1556 return -EINVAL;
1557 if (resource == RLIMIT_NOFILE &&
1558 new_rlim->rlim_max > sysctl_nr_open)
1559 return -EPERM;
1560 }
1561
1562 /* protect tsk->signal and tsk->sighand from disappearing */
1563 read_lock(&tasklist_lock);
1564 if (!tsk->sighand) {
1565 retval = -ESRCH;
1566 goto out;
1567 }
1568
1569 rlim = tsk->signal->rlim + resource;
1570 task_lock(tsk->group_leader);
1571 if (new_rlim) {
1572 /* Keep the capable check against init_user_ns until
1573 cgroups can contain all limits */
1574 if (new_rlim->rlim_max > rlim->rlim_max &&
1575 !capable(CAP_SYS_RESOURCE))
1576 retval = -EPERM;
1577 if (!retval)
1578 retval = security_task_setrlimit(tsk, resource, new_rlim);
1579 }
1580 if (!retval) {
1581 if (old_rlim)
1582 *old_rlim = *rlim;
1583 if (new_rlim)
1584 *rlim = *new_rlim;
1585 }
1586 task_unlock(tsk->group_leader);
1587
1588 /*
1589 * RLIMIT_CPU handling. Arm the posix CPU timer if the limit is not
1590 * infite. In case of RLIM_INFINITY the posix CPU timer code
1591 * ignores the rlimit.
1592 */
1593 if (!retval && new_rlim && resource == RLIMIT_CPU &&
1594 new_rlim->rlim_cur != RLIM_INFINITY &&
1595 IS_ENABLED(CONFIG_POSIX_TIMERS))
1596 update_rlimit_cpu(tsk, new_rlim->rlim_cur);
1597 out:
1598 read_unlock(&tasklist_lock);
1599 return retval;
1600 }
1601
1602 /* rcu lock must be held */
check_prlimit_permission(struct task_struct * task,unsigned int flags)1603 static int check_prlimit_permission(struct task_struct *task,
1604 unsigned int flags)
1605 {
1606 const struct cred *cred = current_cred(), *tcred;
1607 bool id_match;
1608
1609 if (current == task)
1610 return 0;
1611
1612 tcred = __task_cred(task);
1613 id_match = (uid_eq(cred->uid, tcred->euid) &&
1614 uid_eq(cred->uid, tcred->suid) &&
1615 uid_eq(cred->uid, tcred->uid) &&
1616 gid_eq(cred->gid, tcred->egid) &&
1617 gid_eq(cred->gid, tcred->sgid) &&
1618 gid_eq(cred->gid, tcred->gid));
1619 if (!id_match && !ns_capable(tcred->user_ns, CAP_SYS_RESOURCE))
1620 return -EPERM;
1621
1622 return security_task_prlimit(cred, tcred, flags);
1623 }
1624
SYSCALL_DEFINE4(prlimit64,pid_t,pid,unsigned int,resource,const struct rlimit64 __user *,new_rlim,struct rlimit64 __user *,old_rlim)1625 SYSCALL_DEFINE4(prlimit64, pid_t, pid, unsigned int, resource,
1626 const struct rlimit64 __user *, new_rlim,
1627 struct rlimit64 __user *, old_rlim)
1628 {
1629 struct rlimit64 old64, new64;
1630 struct rlimit old, new;
1631 struct task_struct *tsk;
1632 unsigned int checkflags = 0;
1633 int ret;
1634
1635 if (old_rlim)
1636 checkflags |= LSM_PRLIMIT_READ;
1637
1638 if (new_rlim) {
1639 if (copy_from_user(&new64, new_rlim, sizeof(new64)))
1640 return -EFAULT;
1641 rlim64_to_rlim(&new64, &new);
1642 checkflags |= LSM_PRLIMIT_WRITE;
1643 }
1644
1645 rcu_read_lock();
1646 tsk = pid ? find_task_by_vpid(pid) : current;
1647 if (!tsk) {
1648 rcu_read_unlock();
1649 return -ESRCH;
1650 }
1651 ret = check_prlimit_permission(tsk, checkflags);
1652 if (ret) {
1653 rcu_read_unlock();
1654 return ret;
1655 }
1656 get_task_struct(tsk);
1657 rcu_read_unlock();
1658
1659 ret = do_prlimit(tsk, resource, new_rlim ? &new : NULL,
1660 old_rlim ? &old : NULL);
1661
1662 if (!ret && old_rlim) {
1663 rlim_to_rlim64(&old, &old64);
1664 if (copy_to_user(old_rlim, &old64, sizeof(old64)))
1665 ret = -EFAULT;
1666 }
1667
1668 put_task_struct(tsk);
1669 return ret;
1670 }
1671
SYSCALL_DEFINE2(setrlimit,unsigned int,resource,struct rlimit __user *,rlim)1672 SYSCALL_DEFINE2(setrlimit, unsigned int, resource, struct rlimit __user *, rlim)
1673 {
1674 struct rlimit new_rlim;
1675
1676 if (copy_from_user(&new_rlim, rlim, sizeof(*rlim)))
1677 return -EFAULT;
1678 return do_prlimit(current, resource, &new_rlim, NULL);
1679 }
1680
1681 /*
1682 * It would make sense to put struct rusage in the task_struct,
1683 * except that would make the task_struct be *really big*. After
1684 * task_struct gets moved into malloc'ed memory, it would
1685 * make sense to do this. It will make moving the rest of the information
1686 * a lot simpler! (Which we're not doing right now because we're not
1687 * measuring them yet).
1688 *
1689 * When sampling multiple threads for RUSAGE_SELF, under SMP we might have
1690 * races with threads incrementing their own counters. But since word
1691 * reads are atomic, we either get new values or old values and we don't
1692 * care which for the sums. We always take the siglock to protect reading
1693 * the c* fields from p->signal from races with exit.c updating those
1694 * fields when reaping, so a sample either gets all the additions of a
1695 * given child after it's reaped, or none so this sample is before reaping.
1696 *
1697 * Locking:
1698 * We need to take the siglock for CHILDEREN, SELF and BOTH
1699 * for the cases current multithreaded, non-current single threaded
1700 * non-current multithreaded. Thread traversal is now safe with
1701 * the siglock held.
1702 * Strictly speaking, we donot need to take the siglock if we are current and
1703 * single threaded, as no one else can take our signal_struct away, no one
1704 * else can reap the children to update signal->c* counters, and no one else
1705 * can race with the signal-> fields. If we do not take any lock, the
1706 * signal-> fields could be read out of order while another thread was just
1707 * exiting. So we should place a read memory barrier when we avoid the lock.
1708 * On the writer side, write memory barrier is implied in __exit_signal
1709 * as __exit_signal releases the siglock spinlock after updating the signal->
1710 * fields. But we don't do this yet to keep things simple.
1711 *
1712 */
1713
accumulate_thread_rusage(struct task_struct * t,struct rusage * r)1714 static void accumulate_thread_rusage(struct task_struct *t, struct rusage *r)
1715 {
1716 r->ru_nvcsw += t->nvcsw;
1717 r->ru_nivcsw += t->nivcsw;
1718 r->ru_minflt += t->min_flt;
1719 r->ru_majflt += t->maj_flt;
1720 r->ru_inblock += task_io_get_inblock(t);
1721 r->ru_oublock += task_io_get_oublock(t);
1722 }
1723
getrusage(struct task_struct * p,int who,struct rusage * r)1724 void getrusage(struct task_struct *p, int who, struct rusage *r)
1725 {
1726 struct task_struct *t;
1727 unsigned long flags;
1728 u64 tgutime, tgstime, utime, stime;
1729 unsigned long maxrss = 0;
1730
1731 memset((char *)r, 0, sizeof (*r));
1732 utime = stime = 0;
1733
1734 if (who == RUSAGE_THREAD) {
1735 task_cputime_adjusted(current, &utime, &stime);
1736 accumulate_thread_rusage(p, r);
1737 maxrss = p->signal->maxrss;
1738 goto out;
1739 }
1740
1741 if (!lock_task_sighand(p, &flags))
1742 return;
1743
1744 switch (who) {
1745 case RUSAGE_BOTH:
1746 case RUSAGE_CHILDREN:
1747 utime = p->signal->cutime;
1748 stime = p->signal->cstime;
1749 r->ru_nvcsw = p->signal->cnvcsw;
1750 r->ru_nivcsw = p->signal->cnivcsw;
1751 r->ru_minflt = p->signal->cmin_flt;
1752 r->ru_majflt = p->signal->cmaj_flt;
1753 r->ru_inblock = p->signal->cinblock;
1754 r->ru_oublock = p->signal->coublock;
1755 maxrss = p->signal->cmaxrss;
1756
1757 if (who == RUSAGE_CHILDREN)
1758 break;
1759 fallthrough;
1760
1761 case RUSAGE_SELF:
1762 thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1763 utime += tgutime;
1764 stime += tgstime;
1765 r->ru_nvcsw += p->signal->nvcsw;
1766 r->ru_nivcsw += p->signal->nivcsw;
1767 r->ru_minflt += p->signal->min_flt;
1768 r->ru_majflt += p->signal->maj_flt;
1769 r->ru_inblock += p->signal->inblock;
1770 r->ru_oublock += p->signal->oublock;
1771 if (maxrss < p->signal->maxrss)
1772 maxrss = p->signal->maxrss;
1773 t = p;
1774 do {
1775 accumulate_thread_rusage(t, r);
1776 } while_each_thread(p, t);
1777 break;
1778
1779 default:
1780 BUG();
1781 }
1782 unlock_task_sighand(p, &flags);
1783
1784 out:
1785 r->ru_utime = ns_to_kernel_old_timeval(utime);
1786 r->ru_stime = ns_to_kernel_old_timeval(stime);
1787
1788 if (who != RUSAGE_CHILDREN) {
1789 struct mm_struct *mm = get_task_mm(p);
1790
1791 if (mm) {
1792 setmax_mm_hiwater_rss(&maxrss, mm);
1793 mmput(mm);
1794 }
1795 }
1796 r->ru_maxrss = maxrss * (PAGE_SIZE / 1024); /* convert pages to KBs */
1797 }
1798
SYSCALL_DEFINE2(getrusage,int,who,struct rusage __user *,ru)1799 SYSCALL_DEFINE2(getrusage, int, who, struct rusage __user *, ru)
1800 {
1801 struct rusage r;
1802
1803 if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN &&
1804 who != RUSAGE_THREAD)
1805 return -EINVAL;
1806
1807 getrusage(current, who, &r);
1808 return copy_to_user(ru, &r, sizeof(r)) ? -EFAULT : 0;
1809 }
1810
1811 #ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE2(getrusage,int,who,struct compat_rusage __user *,ru)1812 COMPAT_SYSCALL_DEFINE2(getrusage, int, who, struct compat_rusage __user *, ru)
1813 {
1814 struct rusage r;
1815
1816 if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN &&
1817 who != RUSAGE_THREAD)
1818 return -EINVAL;
1819
1820 getrusage(current, who, &r);
1821 return put_compat_rusage(&r, ru);
1822 }
1823 #endif
1824
SYSCALL_DEFINE1(umask,int,mask)1825 SYSCALL_DEFINE1(umask, int, mask)
1826 {
1827 mask = xchg(¤t->fs->umask, mask & S_IRWXUGO);
1828 return mask;
1829 }
1830
prctl_set_mm_exe_file(struct mm_struct * mm,unsigned int fd)1831 static int prctl_set_mm_exe_file(struct mm_struct *mm, unsigned int fd)
1832 {
1833 struct fd exe;
1834 struct file *old_exe, *exe_file;
1835 struct inode *inode;
1836 int err;
1837
1838 exe = fdget(fd);
1839 if (!exe.file)
1840 return -EBADF;
1841
1842 inode = file_inode(exe.file);
1843
1844 /*
1845 * Because the original mm->exe_file points to executable file, make
1846 * sure that this one is executable as well, to avoid breaking an
1847 * overall picture.
1848 */
1849 err = -EACCES;
1850 if (!S_ISREG(inode->i_mode) || path_noexec(&exe.file->f_path))
1851 goto exit;
1852
1853 err = inode_permission(inode, MAY_EXEC);
1854 if (err)
1855 goto exit;
1856
1857 /*
1858 * Forbid mm->exe_file change if old file still mapped.
1859 */
1860 exe_file = get_mm_exe_file(mm);
1861 err = -EBUSY;
1862 if (exe_file) {
1863 struct vm_area_struct *vma;
1864
1865 mmap_read_lock(mm);
1866 for (vma = mm->mmap; vma; vma = vma->vm_next) {
1867 if (!vma->vm_file)
1868 continue;
1869 if (path_equal(&vma->vm_file->f_path,
1870 &exe_file->f_path))
1871 goto exit_err;
1872 }
1873
1874 mmap_read_unlock(mm);
1875 fput(exe_file);
1876 }
1877
1878 err = 0;
1879 /* set the new file, lockless */
1880 get_file(exe.file);
1881 old_exe = xchg(&mm->exe_file, exe.file);
1882 if (old_exe)
1883 fput(old_exe);
1884 exit:
1885 fdput(exe);
1886 return err;
1887 exit_err:
1888 mmap_read_unlock(mm);
1889 fput(exe_file);
1890 goto exit;
1891 }
1892
1893 /*
1894 * Check arithmetic relations of passed addresses.
1895 *
1896 * WARNING: we don't require any capability here so be very careful
1897 * in what is allowed for modification from userspace.
1898 */
validate_prctl_map_addr(struct prctl_mm_map * prctl_map)1899 static int validate_prctl_map_addr(struct prctl_mm_map *prctl_map)
1900 {
1901 unsigned long mmap_max_addr = TASK_SIZE;
1902 int error = -EINVAL, i;
1903
1904 static const unsigned char offsets[] = {
1905 offsetof(struct prctl_mm_map, start_code),
1906 offsetof(struct prctl_mm_map, end_code),
1907 offsetof(struct prctl_mm_map, start_data),
1908 offsetof(struct prctl_mm_map, end_data),
1909 offsetof(struct prctl_mm_map, start_brk),
1910 offsetof(struct prctl_mm_map, brk),
1911 offsetof(struct prctl_mm_map, start_stack),
1912 offsetof(struct prctl_mm_map, arg_start),
1913 offsetof(struct prctl_mm_map, arg_end),
1914 offsetof(struct prctl_mm_map, env_start),
1915 offsetof(struct prctl_mm_map, env_end),
1916 };
1917
1918 /*
1919 * Make sure the members are not somewhere outside
1920 * of allowed address space.
1921 */
1922 for (i = 0; i < ARRAY_SIZE(offsets); i++) {
1923 u64 val = *(u64 *)((char *)prctl_map + offsets[i]);
1924
1925 if ((unsigned long)val >= mmap_max_addr ||
1926 (unsigned long)val < mmap_min_addr)
1927 goto out;
1928 }
1929
1930 /*
1931 * Make sure the pairs are ordered.
1932 */
1933 #define __prctl_check_order(__m1, __op, __m2) \
1934 ((unsigned long)prctl_map->__m1 __op \
1935 (unsigned long)prctl_map->__m2) ? 0 : -EINVAL
1936 error = __prctl_check_order(start_code, <, end_code);
1937 error |= __prctl_check_order(start_data,<=, end_data);
1938 error |= __prctl_check_order(start_brk, <=, brk);
1939 error |= __prctl_check_order(arg_start, <=, arg_end);
1940 error |= __prctl_check_order(env_start, <=, env_end);
1941 if (error)
1942 goto out;
1943 #undef __prctl_check_order
1944
1945 error = -EINVAL;
1946
1947 /*
1948 * Neither we should allow to override limits if they set.
1949 */
1950 if (check_data_rlimit(rlimit(RLIMIT_DATA), prctl_map->brk,
1951 prctl_map->start_brk, prctl_map->end_data,
1952 prctl_map->start_data))
1953 goto out;
1954
1955 error = 0;
1956 out:
1957 return error;
1958 }
1959
1960 #ifdef CONFIG_CHECKPOINT_RESTORE
prctl_set_mm_map(int opt,const void __user * addr,unsigned long data_size)1961 static int prctl_set_mm_map(int opt, const void __user *addr, unsigned long data_size)
1962 {
1963 struct prctl_mm_map prctl_map = { .exe_fd = (u32)-1, };
1964 unsigned long user_auxv[AT_VECTOR_SIZE];
1965 struct mm_struct *mm = current->mm;
1966 int error;
1967
1968 BUILD_BUG_ON(sizeof(user_auxv) != sizeof(mm->saved_auxv));
1969 BUILD_BUG_ON(sizeof(struct prctl_mm_map) > 256);
1970
1971 if (opt == PR_SET_MM_MAP_SIZE)
1972 return put_user((unsigned int)sizeof(prctl_map),
1973 (unsigned int __user *)addr);
1974
1975 if (data_size != sizeof(prctl_map))
1976 return -EINVAL;
1977
1978 if (copy_from_user(&prctl_map, addr, sizeof(prctl_map)))
1979 return -EFAULT;
1980
1981 error = validate_prctl_map_addr(&prctl_map);
1982 if (error)
1983 return error;
1984
1985 if (prctl_map.auxv_size) {
1986 /*
1987 * Someone is trying to cheat the auxv vector.
1988 */
1989 if (!prctl_map.auxv ||
1990 prctl_map.auxv_size > sizeof(mm->saved_auxv))
1991 return -EINVAL;
1992
1993 memset(user_auxv, 0, sizeof(user_auxv));
1994 if (copy_from_user(user_auxv,
1995 (const void __user *)prctl_map.auxv,
1996 prctl_map.auxv_size))
1997 return -EFAULT;
1998
1999 /* Last entry must be AT_NULL as specification requires */
2000 user_auxv[AT_VECTOR_SIZE - 2] = AT_NULL;
2001 user_auxv[AT_VECTOR_SIZE - 1] = AT_NULL;
2002 }
2003
2004 if (prctl_map.exe_fd != (u32)-1) {
2005 /*
2006 * Check if the current user is checkpoint/restore capable.
2007 * At the time of this writing, it checks for CAP_SYS_ADMIN
2008 * or CAP_CHECKPOINT_RESTORE.
2009 * Note that a user with access to ptrace can masquerade an
2010 * arbitrary program as any executable, even setuid ones.
2011 * This may have implications in the tomoyo subsystem.
2012 */
2013 if (!checkpoint_restore_ns_capable(current_user_ns()))
2014 return -EPERM;
2015
2016 error = prctl_set_mm_exe_file(mm, prctl_map.exe_fd);
2017 if (error)
2018 return error;
2019 }
2020
2021 /*
2022 * arg_lock protects concurent updates but we still need mmap_lock for
2023 * read to exclude races with sys_brk.
2024 */
2025 mmap_read_lock(mm);
2026
2027 /*
2028 * We don't validate if these members are pointing to
2029 * real present VMAs because application may have correspond
2030 * VMAs already unmapped and kernel uses these members for statistics
2031 * output in procfs mostly, except
2032 *
2033 * - @start_brk/@brk which are used in do_brk_flags but kernel lookups
2034 * for VMAs when updating these memvers so anything wrong written
2035 * here cause kernel to swear at userspace program but won't lead
2036 * to any problem in kernel itself
2037 */
2038
2039 spin_lock(&mm->arg_lock);
2040 mm->start_code = prctl_map.start_code;
2041 mm->end_code = prctl_map.end_code;
2042 mm->start_data = prctl_map.start_data;
2043 mm->end_data = prctl_map.end_data;
2044 mm->start_brk = prctl_map.start_brk;
2045 mm->brk = prctl_map.brk;
2046 mm->start_stack = prctl_map.start_stack;
2047 mm->arg_start = prctl_map.arg_start;
2048 mm->arg_end = prctl_map.arg_end;
2049 mm->env_start = prctl_map.env_start;
2050 mm->env_end = prctl_map.env_end;
2051 spin_unlock(&mm->arg_lock);
2052
2053 /*
2054 * Note this update of @saved_auxv is lockless thus
2055 * if someone reads this member in procfs while we're
2056 * updating -- it may get partly updated results. It's
2057 * known and acceptable trade off: we leave it as is to
2058 * not introduce additional locks here making the kernel
2059 * more complex.
2060 */
2061 if (prctl_map.auxv_size)
2062 memcpy(mm->saved_auxv, user_auxv, sizeof(user_auxv));
2063
2064 mmap_read_unlock(mm);
2065 return 0;
2066 }
2067 #endif /* CONFIG_CHECKPOINT_RESTORE */
2068
prctl_set_auxv(struct mm_struct * mm,unsigned long addr,unsigned long len)2069 static int prctl_set_auxv(struct mm_struct *mm, unsigned long addr,
2070 unsigned long len)
2071 {
2072 /*
2073 * This doesn't move the auxiliary vector itself since it's pinned to
2074 * mm_struct, but it permits filling the vector with new values. It's
2075 * up to the caller to provide sane values here, otherwise userspace
2076 * tools which use this vector might be unhappy.
2077 */
2078 unsigned long user_auxv[AT_VECTOR_SIZE];
2079
2080 if (len > sizeof(user_auxv))
2081 return -EINVAL;
2082
2083 if (copy_from_user(user_auxv, (const void __user *)addr, len))
2084 return -EFAULT;
2085
2086 /* Make sure the last entry is always AT_NULL */
2087 user_auxv[AT_VECTOR_SIZE - 2] = 0;
2088 user_auxv[AT_VECTOR_SIZE - 1] = 0;
2089
2090 BUILD_BUG_ON(sizeof(user_auxv) != sizeof(mm->saved_auxv));
2091
2092 task_lock(current);
2093 memcpy(mm->saved_auxv, user_auxv, len);
2094 task_unlock(current);
2095
2096 return 0;
2097 }
2098
prctl_set_mm(int opt,unsigned long addr,unsigned long arg4,unsigned long arg5)2099 static int prctl_set_mm(int opt, unsigned long addr,
2100 unsigned long arg4, unsigned long arg5)
2101 {
2102 struct mm_struct *mm = current->mm;
2103 struct prctl_mm_map prctl_map = {
2104 .auxv = NULL,
2105 .auxv_size = 0,
2106 .exe_fd = -1,
2107 };
2108 struct vm_area_struct *vma;
2109 int error;
2110
2111 if (arg5 || (arg4 && (opt != PR_SET_MM_AUXV &&
2112 opt != PR_SET_MM_MAP &&
2113 opt != PR_SET_MM_MAP_SIZE)))
2114 return -EINVAL;
2115
2116 #ifdef CONFIG_CHECKPOINT_RESTORE
2117 if (opt == PR_SET_MM_MAP || opt == PR_SET_MM_MAP_SIZE)
2118 return prctl_set_mm_map(opt, (const void __user *)addr, arg4);
2119 #endif
2120
2121 if (!capable(CAP_SYS_RESOURCE))
2122 return -EPERM;
2123
2124 if (opt == PR_SET_MM_EXE_FILE)
2125 return prctl_set_mm_exe_file(mm, (unsigned int)addr);
2126
2127 if (opt == PR_SET_MM_AUXV)
2128 return prctl_set_auxv(mm, addr, arg4);
2129
2130 if (addr >= TASK_SIZE || addr < mmap_min_addr)
2131 return -EINVAL;
2132
2133 error = -EINVAL;
2134
2135 /*
2136 * arg_lock protects concurent updates of arg boundaries, we need
2137 * mmap_lock for a) concurrent sys_brk, b) finding VMA for addr
2138 * validation.
2139 */
2140 mmap_read_lock(mm);
2141 vma = find_vma(mm, addr);
2142
2143 spin_lock(&mm->arg_lock);
2144 prctl_map.start_code = mm->start_code;
2145 prctl_map.end_code = mm->end_code;
2146 prctl_map.start_data = mm->start_data;
2147 prctl_map.end_data = mm->end_data;
2148 prctl_map.start_brk = mm->start_brk;
2149 prctl_map.brk = mm->brk;
2150 prctl_map.start_stack = mm->start_stack;
2151 prctl_map.arg_start = mm->arg_start;
2152 prctl_map.arg_end = mm->arg_end;
2153 prctl_map.env_start = mm->env_start;
2154 prctl_map.env_end = mm->env_end;
2155
2156 switch (opt) {
2157 case PR_SET_MM_START_CODE:
2158 prctl_map.start_code = addr;
2159 break;
2160 case PR_SET_MM_END_CODE:
2161 prctl_map.end_code = addr;
2162 break;
2163 case PR_SET_MM_START_DATA:
2164 prctl_map.start_data = addr;
2165 break;
2166 case PR_SET_MM_END_DATA:
2167 prctl_map.end_data = addr;
2168 break;
2169 case PR_SET_MM_START_STACK:
2170 prctl_map.start_stack = addr;
2171 break;
2172 case PR_SET_MM_START_BRK:
2173 prctl_map.start_brk = addr;
2174 break;
2175 case PR_SET_MM_BRK:
2176 prctl_map.brk = addr;
2177 break;
2178 case PR_SET_MM_ARG_START:
2179 prctl_map.arg_start = addr;
2180 break;
2181 case PR_SET_MM_ARG_END:
2182 prctl_map.arg_end = addr;
2183 break;
2184 case PR_SET_MM_ENV_START:
2185 prctl_map.env_start = addr;
2186 break;
2187 case PR_SET_MM_ENV_END:
2188 prctl_map.env_end = addr;
2189 break;
2190 default:
2191 goto out;
2192 }
2193
2194 error = validate_prctl_map_addr(&prctl_map);
2195 if (error)
2196 goto out;
2197
2198 switch (opt) {
2199 /*
2200 * If command line arguments and environment
2201 * are placed somewhere else on stack, we can
2202 * set them up here, ARG_START/END to setup
2203 * command line argumets and ENV_START/END
2204 * for environment.
2205 */
2206 case PR_SET_MM_START_STACK:
2207 case PR_SET_MM_ARG_START:
2208 case PR_SET_MM_ARG_END:
2209 case PR_SET_MM_ENV_START:
2210 case PR_SET_MM_ENV_END:
2211 if (!vma) {
2212 error = -EFAULT;
2213 goto out;
2214 }
2215 }
2216
2217 mm->start_code = prctl_map.start_code;
2218 mm->end_code = prctl_map.end_code;
2219 mm->start_data = prctl_map.start_data;
2220 mm->end_data = prctl_map.end_data;
2221 mm->start_brk = prctl_map.start_brk;
2222 mm->brk = prctl_map.brk;
2223 mm->start_stack = prctl_map.start_stack;
2224 mm->arg_start = prctl_map.arg_start;
2225 mm->arg_end = prctl_map.arg_end;
2226 mm->env_start = prctl_map.env_start;
2227 mm->env_end = prctl_map.env_end;
2228
2229 error = 0;
2230 out:
2231 spin_unlock(&mm->arg_lock);
2232 mmap_read_unlock(mm);
2233 return error;
2234 }
2235
2236 #ifdef CONFIG_CHECKPOINT_RESTORE
prctl_get_tid_address(struct task_struct * me,int __user * __user * tid_addr)2237 static int prctl_get_tid_address(struct task_struct *me, int __user * __user *tid_addr)
2238 {
2239 return put_user(me->clear_child_tid, tid_addr);
2240 }
2241 #else
prctl_get_tid_address(struct task_struct * me,int __user * __user * tid_addr)2242 static int prctl_get_tid_address(struct task_struct *me, int __user * __user *tid_addr)
2243 {
2244 return -EINVAL;
2245 }
2246 #endif
2247
propagate_has_child_subreaper(struct task_struct * p,void * data)2248 static int propagate_has_child_subreaper(struct task_struct *p, void *data)
2249 {
2250 /*
2251 * If task has has_child_subreaper - all its decendants
2252 * already have these flag too and new decendants will
2253 * inherit it on fork, skip them.
2254 *
2255 * If we've found child_reaper - skip descendants in
2256 * it's subtree as they will never get out pidns.
2257 */
2258 if (p->signal->has_child_subreaper ||
2259 is_child_reaper(task_pid(p)))
2260 return 0;
2261
2262 p->signal->has_child_subreaper = 1;
2263 return 1;
2264 }
2265
arch_prctl_spec_ctrl_get(struct task_struct * t,unsigned long which)2266 int __weak arch_prctl_spec_ctrl_get(struct task_struct *t, unsigned long which)
2267 {
2268 return -EINVAL;
2269 }
2270
arch_prctl_spec_ctrl_set(struct task_struct * t,unsigned long which,unsigned long ctrl)2271 int __weak arch_prctl_spec_ctrl_set(struct task_struct *t, unsigned long which,
2272 unsigned long ctrl)
2273 {
2274 return -EINVAL;
2275 }
2276
2277 #define PR_IO_FLUSHER (PF_MEMALLOC_NOIO | PF_LOCAL_THROTTLE)
2278
2279 #ifdef CONFIG_ANON_VMA_NAME
2280
2281 #define ANON_VMA_NAME_MAX_LEN 80
2282 #define ANON_VMA_NAME_INVALID_CHARS "\\`$[]"
2283
is_valid_name_char(char ch)2284 static inline bool is_valid_name_char(char ch)
2285 {
2286 /* printable ascii characters, excluding ANON_VMA_NAME_INVALID_CHARS */
2287 return ch > 0x1f && ch < 0x7f &&
2288 !strchr(ANON_VMA_NAME_INVALID_CHARS, ch);
2289 }
2290
prctl_set_vma(unsigned long opt,unsigned long addr,unsigned long size,unsigned long arg)2291 static int prctl_set_vma(unsigned long opt, unsigned long addr,
2292 unsigned long size, unsigned long arg)
2293 {
2294 struct mm_struct *mm = current->mm;
2295 const char __user *uname;
2296 struct anon_vma_name *anon_name = NULL;
2297 int error;
2298
2299 switch (opt) {
2300 case PR_SET_VMA_ANON_NAME:
2301 uname = (const char __user *)arg;
2302 if (uname) {
2303 char *name, *pch;
2304
2305 name = strndup_user(uname, ANON_VMA_NAME_MAX_LEN);
2306 if (IS_ERR(name))
2307 return PTR_ERR(name);
2308
2309 for (pch = name; *pch != '\0'; pch++) {
2310 if (!is_valid_name_char(*pch)) {
2311 kfree(name);
2312 return -EINVAL;
2313 }
2314 }
2315 /* anon_vma has its own copy */
2316 anon_name = anon_vma_name_alloc(name);
2317 kfree(name);
2318 if (!anon_name)
2319 return -ENOMEM;
2320
2321 }
2322
2323 mmap_write_lock(mm);
2324 error = madvise_set_anon_name(mm, addr, size, anon_name);
2325 mmap_write_unlock(mm);
2326 anon_vma_name_put(anon_name);
2327 break;
2328 default:
2329 error = -EINVAL;
2330 }
2331
2332 return error;
2333 }
2334
2335 #else /* CONFIG_ANON_VMA_NAME */
prctl_set_vma(unsigned long opt,unsigned long start,unsigned long size,unsigned long arg)2336 static int prctl_set_vma(unsigned long opt, unsigned long start,
2337 unsigned long size, unsigned long arg)
2338 {
2339 return -EINVAL;
2340 }
2341 #endif /* CONFIG_ANON_VMA_NAME */
2342
SYSCALL_DEFINE5(prctl,int,option,unsigned long,arg2,unsigned long,arg3,unsigned long,arg4,unsigned long,arg5)2343 SYSCALL_DEFINE5(prctl, int, option, unsigned long, arg2, unsigned long, arg3,
2344 unsigned long, arg4, unsigned long, arg5)
2345 {
2346 struct task_struct *me = current;
2347 unsigned char comm[sizeof(me->comm)];
2348 long error;
2349
2350 error = security_task_prctl(option, arg2, arg3, arg4, arg5);
2351 if (error != -ENOSYS)
2352 return error;
2353
2354 error = 0;
2355 switch (option) {
2356 case PR_SET_PDEATHSIG:
2357 if (!valid_signal(arg2)) {
2358 error = -EINVAL;
2359 break;
2360 }
2361 me->pdeath_signal = arg2;
2362 break;
2363 case PR_GET_PDEATHSIG:
2364 error = put_user(me->pdeath_signal, (int __user *)arg2);
2365 break;
2366 case PR_GET_DUMPABLE:
2367 error = get_dumpable(me->mm);
2368 break;
2369 case PR_SET_DUMPABLE:
2370 if (arg2 != SUID_DUMP_DISABLE && arg2 != SUID_DUMP_USER) {
2371 error = -EINVAL;
2372 break;
2373 }
2374 set_dumpable(me->mm, arg2);
2375 break;
2376
2377 case PR_SET_UNALIGN:
2378 error = SET_UNALIGN_CTL(me, arg2);
2379 break;
2380 case PR_GET_UNALIGN:
2381 error = GET_UNALIGN_CTL(me, arg2);
2382 break;
2383 case PR_SET_FPEMU:
2384 error = SET_FPEMU_CTL(me, arg2);
2385 break;
2386 case PR_GET_FPEMU:
2387 error = GET_FPEMU_CTL(me, arg2);
2388 break;
2389 case PR_SET_FPEXC:
2390 error = SET_FPEXC_CTL(me, arg2);
2391 break;
2392 case PR_GET_FPEXC:
2393 error = GET_FPEXC_CTL(me, arg2);
2394 break;
2395 case PR_GET_TIMING:
2396 error = PR_TIMING_STATISTICAL;
2397 break;
2398 case PR_SET_TIMING:
2399 if (arg2 != PR_TIMING_STATISTICAL)
2400 error = -EINVAL;
2401 break;
2402 case PR_SET_NAME:
2403 comm[sizeof(me->comm) - 1] = 0;
2404 if (strncpy_from_user(comm, (char __user *)arg2,
2405 sizeof(me->comm) - 1) < 0)
2406 return -EFAULT;
2407 set_task_comm(me, comm);
2408 proc_comm_connector(me);
2409 break;
2410 case PR_GET_NAME:
2411 get_task_comm(comm, me);
2412 if (copy_to_user((char __user *)arg2, comm, sizeof(comm)))
2413 return -EFAULT;
2414 break;
2415 case PR_GET_ENDIAN:
2416 error = GET_ENDIAN(me, arg2);
2417 break;
2418 case PR_SET_ENDIAN:
2419 error = SET_ENDIAN(me, arg2);
2420 break;
2421 case PR_GET_SECCOMP:
2422 error = prctl_get_seccomp();
2423 break;
2424 case PR_SET_SECCOMP:
2425 error = prctl_set_seccomp(arg2, (char __user *)arg3);
2426 break;
2427 case PR_GET_TSC:
2428 error = GET_TSC_CTL(arg2);
2429 break;
2430 case PR_SET_TSC:
2431 error = SET_TSC_CTL(arg2);
2432 break;
2433 case PR_TASK_PERF_EVENTS_DISABLE:
2434 error = perf_event_task_disable();
2435 break;
2436 case PR_TASK_PERF_EVENTS_ENABLE:
2437 error = perf_event_task_enable();
2438 break;
2439 case PR_GET_TIMERSLACK:
2440 if (current->timer_slack_ns > ULONG_MAX)
2441 error = ULONG_MAX;
2442 else
2443 error = current->timer_slack_ns;
2444 break;
2445 case PR_SET_TIMERSLACK:
2446 if (arg2 <= 0)
2447 current->timer_slack_ns =
2448 current->default_timer_slack_ns;
2449 else
2450 current->timer_slack_ns = arg2;
2451 break;
2452 case PR_MCE_KILL:
2453 if (arg4 | arg5)
2454 return -EINVAL;
2455 switch (arg2) {
2456 case PR_MCE_KILL_CLEAR:
2457 if (arg3 != 0)
2458 return -EINVAL;
2459 current->flags &= ~PF_MCE_PROCESS;
2460 break;
2461 case PR_MCE_KILL_SET:
2462 current->flags |= PF_MCE_PROCESS;
2463 if (arg3 == PR_MCE_KILL_EARLY)
2464 current->flags |= PF_MCE_EARLY;
2465 else if (arg3 == PR_MCE_KILL_LATE)
2466 current->flags &= ~PF_MCE_EARLY;
2467 else if (arg3 == PR_MCE_KILL_DEFAULT)
2468 current->flags &=
2469 ~(PF_MCE_EARLY|PF_MCE_PROCESS);
2470 else
2471 return -EINVAL;
2472 break;
2473 default:
2474 return -EINVAL;
2475 }
2476 break;
2477 case PR_MCE_KILL_GET:
2478 if (arg2 | arg3 | arg4 | arg5)
2479 return -EINVAL;
2480 if (current->flags & PF_MCE_PROCESS)
2481 error = (current->flags & PF_MCE_EARLY) ?
2482 PR_MCE_KILL_EARLY : PR_MCE_KILL_LATE;
2483 else
2484 error = PR_MCE_KILL_DEFAULT;
2485 break;
2486 case PR_SET_MM:
2487 error = prctl_set_mm(arg2, arg3, arg4, arg5);
2488 break;
2489 case PR_GET_TID_ADDRESS:
2490 error = prctl_get_tid_address(me, (int __user * __user *)arg2);
2491 break;
2492 case PR_SET_CHILD_SUBREAPER:
2493 me->signal->is_child_subreaper = !!arg2;
2494 if (!arg2)
2495 break;
2496
2497 walk_process_tree(me, propagate_has_child_subreaper, NULL);
2498 break;
2499 case PR_GET_CHILD_SUBREAPER:
2500 error = put_user(me->signal->is_child_subreaper,
2501 (int __user *)arg2);
2502 break;
2503 case PR_SET_NO_NEW_PRIVS:
2504 if (arg2 != 1 || arg3 || arg4 || arg5)
2505 return -EINVAL;
2506
2507 task_set_no_new_privs(current);
2508 break;
2509 case PR_GET_NO_NEW_PRIVS:
2510 if (arg2 || arg3 || arg4 || arg5)
2511 return -EINVAL;
2512 return task_no_new_privs(current) ? 1 : 0;
2513 case PR_GET_THP_DISABLE:
2514 if (arg2 || arg3 || arg4 || arg5)
2515 return -EINVAL;
2516 error = !!test_bit(MMF_DISABLE_THP, &me->mm->flags);
2517 break;
2518 case PR_SET_THP_DISABLE:
2519 if (arg3 || arg4 || arg5)
2520 return -EINVAL;
2521 if (mmap_write_lock_killable(me->mm))
2522 return -EINTR;
2523 if (arg2)
2524 set_bit(MMF_DISABLE_THP, &me->mm->flags);
2525 else
2526 clear_bit(MMF_DISABLE_THP, &me->mm->flags);
2527 mmap_write_unlock(me->mm);
2528 break;
2529 case PR_MPX_ENABLE_MANAGEMENT:
2530 case PR_MPX_DISABLE_MANAGEMENT:
2531 /* No longer implemented: */
2532 return -EINVAL;
2533 case PR_SET_FP_MODE:
2534 error = SET_FP_MODE(me, arg2);
2535 break;
2536 case PR_GET_FP_MODE:
2537 error = GET_FP_MODE(me);
2538 break;
2539 case PR_SVE_SET_VL:
2540 error = SVE_SET_VL(arg2);
2541 break;
2542 case PR_SVE_GET_VL:
2543 error = SVE_GET_VL();
2544 break;
2545 case PR_GET_SPECULATION_CTRL:
2546 if (arg3 || arg4 || arg5)
2547 return -EINVAL;
2548 error = arch_prctl_spec_ctrl_get(me, arg2);
2549 break;
2550 case PR_SET_SPECULATION_CTRL:
2551 if (arg4 || arg5)
2552 return -EINVAL;
2553 error = arch_prctl_spec_ctrl_set(me, arg2, arg3);
2554 break;
2555 case PR_PAC_RESET_KEYS:
2556 if (arg3 || arg4 || arg5)
2557 return -EINVAL;
2558 error = PAC_RESET_KEYS(me, arg2);
2559 break;
2560 case PR_SET_TAGGED_ADDR_CTRL:
2561 if (arg3 || arg4 || arg5)
2562 return -EINVAL;
2563 error = SET_TAGGED_ADDR_CTRL(arg2);
2564 break;
2565 case PR_GET_TAGGED_ADDR_CTRL:
2566 if (arg2 || arg3 || arg4 || arg5)
2567 return -EINVAL;
2568 error = GET_TAGGED_ADDR_CTRL();
2569 break;
2570 case PR_SET_IO_FLUSHER:
2571 if (!capable(CAP_SYS_RESOURCE))
2572 return -EPERM;
2573
2574 if (arg3 || arg4 || arg5)
2575 return -EINVAL;
2576
2577 if (arg2 == 1)
2578 current->flags |= PR_IO_FLUSHER;
2579 else if (!arg2)
2580 current->flags &= ~PR_IO_FLUSHER;
2581 else
2582 return -EINVAL;
2583 break;
2584 case PR_GET_IO_FLUSHER:
2585 if (!capable(CAP_SYS_RESOURCE))
2586 return -EPERM;
2587
2588 if (arg2 || arg3 || arg4 || arg5)
2589 return -EINVAL;
2590
2591 error = (current->flags & PR_IO_FLUSHER) == PR_IO_FLUSHER;
2592 break;
2593 case PR_SET_VMA:
2594 error = prctl_set_vma(arg2, arg3, arg4, arg5);
2595 break;
2596 default:
2597 error = -EINVAL;
2598 break;
2599 }
2600 return error;
2601 }
2602
SYSCALL_DEFINE3(getcpu,unsigned __user *,cpup,unsigned __user *,nodep,struct getcpu_cache __user *,unused)2603 SYSCALL_DEFINE3(getcpu, unsigned __user *, cpup, unsigned __user *, nodep,
2604 struct getcpu_cache __user *, unused)
2605 {
2606 int err = 0;
2607 int cpu = raw_smp_processor_id();
2608
2609 if (cpup)
2610 err |= put_user(cpu, cpup);
2611 if (nodep)
2612 err |= put_user(cpu_to_node(cpu), nodep);
2613 return err ? -EFAULT : 0;
2614 }
2615
2616 /**
2617 * do_sysinfo - fill in sysinfo struct
2618 * @info: pointer to buffer to fill
2619 */
do_sysinfo(struct sysinfo * info)2620 static int do_sysinfo(struct sysinfo *info)
2621 {
2622 unsigned long mem_total, sav_total;
2623 unsigned int mem_unit, bitcount;
2624 struct timespec64 tp;
2625
2626 memset(info, 0, sizeof(struct sysinfo));
2627
2628 ktime_get_boottime_ts64(&tp);
2629 timens_add_boottime(&tp);
2630 info->uptime = tp.tv_sec + (tp.tv_nsec ? 1 : 0);
2631
2632 get_avenrun(info->loads, 0, SI_LOAD_SHIFT - FSHIFT);
2633
2634 info->procs = nr_threads;
2635
2636 si_meminfo(info);
2637 si_swapinfo(info);
2638
2639 /*
2640 * If the sum of all the available memory (i.e. ram + swap)
2641 * is less than can be stored in a 32 bit unsigned long then
2642 * we can be binary compatible with 2.2.x kernels. If not,
2643 * well, in that case 2.2.x was broken anyways...
2644 *
2645 * -Erik Andersen <andersee@debian.org>
2646 */
2647
2648 mem_total = info->totalram + info->totalswap;
2649 if (mem_total < info->totalram || mem_total < info->totalswap)
2650 goto out;
2651 bitcount = 0;
2652 mem_unit = info->mem_unit;
2653 while (mem_unit > 1) {
2654 bitcount++;
2655 mem_unit >>= 1;
2656 sav_total = mem_total;
2657 mem_total <<= 1;
2658 if (mem_total < sav_total)
2659 goto out;
2660 }
2661
2662 /*
2663 * If mem_total did not overflow, multiply all memory values by
2664 * info->mem_unit and set it to 1. This leaves things compatible
2665 * with 2.2.x, and also retains compatibility with earlier 2.4.x
2666 * kernels...
2667 */
2668
2669 info->mem_unit = 1;
2670 info->totalram <<= bitcount;
2671 info->freeram <<= bitcount;
2672 info->sharedram <<= bitcount;
2673 info->bufferram <<= bitcount;
2674 info->totalswap <<= bitcount;
2675 info->freeswap <<= bitcount;
2676 info->totalhigh <<= bitcount;
2677 info->freehigh <<= bitcount;
2678
2679 out:
2680 return 0;
2681 }
2682
SYSCALL_DEFINE1(sysinfo,struct sysinfo __user *,info)2683 SYSCALL_DEFINE1(sysinfo, struct sysinfo __user *, info)
2684 {
2685 struct sysinfo val;
2686
2687 do_sysinfo(&val);
2688
2689 if (copy_to_user(info, &val, sizeof(struct sysinfo)))
2690 return -EFAULT;
2691
2692 return 0;
2693 }
2694
2695 #ifdef CONFIG_COMPAT
2696 struct compat_sysinfo {
2697 s32 uptime;
2698 u32 loads[3];
2699 u32 totalram;
2700 u32 freeram;
2701 u32 sharedram;
2702 u32 bufferram;
2703 u32 totalswap;
2704 u32 freeswap;
2705 u16 procs;
2706 u16 pad;
2707 u32 totalhigh;
2708 u32 freehigh;
2709 u32 mem_unit;
2710 char _f[20-2*sizeof(u32)-sizeof(int)];
2711 };
2712
COMPAT_SYSCALL_DEFINE1(sysinfo,struct compat_sysinfo __user *,info)2713 COMPAT_SYSCALL_DEFINE1(sysinfo, struct compat_sysinfo __user *, info)
2714 {
2715 struct sysinfo s;
2716 struct compat_sysinfo s_32;
2717
2718 do_sysinfo(&s);
2719
2720 /* Check to see if any memory value is too large for 32-bit and scale
2721 * down if needed
2722 */
2723 if (upper_32_bits(s.totalram) || upper_32_bits(s.totalswap)) {
2724 int bitcount = 0;
2725
2726 while (s.mem_unit < PAGE_SIZE) {
2727 s.mem_unit <<= 1;
2728 bitcount++;
2729 }
2730
2731 s.totalram >>= bitcount;
2732 s.freeram >>= bitcount;
2733 s.sharedram >>= bitcount;
2734 s.bufferram >>= bitcount;
2735 s.totalswap >>= bitcount;
2736 s.freeswap >>= bitcount;
2737 s.totalhigh >>= bitcount;
2738 s.freehigh >>= bitcount;
2739 }
2740
2741 memset(&s_32, 0, sizeof(s_32));
2742 s_32.uptime = s.uptime;
2743 s_32.loads[0] = s.loads[0];
2744 s_32.loads[1] = s.loads[1];
2745 s_32.loads[2] = s.loads[2];
2746 s_32.totalram = s.totalram;
2747 s_32.freeram = s.freeram;
2748 s_32.sharedram = s.sharedram;
2749 s_32.bufferram = s.bufferram;
2750 s_32.totalswap = s.totalswap;
2751 s_32.freeswap = s.freeswap;
2752 s_32.procs = s.procs;
2753 s_32.totalhigh = s.totalhigh;
2754 s_32.freehigh = s.freehigh;
2755 s_32.mem_unit = s.mem_unit;
2756 if (copy_to_user(info, &s_32, sizeof(s_32)))
2757 return -EFAULT;
2758 return 0;
2759 }
2760 #endif /* CONFIG_COMPAT */
2761