1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Kernel-based Virtual Machine driver for Linux
4 *
5 * This module enables machines with Intel VT-x extensions to run virtual
6 * machines without emulation or binary translation.
7 *
8 * MMU support
9 *
10 * Copyright (C) 2006 Qumranet, Inc.
11 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
12 *
13 * Authors:
14 * Yaniv Kamay <yaniv@qumranet.com>
15 * Avi Kivity <avi@qumranet.com>
16 */
17
18 #include "irq.h"
19 #include "ioapic.h"
20 #include "mmu.h"
21 #include "mmu_internal.h"
22 #include "tdp_mmu.h"
23 #include "x86.h"
24 #include "kvm_cache_regs.h"
25 #include "kvm_emulate.h"
26 #include "cpuid.h"
27 #include "spte.h"
28
29 #include <linux/kvm_host.h>
30 #include <linux/types.h>
31 #include <linux/string.h>
32 #include <linux/mm.h>
33 #include <linux/highmem.h>
34 #include <linux/moduleparam.h>
35 #include <linux/export.h>
36 #include <linux/swap.h>
37 #include <linux/hugetlb.h>
38 #include <linux/compiler.h>
39 #include <linux/srcu.h>
40 #include <linux/slab.h>
41 #include <linux/sched/signal.h>
42 #include <linux/uaccess.h>
43 #include <linux/hash.h>
44 #include <linux/kern_levels.h>
45 #include <linux/kthread.h>
46
47 #include <asm/page.h>
48 #include <asm/memtype.h>
49 #include <asm/cmpxchg.h>
50 #include <asm/io.h>
51 #include <asm/vmx.h>
52 #include <asm/kvm_page_track.h>
53 #include "trace.h"
54
55 #include "paging.h"
56
57 extern bool itlb_multihit_kvm_mitigation;
58
59 static int __read_mostly nx_huge_pages = -1;
60 #ifdef CONFIG_PREEMPT_RT
61 /* Recovery can cause latency spikes, disable it for PREEMPT_RT. */
62 static uint __read_mostly nx_huge_pages_recovery_ratio = 0;
63 #else
64 static uint __read_mostly nx_huge_pages_recovery_ratio = 60;
65 #endif
66
67 static int set_nx_huge_pages(const char *val, const struct kernel_param *kp);
68 static int set_nx_huge_pages_recovery_ratio(const char *val, const struct kernel_param *kp);
69
70 static const struct kernel_param_ops nx_huge_pages_ops = {
71 .set = set_nx_huge_pages,
72 .get = param_get_bool,
73 };
74
75 static const struct kernel_param_ops nx_huge_pages_recovery_ratio_ops = {
76 .set = set_nx_huge_pages_recovery_ratio,
77 .get = param_get_uint,
78 };
79
80 module_param_cb(nx_huge_pages, &nx_huge_pages_ops, &nx_huge_pages, 0644);
81 __MODULE_PARM_TYPE(nx_huge_pages, "bool");
82 module_param_cb(nx_huge_pages_recovery_ratio, &nx_huge_pages_recovery_ratio_ops,
83 &nx_huge_pages_recovery_ratio, 0644);
84 __MODULE_PARM_TYPE(nx_huge_pages_recovery_ratio, "uint");
85
86 static bool __read_mostly force_flush_and_sync_on_reuse;
87 module_param_named(flush_on_reuse, force_flush_and_sync_on_reuse, bool, 0644);
88
89 /*
90 * When setting this variable to true it enables Two-Dimensional-Paging
91 * where the hardware walks 2 page tables:
92 * 1. the guest-virtual to guest-physical
93 * 2. while doing 1. it walks guest-physical to host-physical
94 * If the hardware supports that we don't need to do shadow paging.
95 */
96 bool tdp_enabled = false;
97
98 static int max_huge_page_level __read_mostly;
99 static int max_tdp_level __read_mostly;
100
101 enum {
102 AUDIT_PRE_PAGE_FAULT,
103 AUDIT_POST_PAGE_FAULT,
104 AUDIT_PRE_PTE_WRITE,
105 AUDIT_POST_PTE_WRITE,
106 AUDIT_PRE_SYNC,
107 AUDIT_POST_SYNC
108 };
109
110 #ifdef MMU_DEBUG
111 bool dbg = 0;
112 module_param(dbg, bool, 0644);
113 #endif
114
115 #define PTE_PREFETCH_NUM 8
116
117 #define PT32_LEVEL_BITS 10
118
119 #define PT32_LEVEL_SHIFT(level) \
120 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
121
122 #define PT32_LVL_OFFSET_MASK(level) \
123 (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
124 * PT32_LEVEL_BITS))) - 1))
125
126 #define PT32_INDEX(address, level)\
127 (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
128
129
130 #define PT32_BASE_ADDR_MASK PAGE_MASK
131 #define PT32_DIR_BASE_ADDR_MASK \
132 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
133 #define PT32_LVL_ADDR_MASK(level) \
134 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
135 * PT32_LEVEL_BITS))) - 1))
136
137 #include <trace/events/kvm.h>
138
139 /* make pte_list_desc fit well in cache line */
140 #define PTE_LIST_EXT 3
141
142 struct pte_list_desc {
143 u64 *sptes[PTE_LIST_EXT];
144 struct pte_list_desc *more;
145 };
146
147 struct kvm_shadow_walk_iterator {
148 u64 addr;
149 hpa_t shadow_addr;
150 u64 *sptep;
151 int level;
152 unsigned index;
153 };
154
155 #define for_each_shadow_entry_using_root(_vcpu, _root, _addr, _walker) \
156 for (shadow_walk_init_using_root(&(_walker), (_vcpu), \
157 (_root), (_addr)); \
158 shadow_walk_okay(&(_walker)); \
159 shadow_walk_next(&(_walker)))
160
161 #define for_each_shadow_entry(_vcpu, _addr, _walker) \
162 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
163 shadow_walk_okay(&(_walker)); \
164 shadow_walk_next(&(_walker)))
165
166 #define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte) \
167 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
168 shadow_walk_okay(&(_walker)) && \
169 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; }); \
170 __shadow_walk_next(&(_walker), spte))
171
172 static struct kmem_cache *pte_list_desc_cache;
173 struct kmem_cache *mmu_page_header_cache;
174 static struct percpu_counter kvm_total_used_mmu_pages;
175
176 static void mmu_spte_set(u64 *sptep, u64 spte);
177 static union kvm_mmu_page_role
178 kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu);
179
180 #define CREATE_TRACE_POINTS
181 #include "mmutrace.h"
182
183
kvm_available_flush_tlb_with_range(void)184 static inline bool kvm_available_flush_tlb_with_range(void)
185 {
186 return kvm_x86_ops.tlb_remote_flush_with_range;
187 }
188
kvm_flush_remote_tlbs_with_range(struct kvm * kvm,struct kvm_tlb_range * range)189 static void kvm_flush_remote_tlbs_with_range(struct kvm *kvm,
190 struct kvm_tlb_range *range)
191 {
192 int ret = -ENOTSUPP;
193
194 if (range && kvm_x86_ops.tlb_remote_flush_with_range)
195 ret = kvm_x86_ops.tlb_remote_flush_with_range(kvm, range);
196
197 if (ret)
198 kvm_flush_remote_tlbs(kvm);
199 }
200
kvm_flush_remote_tlbs_with_address(struct kvm * kvm,u64 start_gfn,u64 pages)201 void kvm_flush_remote_tlbs_with_address(struct kvm *kvm,
202 u64 start_gfn, u64 pages)
203 {
204 struct kvm_tlb_range range;
205
206 range.start_gfn = start_gfn;
207 range.pages = pages;
208
209 kvm_flush_remote_tlbs_with_range(kvm, &range);
210 }
211
is_nx_huge_page_enabled(void)212 bool is_nx_huge_page_enabled(void)
213 {
214 return READ_ONCE(nx_huge_pages);
215 }
216
mark_mmio_spte(struct kvm_vcpu * vcpu,u64 * sptep,u64 gfn,unsigned int access)217 static void mark_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 gfn,
218 unsigned int access)
219 {
220 u64 mask = make_mmio_spte(vcpu, gfn, access);
221
222 trace_mark_mmio_spte(sptep, gfn, mask);
223 mmu_spte_set(sptep, mask);
224 }
225
get_mmio_spte_gfn(u64 spte)226 static gfn_t get_mmio_spte_gfn(u64 spte)
227 {
228 u64 gpa = spte & shadow_nonpresent_or_rsvd_lower_gfn_mask;
229
230 gpa |= (spte >> SHADOW_NONPRESENT_OR_RSVD_MASK_LEN)
231 & shadow_nonpresent_or_rsvd_mask;
232
233 return gpa >> PAGE_SHIFT;
234 }
235
get_mmio_spte_access(u64 spte)236 static unsigned get_mmio_spte_access(u64 spte)
237 {
238 return spte & shadow_mmio_access_mask;
239 }
240
set_mmio_spte(struct kvm_vcpu * vcpu,u64 * sptep,gfn_t gfn,kvm_pfn_t pfn,unsigned int access)241 static bool set_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
242 kvm_pfn_t pfn, unsigned int access)
243 {
244 if (unlikely(is_noslot_pfn(pfn))) {
245 mark_mmio_spte(vcpu, sptep, gfn, access);
246 return true;
247 }
248
249 return false;
250 }
251
check_mmio_spte(struct kvm_vcpu * vcpu,u64 spte)252 static bool check_mmio_spte(struct kvm_vcpu *vcpu, u64 spte)
253 {
254 u64 kvm_gen, spte_gen, gen;
255
256 gen = kvm_vcpu_memslots(vcpu)->generation;
257 if (unlikely(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS))
258 return false;
259
260 kvm_gen = gen & MMIO_SPTE_GEN_MASK;
261 spte_gen = get_mmio_spte_generation(spte);
262
263 trace_check_mmio_spte(spte, kvm_gen, spte_gen);
264 return likely(kvm_gen == spte_gen);
265 }
266
translate_gpa(struct kvm_vcpu * vcpu,gpa_t gpa,u32 access,struct x86_exception * exception)267 static gpa_t translate_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
268 struct x86_exception *exception)
269 {
270 return gpa;
271 }
272
is_cpuid_PSE36(void)273 static int is_cpuid_PSE36(void)
274 {
275 return 1;
276 }
277
is_nx(struct kvm_vcpu * vcpu)278 static int is_nx(struct kvm_vcpu *vcpu)
279 {
280 return vcpu->arch.efer & EFER_NX;
281 }
282
pse36_gfn_delta(u32 gpte)283 static gfn_t pse36_gfn_delta(u32 gpte)
284 {
285 int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
286
287 return (gpte & PT32_DIR_PSE36_MASK) << shift;
288 }
289
290 #ifdef CONFIG_X86_64
__set_spte(u64 * sptep,u64 spte)291 static void __set_spte(u64 *sptep, u64 spte)
292 {
293 WRITE_ONCE(*sptep, spte);
294 }
295
__update_clear_spte_fast(u64 * sptep,u64 spte)296 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
297 {
298 WRITE_ONCE(*sptep, spte);
299 }
300
__update_clear_spte_slow(u64 * sptep,u64 spte)301 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
302 {
303 return xchg(sptep, spte);
304 }
305
__get_spte_lockless(u64 * sptep)306 static u64 __get_spte_lockless(u64 *sptep)
307 {
308 return READ_ONCE(*sptep);
309 }
310 #else
311 union split_spte {
312 struct {
313 u32 spte_low;
314 u32 spte_high;
315 };
316 u64 spte;
317 };
318
count_spte_clear(u64 * sptep,u64 spte)319 static void count_spte_clear(u64 *sptep, u64 spte)
320 {
321 struct kvm_mmu_page *sp = sptep_to_sp(sptep);
322
323 if (is_shadow_present_pte(spte))
324 return;
325
326 /* Ensure the spte is completely set before we increase the count */
327 smp_wmb();
328 sp->clear_spte_count++;
329 }
330
__set_spte(u64 * sptep,u64 spte)331 static void __set_spte(u64 *sptep, u64 spte)
332 {
333 union split_spte *ssptep, sspte;
334
335 ssptep = (union split_spte *)sptep;
336 sspte = (union split_spte)spte;
337
338 ssptep->spte_high = sspte.spte_high;
339
340 /*
341 * If we map the spte from nonpresent to present, We should store
342 * the high bits firstly, then set present bit, so cpu can not
343 * fetch this spte while we are setting the spte.
344 */
345 smp_wmb();
346
347 WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
348 }
349
__update_clear_spte_fast(u64 * sptep,u64 spte)350 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
351 {
352 union split_spte *ssptep, sspte;
353
354 ssptep = (union split_spte *)sptep;
355 sspte = (union split_spte)spte;
356
357 WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
358
359 /*
360 * If we map the spte from present to nonpresent, we should clear
361 * present bit firstly to avoid vcpu fetch the old high bits.
362 */
363 smp_wmb();
364
365 ssptep->spte_high = sspte.spte_high;
366 count_spte_clear(sptep, spte);
367 }
368
__update_clear_spte_slow(u64 * sptep,u64 spte)369 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
370 {
371 union split_spte *ssptep, sspte, orig;
372
373 ssptep = (union split_spte *)sptep;
374 sspte = (union split_spte)spte;
375
376 /* xchg acts as a barrier before the setting of the high bits */
377 orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
378 orig.spte_high = ssptep->spte_high;
379 ssptep->spte_high = sspte.spte_high;
380 count_spte_clear(sptep, spte);
381
382 return orig.spte;
383 }
384
385 /*
386 * The idea using the light way get the spte on x86_32 guest is from
387 * gup_get_pte (mm/gup.c).
388 *
389 * An spte tlb flush may be pending, because kvm_set_pte_rmapp
390 * coalesces them and we are running out of the MMU lock. Therefore
391 * we need to protect against in-progress updates of the spte.
392 *
393 * Reading the spte while an update is in progress may get the old value
394 * for the high part of the spte. The race is fine for a present->non-present
395 * change (because the high part of the spte is ignored for non-present spte),
396 * but for a present->present change we must reread the spte.
397 *
398 * All such changes are done in two steps (present->non-present and
399 * non-present->present), hence it is enough to count the number of
400 * present->non-present updates: if it changed while reading the spte,
401 * we might have hit the race. This is done using clear_spte_count.
402 */
__get_spte_lockless(u64 * sptep)403 static u64 __get_spte_lockless(u64 *sptep)
404 {
405 struct kvm_mmu_page *sp = sptep_to_sp(sptep);
406 union split_spte spte, *orig = (union split_spte *)sptep;
407 int count;
408
409 retry:
410 count = sp->clear_spte_count;
411 smp_rmb();
412
413 spte.spte_low = orig->spte_low;
414 smp_rmb();
415
416 spte.spte_high = orig->spte_high;
417 smp_rmb();
418
419 if (unlikely(spte.spte_low != orig->spte_low ||
420 count != sp->clear_spte_count))
421 goto retry;
422
423 return spte.spte;
424 }
425 #endif
426
spte_has_volatile_bits(u64 spte)427 static bool spte_has_volatile_bits(u64 spte)
428 {
429 if (!is_shadow_present_pte(spte))
430 return false;
431
432 /*
433 * Always atomically update spte if it can be updated
434 * out of mmu-lock, it can ensure dirty bit is not lost,
435 * also, it can help us to get a stable is_writable_pte()
436 * to ensure tlb flush is not missed.
437 */
438 if (spte_can_locklessly_be_made_writable(spte) ||
439 is_access_track_spte(spte))
440 return true;
441
442 if (spte_ad_enabled(spte)) {
443 if ((spte & shadow_accessed_mask) == 0 ||
444 (is_writable_pte(spte) && (spte & shadow_dirty_mask) == 0))
445 return true;
446 }
447
448 return false;
449 }
450
451 /* Rules for using mmu_spte_set:
452 * Set the sptep from nonpresent to present.
453 * Note: the sptep being assigned *must* be either not present
454 * or in a state where the hardware will not attempt to update
455 * the spte.
456 */
mmu_spte_set(u64 * sptep,u64 new_spte)457 static void mmu_spte_set(u64 *sptep, u64 new_spte)
458 {
459 WARN_ON(is_shadow_present_pte(*sptep));
460 __set_spte(sptep, new_spte);
461 }
462
463 /*
464 * Update the SPTE (excluding the PFN), but do not track changes in its
465 * accessed/dirty status.
466 */
mmu_spte_update_no_track(u64 * sptep,u64 new_spte)467 static u64 mmu_spte_update_no_track(u64 *sptep, u64 new_spte)
468 {
469 u64 old_spte = *sptep;
470
471 WARN_ON(!is_shadow_present_pte(new_spte));
472
473 if (!is_shadow_present_pte(old_spte)) {
474 mmu_spte_set(sptep, new_spte);
475 return old_spte;
476 }
477
478 if (!spte_has_volatile_bits(old_spte))
479 __update_clear_spte_fast(sptep, new_spte);
480 else
481 old_spte = __update_clear_spte_slow(sptep, new_spte);
482
483 WARN_ON(spte_to_pfn(old_spte) != spte_to_pfn(new_spte));
484
485 return old_spte;
486 }
487
488 /* Rules for using mmu_spte_update:
489 * Update the state bits, it means the mapped pfn is not changed.
490 *
491 * Whenever we overwrite a writable spte with a read-only one we
492 * should flush remote TLBs. Otherwise rmap_write_protect
493 * will find a read-only spte, even though the writable spte
494 * might be cached on a CPU's TLB, the return value indicates this
495 * case.
496 *
497 * Returns true if the TLB needs to be flushed
498 */
mmu_spte_update(u64 * sptep,u64 new_spte)499 static bool mmu_spte_update(u64 *sptep, u64 new_spte)
500 {
501 bool flush = false;
502 u64 old_spte = mmu_spte_update_no_track(sptep, new_spte);
503
504 if (!is_shadow_present_pte(old_spte))
505 return false;
506
507 /*
508 * For the spte updated out of mmu-lock is safe, since
509 * we always atomically update it, see the comments in
510 * spte_has_volatile_bits().
511 */
512 if (spte_can_locklessly_be_made_writable(old_spte) &&
513 !is_writable_pte(new_spte))
514 flush = true;
515
516 /*
517 * Flush TLB when accessed/dirty states are changed in the page tables,
518 * to guarantee consistency between TLB and page tables.
519 */
520
521 if (is_accessed_spte(old_spte) && !is_accessed_spte(new_spte)) {
522 flush = true;
523 kvm_set_pfn_accessed(spte_to_pfn(old_spte));
524 }
525
526 if (is_dirty_spte(old_spte) && !is_dirty_spte(new_spte)) {
527 flush = true;
528 kvm_set_pfn_dirty(spte_to_pfn(old_spte));
529 }
530
531 return flush;
532 }
533
534 /*
535 * Rules for using mmu_spte_clear_track_bits:
536 * It sets the sptep from present to nonpresent, and track the
537 * state bits, it is used to clear the last level sptep.
538 * Returns non-zero if the PTE was previously valid.
539 */
mmu_spte_clear_track_bits(u64 * sptep)540 static int mmu_spte_clear_track_bits(u64 *sptep)
541 {
542 kvm_pfn_t pfn;
543 u64 old_spte = *sptep;
544
545 if (!spte_has_volatile_bits(old_spte))
546 __update_clear_spte_fast(sptep, 0ull);
547 else
548 old_spte = __update_clear_spte_slow(sptep, 0ull);
549
550 if (!is_shadow_present_pte(old_spte))
551 return 0;
552
553 pfn = spte_to_pfn(old_spte);
554
555 /*
556 * KVM does not hold the refcount of the page used by
557 * kvm mmu, before reclaiming the page, we should
558 * unmap it from mmu first.
559 */
560 WARN_ON(!kvm_is_reserved_pfn(pfn) && !page_count(pfn_to_page(pfn)));
561
562 if (is_accessed_spte(old_spte))
563 kvm_set_pfn_accessed(pfn);
564
565 if (is_dirty_spte(old_spte))
566 kvm_set_pfn_dirty(pfn);
567
568 return 1;
569 }
570
571 /*
572 * Rules for using mmu_spte_clear_no_track:
573 * Directly clear spte without caring the state bits of sptep,
574 * it is used to set the upper level spte.
575 */
mmu_spte_clear_no_track(u64 * sptep)576 static void mmu_spte_clear_no_track(u64 *sptep)
577 {
578 __update_clear_spte_fast(sptep, 0ull);
579 }
580
mmu_spte_get_lockless(u64 * sptep)581 static u64 mmu_spte_get_lockless(u64 *sptep)
582 {
583 return __get_spte_lockless(sptep);
584 }
585
586 /* Restore an acc-track PTE back to a regular PTE */
restore_acc_track_spte(u64 spte)587 static u64 restore_acc_track_spte(u64 spte)
588 {
589 u64 new_spte = spte;
590 u64 saved_bits = (spte >> SHADOW_ACC_TRACK_SAVED_BITS_SHIFT)
591 & SHADOW_ACC_TRACK_SAVED_BITS_MASK;
592
593 WARN_ON_ONCE(spte_ad_enabled(spte));
594 WARN_ON_ONCE(!is_access_track_spte(spte));
595
596 new_spte &= ~shadow_acc_track_mask;
597 new_spte &= ~(SHADOW_ACC_TRACK_SAVED_BITS_MASK <<
598 SHADOW_ACC_TRACK_SAVED_BITS_SHIFT);
599 new_spte |= saved_bits;
600
601 return new_spte;
602 }
603
604 /* Returns the Accessed status of the PTE and resets it at the same time. */
mmu_spte_age(u64 * sptep)605 static bool mmu_spte_age(u64 *sptep)
606 {
607 u64 spte = mmu_spte_get_lockless(sptep);
608
609 if (!is_accessed_spte(spte))
610 return false;
611
612 if (spte_ad_enabled(spte)) {
613 clear_bit((ffs(shadow_accessed_mask) - 1),
614 (unsigned long *)sptep);
615 } else {
616 /*
617 * Capture the dirty status of the page, so that it doesn't get
618 * lost when the SPTE is marked for access tracking.
619 */
620 if (is_writable_pte(spte))
621 kvm_set_pfn_dirty(spte_to_pfn(spte));
622
623 spte = mark_spte_for_access_track(spte);
624 mmu_spte_update_no_track(sptep, spte);
625 }
626
627 return true;
628 }
629
walk_shadow_page_lockless_begin(struct kvm_vcpu * vcpu)630 static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
631 {
632 /*
633 * Prevent page table teardown by making any free-er wait during
634 * kvm_flush_remote_tlbs() IPI to all active vcpus.
635 */
636 local_irq_disable();
637
638 /*
639 * Make sure a following spte read is not reordered ahead of the write
640 * to vcpu->mode.
641 */
642 smp_store_mb(vcpu->mode, READING_SHADOW_PAGE_TABLES);
643 }
644
walk_shadow_page_lockless_end(struct kvm_vcpu * vcpu)645 static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
646 {
647 /*
648 * Make sure the write to vcpu->mode is not reordered in front of
649 * reads to sptes. If it does, kvm_mmu_commit_zap_page() can see us
650 * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
651 */
652 smp_store_release(&vcpu->mode, OUTSIDE_GUEST_MODE);
653 local_irq_enable();
654 }
655
mmu_topup_memory_caches(struct kvm_vcpu * vcpu,bool maybe_indirect)656 static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu, bool maybe_indirect)
657 {
658 int r;
659
660 /* 1 rmap, 1 parent PTE per level, and the prefetched rmaps. */
661 r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
662 1 + PT64_ROOT_MAX_LEVEL + PTE_PREFETCH_NUM);
663 if (r)
664 return r;
665 r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_shadow_page_cache,
666 PT64_ROOT_MAX_LEVEL);
667 if (r)
668 return r;
669 if (maybe_indirect) {
670 r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_gfn_array_cache,
671 PT64_ROOT_MAX_LEVEL);
672 if (r)
673 return r;
674 }
675 return kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
676 PT64_ROOT_MAX_LEVEL);
677 }
678
mmu_free_memory_caches(struct kvm_vcpu * vcpu)679 static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
680 {
681 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache);
682 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_shadow_page_cache);
683 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_gfn_array_cache);
684 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache);
685 }
686
mmu_alloc_pte_list_desc(struct kvm_vcpu * vcpu)687 static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
688 {
689 return kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
690 }
691
mmu_free_pte_list_desc(struct pte_list_desc * pte_list_desc)692 static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
693 {
694 kmem_cache_free(pte_list_desc_cache, pte_list_desc);
695 }
696
kvm_mmu_page_get_gfn(struct kvm_mmu_page * sp,int index)697 static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
698 {
699 if (!sp->role.direct)
700 return sp->gfns[index];
701
702 return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
703 }
704
kvm_mmu_page_set_gfn(struct kvm_mmu_page * sp,int index,gfn_t gfn)705 static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
706 {
707 if (!sp->role.direct) {
708 sp->gfns[index] = gfn;
709 return;
710 }
711
712 if (WARN_ON(gfn != kvm_mmu_page_get_gfn(sp, index)))
713 pr_err_ratelimited("gfn mismatch under direct page %llx "
714 "(expected %llx, got %llx)\n",
715 sp->gfn,
716 kvm_mmu_page_get_gfn(sp, index), gfn);
717 }
718
719 /*
720 * Return the pointer to the large page information for a given gfn,
721 * handling slots that are not large page aligned.
722 */
lpage_info_slot(gfn_t gfn,struct kvm_memory_slot * slot,int level)723 static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
724 struct kvm_memory_slot *slot,
725 int level)
726 {
727 unsigned long idx;
728
729 idx = gfn_to_index(gfn, slot->base_gfn, level);
730 return &slot->arch.lpage_info[level - 2][idx];
731 }
732
update_gfn_disallow_lpage_count(struct kvm_memory_slot * slot,gfn_t gfn,int count)733 static void update_gfn_disallow_lpage_count(struct kvm_memory_slot *slot,
734 gfn_t gfn, int count)
735 {
736 struct kvm_lpage_info *linfo;
737 int i;
738
739 for (i = PG_LEVEL_2M; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) {
740 linfo = lpage_info_slot(gfn, slot, i);
741 linfo->disallow_lpage += count;
742 WARN_ON(linfo->disallow_lpage < 0);
743 }
744 }
745
kvm_mmu_gfn_disallow_lpage(struct kvm_memory_slot * slot,gfn_t gfn)746 void kvm_mmu_gfn_disallow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
747 {
748 update_gfn_disallow_lpage_count(slot, gfn, 1);
749 }
750
kvm_mmu_gfn_allow_lpage(struct kvm_memory_slot * slot,gfn_t gfn)751 void kvm_mmu_gfn_allow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
752 {
753 update_gfn_disallow_lpage_count(slot, gfn, -1);
754 }
755
account_shadowed(struct kvm * kvm,struct kvm_mmu_page * sp)756 static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
757 {
758 struct kvm_memslots *slots;
759 struct kvm_memory_slot *slot;
760 gfn_t gfn;
761
762 kvm->arch.indirect_shadow_pages++;
763 gfn = sp->gfn;
764 slots = kvm_memslots_for_spte_role(kvm, sp->role);
765 slot = __gfn_to_memslot(slots, gfn);
766
767 /* the non-leaf shadow pages are keeping readonly. */
768 if (sp->role.level > PG_LEVEL_4K)
769 return kvm_slot_page_track_add_page(kvm, slot, gfn,
770 KVM_PAGE_TRACK_WRITE);
771
772 kvm_mmu_gfn_disallow_lpage(slot, gfn);
773 }
774
account_huge_nx_page(struct kvm * kvm,struct kvm_mmu_page * sp)775 void account_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp)
776 {
777 if (sp->lpage_disallowed)
778 return;
779
780 ++kvm->stat.nx_lpage_splits;
781 list_add_tail(&sp->lpage_disallowed_link,
782 &kvm->arch.lpage_disallowed_mmu_pages);
783 sp->lpage_disallowed = true;
784 }
785
unaccount_shadowed(struct kvm * kvm,struct kvm_mmu_page * sp)786 static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
787 {
788 struct kvm_memslots *slots;
789 struct kvm_memory_slot *slot;
790 gfn_t gfn;
791
792 kvm->arch.indirect_shadow_pages--;
793 gfn = sp->gfn;
794 slots = kvm_memslots_for_spte_role(kvm, sp->role);
795 slot = __gfn_to_memslot(slots, gfn);
796 if (sp->role.level > PG_LEVEL_4K)
797 return kvm_slot_page_track_remove_page(kvm, slot, gfn,
798 KVM_PAGE_TRACK_WRITE);
799
800 kvm_mmu_gfn_allow_lpage(slot, gfn);
801 }
802
unaccount_huge_nx_page(struct kvm * kvm,struct kvm_mmu_page * sp)803 void unaccount_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp)
804 {
805 --kvm->stat.nx_lpage_splits;
806 sp->lpage_disallowed = false;
807 list_del(&sp->lpage_disallowed_link);
808 }
809
810 static struct kvm_memory_slot *
gfn_to_memslot_dirty_bitmap(struct kvm_vcpu * vcpu,gfn_t gfn,bool no_dirty_log)811 gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
812 bool no_dirty_log)
813 {
814 struct kvm_memory_slot *slot;
815
816 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
817 if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
818 return NULL;
819 if (no_dirty_log && slot->dirty_bitmap)
820 return NULL;
821
822 return slot;
823 }
824
825 /*
826 * About rmap_head encoding:
827 *
828 * If the bit zero of rmap_head->val is clear, then it points to the only spte
829 * in this rmap chain. Otherwise, (rmap_head->val & ~1) points to a struct
830 * pte_list_desc containing more mappings.
831 */
832
833 /*
834 * Returns the number of pointers in the rmap chain, not counting the new one.
835 */
pte_list_add(struct kvm_vcpu * vcpu,u64 * spte,struct kvm_rmap_head * rmap_head)836 static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
837 struct kvm_rmap_head *rmap_head)
838 {
839 struct pte_list_desc *desc;
840 int i, count = 0;
841
842 if (!rmap_head->val) {
843 rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
844 rmap_head->val = (unsigned long)spte;
845 } else if (!(rmap_head->val & 1)) {
846 rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
847 desc = mmu_alloc_pte_list_desc(vcpu);
848 desc->sptes[0] = (u64 *)rmap_head->val;
849 desc->sptes[1] = spte;
850 rmap_head->val = (unsigned long)desc | 1;
851 ++count;
852 } else {
853 rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
854 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
855 while (desc->sptes[PTE_LIST_EXT-1]) {
856 count += PTE_LIST_EXT;
857
858 if (!desc->more) {
859 desc->more = mmu_alloc_pte_list_desc(vcpu);
860 desc = desc->more;
861 break;
862 }
863 desc = desc->more;
864 }
865 for (i = 0; desc->sptes[i]; ++i)
866 ++count;
867 desc->sptes[i] = spte;
868 }
869 return count;
870 }
871
872 static void
pte_list_desc_remove_entry(struct kvm_rmap_head * rmap_head,struct pte_list_desc * desc,int i,struct pte_list_desc * prev_desc)873 pte_list_desc_remove_entry(struct kvm_rmap_head *rmap_head,
874 struct pte_list_desc *desc, int i,
875 struct pte_list_desc *prev_desc)
876 {
877 int j;
878
879 for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
880 ;
881 desc->sptes[i] = desc->sptes[j];
882 desc->sptes[j] = NULL;
883 if (j != 0)
884 return;
885 if (!prev_desc && !desc->more)
886 rmap_head->val = 0;
887 else
888 if (prev_desc)
889 prev_desc->more = desc->more;
890 else
891 rmap_head->val = (unsigned long)desc->more | 1;
892 mmu_free_pte_list_desc(desc);
893 }
894
__pte_list_remove(u64 * spte,struct kvm_rmap_head * rmap_head)895 static void __pte_list_remove(u64 *spte, struct kvm_rmap_head *rmap_head)
896 {
897 struct pte_list_desc *desc;
898 struct pte_list_desc *prev_desc;
899 int i;
900
901 if (!rmap_head->val) {
902 pr_err("%s: %p 0->BUG\n", __func__, spte);
903 BUG();
904 } else if (!(rmap_head->val & 1)) {
905 rmap_printk("%s: %p 1->0\n", __func__, spte);
906 if ((u64 *)rmap_head->val != spte) {
907 pr_err("%s: %p 1->BUG\n", __func__, spte);
908 BUG();
909 }
910 rmap_head->val = 0;
911 } else {
912 rmap_printk("%s: %p many->many\n", __func__, spte);
913 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
914 prev_desc = NULL;
915 while (desc) {
916 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i) {
917 if (desc->sptes[i] == spte) {
918 pte_list_desc_remove_entry(rmap_head,
919 desc, i, prev_desc);
920 return;
921 }
922 }
923 prev_desc = desc;
924 desc = desc->more;
925 }
926 pr_err("%s: %p many->many\n", __func__, spte);
927 BUG();
928 }
929 }
930
pte_list_remove(struct kvm_rmap_head * rmap_head,u64 * sptep)931 static void pte_list_remove(struct kvm_rmap_head *rmap_head, u64 *sptep)
932 {
933 mmu_spte_clear_track_bits(sptep);
934 __pte_list_remove(sptep, rmap_head);
935 }
936
__gfn_to_rmap(gfn_t gfn,int level,struct kvm_memory_slot * slot)937 static struct kvm_rmap_head *__gfn_to_rmap(gfn_t gfn, int level,
938 struct kvm_memory_slot *slot)
939 {
940 unsigned long idx;
941
942 idx = gfn_to_index(gfn, slot->base_gfn, level);
943 return &slot->arch.rmap[level - PG_LEVEL_4K][idx];
944 }
945
gfn_to_rmap(struct kvm * kvm,gfn_t gfn,struct kvm_mmu_page * sp)946 static struct kvm_rmap_head *gfn_to_rmap(struct kvm *kvm, gfn_t gfn,
947 struct kvm_mmu_page *sp)
948 {
949 struct kvm_memslots *slots;
950 struct kvm_memory_slot *slot;
951
952 slots = kvm_memslots_for_spte_role(kvm, sp->role);
953 slot = __gfn_to_memslot(slots, gfn);
954 return __gfn_to_rmap(gfn, sp->role.level, slot);
955 }
956
rmap_can_add(struct kvm_vcpu * vcpu)957 static bool rmap_can_add(struct kvm_vcpu *vcpu)
958 {
959 struct kvm_mmu_memory_cache *mc;
960
961 mc = &vcpu->arch.mmu_pte_list_desc_cache;
962 return kvm_mmu_memory_cache_nr_free_objects(mc);
963 }
964
rmap_add(struct kvm_vcpu * vcpu,u64 * spte,gfn_t gfn)965 static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
966 {
967 struct kvm_mmu_page *sp;
968 struct kvm_rmap_head *rmap_head;
969
970 sp = sptep_to_sp(spte);
971 kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
972 rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
973 return pte_list_add(vcpu, spte, rmap_head);
974 }
975
rmap_remove(struct kvm * kvm,u64 * spte)976 static void rmap_remove(struct kvm *kvm, u64 *spte)
977 {
978 struct kvm_mmu_page *sp;
979 gfn_t gfn;
980 struct kvm_rmap_head *rmap_head;
981
982 sp = sptep_to_sp(spte);
983 gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
984 rmap_head = gfn_to_rmap(kvm, gfn, sp);
985 __pte_list_remove(spte, rmap_head);
986 }
987
988 /*
989 * Used by the following functions to iterate through the sptes linked by a
990 * rmap. All fields are private and not assumed to be used outside.
991 */
992 struct rmap_iterator {
993 /* private fields */
994 struct pte_list_desc *desc; /* holds the sptep if not NULL */
995 int pos; /* index of the sptep */
996 };
997
998 /*
999 * Iteration must be started by this function. This should also be used after
1000 * removing/dropping sptes from the rmap link because in such cases the
1001 * information in the iterator may not be valid.
1002 *
1003 * Returns sptep if found, NULL otherwise.
1004 */
rmap_get_first(struct kvm_rmap_head * rmap_head,struct rmap_iterator * iter)1005 static u64 *rmap_get_first(struct kvm_rmap_head *rmap_head,
1006 struct rmap_iterator *iter)
1007 {
1008 u64 *sptep;
1009
1010 if (!rmap_head->val)
1011 return NULL;
1012
1013 if (!(rmap_head->val & 1)) {
1014 iter->desc = NULL;
1015 sptep = (u64 *)rmap_head->val;
1016 goto out;
1017 }
1018
1019 iter->desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1020 iter->pos = 0;
1021 sptep = iter->desc->sptes[iter->pos];
1022 out:
1023 BUG_ON(!is_shadow_present_pte(*sptep));
1024 return sptep;
1025 }
1026
1027 /*
1028 * Must be used with a valid iterator: e.g. after rmap_get_first().
1029 *
1030 * Returns sptep if found, NULL otherwise.
1031 */
rmap_get_next(struct rmap_iterator * iter)1032 static u64 *rmap_get_next(struct rmap_iterator *iter)
1033 {
1034 u64 *sptep;
1035
1036 if (iter->desc) {
1037 if (iter->pos < PTE_LIST_EXT - 1) {
1038 ++iter->pos;
1039 sptep = iter->desc->sptes[iter->pos];
1040 if (sptep)
1041 goto out;
1042 }
1043
1044 iter->desc = iter->desc->more;
1045
1046 if (iter->desc) {
1047 iter->pos = 0;
1048 /* desc->sptes[0] cannot be NULL */
1049 sptep = iter->desc->sptes[iter->pos];
1050 goto out;
1051 }
1052 }
1053
1054 return NULL;
1055 out:
1056 BUG_ON(!is_shadow_present_pte(*sptep));
1057 return sptep;
1058 }
1059
1060 #define for_each_rmap_spte(_rmap_head_, _iter_, _spte_) \
1061 for (_spte_ = rmap_get_first(_rmap_head_, _iter_); \
1062 _spte_; _spte_ = rmap_get_next(_iter_))
1063
drop_spte(struct kvm * kvm,u64 * sptep)1064 static void drop_spte(struct kvm *kvm, u64 *sptep)
1065 {
1066 if (mmu_spte_clear_track_bits(sptep))
1067 rmap_remove(kvm, sptep);
1068 }
1069
1070
__drop_large_spte(struct kvm * kvm,u64 * sptep)1071 static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
1072 {
1073 if (is_large_pte(*sptep)) {
1074 WARN_ON(sptep_to_sp(sptep)->role.level == PG_LEVEL_4K);
1075 drop_spte(kvm, sptep);
1076 --kvm->stat.lpages;
1077 return true;
1078 }
1079
1080 return false;
1081 }
1082
drop_large_spte(struct kvm_vcpu * vcpu,u64 * sptep)1083 static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
1084 {
1085 if (__drop_large_spte(vcpu->kvm, sptep)) {
1086 struct kvm_mmu_page *sp = sptep_to_sp(sptep);
1087
1088 kvm_flush_remote_tlbs_with_address(vcpu->kvm, sp->gfn,
1089 KVM_PAGES_PER_HPAGE(sp->role.level));
1090 }
1091 }
1092
1093 /*
1094 * Write-protect on the specified @sptep, @pt_protect indicates whether
1095 * spte write-protection is caused by protecting shadow page table.
1096 *
1097 * Note: write protection is difference between dirty logging and spte
1098 * protection:
1099 * - for dirty logging, the spte can be set to writable at anytime if
1100 * its dirty bitmap is properly set.
1101 * - for spte protection, the spte can be writable only after unsync-ing
1102 * shadow page.
1103 *
1104 * Return true if tlb need be flushed.
1105 */
spte_write_protect(u64 * sptep,bool pt_protect)1106 static bool spte_write_protect(u64 *sptep, bool pt_protect)
1107 {
1108 u64 spte = *sptep;
1109
1110 if (!is_writable_pte(spte) &&
1111 !(pt_protect && spte_can_locklessly_be_made_writable(spte)))
1112 return false;
1113
1114 rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep);
1115
1116 if (pt_protect)
1117 spte &= ~SPTE_MMU_WRITEABLE;
1118 spte = spte & ~PT_WRITABLE_MASK;
1119
1120 return mmu_spte_update(sptep, spte);
1121 }
1122
__rmap_write_protect(struct kvm * kvm,struct kvm_rmap_head * rmap_head,bool pt_protect)1123 static bool __rmap_write_protect(struct kvm *kvm,
1124 struct kvm_rmap_head *rmap_head,
1125 bool pt_protect)
1126 {
1127 u64 *sptep;
1128 struct rmap_iterator iter;
1129 bool flush = false;
1130
1131 for_each_rmap_spte(rmap_head, &iter, sptep)
1132 flush |= spte_write_protect(sptep, pt_protect);
1133
1134 return flush;
1135 }
1136
spte_clear_dirty(u64 * sptep)1137 static bool spte_clear_dirty(u64 *sptep)
1138 {
1139 u64 spte = *sptep;
1140
1141 rmap_printk("rmap_clear_dirty: spte %p %llx\n", sptep, *sptep);
1142
1143 MMU_WARN_ON(!spte_ad_enabled(spte));
1144 spte &= ~shadow_dirty_mask;
1145 return mmu_spte_update(sptep, spte);
1146 }
1147
spte_wrprot_for_clear_dirty(u64 * sptep)1148 static bool spte_wrprot_for_clear_dirty(u64 *sptep)
1149 {
1150 bool was_writable = test_and_clear_bit(PT_WRITABLE_SHIFT,
1151 (unsigned long *)sptep);
1152 if (was_writable && !spte_ad_enabled(*sptep))
1153 kvm_set_pfn_dirty(spte_to_pfn(*sptep));
1154
1155 return was_writable;
1156 }
1157
1158 /*
1159 * Gets the GFN ready for another round of dirty logging by clearing the
1160 * - D bit on ad-enabled SPTEs, and
1161 * - W bit on ad-disabled SPTEs.
1162 * Returns true iff any D or W bits were cleared.
1163 */
__rmap_clear_dirty(struct kvm * kvm,struct kvm_rmap_head * rmap_head)1164 static bool __rmap_clear_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1165 {
1166 u64 *sptep;
1167 struct rmap_iterator iter;
1168 bool flush = false;
1169
1170 for_each_rmap_spte(rmap_head, &iter, sptep)
1171 if (spte_ad_need_write_protect(*sptep))
1172 flush |= spte_wrprot_for_clear_dirty(sptep);
1173 else
1174 flush |= spte_clear_dirty(sptep);
1175
1176 return flush;
1177 }
1178
spte_set_dirty(u64 * sptep)1179 static bool spte_set_dirty(u64 *sptep)
1180 {
1181 u64 spte = *sptep;
1182
1183 rmap_printk("rmap_set_dirty: spte %p %llx\n", sptep, *sptep);
1184
1185 /*
1186 * Similar to the !kvm_x86_ops.slot_disable_log_dirty case,
1187 * do not bother adding back write access to pages marked
1188 * SPTE_AD_WRPROT_ONLY_MASK.
1189 */
1190 spte |= shadow_dirty_mask;
1191
1192 return mmu_spte_update(sptep, spte);
1193 }
1194
__rmap_set_dirty(struct kvm * kvm,struct kvm_rmap_head * rmap_head)1195 static bool __rmap_set_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1196 {
1197 u64 *sptep;
1198 struct rmap_iterator iter;
1199 bool flush = false;
1200
1201 for_each_rmap_spte(rmap_head, &iter, sptep)
1202 if (spte_ad_enabled(*sptep))
1203 flush |= spte_set_dirty(sptep);
1204
1205 return flush;
1206 }
1207
1208 /**
1209 * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
1210 * @kvm: kvm instance
1211 * @slot: slot to protect
1212 * @gfn_offset: start of the BITS_PER_LONG pages we care about
1213 * @mask: indicates which pages we should protect
1214 *
1215 * Used when we do not need to care about huge page mappings: e.g. during dirty
1216 * logging we do not have any such mappings.
1217 */
kvm_mmu_write_protect_pt_masked(struct kvm * kvm,struct kvm_memory_slot * slot,gfn_t gfn_offset,unsigned long mask)1218 static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1219 struct kvm_memory_slot *slot,
1220 gfn_t gfn_offset, unsigned long mask)
1221 {
1222 struct kvm_rmap_head *rmap_head;
1223
1224 if (kvm->arch.tdp_mmu_enabled)
1225 kvm_tdp_mmu_clear_dirty_pt_masked(kvm, slot,
1226 slot->base_gfn + gfn_offset, mask, true);
1227 while (mask) {
1228 rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1229 PG_LEVEL_4K, slot);
1230 __rmap_write_protect(kvm, rmap_head, false);
1231
1232 /* clear the first set bit */
1233 mask &= mask - 1;
1234 }
1235 }
1236
1237 /**
1238 * kvm_mmu_clear_dirty_pt_masked - clear MMU D-bit for PT level pages, or write
1239 * protect the page if the D-bit isn't supported.
1240 * @kvm: kvm instance
1241 * @slot: slot to clear D-bit
1242 * @gfn_offset: start of the BITS_PER_LONG pages we care about
1243 * @mask: indicates which pages we should clear D-bit
1244 *
1245 * Used for PML to re-log the dirty GPAs after userspace querying dirty_bitmap.
1246 */
kvm_mmu_clear_dirty_pt_masked(struct kvm * kvm,struct kvm_memory_slot * slot,gfn_t gfn_offset,unsigned long mask)1247 void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm,
1248 struct kvm_memory_slot *slot,
1249 gfn_t gfn_offset, unsigned long mask)
1250 {
1251 struct kvm_rmap_head *rmap_head;
1252
1253 if (kvm->arch.tdp_mmu_enabled)
1254 kvm_tdp_mmu_clear_dirty_pt_masked(kvm, slot,
1255 slot->base_gfn + gfn_offset, mask, false);
1256 while (mask) {
1257 rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1258 PG_LEVEL_4K, slot);
1259 __rmap_clear_dirty(kvm, rmap_head);
1260
1261 /* clear the first set bit */
1262 mask &= mask - 1;
1263 }
1264 }
1265 EXPORT_SYMBOL_GPL(kvm_mmu_clear_dirty_pt_masked);
1266
1267 /**
1268 * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
1269 * PT level pages.
1270 *
1271 * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
1272 * enable dirty logging for them.
1273 *
1274 * Used when we do not need to care about huge page mappings: e.g. during dirty
1275 * logging we do not have any such mappings.
1276 */
kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm * kvm,struct kvm_memory_slot * slot,gfn_t gfn_offset,unsigned long mask)1277 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1278 struct kvm_memory_slot *slot,
1279 gfn_t gfn_offset, unsigned long mask)
1280 {
1281 if (kvm_x86_ops.enable_log_dirty_pt_masked)
1282 kvm_x86_ops.enable_log_dirty_pt_masked(kvm, slot, gfn_offset,
1283 mask);
1284 else
1285 kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
1286 }
1287
kvm_mmu_slot_gfn_write_protect(struct kvm * kvm,struct kvm_memory_slot * slot,u64 gfn)1288 bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm,
1289 struct kvm_memory_slot *slot, u64 gfn)
1290 {
1291 struct kvm_rmap_head *rmap_head;
1292 int i;
1293 bool write_protected = false;
1294
1295 for (i = PG_LEVEL_4K; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) {
1296 rmap_head = __gfn_to_rmap(gfn, i, slot);
1297 write_protected |= __rmap_write_protect(kvm, rmap_head, true);
1298 }
1299
1300 if (kvm->arch.tdp_mmu_enabled)
1301 write_protected |=
1302 kvm_tdp_mmu_write_protect_gfn(kvm, slot, gfn);
1303
1304 return write_protected;
1305 }
1306
rmap_write_protect(struct kvm_vcpu * vcpu,u64 gfn)1307 static bool rmap_write_protect(struct kvm_vcpu *vcpu, u64 gfn)
1308 {
1309 struct kvm_memory_slot *slot;
1310
1311 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1312 return kvm_mmu_slot_gfn_write_protect(vcpu->kvm, slot, gfn);
1313 }
1314
kvm_zap_rmapp(struct kvm * kvm,struct kvm_rmap_head * rmap_head)1315 static bool kvm_zap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1316 {
1317 u64 *sptep;
1318 struct rmap_iterator iter;
1319 bool flush = false;
1320
1321 while ((sptep = rmap_get_first(rmap_head, &iter))) {
1322 rmap_printk("%s: spte %p %llx.\n", __func__, sptep, *sptep);
1323
1324 pte_list_remove(rmap_head, sptep);
1325 flush = true;
1326 }
1327
1328 return flush;
1329 }
1330
kvm_unmap_rmapp(struct kvm * kvm,struct kvm_rmap_head * rmap_head,struct kvm_memory_slot * slot,gfn_t gfn,int level,unsigned long data)1331 static int kvm_unmap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1332 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1333 unsigned long data)
1334 {
1335 return kvm_zap_rmapp(kvm, rmap_head);
1336 }
1337
kvm_set_pte_rmapp(struct kvm * kvm,struct kvm_rmap_head * rmap_head,struct kvm_memory_slot * slot,gfn_t gfn,int level,unsigned long data)1338 static int kvm_set_pte_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1339 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1340 unsigned long data)
1341 {
1342 u64 *sptep;
1343 struct rmap_iterator iter;
1344 int need_flush = 0;
1345 u64 new_spte;
1346 pte_t *ptep = (pte_t *)data;
1347 kvm_pfn_t new_pfn;
1348
1349 WARN_ON(pte_huge(*ptep));
1350 new_pfn = pte_pfn(*ptep);
1351
1352 restart:
1353 for_each_rmap_spte(rmap_head, &iter, sptep) {
1354 rmap_printk("kvm_set_pte_rmapp: spte %p %llx gfn %llx (%d)\n",
1355 sptep, *sptep, gfn, level);
1356
1357 need_flush = 1;
1358
1359 if (pte_write(*ptep)) {
1360 pte_list_remove(rmap_head, sptep);
1361 goto restart;
1362 } else {
1363 new_spte = kvm_mmu_changed_pte_notifier_make_spte(
1364 *sptep, new_pfn);
1365
1366 mmu_spte_clear_track_bits(sptep);
1367 mmu_spte_set(sptep, new_spte);
1368 }
1369 }
1370
1371 if (need_flush && kvm_available_flush_tlb_with_range()) {
1372 kvm_flush_remote_tlbs_with_address(kvm, gfn, 1);
1373 return 0;
1374 }
1375
1376 return need_flush;
1377 }
1378
1379 struct slot_rmap_walk_iterator {
1380 /* input fields. */
1381 struct kvm_memory_slot *slot;
1382 gfn_t start_gfn;
1383 gfn_t end_gfn;
1384 int start_level;
1385 int end_level;
1386
1387 /* output fields. */
1388 gfn_t gfn;
1389 struct kvm_rmap_head *rmap;
1390 int level;
1391
1392 /* private field. */
1393 struct kvm_rmap_head *end_rmap;
1394 };
1395
1396 static void
rmap_walk_init_level(struct slot_rmap_walk_iterator * iterator,int level)1397 rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator, int level)
1398 {
1399 iterator->level = level;
1400 iterator->gfn = iterator->start_gfn;
1401 iterator->rmap = __gfn_to_rmap(iterator->gfn, level, iterator->slot);
1402 iterator->end_rmap = __gfn_to_rmap(iterator->end_gfn, level,
1403 iterator->slot);
1404 }
1405
1406 static void
slot_rmap_walk_init(struct slot_rmap_walk_iterator * iterator,struct kvm_memory_slot * slot,int start_level,int end_level,gfn_t start_gfn,gfn_t end_gfn)1407 slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator,
1408 struct kvm_memory_slot *slot, int start_level,
1409 int end_level, gfn_t start_gfn, gfn_t end_gfn)
1410 {
1411 iterator->slot = slot;
1412 iterator->start_level = start_level;
1413 iterator->end_level = end_level;
1414 iterator->start_gfn = start_gfn;
1415 iterator->end_gfn = end_gfn;
1416
1417 rmap_walk_init_level(iterator, iterator->start_level);
1418 }
1419
slot_rmap_walk_okay(struct slot_rmap_walk_iterator * iterator)1420 static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator)
1421 {
1422 return !!iterator->rmap;
1423 }
1424
slot_rmap_walk_next(struct slot_rmap_walk_iterator * iterator)1425 static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator)
1426 {
1427 if (++iterator->rmap <= iterator->end_rmap) {
1428 iterator->gfn += (1UL << KVM_HPAGE_GFN_SHIFT(iterator->level));
1429 return;
1430 }
1431
1432 if (++iterator->level > iterator->end_level) {
1433 iterator->rmap = NULL;
1434 return;
1435 }
1436
1437 rmap_walk_init_level(iterator, iterator->level);
1438 }
1439
1440 #define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_, \
1441 _start_gfn, _end_gfn, _iter_) \
1442 for (slot_rmap_walk_init(_iter_, _slot_, _start_level_, \
1443 _end_level_, _start_gfn, _end_gfn); \
1444 slot_rmap_walk_okay(_iter_); \
1445 slot_rmap_walk_next(_iter_))
1446
kvm_handle_hva_range(struct kvm * kvm,unsigned long start,unsigned long end,unsigned long data,int (* handler)(struct kvm * kvm,struct kvm_rmap_head * rmap_head,struct kvm_memory_slot * slot,gfn_t gfn,int level,unsigned long data))1447 static int kvm_handle_hva_range(struct kvm *kvm,
1448 unsigned long start,
1449 unsigned long end,
1450 unsigned long data,
1451 int (*handler)(struct kvm *kvm,
1452 struct kvm_rmap_head *rmap_head,
1453 struct kvm_memory_slot *slot,
1454 gfn_t gfn,
1455 int level,
1456 unsigned long data))
1457 {
1458 struct kvm_memslots *slots;
1459 struct kvm_memory_slot *memslot;
1460 struct slot_rmap_walk_iterator iterator;
1461 int ret = 0;
1462 int i;
1463
1464 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
1465 slots = __kvm_memslots(kvm, i);
1466 kvm_for_each_memslot(memslot, slots) {
1467 unsigned long hva_start, hva_end;
1468 gfn_t gfn_start, gfn_end;
1469
1470 hva_start = max(start, memslot->userspace_addr);
1471 hva_end = min(end, memslot->userspace_addr +
1472 (memslot->npages << PAGE_SHIFT));
1473 if (hva_start >= hva_end)
1474 continue;
1475 /*
1476 * {gfn(page) | page intersects with [hva_start, hva_end)} =
1477 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
1478 */
1479 gfn_start = hva_to_gfn_memslot(hva_start, memslot);
1480 gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
1481
1482 for_each_slot_rmap_range(memslot, PG_LEVEL_4K,
1483 KVM_MAX_HUGEPAGE_LEVEL,
1484 gfn_start, gfn_end - 1,
1485 &iterator)
1486 ret |= handler(kvm, iterator.rmap, memslot,
1487 iterator.gfn, iterator.level, data);
1488 }
1489 }
1490
1491 return ret;
1492 }
1493
kvm_handle_hva(struct kvm * kvm,unsigned long hva,unsigned long data,int (* handler)(struct kvm * kvm,struct kvm_rmap_head * rmap_head,struct kvm_memory_slot * slot,gfn_t gfn,int level,unsigned long data))1494 static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
1495 unsigned long data,
1496 int (*handler)(struct kvm *kvm,
1497 struct kvm_rmap_head *rmap_head,
1498 struct kvm_memory_slot *slot,
1499 gfn_t gfn, int level,
1500 unsigned long data))
1501 {
1502 return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler);
1503 }
1504
kvm_unmap_hva_range(struct kvm * kvm,unsigned long start,unsigned long end,unsigned flags)1505 int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end,
1506 unsigned flags)
1507 {
1508 int r;
1509
1510 r = kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp);
1511
1512 if (kvm->arch.tdp_mmu_enabled)
1513 r |= kvm_tdp_mmu_zap_hva_range(kvm, start, end);
1514
1515 return r;
1516 }
1517
kvm_set_spte_hva(struct kvm * kvm,unsigned long hva,pte_t pte)1518 int kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
1519 {
1520 int r;
1521
1522 r = kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
1523
1524 if (kvm->arch.tdp_mmu_enabled)
1525 r |= kvm_tdp_mmu_set_spte_hva(kvm, hva, &pte);
1526
1527 return r;
1528 }
1529
kvm_age_rmapp(struct kvm * kvm,struct kvm_rmap_head * rmap_head,struct kvm_memory_slot * slot,gfn_t gfn,int level,unsigned long data)1530 static int kvm_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1531 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1532 unsigned long data)
1533 {
1534 u64 *sptep;
1535 struct rmap_iterator iter;
1536 int young = 0;
1537
1538 for_each_rmap_spte(rmap_head, &iter, sptep)
1539 young |= mmu_spte_age(sptep);
1540
1541 trace_kvm_age_page(gfn, level, slot, young);
1542 return young;
1543 }
1544
kvm_test_age_rmapp(struct kvm * kvm,struct kvm_rmap_head * rmap_head,struct kvm_memory_slot * slot,gfn_t gfn,int level,unsigned long data)1545 static int kvm_test_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1546 struct kvm_memory_slot *slot, gfn_t gfn,
1547 int level, unsigned long data)
1548 {
1549 u64 *sptep;
1550 struct rmap_iterator iter;
1551
1552 for_each_rmap_spte(rmap_head, &iter, sptep)
1553 if (is_accessed_spte(*sptep))
1554 return 1;
1555 return 0;
1556 }
1557
1558 #define RMAP_RECYCLE_THRESHOLD 1000
1559
rmap_recycle(struct kvm_vcpu * vcpu,u64 * spte,gfn_t gfn)1560 static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1561 {
1562 struct kvm_rmap_head *rmap_head;
1563 struct kvm_mmu_page *sp;
1564
1565 sp = sptep_to_sp(spte);
1566
1567 rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
1568
1569 kvm_unmap_rmapp(vcpu->kvm, rmap_head, NULL, gfn, sp->role.level, 0);
1570 kvm_flush_remote_tlbs_with_address(vcpu->kvm, sp->gfn,
1571 KVM_PAGES_PER_HPAGE(sp->role.level));
1572 }
1573
kvm_age_hva(struct kvm * kvm,unsigned long start,unsigned long end)1574 int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
1575 {
1576 int young = false;
1577
1578 young = kvm_handle_hva_range(kvm, start, end, 0, kvm_age_rmapp);
1579 if (kvm->arch.tdp_mmu_enabled)
1580 young |= kvm_tdp_mmu_age_hva_range(kvm, start, end);
1581
1582 return young;
1583 }
1584
kvm_test_age_hva(struct kvm * kvm,unsigned long hva)1585 int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
1586 {
1587 int young = false;
1588
1589 young = kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
1590 if (kvm->arch.tdp_mmu_enabled)
1591 young |= kvm_tdp_mmu_test_age_hva(kvm, hva);
1592
1593 return young;
1594 }
1595
1596 #ifdef MMU_DEBUG
is_empty_shadow_page(u64 * spt)1597 static int is_empty_shadow_page(u64 *spt)
1598 {
1599 u64 *pos;
1600 u64 *end;
1601
1602 for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
1603 if (is_shadow_present_pte(*pos)) {
1604 printk(KERN_ERR "%s: %p %llx\n", __func__,
1605 pos, *pos);
1606 return 0;
1607 }
1608 return 1;
1609 }
1610 #endif
1611
1612 /*
1613 * This value is the sum of all of the kvm instances's
1614 * kvm->arch.n_used_mmu_pages values. We need a global,
1615 * aggregate version in order to make the slab shrinker
1616 * faster
1617 */
kvm_mod_used_mmu_pages(struct kvm * kvm,long nr)1618 static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, long nr)
1619 {
1620 kvm->arch.n_used_mmu_pages += nr;
1621 percpu_counter_add(&kvm_total_used_mmu_pages, nr);
1622 }
1623
kvm_mmu_free_page(struct kvm_mmu_page * sp)1624 static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
1625 {
1626 MMU_WARN_ON(!is_empty_shadow_page(sp->spt));
1627 hlist_del(&sp->hash_link);
1628 list_del(&sp->link);
1629 free_page((unsigned long)sp->spt);
1630 if (!sp->role.direct)
1631 free_page((unsigned long)sp->gfns);
1632 kmem_cache_free(mmu_page_header_cache, sp);
1633 }
1634
kvm_page_table_hashfn(gfn_t gfn)1635 static unsigned kvm_page_table_hashfn(gfn_t gfn)
1636 {
1637 return hash_64(gfn, KVM_MMU_HASH_SHIFT);
1638 }
1639
mmu_page_add_parent_pte(struct kvm_vcpu * vcpu,struct kvm_mmu_page * sp,u64 * parent_pte)1640 static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
1641 struct kvm_mmu_page *sp, u64 *parent_pte)
1642 {
1643 if (!parent_pte)
1644 return;
1645
1646 pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
1647 }
1648
mmu_page_remove_parent_pte(struct kvm_mmu_page * sp,u64 * parent_pte)1649 static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
1650 u64 *parent_pte)
1651 {
1652 __pte_list_remove(parent_pte, &sp->parent_ptes);
1653 }
1654
drop_parent_pte(struct kvm_mmu_page * sp,u64 * parent_pte)1655 static void drop_parent_pte(struct kvm_mmu_page *sp,
1656 u64 *parent_pte)
1657 {
1658 mmu_page_remove_parent_pte(sp, parent_pte);
1659 mmu_spte_clear_no_track(parent_pte);
1660 }
1661
kvm_mmu_alloc_page(struct kvm_vcpu * vcpu,int direct)1662 static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu, int direct)
1663 {
1664 struct kvm_mmu_page *sp;
1665
1666 sp = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
1667 sp->spt = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_shadow_page_cache);
1668 if (!direct)
1669 sp->gfns = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_gfn_array_cache);
1670 set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
1671
1672 /*
1673 * active_mmu_pages must be a FIFO list, as kvm_zap_obsolete_pages()
1674 * depends on valid pages being added to the head of the list. See
1675 * comments in kvm_zap_obsolete_pages().
1676 */
1677 sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen;
1678 list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
1679 kvm_mod_used_mmu_pages(vcpu->kvm, +1);
1680 return sp;
1681 }
1682
1683 static void mark_unsync(u64 *spte);
kvm_mmu_mark_parents_unsync(struct kvm_mmu_page * sp)1684 static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
1685 {
1686 u64 *sptep;
1687 struct rmap_iterator iter;
1688
1689 for_each_rmap_spte(&sp->parent_ptes, &iter, sptep) {
1690 mark_unsync(sptep);
1691 }
1692 }
1693
mark_unsync(u64 * spte)1694 static void mark_unsync(u64 *spte)
1695 {
1696 struct kvm_mmu_page *sp;
1697 unsigned int index;
1698
1699 sp = sptep_to_sp(spte);
1700 index = spte - sp->spt;
1701 if (__test_and_set_bit(index, sp->unsync_child_bitmap))
1702 return;
1703 if (sp->unsync_children++)
1704 return;
1705 kvm_mmu_mark_parents_unsync(sp);
1706 }
1707
nonpaging_sync_page(struct kvm_vcpu * vcpu,struct kvm_mmu_page * sp)1708 static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
1709 struct kvm_mmu_page *sp)
1710 {
1711 return 0;
1712 }
1713
1714 #define KVM_PAGE_ARRAY_NR 16
1715
1716 struct kvm_mmu_pages {
1717 struct mmu_page_and_offset {
1718 struct kvm_mmu_page *sp;
1719 unsigned int idx;
1720 } page[KVM_PAGE_ARRAY_NR];
1721 unsigned int nr;
1722 };
1723
mmu_pages_add(struct kvm_mmu_pages * pvec,struct kvm_mmu_page * sp,int idx)1724 static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
1725 int idx)
1726 {
1727 int i;
1728
1729 if (sp->unsync)
1730 for (i=0; i < pvec->nr; i++)
1731 if (pvec->page[i].sp == sp)
1732 return 0;
1733
1734 pvec->page[pvec->nr].sp = sp;
1735 pvec->page[pvec->nr].idx = idx;
1736 pvec->nr++;
1737 return (pvec->nr == KVM_PAGE_ARRAY_NR);
1738 }
1739
clear_unsync_child_bit(struct kvm_mmu_page * sp,int idx)1740 static inline void clear_unsync_child_bit(struct kvm_mmu_page *sp, int idx)
1741 {
1742 --sp->unsync_children;
1743 WARN_ON((int)sp->unsync_children < 0);
1744 __clear_bit(idx, sp->unsync_child_bitmap);
1745 }
1746
__mmu_unsync_walk(struct kvm_mmu_page * sp,struct kvm_mmu_pages * pvec)1747 static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
1748 struct kvm_mmu_pages *pvec)
1749 {
1750 int i, ret, nr_unsync_leaf = 0;
1751
1752 for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
1753 struct kvm_mmu_page *child;
1754 u64 ent = sp->spt[i];
1755
1756 if (!is_shadow_present_pte(ent) || is_large_pte(ent)) {
1757 clear_unsync_child_bit(sp, i);
1758 continue;
1759 }
1760
1761 child = to_shadow_page(ent & PT64_BASE_ADDR_MASK);
1762
1763 if (child->unsync_children) {
1764 if (mmu_pages_add(pvec, child, i))
1765 return -ENOSPC;
1766
1767 ret = __mmu_unsync_walk(child, pvec);
1768 if (!ret) {
1769 clear_unsync_child_bit(sp, i);
1770 continue;
1771 } else if (ret > 0) {
1772 nr_unsync_leaf += ret;
1773 } else
1774 return ret;
1775 } else if (child->unsync) {
1776 nr_unsync_leaf++;
1777 if (mmu_pages_add(pvec, child, i))
1778 return -ENOSPC;
1779 } else
1780 clear_unsync_child_bit(sp, i);
1781 }
1782
1783 return nr_unsync_leaf;
1784 }
1785
1786 #define INVALID_INDEX (-1)
1787
mmu_unsync_walk(struct kvm_mmu_page * sp,struct kvm_mmu_pages * pvec)1788 static int mmu_unsync_walk(struct kvm_mmu_page *sp,
1789 struct kvm_mmu_pages *pvec)
1790 {
1791 pvec->nr = 0;
1792 if (!sp->unsync_children)
1793 return 0;
1794
1795 mmu_pages_add(pvec, sp, INVALID_INDEX);
1796 return __mmu_unsync_walk(sp, pvec);
1797 }
1798
kvm_unlink_unsync_page(struct kvm * kvm,struct kvm_mmu_page * sp)1799 static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1800 {
1801 WARN_ON(!sp->unsync);
1802 trace_kvm_mmu_sync_page(sp);
1803 sp->unsync = 0;
1804 --kvm->stat.mmu_unsync;
1805 }
1806
1807 static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
1808 struct list_head *invalid_list);
1809 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
1810 struct list_head *invalid_list);
1811
1812 #define for_each_valid_sp(_kvm, _sp, _list) \
1813 hlist_for_each_entry(_sp, _list, hash_link) \
1814 if (is_obsolete_sp((_kvm), (_sp))) { \
1815 } else
1816
1817 #define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn) \
1818 for_each_valid_sp(_kvm, _sp, \
1819 &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)]) \
1820 if ((_sp)->gfn != (_gfn) || (_sp)->role.direct) {} else
1821
is_ept_sp(struct kvm_mmu_page * sp)1822 static inline bool is_ept_sp(struct kvm_mmu_page *sp)
1823 {
1824 return sp->role.cr0_wp && sp->role.smap_andnot_wp;
1825 }
1826
1827 /* @sp->gfn should be write-protected at the call site */
__kvm_sync_page(struct kvm_vcpu * vcpu,struct kvm_mmu_page * sp,struct list_head * invalid_list)1828 static bool __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1829 struct list_head *invalid_list)
1830 {
1831 if ((!is_ept_sp(sp) && sp->role.gpte_is_8_bytes != !!is_pae(vcpu)) ||
1832 vcpu->arch.mmu->sync_page(vcpu, sp) == 0) {
1833 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1834 return false;
1835 }
1836
1837 return true;
1838 }
1839
kvm_mmu_remote_flush_or_zap(struct kvm * kvm,struct list_head * invalid_list,bool remote_flush)1840 static bool kvm_mmu_remote_flush_or_zap(struct kvm *kvm,
1841 struct list_head *invalid_list,
1842 bool remote_flush)
1843 {
1844 if (!remote_flush && list_empty(invalid_list))
1845 return false;
1846
1847 if (!list_empty(invalid_list))
1848 kvm_mmu_commit_zap_page(kvm, invalid_list);
1849 else
1850 kvm_flush_remote_tlbs(kvm);
1851 return true;
1852 }
1853
kvm_mmu_flush_or_zap(struct kvm_vcpu * vcpu,struct list_head * invalid_list,bool remote_flush,bool local_flush)1854 static void kvm_mmu_flush_or_zap(struct kvm_vcpu *vcpu,
1855 struct list_head *invalid_list,
1856 bool remote_flush, bool local_flush)
1857 {
1858 if (kvm_mmu_remote_flush_or_zap(vcpu->kvm, invalid_list, remote_flush))
1859 return;
1860
1861 if (local_flush)
1862 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1863 }
1864
1865 #ifdef CONFIG_KVM_MMU_AUDIT
1866 #include "mmu_audit.c"
1867 #else
kvm_mmu_audit(struct kvm_vcpu * vcpu,int point)1868 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
mmu_audit_disable(void)1869 static void mmu_audit_disable(void) { }
1870 #endif
1871
is_obsolete_sp(struct kvm * kvm,struct kvm_mmu_page * sp)1872 static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
1873 {
1874 return sp->role.invalid ||
1875 unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
1876 }
1877
kvm_sync_page(struct kvm_vcpu * vcpu,struct kvm_mmu_page * sp,struct list_head * invalid_list)1878 static bool kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1879 struct list_head *invalid_list)
1880 {
1881 kvm_unlink_unsync_page(vcpu->kvm, sp);
1882 return __kvm_sync_page(vcpu, sp, invalid_list);
1883 }
1884
1885 /* @gfn should be write-protected at the call site */
kvm_sync_pages(struct kvm_vcpu * vcpu,gfn_t gfn,struct list_head * invalid_list)1886 static bool kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn,
1887 struct list_head *invalid_list)
1888 {
1889 struct kvm_mmu_page *s;
1890 bool ret = false;
1891
1892 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
1893 if (!s->unsync)
1894 continue;
1895
1896 WARN_ON(s->role.level != PG_LEVEL_4K);
1897 ret |= kvm_sync_page(vcpu, s, invalid_list);
1898 }
1899
1900 return ret;
1901 }
1902
1903 struct mmu_page_path {
1904 struct kvm_mmu_page *parent[PT64_ROOT_MAX_LEVEL];
1905 unsigned int idx[PT64_ROOT_MAX_LEVEL];
1906 };
1907
1908 #define for_each_sp(pvec, sp, parents, i) \
1909 for (i = mmu_pages_first(&pvec, &parents); \
1910 i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \
1911 i = mmu_pages_next(&pvec, &parents, i))
1912
mmu_pages_next(struct kvm_mmu_pages * pvec,struct mmu_page_path * parents,int i)1913 static int mmu_pages_next(struct kvm_mmu_pages *pvec,
1914 struct mmu_page_path *parents,
1915 int i)
1916 {
1917 int n;
1918
1919 for (n = i+1; n < pvec->nr; n++) {
1920 struct kvm_mmu_page *sp = pvec->page[n].sp;
1921 unsigned idx = pvec->page[n].idx;
1922 int level = sp->role.level;
1923
1924 parents->idx[level-1] = idx;
1925 if (level == PG_LEVEL_4K)
1926 break;
1927
1928 parents->parent[level-2] = sp;
1929 }
1930
1931 return n;
1932 }
1933
mmu_pages_first(struct kvm_mmu_pages * pvec,struct mmu_page_path * parents)1934 static int mmu_pages_first(struct kvm_mmu_pages *pvec,
1935 struct mmu_page_path *parents)
1936 {
1937 struct kvm_mmu_page *sp;
1938 int level;
1939
1940 if (pvec->nr == 0)
1941 return 0;
1942
1943 WARN_ON(pvec->page[0].idx != INVALID_INDEX);
1944
1945 sp = pvec->page[0].sp;
1946 level = sp->role.level;
1947 WARN_ON(level == PG_LEVEL_4K);
1948
1949 parents->parent[level-2] = sp;
1950
1951 /* Also set up a sentinel. Further entries in pvec are all
1952 * children of sp, so this element is never overwritten.
1953 */
1954 parents->parent[level-1] = NULL;
1955 return mmu_pages_next(pvec, parents, 0);
1956 }
1957
mmu_pages_clear_parents(struct mmu_page_path * parents)1958 static void mmu_pages_clear_parents(struct mmu_page_path *parents)
1959 {
1960 struct kvm_mmu_page *sp;
1961 unsigned int level = 0;
1962
1963 do {
1964 unsigned int idx = parents->idx[level];
1965 sp = parents->parent[level];
1966 if (!sp)
1967 return;
1968
1969 WARN_ON(idx == INVALID_INDEX);
1970 clear_unsync_child_bit(sp, idx);
1971 level++;
1972 } while (!sp->unsync_children);
1973 }
1974
mmu_sync_children(struct kvm_vcpu * vcpu,struct kvm_mmu_page * parent)1975 static void mmu_sync_children(struct kvm_vcpu *vcpu,
1976 struct kvm_mmu_page *parent)
1977 {
1978 int i;
1979 struct kvm_mmu_page *sp;
1980 struct mmu_page_path parents;
1981 struct kvm_mmu_pages pages;
1982 LIST_HEAD(invalid_list);
1983 bool flush = false;
1984
1985 while (mmu_unsync_walk(parent, &pages)) {
1986 bool protected = false;
1987
1988 for_each_sp(pages, sp, parents, i)
1989 protected |= rmap_write_protect(vcpu, sp->gfn);
1990
1991 if (protected) {
1992 kvm_flush_remote_tlbs(vcpu->kvm);
1993 flush = false;
1994 }
1995
1996 for_each_sp(pages, sp, parents, i) {
1997 flush |= kvm_sync_page(vcpu, sp, &invalid_list);
1998 mmu_pages_clear_parents(&parents);
1999 }
2000 if (need_resched() || spin_needbreak(&vcpu->kvm->mmu_lock)) {
2001 kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2002 cond_resched_lock(&vcpu->kvm->mmu_lock);
2003 flush = false;
2004 }
2005 }
2006
2007 kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2008 }
2009
__clear_sp_write_flooding_count(struct kvm_mmu_page * sp)2010 static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
2011 {
2012 atomic_set(&sp->write_flooding_count, 0);
2013 }
2014
clear_sp_write_flooding_count(u64 * spte)2015 static void clear_sp_write_flooding_count(u64 *spte)
2016 {
2017 __clear_sp_write_flooding_count(sptep_to_sp(spte));
2018 }
2019
kvm_mmu_get_page(struct kvm_vcpu * vcpu,gfn_t gfn,gva_t gaddr,unsigned level,int direct,unsigned int access)2020 static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
2021 gfn_t gfn,
2022 gva_t gaddr,
2023 unsigned level,
2024 int direct,
2025 unsigned int access)
2026 {
2027 bool direct_mmu = vcpu->arch.mmu->direct_map;
2028 union kvm_mmu_page_role role;
2029 struct hlist_head *sp_list;
2030 unsigned quadrant;
2031 struct kvm_mmu_page *sp;
2032 bool need_sync = false;
2033 bool flush = false;
2034 int collisions = 0;
2035 LIST_HEAD(invalid_list);
2036
2037 role = vcpu->arch.mmu->mmu_role.base;
2038 role.level = level;
2039 role.direct = direct;
2040 if (role.direct)
2041 role.gpte_is_8_bytes = true;
2042 role.access = access;
2043 if (!direct_mmu && vcpu->arch.mmu->root_level <= PT32_ROOT_LEVEL) {
2044 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
2045 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
2046 role.quadrant = quadrant;
2047 }
2048
2049 sp_list = &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)];
2050 for_each_valid_sp(vcpu->kvm, sp, sp_list) {
2051 if (sp->gfn != gfn) {
2052 collisions++;
2053 continue;
2054 }
2055
2056 if (!need_sync && sp->unsync)
2057 need_sync = true;
2058
2059 if (sp->role.word != role.word)
2060 continue;
2061
2062 if (direct_mmu)
2063 goto trace_get_page;
2064
2065 if (sp->unsync) {
2066 /* The page is good, but __kvm_sync_page might still end
2067 * up zapping it. If so, break in order to rebuild it.
2068 */
2069 if (!__kvm_sync_page(vcpu, sp, &invalid_list))
2070 break;
2071
2072 WARN_ON(!list_empty(&invalid_list));
2073 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
2074 }
2075
2076 if (sp->unsync_children)
2077 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
2078
2079 __clear_sp_write_flooding_count(sp);
2080
2081 trace_get_page:
2082 trace_kvm_mmu_get_page(sp, false);
2083 goto out;
2084 }
2085
2086 ++vcpu->kvm->stat.mmu_cache_miss;
2087
2088 sp = kvm_mmu_alloc_page(vcpu, direct);
2089
2090 sp->gfn = gfn;
2091 sp->role = role;
2092 hlist_add_head(&sp->hash_link, sp_list);
2093 if (!direct) {
2094 /*
2095 * we should do write protection before syncing pages
2096 * otherwise the content of the synced shadow page may
2097 * be inconsistent with guest page table.
2098 */
2099 account_shadowed(vcpu->kvm, sp);
2100 if (level == PG_LEVEL_4K && rmap_write_protect(vcpu, gfn))
2101 kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn, 1);
2102
2103 if (level > PG_LEVEL_4K && need_sync)
2104 flush |= kvm_sync_pages(vcpu, gfn, &invalid_list);
2105 }
2106 trace_kvm_mmu_get_page(sp, true);
2107
2108 kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2109 out:
2110 if (collisions > vcpu->kvm->stat.max_mmu_page_hash_collisions)
2111 vcpu->kvm->stat.max_mmu_page_hash_collisions = collisions;
2112 return sp;
2113 }
2114
shadow_walk_init_using_root(struct kvm_shadow_walk_iterator * iterator,struct kvm_vcpu * vcpu,hpa_t root,u64 addr)2115 static void shadow_walk_init_using_root(struct kvm_shadow_walk_iterator *iterator,
2116 struct kvm_vcpu *vcpu, hpa_t root,
2117 u64 addr)
2118 {
2119 iterator->addr = addr;
2120 iterator->shadow_addr = root;
2121 iterator->level = vcpu->arch.mmu->shadow_root_level;
2122
2123 if (iterator->level == PT64_ROOT_4LEVEL &&
2124 vcpu->arch.mmu->root_level < PT64_ROOT_4LEVEL &&
2125 !vcpu->arch.mmu->direct_map)
2126 --iterator->level;
2127
2128 if (iterator->level == PT32E_ROOT_LEVEL) {
2129 /*
2130 * prev_root is currently only used for 64-bit hosts. So only
2131 * the active root_hpa is valid here.
2132 */
2133 BUG_ON(root != vcpu->arch.mmu->root_hpa);
2134
2135 iterator->shadow_addr
2136 = vcpu->arch.mmu->pae_root[(addr >> 30) & 3];
2137 iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
2138 --iterator->level;
2139 if (!iterator->shadow_addr)
2140 iterator->level = 0;
2141 }
2142 }
2143
shadow_walk_init(struct kvm_shadow_walk_iterator * iterator,struct kvm_vcpu * vcpu,u64 addr)2144 static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
2145 struct kvm_vcpu *vcpu, u64 addr)
2146 {
2147 shadow_walk_init_using_root(iterator, vcpu, vcpu->arch.mmu->root_hpa,
2148 addr);
2149 }
2150
shadow_walk_okay(struct kvm_shadow_walk_iterator * iterator)2151 static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
2152 {
2153 if (iterator->level < PG_LEVEL_4K)
2154 return false;
2155
2156 iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
2157 iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
2158 return true;
2159 }
2160
__shadow_walk_next(struct kvm_shadow_walk_iterator * iterator,u64 spte)2161 static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
2162 u64 spte)
2163 {
2164 if (is_last_spte(spte, iterator->level)) {
2165 iterator->level = 0;
2166 return;
2167 }
2168
2169 iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
2170 --iterator->level;
2171 }
2172
shadow_walk_next(struct kvm_shadow_walk_iterator * iterator)2173 static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
2174 {
2175 __shadow_walk_next(iterator, *iterator->sptep);
2176 }
2177
link_shadow_page(struct kvm_vcpu * vcpu,u64 * sptep,struct kvm_mmu_page * sp)2178 static void link_shadow_page(struct kvm_vcpu *vcpu, u64 *sptep,
2179 struct kvm_mmu_page *sp)
2180 {
2181 u64 spte;
2182
2183 BUILD_BUG_ON(VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK);
2184
2185 spte = make_nonleaf_spte(sp->spt, sp_ad_disabled(sp));
2186
2187 mmu_spte_set(sptep, spte);
2188
2189 mmu_page_add_parent_pte(vcpu, sp, sptep);
2190
2191 if (sp->unsync_children || sp->unsync)
2192 mark_unsync(sptep);
2193 }
2194
validate_direct_spte(struct kvm_vcpu * vcpu,u64 * sptep,unsigned direct_access)2195 static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2196 unsigned direct_access)
2197 {
2198 if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
2199 struct kvm_mmu_page *child;
2200
2201 /*
2202 * For the direct sp, if the guest pte's dirty bit
2203 * changed form clean to dirty, it will corrupt the
2204 * sp's access: allow writable in the read-only sp,
2205 * so we should update the spte at this point to get
2206 * a new sp with the correct access.
2207 */
2208 child = to_shadow_page(*sptep & PT64_BASE_ADDR_MASK);
2209 if (child->role.access == direct_access)
2210 return;
2211
2212 drop_parent_pte(child, sptep);
2213 kvm_flush_remote_tlbs_with_address(vcpu->kvm, child->gfn, 1);
2214 }
2215 }
2216
2217 /* Returns the number of zapped non-leaf child shadow pages. */
mmu_page_zap_pte(struct kvm * kvm,struct kvm_mmu_page * sp,u64 * spte,struct list_head * invalid_list)2218 static int mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
2219 u64 *spte, struct list_head *invalid_list)
2220 {
2221 u64 pte;
2222 struct kvm_mmu_page *child;
2223
2224 pte = *spte;
2225 if (is_shadow_present_pte(pte)) {
2226 if (is_last_spte(pte, sp->role.level)) {
2227 drop_spte(kvm, spte);
2228 if (is_large_pte(pte))
2229 --kvm->stat.lpages;
2230 } else {
2231 child = to_shadow_page(pte & PT64_BASE_ADDR_MASK);
2232 drop_parent_pte(child, spte);
2233
2234 /*
2235 * Recursively zap nested TDP SPs, parentless SPs are
2236 * unlikely to be used again in the near future. This
2237 * avoids retaining a large number of stale nested SPs.
2238 */
2239 if (tdp_enabled && invalid_list &&
2240 child->role.guest_mode && !child->parent_ptes.val)
2241 return kvm_mmu_prepare_zap_page(kvm, child,
2242 invalid_list);
2243 }
2244 } else if (is_mmio_spte(pte)) {
2245 mmu_spte_clear_no_track(spte);
2246 }
2247 return 0;
2248 }
2249
kvm_mmu_page_unlink_children(struct kvm * kvm,struct kvm_mmu_page * sp,struct list_head * invalid_list)2250 static int kvm_mmu_page_unlink_children(struct kvm *kvm,
2251 struct kvm_mmu_page *sp,
2252 struct list_head *invalid_list)
2253 {
2254 int zapped = 0;
2255 unsigned i;
2256
2257 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2258 zapped += mmu_page_zap_pte(kvm, sp, sp->spt + i, invalid_list);
2259
2260 return zapped;
2261 }
2262
kvm_mmu_unlink_parents(struct kvm * kvm,struct kvm_mmu_page * sp)2263 static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
2264 {
2265 u64 *sptep;
2266 struct rmap_iterator iter;
2267
2268 while ((sptep = rmap_get_first(&sp->parent_ptes, &iter)))
2269 drop_parent_pte(sp, sptep);
2270 }
2271
mmu_zap_unsync_children(struct kvm * kvm,struct kvm_mmu_page * parent,struct list_head * invalid_list)2272 static int mmu_zap_unsync_children(struct kvm *kvm,
2273 struct kvm_mmu_page *parent,
2274 struct list_head *invalid_list)
2275 {
2276 int i, zapped = 0;
2277 struct mmu_page_path parents;
2278 struct kvm_mmu_pages pages;
2279
2280 if (parent->role.level == PG_LEVEL_4K)
2281 return 0;
2282
2283 while (mmu_unsync_walk(parent, &pages)) {
2284 struct kvm_mmu_page *sp;
2285
2286 for_each_sp(pages, sp, parents, i) {
2287 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2288 mmu_pages_clear_parents(&parents);
2289 zapped++;
2290 }
2291 }
2292
2293 return zapped;
2294 }
2295
__kvm_mmu_prepare_zap_page(struct kvm * kvm,struct kvm_mmu_page * sp,struct list_head * invalid_list,int * nr_zapped)2296 static bool __kvm_mmu_prepare_zap_page(struct kvm *kvm,
2297 struct kvm_mmu_page *sp,
2298 struct list_head *invalid_list,
2299 int *nr_zapped)
2300 {
2301 bool list_unstable;
2302
2303 trace_kvm_mmu_prepare_zap_page(sp);
2304 ++kvm->stat.mmu_shadow_zapped;
2305 *nr_zapped = mmu_zap_unsync_children(kvm, sp, invalid_list);
2306 *nr_zapped += kvm_mmu_page_unlink_children(kvm, sp, invalid_list);
2307 kvm_mmu_unlink_parents(kvm, sp);
2308
2309 /* Zapping children means active_mmu_pages has become unstable. */
2310 list_unstable = *nr_zapped;
2311
2312 if (!sp->role.invalid && !sp->role.direct)
2313 unaccount_shadowed(kvm, sp);
2314
2315 if (sp->unsync)
2316 kvm_unlink_unsync_page(kvm, sp);
2317 if (!sp->root_count) {
2318 /* Count self */
2319 (*nr_zapped)++;
2320
2321 /*
2322 * Already invalid pages (previously active roots) are not on
2323 * the active page list. See list_del() in the "else" case of
2324 * !sp->root_count.
2325 */
2326 if (sp->role.invalid)
2327 list_add(&sp->link, invalid_list);
2328 else
2329 list_move(&sp->link, invalid_list);
2330 kvm_mod_used_mmu_pages(kvm, -1);
2331 } else {
2332 /*
2333 * Remove the active root from the active page list, the root
2334 * will be explicitly freed when the root_count hits zero.
2335 */
2336 list_del(&sp->link);
2337
2338 /*
2339 * Obsolete pages cannot be used on any vCPUs, see the comment
2340 * in kvm_mmu_zap_all_fast(). Note, is_obsolete_sp() also
2341 * treats invalid shadow pages as being obsolete.
2342 */
2343 if (!is_obsolete_sp(kvm, sp))
2344 kvm_reload_remote_mmus(kvm);
2345 }
2346
2347 if (sp->lpage_disallowed)
2348 unaccount_huge_nx_page(kvm, sp);
2349
2350 sp->role.invalid = 1;
2351 return list_unstable;
2352 }
2353
kvm_mmu_prepare_zap_page(struct kvm * kvm,struct kvm_mmu_page * sp,struct list_head * invalid_list)2354 static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2355 struct list_head *invalid_list)
2356 {
2357 int nr_zapped;
2358
2359 __kvm_mmu_prepare_zap_page(kvm, sp, invalid_list, &nr_zapped);
2360 return nr_zapped;
2361 }
2362
kvm_mmu_commit_zap_page(struct kvm * kvm,struct list_head * invalid_list)2363 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2364 struct list_head *invalid_list)
2365 {
2366 struct kvm_mmu_page *sp, *nsp;
2367
2368 if (list_empty(invalid_list))
2369 return;
2370
2371 /*
2372 * We need to make sure everyone sees our modifications to
2373 * the page tables and see changes to vcpu->mode here. The barrier
2374 * in the kvm_flush_remote_tlbs() achieves this. This pairs
2375 * with vcpu_enter_guest and walk_shadow_page_lockless_begin/end.
2376 *
2377 * In addition, kvm_flush_remote_tlbs waits for all vcpus to exit
2378 * guest mode and/or lockless shadow page table walks.
2379 */
2380 kvm_flush_remote_tlbs(kvm);
2381
2382 list_for_each_entry_safe(sp, nsp, invalid_list, link) {
2383 WARN_ON(!sp->role.invalid || sp->root_count);
2384 kvm_mmu_free_page(sp);
2385 }
2386 }
2387
kvm_mmu_zap_oldest_mmu_pages(struct kvm * kvm,unsigned long nr_to_zap)2388 static unsigned long kvm_mmu_zap_oldest_mmu_pages(struct kvm *kvm,
2389 unsigned long nr_to_zap)
2390 {
2391 unsigned long total_zapped = 0;
2392 struct kvm_mmu_page *sp, *tmp;
2393 LIST_HEAD(invalid_list);
2394 bool unstable;
2395 int nr_zapped;
2396
2397 if (list_empty(&kvm->arch.active_mmu_pages))
2398 return 0;
2399
2400 restart:
2401 list_for_each_entry_safe_reverse(sp, tmp, &kvm->arch.active_mmu_pages, link) {
2402 /*
2403 * Don't zap active root pages, the page itself can't be freed
2404 * and zapping it will just force vCPUs to realloc and reload.
2405 */
2406 if (sp->root_count)
2407 continue;
2408
2409 unstable = __kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list,
2410 &nr_zapped);
2411 total_zapped += nr_zapped;
2412 if (total_zapped >= nr_to_zap)
2413 break;
2414
2415 if (unstable)
2416 goto restart;
2417 }
2418
2419 kvm_mmu_commit_zap_page(kvm, &invalid_list);
2420
2421 kvm->stat.mmu_recycled += total_zapped;
2422 return total_zapped;
2423 }
2424
kvm_mmu_available_pages(struct kvm * kvm)2425 static inline unsigned long kvm_mmu_available_pages(struct kvm *kvm)
2426 {
2427 if (kvm->arch.n_max_mmu_pages > kvm->arch.n_used_mmu_pages)
2428 return kvm->arch.n_max_mmu_pages -
2429 kvm->arch.n_used_mmu_pages;
2430
2431 return 0;
2432 }
2433
make_mmu_pages_available(struct kvm_vcpu * vcpu)2434 static int make_mmu_pages_available(struct kvm_vcpu *vcpu)
2435 {
2436 unsigned long avail = kvm_mmu_available_pages(vcpu->kvm);
2437
2438 if (likely(avail >= KVM_MIN_FREE_MMU_PAGES))
2439 return 0;
2440
2441 kvm_mmu_zap_oldest_mmu_pages(vcpu->kvm, KVM_REFILL_PAGES - avail);
2442
2443 if (!kvm_mmu_available_pages(vcpu->kvm))
2444 return -ENOSPC;
2445 return 0;
2446 }
2447
2448 /*
2449 * Changing the number of mmu pages allocated to the vm
2450 * Note: if goal_nr_mmu_pages is too small, you will get dead lock
2451 */
kvm_mmu_change_mmu_pages(struct kvm * kvm,unsigned long goal_nr_mmu_pages)2452 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned long goal_nr_mmu_pages)
2453 {
2454 spin_lock(&kvm->mmu_lock);
2455
2456 if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
2457 kvm_mmu_zap_oldest_mmu_pages(kvm, kvm->arch.n_used_mmu_pages -
2458 goal_nr_mmu_pages);
2459
2460 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
2461 }
2462
2463 kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
2464
2465 spin_unlock(&kvm->mmu_lock);
2466 }
2467
kvm_mmu_unprotect_page(struct kvm * kvm,gfn_t gfn)2468 int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
2469 {
2470 struct kvm_mmu_page *sp;
2471 LIST_HEAD(invalid_list);
2472 int r;
2473
2474 pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
2475 r = 0;
2476 spin_lock(&kvm->mmu_lock);
2477 for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
2478 pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
2479 sp->role.word);
2480 r = 1;
2481 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
2482 }
2483 kvm_mmu_commit_zap_page(kvm, &invalid_list);
2484 spin_unlock(&kvm->mmu_lock);
2485
2486 return r;
2487 }
2488 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
2489
kvm_unsync_page(struct kvm_vcpu * vcpu,struct kvm_mmu_page * sp)2490 static void kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
2491 {
2492 trace_kvm_mmu_unsync_page(sp);
2493 ++vcpu->kvm->stat.mmu_unsync;
2494 sp->unsync = 1;
2495
2496 kvm_mmu_mark_parents_unsync(sp);
2497 }
2498
mmu_need_write_protect(struct kvm_vcpu * vcpu,gfn_t gfn,bool can_unsync)2499 bool mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
2500 bool can_unsync)
2501 {
2502 struct kvm_mmu_page *sp;
2503
2504 if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
2505 return true;
2506
2507 for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
2508 if (!can_unsync)
2509 return true;
2510
2511 if (sp->unsync)
2512 continue;
2513
2514 WARN_ON(sp->role.level != PG_LEVEL_4K);
2515 kvm_unsync_page(vcpu, sp);
2516 }
2517
2518 /*
2519 * We need to ensure that the marking of unsync pages is visible
2520 * before the SPTE is updated to allow writes because
2521 * kvm_mmu_sync_roots() checks the unsync flags without holding
2522 * the MMU lock and so can race with this. If the SPTE was updated
2523 * before the page had been marked as unsync-ed, something like the
2524 * following could happen:
2525 *
2526 * CPU 1 CPU 2
2527 * ---------------------------------------------------------------------
2528 * 1.2 Host updates SPTE
2529 * to be writable
2530 * 2.1 Guest writes a GPTE for GVA X.
2531 * (GPTE being in the guest page table shadowed
2532 * by the SP from CPU 1.)
2533 * This reads SPTE during the page table walk.
2534 * Since SPTE.W is read as 1, there is no
2535 * fault.
2536 *
2537 * 2.2 Guest issues TLB flush.
2538 * That causes a VM Exit.
2539 *
2540 * 2.3 kvm_mmu_sync_pages() reads sp->unsync.
2541 * Since it is false, so it just returns.
2542 *
2543 * 2.4 Guest accesses GVA X.
2544 * Since the mapping in the SP was not updated,
2545 * so the old mapping for GVA X incorrectly
2546 * gets used.
2547 * 1.1 Host marks SP
2548 * as unsync
2549 * (sp->unsync = true)
2550 *
2551 * The write barrier below ensures that 1.1 happens before 1.2 and thus
2552 * the situation in 2.4 does not arise. The implicit barrier in 2.2
2553 * pairs with this write barrier.
2554 */
2555 smp_wmb();
2556
2557 return false;
2558 }
2559
set_spte(struct kvm_vcpu * vcpu,u64 * sptep,unsigned int pte_access,int level,gfn_t gfn,kvm_pfn_t pfn,bool speculative,bool can_unsync,bool host_writable)2560 static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2561 unsigned int pte_access, int level,
2562 gfn_t gfn, kvm_pfn_t pfn, bool speculative,
2563 bool can_unsync, bool host_writable)
2564 {
2565 u64 spte;
2566 struct kvm_mmu_page *sp;
2567 int ret;
2568
2569 if (set_mmio_spte(vcpu, sptep, gfn, pfn, pte_access))
2570 return 0;
2571
2572 sp = sptep_to_sp(sptep);
2573
2574 ret = make_spte(vcpu, pte_access, level, gfn, pfn, *sptep, speculative,
2575 can_unsync, host_writable, sp_ad_disabled(sp), &spte);
2576
2577 if (spte & PT_WRITABLE_MASK)
2578 kvm_vcpu_mark_page_dirty(vcpu, gfn);
2579
2580 if (*sptep == spte)
2581 ret |= SET_SPTE_SPURIOUS;
2582 else if (mmu_spte_update(sptep, spte))
2583 ret |= SET_SPTE_NEED_REMOTE_TLB_FLUSH;
2584 return ret;
2585 }
2586
mmu_set_spte(struct kvm_vcpu * vcpu,u64 * sptep,unsigned int pte_access,bool write_fault,int level,gfn_t gfn,kvm_pfn_t pfn,bool speculative,bool host_writable)2587 static int mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2588 unsigned int pte_access, bool write_fault, int level,
2589 gfn_t gfn, kvm_pfn_t pfn, bool speculative,
2590 bool host_writable)
2591 {
2592 int was_rmapped = 0;
2593 int rmap_count;
2594 int set_spte_ret;
2595 int ret = RET_PF_FIXED;
2596 bool flush = false;
2597
2598 pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
2599 *sptep, write_fault, gfn);
2600
2601 if (is_shadow_present_pte(*sptep)) {
2602 /*
2603 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
2604 * the parent of the now unreachable PTE.
2605 */
2606 if (level > PG_LEVEL_4K && !is_large_pte(*sptep)) {
2607 struct kvm_mmu_page *child;
2608 u64 pte = *sptep;
2609
2610 child = to_shadow_page(pte & PT64_BASE_ADDR_MASK);
2611 drop_parent_pte(child, sptep);
2612 flush = true;
2613 } else if (pfn != spte_to_pfn(*sptep)) {
2614 pgprintk("hfn old %llx new %llx\n",
2615 spte_to_pfn(*sptep), pfn);
2616 drop_spte(vcpu->kvm, sptep);
2617 flush = true;
2618 } else
2619 was_rmapped = 1;
2620 }
2621
2622 set_spte_ret = set_spte(vcpu, sptep, pte_access, level, gfn, pfn,
2623 speculative, true, host_writable);
2624 if (set_spte_ret & SET_SPTE_WRITE_PROTECTED_PT) {
2625 if (write_fault)
2626 ret = RET_PF_EMULATE;
2627 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
2628 }
2629
2630 if (set_spte_ret & SET_SPTE_NEED_REMOTE_TLB_FLUSH || flush)
2631 kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn,
2632 KVM_PAGES_PER_HPAGE(level));
2633
2634 if (unlikely(is_mmio_spte(*sptep)))
2635 ret = RET_PF_EMULATE;
2636
2637 /*
2638 * The fault is fully spurious if and only if the new SPTE and old SPTE
2639 * are identical, and emulation is not required.
2640 */
2641 if ((set_spte_ret & SET_SPTE_SPURIOUS) && ret == RET_PF_FIXED) {
2642 WARN_ON_ONCE(!was_rmapped);
2643 return RET_PF_SPURIOUS;
2644 }
2645
2646 pgprintk("%s: setting spte %llx\n", __func__, *sptep);
2647 trace_kvm_mmu_set_spte(level, gfn, sptep);
2648 if (!was_rmapped && is_large_pte(*sptep))
2649 ++vcpu->kvm->stat.lpages;
2650
2651 if (is_shadow_present_pte(*sptep)) {
2652 if (!was_rmapped) {
2653 rmap_count = rmap_add(vcpu, sptep, gfn);
2654 if (rmap_count > RMAP_RECYCLE_THRESHOLD)
2655 rmap_recycle(vcpu, sptep, gfn);
2656 }
2657 }
2658
2659 return ret;
2660 }
2661
pte_prefetch_gfn_to_pfn(struct kvm_vcpu * vcpu,gfn_t gfn,bool no_dirty_log)2662 static kvm_pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
2663 bool no_dirty_log)
2664 {
2665 struct kvm_memory_slot *slot;
2666
2667 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
2668 if (!slot)
2669 return KVM_PFN_ERR_FAULT;
2670
2671 return gfn_to_pfn_memslot_atomic(slot, gfn);
2672 }
2673
direct_pte_prefetch_many(struct kvm_vcpu * vcpu,struct kvm_mmu_page * sp,u64 * start,u64 * end)2674 static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
2675 struct kvm_mmu_page *sp,
2676 u64 *start, u64 *end)
2677 {
2678 struct page *pages[PTE_PREFETCH_NUM];
2679 struct kvm_memory_slot *slot;
2680 unsigned int access = sp->role.access;
2681 int i, ret;
2682 gfn_t gfn;
2683
2684 gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
2685 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK);
2686 if (!slot)
2687 return -1;
2688
2689 ret = gfn_to_page_many_atomic(slot, gfn, pages, end - start);
2690 if (ret <= 0)
2691 return -1;
2692
2693 for (i = 0; i < ret; i++, gfn++, start++) {
2694 mmu_set_spte(vcpu, start, access, false, sp->role.level, gfn,
2695 page_to_pfn(pages[i]), true, true);
2696 put_page(pages[i]);
2697 }
2698
2699 return 0;
2700 }
2701
__direct_pte_prefetch(struct kvm_vcpu * vcpu,struct kvm_mmu_page * sp,u64 * sptep)2702 static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
2703 struct kvm_mmu_page *sp, u64 *sptep)
2704 {
2705 u64 *spte, *start = NULL;
2706 int i;
2707
2708 WARN_ON(!sp->role.direct);
2709
2710 i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
2711 spte = sp->spt + i;
2712
2713 for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
2714 if (is_shadow_present_pte(*spte) || spte == sptep) {
2715 if (!start)
2716 continue;
2717 if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
2718 break;
2719 start = NULL;
2720 } else if (!start)
2721 start = spte;
2722 }
2723 }
2724
direct_pte_prefetch(struct kvm_vcpu * vcpu,u64 * sptep)2725 static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
2726 {
2727 struct kvm_mmu_page *sp;
2728
2729 sp = sptep_to_sp(sptep);
2730
2731 /*
2732 * Without accessed bits, there's no way to distinguish between
2733 * actually accessed translations and prefetched, so disable pte
2734 * prefetch if accessed bits aren't available.
2735 */
2736 if (sp_ad_disabled(sp))
2737 return;
2738
2739 if (sp->role.level > PG_LEVEL_4K)
2740 return;
2741
2742 __direct_pte_prefetch(vcpu, sp, sptep);
2743 }
2744
host_pfn_mapping_level(struct kvm_vcpu * vcpu,gfn_t gfn,kvm_pfn_t pfn,struct kvm_memory_slot * slot)2745 static int host_pfn_mapping_level(struct kvm_vcpu *vcpu, gfn_t gfn,
2746 kvm_pfn_t pfn, struct kvm_memory_slot *slot)
2747 {
2748 unsigned long hva;
2749 pte_t *pte;
2750 int level;
2751
2752 if (!PageCompound(pfn_to_page(pfn)) && !kvm_is_zone_device_pfn(pfn))
2753 return PG_LEVEL_4K;
2754
2755 /*
2756 * Note, using the already-retrieved memslot and __gfn_to_hva_memslot()
2757 * is not solely for performance, it's also necessary to avoid the
2758 * "writable" check in __gfn_to_hva_many(), which will always fail on
2759 * read-only memslots due to gfn_to_hva() assuming writes. Earlier
2760 * page fault steps have already verified the guest isn't writing a
2761 * read-only memslot.
2762 */
2763 hva = __gfn_to_hva_memslot(slot, gfn);
2764
2765 pte = lookup_address_in_mm(vcpu->kvm->mm, hva, &level);
2766 if (unlikely(!pte))
2767 return PG_LEVEL_4K;
2768
2769 return level;
2770 }
2771
kvm_mmu_hugepage_adjust(struct kvm_vcpu * vcpu,gfn_t gfn,int max_level,kvm_pfn_t * pfnp,bool huge_page_disallowed,int * req_level)2772 int kvm_mmu_hugepage_adjust(struct kvm_vcpu *vcpu, gfn_t gfn,
2773 int max_level, kvm_pfn_t *pfnp,
2774 bool huge_page_disallowed, int *req_level)
2775 {
2776 struct kvm_memory_slot *slot;
2777 struct kvm_lpage_info *linfo;
2778 kvm_pfn_t pfn = *pfnp;
2779 kvm_pfn_t mask;
2780 int level;
2781
2782 *req_level = PG_LEVEL_4K;
2783
2784 if (unlikely(max_level == PG_LEVEL_4K))
2785 return PG_LEVEL_4K;
2786
2787 if (is_error_noslot_pfn(pfn) || kvm_is_reserved_pfn(pfn))
2788 return PG_LEVEL_4K;
2789
2790 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, true);
2791 if (!slot)
2792 return PG_LEVEL_4K;
2793
2794 max_level = min(max_level, max_huge_page_level);
2795 for ( ; max_level > PG_LEVEL_4K; max_level--) {
2796 linfo = lpage_info_slot(gfn, slot, max_level);
2797 if (!linfo->disallow_lpage)
2798 break;
2799 }
2800
2801 if (max_level == PG_LEVEL_4K)
2802 return PG_LEVEL_4K;
2803
2804 level = host_pfn_mapping_level(vcpu, gfn, pfn, slot);
2805 if (level == PG_LEVEL_4K)
2806 return level;
2807
2808 *req_level = level = min(level, max_level);
2809
2810 /*
2811 * Enforce the iTLB multihit workaround after capturing the requested
2812 * level, which will be used to do precise, accurate accounting.
2813 */
2814 if (huge_page_disallowed)
2815 return PG_LEVEL_4K;
2816
2817 /*
2818 * mmu_notifier_retry() was successful and mmu_lock is held, so
2819 * the pmd can't be split from under us.
2820 */
2821 mask = KVM_PAGES_PER_HPAGE(level) - 1;
2822 VM_BUG_ON((gfn & mask) != (pfn & mask));
2823 *pfnp = pfn & ~mask;
2824
2825 return level;
2826 }
2827
disallowed_hugepage_adjust(u64 spte,gfn_t gfn,int cur_level,kvm_pfn_t * pfnp,int * goal_levelp)2828 void disallowed_hugepage_adjust(u64 spte, gfn_t gfn, int cur_level,
2829 kvm_pfn_t *pfnp, int *goal_levelp)
2830 {
2831 int level = *goal_levelp;
2832
2833 if (cur_level == level && level > PG_LEVEL_4K &&
2834 is_shadow_present_pte(spte) &&
2835 !is_large_pte(spte)) {
2836 /*
2837 * A small SPTE exists for this pfn, but FNAME(fetch)
2838 * and __direct_map would like to create a large PTE
2839 * instead: just force them to go down another level,
2840 * patching back for them into pfn the next 9 bits of
2841 * the address.
2842 */
2843 u64 page_mask = KVM_PAGES_PER_HPAGE(level) -
2844 KVM_PAGES_PER_HPAGE(level - 1);
2845 *pfnp |= gfn & page_mask;
2846 (*goal_levelp)--;
2847 }
2848 }
2849
__direct_map(struct kvm_vcpu * vcpu,gpa_t gpa,u32 error_code,int map_writable,int max_level,kvm_pfn_t pfn,bool prefault,bool is_tdp)2850 static int __direct_map(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code,
2851 int map_writable, int max_level, kvm_pfn_t pfn,
2852 bool prefault, bool is_tdp)
2853 {
2854 bool nx_huge_page_workaround_enabled = is_nx_huge_page_enabled();
2855 bool write = error_code & PFERR_WRITE_MASK;
2856 bool exec = error_code & PFERR_FETCH_MASK;
2857 bool huge_page_disallowed = exec && nx_huge_page_workaround_enabled;
2858 struct kvm_shadow_walk_iterator it;
2859 struct kvm_mmu_page *sp;
2860 int level, req_level, ret;
2861 gfn_t gfn = gpa >> PAGE_SHIFT;
2862 gfn_t base_gfn = gfn;
2863
2864 if (WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root_hpa)))
2865 return RET_PF_RETRY;
2866
2867 level = kvm_mmu_hugepage_adjust(vcpu, gfn, max_level, &pfn,
2868 huge_page_disallowed, &req_level);
2869
2870 trace_kvm_mmu_spte_requested(gpa, level, pfn);
2871 for_each_shadow_entry(vcpu, gpa, it) {
2872 /*
2873 * We cannot overwrite existing page tables with an NX
2874 * large page, as the leaf could be executable.
2875 */
2876 if (nx_huge_page_workaround_enabled)
2877 disallowed_hugepage_adjust(*it.sptep, gfn, it.level,
2878 &pfn, &level);
2879
2880 base_gfn = gfn & ~(KVM_PAGES_PER_HPAGE(it.level) - 1);
2881 if (it.level == level)
2882 break;
2883
2884 drop_large_spte(vcpu, it.sptep);
2885 if (!is_shadow_present_pte(*it.sptep)) {
2886 sp = kvm_mmu_get_page(vcpu, base_gfn, it.addr,
2887 it.level - 1, true, ACC_ALL);
2888
2889 link_shadow_page(vcpu, it.sptep, sp);
2890 if (is_tdp && huge_page_disallowed &&
2891 req_level >= it.level)
2892 account_huge_nx_page(vcpu->kvm, sp);
2893 }
2894 }
2895
2896 ret = mmu_set_spte(vcpu, it.sptep, ACC_ALL,
2897 write, level, base_gfn, pfn, prefault,
2898 map_writable);
2899 if (ret == RET_PF_SPURIOUS)
2900 return ret;
2901
2902 direct_pte_prefetch(vcpu, it.sptep);
2903 ++vcpu->stat.pf_fixed;
2904 return ret;
2905 }
2906
kvm_send_hwpoison_signal(unsigned long address,struct task_struct * tsk)2907 static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
2908 {
2909 send_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, PAGE_SHIFT, tsk);
2910 }
2911
kvm_handle_bad_page(struct kvm_vcpu * vcpu,gfn_t gfn,kvm_pfn_t pfn)2912 static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, kvm_pfn_t pfn)
2913 {
2914 /*
2915 * Do not cache the mmio info caused by writing the readonly gfn
2916 * into the spte otherwise read access on readonly gfn also can
2917 * caused mmio page fault and treat it as mmio access.
2918 */
2919 if (pfn == KVM_PFN_ERR_RO_FAULT)
2920 return RET_PF_EMULATE;
2921
2922 if (pfn == KVM_PFN_ERR_HWPOISON) {
2923 kvm_send_hwpoison_signal(kvm_vcpu_gfn_to_hva(vcpu, gfn), current);
2924 return RET_PF_RETRY;
2925 }
2926
2927 return -EFAULT;
2928 }
2929
handle_abnormal_pfn(struct kvm_vcpu * vcpu,gva_t gva,gfn_t gfn,kvm_pfn_t pfn,unsigned int access,int * ret_val)2930 static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
2931 kvm_pfn_t pfn, unsigned int access,
2932 int *ret_val)
2933 {
2934 /* The pfn is invalid, report the error! */
2935 if (unlikely(is_error_pfn(pfn))) {
2936 *ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
2937 return true;
2938 }
2939
2940 if (unlikely(is_noslot_pfn(pfn)))
2941 vcpu_cache_mmio_info(vcpu, gva, gfn,
2942 access & shadow_mmio_access_mask);
2943
2944 return false;
2945 }
2946
page_fault_can_be_fast(u32 error_code)2947 static bool page_fault_can_be_fast(u32 error_code)
2948 {
2949 /*
2950 * Do not fix the mmio spte with invalid generation number which
2951 * need to be updated by slow page fault path.
2952 */
2953 if (unlikely(error_code & PFERR_RSVD_MASK))
2954 return false;
2955
2956 /* See if the page fault is due to an NX violation */
2957 if (unlikely(((error_code & (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))
2958 == (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))))
2959 return false;
2960
2961 /*
2962 * #PF can be fast if:
2963 * 1. The shadow page table entry is not present, which could mean that
2964 * the fault is potentially caused by access tracking (if enabled).
2965 * 2. The shadow page table entry is present and the fault
2966 * is caused by write-protect, that means we just need change the W
2967 * bit of the spte which can be done out of mmu-lock.
2968 *
2969 * However, if access tracking is disabled we know that a non-present
2970 * page must be a genuine page fault where we have to create a new SPTE.
2971 * So, if access tracking is disabled, we return true only for write
2972 * accesses to a present page.
2973 */
2974
2975 return shadow_acc_track_mask != 0 ||
2976 ((error_code & (PFERR_WRITE_MASK | PFERR_PRESENT_MASK))
2977 == (PFERR_WRITE_MASK | PFERR_PRESENT_MASK));
2978 }
2979
2980 /*
2981 * Returns true if the SPTE was fixed successfully. Otherwise,
2982 * someone else modified the SPTE from its original value.
2983 */
2984 static bool
fast_pf_fix_direct_spte(struct kvm_vcpu * vcpu,struct kvm_mmu_page * sp,u64 * sptep,u64 old_spte,u64 new_spte)2985 fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
2986 u64 *sptep, u64 old_spte, u64 new_spte)
2987 {
2988 gfn_t gfn;
2989
2990 WARN_ON(!sp->role.direct);
2991
2992 /*
2993 * Theoretically we could also set dirty bit (and flush TLB) here in
2994 * order to eliminate unnecessary PML logging. See comments in
2995 * set_spte. But fast_page_fault is very unlikely to happen with PML
2996 * enabled, so we do not do this. This might result in the same GPA
2997 * to be logged in PML buffer again when the write really happens, and
2998 * eventually to be called by mark_page_dirty twice. But it's also no
2999 * harm. This also avoids the TLB flush needed after setting dirty bit
3000 * so non-PML cases won't be impacted.
3001 *
3002 * Compare with set_spte where instead shadow_dirty_mask is set.
3003 */
3004 if (cmpxchg64(sptep, old_spte, new_spte) != old_spte)
3005 return false;
3006
3007 if (is_writable_pte(new_spte) && !is_writable_pte(old_spte)) {
3008 /*
3009 * The gfn of direct spte is stable since it is
3010 * calculated by sp->gfn.
3011 */
3012 gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
3013 kvm_vcpu_mark_page_dirty(vcpu, gfn);
3014 }
3015
3016 return true;
3017 }
3018
is_access_allowed(u32 fault_err_code,u64 spte)3019 static bool is_access_allowed(u32 fault_err_code, u64 spte)
3020 {
3021 if (fault_err_code & PFERR_FETCH_MASK)
3022 return is_executable_pte(spte);
3023
3024 if (fault_err_code & PFERR_WRITE_MASK)
3025 return is_writable_pte(spte);
3026
3027 /* Fault was on Read access */
3028 return spte & PT_PRESENT_MASK;
3029 }
3030
3031 /*
3032 * Returns one of RET_PF_INVALID, RET_PF_FIXED or RET_PF_SPURIOUS.
3033 */
fast_page_fault(struct kvm_vcpu * vcpu,gpa_t cr2_or_gpa,u32 error_code)3034 static int fast_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
3035 u32 error_code)
3036 {
3037 struct kvm_shadow_walk_iterator iterator;
3038 struct kvm_mmu_page *sp;
3039 int ret = RET_PF_INVALID;
3040 u64 spte = 0ull;
3041 uint retry_count = 0;
3042
3043 if (!page_fault_can_be_fast(error_code))
3044 return ret;
3045
3046 walk_shadow_page_lockless_begin(vcpu);
3047
3048 do {
3049 u64 new_spte;
3050
3051 for_each_shadow_entry_lockless(vcpu, cr2_or_gpa, iterator, spte)
3052 if (!is_shadow_present_pte(spte))
3053 break;
3054
3055 sp = sptep_to_sp(iterator.sptep);
3056 if (!is_last_spte(spte, sp->role.level))
3057 break;
3058
3059 /*
3060 * Check whether the memory access that caused the fault would
3061 * still cause it if it were to be performed right now. If not,
3062 * then this is a spurious fault caused by TLB lazily flushed,
3063 * or some other CPU has already fixed the PTE after the
3064 * current CPU took the fault.
3065 *
3066 * Need not check the access of upper level table entries since
3067 * they are always ACC_ALL.
3068 */
3069 if (is_access_allowed(error_code, spte)) {
3070 ret = RET_PF_SPURIOUS;
3071 break;
3072 }
3073
3074 new_spte = spte;
3075
3076 if (is_access_track_spte(spte))
3077 new_spte = restore_acc_track_spte(new_spte);
3078
3079 /*
3080 * Currently, to simplify the code, write-protection can
3081 * be removed in the fast path only if the SPTE was
3082 * write-protected for dirty-logging or access tracking.
3083 */
3084 if ((error_code & PFERR_WRITE_MASK) &&
3085 spte_can_locklessly_be_made_writable(spte)) {
3086 new_spte |= PT_WRITABLE_MASK;
3087
3088 /*
3089 * Do not fix write-permission on the large spte. Since
3090 * we only dirty the first page into the dirty-bitmap in
3091 * fast_pf_fix_direct_spte(), other pages are missed
3092 * if its slot has dirty logging enabled.
3093 *
3094 * Instead, we let the slow page fault path create a
3095 * normal spte to fix the access.
3096 *
3097 * See the comments in kvm_arch_commit_memory_region().
3098 */
3099 if (sp->role.level > PG_LEVEL_4K)
3100 break;
3101 }
3102
3103 /* Verify that the fault can be handled in the fast path */
3104 if (new_spte == spte ||
3105 !is_access_allowed(error_code, new_spte))
3106 break;
3107
3108 /*
3109 * Currently, fast page fault only works for direct mapping
3110 * since the gfn is not stable for indirect shadow page. See
3111 * Documentation/virt/kvm/locking.rst to get more detail.
3112 */
3113 if (fast_pf_fix_direct_spte(vcpu, sp, iterator.sptep, spte,
3114 new_spte)) {
3115 ret = RET_PF_FIXED;
3116 break;
3117 }
3118
3119 if (++retry_count > 4) {
3120 printk_once(KERN_WARNING
3121 "kvm: Fast #PF retrying more than 4 times.\n");
3122 break;
3123 }
3124
3125 } while (true);
3126
3127 trace_fast_page_fault(vcpu, cr2_or_gpa, error_code, iterator.sptep,
3128 spte, ret);
3129 walk_shadow_page_lockless_end(vcpu);
3130
3131 return ret;
3132 }
3133
mmu_free_root_page(struct kvm * kvm,hpa_t * root_hpa,struct list_head * invalid_list)3134 static void mmu_free_root_page(struct kvm *kvm, hpa_t *root_hpa,
3135 struct list_head *invalid_list)
3136 {
3137 struct kvm_mmu_page *sp;
3138
3139 if (!VALID_PAGE(*root_hpa))
3140 return;
3141
3142 sp = to_shadow_page(*root_hpa & PT64_BASE_ADDR_MASK);
3143
3144 if (kvm_mmu_put_root(kvm, sp)) {
3145 if (sp->tdp_mmu_page)
3146 kvm_tdp_mmu_free_root(kvm, sp);
3147 else if (sp->role.invalid)
3148 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
3149 }
3150
3151 *root_hpa = INVALID_PAGE;
3152 }
3153
3154 /* roots_to_free must be some combination of the KVM_MMU_ROOT_* flags */
kvm_mmu_free_roots(struct kvm_vcpu * vcpu,struct kvm_mmu * mmu,ulong roots_to_free)3155 void kvm_mmu_free_roots(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
3156 ulong roots_to_free)
3157 {
3158 struct kvm *kvm = vcpu->kvm;
3159 int i;
3160 LIST_HEAD(invalid_list);
3161 bool free_active_root = roots_to_free & KVM_MMU_ROOT_CURRENT;
3162
3163 BUILD_BUG_ON(KVM_MMU_NUM_PREV_ROOTS >= BITS_PER_LONG);
3164
3165 /* Before acquiring the MMU lock, see if we need to do any real work. */
3166 if (!(free_active_root && VALID_PAGE(mmu->root_hpa))) {
3167 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
3168 if ((roots_to_free & KVM_MMU_ROOT_PREVIOUS(i)) &&
3169 VALID_PAGE(mmu->prev_roots[i].hpa))
3170 break;
3171
3172 if (i == KVM_MMU_NUM_PREV_ROOTS)
3173 return;
3174 }
3175
3176 spin_lock(&kvm->mmu_lock);
3177
3178 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
3179 if (roots_to_free & KVM_MMU_ROOT_PREVIOUS(i))
3180 mmu_free_root_page(kvm, &mmu->prev_roots[i].hpa,
3181 &invalid_list);
3182
3183 if (free_active_root) {
3184 if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL &&
3185 (mmu->root_level >= PT64_ROOT_4LEVEL || mmu->direct_map)) {
3186 mmu_free_root_page(kvm, &mmu->root_hpa, &invalid_list);
3187 } else if (mmu->pae_root) {
3188 for (i = 0; i < 4; ++i)
3189 if (mmu->pae_root[i] != 0)
3190 mmu_free_root_page(kvm,
3191 &mmu->pae_root[i],
3192 &invalid_list);
3193 }
3194 mmu->root_hpa = INVALID_PAGE;
3195 mmu->root_pgd = 0;
3196 }
3197
3198 kvm_mmu_commit_zap_page(kvm, &invalid_list);
3199 spin_unlock(&kvm->mmu_lock);
3200 }
3201 EXPORT_SYMBOL_GPL(kvm_mmu_free_roots);
3202
mmu_check_root(struct kvm_vcpu * vcpu,gfn_t root_gfn)3203 static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
3204 {
3205 int ret = 0;
3206
3207 if (!kvm_vcpu_is_visible_gfn(vcpu, root_gfn)) {
3208 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3209 ret = 1;
3210 }
3211
3212 return ret;
3213 }
3214
mmu_alloc_root(struct kvm_vcpu * vcpu,gfn_t gfn,gva_t gva,u8 level,bool direct)3215 static hpa_t mmu_alloc_root(struct kvm_vcpu *vcpu, gfn_t gfn, gva_t gva,
3216 u8 level, bool direct)
3217 {
3218 struct kvm_mmu_page *sp;
3219
3220 spin_lock(&vcpu->kvm->mmu_lock);
3221
3222 if (make_mmu_pages_available(vcpu)) {
3223 spin_unlock(&vcpu->kvm->mmu_lock);
3224 return INVALID_PAGE;
3225 }
3226 sp = kvm_mmu_get_page(vcpu, gfn, gva, level, direct, ACC_ALL);
3227 ++sp->root_count;
3228
3229 spin_unlock(&vcpu->kvm->mmu_lock);
3230 return __pa(sp->spt);
3231 }
3232
mmu_alloc_direct_roots(struct kvm_vcpu * vcpu)3233 static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
3234 {
3235 u8 shadow_root_level = vcpu->arch.mmu->shadow_root_level;
3236 hpa_t root;
3237 unsigned i;
3238
3239 if (vcpu->kvm->arch.tdp_mmu_enabled) {
3240 root = kvm_tdp_mmu_get_vcpu_root_hpa(vcpu);
3241
3242 if (!VALID_PAGE(root))
3243 return -ENOSPC;
3244 vcpu->arch.mmu->root_hpa = root;
3245 } else if (shadow_root_level >= PT64_ROOT_4LEVEL) {
3246 root = mmu_alloc_root(vcpu, 0, 0, shadow_root_level,
3247 true);
3248
3249 if (!VALID_PAGE(root))
3250 return -ENOSPC;
3251 vcpu->arch.mmu->root_hpa = root;
3252 } else if (shadow_root_level == PT32E_ROOT_LEVEL) {
3253 for (i = 0; i < 4; ++i) {
3254 MMU_WARN_ON(VALID_PAGE(vcpu->arch.mmu->pae_root[i]));
3255
3256 root = mmu_alloc_root(vcpu, i << (30 - PAGE_SHIFT),
3257 i << 30, PT32_ROOT_LEVEL, true);
3258 if (!VALID_PAGE(root))
3259 return -ENOSPC;
3260 vcpu->arch.mmu->pae_root[i] = root | PT_PRESENT_MASK;
3261 }
3262 vcpu->arch.mmu->root_hpa = __pa(vcpu->arch.mmu->pae_root);
3263 } else
3264 BUG();
3265
3266 /* root_pgd is ignored for direct MMUs. */
3267 vcpu->arch.mmu->root_pgd = 0;
3268
3269 return 0;
3270 }
3271
mmu_alloc_shadow_roots(struct kvm_vcpu * vcpu)3272 static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
3273 {
3274 u64 pdptr, pm_mask;
3275 gfn_t root_gfn, root_pgd;
3276 hpa_t root;
3277 int i;
3278
3279 root_pgd = vcpu->arch.mmu->get_guest_pgd(vcpu);
3280 root_gfn = root_pgd >> PAGE_SHIFT;
3281
3282 if (mmu_check_root(vcpu, root_gfn))
3283 return 1;
3284
3285 /*
3286 * Do we shadow a long mode page table? If so we need to
3287 * write-protect the guests page table root.
3288 */
3289 if (vcpu->arch.mmu->root_level >= PT64_ROOT_4LEVEL) {
3290 MMU_WARN_ON(VALID_PAGE(vcpu->arch.mmu->root_hpa));
3291
3292 root = mmu_alloc_root(vcpu, root_gfn, 0,
3293 vcpu->arch.mmu->shadow_root_level, false);
3294 if (!VALID_PAGE(root))
3295 return -ENOSPC;
3296 vcpu->arch.mmu->root_hpa = root;
3297 goto set_root_pgd;
3298 }
3299
3300 /*
3301 * We shadow a 32 bit page table. This may be a legacy 2-level
3302 * or a PAE 3-level page table. In either case we need to be aware that
3303 * the shadow page table may be a PAE or a long mode page table.
3304 */
3305 pm_mask = PT_PRESENT_MASK;
3306 if (vcpu->arch.mmu->shadow_root_level == PT64_ROOT_4LEVEL) {
3307 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
3308
3309 /*
3310 * Allocate the page for the PDPTEs when shadowing 32-bit NPT
3311 * with 64-bit only when needed. Unlike 32-bit NPT, it doesn't
3312 * need to be in low mem. See also lm_root below.
3313 */
3314 if (!vcpu->arch.mmu->pae_root) {
3315 WARN_ON_ONCE(!tdp_enabled);
3316
3317 vcpu->arch.mmu->pae_root = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT);
3318 if (!vcpu->arch.mmu->pae_root)
3319 return -ENOMEM;
3320 }
3321 }
3322
3323 for (i = 0; i < 4; ++i) {
3324 MMU_WARN_ON(VALID_PAGE(vcpu->arch.mmu->pae_root[i]));
3325 if (vcpu->arch.mmu->root_level == PT32E_ROOT_LEVEL) {
3326 pdptr = vcpu->arch.mmu->get_pdptr(vcpu, i);
3327 if (!(pdptr & PT_PRESENT_MASK)) {
3328 vcpu->arch.mmu->pae_root[i] = 0;
3329 continue;
3330 }
3331 root_gfn = pdptr >> PAGE_SHIFT;
3332 if (mmu_check_root(vcpu, root_gfn))
3333 return 1;
3334 }
3335
3336 root = mmu_alloc_root(vcpu, root_gfn, i << 30,
3337 PT32_ROOT_LEVEL, false);
3338 if (!VALID_PAGE(root))
3339 return -ENOSPC;
3340 vcpu->arch.mmu->pae_root[i] = root | pm_mask;
3341 }
3342 vcpu->arch.mmu->root_hpa = __pa(vcpu->arch.mmu->pae_root);
3343
3344 /*
3345 * When shadowing 32-bit or PAE NPT with 64-bit NPT, the PML4 and PDP
3346 * tables are allocated and initialized at MMU creation as there is no
3347 * equivalent level in the guest's NPT to shadow. Allocate the tables
3348 * on demand, as running a 32-bit L1 VMM is very rare. The PDP is
3349 * handled above (to share logic with PAE), deal with the PML4 here.
3350 */
3351 if (vcpu->arch.mmu->shadow_root_level == PT64_ROOT_4LEVEL) {
3352 if (vcpu->arch.mmu->lm_root == NULL) {
3353 u64 *lm_root;
3354
3355 lm_root = (void*)get_zeroed_page(GFP_KERNEL_ACCOUNT);
3356 if (!lm_root)
3357 return -ENOMEM;
3358
3359 lm_root[0] = __pa(vcpu->arch.mmu->pae_root) | pm_mask;
3360
3361 vcpu->arch.mmu->lm_root = lm_root;
3362 }
3363
3364 vcpu->arch.mmu->root_hpa = __pa(vcpu->arch.mmu->lm_root);
3365 }
3366
3367 set_root_pgd:
3368 vcpu->arch.mmu->root_pgd = root_pgd;
3369
3370 return 0;
3371 }
3372
mmu_alloc_roots(struct kvm_vcpu * vcpu)3373 static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
3374 {
3375 if (vcpu->arch.mmu->direct_map)
3376 return mmu_alloc_direct_roots(vcpu);
3377 else
3378 return mmu_alloc_shadow_roots(vcpu);
3379 }
3380
kvm_mmu_sync_roots(struct kvm_vcpu * vcpu)3381 void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
3382 {
3383 int i;
3384 struct kvm_mmu_page *sp;
3385
3386 if (vcpu->arch.mmu->direct_map)
3387 return;
3388
3389 if (!VALID_PAGE(vcpu->arch.mmu->root_hpa))
3390 return;
3391
3392 vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
3393
3394 if (vcpu->arch.mmu->root_level >= PT64_ROOT_4LEVEL) {
3395 hpa_t root = vcpu->arch.mmu->root_hpa;
3396 sp = to_shadow_page(root);
3397
3398 /*
3399 * Even if another CPU was marking the SP as unsync-ed
3400 * simultaneously, any guest page table changes are not
3401 * guaranteed to be visible anyway until this VCPU issues a TLB
3402 * flush strictly after those changes are made. We only need to
3403 * ensure that the other CPU sets these flags before any actual
3404 * changes to the page tables are made. The comments in
3405 * mmu_need_write_protect() describe what could go wrong if this
3406 * requirement isn't satisfied.
3407 */
3408 if (!smp_load_acquire(&sp->unsync) &&
3409 !smp_load_acquire(&sp->unsync_children))
3410 return;
3411
3412 spin_lock(&vcpu->kvm->mmu_lock);
3413 kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3414
3415 mmu_sync_children(vcpu, sp);
3416
3417 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3418 spin_unlock(&vcpu->kvm->mmu_lock);
3419 return;
3420 }
3421
3422 spin_lock(&vcpu->kvm->mmu_lock);
3423 kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3424
3425 for (i = 0; i < 4; ++i) {
3426 hpa_t root = vcpu->arch.mmu->pae_root[i];
3427
3428 if (root && VALID_PAGE(root)) {
3429 root &= PT64_BASE_ADDR_MASK;
3430 sp = to_shadow_page(root);
3431 mmu_sync_children(vcpu, sp);
3432 }
3433 }
3434
3435 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3436 spin_unlock(&vcpu->kvm->mmu_lock);
3437 }
3438 EXPORT_SYMBOL_GPL(kvm_mmu_sync_roots);
3439
nonpaging_gva_to_gpa(struct kvm_vcpu * vcpu,gpa_t vaddr,u32 access,struct x86_exception * exception)3440 static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gpa_t vaddr,
3441 u32 access, struct x86_exception *exception)
3442 {
3443 if (exception)
3444 exception->error_code = 0;
3445 return vaddr;
3446 }
3447
nonpaging_gva_to_gpa_nested(struct kvm_vcpu * vcpu,gpa_t vaddr,u32 access,struct x86_exception * exception)3448 static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gpa_t vaddr,
3449 u32 access,
3450 struct x86_exception *exception)
3451 {
3452 if (exception)
3453 exception->error_code = 0;
3454 return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access, exception);
3455 }
3456
3457 static bool
__is_rsvd_bits_set(struct rsvd_bits_validate * rsvd_check,u64 pte,int level)3458 __is_rsvd_bits_set(struct rsvd_bits_validate *rsvd_check, u64 pte, int level)
3459 {
3460 int bit7 = (pte >> 7) & 1;
3461
3462 return pte & rsvd_check->rsvd_bits_mask[bit7][level-1];
3463 }
3464
__is_bad_mt_xwr(struct rsvd_bits_validate * rsvd_check,u64 pte)3465 static bool __is_bad_mt_xwr(struct rsvd_bits_validate *rsvd_check, u64 pte)
3466 {
3467 return rsvd_check->bad_mt_xwr & BIT_ULL(pte & 0x3f);
3468 }
3469
mmio_info_in_cache(struct kvm_vcpu * vcpu,u64 addr,bool direct)3470 static bool mmio_info_in_cache(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3471 {
3472 /*
3473 * A nested guest cannot use the MMIO cache if it is using nested
3474 * page tables, because cr2 is a nGPA while the cache stores GPAs.
3475 */
3476 if (mmu_is_nested(vcpu))
3477 return false;
3478
3479 if (direct)
3480 return vcpu_match_mmio_gpa(vcpu, addr);
3481
3482 return vcpu_match_mmio_gva(vcpu, addr);
3483 }
3484
3485 /*
3486 * Return the level of the lowest level SPTE added to sptes.
3487 * That SPTE may be non-present.
3488 */
get_walk(struct kvm_vcpu * vcpu,u64 addr,u64 * sptes,int * root_level)3489 static int get_walk(struct kvm_vcpu *vcpu, u64 addr, u64 *sptes, int *root_level)
3490 {
3491 struct kvm_shadow_walk_iterator iterator;
3492 int leaf = -1;
3493 u64 spte;
3494
3495 walk_shadow_page_lockless_begin(vcpu);
3496
3497 for (shadow_walk_init(&iterator, vcpu, addr),
3498 *root_level = iterator.level;
3499 shadow_walk_okay(&iterator);
3500 __shadow_walk_next(&iterator, spte)) {
3501 leaf = iterator.level;
3502 spte = mmu_spte_get_lockless(iterator.sptep);
3503
3504 sptes[leaf - 1] = spte;
3505
3506 if (!is_shadow_present_pte(spte))
3507 break;
3508 }
3509
3510 walk_shadow_page_lockless_end(vcpu);
3511
3512 return leaf;
3513 }
3514
3515 /* return true if reserved bit is detected on spte. */
get_mmio_spte(struct kvm_vcpu * vcpu,u64 addr,u64 * sptep)3516 static bool get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr, u64 *sptep)
3517 {
3518 u64 sptes[PT64_ROOT_MAX_LEVEL];
3519 struct rsvd_bits_validate *rsvd_check;
3520 int root, leaf, level;
3521 bool reserved = false;
3522
3523 if (!VALID_PAGE(vcpu->arch.mmu->root_hpa)) {
3524 *sptep = 0ull;
3525 return reserved;
3526 }
3527
3528 if (is_tdp_mmu_root(vcpu->kvm, vcpu->arch.mmu->root_hpa))
3529 leaf = kvm_tdp_mmu_get_walk(vcpu, addr, sptes, &root);
3530 else
3531 leaf = get_walk(vcpu, addr, sptes, &root);
3532
3533 if (unlikely(leaf < 0)) {
3534 *sptep = 0ull;
3535 return reserved;
3536 }
3537
3538 rsvd_check = &vcpu->arch.mmu->shadow_zero_check;
3539
3540 for (level = root; level >= leaf; level--) {
3541 if (!is_shadow_present_pte(sptes[level - 1]))
3542 break;
3543 /*
3544 * Use a bitwise-OR instead of a logical-OR to aggregate the
3545 * reserved bit and EPT's invalid memtype/XWR checks to avoid
3546 * adding a Jcc in the loop.
3547 */
3548 reserved |= __is_bad_mt_xwr(rsvd_check, sptes[level - 1]) ||
3549 __is_rsvd_bits_set(rsvd_check, sptes[level - 1],
3550 level);
3551 }
3552
3553 if (reserved) {
3554 pr_err("%s: detect reserved bits on spte, addr 0x%llx, dump hierarchy:\n",
3555 __func__, addr);
3556 for (level = root; level >= leaf; level--)
3557 pr_err("------ spte 0x%llx level %d.\n",
3558 sptes[level - 1], level);
3559 }
3560
3561 *sptep = sptes[leaf - 1];
3562
3563 return reserved;
3564 }
3565
handle_mmio_page_fault(struct kvm_vcpu * vcpu,u64 addr,bool direct)3566 static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3567 {
3568 u64 spte;
3569 bool reserved;
3570
3571 if (mmio_info_in_cache(vcpu, addr, direct))
3572 return RET_PF_EMULATE;
3573
3574 reserved = get_mmio_spte(vcpu, addr, &spte);
3575 if (WARN_ON(reserved))
3576 return -EINVAL;
3577
3578 if (is_mmio_spte(spte)) {
3579 gfn_t gfn = get_mmio_spte_gfn(spte);
3580 unsigned int access = get_mmio_spte_access(spte);
3581
3582 if (!check_mmio_spte(vcpu, spte))
3583 return RET_PF_INVALID;
3584
3585 if (direct)
3586 addr = 0;
3587
3588 trace_handle_mmio_page_fault(addr, gfn, access);
3589 vcpu_cache_mmio_info(vcpu, addr, gfn, access);
3590 return RET_PF_EMULATE;
3591 }
3592
3593 /*
3594 * If the page table is zapped by other cpus, let CPU fault again on
3595 * the address.
3596 */
3597 return RET_PF_RETRY;
3598 }
3599
page_fault_handle_page_track(struct kvm_vcpu * vcpu,u32 error_code,gfn_t gfn)3600 static bool page_fault_handle_page_track(struct kvm_vcpu *vcpu,
3601 u32 error_code, gfn_t gfn)
3602 {
3603 if (unlikely(error_code & PFERR_RSVD_MASK))
3604 return false;
3605
3606 if (!(error_code & PFERR_PRESENT_MASK) ||
3607 !(error_code & PFERR_WRITE_MASK))
3608 return false;
3609
3610 /*
3611 * guest is writing the page which is write tracked which can
3612 * not be fixed by page fault handler.
3613 */
3614 if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
3615 return true;
3616
3617 return false;
3618 }
3619
shadow_page_table_clear_flood(struct kvm_vcpu * vcpu,gva_t addr)3620 static void shadow_page_table_clear_flood(struct kvm_vcpu *vcpu, gva_t addr)
3621 {
3622 struct kvm_shadow_walk_iterator iterator;
3623 u64 spte;
3624
3625 walk_shadow_page_lockless_begin(vcpu);
3626 for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
3627 clear_sp_write_flooding_count(iterator.sptep);
3628 if (!is_shadow_present_pte(spte))
3629 break;
3630 }
3631 walk_shadow_page_lockless_end(vcpu);
3632 }
3633
kvm_arch_setup_async_pf(struct kvm_vcpu * vcpu,gpa_t cr2_or_gpa,gfn_t gfn)3634 static bool kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
3635 gfn_t gfn)
3636 {
3637 struct kvm_arch_async_pf arch;
3638
3639 arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
3640 arch.gfn = gfn;
3641 arch.direct_map = vcpu->arch.mmu->direct_map;
3642 arch.cr3 = vcpu->arch.mmu->get_guest_pgd(vcpu);
3643
3644 return kvm_setup_async_pf(vcpu, cr2_or_gpa,
3645 kvm_vcpu_gfn_to_hva(vcpu, gfn), &arch);
3646 }
3647
try_async_pf(struct kvm_vcpu * vcpu,bool prefault,gfn_t gfn,gpa_t cr2_or_gpa,kvm_pfn_t * pfn,bool write,bool * writable)3648 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
3649 gpa_t cr2_or_gpa, kvm_pfn_t *pfn, bool write,
3650 bool *writable)
3651 {
3652 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3653 bool async;
3654
3655 /*
3656 * Retry the page fault if the gfn hit a memslot that is being deleted
3657 * or moved. This ensures any existing SPTEs for the old memslot will
3658 * be zapped before KVM inserts a new MMIO SPTE for the gfn.
3659 */
3660 if (slot && (slot->flags & KVM_MEMSLOT_INVALID))
3661 return true;
3662
3663 /* Don't expose private memslots to L2. */
3664 if (is_guest_mode(vcpu) && !kvm_is_visible_memslot(slot)) {
3665 *pfn = KVM_PFN_NOSLOT;
3666 *writable = false;
3667 return false;
3668 }
3669
3670 async = false;
3671 *pfn = __gfn_to_pfn_memslot(slot, gfn, false, &async, write, writable);
3672 if (!async)
3673 return false; /* *pfn has correct page already */
3674
3675 if (!prefault && kvm_can_do_async_pf(vcpu)) {
3676 trace_kvm_try_async_get_page(cr2_or_gpa, gfn);
3677 if (kvm_find_async_pf_gfn(vcpu, gfn)) {
3678 trace_kvm_async_pf_doublefault(cr2_or_gpa, gfn);
3679 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
3680 return true;
3681 } else if (kvm_arch_setup_async_pf(vcpu, cr2_or_gpa, gfn))
3682 return true;
3683 }
3684
3685 *pfn = __gfn_to_pfn_memslot(slot, gfn, false, NULL, write, writable);
3686 return false;
3687 }
3688
direct_page_fault(struct kvm_vcpu * vcpu,gpa_t gpa,u32 error_code,bool prefault,int max_level,bool is_tdp)3689 static int direct_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code,
3690 bool prefault, int max_level, bool is_tdp)
3691 {
3692 bool write = error_code & PFERR_WRITE_MASK;
3693 bool map_writable;
3694
3695 gfn_t gfn = gpa >> PAGE_SHIFT;
3696 unsigned long mmu_seq;
3697 kvm_pfn_t pfn;
3698 int r;
3699
3700 if (page_fault_handle_page_track(vcpu, error_code, gfn))
3701 return RET_PF_EMULATE;
3702
3703 if (!is_tdp_mmu_root(vcpu->kvm, vcpu->arch.mmu->root_hpa)) {
3704 r = fast_page_fault(vcpu, gpa, error_code);
3705 if (r != RET_PF_INVALID)
3706 return r;
3707 }
3708
3709 r = mmu_topup_memory_caches(vcpu, false);
3710 if (r)
3711 return r;
3712
3713 mmu_seq = vcpu->kvm->mmu_notifier_seq;
3714 smp_rmb();
3715
3716 if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
3717 return RET_PF_RETRY;
3718
3719 if (handle_abnormal_pfn(vcpu, is_tdp ? 0 : gpa, gfn, pfn, ACC_ALL, &r))
3720 return r;
3721
3722 r = RET_PF_RETRY;
3723 spin_lock(&vcpu->kvm->mmu_lock);
3724 if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
3725 goto out_unlock;
3726 r = make_mmu_pages_available(vcpu);
3727 if (r)
3728 goto out_unlock;
3729
3730 if (is_tdp_mmu_root(vcpu->kvm, vcpu->arch.mmu->root_hpa))
3731 r = kvm_tdp_mmu_map(vcpu, gpa, error_code, map_writable, max_level,
3732 pfn, prefault);
3733 else
3734 r = __direct_map(vcpu, gpa, error_code, map_writable, max_level, pfn,
3735 prefault, is_tdp);
3736
3737 out_unlock:
3738 spin_unlock(&vcpu->kvm->mmu_lock);
3739 kvm_release_pfn_clean(pfn);
3740 return r;
3741 }
3742
nonpaging_page_fault(struct kvm_vcpu * vcpu,gpa_t gpa,u32 error_code,bool prefault)3743 static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa,
3744 u32 error_code, bool prefault)
3745 {
3746 pgprintk("%s: gva %lx error %x\n", __func__, gpa, error_code);
3747
3748 /* This path builds a PAE pagetable, we can map 2mb pages at maximum. */
3749 return direct_page_fault(vcpu, gpa & PAGE_MASK, error_code, prefault,
3750 PG_LEVEL_2M, false);
3751 }
3752
kvm_handle_page_fault(struct kvm_vcpu * vcpu,u64 error_code,u64 fault_address,char * insn,int insn_len)3753 int kvm_handle_page_fault(struct kvm_vcpu *vcpu, u64 error_code,
3754 u64 fault_address, char *insn, int insn_len)
3755 {
3756 int r = 1;
3757 u32 flags = vcpu->arch.apf.host_apf_flags;
3758
3759 #ifndef CONFIG_X86_64
3760 /* A 64-bit CR2 should be impossible on 32-bit KVM. */
3761 if (WARN_ON_ONCE(fault_address >> 32))
3762 return -EFAULT;
3763 #endif
3764
3765 vcpu->arch.l1tf_flush_l1d = true;
3766 if (!flags) {
3767 trace_kvm_page_fault(fault_address, error_code);
3768
3769 if (kvm_event_needs_reinjection(vcpu))
3770 kvm_mmu_unprotect_page_virt(vcpu, fault_address);
3771 r = kvm_mmu_page_fault(vcpu, fault_address, error_code, insn,
3772 insn_len);
3773 } else if (flags & KVM_PV_REASON_PAGE_NOT_PRESENT) {
3774 vcpu->arch.apf.host_apf_flags = 0;
3775 local_irq_disable();
3776 kvm_async_pf_task_wait_schedule(fault_address);
3777 local_irq_enable();
3778 } else {
3779 WARN_ONCE(1, "Unexpected host async PF flags: %x\n", flags);
3780 }
3781
3782 return r;
3783 }
3784 EXPORT_SYMBOL_GPL(kvm_handle_page_fault);
3785
kvm_tdp_page_fault(struct kvm_vcpu * vcpu,gpa_t gpa,u32 error_code,bool prefault)3786 int kvm_tdp_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code,
3787 bool prefault)
3788 {
3789 int max_level;
3790
3791 for (max_level = KVM_MAX_HUGEPAGE_LEVEL;
3792 max_level > PG_LEVEL_4K;
3793 max_level--) {
3794 int page_num = KVM_PAGES_PER_HPAGE(max_level);
3795 gfn_t base = (gpa >> PAGE_SHIFT) & ~(page_num - 1);
3796
3797 if (kvm_mtrr_check_gfn_range_consistency(vcpu, base, page_num))
3798 break;
3799 }
3800
3801 return direct_page_fault(vcpu, gpa, error_code, prefault,
3802 max_level, true);
3803 }
3804
nonpaging_init_context(struct kvm_vcpu * vcpu,struct kvm_mmu * context)3805 static void nonpaging_init_context(struct kvm_vcpu *vcpu,
3806 struct kvm_mmu *context)
3807 {
3808 context->page_fault = nonpaging_page_fault;
3809 context->gva_to_gpa = nonpaging_gva_to_gpa;
3810 context->sync_page = nonpaging_sync_page;
3811 context->invlpg = NULL;
3812 context->root_level = 0;
3813 context->shadow_root_level = PT32E_ROOT_LEVEL;
3814 context->direct_map = true;
3815 context->nx = false;
3816 }
3817
is_root_usable(struct kvm_mmu_root_info * root,gpa_t pgd,union kvm_mmu_page_role role)3818 static inline bool is_root_usable(struct kvm_mmu_root_info *root, gpa_t pgd,
3819 union kvm_mmu_page_role role)
3820 {
3821 return (role.direct || pgd == root->pgd) &&
3822 VALID_PAGE(root->hpa) && to_shadow_page(root->hpa) &&
3823 role.word == to_shadow_page(root->hpa)->role.word;
3824 }
3825
3826 /*
3827 * Find out if a previously cached root matching the new pgd/role is available.
3828 * The current root is also inserted into the cache.
3829 * If a matching root was found, it is assigned to kvm_mmu->root_hpa and true is
3830 * returned.
3831 * Otherwise, the LRU root from the cache is assigned to kvm_mmu->root_hpa and
3832 * false is returned. This root should now be freed by the caller.
3833 */
cached_root_available(struct kvm_vcpu * vcpu,gpa_t new_pgd,union kvm_mmu_page_role new_role)3834 static bool cached_root_available(struct kvm_vcpu *vcpu, gpa_t new_pgd,
3835 union kvm_mmu_page_role new_role)
3836 {
3837 uint i;
3838 struct kvm_mmu_root_info root;
3839 struct kvm_mmu *mmu = vcpu->arch.mmu;
3840
3841 root.pgd = mmu->root_pgd;
3842 root.hpa = mmu->root_hpa;
3843
3844 if (is_root_usable(&root, new_pgd, new_role))
3845 return true;
3846
3847 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
3848 swap(root, mmu->prev_roots[i]);
3849
3850 if (is_root_usable(&root, new_pgd, new_role))
3851 break;
3852 }
3853
3854 mmu->root_hpa = root.hpa;
3855 mmu->root_pgd = root.pgd;
3856
3857 return i < KVM_MMU_NUM_PREV_ROOTS;
3858 }
3859
fast_pgd_switch(struct kvm_vcpu * vcpu,gpa_t new_pgd,union kvm_mmu_page_role new_role)3860 static bool fast_pgd_switch(struct kvm_vcpu *vcpu, gpa_t new_pgd,
3861 union kvm_mmu_page_role new_role)
3862 {
3863 struct kvm_mmu *mmu = vcpu->arch.mmu;
3864
3865 /*
3866 * For now, limit the fast switch to 64-bit hosts+VMs in order to avoid
3867 * having to deal with PDPTEs. We may add support for 32-bit hosts/VMs
3868 * later if necessary.
3869 */
3870 if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL &&
3871 mmu->root_level >= PT64_ROOT_4LEVEL)
3872 return cached_root_available(vcpu, new_pgd, new_role);
3873
3874 return false;
3875 }
3876
__kvm_mmu_new_pgd(struct kvm_vcpu * vcpu,gpa_t new_pgd,union kvm_mmu_page_role new_role,bool skip_tlb_flush,bool skip_mmu_sync)3877 static void __kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd,
3878 union kvm_mmu_page_role new_role,
3879 bool skip_tlb_flush, bool skip_mmu_sync)
3880 {
3881 if (!fast_pgd_switch(vcpu, new_pgd, new_role)) {
3882 kvm_mmu_free_roots(vcpu, vcpu->arch.mmu, KVM_MMU_ROOT_CURRENT);
3883 return;
3884 }
3885
3886 /*
3887 * It's possible that the cached previous root page is obsolete because
3888 * of a change in the MMU generation number. However, changing the
3889 * generation number is accompanied by KVM_REQ_MMU_RELOAD, which will
3890 * free the root set here and allocate a new one.
3891 */
3892 kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu);
3893
3894 if (!skip_mmu_sync || force_flush_and_sync_on_reuse)
3895 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
3896 if (!skip_tlb_flush || force_flush_and_sync_on_reuse)
3897 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
3898
3899 /*
3900 * The last MMIO access's GVA and GPA are cached in the VCPU. When
3901 * switching to a new CR3, that GVA->GPA mapping may no longer be
3902 * valid. So clear any cached MMIO info even when we don't need to sync
3903 * the shadow page tables.
3904 */
3905 vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
3906
3907 /*
3908 * If this is a direct root page, it doesn't have a write flooding
3909 * count. Otherwise, clear the write flooding count.
3910 */
3911 if (!new_role.direct)
3912 __clear_sp_write_flooding_count(
3913 to_shadow_page(vcpu->arch.mmu->root_hpa));
3914 }
3915
kvm_mmu_new_pgd(struct kvm_vcpu * vcpu,gpa_t new_pgd,bool skip_tlb_flush,bool skip_mmu_sync)3916 void kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd, bool skip_tlb_flush,
3917 bool skip_mmu_sync)
3918 {
3919 __kvm_mmu_new_pgd(vcpu, new_pgd, kvm_mmu_calc_root_page_role(vcpu),
3920 skip_tlb_flush, skip_mmu_sync);
3921 }
3922 EXPORT_SYMBOL_GPL(kvm_mmu_new_pgd);
3923
get_cr3(struct kvm_vcpu * vcpu)3924 static unsigned long get_cr3(struct kvm_vcpu *vcpu)
3925 {
3926 return kvm_read_cr3(vcpu);
3927 }
3928
sync_mmio_spte(struct kvm_vcpu * vcpu,u64 * sptep,gfn_t gfn,unsigned int access,int * nr_present)3929 static bool sync_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
3930 unsigned int access, int *nr_present)
3931 {
3932 if (unlikely(is_mmio_spte(*sptep))) {
3933 if (gfn != get_mmio_spte_gfn(*sptep)) {
3934 mmu_spte_clear_no_track(sptep);
3935 return true;
3936 }
3937
3938 (*nr_present)++;
3939 mark_mmio_spte(vcpu, sptep, gfn, access);
3940 return true;
3941 }
3942
3943 return false;
3944 }
3945
is_last_gpte(struct kvm_mmu * mmu,unsigned level,unsigned gpte)3946 static inline bool is_last_gpte(struct kvm_mmu *mmu,
3947 unsigned level, unsigned gpte)
3948 {
3949 /*
3950 * The RHS has bit 7 set iff level < mmu->last_nonleaf_level.
3951 * If it is clear, there are no large pages at this level, so clear
3952 * PT_PAGE_SIZE_MASK in gpte if that is the case.
3953 */
3954 gpte &= level - mmu->last_nonleaf_level;
3955
3956 /*
3957 * PG_LEVEL_4K always terminates. The RHS has bit 7 set
3958 * iff level <= PG_LEVEL_4K, which for our purpose means
3959 * level == PG_LEVEL_4K; set PT_PAGE_SIZE_MASK in gpte then.
3960 */
3961 gpte |= level - PG_LEVEL_4K - 1;
3962
3963 return gpte & PT_PAGE_SIZE_MASK;
3964 }
3965
3966 #define PTTYPE_EPT 18 /* arbitrary */
3967 #define PTTYPE PTTYPE_EPT
3968 #include "paging_tmpl.h"
3969 #undef PTTYPE
3970
3971 #define PTTYPE 64
3972 #include "paging_tmpl.h"
3973 #undef PTTYPE
3974
3975 #define PTTYPE 32
3976 #include "paging_tmpl.h"
3977 #undef PTTYPE
3978
3979 static void
__reset_rsvds_bits_mask(struct kvm_vcpu * vcpu,struct rsvd_bits_validate * rsvd_check,int maxphyaddr,int level,bool nx,bool gbpages,bool pse,bool amd)3980 __reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
3981 struct rsvd_bits_validate *rsvd_check,
3982 int maxphyaddr, int level, bool nx, bool gbpages,
3983 bool pse, bool amd)
3984 {
3985 u64 exb_bit_rsvd = 0;
3986 u64 gbpages_bit_rsvd = 0;
3987 u64 nonleaf_bit8_rsvd = 0;
3988
3989 rsvd_check->bad_mt_xwr = 0;
3990
3991 if (!nx)
3992 exb_bit_rsvd = rsvd_bits(63, 63);
3993 if (!gbpages)
3994 gbpages_bit_rsvd = rsvd_bits(7, 7);
3995
3996 /*
3997 * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for
3998 * leaf entries) on AMD CPUs only.
3999 */
4000 if (amd)
4001 nonleaf_bit8_rsvd = rsvd_bits(8, 8);
4002
4003 switch (level) {
4004 case PT32_ROOT_LEVEL:
4005 /* no rsvd bits for 2 level 4K page table entries */
4006 rsvd_check->rsvd_bits_mask[0][1] = 0;
4007 rsvd_check->rsvd_bits_mask[0][0] = 0;
4008 rsvd_check->rsvd_bits_mask[1][0] =
4009 rsvd_check->rsvd_bits_mask[0][0];
4010
4011 if (!pse) {
4012 rsvd_check->rsvd_bits_mask[1][1] = 0;
4013 break;
4014 }
4015
4016 if (is_cpuid_PSE36())
4017 /* 36bits PSE 4MB page */
4018 rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
4019 else
4020 /* 32 bits PSE 4MB page */
4021 rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
4022 break;
4023 case PT32E_ROOT_LEVEL:
4024 rsvd_check->rsvd_bits_mask[0][2] =
4025 rsvd_bits(maxphyaddr, 63) |
4026 rsvd_bits(5, 8) | rsvd_bits(1, 2); /* PDPTE */
4027 rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
4028 rsvd_bits(maxphyaddr, 62); /* PDE */
4029 rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
4030 rsvd_bits(maxphyaddr, 62); /* PTE */
4031 rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
4032 rsvd_bits(maxphyaddr, 62) |
4033 rsvd_bits(13, 20); /* large page */
4034 rsvd_check->rsvd_bits_mask[1][0] =
4035 rsvd_check->rsvd_bits_mask[0][0];
4036 break;
4037 case PT64_ROOT_5LEVEL:
4038 rsvd_check->rsvd_bits_mask[0][4] = exb_bit_rsvd |
4039 nonleaf_bit8_rsvd | rsvd_bits(7, 7) |
4040 rsvd_bits(maxphyaddr, 51);
4041 rsvd_check->rsvd_bits_mask[1][4] =
4042 rsvd_check->rsvd_bits_mask[0][4];
4043 fallthrough;
4044 case PT64_ROOT_4LEVEL:
4045 rsvd_check->rsvd_bits_mask[0][3] = exb_bit_rsvd |
4046 nonleaf_bit8_rsvd | rsvd_bits(7, 7) |
4047 rsvd_bits(maxphyaddr, 51);
4048 rsvd_check->rsvd_bits_mask[0][2] = exb_bit_rsvd |
4049 gbpages_bit_rsvd |
4050 rsvd_bits(maxphyaddr, 51);
4051 rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
4052 rsvd_bits(maxphyaddr, 51);
4053 rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
4054 rsvd_bits(maxphyaddr, 51);
4055 rsvd_check->rsvd_bits_mask[1][3] =
4056 rsvd_check->rsvd_bits_mask[0][3];
4057 rsvd_check->rsvd_bits_mask[1][2] = exb_bit_rsvd |
4058 gbpages_bit_rsvd | rsvd_bits(maxphyaddr, 51) |
4059 rsvd_bits(13, 29);
4060 rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
4061 rsvd_bits(maxphyaddr, 51) |
4062 rsvd_bits(13, 20); /* large page */
4063 rsvd_check->rsvd_bits_mask[1][0] =
4064 rsvd_check->rsvd_bits_mask[0][0];
4065 break;
4066 }
4067 }
4068
reset_rsvds_bits_mask(struct kvm_vcpu * vcpu,struct kvm_mmu * context)4069 static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
4070 struct kvm_mmu *context)
4071 {
4072 __reset_rsvds_bits_mask(vcpu, &context->guest_rsvd_check,
4073 cpuid_maxphyaddr(vcpu), context->root_level,
4074 context->nx,
4075 guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES),
4076 is_pse(vcpu),
4077 guest_cpuid_is_amd_or_hygon(vcpu));
4078 }
4079
4080 static void
__reset_rsvds_bits_mask_ept(struct rsvd_bits_validate * rsvd_check,int maxphyaddr,bool execonly)4081 __reset_rsvds_bits_mask_ept(struct rsvd_bits_validate *rsvd_check,
4082 int maxphyaddr, bool execonly)
4083 {
4084 u64 bad_mt_xwr;
4085
4086 rsvd_check->rsvd_bits_mask[0][4] =
4087 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
4088 rsvd_check->rsvd_bits_mask[0][3] =
4089 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
4090 rsvd_check->rsvd_bits_mask[0][2] =
4091 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
4092 rsvd_check->rsvd_bits_mask[0][1] =
4093 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
4094 rsvd_check->rsvd_bits_mask[0][0] = rsvd_bits(maxphyaddr, 51);
4095
4096 /* large page */
4097 rsvd_check->rsvd_bits_mask[1][4] = rsvd_check->rsvd_bits_mask[0][4];
4098 rsvd_check->rsvd_bits_mask[1][3] = rsvd_check->rsvd_bits_mask[0][3];
4099 rsvd_check->rsvd_bits_mask[1][2] =
4100 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 29);
4101 rsvd_check->rsvd_bits_mask[1][1] =
4102 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 20);
4103 rsvd_check->rsvd_bits_mask[1][0] = rsvd_check->rsvd_bits_mask[0][0];
4104
4105 bad_mt_xwr = 0xFFull << (2 * 8); /* bits 3..5 must not be 2 */
4106 bad_mt_xwr |= 0xFFull << (3 * 8); /* bits 3..5 must not be 3 */
4107 bad_mt_xwr |= 0xFFull << (7 * 8); /* bits 3..5 must not be 7 */
4108 bad_mt_xwr |= REPEAT_BYTE(1ull << 2); /* bits 0..2 must not be 010 */
4109 bad_mt_xwr |= REPEAT_BYTE(1ull << 6); /* bits 0..2 must not be 110 */
4110 if (!execonly) {
4111 /* bits 0..2 must not be 100 unless VMX capabilities allow it */
4112 bad_mt_xwr |= REPEAT_BYTE(1ull << 4);
4113 }
4114 rsvd_check->bad_mt_xwr = bad_mt_xwr;
4115 }
4116
reset_rsvds_bits_mask_ept(struct kvm_vcpu * vcpu,struct kvm_mmu * context,bool execonly)4117 static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu,
4118 struct kvm_mmu *context, bool execonly)
4119 {
4120 __reset_rsvds_bits_mask_ept(&context->guest_rsvd_check,
4121 cpuid_maxphyaddr(vcpu), execonly);
4122 }
4123
4124 /*
4125 * the page table on host is the shadow page table for the page
4126 * table in guest or amd nested guest, its mmu features completely
4127 * follow the features in guest.
4128 */
4129 void
reset_shadow_zero_bits_mask(struct kvm_vcpu * vcpu,struct kvm_mmu * context)4130 reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
4131 {
4132 /*
4133 * KVM uses NX when TDP is disabled to handle a variety of scenarios,
4134 * notably for huge SPTEs if iTLB multi-hit mitigation is enabled and
4135 * to generate correct permissions for CR0.WP=0/CR4.SMEP=1/EFER.NX=0.
4136 * The iTLB multi-hit workaround can be toggled at any time, so assume
4137 * NX can be used by any non-nested shadow MMU to avoid having to reset
4138 * MMU contexts. Note, KVM forces EFER.NX=1 when TDP is disabled.
4139 */
4140 bool uses_nx = context->nx || !tdp_enabled ||
4141 context->mmu_role.base.smep_andnot_wp;
4142 struct rsvd_bits_validate *shadow_zero_check;
4143 int i;
4144
4145 /*
4146 * Passing "true" to the last argument is okay; it adds a check
4147 * on bit 8 of the SPTEs which KVM doesn't use anyway.
4148 */
4149 shadow_zero_check = &context->shadow_zero_check;
4150 __reset_rsvds_bits_mask(vcpu, shadow_zero_check,
4151 shadow_phys_bits,
4152 context->shadow_root_level, uses_nx,
4153 guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES),
4154 is_pse(vcpu), true);
4155
4156 if (!shadow_me_mask)
4157 return;
4158
4159 for (i = context->shadow_root_level; --i >= 0;) {
4160 shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
4161 shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
4162 }
4163
4164 }
4165 EXPORT_SYMBOL_GPL(reset_shadow_zero_bits_mask);
4166
boot_cpu_is_amd(void)4167 static inline bool boot_cpu_is_amd(void)
4168 {
4169 WARN_ON_ONCE(!tdp_enabled);
4170 return shadow_x_mask == 0;
4171 }
4172
4173 /*
4174 * the direct page table on host, use as much mmu features as
4175 * possible, however, kvm currently does not do execution-protection.
4176 */
4177 static void
reset_tdp_shadow_zero_bits_mask(struct kvm_vcpu * vcpu,struct kvm_mmu * context)4178 reset_tdp_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
4179 struct kvm_mmu *context)
4180 {
4181 struct rsvd_bits_validate *shadow_zero_check;
4182 int i;
4183
4184 shadow_zero_check = &context->shadow_zero_check;
4185
4186 if (boot_cpu_is_amd())
4187 __reset_rsvds_bits_mask(vcpu, shadow_zero_check,
4188 shadow_phys_bits,
4189 context->shadow_root_level, false,
4190 boot_cpu_has(X86_FEATURE_GBPAGES),
4191 true, true);
4192 else
4193 __reset_rsvds_bits_mask_ept(shadow_zero_check,
4194 shadow_phys_bits,
4195 false);
4196
4197 if (!shadow_me_mask)
4198 return;
4199
4200 for (i = context->shadow_root_level; --i >= 0;) {
4201 shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
4202 shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
4203 }
4204 }
4205
4206 /*
4207 * as the comments in reset_shadow_zero_bits_mask() except it
4208 * is the shadow page table for intel nested guest.
4209 */
4210 static void
reset_ept_shadow_zero_bits_mask(struct kvm_vcpu * vcpu,struct kvm_mmu * context,bool execonly)4211 reset_ept_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
4212 struct kvm_mmu *context, bool execonly)
4213 {
4214 __reset_rsvds_bits_mask_ept(&context->shadow_zero_check,
4215 shadow_phys_bits, execonly);
4216 }
4217
4218 #define BYTE_MASK(access) \
4219 ((1 & (access) ? 2 : 0) | \
4220 (2 & (access) ? 4 : 0) | \
4221 (3 & (access) ? 8 : 0) | \
4222 (4 & (access) ? 16 : 0) | \
4223 (5 & (access) ? 32 : 0) | \
4224 (6 & (access) ? 64 : 0) | \
4225 (7 & (access) ? 128 : 0))
4226
4227
update_permission_bitmask(struct kvm_vcpu * vcpu,struct kvm_mmu * mmu,bool ept)4228 static void update_permission_bitmask(struct kvm_vcpu *vcpu,
4229 struct kvm_mmu *mmu, bool ept)
4230 {
4231 unsigned byte;
4232
4233 const u8 x = BYTE_MASK(ACC_EXEC_MASK);
4234 const u8 w = BYTE_MASK(ACC_WRITE_MASK);
4235 const u8 u = BYTE_MASK(ACC_USER_MASK);
4236
4237 bool cr4_smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP) != 0;
4238 bool cr4_smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP) != 0;
4239 bool cr0_wp = is_write_protection(vcpu);
4240
4241 for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
4242 unsigned pfec = byte << 1;
4243
4244 /*
4245 * Each "*f" variable has a 1 bit for each UWX value
4246 * that causes a fault with the given PFEC.
4247 */
4248
4249 /* Faults from writes to non-writable pages */
4250 u8 wf = (pfec & PFERR_WRITE_MASK) ? (u8)~w : 0;
4251 /* Faults from user mode accesses to supervisor pages */
4252 u8 uf = (pfec & PFERR_USER_MASK) ? (u8)~u : 0;
4253 /* Faults from fetches of non-executable pages*/
4254 u8 ff = (pfec & PFERR_FETCH_MASK) ? (u8)~x : 0;
4255 /* Faults from kernel mode fetches of user pages */
4256 u8 smepf = 0;
4257 /* Faults from kernel mode accesses of user pages */
4258 u8 smapf = 0;
4259
4260 if (!ept) {
4261 /* Faults from kernel mode accesses to user pages */
4262 u8 kf = (pfec & PFERR_USER_MASK) ? 0 : u;
4263
4264 /* Not really needed: !nx will cause pte.nx to fault */
4265 if (!mmu->nx)
4266 ff = 0;
4267
4268 /* Allow supervisor writes if !cr0.wp */
4269 if (!cr0_wp)
4270 wf = (pfec & PFERR_USER_MASK) ? wf : 0;
4271
4272 /* Disallow supervisor fetches of user code if cr4.smep */
4273 if (cr4_smep)
4274 smepf = (pfec & PFERR_FETCH_MASK) ? kf : 0;
4275
4276 /*
4277 * SMAP:kernel-mode data accesses from user-mode
4278 * mappings should fault. A fault is considered
4279 * as a SMAP violation if all of the following
4280 * conditions are true:
4281 * - X86_CR4_SMAP is set in CR4
4282 * - A user page is accessed
4283 * - The access is not a fetch
4284 * - Page fault in kernel mode
4285 * - if CPL = 3 or X86_EFLAGS_AC is clear
4286 *
4287 * Here, we cover the first three conditions.
4288 * The fourth is computed dynamically in permission_fault();
4289 * PFERR_RSVD_MASK bit will be set in PFEC if the access is
4290 * *not* subject to SMAP restrictions.
4291 */
4292 if (cr4_smap)
4293 smapf = (pfec & (PFERR_RSVD_MASK|PFERR_FETCH_MASK)) ? 0 : kf;
4294 }
4295
4296 mmu->permissions[byte] = ff | uf | wf | smepf | smapf;
4297 }
4298 }
4299
4300 /*
4301 * PKU is an additional mechanism by which the paging controls access to
4302 * user-mode addresses based on the value in the PKRU register. Protection
4303 * key violations are reported through a bit in the page fault error code.
4304 * Unlike other bits of the error code, the PK bit is not known at the
4305 * call site of e.g. gva_to_gpa; it must be computed directly in
4306 * permission_fault based on two bits of PKRU, on some machine state (CR4,
4307 * CR0, EFER, CPL), and on other bits of the error code and the page tables.
4308 *
4309 * In particular the following conditions come from the error code, the
4310 * page tables and the machine state:
4311 * - PK is always zero unless CR4.PKE=1 and EFER.LMA=1
4312 * - PK is always zero if RSVD=1 (reserved bit set) or F=1 (instruction fetch)
4313 * - PK is always zero if U=0 in the page tables
4314 * - PKRU.WD is ignored if CR0.WP=0 and the access is a supervisor access.
4315 *
4316 * The PKRU bitmask caches the result of these four conditions. The error
4317 * code (minus the P bit) and the page table's U bit form an index into the
4318 * PKRU bitmask. Two bits of the PKRU bitmask are then extracted and ANDed
4319 * with the two bits of the PKRU register corresponding to the protection key.
4320 * For the first three conditions above the bits will be 00, thus masking
4321 * away both AD and WD. For all reads or if the last condition holds, WD
4322 * only will be masked away.
4323 */
update_pkru_bitmask(struct kvm_vcpu * vcpu,struct kvm_mmu * mmu,bool ept)4324 static void update_pkru_bitmask(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
4325 bool ept)
4326 {
4327 unsigned bit;
4328 bool wp;
4329
4330 if (ept) {
4331 mmu->pkru_mask = 0;
4332 return;
4333 }
4334
4335 /* PKEY is enabled only if CR4.PKE and EFER.LMA are both set. */
4336 if (!kvm_read_cr4_bits(vcpu, X86_CR4_PKE) || !is_long_mode(vcpu)) {
4337 mmu->pkru_mask = 0;
4338 return;
4339 }
4340
4341 wp = is_write_protection(vcpu);
4342
4343 for (bit = 0; bit < ARRAY_SIZE(mmu->permissions); ++bit) {
4344 unsigned pfec, pkey_bits;
4345 bool check_pkey, check_write, ff, uf, wf, pte_user;
4346
4347 pfec = bit << 1;
4348 ff = pfec & PFERR_FETCH_MASK;
4349 uf = pfec & PFERR_USER_MASK;
4350 wf = pfec & PFERR_WRITE_MASK;
4351
4352 /* PFEC.RSVD is replaced by ACC_USER_MASK. */
4353 pte_user = pfec & PFERR_RSVD_MASK;
4354
4355 /*
4356 * Only need to check the access which is not an
4357 * instruction fetch and is to a user page.
4358 */
4359 check_pkey = (!ff && pte_user);
4360 /*
4361 * write access is controlled by PKRU if it is a
4362 * user access or CR0.WP = 1.
4363 */
4364 check_write = check_pkey && wf && (uf || wp);
4365
4366 /* PKRU.AD stops both read and write access. */
4367 pkey_bits = !!check_pkey;
4368 /* PKRU.WD stops write access. */
4369 pkey_bits |= (!!check_write) << 1;
4370
4371 mmu->pkru_mask |= (pkey_bits & 3) << pfec;
4372 }
4373 }
4374
update_last_nonleaf_level(struct kvm_vcpu * vcpu,struct kvm_mmu * mmu)4375 static void update_last_nonleaf_level(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
4376 {
4377 unsigned root_level = mmu->root_level;
4378
4379 mmu->last_nonleaf_level = root_level;
4380 if (root_level == PT32_ROOT_LEVEL && is_pse(vcpu))
4381 mmu->last_nonleaf_level++;
4382 }
4383
paging64_init_context_common(struct kvm_vcpu * vcpu,struct kvm_mmu * context,int level)4384 static void paging64_init_context_common(struct kvm_vcpu *vcpu,
4385 struct kvm_mmu *context,
4386 int level)
4387 {
4388 context->nx = is_nx(vcpu);
4389 context->root_level = level;
4390
4391 reset_rsvds_bits_mask(vcpu, context);
4392 update_permission_bitmask(vcpu, context, false);
4393 update_pkru_bitmask(vcpu, context, false);
4394 update_last_nonleaf_level(vcpu, context);
4395
4396 MMU_WARN_ON(!is_pae(vcpu));
4397 context->page_fault = paging64_page_fault;
4398 context->gva_to_gpa = paging64_gva_to_gpa;
4399 context->sync_page = paging64_sync_page;
4400 context->invlpg = paging64_invlpg;
4401 context->shadow_root_level = level;
4402 context->direct_map = false;
4403 }
4404
paging64_init_context(struct kvm_vcpu * vcpu,struct kvm_mmu * context)4405 static void paging64_init_context(struct kvm_vcpu *vcpu,
4406 struct kvm_mmu *context)
4407 {
4408 int root_level = is_la57_mode(vcpu) ?
4409 PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4410
4411 paging64_init_context_common(vcpu, context, root_level);
4412 }
4413
paging32_init_context(struct kvm_vcpu * vcpu,struct kvm_mmu * context)4414 static void paging32_init_context(struct kvm_vcpu *vcpu,
4415 struct kvm_mmu *context)
4416 {
4417 context->nx = false;
4418 context->root_level = PT32_ROOT_LEVEL;
4419
4420 reset_rsvds_bits_mask(vcpu, context);
4421 update_permission_bitmask(vcpu, context, false);
4422 update_pkru_bitmask(vcpu, context, false);
4423 update_last_nonleaf_level(vcpu, context);
4424
4425 context->page_fault = paging32_page_fault;
4426 context->gva_to_gpa = paging32_gva_to_gpa;
4427 context->sync_page = paging32_sync_page;
4428 context->invlpg = paging32_invlpg;
4429 context->shadow_root_level = PT32E_ROOT_LEVEL;
4430 context->direct_map = false;
4431 }
4432
paging32E_init_context(struct kvm_vcpu * vcpu,struct kvm_mmu * context)4433 static void paging32E_init_context(struct kvm_vcpu *vcpu,
4434 struct kvm_mmu *context)
4435 {
4436 paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
4437 }
4438
kvm_calc_mmu_role_ext(struct kvm_vcpu * vcpu)4439 static union kvm_mmu_extended_role kvm_calc_mmu_role_ext(struct kvm_vcpu *vcpu)
4440 {
4441 union kvm_mmu_extended_role ext = {0};
4442
4443 ext.cr0_pg = !!is_paging(vcpu);
4444 ext.cr4_pae = !!is_pae(vcpu);
4445 ext.cr4_smep = !!kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
4446 ext.cr4_smap = !!kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
4447 ext.cr4_pse = !!is_pse(vcpu);
4448 ext.cr4_pke = !!kvm_read_cr4_bits(vcpu, X86_CR4_PKE);
4449 ext.cr4_la57 = !!kvm_read_cr4_bits(vcpu, X86_CR4_LA57);
4450 ext.maxphyaddr = cpuid_maxphyaddr(vcpu);
4451
4452 ext.valid = 1;
4453
4454 return ext;
4455 }
4456
kvm_calc_mmu_role_common(struct kvm_vcpu * vcpu,bool base_only)4457 static union kvm_mmu_role kvm_calc_mmu_role_common(struct kvm_vcpu *vcpu,
4458 bool base_only)
4459 {
4460 union kvm_mmu_role role = {0};
4461
4462 role.base.access = ACC_ALL;
4463 role.base.nxe = !!is_nx(vcpu);
4464 role.base.cr0_wp = is_write_protection(vcpu);
4465 role.base.smm = is_smm(vcpu);
4466 role.base.guest_mode = is_guest_mode(vcpu);
4467
4468 if (base_only)
4469 return role;
4470
4471 role.ext = kvm_calc_mmu_role_ext(vcpu);
4472
4473 return role;
4474 }
4475
kvm_mmu_get_tdp_level(struct kvm_vcpu * vcpu)4476 static inline int kvm_mmu_get_tdp_level(struct kvm_vcpu *vcpu)
4477 {
4478 /* Use 5-level TDP if and only if it's useful/necessary. */
4479 if (max_tdp_level == 5 && cpuid_maxphyaddr(vcpu) <= 48)
4480 return 4;
4481
4482 return max_tdp_level;
4483 }
4484
4485 static union kvm_mmu_role
kvm_calc_tdp_mmu_root_page_role(struct kvm_vcpu * vcpu,bool base_only)4486 kvm_calc_tdp_mmu_root_page_role(struct kvm_vcpu *vcpu, bool base_only)
4487 {
4488 union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, base_only);
4489
4490 role.base.ad_disabled = (shadow_accessed_mask == 0);
4491 role.base.level = kvm_mmu_get_tdp_level(vcpu);
4492 role.base.direct = true;
4493 role.base.gpte_is_8_bytes = true;
4494
4495 return role;
4496 }
4497
init_kvm_tdp_mmu(struct kvm_vcpu * vcpu)4498 static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
4499 {
4500 struct kvm_mmu *context = &vcpu->arch.root_mmu;
4501 union kvm_mmu_role new_role =
4502 kvm_calc_tdp_mmu_root_page_role(vcpu, false);
4503
4504 if (new_role.as_u64 == context->mmu_role.as_u64)
4505 return;
4506
4507 context->mmu_role.as_u64 = new_role.as_u64;
4508 context->page_fault = kvm_tdp_page_fault;
4509 context->sync_page = nonpaging_sync_page;
4510 context->invlpg = NULL;
4511 context->shadow_root_level = kvm_mmu_get_tdp_level(vcpu);
4512 context->direct_map = true;
4513 context->get_guest_pgd = get_cr3;
4514 context->get_pdptr = kvm_pdptr_read;
4515 context->inject_page_fault = kvm_inject_page_fault;
4516
4517 if (!is_paging(vcpu)) {
4518 context->nx = false;
4519 context->gva_to_gpa = nonpaging_gva_to_gpa;
4520 context->root_level = 0;
4521 } else if (is_long_mode(vcpu)) {
4522 context->nx = is_nx(vcpu);
4523 context->root_level = is_la57_mode(vcpu) ?
4524 PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4525 reset_rsvds_bits_mask(vcpu, context);
4526 context->gva_to_gpa = paging64_gva_to_gpa;
4527 } else if (is_pae(vcpu)) {
4528 context->nx = is_nx(vcpu);
4529 context->root_level = PT32E_ROOT_LEVEL;
4530 reset_rsvds_bits_mask(vcpu, context);
4531 context->gva_to_gpa = paging64_gva_to_gpa;
4532 } else {
4533 context->nx = false;
4534 context->root_level = PT32_ROOT_LEVEL;
4535 reset_rsvds_bits_mask(vcpu, context);
4536 context->gva_to_gpa = paging32_gva_to_gpa;
4537 }
4538
4539 update_permission_bitmask(vcpu, context, false);
4540 update_pkru_bitmask(vcpu, context, false);
4541 update_last_nonleaf_level(vcpu, context);
4542 reset_tdp_shadow_zero_bits_mask(vcpu, context);
4543 }
4544
4545 static union kvm_mmu_role
kvm_calc_shadow_root_page_role_common(struct kvm_vcpu * vcpu,bool base_only)4546 kvm_calc_shadow_root_page_role_common(struct kvm_vcpu *vcpu, bool base_only)
4547 {
4548 union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, base_only);
4549
4550 role.base.smep_andnot_wp = role.ext.cr4_smep &&
4551 !is_write_protection(vcpu);
4552 role.base.smap_andnot_wp = role.ext.cr4_smap &&
4553 !is_write_protection(vcpu);
4554 role.base.gpte_is_8_bytes = !!is_pae(vcpu);
4555
4556 return role;
4557 }
4558
4559 static union kvm_mmu_role
kvm_calc_shadow_mmu_root_page_role(struct kvm_vcpu * vcpu,bool base_only)4560 kvm_calc_shadow_mmu_root_page_role(struct kvm_vcpu *vcpu, bool base_only)
4561 {
4562 union kvm_mmu_role role =
4563 kvm_calc_shadow_root_page_role_common(vcpu, base_only);
4564
4565 role.base.direct = !is_paging(vcpu);
4566
4567 if (!is_long_mode(vcpu))
4568 role.base.level = PT32E_ROOT_LEVEL;
4569 else if (is_la57_mode(vcpu))
4570 role.base.level = PT64_ROOT_5LEVEL;
4571 else
4572 role.base.level = PT64_ROOT_4LEVEL;
4573
4574 return role;
4575 }
4576
shadow_mmu_init_context(struct kvm_vcpu * vcpu,struct kvm_mmu * context,u32 cr0,u32 cr4,u32 efer,union kvm_mmu_role new_role)4577 static void shadow_mmu_init_context(struct kvm_vcpu *vcpu, struct kvm_mmu *context,
4578 u32 cr0, u32 cr4, u32 efer,
4579 union kvm_mmu_role new_role)
4580 {
4581 if (!(cr0 & X86_CR0_PG))
4582 nonpaging_init_context(vcpu, context);
4583 else if (efer & EFER_LMA)
4584 paging64_init_context(vcpu, context);
4585 else if (cr4 & X86_CR4_PAE)
4586 paging32E_init_context(vcpu, context);
4587 else
4588 paging32_init_context(vcpu, context);
4589
4590 context->mmu_role.as_u64 = new_role.as_u64;
4591 reset_shadow_zero_bits_mask(vcpu, context);
4592 }
4593
kvm_init_shadow_mmu(struct kvm_vcpu * vcpu,u32 cr0,u32 cr4,u32 efer)4594 static void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu, u32 cr0, u32 cr4, u32 efer)
4595 {
4596 struct kvm_mmu *context = &vcpu->arch.root_mmu;
4597 union kvm_mmu_role new_role =
4598 kvm_calc_shadow_mmu_root_page_role(vcpu, false);
4599
4600 if (new_role.as_u64 != context->mmu_role.as_u64)
4601 shadow_mmu_init_context(vcpu, context, cr0, cr4, efer, new_role);
4602 }
4603
4604 static union kvm_mmu_role
kvm_calc_shadow_npt_root_page_role(struct kvm_vcpu * vcpu)4605 kvm_calc_shadow_npt_root_page_role(struct kvm_vcpu *vcpu)
4606 {
4607 union kvm_mmu_role role =
4608 kvm_calc_shadow_root_page_role_common(vcpu, false);
4609
4610 role.base.direct = false;
4611 role.base.level = kvm_mmu_get_tdp_level(vcpu);
4612
4613 return role;
4614 }
4615
kvm_init_shadow_npt_mmu(struct kvm_vcpu * vcpu,u32 cr0,u32 cr4,u32 efer,gpa_t nested_cr3)4616 void kvm_init_shadow_npt_mmu(struct kvm_vcpu *vcpu, u32 cr0, u32 cr4, u32 efer,
4617 gpa_t nested_cr3)
4618 {
4619 struct kvm_mmu *context = &vcpu->arch.guest_mmu;
4620 union kvm_mmu_role new_role = kvm_calc_shadow_npt_root_page_role(vcpu);
4621
4622 __kvm_mmu_new_pgd(vcpu, nested_cr3, new_role.base, false, false);
4623
4624 if (new_role.as_u64 != context->mmu_role.as_u64) {
4625 shadow_mmu_init_context(vcpu, context, cr0, cr4, efer, new_role);
4626
4627 /*
4628 * Override the level set by the common init helper, nested TDP
4629 * always uses the host's TDP configuration.
4630 */
4631 context->shadow_root_level = new_role.base.level;
4632 }
4633 }
4634 EXPORT_SYMBOL_GPL(kvm_init_shadow_npt_mmu);
4635
4636 static union kvm_mmu_role
kvm_calc_shadow_ept_root_page_role(struct kvm_vcpu * vcpu,bool accessed_dirty,bool execonly,u8 level)4637 kvm_calc_shadow_ept_root_page_role(struct kvm_vcpu *vcpu, bool accessed_dirty,
4638 bool execonly, u8 level)
4639 {
4640 union kvm_mmu_role role = {0};
4641
4642 /* SMM flag is inherited from root_mmu */
4643 role.base.smm = vcpu->arch.root_mmu.mmu_role.base.smm;
4644
4645 role.base.level = level;
4646 role.base.gpte_is_8_bytes = true;
4647 role.base.direct = false;
4648 role.base.ad_disabled = !accessed_dirty;
4649 role.base.guest_mode = true;
4650 role.base.access = ACC_ALL;
4651
4652 /*
4653 * WP=1 and NOT_WP=1 is an impossible combination, use WP and the
4654 * SMAP variation to denote shadow EPT entries.
4655 */
4656 role.base.cr0_wp = true;
4657 role.base.smap_andnot_wp = true;
4658
4659 role.ext = kvm_calc_mmu_role_ext(vcpu);
4660 role.ext.execonly = execonly;
4661
4662 return role;
4663 }
4664
kvm_init_shadow_ept_mmu(struct kvm_vcpu * vcpu,bool execonly,bool accessed_dirty,gpa_t new_eptp)4665 void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly,
4666 bool accessed_dirty, gpa_t new_eptp)
4667 {
4668 struct kvm_mmu *context = &vcpu->arch.guest_mmu;
4669 u8 level = vmx_eptp_page_walk_level(new_eptp);
4670 union kvm_mmu_role new_role =
4671 kvm_calc_shadow_ept_root_page_role(vcpu, accessed_dirty,
4672 execonly, level);
4673
4674 __kvm_mmu_new_pgd(vcpu, new_eptp, new_role.base, true, true);
4675
4676 if (new_role.as_u64 == context->mmu_role.as_u64)
4677 return;
4678
4679 context->shadow_root_level = level;
4680
4681 context->nx = true;
4682 context->ept_ad = accessed_dirty;
4683 context->page_fault = ept_page_fault;
4684 context->gva_to_gpa = ept_gva_to_gpa;
4685 context->sync_page = ept_sync_page;
4686 context->invlpg = ept_invlpg;
4687 context->root_level = level;
4688 context->direct_map = false;
4689 context->mmu_role.as_u64 = new_role.as_u64;
4690
4691 update_permission_bitmask(vcpu, context, true);
4692 update_pkru_bitmask(vcpu, context, true);
4693 update_last_nonleaf_level(vcpu, context);
4694 reset_rsvds_bits_mask_ept(vcpu, context, execonly);
4695 reset_ept_shadow_zero_bits_mask(vcpu, context, execonly);
4696 }
4697 EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu);
4698
init_kvm_softmmu(struct kvm_vcpu * vcpu)4699 static void init_kvm_softmmu(struct kvm_vcpu *vcpu)
4700 {
4701 struct kvm_mmu *context = &vcpu->arch.root_mmu;
4702
4703 kvm_init_shadow_mmu(vcpu,
4704 kvm_read_cr0_bits(vcpu, X86_CR0_PG),
4705 kvm_read_cr4_bits(vcpu, X86_CR4_PAE),
4706 vcpu->arch.efer);
4707
4708 context->get_guest_pgd = get_cr3;
4709 context->get_pdptr = kvm_pdptr_read;
4710 context->inject_page_fault = kvm_inject_page_fault;
4711 }
4712
kvm_calc_nested_mmu_role(struct kvm_vcpu * vcpu)4713 static union kvm_mmu_role kvm_calc_nested_mmu_role(struct kvm_vcpu *vcpu)
4714 {
4715 union kvm_mmu_role role = kvm_calc_shadow_root_page_role_common(vcpu, false);
4716
4717 /*
4718 * Nested MMUs are used only for walking L2's gva->gpa, they never have
4719 * shadow pages of their own and so "direct" has no meaning. Set it
4720 * to "true" to try to detect bogus usage of the nested MMU.
4721 */
4722 role.base.direct = true;
4723
4724 if (!is_paging(vcpu))
4725 role.base.level = 0;
4726 else if (is_long_mode(vcpu))
4727 role.base.level = is_la57_mode(vcpu) ? PT64_ROOT_5LEVEL :
4728 PT64_ROOT_4LEVEL;
4729 else if (is_pae(vcpu))
4730 role.base.level = PT32E_ROOT_LEVEL;
4731 else
4732 role.base.level = PT32_ROOT_LEVEL;
4733
4734 return role;
4735 }
4736
init_kvm_nested_mmu(struct kvm_vcpu * vcpu)4737 static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
4738 {
4739 union kvm_mmu_role new_role = kvm_calc_nested_mmu_role(vcpu);
4740 struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
4741
4742 if (new_role.as_u64 == g_context->mmu_role.as_u64)
4743 return;
4744
4745 g_context->mmu_role.as_u64 = new_role.as_u64;
4746 g_context->get_guest_pgd = get_cr3;
4747 g_context->get_pdptr = kvm_pdptr_read;
4748 g_context->inject_page_fault = kvm_inject_page_fault;
4749
4750 /*
4751 * L2 page tables are never shadowed, so there is no need to sync
4752 * SPTEs.
4753 */
4754 g_context->invlpg = NULL;
4755
4756 /*
4757 * Note that arch.mmu->gva_to_gpa translates l2_gpa to l1_gpa using
4758 * L1's nested page tables (e.g. EPT12). The nested translation
4759 * of l2_gva to l1_gpa is done by arch.nested_mmu.gva_to_gpa using
4760 * L2's page tables as the first level of translation and L1's
4761 * nested page tables as the second level of translation. Basically
4762 * the gva_to_gpa functions between mmu and nested_mmu are swapped.
4763 */
4764 if (!is_paging(vcpu)) {
4765 g_context->nx = false;
4766 g_context->root_level = 0;
4767 g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
4768 } else if (is_long_mode(vcpu)) {
4769 g_context->nx = is_nx(vcpu);
4770 g_context->root_level = is_la57_mode(vcpu) ?
4771 PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4772 reset_rsvds_bits_mask(vcpu, g_context);
4773 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
4774 } else if (is_pae(vcpu)) {
4775 g_context->nx = is_nx(vcpu);
4776 g_context->root_level = PT32E_ROOT_LEVEL;
4777 reset_rsvds_bits_mask(vcpu, g_context);
4778 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
4779 } else {
4780 g_context->nx = false;
4781 g_context->root_level = PT32_ROOT_LEVEL;
4782 reset_rsvds_bits_mask(vcpu, g_context);
4783 g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
4784 }
4785
4786 update_permission_bitmask(vcpu, g_context, false);
4787 update_pkru_bitmask(vcpu, g_context, false);
4788 update_last_nonleaf_level(vcpu, g_context);
4789 }
4790
kvm_init_mmu(struct kvm_vcpu * vcpu,bool reset_roots)4791 void kvm_init_mmu(struct kvm_vcpu *vcpu, bool reset_roots)
4792 {
4793 if (reset_roots) {
4794 uint i;
4795
4796 vcpu->arch.mmu->root_hpa = INVALID_PAGE;
4797
4798 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
4799 vcpu->arch.mmu->prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
4800 }
4801
4802 if (mmu_is_nested(vcpu))
4803 init_kvm_nested_mmu(vcpu);
4804 else if (tdp_enabled)
4805 init_kvm_tdp_mmu(vcpu);
4806 else
4807 init_kvm_softmmu(vcpu);
4808 }
4809 EXPORT_SYMBOL_GPL(kvm_init_mmu);
4810
4811 static union kvm_mmu_page_role
kvm_mmu_calc_root_page_role(struct kvm_vcpu * vcpu)4812 kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu)
4813 {
4814 union kvm_mmu_role role;
4815
4816 if (tdp_enabled)
4817 role = kvm_calc_tdp_mmu_root_page_role(vcpu, true);
4818 else
4819 role = kvm_calc_shadow_mmu_root_page_role(vcpu, true);
4820
4821 return role.base;
4822 }
4823
kvm_mmu_reset_context(struct kvm_vcpu * vcpu)4824 void kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
4825 {
4826 kvm_mmu_unload(vcpu);
4827 kvm_init_mmu(vcpu, true);
4828 }
4829 EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
4830
kvm_mmu_load(struct kvm_vcpu * vcpu)4831 int kvm_mmu_load(struct kvm_vcpu *vcpu)
4832 {
4833 int r;
4834
4835 r = mmu_topup_memory_caches(vcpu, !vcpu->arch.mmu->direct_map);
4836 if (r)
4837 goto out;
4838 r = mmu_alloc_roots(vcpu);
4839 kvm_mmu_sync_roots(vcpu);
4840 if (r)
4841 goto out;
4842 kvm_mmu_load_pgd(vcpu);
4843 kvm_x86_ops.tlb_flush_current(vcpu);
4844 out:
4845 return r;
4846 }
4847 EXPORT_SYMBOL_GPL(kvm_mmu_load);
4848
kvm_mmu_unload(struct kvm_vcpu * vcpu)4849 void kvm_mmu_unload(struct kvm_vcpu *vcpu)
4850 {
4851 kvm_mmu_free_roots(vcpu, &vcpu->arch.root_mmu, KVM_MMU_ROOTS_ALL);
4852 WARN_ON(VALID_PAGE(vcpu->arch.root_mmu.root_hpa));
4853 kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
4854 WARN_ON(VALID_PAGE(vcpu->arch.guest_mmu.root_hpa));
4855 }
4856 EXPORT_SYMBOL_GPL(kvm_mmu_unload);
4857
need_remote_flush(u64 old,u64 new)4858 static bool need_remote_flush(u64 old, u64 new)
4859 {
4860 if (!is_shadow_present_pte(old))
4861 return false;
4862 if (!is_shadow_present_pte(new))
4863 return true;
4864 if ((old ^ new) & PT64_BASE_ADDR_MASK)
4865 return true;
4866 old ^= shadow_nx_mask;
4867 new ^= shadow_nx_mask;
4868 return (old & ~new & PT64_PERM_MASK) != 0;
4869 }
4870
mmu_pte_write_fetch_gpte(struct kvm_vcpu * vcpu,gpa_t * gpa,int * bytes)4871 static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
4872 int *bytes)
4873 {
4874 u64 gentry = 0;
4875 int r;
4876
4877 /*
4878 * Assume that the pte write on a page table of the same type
4879 * as the current vcpu paging mode since we update the sptes only
4880 * when they have the same mode.
4881 */
4882 if (is_pae(vcpu) && *bytes == 4) {
4883 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
4884 *gpa &= ~(gpa_t)7;
4885 *bytes = 8;
4886 }
4887
4888 if (*bytes == 4 || *bytes == 8) {
4889 r = kvm_vcpu_read_guest_atomic(vcpu, *gpa, &gentry, *bytes);
4890 if (r)
4891 gentry = 0;
4892 }
4893
4894 return gentry;
4895 }
4896
4897 /*
4898 * If we're seeing too many writes to a page, it may no longer be a page table,
4899 * or we may be forking, in which case it is better to unmap the page.
4900 */
detect_write_flooding(struct kvm_mmu_page * sp)4901 static bool detect_write_flooding(struct kvm_mmu_page *sp)
4902 {
4903 /*
4904 * Skip write-flooding detected for the sp whose level is 1, because
4905 * it can become unsync, then the guest page is not write-protected.
4906 */
4907 if (sp->role.level == PG_LEVEL_4K)
4908 return false;
4909
4910 atomic_inc(&sp->write_flooding_count);
4911 return atomic_read(&sp->write_flooding_count) >= 3;
4912 }
4913
4914 /*
4915 * Misaligned accesses are too much trouble to fix up; also, they usually
4916 * indicate a page is not used as a page table.
4917 */
detect_write_misaligned(struct kvm_mmu_page * sp,gpa_t gpa,int bytes)4918 static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
4919 int bytes)
4920 {
4921 unsigned offset, pte_size, misaligned;
4922
4923 pgprintk("misaligned: gpa %llx bytes %d role %x\n",
4924 gpa, bytes, sp->role.word);
4925
4926 offset = offset_in_page(gpa);
4927 pte_size = sp->role.gpte_is_8_bytes ? 8 : 4;
4928
4929 /*
4930 * Sometimes, the OS only writes the last one bytes to update status
4931 * bits, for example, in linux, andb instruction is used in clear_bit().
4932 */
4933 if (!(offset & (pte_size - 1)) && bytes == 1)
4934 return false;
4935
4936 misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
4937 misaligned |= bytes < 4;
4938
4939 return misaligned;
4940 }
4941
get_written_sptes(struct kvm_mmu_page * sp,gpa_t gpa,int * nspte)4942 static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
4943 {
4944 unsigned page_offset, quadrant;
4945 u64 *spte;
4946 int level;
4947
4948 page_offset = offset_in_page(gpa);
4949 level = sp->role.level;
4950 *nspte = 1;
4951 if (!sp->role.gpte_is_8_bytes) {
4952 page_offset <<= 1; /* 32->64 */
4953 /*
4954 * A 32-bit pde maps 4MB while the shadow pdes map
4955 * only 2MB. So we need to double the offset again
4956 * and zap two pdes instead of one.
4957 */
4958 if (level == PT32_ROOT_LEVEL) {
4959 page_offset &= ~7; /* kill rounding error */
4960 page_offset <<= 1;
4961 *nspte = 2;
4962 }
4963 quadrant = page_offset >> PAGE_SHIFT;
4964 page_offset &= ~PAGE_MASK;
4965 if (quadrant != sp->role.quadrant)
4966 return NULL;
4967 }
4968
4969 spte = &sp->spt[page_offset / sizeof(*spte)];
4970 return spte;
4971 }
4972
kvm_mmu_pte_write(struct kvm_vcpu * vcpu,gpa_t gpa,const u8 * new,int bytes,struct kvm_page_track_notifier_node * node)4973 static void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
4974 const u8 *new, int bytes,
4975 struct kvm_page_track_notifier_node *node)
4976 {
4977 gfn_t gfn = gpa >> PAGE_SHIFT;
4978 struct kvm_mmu_page *sp;
4979 LIST_HEAD(invalid_list);
4980 u64 entry, gentry, *spte;
4981 int npte;
4982 bool remote_flush, local_flush;
4983
4984 /*
4985 * If we don't have indirect shadow pages, it means no page is
4986 * write-protected, so we can exit simply.
4987 */
4988 if (!READ_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
4989 return;
4990
4991 remote_flush = local_flush = false;
4992
4993 pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
4994
4995 /*
4996 * No need to care whether allocation memory is successful
4997 * or not since pte prefetch is skiped if it does not have
4998 * enough objects in the cache.
4999 */
5000 mmu_topup_memory_caches(vcpu, true);
5001
5002 spin_lock(&vcpu->kvm->mmu_lock);
5003
5004 gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, &bytes);
5005
5006 ++vcpu->kvm->stat.mmu_pte_write;
5007 kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
5008
5009 for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
5010 if (detect_write_misaligned(sp, gpa, bytes) ||
5011 detect_write_flooding(sp)) {
5012 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
5013 ++vcpu->kvm->stat.mmu_flooded;
5014 continue;
5015 }
5016
5017 spte = get_written_sptes(sp, gpa, &npte);
5018 if (!spte)
5019 continue;
5020
5021 local_flush = true;
5022 while (npte--) {
5023 entry = *spte;
5024 mmu_page_zap_pte(vcpu->kvm, sp, spte, NULL);
5025 if (gentry && sp->role.level != PG_LEVEL_4K)
5026 ++vcpu->kvm->stat.mmu_pde_zapped;
5027 if (need_remote_flush(entry, *spte))
5028 remote_flush = true;
5029 ++spte;
5030 }
5031 }
5032 kvm_mmu_flush_or_zap(vcpu, &invalid_list, remote_flush, local_flush);
5033 kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
5034 spin_unlock(&vcpu->kvm->mmu_lock);
5035 }
5036
kvm_mmu_unprotect_page_virt(struct kvm_vcpu * vcpu,gva_t gva)5037 int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
5038 {
5039 gpa_t gpa;
5040 int r;
5041
5042 if (vcpu->arch.mmu->direct_map)
5043 return 0;
5044
5045 gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
5046
5047 r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
5048
5049 return r;
5050 }
5051 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
5052
kvm_mmu_page_fault(struct kvm_vcpu * vcpu,gpa_t cr2_or_gpa,u64 error_code,void * insn,int insn_len)5053 int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, u64 error_code,
5054 void *insn, int insn_len)
5055 {
5056 int r, emulation_type = EMULTYPE_PF;
5057 bool direct = vcpu->arch.mmu->direct_map;
5058
5059 if (WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root_hpa)))
5060 return RET_PF_RETRY;
5061
5062 r = RET_PF_INVALID;
5063 if (unlikely(error_code & PFERR_RSVD_MASK)) {
5064 r = handle_mmio_page_fault(vcpu, cr2_or_gpa, direct);
5065 if (r == RET_PF_EMULATE)
5066 goto emulate;
5067 }
5068
5069 if (r == RET_PF_INVALID) {
5070 r = kvm_mmu_do_page_fault(vcpu, cr2_or_gpa,
5071 lower_32_bits(error_code), false);
5072 if (WARN_ON_ONCE(r == RET_PF_INVALID))
5073 return -EIO;
5074 }
5075
5076 if (r < 0)
5077 return r;
5078 if (r != RET_PF_EMULATE)
5079 return 1;
5080
5081 /*
5082 * Before emulating the instruction, check if the error code
5083 * was due to a RO violation while translating the guest page.
5084 * This can occur when using nested virtualization with nested
5085 * paging in both guests. If true, we simply unprotect the page
5086 * and resume the guest.
5087 */
5088 if (vcpu->arch.mmu->direct_map &&
5089 (error_code & PFERR_NESTED_GUEST_PAGE) == PFERR_NESTED_GUEST_PAGE) {
5090 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(cr2_or_gpa));
5091 return 1;
5092 }
5093
5094 /*
5095 * vcpu->arch.mmu.page_fault returned RET_PF_EMULATE, but we can still
5096 * optimistically try to just unprotect the page and let the processor
5097 * re-execute the instruction that caused the page fault. Do not allow
5098 * retrying MMIO emulation, as it's not only pointless but could also
5099 * cause us to enter an infinite loop because the processor will keep
5100 * faulting on the non-existent MMIO address. Retrying an instruction
5101 * from a nested guest is also pointless and dangerous as we are only
5102 * explicitly shadowing L1's page tables, i.e. unprotecting something
5103 * for L1 isn't going to magically fix whatever issue cause L2 to fail.
5104 */
5105 if (!mmio_info_in_cache(vcpu, cr2_or_gpa, direct) && !is_guest_mode(vcpu))
5106 emulation_type |= EMULTYPE_ALLOW_RETRY_PF;
5107 emulate:
5108 return x86_emulate_instruction(vcpu, cr2_or_gpa, emulation_type, insn,
5109 insn_len);
5110 }
5111 EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
5112
kvm_mmu_invalidate_gva(struct kvm_vcpu * vcpu,struct kvm_mmu * mmu,gva_t gva,hpa_t root_hpa)5113 void kvm_mmu_invalidate_gva(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
5114 gva_t gva, hpa_t root_hpa)
5115 {
5116 int i;
5117
5118 /* It's actually a GPA for vcpu->arch.guest_mmu. */
5119 if (mmu != &vcpu->arch.guest_mmu) {
5120 /* INVLPG on a non-canonical address is a NOP according to the SDM. */
5121 if (is_noncanonical_address(gva, vcpu))
5122 return;
5123
5124 kvm_x86_ops.tlb_flush_gva(vcpu, gva);
5125 }
5126
5127 if (!mmu->invlpg)
5128 return;
5129
5130 if (root_hpa == INVALID_PAGE) {
5131 mmu->invlpg(vcpu, gva, mmu->root_hpa);
5132
5133 /*
5134 * INVLPG is required to invalidate any global mappings for the VA,
5135 * irrespective of PCID. Since it would take us roughly similar amount
5136 * of work to determine whether any of the prev_root mappings of the VA
5137 * is marked global, or to just sync it blindly, so we might as well
5138 * just always sync it.
5139 *
5140 * Mappings not reachable via the current cr3 or the prev_roots will be
5141 * synced when switching to that cr3, so nothing needs to be done here
5142 * for them.
5143 */
5144 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5145 if (VALID_PAGE(mmu->prev_roots[i].hpa))
5146 mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa);
5147 } else {
5148 mmu->invlpg(vcpu, gva, root_hpa);
5149 }
5150 }
5151 EXPORT_SYMBOL_GPL(kvm_mmu_invalidate_gva);
5152
kvm_mmu_invlpg(struct kvm_vcpu * vcpu,gva_t gva)5153 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
5154 {
5155 kvm_mmu_invalidate_gva(vcpu, vcpu->arch.walk_mmu, gva, INVALID_PAGE);
5156 ++vcpu->stat.invlpg;
5157 }
5158 EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
5159
5160
kvm_mmu_invpcid_gva(struct kvm_vcpu * vcpu,gva_t gva,unsigned long pcid)5161 void kvm_mmu_invpcid_gva(struct kvm_vcpu *vcpu, gva_t gva, unsigned long pcid)
5162 {
5163 struct kvm_mmu *mmu = vcpu->arch.mmu;
5164 bool tlb_flush = false;
5165 uint i;
5166
5167 if (pcid == kvm_get_active_pcid(vcpu)) {
5168 mmu->invlpg(vcpu, gva, mmu->root_hpa);
5169 tlb_flush = true;
5170 }
5171
5172 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
5173 if (VALID_PAGE(mmu->prev_roots[i].hpa) &&
5174 pcid == kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd)) {
5175 mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa);
5176 tlb_flush = true;
5177 }
5178 }
5179
5180 if (tlb_flush)
5181 kvm_x86_ops.tlb_flush_gva(vcpu, gva);
5182
5183 ++vcpu->stat.invlpg;
5184
5185 /*
5186 * Mappings not reachable via the current cr3 or the prev_roots will be
5187 * synced when switching to that cr3, so nothing needs to be done here
5188 * for them.
5189 */
5190 }
5191 EXPORT_SYMBOL_GPL(kvm_mmu_invpcid_gva);
5192
kvm_configure_mmu(bool enable_tdp,int tdp_max_root_level,int tdp_huge_page_level)5193 void kvm_configure_mmu(bool enable_tdp, int tdp_max_root_level,
5194 int tdp_huge_page_level)
5195 {
5196 tdp_enabled = enable_tdp;
5197 max_tdp_level = tdp_max_root_level;
5198
5199 /*
5200 * max_huge_page_level reflects KVM's MMU capabilities irrespective
5201 * of kernel support, e.g. KVM may be capable of using 1GB pages when
5202 * the kernel is not. But, KVM never creates a page size greater than
5203 * what is used by the kernel for any given HVA, i.e. the kernel's
5204 * capabilities are ultimately consulted by kvm_mmu_hugepage_adjust().
5205 */
5206 if (tdp_enabled)
5207 max_huge_page_level = tdp_huge_page_level;
5208 else if (boot_cpu_has(X86_FEATURE_GBPAGES))
5209 max_huge_page_level = PG_LEVEL_1G;
5210 else
5211 max_huge_page_level = PG_LEVEL_2M;
5212 }
5213 EXPORT_SYMBOL_GPL(kvm_configure_mmu);
5214
5215 /* The return value indicates if tlb flush on all vcpus is needed. */
5216 typedef bool (*slot_level_handler) (struct kvm *kvm, struct kvm_rmap_head *rmap_head);
5217
5218 /* The caller should hold mmu-lock before calling this function. */
5219 static __always_inline bool
slot_handle_level_range(struct kvm * kvm,struct kvm_memory_slot * memslot,slot_level_handler fn,int start_level,int end_level,gfn_t start_gfn,gfn_t end_gfn,bool lock_flush_tlb)5220 slot_handle_level_range(struct kvm *kvm, struct kvm_memory_slot *memslot,
5221 slot_level_handler fn, int start_level, int end_level,
5222 gfn_t start_gfn, gfn_t end_gfn, bool lock_flush_tlb)
5223 {
5224 struct slot_rmap_walk_iterator iterator;
5225 bool flush = false;
5226
5227 for_each_slot_rmap_range(memslot, start_level, end_level, start_gfn,
5228 end_gfn, &iterator) {
5229 if (iterator.rmap)
5230 flush |= fn(kvm, iterator.rmap);
5231
5232 if (need_resched() || spin_needbreak(&kvm->mmu_lock)) {
5233 if (flush && lock_flush_tlb) {
5234 kvm_flush_remote_tlbs_with_address(kvm,
5235 start_gfn,
5236 iterator.gfn - start_gfn + 1);
5237 flush = false;
5238 }
5239 cond_resched_lock(&kvm->mmu_lock);
5240 }
5241 }
5242
5243 if (flush && lock_flush_tlb) {
5244 kvm_flush_remote_tlbs_with_address(kvm, start_gfn,
5245 end_gfn - start_gfn + 1);
5246 flush = false;
5247 }
5248
5249 return flush;
5250 }
5251
5252 static __always_inline bool
slot_handle_level(struct kvm * kvm,struct kvm_memory_slot * memslot,slot_level_handler fn,int start_level,int end_level,bool lock_flush_tlb)5253 slot_handle_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
5254 slot_level_handler fn, int start_level, int end_level,
5255 bool lock_flush_tlb)
5256 {
5257 return slot_handle_level_range(kvm, memslot, fn, start_level,
5258 end_level, memslot->base_gfn,
5259 memslot->base_gfn + memslot->npages - 1,
5260 lock_flush_tlb);
5261 }
5262
5263 static __always_inline bool
slot_handle_all_level(struct kvm * kvm,struct kvm_memory_slot * memslot,slot_level_handler fn,bool lock_flush_tlb)5264 slot_handle_all_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
5265 slot_level_handler fn, bool lock_flush_tlb)
5266 {
5267 return slot_handle_level(kvm, memslot, fn, PG_LEVEL_4K,
5268 KVM_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
5269 }
5270
5271 static __always_inline bool
slot_handle_large_level(struct kvm * kvm,struct kvm_memory_slot * memslot,slot_level_handler fn,bool lock_flush_tlb)5272 slot_handle_large_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
5273 slot_level_handler fn, bool lock_flush_tlb)
5274 {
5275 return slot_handle_level(kvm, memslot, fn, PG_LEVEL_4K + 1,
5276 KVM_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
5277 }
5278
5279 static __always_inline bool
slot_handle_leaf(struct kvm * kvm,struct kvm_memory_slot * memslot,slot_level_handler fn,bool lock_flush_tlb)5280 slot_handle_leaf(struct kvm *kvm, struct kvm_memory_slot *memslot,
5281 slot_level_handler fn, bool lock_flush_tlb)
5282 {
5283 return slot_handle_level(kvm, memslot, fn, PG_LEVEL_4K,
5284 PG_LEVEL_4K, lock_flush_tlb);
5285 }
5286
free_mmu_pages(struct kvm_mmu * mmu)5287 static void free_mmu_pages(struct kvm_mmu *mmu)
5288 {
5289 free_page((unsigned long)mmu->pae_root);
5290 free_page((unsigned long)mmu->lm_root);
5291 }
5292
__kvm_mmu_create(struct kvm_vcpu * vcpu,struct kvm_mmu * mmu)5293 static int __kvm_mmu_create(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
5294 {
5295 struct page *page;
5296 int i;
5297
5298 mmu->root_hpa = INVALID_PAGE;
5299 mmu->root_pgd = 0;
5300 mmu->translate_gpa = translate_gpa;
5301 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5302 mmu->prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
5303
5304 /*
5305 * When using PAE paging, the four PDPTEs are treated as 'root' pages,
5306 * while the PDP table is a per-vCPU construct that's allocated at MMU
5307 * creation. When emulating 32-bit mode, cr3 is only 32 bits even on
5308 * x86_64. Therefore we need to allocate the PDP table in the first
5309 * 4GB of memory, which happens to fit the DMA32 zone. TDP paging
5310 * generally doesn't use PAE paging and can skip allocating the PDP
5311 * table. The main exception, handled here, is SVM's 32-bit NPT. The
5312 * other exception is for shadowing L1's 32-bit or PAE NPT on 64-bit
5313 * KVM; that horror is handled on-demand by mmu_alloc_shadow_roots().
5314 */
5315 if (tdp_enabled && kvm_mmu_get_tdp_level(vcpu) > PT32E_ROOT_LEVEL)
5316 return 0;
5317
5318 page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_DMA32);
5319 if (!page)
5320 return -ENOMEM;
5321
5322 mmu->pae_root = page_address(page);
5323 for (i = 0; i < 4; ++i)
5324 mmu->pae_root[i] = INVALID_PAGE;
5325
5326 return 0;
5327 }
5328
kvm_mmu_create(struct kvm_vcpu * vcpu)5329 int kvm_mmu_create(struct kvm_vcpu *vcpu)
5330 {
5331 int ret;
5332
5333 vcpu->arch.mmu_pte_list_desc_cache.kmem_cache = pte_list_desc_cache;
5334 vcpu->arch.mmu_pte_list_desc_cache.gfp_zero = __GFP_ZERO;
5335
5336 vcpu->arch.mmu_page_header_cache.kmem_cache = mmu_page_header_cache;
5337 vcpu->arch.mmu_page_header_cache.gfp_zero = __GFP_ZERO;
5338
5339 vcpu->arch.mmu_shadow_page_cache.gfp_zero = __GFP_ZERO;
5340
5341 vcpu->arch.mmu = &vcpu->arch.root_mmu;
5342 vcpu->arch.walk_mmu = &vcpu->arch.root_mmu;
5343
5344 vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
5345
5346 ret = __kvm_mmu_create(vcpu, &vcpu->arch.guest_mmu);
5347 if (ret)
5348 return ret;
5349
5350 ret = __kvm_mmu_create(vcpu, &vcpu->arch.root_mmu);
5351 if (ret)
5352 goto fail_allocate_root;
5353
5354 return ret;
5355 fail_allocate_root:
5356 free_mmu_pages(&vcpu->arch.guest_mmu);
5357 return ret;
5358 }
5359
5360 #define BATCH_ZAP_PAGES 10
kvm_zap_obsolete_pages(struct kvm * kvm)5361 static void kvm_zap_obsolete_pages(struct kvm *kvm)
5362 {
5363 struct kvm_mmu_page *sp, *node;
5364 int nr_zapped, batch = 0;
5365
5366 restart:
5367 list_for_each_entry_safe_reverse(sp, node,
5368 &kvm->arch.active_mmu_pages, link) {
5369 /*
5370 * No obsolete valid page exists before a newly created page
5371 * since active_mmu_pages is a FIFO list.
5372 */
5373 if (!is_obsolete_sp(kvm, sp))
5374 break;
5375
5376 /*
5377 * Invalid pages should never land back on the list of active
5378 * pages. Skip the bogus page, otherwise we'll get stuck in an
5379 * infinite loop if the page gets put back on the list (again).
5380 */
5381 if (WARN_ON(sp->role.invalid))
5382 continue;
5383
5384 /*
5385 * No need to flush the TLB since we're only zapping shadow
5386 * pages with an obsolete generation number and all vCPUS have
5387 * loaded a new root, i.e. the shadow pages being zapped cannot
5388 * be in active use by the guest.
5389 */
5390 if (batch >= BATCH_ZAP_PAGES &&
5391 cond_resched_lock(&kvm->mmu_lock)) {
5392 batch = 0;
5393 goto restart;
5394 }
5395
5396 if (__kvm_mmu_prepare_zap_page(kvm, sp,
5397 &kvm->arch.zapped_obsolete_pages, &nr_zapped)) {
5398 batch += nr_zapped;
5399 goto restart;
5400 }
5401 }
5402
5403 /*
5404 * Trigger a remote TLB flush before freeing the page tables to ensure
5405 * KVM is not in the middle of a lockless shadow page table walk, which
5406 * may reference the pages.
5407 */
5408 kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages);
5409 }
5410
5411 /*
5412 * Fast invalidate all shadow pages and use lock-break technique
5413 * to zap obsolete pages.
5414 *
5415 * It's required when memslot is being deleted or VM is being
5416 * destroyed, in these cases, we should ensure that KVM MMU does
5417 * not use any resource of the being-deleted slot or all slots
5418 * after calling the function.
5419 */
kvm_mmu_zap_all_fast(struct kvm * kvm)5420 static void kvm_mmu_zap_all_fast(struct kvm *kvm)
5421 {
5422 lockdep_assert_held(&kvm->slots_lock);
5423
5424 spin_lock(&kvm->mmu_lock);
5425 trace_kvm_mmu_zap_all_fast(kvm);
5426
5427 /*
5428 * Toggle mmu_valid_gen between '0' and '1'. Because slots_lock is
5429 * held for the entire duration of zapping obsolete pages, it's
5430 * impossible for there to be multiple invalid generations associated
5431 * with *valid* shadow pages at any given time, i.e. there is exactly
5432 * one valid generation and (at most) one invalid generation.
5433 */
5434 kvm->arch.mmu_valid_gen = kvm->arch.mmu_valid_gen ? 0 : 1;
5435
5436 /*
5437 * Notify all vcpus to reload its shadow page table and flush TLB.
5438 * Then all vcpus will switch to new shadow page table with the new
5439 * mmu_valid_gen.
5440 *
5441 * Note: we need to do this under the protection of mmu_lock,
5442 * otherwise, vcpu would purge shadow page but miss tlb flush.
5443 */
5444 kvm_reload_remote_mmus(kvm);
5445
5446 kvm_zap_obsolete_pages(kvm);
5447
5448 if (kvm->arch.tdp_mmu_enabled)
5449 kvm_tdp_mmu_zap_all(kvm);
5450
5451 spin_unlock(&kvm->mmu_lock);
5452 }
5453
kvm_has_zapped_obsolete_pages(struct kvm * kvm)5454 static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm)
5455 {
5456 return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages));
5457 }
5458
kvm_mmu_invalidate_zap_pages_in_memslot(struct kvm * kvm,struct kvm_memory_slot * slot,struct kvm_page_track_notifier_node * node)5459 static void kvm_mmu_invalidate_zap_pages_in_memslot(struct kvm *kvm,
5460 struct kvm_memory_slot *slot,
5461 struct kvm_page_track_notifier_node *node)
5462 {
5463 kvm_mmu_zap_all_fast(kvm);
5464 }
5465
kvm_mmu_init_vm(struct kvm * kvm)5466 void kvm_mmu_init_vm(struct kvm *kvm)
5467 {
5468 struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
5469
5470 kvm_mmu_init_tdp_mmu(kvm);
5471
5472 node->track_write = kvm_mmu_pte_write;
5473 node->track_flush_slot = kvm_mmu_invalidate_zap_pages_in_memslot;
5474 kvm_page_track_register_notifier(kvm, node);
5475 }
5476
kvm_mmu_uninit_vm(struct kvm * kvm)5477 void kvm_mmu_uninit_vm(struct kvm *kvm)
5478 {
5479 struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
5480
5481 kvm_page_track_unregister_notifier(kvm, node);
5482
5483 kvm_mmu_uninit_tdp_mmu(kvm);
5484 }
5485
kvm_zap_gfn_range(struct kvm * kvm,gfn_t gfn_start,gfn_t gfn_end)5486 void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end)
5487 {
5488 struct kvm_memslots *slots;
5489 struct kvm_memory_slot *memslot;
5490 int i;
5491 bool flush;
5492
5493 spin_lock(&kvm->mmu_lock);
5494 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
5495 slots = __kvm_memslots(kvm, i);
5496 kvm_for_each_memslot(memslot, slots) {
5497 gfn_t start, end;
5498
5499 start = max(gfn_start, memslot->base_gfn);
5500 end = min(gfn_end, memslot->base_gfn + memslot->npages);
5501 if (start >= end)
5502 continue;
5503
5504 slot_handle_level_range(kvm, memslot, kvm_zap_rmapp,
5505 PG_LEVEL_4K,
5506 KVM_MAX_HUGEPAGE_LEVEL,
5507 start, end - 1, true);
5508 }
5509 }
5510
5511 if (kvm->arch.tdp_mmu_enabled) {
5512 flush = kvm_tdp_mmu_zap_gfn_range(kvm, gfn_start, gfn_end);
5513 if (flush)
5514 kvm_flush_remote_tlbs(kvm);
5515 }
5516
5517 spin_unlock(&kvm->mmu_lock);
5518 }
5519
slot_rmap_write_protect(struct kvm * kvm,struct kvm_rmap_head * rmap_head)5520 static bool slot_rmap_write_protect(struct kvm *kvm,
5521 struct kvm_rmap_head *rmap_head)
5522 {
5523 return __rmap_write_protect(kvm, rmap_head, false);
5524 }
5525
kvm_mmu_slot_remove_write_access(struct kvm * kvm,struct kvm_memory_slot * memslot,int start_level)5526 void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
5527 struct kvm_memory_slot *memslot,
5528 int start_level)
5529 {
5530 bool flush;
5531
5532 spin_lock(&kvm->mmu_lock);
5533 flush = slot_handle_level(kvm, memslot, slot_rmap_write_protect,
5534 start_level, KVM_MAX_HUGEPAGE_LEVEL, false);
5535 if (kvm->arch.tdp_mmu_enabled)
5536 flush |= kvm_tdp_mmu_wrprot_slot(kvm, memslot, PG_LEVEL_4K);
5537 spin_unlock(&kvm->mmu_lock);
5538
5539 /*
5540 * We can flush all the TLBs out of the mmu lock without TLB
5541 * corruption since we just change the spte from writable to
5542 * readonly so that we only need to care the case of changing
5543 * spte from present to present (changing the spte from present
5544 * to nonpresent will flush all the TLBs immediately), in other
5545 * words, the only case we care is mmu_spte_update() where we
5546 * have checked SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE
5547 * instead of PT_WRITABLE_MASK, that means it does not depend
5548 * on PT_WRITABLE_MASK anymore.
5549 */
5550 if (flush)
5551 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
5552 }
5553
kvm_mmu_zap_collapsible_spte(struct kvm * kvm,struct kvm_rmap_head * rmap_head)5554 static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm,
5555 struct kvm_rmap_head *rmap_head)
5556 {
5557 u64 *sptep;
5558 struct rmap_iterator iter;
5559 int need_tlb_flush = 0;
5560 kvm_pfn_t pfn;
5561 struct kvm_mmu_page *sp;
5562
5563 restart:
5564 for_each_rmap_spte(rmap_head, &iter, sptep) {
5565 sp = sptep_to_sp(sptep);
5566 pfn = spte_to_pfn(*sptep);
5567
5568 /*
5569 * We cannot do huge page mapping for indirect shadow pages,
5570 * which are found on the last rmap (level = 1) when not using
5571 * tdp; such shadow pages are synced with the page table in
5572 * the guest, and the guest page table is using 4K page size
5573 * mapping if the indirect sp has level = 1.
5574 */
5575 if (sp->role.direct && !kvm_is_reserved_pfn(pfn) &&
5576 (kvm_is_zone_device_pfn(pfn) ||
5577 PageCompound(pfn_to_page(pfn)))) {
5578 pte_list_remove(rmap_head, sptep);
5579
5580 if (kvm_available_flush_tlb_with_range())
5581 kvm_flush_remote_tlbs_with_address(kvm, sp->gfn,
5582 KVM_PAGES_PER_HPAGE(sp->role.level));
5583 else
5584 need_tlb_flush = 1;
5585
5586 goto restart;
5587 }
5588 }
5589
5590 return need_tlb_flush;
5591 }
5592
kvm_mmu_zap_collapsible_sptes(struct kvm * kvm,const struct kvm_memory_slot * memslot)5593 void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm,
5594 const struct kvm_memory_slot *memslot)
5595 {
5596 /* FIXME: const-ify all uses of struct kvm_memory_slot. */
5597 spin_lock(&kvm->mmu_lock);
5598 slot_handle_leaf(kvm, (struct kvm_memory_slot *)memslot,
5599 kvm_mmu_zap_collapsible_spte, true);
5600
5601 if (kvm->arch.tdp_mmu_enabled)
5602 kvm_tdp_mmu_zap_collapsible_sptes(kvm, memslot);
5603 spin_unlock(&kvm->mmu_lock);
5604 }
5605
kvm_arch_flush_remote_tlbs_memslot(struct kvm * kvm,struct kvm_memory_slot * memslot)5606 void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm,
5607 struct kvm_memory_slot *memslot)
5608 {
5609 /*
5610 * All current use cases for flushing the TLBs for a specific memslot
5611 * are related to dirty logging, and do the TLB flush out of mmu_lock.
5612 * The interaction between the various operations on memslot must be
5613 * serialized by slots_locks to ensure the TLB flush from one operation
5614 * is observed by any other operation on the same memslot.
5615 */
5616 lockdep_assert_held(&kvm->slots_lock);
5617 kvm_flush_remote_tlbs_with_address(kvm, memslot->base_gfn,
5618 memslot->npages);
5619 }
5620
kvm_mmu_slot_leaf_clear_dirty(struct kvm * kvm,struct kvm_memory_slot * memslot)5621 void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
5622 struct kvm_memory_slot *memslot)
5623 {
5624 bool flush;
5625
5626 spin_lock(&kvm->mmu_lock);
5627 flush = slot_handle_leaf(kvm, memslot, __rmap_clear_dirty, false);
5628 if (kvm->arch.tdp_mmu_enabled)
5629 flush |= kvm_tdp_mmu_clear_dirty_slot(kvm, memslot);
5630 spin_unlock(&kvm->mmu_lock);
5631
5632 /*
5633 * It's also safe to flush TLBs out of mmu lock here as currently this
5634 * function is only used for dirty logging, in which case flushing TLB
5635 * out of mmu lock also guarantees no dirty pages will be lost in
5636 * dirty_bitmap.
5637 */
5638 if (flush)
5639 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
5640 }
5641 EXPORT_SYMBOL_GPL(kvm_mmu_slot_leaf_clear_dirty);
5642
kvm_mmu_slot_largepage_remove_write_access(struct kvm * kvm,struct kvm_memory_slot * memslot)5643 void kvm_mmu_slot_largepage_remove_write_access(struct kvm *kvm,
5644 struct kvm_memory_slot *memslot)
5645 {
5646 bool flush;
5647
5648 spin_lock(&kvm->mmu_lock);
5649 flush = slot_handle_large_level(kvm, memslot, slot_rmap_write_protect,
5650 false);
5651 if (kvm->arch.tdp_mmu_enabled)
5652 flush |= kvm_tdp_mmu_wrprot_slot(kvm, memslot, PG_LEVEL_2M);
5653 spin_unlock(&kvm->mmu_lock);
5654
5655 if (flush)
5656 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
5657 }
5658 EXPORT_SYMBOL_GPL(kvm_mmu_slot_largepage_remove_write_access);
5659
kvm_mmu_slot_set_dirty(struct kvm * kvm,struct kvm_memory_slot * memslot)5660 void kvm_mmu_slot_set_dirty(struct kvm *kvm,
5661 struct kvm_memory_slot *memslot)
5662 {
5663 bool flush;
5664
5665 spin_lock(&kvm->mmu_lock);
5666 flush = slot_handle_all_level(kvm, memslot, __rmap_set_dirty, false);
5667 if (kvm->arch.tdp_mmu_enabled)
5668 flush |= kvm_tdp_mmu_slot_set_dirty(kvm, memslot);
5669 spin_unlock(&kvm->mmu_lock);
5670
5671 if (flush)
5672 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
5673 }
5674 EXPORT_SYMBOL_GPL(kvm_mmu_slot_set_dirty);
5675
kvm_mmu_zap_all(struct kvm * kvm)5676 void kvm_mmu_zap_all(struct kvm *kvm)
5677 {
5678 struct kvm_mmu_page *sp, *node;
5679 LIST_HEAD(invalid_list);
5680 int ign;
5681
5682 spin_lock(&kvm->mmu_lock);
5683 restart:
5684 list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link) {
5685 if (WARN_ON(sp->role.invalid))
5686 continue;
5687 if (__kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list, &ign))
5688 goto restart;
5689 if (cond_resched_lock(&kvm->mmu_lock))
5690 goto restart;
5691 }
5692
5693 kvm_mmu_commit_zap_page(kvm, &invalid_list);
5694
5695 if (kvm->arch.tdp_mmu_enabled)
5696 kvm_tdp_mmu_zap_all(kvm);
5697
5698 spin_unlock(&kvm->mmu_lock);
5699 }
5700
kvm_mmu_invalidate_mmio_sptes(struct kvm * kvm,u64 gen)5701 void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, u64 gen)
5702 {
5703 WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
5704
5705 gen &= MMIO_SPTE_GEN_MASK;
5706
5707 /*
5708 * Generation numbers are incremented in multiples of the number of
5709 * address spaces in order to provide unique generations across all
5710 * address spaces. Strip what is effectively the address space
5711 * modifier prior to checking for a wrap of the MMIO generation so
5712 * that a wrap in any address space is detected.
5713 */
5714 gen &= ~((u64)KVM_ADDRESS_SPACE_NUM - 1);
5715
5716 /*
5717 * The very rare case: if the MMIO generation number has wrapped,
5718 * zap all shadow pages.
5719 */
5720 if (unlikely(gen == 0)) {
5721 kvm_debug_ratelimited("kvm: zapping shadow pages for mmio generation wraparound\n");
5722 kvm_mmu_zap_all_fast(kvm);
5723 }
5724 }
5725
5726 static unsigned long
mmu_shrink_scan(struct shrinker * shrink,struct shrink_control * sc)5727 mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
5728 {
5729 struct kvm *kvm;
5730 int nr_to_scan = sc->nr_to_scan;
5731 unsigned long freed = 0;
5732
5733 mutex_lock(&kvm_lock);
5734
5735 list_for_each_entry(kvm, &vm_list, vm_list) {
5736 int idx;
5737 LIST_HEAD(invalid_list);
5738
5739 /*
5740 * Never scan more than sc->nr_to_scan VM instances.
5741 * Will not hit this condition practically since we do not try
5742 * to shrink more than one VM and it is very unlikely to see
5743 * !n_used_mmu_pages so many times.
5744 */
5745 if (!nr_to_scan--)
5746 break;
5747 /*
5748 * n_used_mmu_pages is accessed without holding kvm->mmu_lock
5749 * here. We may skip a VM instance errorneosly, but we do not
5750 * want to shrink a VM that only started to populate its MMU
5751 * anyway.
5752 */
5753 if (!kvm->arch.n_used_mmu_pages &&
5754 !kvm_has_zapped_obsolete_pages(kvm))
5755 continue;
5756
5757 idx = srcu_read_lock(&kvm->srcu);
5758 spin_lock(&kvm->mmu_lock);
5759
5760 if (kvm_has_zapped_obsolete_pages(kvm)) {
5761 kvm_mmu_commit_zap_page(kvm,
5762 &kvm->arch.zapped_obsolete_pages);
5763 goto unlock;
5764 }
5765
5766 freed = kvm_mmu_zap_oldest_mmu_pages(kvm, sc->nr_to_scan);
5767
5768 unlock:
5769 spin_unlock(&kvm->mmu_lock);
5770 srcu_read_unlock(&kvm->srcu, idx);
5771
5772 /*
5773 * unfair on small ones
5774 * per-vm shrinkers cry out
5775 * sadness comes quickly
5776 */
5777 list_move_tail(&kvm->vm_list, &vm_list);
5778 break;
5779 }
5780
5781 mutex_unlock(&kvm_lock);
5782 return freed;
5783 }
5784
5785 static unsigned long
mmu_shrink_count(struct shrinker * shrink,struct shrink_control * sc)5786 mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
5787 {
5788 return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
5789 }
5790
5791 static struct shrinker mmu_shrinker = {
5792 .count_objects = mmu_shrink_count,
5793 .scan_objects = mmu_shrink_scan,
5794 .seeks = DEFAULT_SEEKS * 10,
5795 };
5796
mmu_destroy_caches(void)5797 static void mmu_destroy_caches(void)
5798 {
5799 kmem_cache_destroy(pte_list_desc_cache);
5800 kmem_cache_destroy(mmu_page_header_cache);
5801 }
5802
kvm_set_mmio_spte_mask(void)5803 static void kvm_set_mmio_spte_mask(void)
5804 {
5805 u64 mask;
5806
5807 /*
5808 * Set a reserved PA bit in MMIO SPTEs to generate page faults with
5809 * PFEC.RSVD=1 on MMIO accesses. 64-bit PTEs (PAE, x86-64, and EPT
5810 * paging) support a maximum of 52 bits of PA, i.e. if the CPU supports
5811 * 52-bit physical addresses then there are no reserved PA bits in the
5812 * PTEs and so the reserved PA approach must be disabled.
5813 */
5814 if (shadow_phys_bits < 52)
5815 mask = BIT_ULL(51) | PT_PRESENT_MASK;
5816 else
5817 mask = 0;
5818
5819 kvm_mmu_set_mmio_spte_mask(mask, ACC_WRITE_MASK | ACC_USER_MASK);
5820 }
5821
get_nx_auto_mode(void)5822 static bool get_nx_auto_mode(void)
5823 {
5824 /* Return true when CPU has the bug, and mitigations are ON */
5825 return boot_cpu_has_bug(X86_BUG_ITLB_MULTIHIT) && !cpu_mitigations_off();
5826 }
5827
__set_nx_huge_pages(bool val)5828 static void __set_nx_huge_pages(bool val)
5829 {
5830 nx_huge_pages = itlb_multihit_kvm_mitigation = val;
5831 }
5832
set_nx_huge_pages(const char * val,const struct kernel_param * kp)5833 static int set_nx_huge_pages(const char *val, const struct kernel_param *kp)
5834 {
5835 bool old_val = nx_huge_pages;
5836 bool new_val;
5837
5838 /* In "auto" mode deploy workaround only if CPU has the bug. */
5839 if (sysfs_streq(val, "off"))
5840 new_val = 0;
5841 else if (sysfs_streq(val, "force"))
5842 new_val = 1;
5843 else if (sysfs_streq(val, "auto"))
5844 new_val = get_nx_auto_mode();
5845 else if (strtobool(val, &new_val) < 0)
5846 return -EINVAL;
5847
5848 __set_nx_huge_pages(new_val);
5849
5850 if (new_val != old_val) {
5851 struct kvm *kvm;
5852
5853 mutex_lock(&kvm_lock);
5854
5855 list_for_each_entry(kvm, &vm_list, vm_list) {
5856 mutex_lock(&kvm->slots_lock);
5857 kvm_mmu_zap_all_fast(kvm);
5858 mutex_unlock(&kvm->slots_lock);
5859
5860 wake_up_process(kvm->arch.nx_lpage_recovery_thread);
5861 }
5862 mutex_unlock(&kvm_lock);
5863 }
5864
5865 return 0;
5866 }
5867
kvm_mmu_module_init(void)5868 int kvm_mmu_module_init(void)
5869 {
5870 int ret = -ENOMEM;
5871
5872 if (nx_huge_pages == -1)
5873 __set_nx_huge_pages(get_nx_auto_mode());
5874
5875 /*
5876 * MMU roles use union aliasing which is, generally speaking, an
5877 * undefined behavior. However, we supposedly know how compilers behave
5878 * and the current status quo is unlikely to change. Guardians below are
5879 * supposed to let us know if the assumption becomes false.
5880 */
5881 BUILD_BUG_ON(sizeof(union kvm_mmu_page_role) != sizeof(u32));
5882 BUILD_BUG_ON(sizeof(union kvm_mmu_extended_role) != sizeof(u32));
5883 BUILD_BUG_ON(sizeof(union kvm_mmu_role) != sizeof(u64));
5884
5885 kvm_mmu_reset_all_pte_masks();
5886
5887 kvm_set_mmio_spte_mask();
5888
5889 pte_list_desc_cache = kmem_cache_create("pte_list_desc",
5890 sizeof(struct pte_list_desc),
5891 0, SLAB_ACCOUNT, NULL);
5892 if (!pte_list_desc_cache)
5893 goto out;
5894
5895 mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
5896 sizeof(struct kvm_mmu_page),
5897 0, SLAB_ACCOUNT, NULL);
5898 if (!mmu_page_header_cache)
5899 goto out;
5900
5901 if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL))
5902 goto out;
5903
5904 ret = register_shrinker(&mmu_shrinker);
5905 if (ret)
5906 goto out;
5907
5908 return 0;
5909
5910 out:
5911 mmu_destroy_caches();
5912 return ret;
5913 }
5914
5915 /*
5916 * Calculate mmu pages needed for kvm.
5917 */
kvm_mmu_calculate_default_mmu_pages(struct kvm * kvm)5918 unsigned long kvm_mmu_calculate_default_mmu_pages(struct kvm *kvm)
5919 {
5920 unsigned long nr_mmu_pages;
5921 unsigned long nr_pages = 0;
5922 struct kvm_memslots *slots;
5923 struct kvm_memory_slot *memslot;
5924 int i;
5925
5926 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
5927 slots = __kvm_memslots(kvm, i);
5928
5929 kvm_for_each_memslot(memslot, slots)
5930 nr_pages += memslot->npages;
5931 }
5932
5933 nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
5934 nr_mmu_pages = max(nr_mmu_pages, KVM_MIN_ALLOC_MMU_PAGES);
5935
5936 return nr_mmu_pages;
5937 }
5938
kvm_mmu_destroy(struct kvm_vcpu * vcpu)5939 void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
5940 {
5941 kvm_mmu_unload(vcpu);
5942 free_mmu_pages(&vcpu->arch.root_mmu);
5943 free_mmu_pages(&vcpu->arch.guest_mmu);
5944 mmu_free_memory_caches(vcpu);
5945 }
5946
kvm_mmu_module_exit(void)5947 void kvm_mmu_module_exit(void)
5948 {
5949 mmu_destroy_caches();
5950 percpu_counter_destroy(&kvm_total_used_mmu_pages);
5951 unregister_shrinker(&mmu_shrinker);
5952 mmu_audit_disable();
5953 }
5954
set_nx_huge_pages_recovery_ratio(const char * val,const struct kernel_param * kp)5955 static int set_nx_huge_pages_recovery_ratio(const char *val, const struct kernel_param *kp)
5956 {
5957 unsigned int old_val;
5958 int err;
5959
5960 old_val = nx_huge_pages_recovery_ratio;
5961 err = param_set_uint(val, kp);
5962 if (err)
5963 return err;
5964
5965 if (READ_ONCE(nx_huge_pages) &&
5966 !old_val && nx_huge_pages_recovery_ratio) {
5967 struct kvm *kvm;
5968
5969 mutex_lock(&kvm_lock);
5970
5971 list_for_each_entry(kvm, &vm_list, vm_list)
5972 wake_up_process(kvm->arch.nx_lpage_recovery_thread);
5973
5974 mutex_unlock(&kvm_lock);
5975 }
5976
5977 return err;
5978 }
5979
kvm_recover_nx_lpages(struct kvm * kvm)5980 static void kvm_recover_nx_lpages(struct kvm *kvm)
5981 {
5982 int rcu_idx;
5983 struct kvm_mmu_page *sp;
5984 unsigned int ratio;
5985 LIST_HEAD(invalid_list);
5986 bool flush = false;
5987 ulong to_zap;
5988
5989 rcu_idx = srcu_read_lock(&kvm->srcu);
5990 spin_lock(&kvm->mmu_lock);
5991
5992 ratio = READ_ONCE(nx_huge_pages_recovery_ratio);
5993 to_zap = ratio ? DIV_ROUND_UP(kvm->stat.nx_lpage_splits, ratio) : 0;
5994 for ( ; to_zap; --to_zap) {
5995 if (list_empty(&kvm->arch.lpage_disallowed_mmu_pages))
5996 break;
5997
5998 /*
5999 * We use a separate list instead of just using active_mmu_pages
6000 * because the number of lpage_disallowed pages is expected to
6001 * be relatively small compared to the total.
6002 */
6003 sp = list_first_entry(&kvm->arch.lpage_disallowed_mmu_pages,
6004 struct kvm_mmu_page,
6005 lpage_disallowed_link);
6006 WARN_ON_ONCE(!sp->lpage_disallowed);
6007 if (sp->tdp_mmu_page) {
6008 flush |= kvm_tdp_mmu_zap_sp(kvm, sp);
6009 } else {
6010 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
6011 WARN_ON_ONCE(sp->lpage_disallowed);
6012 }
6013
6014 if (need_resched() || spin_needbreak(&kvm->mmu_lock)) {
6015 kvm_mmu_remote_flush_or_zap(kvm, &invalid_list, flush);
6016 cond_resched_lock(&kvm->mmu_lock);
6017 flush = false;
6018 }
6019 }
6020 kvm_mmu_remote_flush_or_zap(kvm, &invalid_list, flush);
6021
6022 spin_unlock(&kvm->mmu_lock);
6023 srcu_read_unlock(&kvm->srcu, rcu_idx);
6024 }
6025
get_nx_lpage_recovery_timeout(u64 start_time)6026 static long get_nx_lpage_recovery_timeout(u64 start_time)
6027 {
6028 return READ_ONCE(nx_huge_pages) && READ_ONCE(nx_huge_pages_recovery_ratio)
6029 ? start_time + 60 * HZ - get_jiffies_64()
6030 : MAX_SCHEDULE_TIMEOUT;
6031 }
6032
kvm_nx_lpage_recovery_worker(struct kvm * kvm,uintptr_t data)6033 static int kvm_nx_lpage_recovery_worker(struct kvm *kvm, uintptr_t data)
6034 {
6035 u64 start_time;
6036 long remaining_time;
6037
6038 while (true) {
6039 start_time = get_jiffies_64();
6040 remaining_time = get_nx_lpage_recovery_timeout(start_time);
6041
6042 set_current_state(TASK_INTERRUPTIBLE);
6043 while (!kthread_should_stop() && remaining_time > 0) {
6044 schedule_timeout(remaining_time);
6045 remaining_time = get_nx_lpage_recovery_timeout(start_time);
6046 set_current_state(TASK_INTERRUPTIBLE);
6047 }
6048
6049 set_current_state(TASK_RUNNING);
6050
6051 if (kthread_should_stop())
6052 return 0;
6053
6054 kvm_recover_nx_lpages(kvm);
6055 }
6056 }
6057
kvm_mmu_post_init_vm(struct kvm * kvm)6058 int kvm_mmu_post_init_vm(struct kvm *kvm)
6059 {
6060 int err;
6061
6062 err = kvm_vm_create_worker_thread(kvm, kvm_nx_lpage_recovery_worker, 0,
6063 "kvm-nx-lpage-recovery",
6064 &kvm->arch.nx_lpage_recovery_thread);
6065 if (!err)
6066 kthread_unpark(kvm->arch.nx_lpage_recovery_thread);
6067
6068 return err;
6069 }
6070
kvm_mmu_pre_destroy_vm(struct kvm * kvm)6071 void kvm_mmu_pre_destroy_vm(struct kvm *kvm)
6072 {
6073 if (kvm->arch.nx_lpage_recovery_thread)
6074 kthread_stop(kvm->arch.nx_lpage_recovery_thread);
6075 }
6076