1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Kernel-based Virtual Machine driver for Linux
4 *
5 * derived from drivers/kvm/kvm_main.c
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
8 * Copyright (C) 2008 Qumranet, Inc.
9 * Copyright IBM Corporation, 2008
10 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11 *
12 * Authors:
13 * Avi Kivity <avi@qumranet.com>
14 * Yaniv Kamay <yaniv@qumranet.com>
15 * Amit Shah <amit.shah@qumranet.com>
16 * Ben-Ami Yassour <benami@il.ibm.com>
17 */
18
19 #include <linux/kvm_host.h>
20 #include "irq.h"
21 #include "ioapic.h"
22 #include "mmu.h"
23 #include "i8254.h"
24 #include "tss.h"
25 #include "kvm_cache_regs.h"
26 #include "kvm_emulate.h"
27 #include "x86.h"
28 #include "cpuid.h"
29 #include "pmu.h"
30 #include "hyperv.h"
31 #include "lapic.h"
32
33 #include <linux/clocksource.h>
34 #include <linux/interrupt.h>
35 #include <linux/kvm.h>
36 #include <linux/fs.h>
37 #include <linux/vmalloc.h>
38 #include <linux/export.h>
39 #include <linux/moduleparam.h>
40 #include <linux/mman.h>
41 #include <linux/highmem.h>
42 #include <linux/iommu.h>
43 #include <linux/intel-iommu.h>
44 #include <linux/cpufreq.h>
45 #include <linux/user-return-notifier.h>
46 #include <linux/srcu.h>
47 #include <linux/slab.h>
48 #include <linux/perf_event.h>
49 #include <linux/uaccess.h>
50 #include <linux/hash.h>
51 #include <linux/pci.h>
52 #include <linux/timekeeper_internal.h>
53 #include <linux/pvclock_gtod.h>
54 #include <linux/kvm_irqfd.h>
55 #include <linux/irqbypass.h>
56 #include <linux/sched/stat.h>
57 #include <linux/sched/isolation.h>
58 #include <linux/mem_encrypt.h>
59 #include <linux/entry-kvm.h>
60
61 #include <trace/events/kvm.h>
62
63 #include <asm/debugreg.h>
64 #include <asm/msr.h>
65 #include <asm/desc.h>
66 #include <asm/mce.h>
67 #include <linux/kernel_stat.h>
68 #include <asm/fpu/internal.h> /* Ugh! */
69 #include <asm/pvclock.h>
70 #include <asm/div64.h>
71 #include <asm/irq_remapping.h>
72 #include <asm/mshyperv.h>
73 #include <asm/hypervisor.h>
74 #include <asm/tlbflush.h>
75 #include <asm/intel_pt.h>
76 #include <asm/emulate_prefix.h>
77 #include <clocksource/hyperv_timer.h>
78
79 #define CREATE_TRACE_POINTS
80 #include "trace.h"
81
82 #define MAX_IO_MSRS 256
83 #define KVM_MAX_MCE_BANKS 32
84 u64 __read_mostly kvm_mce_cap_supported = MCG_CTL_P | MCG_SER_P;
85 EXPORT_SYMBOL_GPL(kvm_mce_cap_supported);
86
87 #define emul_to_vcpu(ctxt) \
88 ((struct kvm_vcpu *)(ctxt)->vcpu)
89
90 /* EFER defaults:
91 * - enable syscall per default because its emulated by KVM
92 * - enable LME and LMA per default on 64 bit KVM
93 */
94 #ifdef CONFIG_X86_64
95 static
96 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
97 #else
98 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
99 #endif
100
101 static u64 __read_mostly cr4_reserved_bits = CR4_RESERVED_BITS;
102
103 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \
104 KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
105
106 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
107 static void process_nmi(struct kvm_vcpu *vcpu);
108 static void process_smi(struct kvm_vcpu *vcpu);
109 static void enter_smm(struct kvm_vcpu *vcpu);
110 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
111 static void store_regs(struct kvm_vcpu *vcpu);
112 static int sync_regs(struct kvm_vcpu *vcpu);
113
114 struct kvm_x86_ops kvm_x86_ops __read_mostly;
115 EXPORT_SYMBOL_GPL(kvm_x86_ops);
116
117 static bool __read_mostly ignore_msrs = 0;
118 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
119
120 static bool __read_mostly report_ignored_msrs = true;
121 module_param(report_ignored_msrs, bool, S_IRUGO | S_IWUSR);
122
123 unsigned int min_timer_period_us = 200;
124 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
125
126 static bool __read_mostly kvmclock_periodic_sync = true;
127 module_param(kvmclock_periodic_sync, bool, S_IRUGO);
128
129 bool __read_mostly kvm_has_tsc_control;
130 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
131 u32 __read_mostly kvm_max_guest_tsc_khz;
132 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
133 u8 __read_mostly kvm_tsc_scaling_ratio_frac_bits;
134 EXPORT_SYMBOL_GPL(kvm_tsc_scaling_ratio_frac_bits);
135 u64 __read_mostly kvm_max_tsc_scaling_ratio;
136 EXPORT_SYMBOL_GPL(kvm_max_tsc_scaling_ratio);
137 u64 __read_mostly kvm_default_tsc_scaling_ratio;
138 EXPORT_SYMBOL_GPL(kvm_default_tsc_scaling_ratio);
139
140 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
141 static u32 __read_mostly tsc_tolerance_ppm = 250;
142 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
143
144 /*
145 * lapic timer advance (tscdeadline mode only) in nanoseconds. '-1' enables
146 * adaptive tuning starting from default advancment of 1000ns. '0' disables
147 * advancement entirely. Any other value is used as-is and disables adaptive
148 * tuning, i.e. allows priveleged userspace to set an exact advancement time.
149 */
150 static int __read_mostly lapic_timer_advance_ns = -1;
151 module_param(lapic_timer_advance_ns, int, S_IRUGO | S_IWUSR);
152
153 static bool __read_mostly vector_hashing = true;
154 module_param(vector_hashing, bool, S_IRUGO);
155
156 bool __read_mostly enable_vmware_backdoor = false;
157 module_param(enable_vmware_backdoor, bool, S_IRUGO);
158 EXPORT_SYMBOL_GPL(enable_vmware_backdoor);
159
160 static bool __read_mostly force_emulation_prefix = false;
161 module_param(force_emulation_prefix, bool, S_IRUGO);
162
163 int __read_mostly pi_inject_timer = -1;
164 module_param(pi_inject_timer, bint, S_IRUGO | S_IWUSR);
165
166 /*
167 * Restoring the host value for MSRs that are only consumed when running in
168 * usermode, e.g. SYSCALL MSRs and TSC_AUX, can be deferred until the CPU
169 * returns to userspace, i.e. the kernel can run with the guest's value.
170 */
171 #define KVM_MAX_NR_USER_RETURN_MSRS 16
172
173 struct kvm_user_return_msrs_global {
174 int nr;
175 u32 msrs[KVM_MAX_NR_USER_RETURN_MSRS];
176 };
177
178 struct kvm_user_return_msrs {
179 struct user_return_notifier urn;
180 bool registered;
181 struct kvm_user_return_msr_values {
182 u64 host;
183 u64 curr;
184 } values[KVM_MAX_NR_USER_RETURN_MSRS];
185 };
186
187 static struct kvm_user_return_msrs_global __read_mostly user_return_msrs_global;
188 static struct kvm_user_return_msrs __percpu *user_return_msrs;
189
190 #define KVM_SUPPORTED_XCR0 (XFEATURE_MASK_FP | XFEATURE_MASK_SSE \
191 | XFEATURE_MASK_YMM | XFEATURE_MASK_BNDREGS \
192 | XFEATURE_MASK_BNDCSR | XFEATURE_MASK_AVX512 \
193 | XFEATURE_MASK_PKRU)
194
195 u64 __read_mostly host_efer;
196 EXPORT_SYMBOL_GPL(host_efer);
197
198 bool __read_mostly allow_smaller_maxphyaddr = 0;
199 EXPORT_SYMBOL_GPL(allow_smaller_maxphyaddr);
200
201 static u64 __read_mostly host_xss;
202 u64 __read_mostly supported_xss;
203 EXPORT_SYMBOL_GPL(supported_xss);
204
205 struct kvm_stats_debugfs_item debugfs_entries[] = {
206 VCPU_STAT("pf_fixed", pf_fixed),
207 VCPU_STAT("pf_guest", pf_guest),
208 VCPU_STAT("tlb_flush", tlb_flush),
209 VCPU_STAT("invlpg", invlpg),
210 VCPU_STAT("exits", exits),
211 VCPU_STAT("io_exits", io_exits),
212 VCPU_STAT("mmio_exits", mmio_exits),
213 VCPU_STAT("signal_exits", signal_exits),
214 VCPU_STAT("irq_window", irq_window_exits),
215 VCPU_STAT("nmi_window", nmi_window_exits),
216 VCPU_STAT("halt_exits", halt_exits),
217 VCPU_STAT("halt_successful_poll", halt_successful_poll),
218 VCPU_STAT("halt_attempted_poll", halt_attempted_poll),
219 VCPU_STAT("halt_poll_invalid", halt_poll_invalid),
220 VCPU_STAT("halt_wakeup", halt_wakeup),
221 VCPU_STAT("hypercalls", hypercalls),
222 VCPU_STAT("request_irq", request_irq_exits),
223 VCPU_STAT("irq_exits", irq_exits),
224 VCPU_STAT("host_state_reload", host_state_reload),
225 VCPU_STAT("fpu_reload", fpu_reload),
226 VCPU_STAT("insn_emulation", insn_emulation),
227 VCPU_STAT("insn_emulation_fail", insn_emulation_fail),
228 VCPU_STAT("irq_injections", irq_injections),
229 VCPU_STAT("nmi_injections", nmi_injections),
230 VCPU_STAT("req_event", req_event),
231 VCPU_STAT("l1d_flush", l1d_flush),
232 VCPU_STAT("halt_poll_success_ns", halt_poll_success_ns),
233 VCPU_STAT("halt_poll_fail_ns", halt_poll_fail_ns),
234 VCPU_STAT("preemption_reported", preemption_reported),
235 VCPU_STAT("preemption_other", preemption_other),
236 VM_STAT("mmu_shadow_zapped", mmu_shadow_zapped),
237 VM_STAT("mmu_pte_write", mmu_pte_write),
238 VM_STAT("mmu_pde_zapped", mmu_pde_zapped),
239 VM_STAT("mmu_flooded", mmu_flooded),
240 VM_STAT("mmu_recycled", mmu_recycled),
241 VM_STAT("mmu_cache_miss", mmu_cache_miss),
242 VM_STAT("mmu_unsync", mmu_unsync),
243 VM_STAT("remote_tlb_flush", remote_tlb_flush),
244 VM_STAT("largepages", lpages, .mode = 0444),
245 VM_STAT("nx_largepages_splitted", nx_lpage_splits, .mode = 0444),
246 VM_STAT("max_mmu_page_hash_collisions", max_mmu_page_hash_collisions),
247 { NULL }
248 };
249
250 u64 __read_mostly host_xcr0;
251 u64 __read_mostly supported_xcr0;
252 EXPORT_SYMBOL_GPL(supported_xcr0);
253
254 static struct kmem_cache *x86_fpu_cache;
255
256 static struct kmem_cache *x86_emulator_cache;
257
258 /*
259 * When called, it means the previous get/set msr reached an invalid msr.
260 * Return true if we want to ignore/silent this failed msr access.
261 */
kvm_msr_ignored_check(struct kvm_vcpu * vcpu,u32 msr,u64 data,bool write)262 static bool kvm_msr_ignored_check(struct kvm_vcpu *vcpu, u32 msr,
263 u64 data, bool write)
264 {
265 const char *op = write ? "wrmsr" : "rdmsr";
266
267 if (ignore_msrs) {
268 if (report_ignored_msrs)
269 kvm_pr_unimpl("ignored %s: 0x%x data 0x%llx\n",
270 op, msr, data);
271 /* Mask the error */
272 return true;
273 } else {
274 kvm_debug_ratelimited("unhandled %s: 0x%x data 0x%llx\n",
275 op, msr, data);
276 return false;
277 }
278 }
279
kvm_alloc_emulator_cache(void)280 static struct kmem_cache *kvm_alloc_emulator_cache(void)
281 {
282 unsigned int useroffset = offsetof(struct x86_emulate_ctxt, src);
283 unsigned int size = sizeof(struct x86_emulate_ctxt);
284
285 return kmem_cache_create_usercopy("x86_emulator", size,
286 __alignof__(struct x86_emulate_ctxt),
287 SLAB_ACCOUNT, useroffset,
288 size - useroffset, NULL);
289 }
290
291 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
292
kvm_async_pf_hash_reset(struct kvm_vcpu * vcpu)293 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
294 {
295 int i;
296 for (i = 0; i < ASYNC_PF_PER_VCPU; i++)
297 vcpu->arch.apf.gfns[i] = ~0;
298 }
299
kvm_on_user_return(struct user_return_notifier * urn)300 static void kvm_on_user_return(struct user_return_notifier *urn)
301 {
302 unsigned slot;
303 struct kvm_user_return_msrs *msrs
304 = container_of(urn, struct kvm_user_return_msrs, urn);
305 struct kvm_user_return_msr_values *values;
306 unsigned long flags;
307
308 /*
309 * Disabling irqs at this point since the following code could be
310 * interrupted and executed through kvm_arch_hardware_disable()
311 */
312 local_irq_save(flags);
313 if (msrs->registered) {
314 msrs->registered = false;
315 user_return_notifier_unregister(urn);
316 }
317 local_irq_restore(flags);
318 for (slot = 0; slot < user_return_msrs_global.nr; ++slot) {
319 values = &msrs->values[slot];
320 if (values->host != values->curr) {
321 wrmsrl(user_return_msrs_global.msrs[slot], values->host);
322 values->curr = values->host;
323 }
324 }
325 }
326
kvm_probe_user_return_msr(u32 msr)327 int kvm_probe_user_return_msr(u32 msr)
328 {
329 u64 val;
330 int ret;
331
332 preempt_disable();
333 ret = rdmsrl_safe(msr, &val);
334 if (ret)
335 goto out;
336 ret = wrmsrl_safe(msr, val);
337 out:
338 preempt_enable();
339 return ret;
340 }
341 EXPORT_SYMBOL_GPL(kvm_probe_user_return_msr);
342
kvm_define_user_return_msr(unsigned slot,u32 msr)343 void kvm_define_user_return_msr(unsigned slot, u32 msr)
344 {
345 BUG_ON(slot >= KVM_MAX_NR_USER_RETURN_MSRS);
346 user_return_msrs_global.msrs[slot] = msr;
347 if (slot >= user_return_msrs_global.nr)
348 user_return_msrs_global.nr = slot + 1;
349 }
350 EXPORT_SYMBOL_GPL(kvm_define_user_return_msr);
351
kvm_user_return_msr_cpu_online(void)352 static void kvm_user_return_msr_cpu_online(void)
353 {
354 unsigned int cpu = smp_processor_id();
355 struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
356 u64 value;
357 int i;
358
359 for (i = 0; i < user_return_msrs_global.nr; ++i) {
360 rdmsrl_safe(user_return_msrs_global.msrs[i], &value);
361 msrs->values[i].host = value;
362 msrs->values[i].curr = value;
363 }
364 }
365
kvm_set_user_return_msr(unsigned slot,u64 value,u64 mask)366 int kvm_set_user_return_msr(unsigned slot, u64 value, u64 mask)
367 {
368 unsigned int cpu = smp_processor_id();
369 struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
370 int err;
371
372 value = (value & mask) | (msrs->values[slot].host & ~mask);
373 if (value == msrs->values[slot].curr)
374 return 0;
375 err = wrmsrl_safe(user_return_msrs_global.msrs[slot], value);
376 if (err)
377 return 1;
378
379 msrs->values[slot].curr = value;
380 if (!msrs->registered) {
381 msrs->urn.on_user_return = kvm_on_user_return;
382 user_return_notifier_register(&msrs->urn);
383 msrs->registered = true;
384 }
385 return 0;
386 }
387 EXPORT_SYMBOL_GPL(kvm_set_user_return_msr);
388
drop_user_return_notifiers(void)389 static void drop_user_return_notifiers(void)
390 {
391 unsigned int cpu = smp_processor_id();
392 struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
393
394 if (msrs->registered)
395 kvm_on_user_return(&msrs->urn);
396 }
397
kvm_get_apic_base(struct kvm_vcpu * vcpu)398 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
399 {
400 return vcpu->arch.apic_base;
401 }
402 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
403
kvm_get_apic_mode(struct kvm_vcpu * vcpu)404 enum lapic_mode kvm_get_apic_mode(struct kvm_vcpu *vcpu)
405 {
406 return kvm_apic_mode(kvm_get_apic_base(vcpu));
407 }
408 EXPORT_SYMBOL_GPL(kvm_get_apic_mode);
409
kvm_set_apic_base(struct kvm_vcpu * vcpu,struct msr_data * msr_info)410 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
411 {
412 enum lapic_mode old_mode = kvm_get_apic_mode(vcpu);
413 enum lapic_mode new_mode = kvm_apic_mode(msr_info->data);
414 u64 reserved_bits = ((~0ULL) << cpuid_maxphyaddr(vcpu)) | 0x2ff |
415 (guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE);
416
417 if ((msr_info->data & reserved_bits) != 0 || new_mode == LAPIC_MODE_INVALID)
418 return 1;
419 if (!msr_info->host_initiated) {
420 if (old_mode == LAPIC_MODE_X2APIC && new_mode == LAPIC_MODE_XAPIC)
421 return 1;
422 if (old_mode == LAPIC_MODE_DISABLED && new_mode == LAPIC_MODE_X2APIC)
423 return 1;
424 }
425
426 kvm_lapic_set_base(vcpu, msr_info->data);
427 kvm_recalculate_apic_map(vcpu->kvm);
428 return 0;
429 }
430 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
431
kvm_spurious_fault(void)432 asmlinkage __visible noinstr void kvm_spurious_fault(void)
433 {
434 /* Fault while not rebooting. We want the trace. */
435 BUG_ON(!kvm_rebooting);
436 }
437 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
438
439 #define EXCPT_BENIGN 0
440 #define EXCPT_CONTRIBUTORY 1
441 #define EXCPT_PF 2
442
exception_class(int vector)443 static int exception_class(int vector)
444 {
445 switch (vector) {
446 case PF_VECTOR:
447 return EXCPT_PF;
448 case DE_VECTOR:
449 case TS_VECTOR:
450 case NP_VECTOR:
451 case SS_VECTOR:
452 case GP_VECTOR:
453 return EXCPT_CONTRIBUTORY;
454 default:
455 break;
456 }
457 return EXCPT_BENIGN;
458 }
459
460 #define EXCPT_FAULT 0
461 #define EXCPT_TRAP 1
462 #define EXCPT_ABORT 2
463 #define EXCPT_INTERRUPT 3
464
exception_type(int vector)465 static int exception_type(int vector)
466 {
467 unsigned int mask;
468
469 if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
470 return EXCPT_INTERRUPT;
471
472 mask = 1 << vector;
473
474 /* #DB is trap, as instruction watchpoints are handled elsewhere */
475 if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR)))
476 return EXCPT_TRAP;
477
478 if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
479 return EXCPT_ABORT;
480
481 /* Reserved exceptions will result in fault */
482 return EXCPT_FAULT;
483 }
484
kvm_deliver_exception_payload(struct kvm_vcpu * vcpu)485 void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu)
486 {
487 unsigned nr = vcpu->arch.exception.nr;
488 bool has_payload = vcpu->arch.exception.has_payload;
489 unsigned long payload = vcpu->arch.exception.payload;
490
491 if (!has_payload)
492 return;
493
494 switch (nr) {
495 case DB_VECTOR:
496 /*
497 * "Certain debug exceptions may clear bit 0-3. The
498 * remaining contents of the DR6 register are never
499 * cleared by the processor".
500 */
501 vcpu->arch.dr6 &= ~DR_TRAP_BITS;
502 /*
503 * DR6.RTM is set by all #DB exceptions that don't clear it.
504 */
505 vcpu->arch.dr6 |= DR6_RTM;
506 vcpu->arch.dr6 |= payload;
507 /*
508 * Bit 16 should be set in the payload whenever the #DB
509 * exception should clear DR6.RTM. This makes the payload
510 * compatible with the pending debug exceptions under VMX.
511 * Though not currently documented in the SDM, this also
512 * makes the payload compatible with the exit qualification
513 * for #DB exceptions under VMX.
514 */
515 vcpu->arch.dr6 ^= payload & DR6_RTM;
516
517 /*
518 * The #DB payload is defined as compatible with the 'pending
519 * debug exceptions' field under VMX, not DR6. While bit 12 is
520 * defined in the 'pending debug exceptions' field (enabled
521 * breakpoint), it is reserved and must be zero in DR6.
522 */
523 vcpu->arch.dr6 &= ~BIT(12);
524 break;
525 case PF_VECTOR:
526 vcpu->arch.cr2 = payload;
527 break;
528 }
529
530 vcpu->arch.exception.has_payload = false;
531 vcpu->arch.exception.payload = 0;
532 }
533 EXPORT_SYMBOL_GPL(kvm_deliver_exception_payload);
534
kvm_multiple_exception(struct kvm_vcpu * vcpu,unsigned nr,bool has_error,u32 error_code,bool has_payload,unsigned long payload,bool reinject)535 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
536 unsigned nr, bool has_error, u32 error_code,
537 bool has_payload, unsigned long payload, bool reinject)
538 {
539 u32 prev_nr;
540 int class1, class2;
541
542 kvm_make_request(KVM_REQ_EVENT, vcpu);
543
544 if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) {
545 queue:
546 if (reinject) {
547 /*
548 * On vmentry, vcpu->arch.exception.pending is only
549 * true if an event injection was blocked by
550 * nested_run_pending. In that case, however,
551 * vcpu_enter_guest requests an immediate exit,
552 * and the guest shouldn't proceed far enough to
553 * need reinjection.
554 */
555 WARN_ON_ONCE(vcpu->arch.exception.pending);
556 vcpu->arch.exception.injected = true;
557 if (WARN_ON_ONCE(has_payload)) {
558 /*
559 * A reinjected event has already
560 * delivered its payload.
561 */
562 has_payload = false;
563 payload = 0;
564 }
565 } else {
566 vcpu->arch.exception.pending = true;
567 vcpu->arch.exception.injected = false;
568 }
569 vcpu->arch.exception.has_error_code = has_error;
570 vcpu->arch.exception.nr = nr;
571 vcpu->arch.exception.error_code = error_code;
572 vcpu->arch.exception.has_payload = has_payload;
573 vcpu->arch.exception.payload = payload;
574 if (!is_guest_mode(vcpu))
575 kvm_deliver_exception_payload(vcpu);
576 return;
577 }
578
579 /* to check exception */
580 prev_nr = vcpu->arch.exception.nr;
581 if (prev_nr == DF_VECTOR) {
582 /* triple fault -> shutdown */
583 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
584 return;
585 }
586 class1 = exception_class(prev_nr);
587 class2 = exception_class(nr);
588 if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
589 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
590 /*
591 * Generate double fault per SDM Table 5-5. Set
592 * exception.pending = true so that the double fault
593 * can trigger a nested vmexit.
594 */
595 vcpu->arch.exception.pending = true;
596 vcpu->arch.exception.injected = false;
597 vcpu->arch.exception.has_error_code = true;
598 vcpu->arch.exception.nr = DF_VECTOR;
599 vcpu->arch.exception.error_code = 0;
600 vcpu->arch.exception.has_payload = false;
601 vcpu->arch.exception.payload = 0;
602 } else
603 /* replace previous exception with a new one in a hope
604 that instruction re-execution will regenerate lost
605 exception */
606 goto queue;
607 }
608
kvm_queue_exception(struct kvm_vcpu * vcpu,unsigned nr)609 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
610 {
611 kvm_multiple_exception(vcpu, nr, false, 0, false, 0, false);
612 }
613 EXPORT_SYMBOL_GPL(kvm_queue_exception);
614
kvm_requeue_exception(struct kvm_vcpu * vcpu,unsigned nr)615 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
616 {
617 kvm_multiple_exception(vcpu, nr, false, 0, false, 0, true);
618 }
619 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
620
kvm_queue_exception_p(struct kvm_vcpu * vcpu,unsigned nr,unsigned long payload)621 void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr,
622 unsigned long payload)
623 {
624 kvm_multiple_exception(vcpu, nr, false, 0, true, payload, false);
625 }
626 EXPORT_SYMBOL_GPL(kvm_queue_exception_p);
627
kvm_queue_exception_e_p(struct kvm_vcpu * vcpu,unsigned nr,u32 error_code,unsigned long payload)628 static void kvm_queue_exception_e_p(struct kvm_vcpu *vcpu, unsigned nr,
629 u32 error_code, unsigned long payload)
630 {
631 kvm_multiple_exception(vcpu, nr, true, error_code,
632 true, payload, false);
633 }
634
kvm_complete_insn_gp(struct kvm_vcpu * vcpu,int err)635 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
636 {
637 if (err)
638 kvm_inject_gp(vcpu, 0);
639 else
640 return kvm_skip_emulated_instruction(vcpu);
641
642 return 1;
643 }
644 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
645
kvm_inject_page_fault(struct kvm_vcpu * vcpu,struct x86_exception * fault)646 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
647 {
648 ++vcpu->stat.pf_guest;
649 vcpu->arch.exception.nested_apf =
650 is_guest_mode(vcpu) && fault->async_page_fault;
651 if (vcpu->arch.exception.nested_apf) {
652 vcpu->arch.apf.nested_apf_token = fault->address;
653 kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
654 } else {
655 kvm_queue_exception_e_p(vcpu, PF_VECTOR, fault->error_code,
656 fault->address);
657 }
658 }
659 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
660
kvm_inject_emulated_page_fault(struct kvm_vcpu * vcpu,struct x86_exception * fault)661 bool kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu,
662 struct x86_exception *fault)
663 {
664 struct kvm_mmu *fault_mmu;
665 WARN_ON_ONCE(fault->vector != PF_VECTOR);
666
667 fault_mmu = fault->nested_page_fault ? vcpu->arch.mmu :
668 vcpu->arch.walk_mmu;
669
670 /*
671 * Invalidate the TLB entry for the faulting address, if it exists,
672 * else the access will fault indefinitely (and to emulate hardware).
673 */
674 if ((fault->error_code & PFERR_PRESENT_MASK) &&
675 !(fault->error_code & PFERR_RSVD_MASK))
676 kvm_mmu_invalidate_gva(vcpu, fault_mmu, fault->address,
677 fault_mmu->root_hpa);
678
679 fault_mmu->inject_page_fault(vcpu, fault);
680 return fault->nested_page_fault;
681 }
682 EXPORT_SYMBOL_GPL(kvm_inject_emulated_page_fault);
683
kvm_inject_nmi(struct kvm_vcpu * vcpu)684 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
685 {
686 atomic_inc(&vcpu->arch.nmi_queued);
687 kvm_make_request(KVM_REQ_NMI, vcpu);
688 }
689 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
690
kvm_queue_exception_e(struct kvm_vcpu * vcpu,unsigned nr,u32 error_code)691 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
692 {
693 kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, false);
694 }
695 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
696
kvm_requeue_exception_e(struct kvm_vcpu * vcpu,unsigned nr,u32 error_code)697 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
698 {
699 kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, true);
700 }
701 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
702
703 /*
704 * Checks if cpl <= required_cpl; if true, return true. Otherwise queue
705 * a #GP and return false.
706 */
kvm_require_cpl(struct kvm_vcpu * vcpu,int required_cpl)707 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
708 {
709 if (kvm_x86_ops.get_cpl(vcpu) <= required_cpl)
710 return true;
711 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
712 return false;
713 }
714 EXPORT_SYMBOL_GPL(kvm_require_cpl);
715
kvm_require_dr(struct kvm_vcpu * vcpu,int dr)716 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
717 {
718 if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE))
719 return true;
720
721 kvm_queue_exception(vcpu, UD_VECTOR);
722 return false;
723 }
724 EXPORT_SYMBOL_GPL(kvm_require_dr);
725
726 /*
727 * This function will be used to read from the physical memory of the currently
728 * running guest. The difference to kvm_vcpu_read_guest_page is that this function
729 * can read from guest physical or from the guest's guest physical memory.
730 */
kvm_read_guest_page_mmu(struct kvm_vcpu * vcpu,struct kvm_mmu * mmu,gfn_t ngfn,void * data,int offset,int len,u32 access)731 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
732 gfn_t ngfn, void *data, int offset, int len,
733 u32 access)
734 {
735 struct x86_exception exception;
736 gfn_t real_gfn;
737 gpa_t ngpa;
738
739 ngpa = gfn_to_gpa(ngfn);
740 real_gfn = mmu->translate_gpa(vcpu, ngpa, access, &exception);
741 if (real_gfn == UNMAPPED_GVA)
742 return -EFAULT;
743
744 real_gfn = gpa_to_gfn(real_gfn);
745
746 return kvm_vcpu_read_guest_page(vcpu, real_gfn, data, offset, len);
747 }
748 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
749
kvm_read_nested_guest_page(struct kvm_vcpu * vcpu,gfn_t gfn,void * data,int offset,int len,u32 access)750 static int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
751 void *data, int offset, int len, u32 access)
752 {
753 return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
754 data, offset, len, access);
755 }
756
pdptr_rsvd_bits(struct kvm_vcpu * vcpu)757 static inline u64 pdptr_rsvd_bits(struct kvm_vcpu *vcpu)
758 {
759 return rsvd_bits(cpuid_maxphyaddr(vcpu), 63) | rsvd_bits(5, 8) |
760 rsvd_bits(1, 2);
761 }
762
763 /*
764 * Load the pae pdptrs. Return 1 if they are all valid, 0 otherwise.
765 */
load_pdptrs(struct kvm_vcpu * vcpu,struct kvm_mmu * mmu,unsigned long cr3)766 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
767 {
768 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
769 unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
770 int i;
771 int ret;
772 u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
773
774 ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
775 offset * sizeof(u64), sizeof(pdpte),
776 PFERR_USER_MASK|PFERR_WRITE_MASK);
777 if (ret < 0) {
778 ret = 0;
779 goto out;
780 }
781 for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
782 if ((pdpte[i] & PT_PRESENT_MASK) &&
783 (pdpte[i] & pdptr_rsvd_bits(vcpu))) {
784 ret = 0;
785 goto out;
786 }
787 }
788 ret = 1;
789
790 memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
791 kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
792
793 out:
794
795 return ret;
796 }
797 EXPORT_SYMBOL_GPL(load_pdptrs);
798
pdptrs_changed(struct kvm_vcpu * vcpu)799 bool pdptrs_changed(struct kvm_vcpu *vcpu)
800 {
801 u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
802 int offset;
803 gfn_t gfn;
804 int r;
805
806 if (!is_pae_paging(vcpu))
807 return false;
808
809 if (!kvm_register_is_available(vcpu, VCPU_EXREG_PDPTR))
810 return true;
811
812 gfn = (kvm_read_cr3(vcpu) & 0xffffffe0ul) >> PAGE_SHIFT;
813 offset = (kvm_read_cr3(vcpu) & 0xffffffe0ul) & (PAGE_SIZE - 1);
814 r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
815 PFERR_USER_MASK | PFERR_WRITE_MASK);
816 if (r < 0)
817 return true;
818
819 return memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
820 }
821 EXPORT_SYMBOL_GPL(pdptrs_changed);
822
kvm_set_cr0(struct kvm_vcpu * vcpu,unsigned long cr0)823 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
824 {
825 unsigned long old_cr0 = kvm_read_cr0(vcpu);
826 unsigned long pdptr_bits = X86_CR0_CD | X86_CR0_NW | X86_CR0_PG;
827 unsigned long update_bits = X86_CR0_PG | X86_CR0_WP;
828
829 cr0 |= X86_CR0_ET;
830
831 #ifdef CONFIG_X86_64
832 if (cr0 & 0xffffffff00000000UL)
833 return 1;
834 #endif
835
836 cr0 &= ~CR0_RESERVED_BITS;
837
838 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
839 return 1;
840
841 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
842 return 1;
843
844 #ifdef CONFIG_X86_64
845 if ((vcpu->arch.efer & EFER_LME) && !is_paging(vcpu) &&
846 (cr0 & X86_CR0_PG)) {
847 int cs_db, cs_l;
848
849 if (!is_pae(vcpu))
850 return 1;
851 kvm_x86_ops.get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
852 if (cs_l)
853 return 1;
854 }
855 #endif
856 if (!(vcpu->arch.efer & EFER_LME) && (cr0 & X86_CR0_PG) &&
857 is_pae(vcpu) && ((cr0 ^ old_cr0) & pdptr_bits) &&
858 !load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu)))
859 return 1;
860
861 if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
862 return 1;
863
864 kvm_x86_ops.set_cr0(vcpu, cr0);
865
866 if ((cr0 ^ old_cr0) & X86_CR0_PG) {
867 kvm_clear_async_pf_completion_queue(vcpu);
868 kvm_async_pf_hash_reset(vcpu);
869 }
870
871 if ((cr0 ^ old_cr0) & update_bits)
872 kvm_mmu_reset_context(vcpu);
873
874 if (((cr0 ^ old_cr0) & X86_CR0_CD) &&
875 kvm_arch_has_noncoherent_dma(vcpu->kvm) &&
876 !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
877 kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
878
879 return 0;
880 }
881 EXPORT_SYMBOL_GPL(kvm_set_cr0);
882
kvm_lmsw(struct kvm_vcpu * vcpu,unsigned long msw)883 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
884 {
885 (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
886 }
887 EXPORT_SYMBOL_GPL(kvm_lmsw);
888
kvm_load_guest_xsave_state(struct kvm_vcpu * vcpu)889 void kvm_load_guest_xsave_state(struct kvm_vcpu *vcpu)
890 {
891 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) {
892
893 if (vcpu->arch.xcr0 != host_xcr0)
894 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
895
896 if (vcpu->arch.xsaves_enabled &&
897 vcpu->arch.ia32_xss != host_xss)
898 wrmsrl(MSR_IA32_XSS, vcpu->arch.ia32_xss);
899 }
900
901 if (static_cpu_has(X86_FEATURE_PKU) &&
902 (kvm_read_cr4_bits(vcpu, X86_CR4_PKE) ||
903 (vcpu->arch.xcr0 & XFEATURE_MASK_PKRU)) &&
904 vcpu->arch.pkru != vcpu->arch.host_pkru)
905 __write_pkru(vcpu->arch.pkru);
906 }
907 EXPORT_SYMBOL_GPL(kvm_load_guest_xsave_state);
908
kvm_load_host_xsave_state(struct kvm_vcpu * vcpu)909 void kvm_load_host_xsave_state(struct kvm_vcpu *vcpu)
910 {
911 if (static_cpu_has(X86_FEATURE_PKU) &&
912 (kvm_read_cr4_bits(vcpu, X86_CR4_PKE) ||
913 (vcpu->arch.xcr0 & XFEATURE_MASK_PKRU))) {
914 vcpu->arch.pkru = rdpkru();
915 if (vcpu->arch.pkru != vcpu->arch.host_pkru)
916 __write_pkru(vcpu->arch.host_pkru);
917 }
918
919 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) {
920
921 if (vcpu->arch.xcr0 != host_xcr0)
922 xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
923
924 if (vcpu->arch.xsaves_enabled &&
925 vcpu->arch.ia32_xss != host_xss)
926 wrmsrl(MSR_IA32_XSS, host_xss);
927 }
928
929 }
930 EXPORT_SYMBOL_GPL(kvm_load_host_xsave_state);
931
__kvm_set_xcr(struct kvm_vcpu * vcpu,u32 index,u64 xcr)932 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
933 {
934 u64 xcr0 = xcr;
935 u64 old_xcr0 = vcpu->arch.xcr0;
936 u64 valid_bits;
937
938 /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */
939 if (index != XCR_XFEATURE_ENABLED_MASK)
940 return 1;
941 if (!(xcr0 & XFEATURE_MASK_FP))
942 return 1;
943 if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
944 return 1;
945
946 /*
947 * Do not allow the guest to set bits that we do not support
948 * saving. However, xcr0 bit 0 is always set, even if the
949 * emulated CPU does not support XSAVE (see fx_init).
950 */
951 valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP;
952 if (xcr0 & ~valid_bits)
953 return 1;
954
955 if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
956 (!(xcr0 & XFEATURE_MASK_BNDCSR)))
957 return 1;
958
959 if (xcr0 & XFEATURE_MASK_AVX512) {
960 if (!(xcr0 & XFEATURE_MASK_YMM))
961 return 1;
962 if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
963 return 1;
964 }
965 vcpu->arch.xcr0 = xcr0;
966
967 if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
968 kvm_update_cpuid_runtime(vcpu);
969 return 0;
970 }
971
kvm_set_xcr(struct kvm_vcpu * vcpu,u32 index,u64 xcr)972 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
973 {
974 if (kvm_x86_ops.get_cpl(vcpu) != 0 ||
975 __kvm_set_xcr(vcpu, index, xcr)) {
976 kvm_inject_gp(vcpu, 0);
977 return 1;
978 }
979 return 0;
980 }
981 EXPORT_SYMBOL_GPL(kvm_set_xcr);
982
kvm_valid_cr4(struct kvm_vcpu * vcpu,unsigned long cr4)983 int kvm_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
984 {
985 if (cr4 & cr4_reserved_bits)
986 return -EINVAL;
987
988 if (cr4 & vcpu->arch.cr4_guest_rsvd_bits)
989 return -EINVAL;
990
991 return 0;
992 }
993 EXPORT_SYMBOL_GPL(kvm_valid_cr4);
994
kvm_set_cr4(struct kvm_vcpu * vcpu,unsigned long cr4)995 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
996 {
997 unsigned long old_cr4 = kvm_read_cr4(vcpu);
998 unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE |
999 X86_CR4_SMEP;
1000 unsigned long mmu_role_bits = pdptr_bits | X86_CR4_SMAP | X86_CR4_PKE;
1001
1002 if (kvm_valid_cr4(vcpu, cr4))
1003 return 1;
1004
1005 if (is_long_mode(vcpu)) {
1006 if (!(cr4 & X86_CR4_PAE))
1007 return 1;
1008 if ((cr4 ^ old_cr4) & X86_CR4_LA57)
1009 return 1;
1010 } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
1011 && ((cr4 ^ old_cr4) & pdptr_bits)
1012 && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
1013 kvm_read_cr3(vcpu)))
1014 return 1;
1015
1016 if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
1017 if (!guest_cpuid_has(vcpu, X86_FEATURE_PCID))
1018 return 1;
1019
1020 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
1021 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
1022 return 1;
1023 }
1024
1025 if (kvm_x86_ops.set_cr4(vcpu, cr4))
1026 return 1;
1027
1028 if (((cr4 ^ old_cr4) & mmu_role_bits) ||
1029 (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
1030 kvm_mmu_reset_context(vcpu);
1031
1032 if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE))
1033 kvm_update_cpuid_runtime(vcpu);
1034
1035 return 0;
1036 }
1037 EXPORT_SYMBOL_GPL(kvm_set_cr4);
1038
kvm_set_cr3(struct kvm_vcpu * vcpu,unsigned long cr3)1039 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
1040 {
1041 bool skip_tlb_flush = false;
1042 #ifdef CONFIG_X86_64
1043 bool pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
1044
1045 if (pcid_enabled) {
1046 skip_tlb_flush = cr3 & X86_CR3_PCID_NOFLUSH;
1047 cr3 &= ~X86_CR3_PCID_NOFLUSH;
1048 }
1049 #endif
1050
1051 if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
1052 if (!skip_tlb_flush) {
1053 kvm_mmu_sync_roots(vcpu);
1054 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1055 }
1056 return 0;
1057 }
1058
1059 if (is_long_mode(vcpu) &&
1060 (cr3 & vcpu->arch.cr3_lm_rsvd_bits))
1061 return 1;
1062 else if (is_pae_paging(vcpu) &&
1063 !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
1064 return 1;
1065
1066 kvm_mmu_new_pgd(vcpu, cr3, skip_tlb_flush, skip_tlb_flush);
1067 vcpu->arch.cr3 = cr3;
1068 kvm_register_mark_available(vcpu, VCPU_EXREG_CR3);
1069
1070 return 0;
1071 }
1072 EXPORT_SYMBOL_GPL(kvm_set_cr3);
1073
kvm_set_cr8(struct kvm_vcpu * vcpu,unsigned long cr8)1074 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
1075 {
1076 if (cr8 & CR8_RESERVED_BITS)
1077 return 1;
1078 if (lapic_in_kernel(vcpu))
1079 kvm_lapic_set_tpr(vcpu, cr8);
1080 else
1081 vcpu->arch.cr8 = cr8;
1082 return 0;
1083 }
1084 EXPORT_SYMBOL_GPL(kvm_set_cr8);
1085
kvm_get_cr8(struct kvm_vcpu * vcpu)1086 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
1087 {
1088 if (lapic_in_kernel(vcpu))
1089 return kvm_lapic_get_cr8(vcpu);
1090 else
1091 return vcpu->arch.cr8;
1092 }
1093 EXPORT_SYMBOL_GPL(kvm_get_cr8);
1094
kvm_update_dr0123(struct kvm_vcpu * vcpu)1095 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
1096 {
1097 int i;
1098
1099 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
1100 for (i = 0; i < KVM_NR_DB_REGS; i++)
1101 vcpu->arch.eff_db[i] = vcpu->arch.db[i];
1102 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_RELOAD;
1103 }
1104 }
1105
kvm_update_dr7(struct kvm_vcpu * vcpu)1106 void kvm_update_dr7(struct kvm_vcpu *vcpu)
1107 {
1108 unsigned long dr7;
1109
1110 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1111 dr7 = vcpu->arch.guest_debug_dr7;
1112 else
1113 dr7 = vcpu->arch.dr7;
1114 kvm_x86_ops.set_dr7(vcpu, dr7);
1115 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
1116 if (dr7 & DR7_BP_EN_MASK)
1117 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
1118 }
1119 EXPORT_SYMBOL_GPL(kvm_update_dr7);
1120
kvm_dr6_fixed(struct kvm_vcpu * vcpu)1121 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
1122 {
1123 u64 fixed = DR6_FIXED_1;
1124
1125 if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM))
1126 fixed |= DR6_RTM;
1127 return fixed;
1128 }
1129
__kvm_set_dr(struct kvm_vcpu * vcpu,int dr,unsigned long val)1130 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
1131 {
1132 size_t size = ARRAY_SIZE(vcpu->arch.db);
1133
1134 switch (dr) {
1135 case 0 ... 3:
1136 vcpu->arch.db[array_index_nospec(dr, size)] = val;
1137 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
1138 vcpu->arch.eff_db[dr] = val;
1139 break;
1140 case 4:
1141 case 6:
1142 if (!kvm_dr6_valid(val))
1143 return -1; /* #GP */
1144 vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
1145 break;
1146 case 5:
1147 default: /* 7 */
1148 if (!kvm_dr7_valid(val))
1149 return -1; /* #GP */
1150 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
1151 kvm_update_dr7(vcpu);
1152 break;
1153 }
1154
1155 return 0;
1156 }
1157
kvm_set_dr(struct kvm_vcpu * vcpu,int dr,unsigned long val)1158 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
1159 {
1160 if (__kvm_set_dr(vcpu, dr, val)) {
1161 kvm_inject_gp(vcpu, 0);
1162 return 1;
1163 }
1164 return 0;
1165 }
1166 EXPORT_SYMBOL_GPL(kvm_set_dr);
1167
kvm_get_dr(struct kvm_vcpu * vcpu,int dr,unsigned long * val)1168 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
1169 {
1170 size_t size = ARRAY_SIZE(vcpu->arch.db);
1171
1172 switch (dr) {
1173 case 0 ... 3:
1174 *val = vcpu->arch.db[array_index_nospec(dr, size)];
1175 break;
1176 case 4:
1177 case 6:
1178 *val = vcpu->arch.dr6;
1179 break;
1180 case 5:
1181 default: /* 7 */
1182 *val = vcpu->arch.dr7;
1183 break;
1184 }
1185 return 0;
1186 }
1187 EXPORT_SYMBOL_GPL(kvm_get_dr);
1188
kvm_rdpmc(struct kvm_vcpu * vcpu)1189 bool kvm_rdpmc(struct kvm_vcpu *vcpu)
1190 {
1191 u32 ecx = kvm_rcx_read(vcpu);
1192 u64 data;
1193 int err;
1194
1195 err = kvm_pmu_rdpmc(vcpu, ecx, &data);
1196 if (err)
1197 return err;
1198 kvm_rax_write(vcpu, (u32)data);
1199 kvm_rdx_write(vcpu, data >> 32);
1200 return err;
1201 }
1202 EXPORT_SYMBOL_GPL(kvm_rdpmc);
1203
1204 /*
1205 * List of msr numbers which we expose to userspace through KVM_GET_MSRS
1206 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
1207 *
1208 * The three MSR lists(msrs_to_save, emulated_msrs, msr_based_features)
1209 * extract the supported MSRs from the related const lists.
1210 * msrs_to_save is selected from the msrs_to_save_all to reflect the
1211 * capabilities of the host cpu. This capabilities test skips MSRs that are
1212 * kvm-specific. Those are put in emulated_msrs_all; filtering of emulated_msrs
1213 * may depend on host virtualization features rather than host cpu features.
1214 */
1215
1216 static const u32 msrs_to_save_all[] = {
1217 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
1218 MSR_STAR,
1219 #ifdef CONFIG_X86_64
1220 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
1221 #endif
1222 MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
1223 MSR_IA32_FEAT_CTL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
1224 MSR_IA32_SPEC_CTRL,
1225 MSR_IA32_RTIT_CTL, MSR_IA32_RTIT_STATUS, MSR_IA32_RTIT_CR3_MATCH,
1226 MSR_IA32_RTIT_OUTPUT_BASE, MSR_IA32_RTIT_OUTPUT_MASK,
1227 MSR_IA32_RTIT_ADDR0_A, MSR_IA32_RTIT_ADDR0_B,
1228 MSR_IA32_RTIT_ADDR1_A, MSR_IA32_RTIT_ADDR1_B,
1229 MSR_IA32_RTIT_ADDR2_A, MSR_IA32_RTIT_ADDR2_B,
1230 MSR_IA32_RTIT_ADDR3_A, MSR_IA32_RTIT_ADDR3_B,
1231 MSR_IA32_UMWAIT_CONTROL,
1232
1233 MSR_ARCH_PERFMON_FIXED_CTR0, MSR_ARCH_PERFMON_FIXED_CTR1,
1234 MSR_ARCH_PERFMON_FIXED_CTR0 + 2,
1235 MSR_CORE_PERF_FIXED_CTR_CTRL, MSR_CORE_PERF_GLOBAL_STATUS,
1236 MSR_CORE_PERF_GLOBAL_CTRL, MSR_CORE_PERF_GLOBAL_OVF_CTRL,
1237 MSR_ARCH_PERFMON_PERFCTR0, MSR_ARCH_PERFMON_PERFCTR1,
1238 MSR_ARCH_PERFMON_PERFCTR0 + 2, MSR_ARCH_PERFMON_PERFCTR0 + 3,
1239 MSR_ARCH_PERFMON_PERFCTR0 + 4, MSR_ARCH_PERFMON_PERFCTR0 + 5,
1240 MSR_ARCH_PERFMON_PERFCTR0 + 6, MSR_ARCH_PERFMON_PERFCTR0 + 7,
1241 MSR_ARCH_PERFMON_PERFCTR0 + 8, MSR_ARCH_PERFMON_PERFCTR0 + 9,
1242 MSR_ARCH_PERFMON_PERFCTR0 + 10, MSR_ARCH_PERFMON_PERFCTR0 + 11,
1243 MSR_ARCH_PERFMON_PERFCTR0 + 12, MSR_ARCH_PERFMON_PERFCTR0 + 13,
1244 MSR_ARCH_PERFMON_PERFCTR0 + 14, MSR_ARCH_PERFMON_PERFCTR0 + 15,
1245 MSR_ARCH_PERFMON_PERFCTR0 + 16, MSR_ARCH_PERFMON_PERFCTR0 + 17,
1246 MSR_ARCH_PERFMON_EVENTSEL0, MSR_ARCH_PERFMON_EVENTSEL1,
1247 MSR_ARCH_PERFMON_EVENTSEL0 + 2, MSR_ARCH_PERFMON_EVENTSEL0 + 3,
1248 MSR_ARCH_PERFMON_EVENTSEL0 + 4, MSR_ARCH_PERFMON_EVENTSEL0 + 5,
1249 MSR_ARCH_PERFMON_EVENTSEL0 + 6, MSR_ARCH_PERFMON_EVENTSEL0 + 7,
1250 MSR_ARCH_PERFMON_EVENTSEL0 + 8, MSR_ARCH_PERFMON_EVENTSEL0 + 9,
1251 MSR_ARCH_PERFMON_EVENTSEL0 + 10, MSR_ARCH_PERFMON_EVENTSEL0 + 11,
1252 MSR_ARCH_PERFMON_EVENTSEL0 + 12, MSR_ARCH_PERFMON_EVENTSEL0 + 13,
1253 MSR_ARCH_PERFMON_EVENTSEL0 + 14, MSR_ARCH_PERFMON_EVENTSEL0 + 15,
1254 MSR_ARCH_PERFMON_EVENTSEL0 + 16, MSR_ARCH_PERFMON_EVENTSEL0 + 17,
1255
1256 MSR_K7_EVNTSEL0, MSR_K7_EVNTSEL1, MSR_K7_EVNTSEL2, MSR_K7_EVNTSEL3,
1257 MSR_K7_PERFCTR0, MSR_K7_PERFCTR1, MSR_K7_PERFCTR2, MSR_K7_PERFCTR3,
1258 MSR_F15H_PERF_CTL0, MSR_F15H_PERF_CTL1, MSR_F15H_PERF_CTL2,
1259 MSR_F15H_PERF_CTL3, MSR_F15H_PERF_CTL4, MSR_F15H_PERF_CTL5,
1260 MSR_F15H_PERF_CTR0, MSR_F15H_PERF_CTR1, MSR_F15H_PERF_CTR2,
1261 MSR_F15H_PERF_CTR3, MSR_F15H_PERF_CTR4, MSR_F15H_PERF_CTR5,
1262 };
1263
1264 static u32 msrs_to_save[ARRAY_SIZE(msrs_to_save_all)];
1265 static unsigned num_msrs_to_save;
1266
1267 static const u32 emulated_msrs_all[] = {
1268 MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
1269 MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
1270 HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
1271 HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
1272 HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY,
1273 HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
1274 HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
1275 HV_X64_MSR_RESET,
1276 HV_X64_MSR_VP_INDEX,
1277 HV_X64_MSR_VP_RUNTIME,
1278 HV_X64_MSR_SCONTROL,
1279 HV_X64_MSR_STIMER0_CONFIG,
1280 HV_X64_MSR_VP_ASSIST_PAGE,
1281 HV_X64_MSR_REENLIGHTENMENT_CONTROL, HV_X64_MSR_TSC_EMULATION_CONTROL,
1282 HV_X64_MSR_TSC_EMULATION_STATUS,
1283 HV_X64_MSR_SYNDBG_OPTIONS,
1284 HV_X64_MSR_SYNDBG_CONTROL, HV_X64_MSR_SYNDBG_STATUS,
1285 HV_X64_MSR_SYNDBG_SEND_BUFFER, HV_X64_MSR_SYNDBG_RECV_BUFFER,
1286 HV_X64_MSR_SYNDBG_PENDING_BUFFER,
1287
1288 MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
1289 MSR_KVM_PV_EOI_EN, MSR_KVM_ASYNC_PF_INT, MSR_KVM_ASYNC_PF_ACK,
1290
1291 MSR_IA32_TSC_ADJUST,
1292 MSR_IA32_TSCDEADLINE,
1293 MSR_IA32_ARCH_CAPABILITIES,
1294 MSR_IA32_PERF_CAPABILITIES,
1295 MSR_IA32_MISC_ENABLE,
1296 MSR_IA32_MCG_STATUS,
1297 MSR_IA32_MCG_CTL,
1298 MSR_IA32_MCG_EXT_CTL,
1299 MSR_IA32_SMBASE,
1300 MSR_SMI_COUNT,
1301 MSR_PLATFORM_INFO,
1302 MSR_MISC_FEATURES_ENABLES,
1303 MSR_AMD64_VIRT_SPEC_CTRL,
1304 MSR_IA32_POWER_CTL,
1305 MSR_IA32_UCODE_REV,
1306
1307 /*
1308 * The following list leaves out MSRs whose values are determined
1309 * by arch/x86/kvm/vmx/nested.c based on CPUID or other MSRs.
1310 * We always support the "true" VMX control MSRs, even if the host
1311 * processor does not, so I am putting these registers here rather
1312 * than in msrs_to_save_all.
1313 */
1314 MSR_IA32_VMX_BASIC,
1315 MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1316 MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1317 MSR_IA32_VMX_TRUE_EXIT_CTLS,
1318 MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1319 MSR_IA32_VMX_MISC,
1320 MSR_IA32_VMX_CR0_FIXED0,
1321 MSR_IA32_VMX_CR4_FIXED0,
1322 MSR_IA32_VMX_VMCS_ENUM,
1323 MSR_IA32_VMX_PROCBASED_CTLS2,
1324 MSR_IA32_VMX_EPT_VPID_CAP,
1325 MSR_IA32_VMX_VMFUNC,
1326
1327 MSR_K7_HWCR,
1328 MSR_KVM_POLL_CONTROL,
1329 };
1330
1331 static u32 emulated_msrs[ARRAY_SIZE(emulated_msrs_all)];
1332 static unsigned num_emulated_msrs;
1333
1334 /*
1335 * List of msr numbers which are used to expose MSR-based features that
1336 * can be used by a hypervisor to validate requested CPU features.
1337 */
1338 static const u32 msr_based_features_all[] = {
1339 MSR_IA32_VMX_BASIC,
1340 MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1341 MSR_IA32_VMX_PINBASED_CTLS,
1342 MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1343 MSR_IA32_VMX_PROCBASED_CTLS,
1344 MSR_IA32_VMX_TRUE_EXIT_CTLS,
1345 MSR_IA32_VMX_EXIT_CTLS,
1346 MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1347 MSR_IA32_VMX_ENTRY_CTLS,
1348 MSR_IA32_VMX_MISC,
1349 MSR_IA32_VMX_CR0_FIXED0,
1350 MSR_IA32_VMX_CR0_FIXED1,
1351 MSR_IA32_VMX_CR4_FIXED0,
1352 MSR_IA32_VMX_CR4_FIXED1,
1353 MSR_IA32_VMX_VMCS_ENUM,
1354 MSR_IA32_VMX_PROCBASED_CTLS2,
1355 MSR_IA32_VMX_EPT_VPID_CAP,
1356 MSR_IA32_VMX_VMFUNC,
1357
1358 MSR_F10H_DECFG,
1359 MSR_IA32_UCODE_REV,
1360 MSR_IA32_ARCH_CAPABILITIES,
1361 MSR_IA32_PERF_CAPABILITIES,
1362 };
1363
1364 static u32 msr_based_features[ARRAY_SIZE(msr_based_features_all)];
1365 static unsigned int num_msr_based_features;
1366
kvm_get_arch_capabilities(void)1367 static u64 kvm_get_arch_capabilities(void)
1368 {
1369 u64 data = 0;
1370
1371 if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES))
1372 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, data);
1373
1374 /*
1375 * If nx_huge_pages is enabled, KVM's shadow paging will ensure that
1376 * the nested hypervisor runs with NX huge pages. If it is not,
1377 * L1 is anyway vulnerable to ITLB_MULTIHIT explots from other
1378 * L1 guests, so it need not worry about its own (L2) guests.
1379 */
1380 data |= ARCH_CAP_PSCHANGE_MC_NO;
1381
1382 /*
1383 * If we're doing cache flushes (either "always" or "cond")
1384 * we will do one whenever the guest does a vmlaunch/vmresume.
1385 * If an outer hypervisor is doing the cache flush for us
1386 * (VMENTER_L1D_FLUSH_NESTED_VM), we can safely pass that
1387 * capability to the guest too, and if EPT is disabled we're not
1388 * vulnerable. Overall, only VMENTER_L1D_FLUSH_NEVER will
1389 * require a nested hypervisor to do a flush of its own.
1390 */
1391 if (l1tf_vmx_mitigation != VMENTER_L1D_FLUSH_NEVER)
1392 data |= ARCH_CAP_SKIP_VMENTRY_L1DFLUSH;
1393
1394 if (!boot_cpu_has_bug(X86_BUG_CPU_MELTDOWN))
1395 data |= ARCH_CAP_RDCL_NO;
1396 if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
1397 data |= ARCH_CAP_SSB_NO;
1398 if (!boot_cpu_has_bug(X86_BUG_MDS))
1399 data |= ARCH_CAP_MDS_NO;
1400
1401 if (!boot_cpu_has(X86_FEATURE_RTM)) {
1402 /*
1403 * If RTM=0 because the kernel has disabled TSX, the host might
1404 * have TAA_NO or TSX_CTRL. Clear TAA_NO (the guest sees RTM=0
1405 * and therefore knows that there cannot be TAA) but keep
1406 * TSX_CTRL: some buggy userspaces leave it set on tsx=on hosts,
1407 * and we want to allow migrating those guests to tsx=off hosts.
1408 */
1409 data &= ~ARCH_CAP_TAA_NO;
1410 } else if (!boot_cpu_has_bug(X86_BUG_TAA)) {
1411 data |= ARCH_CAP_TAA_NO;
1412 } else {
1413 /*
1414 * Nothing to do here; we emulate TSX_CTRL if present on the
1415 * host so the guest can choose between disabling TSX or
1416 * using VERW to clear CPU buffers.
1417 */
1418 }
1419
1420 /* Guests don't need to know "Fill buffer clear control" exists */
1421 data &= ~ARCH_CAP_FB_CLEAR_CTRL;
1422
1423 return data;
1424 }
1425
kvm_get_msr_feature(struct kvm_msr_entry * msr)1426 static int kvm_get_msr_feature(struct kvm_msr_entry *msr)
1427 {
1428 switch (msr->index) {
1429 case MSR_IA32_ARCH_CAPABILITIES:
1430 msr->data = kvm_get_arch_capabilities();
1431 break;
1432 case MSR_IA32_UCODE_REV:
1433 rdmsrl_safe(msr->index, &msr->data);
1434 break;
1435 default:
1436 return kvm_x86_ops.get_msr_feature(msr);
1437 }
1438 return 0;
1439 }
1440
do_get_msr_feature(struct kvm_vcpu * vcpu,unsigned index,u64 * data)1441 static int do_get_msr_feature(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1442 {
1443 struct kvm_msr_entry msr;
1444 int r;
1445
1446 msr.index = index;
1447 r = kvm_get_msr_feature(&msr);
1448
1449 if (r == KVM_MSR_RET_INVALID) {
1450 /* Unconditionally clear the output for simplicity */
1451 *data = 0;
1452 if (kvm_msr_ignored_check(vcpu, index, 0, false))
1453 r = 0;
1454 }
1455
1456 if (r)
1457 return r;
1458
1459 *data = msr.data;
1460
1461 return 0;
1462 }
1463
__kvm_valid_efer(struct kvm_vcpu * vcpu,u64 efer)1464 static bool __kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1465 {
1466 if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT))
1467 return false;
1468
1469 if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM))
1470 return false;
1471
1472 if (efer & (EFER_LME | EFER_LMA) &&
1473 !guest_cpuid_has(vcpu, X86_FEATURE_LM))
1474 return false;
1475
1476 if (efer & EFER_NX && !guest_cpuid_has(vcpu, X86_FEATURE_NX))
1477 return false;
1478
1479 return true;
1480
1481 }
kvm_valid_efer(struct kvm_vcpu * vcpu,u64 efer)1482 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1483 {
1484 if (efer & efer_reserved_bits)
1485 return false;
1486
1487 return __kvm_valid_efer(vcpu, efer);
1488 }
1489 EXPORT_SYMBOL_GPL(kvm_valid_efer);
1490
set_efer(struct kvm_vcpu * vcpu,struct msr_data * msr_info)1491 static int set_efer(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1492 {
1493 u64 old_efer = vcpu->arch.efer;
1494 u64 efer = msr_info->data;
1495 int r;
1496
1497 if (efer & efer_reserved_bits)
1498 return 1;
1499
1500 if (!msr_info->host_initiated) {
1501 if (!__kvm_valid_efer(vcpu, efer))
1502 return 1;
1503
1504 if (is_paging(vcpu) &&
1505 (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1506 return 1;
1507 }
1508
1509 efer &= ~EFER_LMA;
1510 efer |= vcpu->arch.efer & EFER_LMA;
1511
1512 r = kvm_x86_ops.set_efer(vcpu, efer);
1513 if (r) {
1514 WARN_ON(r > 0);
1515 return r;
1516 }
1517
1518 /* Update reserved bits */
1519 if ((efer ^ old_efer) & EFER_NX)
1520 kvm_mmu_reset_context(vcpu);
1521
1522 return 0;
1523 }
1524
kvm_enable_efer_bits(u64 mask)1525 void kvm_enable_efer_bits(u64 mask)
1526 {
1527 efer_reserved_bits &= ~mask;
1528 }
1529 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1530
kvm_msr_allowed(struct kvm_vcpu * vcpu,u32 index,u32 type)1531 bool kvm_msr_allowed(struct kvm_vcpu *vcpu, u32 index, u32 type)
1532 {
1533 struct kvm_x86_msr_filter *msr_filter;
1534 struct msr_bitmap_range *ranges;
1535 struct kvm *kvm = vcpu->kvm;
1536 bool allowed;
1537 int idx;
1538 u32 i;
1539
1540 /* x2APIC MSRs do not support filtering. */
1541 if (index >= 0x800 && index <= 0x8ff)
1542 return true;
1543
1544 idx = srcu_read_lock(&kvm->srcu);
1545
1546 msr_filter = srcu_dereference(kvm->arch.msr_filter, &kvm->srcu);
1547 if (!msr_filter) {
1548 allowed = true;
1549 goto out;
1550 }
1551
1552 allowed = msr_filter->default_allow;
1553 ranges = msr_filter->ranges;
1554
1555 for (i = 0; i < msr_filter->count; i++) {
1556 u32 start = ranges[i].base;
1557 u32 end = start + ranges[i].nmsrs;
1558 u32 flags = ranges[i].flags;
1559 unsigned long *bitmap = ranges[i].bitmap;
1560
1561 if ((index >= start) && (index < end) && (flags & type)) {
1562 allowed = !!test_bit(index - start, bitmap);
1563 break;
1564 }
1565 }
1566
1567 out:
1568 srcu_read_unlock(&kvm->srcu, idx);
1569
1570 return allowed;
1571 }
1572 EXPORT_SYMBOL_GPL(kvm_msr_allowed);
1573
1574 /*
1575 * Write @data into the MSR specified by @index. Select MSR specific fault
1576 * checks are bypassed if @host_initiated is %true.
1577 * Returns 0 on success, non-0 otherwise.
1578 * Assumes vcpu_load() was already called.
1579 */
__kvm_set_msr(struct kvm_vcpu * vcpu,u32 index,u64 data,bool host_initiated)1580 static int __kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data,
1581 bool host_initiated)
1582 {
1583 struct msr_data msr;
1584
1585 if (!host_initiated && !kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_WRITE))
1586 return KVM_MSR_RET_FILTERED;
1587
1588 switch (index) {
1589 case MSR_FS_BASE:
1590 case MSR_GS_BASE:
1591 case MSR_KERNEL_GS_BASE:
1592 case MSR_CSTAR:
1593 case MSR_LSTAR:
1594 if (is_noncanonical_address(data, vcpu))
1595 return 1;
1596 break;
1597 case MSR_IA32_SYSENTER_EIP:
1598 case MSR_IA32_SYSENTER_ESP:
1599 /*
1600 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1601 * non-canonical address is written on Intel but not on
1602 * AMD (which ignores the top 32-bits, because it does
1603 * not implement 64-bit SYSENTER).
1604 *
1605 * 64-bit code should hence be able to write a non-canonical
1606 * value on AMD. Making the address canonical ensures that
1607 * vmentry does not fail on Intel after writing a non-canonical
1608 * value, and that something deterministic happens if the guest
1609 * invokes 64-bit SYSENTER.
1610 */
1611 data = get_canonical(data, vcpu_virt_addr_bits(vcpu));
1612 }
1613
1614 msr.data = data;
1615 msr.index = index;
1616 msr.host_initiated = host_initiated;
1617
1618 return kvm_x86_ops.set_msr(vcpu, &msr);
1619 }
1620
kvm_set_msr_ignored_check(struct kvm_vcpu * vcpu,u32 index,u64 data,bool host_initiated)1621 static int kvm_set_msr_ignored_check(struct kvm_vcpu *vcpu,
1622 u32 index, u64 data, bool host_initiated)
1623 {
1624 int ret = __kvm_set_msr(vcpu, index, data, host_initiated);
1625
1626 if (ret == KVM_MSR_RET_INVALID)
1627 if (kvm_msr_ignored_check(vcpu, index, data, true))
1628 ret = 0;
1629
1630 return ret;
1631 }
1632
1633 /*
1634 * Read the MSR specified by @index into @data. Select MSR specific fault
1635 * checks are bypassed if @host_initiated is %true.
1636 * Returns 0 on success, non-0 otherwise.
1637 * Assumes vcpu_load() was already called.
1638 */
__kvm_get_msr(struct kvm_vcpu * vcpu,u32 index,u64 * data,bool host_initiated)1639 int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data,
1640 bool host_initiated)
1641 {
1642 struct msr_data msr;
1643 int ret;
1644
1645 if (!host_initiated && !kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_READ))
1646 return KVM_MSR_RET_FILTERED;
1647
1648 msr.index = index;
1649 msr.host_initiated = host_initiated;
1650
1651 ret = kvm_x86_ops.get_msr(vcpu, &msr);
1652 if (!ret)
1653 *data = msr.data;
1654 return ret;
1655 }
1656
kvm_get_msr_ignored_check(struct kvm_vcpu * vcpu,u32 index,u64 * data,bool host_initiated)1657 static int kvm_get_msr_ignored_check(struct kvm_vcpu *vcpu,
1658 u32 index, u64 *data, bool host_initiated)
1659 {
1660 int ret = __kvm_get_msr(vcpu, index, data, host_initiated);
1661
1662 if (ret == KVM_MSR_RET_INVALID) {
1663 /* Unconditionally clear *data for simplicity */
1664 *data = 0;
1665 if (kvm_msr_ignored_check(vcpu, index, 0, false))
1666 ret = 0;
1667 }
1668
1669 return ret;
1670 }
1671
kvm_get_msr(struct kvm_vcpu * vcpu,u32 index,u64 * data)1672 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data)
1673 {
1674 return kvm_get_msr_ignored_check(vcpu, index, data, false);
1675 }
1676 EXPORT_SYMBOL_GPL(kvm_get_msr);
1677
kvm_set_msr(struct kvm_vcpu * vcpu,u32 index,u64 data)1678 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data)
1679 {
1680 return kvm_set_msr_ignored_check(vcpu, index, data, false);
1681 }
1682 EXPORT_SYMBOL_GPL(kvm_set_msr);
1683
complete_emulated_msr(struct kvm_vcpu * vcpu,bool is_read)1684 static int complete_emulated_msr(struct kvm_vcpu *vcpu, bool is_read)
1685 {
1686 if (vcpu->run->msr.error) {
1687 kvm_inject_gp(vcpu, 0);
1688 return 1;
1689 } else if (is_read) {
1690 kvm_rax_write(vcpu, (u32)vcpu->run->msr.data);
1691 kvm_rdx_write(vcpu, vcpu->run->msr.data >> 32);
1692 }
1693
1694 return kvm_skip_emulated_instruction(vcpu);
1695 }
1696
complete_emulated_rdmsr(struct kvm_vcpu * vcpu)1697 static int complete_emulated_rdmsr(struct kvm_vcpu *vcpu)
1698 {
1699 return complete_emulated_msr(vcpu, true);
1700 }
1701
complete_emulated_wrmsr(struct kvm_vcpu * vcpu)1702 static int complete_emulated_wrmsr(struct kvm_vcpu *vcpu)
1703 {
1704 return complete_emulated_msr(vcpu, false);
1705 }
1706
kvm_msr_reason(int r)1707 static u64 kvm_msr_reason(int r)
1708 {
1709 switch (r) {
1710 case KVM_MSR_RET_INVALID:
1711 return KVM_MSR_EXIT_REASON_UNKNOWN;
1712 case KVM_MSR_RET_FILTERED:
1713 return KVM_MSR_EXIT_REASON_FILTER;
1714 default:
1715 return KVM_MSR_EXIT_REASON_INVAL;
1716 }
1717 }
1718
kvm_msr_user_space(struct kvm_vcpu * vcpu,u32 index,u32 exit_reason,u64 data,int (* completion)(struct kvm_vcpu * vcpu),int r)1719 static int kvm_msr_user_space(struct kvm_vcpu *vcpu, u32 index,
1720 u32 exit_reason, u64 data,
1721 int (*completion)(struct kvm_vcpu *vcpu),
1722 int r)
1723 {
1724 u64 msr_reason = kvm_msr_reason(r);
1725
1726 /* Check if the user wanted to know about this MSR fault */
1727 if (!(vcpu->kvm->arch.user_space_msr_mask & msr_reason))
1728 return 0;
1729
1730 vcpu->run->exit_reason = exit_reason;
1731 vcpu->run->msr.error = 0;
1732 memset(vcpu->run->msr.pad, 0, sizeof(vcpu->run->msr.pad));
1733 vcpu->run->msr.reason = msr_reason;
1734 vcpu->run->msr.index = index;
1735 vcpu->run->msr.data = data;
1736 vcpu->arch.complete_userspace_io = completion;
1737
1738 return 1;
1739 }
1740
kvm_get_msr_user_space(struct kvm_vcpu * vcpu,u32 index,int r)1741 static int kvm_get_msr_user_space(struct kvm_vcpu *vcpu, u32 index, int r)
1742 {
1743 return kvm_msr_user_space(vcpu, index, KVM_EXIT_X86_RDMSR, 0,
1744 complete_emulated_rdmsr, r);
1745 }
1746
kvm_set_msr_user_space(struct kvm_vcpu * vcpu,u32 index,u64 data,int r)1747 static int kvm_set_msr_user_space(struct kvm_vcpu *vcpu, u32 index, u64 data, int r)
1748 {
1749 return kvm_msr_user_space(vcpu, index, KVM_EXIT_X86_WRMSR, data,
1750 complete_emulated_wrmsr, r);
1751 }
1752
kvm_emulate_rdmsr(struct kvm_vcpu * vcpu)1753 int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu)
1754 {
1755 u32 ecx = kvm_rcx_read(vcpu);
1756 u64 data;
1757 int r;
1758
1759 r = kvm_get_msr(vcpu, ecx, &data);
1760
1761 /* MSR read failed? See if we should ask user space */
1762 if (r && kvm_get_msr_user_space(vcpu, ecx, r)) {
1763 /* Bounce to user space */
1764 return 0;
1765 }
1766
1767 /* MSR read failed? Inject a #GP */
1768 if (r) {
1769 trace_kvm_msr_read_ex(ecx);
1770 kvm_inject_gp(vcpu, 0);
1771 return 1;
1772 }
1773
1774 trace_kvm_msr_read(ecx, data);
1775
1776 kvm_rax_write(vcpu, data & -1u);
1777 kvm_rdx_write(vcpu, (data >> 32) & -1u);
1778 return kvm_skip_emulated_instruction(vcpu);
1779 }
1780 EXPORT_SYMBOL_GPL(kvm_emulate_rdmsr);
1781
kvm_emulate_wrmsr(struct kvm_vcpu * vcpu)1782 int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu)
1783 {
1784 u32 ecx = kvm_rcx_read(vcpu);
1785 u64 data = kvm_read_edx_eax(vcpu);
1786 int r;
1787
1788 r = kvm_set_msr(vcpu, ecx, data);
1789
1790 /* MSR write failed? See if we should ask user space */
1791 if (r && kvm_set_msr_user_space(vcpu, ecx, data, r))
1792 /* Bounce to user space */
1793 return 0;
1794
1795 /* Signal all other negative errors to userspace */
1796 if (r < 0)
1797 return r;
1798
1799 /* MSR write failed? Inject a #GP */
1800 if (r > 0) {
1801 trace_kvm_msr_write_ex(ecx, data);
1802 kvm_inject_gp(vcpu, 0);
1803 return 1;
1804 }
1805
1806 trace_kvm_msr_write(ecx, data);
1807 return kvm_skip_emulated_instruction(vcpu);
1808 }
1809 EXPORT_SYMBOL_GPL(kvm_emulate_wrmsr);
1810
kvm_vcpu_exit_request(struct kvm_vcpu * vcpu)1811 bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu)
1812 {
1813 return vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu) ||
1814 xfer_to_guest_mode_work_pending();
1815 }
1816 EXPORT_SYMBOL_GPL(kvm_vcpu_exit_request);
1817
1818 /*
1819 * The fast path for frequent and performance sensitive wrmsr emulation,
1820 * i.e. the sending of IPI, sending IPI early in the VM-Exit flow reduces
1821 * the latency of virtual IPI by avoiding the expensive bits of transitioning
1822 * from guest to host, e.g. reacquiring KVM's SRCU lock. In contrast to the
1823 * other cases which must be called after interrupts are enabled on the host.
1824 */
handle_fastpath_set_x2apic_icr_irqoff(struct kvm_vcpu * vcpu,u64 data)1825 static int handle_fastpath_set_x2apic_icr_irqoff(struct kvm_vcpu *vcpu, u64 data)
1826 {
1827 if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(vcpu->arch.apic))
1828 return 1;
1829
1830 if (((data & APIC_SHORT_MASK) == APIC_DEST_NOSHORT) &&
1831 ((data & APIC_DEST_MASK) == APIC_DEST_PHYSICAL) &&
1832 ((data & APIC_MODE_MASK) == APIC_DM_FIXED) &&
1833 ((u32)(data >> 32) != X2APIC_BROADCAST)) {
1834
1835 data &= ~(1 << 12);
1836 kvm_apic_send_ipi(vcpu->arch.apic, (u32)data, (u32)(data >> 32));
1837 kvm_lapic_set_reg(vcpu->arch.apic, APIC_ICR2, (u32)(data >> 32));
1838 kvm_lapic_set_reg(vcpu->arch.apic, APIC_ICR, (u32)data);
1839 trace_kvm_apic_write(APIC_ICR, (u32)data);
1840 return 0;
1841 }
1842
1843 return 1;
1844 }
1845
handle_fastpath_set_tscdeadline(struct kvm_vcpu * vcpu,u64 data)1846 static int handle_fastpath_set_tscdeadline(struct kvm_vcpu *vcpu, u64 data)
1847 {
1848 if (!kvm_can_use_hv_timer(vcpu))
1849 return 1;
1850
1851 kvm_set_lapic_tscdeadline_msr(vcpu, data);
1852 return 0;
1853 }
1854
handle_fastpath_set_msr_irqoff(struct kvm_vcpu * vcpu)1855 fastpath_t handle_fastpath_set_msr_irqoff(struct kvm_vcpu *vcpu)
1856 {
1857 u32 msr = kvm_rcx_read(vcpu);
1858 u64 data;
1859 fastpath_t ret = EXIT_FASTPATH_NONE;
1860
1861 switch (msr) {
1862 case APIC_BASE_MSR + (APIC_ICR >> 4):
1863 data = kvm_read_edx_eax(vcpu);
1864 if (!handle_fastpath_set_x2apic_icr_irqoff(vcpu, data)) {
1865 kvm_skip_emulated_instruction(vcpu);
1866 ret = EXIT_FASTPATH_EXIT_HANDLED;
1867 }
1868 break;
1869 case MSR_IA32_TSCDEADLINE:
1870 data = kvm_read_edx_eax(vcpu);
1871 if (!handle_fastpath_set_tscdeadline(vcpu, data)) {
1872 kvm_skip_emulated_instruction(vcpu);
1873 ret = EXIT_FASTPATH_REENTER_GUEST;
1874 }
1875 break;
1876 default:
1877 break;
1878 }
1879
1880 if (ret != EXIT_FASTPATH_NONE)
1881 trace_kvm_msr_write(msr, data);
1882
1883 return ret;
1884 }
1885 EXPORT_SYMBOL_GPL(handle_fastpath_set_msr_irqoff);
1886
1887 /*
1888 * Adapt set_msr() to msr_io()'s calling convention
1889 */
do_get_msr(struct kvm_vcpu * vcpu,unsigned index,u64 * data)1890 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1891 {
1892 return kvm_get_msr_ignored_check(vcpu, index, data, true);
1893 }
1894
do_set_msr(struct kvm_vcpu * vcpu,unsigned index,u64 * data)1895 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1896 {
1897 return kvm_set_msr_ignored_check(vcpu, index, *data, true);
1898 }
1899
1900 #ifdef CONFIG_X86_64
1901 struct pvclock_clock {
1902 int vclock_mode;
1903 u64 cycle_last;
1904 u64 mask;
1905 u32 mult;
1906 u32 shift;
1907 u64 base_cycles;
1908 u64 offset;
1909 };
1910
1911 struct pvclock_gtod_data {
1912 seqcount_t seq;
1913
1914 struct pvclock_clock clock; /* extract of a clocksource struct */
1915 struct pvclock_clock raw_clock; /* extract of a clocksource struct */
1916
1917 ktime_t offs_boot;
1918 u64 wall_time_sec;
1919 };
1920
1921 static struct pvclock_gtod_data pvclock_gtod_data;
1922
update_pvclock_gtod(struct timekeeper * tk)1923 static void update_pvclock_gtod(struct timekeeper *tk)
1924 {
1925 struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
1926
1927 write_seqcount_begin(&vdata->seq);
1928
1929 /* copy pvclock gtod data */
1930 vdata->clock.vclock_mode = tk->tkr_mono.clock->vdso_clock_mode;
1931 vdata->clock.cycle_last = tk->tkr_mono.cycle_last;
1932 vdata->clock.mask = tk->tkr_mono.mask;
1933 vdata->clock.mult = tk->tkr_mono.mult;
1934 vdata->clock.shift = tk->tkr_mono.shift;
1935 vdata->clock.base_cycles = tk->tkr_mono.xtime_nsec;
1936 vdata->clock.offset = tk->tkr_mono.base;
1937
1938 vdata->raw_clock.vclock_mode = tk->tkr_raw.clock->vdso_clock_mode;
1939 vdata->raw_clock.cycle_last = tk->tkr_raw.cycle_last;
1940 vdata->raw_clock.mask = tk->tkr_raw.mask;
1941 vdata->raw_clock.mult = tk->tkr_raw.mult;
1942 vdata->raw_clock.shift = tk->tkr_raw.shift;
1943 vdata->raw_clock.base_cycles = tk->tkr_raw.xtime_nsec;
1944 vdata->raw_clock.offset = tk->tkr_raw.base;
1945
1946 vdata->wall_time_sec = tk->xtime_sec;
1947
1948 vdata->offs_boot = tk->offs_boot;
1949
1950 write_seqcount_end(&vdata->seq);
1951 }
1952
get_kvmclock_base_ns(void)1953 static s64 get_kvmclock_base_ns(void)
1954 {
1955 /* Count up from boot time, but with the frequency of the raw clock. */
1956 return ktime_to_ns(ktime_add(ktime_get_raw(), pvclock_gtod_data.offs_boot));
1957 }
1958 #else
get_kvmclock_base_ns(void)1959 static s64 get_kvmclock_base_ns(void)
1960 {
1961 /* Master clock not used, so we can just use CLOCK_BOOTTIME. */
1962 return ktime_get_boottime_ns();
1963 }
1964 #endif
1965
kvm_write_wall_clock(struct kvm * kvm,gpa_t wall_clock)1966 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
1967 {
1968 int version;
1969 int r;
1970 struct pvclock_wall_clock wc;
1971 u64 wall_nsec;
1972
1973 kvm->arch.wall_clock = wall_clock;
1974
1975 if (!wall_clock)
1976 return;
1977
1978 r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
1979 if (r)
1980 return;
1981
1982 if (version & 1)
1983 ++version; /* first time write, random junk */
1984
1985 ++version;
1986
1987 if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
1988 return;
1989
1990 /*
1991 * The guest calculates current wall clock time by adding
1992 * system time (updated by kvm_guest_time_update below) to the
1993 * wall clock specified here. We do the reverse here.
1994 */
1995 wall_nsec = ktime_get_real_ns() - get_kvmclock_ns(kvm);
1996
1997 wc.nsec = do_div(wall_nsec, 1000000000);
1998 wc.sec = (u32)wall_nsec; /* overflow in 2106 guest time */
1999 wc.version = version;
2000
2001 kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
2002
2003 version++;
2004 kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
2005 }
2006
kvm_write_system_time(struct kvm_vcpu * vcpu,gpa_t system_time,bool old_msr,bool host_initiated)2007 static void kvm_write_system_time(struct kvm_vcpu *vcpu, gpa_t system_time,
2008 bool old_msr, bool host_initiated)
2009 {
2010 struct kvm_arch *ka = &vcpu->kvm->arch;
2011
2012 if (vcpu->vcpu_id == 0 && !host_initiated) {
2013 if (ka->boot_vcpu_runs_old_kvmclock != old_msr)
2014 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2015
2016 ka->boot_vcpu_runs_old_kvmclock = old_msr;
2017 }
2018
2019 vcpu->arch.time = system_time;
2020 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2021
2022 /* we verify if the enable bit is set... */
2023 vcpu->arch.pv_time_enabled = false;
2024 if (!(system_time & 1))
2025 return;
2026
2027 if (!kvm_gfn_to_hva_cache_init(vcpu->kvm,
2028 &vcpu->arch.pv_time, system_time & ~1ULL,
2029 sizeof(struct pvclock_vcpu_time_info)))
2030 vcpu->arch.pv_time_enabled = true;
2031
2032 return;
2033 }
2034
div_frac(uint32_t dividend,uint32_t divisor)2035 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
2036 {
2037 do_shl32_div32(dividend, divisor);
2038 return dividend;
2039 }
2040
kvm_get_time_scale(uint64_t scaled_hz,uint64_t base_hz,s8 * pshift,u32 * pmultiplier)2041 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz,
2042 s8 *pshift, u32 *pmultiplier)
2043 {
2044 uint64_t scaled64;
2045 int32_t shift = 0;
2046 uint64_t tps64;
2047 uint32_t tps32;
2048
2049 tps64 = base_hz;
2050 scaled64 = scaled_hz;
2051 while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
2052 tps64 >>= 1;
2053 shift--;
2054 }
2055
2056 tps32 = (uint32_t)tps64;
2057 while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
2058 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
2059 scaled64 >>= 1;
2060 else
2061 tps32 <<= 1;
2062 shift++;
2063 }
2064
2065 *pshift = shift;
2066 *pmultiplier = div_frac(scaled64, tps32);
2067 }
2068
2069 #ifdef CONFIG_X86_64
2070 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
2071 #endif
2072
2073 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
2074 static unsigned long max_tsc_khz;
2075
adjust_tsc_khz(u32 khz,s32 ppm)2076 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
2077 {
2078 u64 v = (u64)khz * (1000000 + ppm);
2079 do_div(v, 1000000);
2080 return v;
2081 }
2082
set_tsc_khz(struct kvm_vcpu * vcpu,u32 user_tsc_khz,bool scale)2083 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
2084 {
2085 u64 ratio;
2086
2087 /* Guest TSC same frequency as host TSC? */
2088 if (!scale) {
2089 vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
2090 return 0;
2091 }
2092
2093 /* TSC scaling supported? */
2094 if (!kvm_has_tsc_control) {
2095 if (user_tsc_khz > tsc_khz) {
2096 vcpu->arch.tsc_catchup = 1;
2097 vcpu->arch.tsc_always_catchup = 1;
2098 return 0;
2099 } else {
2100 pr_warn_ratelimited("user requested TSC rate below hardware speed\n");
2101 return -1;
2102 }
2103 }
2104
2105 /* TSC scaling required - calculate ratio */
2106 ratio = mul_u64_u32_div(1ULL << kvm_tsc_scaling_ratio_frac_bits,
2107 user_tsc_khz, tsc_khz);
2108
2109 if (ratio == 0 || ratio >= kvm_max_tsc_scaling_ratio) {
2110 pr_warn_ratelimited("Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
2111 user_tsc_khz);
2112 return -1;
2113 }
2114
2115 vcpu->arch.tsc_scaling_ratio = ratio;
2116 return 0;
2117 }
2118
kvm_set_tsc_khz(struct kvm_vcpu * vcpu,u32 user_tsc_khz)2119 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
2120 {
2121 u32 thresh_lo, thresh_hi;
2122 int use_scaling = 0;
2123
2124 /* tsc_khz can be zero if TSC calibration fails */
2125 if (user_tsc_khz == 0) {
2126 /* set tsc_scaling_ratio to a safe value */
2127 vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
2128 return -1;
2129 }
2130
2131 /* Compute a scale to convert nanoseconds in TSC cycles */
2132 kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC,
2133 &vcpu->arch.virtual_tsc_shift,
2134 &vcpu->arch.virtual_tsc_mult);
2135 vcpu->arch.virtual_tsc_khz = user_tsc_khz;
2136
2137 /*
2138 * Compute the variation in TSC rate which is acceptable
2139 * within the range of tolerance and decide if the
2140 * rate being applied is within that bounds of the hardware
2141 * rate. If so, no scaling or compensation need be done.
2142 */
2143 thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
2144 thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
2145 if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
2146 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", user_tsc_khz, thresh_lo, thresh_hi);
2147 use_scaling = 1;
2148 }
2149 return set_tsc_khz(vcpu, user_tsc_khz, use_scaling);
2150 }
2151
compute_guest_tsc(struct kvm_vcpu * vcpu,s64 kernel_ns)2152 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
2153 {
2154 u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
2155 vcpu->arch.virtual_tsc_mult,
2156 vcpu->arch.virtual_tsc_shift);
2157 tsc += vcpu->arch.this_tsc_write;
2158 return tsc;
2159 }
2160
gtod_is_based_on_tsc(int mode)2161 static inline int gtod_is_based_on_tsc(int mode)
2162 {
2163 return mode == VDSO_CLOCKMODE_TSC || mode == VDSO_CLOCKMODE_HVCLOCK;
2164 }
2165
kvm_track_tsc_matching(struct kvm_vcpu * vcpu)2166 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
2167 {
2168 #ifdef CONFIG_X86_64
2169 bool vcpus_matched;
2170 struct kvm_arch *ka = &vcpu->kvm->arch;
2171 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2172
2173 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
2174 atomic_read(&vcpu->kvm->online_vcpus));
2175
2176 /*
2177 * Once the masterclock is enabled, always perform request in
2178 * order to update it.
2179 *
2180 * In order to enable masterclock, the host clocksource must be TSC
2181 * and the vcpus need to have matched TSCs. When that happens,
2182 * perform request to enable masterclock.
2183 */
2184 if (ka->use_master_clock ||
2185 (gtod_is_based_on_tsc(gtod->clock.vclock_mode) && vcpus_matched))
2186 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2187
2188 trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
2189 atomic_read(&vcpu->kvm->online_vcpus),
2190 ka->use_master_clock, gtod->clock.vclock_mode);
2191 #endif
2192 }
2193
2194 /*
2195 * Multiply tsc by a fixed point number represented by ratio.
2196 *
2197 * The most significant 64-N bits (mult) of ratio represent the
2198 * integral part of the fixed point number; the remaining N bits
2199 * (frac) represent the fractional part, ie. ratio represents a fixed
2200 * point number (mult + frac * 2^(-N)).
2201 *
2202 * N equals to kvm_tsc_scaling_ratio_frac_bits.
2203 */
__scale_tsc(u64 ratio,u64 tsc)2204 static inline u64 __scale_tsc(u64 ratio, u64 tsc)
2205 {
2206 return mul_u64_u64_shr(tsc, ratio, kvm_tsc_scaling_ratio_frac_bits);
2207 }
2208
kvm_scale_tsc(struct kvm_vcpu * vcpu,u64 tsc)2209 u64 kvm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc)
2210 {
2211 u64 _tsc = tsc;
2212 u64 ratio = vcpu->arch.tsc_scaling_ratio;
2213
2214 if (ratio != kvm_default_tsc_scaling_ratio)
2215 _tsc = __scale_tsc(ratio, tsc);
2216
2217 return _tsc;
2218 }
2219 EXPORT_SYMBOL_GPL(kvm_scale_tsc);
2220
kvm_compute_tsc_offset(struct kvm_vcpu * vcpu,u64 target_tsc)2221 static u64 kvm_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
2222 {
2223 u64 tsc;
2224
2225 tsc = kvm_scale_tsc(vcpu, rdtsc());
2226
2227 return target_tsc - tsc;
2228 }
2229
kvm_read_l1_tsc(struct kvm_vcpu * vcpu,u64 host_tsc)2230 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
2231 {
2232 return vcpu->arch.l1_tsc_offset + kvm_scale_tsc(vcpu, host_tsc);
2233 }
2234 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
2235
kvm_vcpu_write_tsc_offset(struct kvm_vcpu * vcpu,u64 offset)2236 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
2237 {
2238 vcpu->arch.l1_tsc_offset = offset;
2239 vcpu->arch.tsc_offset = kvm_x86_ops.write_l1_tsc_offset(vcpu, offset);
2240 }
2241
kvm_check_tsc_unstable(void)2242 static inline bool kvm_check_tsc_unstable(void)
2243 {
2244 #ifdef CONFIG_X86_64
2245 /*
2246 * TSC is marked unstable when we're running on Hyper-V,
2247 * 'TSC page' clocksource is good.
2248 */
2249 if (pvclock_gtod_data.clock.vclock_mode == VDSO_CLOCKMODE_HVCLOCK)
2250 return false;
2251 #endif
2252 return check_tsc_unstable();
2253 }
2254
kvm_synchronize_tsc(struct kvm_vcpu * vcpu,u64 data)2255 static void kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 data)
2256 {
2257 struct kvm *kvm = vcpu->kvm;
2258 u64 offset, ns, elapsed;
2259 unsigned long flags;
2260 bool matched;
2261 bool already_matched;
2262 bool synchronizing = false;
2263
2264 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
2265 offset = kvm_compute_tsc_offset(vcpu, data);
2266 ns = get_kvmclock_base_ns();
2267 elapsed = ns - kvm->arch.last_tsc_nsec;
2268
2269 if (vcpu->arch.virtual_tsc_khz) {
2270 if (data == 0) {
2271 /*
2272 * detection of vcpu initialization -- need to sync
2273 * with other vCPUs. This particularly helps to keep
2274 * kvm_clock stable after CPU hotplug
2275 */
2276 synchronizing = true;
2277 } else {
2278 u64 tsc_exp = kvm->arch.last_tsc_write +
2279 nsec_to_cycles(vcpu, elapsed);
2280 u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL;
2281 /*
2282 * Special case: TSC write with a small delta (1 second)
2283 * of virtual cycle time against real time is
2284 * interpreted as an attempt to synchronize the CPU.
2285 */
2286 synchronizing = data < tsc_exp + tsc_hz &&
2287 data + tsc_hz > tsc_exp;
2288 }
2289 }
2290
2291 /*
2292 * For a reliable TSC, we can match TSC offsets, and for an unstable
2293 * TSC, we add elapsed time in this computation. We could let the
2294 * compensation code attempt to catch up if we fall behind, but
2295 * it's better to try to match offsets from the beginning.
2296 */
2297 if (synchronizing &&
2298 vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
2299 if (!kvm_check_tsc_unstable()) {
2300 offset = kvm->arch.cur_tsc_offset;
2301 } else {
2302 u64 delta = nsec_to_cycles(vcpu, elapsed);
2303 data += delta;
2304 offset = kvm_compute_tsc_offset(vcpu, data);
2305 }
2306 matched = true;
2307 already_matched = (vcpu->arch.this_tsc_generation == kvm->arch.cur_tsc_generation);
2308 } else {
2309 /*
2310 * We split periods of matched TSC writes into generations.
2311 * For each generation, we track the original measured
2312 * nanosecond time, offset, and write, so if TSCs are in
2313 * sync, we can match exact offset, and if not, we can match
2314 * exact software computation in compute_guest_tsc()
2315 *
2316 * These values are tracked in kvm->arch.cur_xxx variables.
2317 */
2318 kvm->arch.cur_tsc_generation++;
2319 kvm->arch.cur_tsc_nsec = ns;
2320 kvm->arch.cur_tsc_write = data;
2321 kvm->arch.cur_tsc_offset = offset;
2322 matched = false;
2323 }
2324
2325 /*
2326 * We also track th most recent recorded KHZ, write and time to
2327 * allow the matching interval to be extended at each write.
2328 */
2329 kvm->arch.last_tsc_nsec = ns;
2330 kvm->arch.last_tsc_write = data;
2331 kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
2332
2333 vcpu->arch.last_guest_tsc = data;
2334
2335 /* Keep track of which generation this VCPU has synchronized to */
2336 vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
2337 vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
2338 vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
2339
2340 kvm_vcpu_write_tsc_offset(vcpu, offset);
2341 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
2342
2343 spin_lock(&kvm->arch.pvclock_gtod_sync_lock);
2344 if (!matched) {
2345 kvm->arch.nr_vcpus_matched_tsc = 0;
2346 } else if (!already_matched) {
2347 kvm->arch.nr_vcpus_matched_tsc++;
2348 }
2349
2350 kvm_track_tsc_matching(vcpu);
2351 spin_unlock(&kvm->arch.pvclock_gtod_sync_lock);
2352 }
2353
adjust_tsc_offset_guest(struct kvm_vcpu * vcpu,s64 adjustment)2354 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
2355 s64 adjustment)
2356 {
2357 u64 tsc_offset = vcpu->arch.l1_tsc_offset;
2358 kvm_vcpu_write_tsc_offset(vcpu, tsc_offset + adjustment);
2359 }
2360
adjust_tsc_offset_host(struct kvm_vcpu * vcpu,s64 adjustment)2361 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
2362 {
2363 if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio)
2364 WARN_ON(adjustment < 0);
2365 adjustment = kvm_scale_tsc(vcpu, (u64) adjustment);
2366 adjust_tsc_offset_guest(vcpu, adjustment);
2367 }
2368
2369 #ifdef CONFIG_X86_64
2370
read_tsc(void)2371 static u64 read_tsc(void)
2372 {
2373 u64 ret = (u64)rdtsc_ordered();
2374 u64 last = pvclock_gtod_data.clock.cycle_last;
2375
2376 if (likely(ret >= last))
2377 return ret;
2378
2379 /*
2380 * GCC likes to generate cmov here, but this branch is extremely
2381 * predictable (it's just a function of time and the likely is
2382 * very likely) and there's a data dependence, so force GCC
2383 * to generate a branch instead. I don't barrier() because
2384 * we don't actually need a barrier, and if this function
2385 * ever gets inlined it will generate worse code.
2386 */
2387 asm volatile ("");
2388 return last;
2389 }
2390
vgettsc(struct pvclock_clock * clock,u64 * tsc_timestamp,int * mode)2391 static inline u64 vgettsc(struct pvclock_clock *clock, u64 *tsc_timestamp,
2392 int *mode)
2393 {
2394 long v;
2395 u64 tsc_pg_val;
2396
2397 switch (clock->vclock_mode) {
2398 case VDSO_CLOCKMODE_HVCLOCK:
2399 tsc_pg_val = hv_read_tsc_page_tsc(hv_get_tsc_page(),
2400 tsc_timestamp);
2401 if (tsc_pg_val != U64_MAX) {
2402 /* TSC page valid */
2403 *mode = VDSO_CLOCKMODE_HVCLOCK;
2404 v = (tsc_pg_val - clock->cycle_last) &
2405 clock->mask;
2406 } else {
2407 /* TSC page invalid */
2408 *mode = VDSO_CLOCKMODE_NONE;
2409 }
2410 break;
2411 case VDSO_CLOCKMODE_TSC:
2412 *mode = VDSO_CLOCKMODE_TSC;
2413 *tsc_timestamp = read_tsc();
2414 v = (*tsc_timestamp - clock->cycle_last) &
2415 clock->mask;
2416 break;
2417 default:
2418 *mode = VDSO_CLOCKMODE_NONE;
2419 }
2420
2421 if (*mode == VDSO_CLOCKMODE_NONE)
2422 *tsc_timestamp = v = 0;
2423
2424 return v * clock->mult;
2425 }
2426
do_monotonic_raw(s64 * t,u64 * tsc_timestamp)2427 static int do_monotonic_raw(s64 *t, u64 *tsc_timestamp)
2428 {
2429 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2430 unsigned long seq;
2431 int mode;
2432 u64 ns;
2433
2434 do {
2435 seq = read_seqcount_begin(>od->seq);
2436 ns = gtod->raw_clock.base_cycles;
2437 ns += vgettsc(>od->raw_clock, tsc_timestamp, &mode);
2438 ns >>= gtod->raw_clock.shift;
2439 ns += ktime_to_ns(ktime_add(gtod->raw_clock.offset, gtod->offs_boot));
2440 } while (unlikely(read_seqcount_retry(>od->seq, seq)));
2441 *t = ns;
2442
2443 return mode;
2444 }
2445
do_realtime(struct timespec64 * ts,u64 * tsc_timestamp)2446 static int do_realtime(struct timespec64 *ts, u64 *tsc_timestamp)
2447 {
2448 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2449 unsigned long seq;
2450 int mode;
2451 u64 ns;
2452
2453 do {
2454 seq = read_seqcount_begin(>od->seq);
2455 ts->tv_sec = gtod->wall_time_sec;
2456 ns = gtod->clock.base_cycles;
2457 ns += vgettsc(>od->clock, tsc_timestamp, &mode);
2458 ns >>= gtod->clock.shift;
2459 } while (unlikely(read_seqcount_retry(>od->seq, seq)));
2460
2461 ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns);
2462 ts->tv_nsec = ns;
2463
2464 return mode;
2465 }
2466
2467 /* returns true if host is using TSC based clocksource */
kvm_get_time_and_clockread(s64 * kernel_ns,u64 * tsc_timestamp)2468 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp)
2469 {
2470 /* checked again under seqlock below */
2471 if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2472 return false;
2473
2474 return gtod_is_based_on_tsc(do_monotonic_raw(kernel_ns,
2475 tsc_timestamp));
2476 }
2477
2478 /* returns true if host is using TSC based clocksource */
kvm_get_walltime_and_clockread(struct timespec64 * ts,u64 * tsc_timestamp)2479 static bool kvm_get_walltime_and_clockread(struct timespec64 *ts,
2480 u64 *tsc_timestamp)
2481 {
2482 /* checked again under seqlock below */
2483 if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2484 return false;
2485
2486 return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp));
2487 }
2488 #endif
2489
2490 /*
2491 *
2492 * Assuming a stable TSC across physical CPUS, and a stable TSC
2493 * across virtual CPUs, the following condition is possible.
2494 * Each numbered line represents an event visible to both
2495 * CPUs at the next numbered event.
2496 *
2497 * "timespecX" represents host monotonic time. "tscX" represents
2498 * RDTSC value.
2499 *
2500 * VCPU0 on CPU0 | VCPU1 on CPU1
2501 *
2502 * 1. read timespec0,tsc0
2503 * 2. | timespec1 = timespec0 + N
2504 * | tsc1 = tsc0 + M
2505 * 3. transition to guest | transition to guest
2506 * 4. ret0 = timespec0 + (rdtsc - tsc0) |
2507 * 5. | ret1 = timespec1 + (rdtsc - tsc1)
2508 * | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
2509 *
2510 * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
2511 *
2512 * - ret0 < ret1
2513 * - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
2514 * ...
2515 * - 0 < N - M => M < N
2516 *
2517 * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
2518 * always the case (the difference between two distinct xtime instances
2519 * might be smaller then the difference between corresponding TSC reads,
2520 * when updating guest vcpus pvclock areas).
2521 *
2522 * To avoid that problem, do not allow visibility of distinct
2523 * system_timestamp/tsc_timestamp values simultaneously: use a master
2524 * copy of host monotonic time values. Update that master copy
2525 * in lockstep.
2526 *
2527 * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
2528 *
2529 */
2530
pvclock_update_vm_gtod_copy(struct kvm * kvm)2531 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
2532 {
2533 #ifdef CONFIG_X86_64
2534 struct kvm_arch *ka = &kvm->arch;
2535 int vclock_mode;
2536 bool host_tsc_clocksource, vcpus_matched;
2537
2538 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
2539 atomic_read(&kvm->online_vcpus));
2540
2541 /*
2542 * If the host uses TSC clock, then passthrough TSC as stable
2543 * to the guest.
2544 */
2545 host_tsc_clocksource = kvm_get_time_and_clockread(
2546 &ka->master_kernel_ns,
2547 &ka->master_cycle_now);
2548
2549 ka->use_master_clock = host_tsc_clocksource && vcpus_matched
2550 && !ka->backwards_tsc_observed
2551 && !ka->boot_vcpu_runs_old_kvmclock;
2552
2553 if (ka->use_master_clock)
2554 atomic_set(&kvm_guest_has_master_clock, 1);
2555
2556 vclock_mode = pvclock_gtod_data.clock.vclock_mode;
2557 trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
2558 vcpus_matched);
2559 #endif
2560 }
2561
kvm_make_mclock_inprogress_request(struct kvm * kvm)2562 void kvm_make_mclock_inprogress_request(struct kvm *kvm)
2563 {
2564 kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
2565 }
2566
kvm_gen_update_masterclock(struct kvm * kvm)2567 static void kvm_gen_update_masterclock(struct kvm *kvm)
2568 {
2569 #ifdef CONFIG_X86_64
2570 int i;
2571 struct kvm_vcpu *vcpu;
2572 struct kvm_arch *ka = &kvm->arch;
2573
2574 spin_lock(&ka->pvclock_gtod_sync_lock);
2575 kvm_make_mclock_inprogress_request(kvm);
2576 /* no guest entries from this point */
2577 pvclock_update_vm_gtod_copy(kvm);
2578
2579 kvm_for_each_vcpu(i, vcpu, kvm)
2580 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2581
2582 /* guest entries allowed */
2583 kvm_for_each_vcpu(i, vcpu, kvm)
2584 kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
2585
2586 spin_unlock(&ka->pvclock_gtod_sync_lock);
2587 #endif
2588 }
2589
get_kvmclock_ns(struct kvm * kvm)2590 u64 get_kvmclock_ns(struct kvm *kvm)
2591 {
2592 struct kvm_arch *ka = &kvm->arch;
2593 struct pvclock_vcpu_time_info hv_clock;
2594 u64 ret;
2595
2596 spin_lock(&ka->pvclock_gtod_sync_lock);
2597 if (!ka->use_master_clock) {
2598 spin_unlock(&ka->pvclock_gtod_sync_lock);
2599 return get_kvmclock_base_ns() + ka->kvmclock_offset;
2600 }
2601
2602 hv_clock.tsc_timestamp = ka->master_cycle_now;
2603 hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
2604 spin_unlock(&ka->pvclock_gtod_sync_lock);
2605
2606 /* both __this_cpu_read() and rdtsc() should be on the same cpu */
2607 get_cpu();
2608
2609 if (__this_cpu_read(cpu_tsc_khz)) {
2610 kvm_get_time_scale(NSEC_PER_SEC, __this_cpu_read(cpu_tsc_khz) * 1000LL,
2611 &hv_clock.tsc_shift,
2612 &hv_clock.tsc_to_system_mul);
2613 ret = __pvclock_read_cycles(&hv_clock, rdtsc());
2614 } else
2615 ret = get_kvmclock_base_ns() + ka->kvmclock_offset;
2616
2617 put_cpu();
2618
2619 return ret;
2620 }
2621
kvm_setup_pvclock_page(struct kvm_vcpu * v)2622 static void kvm_setup_pvclock_page(struct kvm_vcpu *v)
2623 {
2624 struct kvm_vcpu_arch *vcpu = &v->arch;
2625 struct pvclock_vcpu_time_info guest_hv_clock;
2626
2627 if (unlikely(kvm_read_guest_cached(v->kvm, &vcpu->pv_time,
2628 &guest_hv_clock, sizeof(guest_hv_clock))))
2629 return;
2630
2631 /* This VCPU is paused, but it's legal for a guest to read another
2632 * VCPU's kvmclock, so we really have to follow the specification where
2633 * it says that version is odd if data is being modified, and even after
2634 * it is consistent.
2635 *
2636 * Version field updates must be kept separate. This is because
2637 * kvm_write_guest_cached might use a "rep movs" instruction, and
2638 * writes within a string instruction are weakly ordered. So there
2639 * are three writes overall.
2640 *
2641 * As a small optimization, only write the version field in the first
2642 * and third write. The vcpu->pv_time cache is still valid, because the
2643 * version field is the first in the struct.
2644 */
2645 BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0);
2646
2647 if (guest_hv_clock.version & 1)
2648 ++guest_hv_clock.version; /* first time write, random junk */
2649
2650 vcpu->hv_clock.version = guest_hv_clock.version + 1;
2651 kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
2652 &vcpu->hv_clock,
2653 sizeof(vcpu->hv_clock.version));
2654
2655 smp_wmb();
2656
2657 /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
2658 vcpu->hv_clock.flags |= (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
2659
2660 if (vcpu->pvclock_set_guest_stopped_request) {
2661 vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED;
2662 vcpu->pvclock_set_guest_stopped_request = false;
2663 }
2664
2665 trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
2666
2667 kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
2668 &vcpu->hv_clock,
2669 sizeof(vcpu->hv_clock));
2670
2671 smp_wmb();
2672
2673 vcpu->hv_clock.version++;
2674 kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
2675 &vcpu->hv_clock,
2676 sizeof(vcpu->hv_clock.version));
2677 }
2678
kvm_guest_time_update(struct kvm_vcpu * v)2679 static int kvm_guest_time_update(struct kvm_vcpu *v)
2680 {
2681 unsigned long flags, tgt_tsc_khz;
2682 struct kvm_vcpu_arch *vcpu = &v->arch;
2683 struct kvm_arch *ka = &v->kvm->arch;
2684 s64 kernel_ns;
2685 u64 tsc_timestamp, host_tsc;
2686 u8 pvclock_flags;
2687 bool use_master_clock;
2688
2689 kernel_ns = 0;
2690 host_tsc = 0;
2691
2692 /*
2693 * If the host uses TSC clock, then passthrough TSC as stable
2694 * to the guest.
2695 */
2696 spin_lock(&ka->pvclock_gtod_sync_lock);
2697 use_master_clock = ka->use_master_clock;
2698 if (use_master_clock) {
2699 host_tsc = ka->master_cycle_now;
2700 kernel_ns = ka->master_kernel_ns;
2701 }
2702 spin_unlock(&ka->pvclock_gtod_sync_lock);
2703
2704 /* Keep irq disabled to prevent changes to the clock */
2705 local_irq_save(flags);
2706 tgt_tsc_khz = __this_cpu_read(cpu_tsc_khz);
2707 if (unlikely(tgt_tsc_khz == 0)) {
2708 local_irq_restore(flags);
2709 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
2710 return 1;
2711 }
2712 if (!use_master_clock) {
2713 host_tsc = rdtsc();
2714 kernel_ns = get_kvmclock_base_ns();
2715 }
2716
2717 tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
2718
2719 /*
2720 * We may have to catch up the TSC to match elapsed wall clock
2721 * time for two reasons, even if kvmclock is used.
2722 * 1) CPU could have been running below the maximum TSC rate
2723 * 2) Broken TSC compensation resets the base at each VCPU
2724 * entry to avoid unknown leaps of TSC even when running
2725 * again on the same CPU. This may cause apparent elapsed
2726 * time to disappear, and the guest to stand still or run
2727 * very slowly.
2728 */
2729 if (vcpu->tsc_catchup) {
2730 u64 tsc = compute_guest_tsc(v, kernel_ns);
2731 if (tsc > tsc_timestamp) {
2732 adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
2733 tsc_timestamp = tsc;
2734 }
2735 }
2736
2737 local_irq_restore(flags);
2738
2739 /* With all the info we got, fill in the values */
2740
2741 if (kvm_has_tsc_control)
2742 tgt_tsc_khz = kvm_scale_tsc(v, tgt_tsc_khz);
2743
2744 if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) {
2745 kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL,
2746 &vcpu->hv_clock.tsc_shift,
2747 &vcpu->hv_clock.tsc_to_system_mul);
2748 vcpu->hw_tsc_khz = tgt_tsc_khz;
2749 }
2750
2751 vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
2752 vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
2753 vcpu->last_guest_tsc = tsc_timestamp;
2754
2755 /* If the host uses TSC clocksource, then it is stable */
2756 pvclock_flags = 0;
2757 if (use_master_clock)
2758 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
2759
2760 vcpu->hv_clock.flags = pvclock_flags;
2761
2762 if (vcpu->pv_time_enabled)
2763 kvm_setup_pvclock_page(v);
2764 if (v == kvm_get_vcpu(v->kvm, 0))
2765 kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock);
2766 return 0;
2767 }
2768
2769 /*
2770 * kvmclock updates which are isolated to a given vcpu, such as
2771 * vcpu->cpu migration, should not allow system_timestamp from
2772 * the rest of the vcpus to remain static. Otherwise ntp frequency
2773 * correction applies to one vcpu's system_timestamp but not
2774 * the others.
2775 *
2776 * So in those cases, request a kvmclock update for all vcpus.
2777 * We need to rate-limit these requests though, as they can
2778 * considerably slow guests that have a large number of vcpus.
2779 * The time for a remote vcpu to update its kvmclock is bound
2780 * by the delay we use to rate-limit the updates.
2781 */
2782
2783 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
2784
kvmclock_update_fn(struct work_struct * work)2785 static void kvmclock_update_fn(struct work_struct *work)
2786 {
2787 int i;
2788 struct delayed_work *dwork = to_delayed_work(work);
2789 struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
2790 kvmclock_update_work);
2791 struct kvm *kvm = container_of(ka, struct kvm, arch);
2792 struct kvm_vcpu *vcpu;
2793
2794 kvm_for_each_vcpu(i, vcpu, kvm) {
2795 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2796 kvm_vcpu_kick(vcpu);
2797 }
2798 }
2799
kvm_gen_kvmclock_update(struct kvm_vcpu * v)2800 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
2801 {
2802 struct kvm *kvm = v->kvm;
2803
2804 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
2805 schedule_delayed_work(&kvm->arch.kvmclock_update_work,
2806 KVMCLOCK_UPDATE_DELAY);
2807 }
2808
2809 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
2810
kvmclock_sync_fn(struct work_struct * work)2811 static void kvmclock_sync_fn(struct work_struct *work)
2812 {
2813 struct delayed_work *dwork = to_delayed_work(work);
2814 struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
2815 kvmclock_sync_work);
2816 struct kvm *kvm = container_of(ka, struct kvm, arch);
2817
2818 if (!kvmclock_periodic_sync)
2819 return;
2820
2821 schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
2822 schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
2823 KVMCLOCK_SYNC_PERIOD);
2824 }
2825
2826 /*
2827 * On AMD, HWCR[McStatusWrEn] controls whether setting MCi_STATUS results in #GP.
2828 */
can_set_mci_status(struct kvm_vcpu * vcpu)2829 static bool can_set_mci_status(struct kvm_vcpu *vcpu)
2830 {
2831 /* McStatusWrEn enabled? */
2832 if (guest_cpuid_is_amd_or_hygon(vcpu))
2833 return !!(vcpu->arch.msr_hwcr & BIT_ULL(18));
2834
2835 return false;
2836 }
2837
set_msr_mce(struct kvm_vcpu * vcpu,struct msr_data * msr_info)2838 static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2839 {
2840 u64 mcg_cap = vcpu->arch.mcg_cap;
2841 unsigned bank_num = mcg_cap & 0xff;
2842 u32 msr = msr_info->index;
2843 u64 data = msr_info->data;
2844
2845 switch (msr) {
2846 case MSR_IA32_MCG_STATUS:
2847 vcpu->arch.mcg_status = data;
2848 break;
2849 case MSR_IA32_MCG_CTL:
2850 if (!(mcg_cap & MCG_CTL_P) &&
2851 (data || !msr_info->host_initiated))
2852 return 1;
2853 if (data != 0 && data != ~(u64)0)
2854 return 1;
2855 vcpu->arch.mcg_ctl = data;
2856 break;
2857 default:
2858 if (msr >= MSR_IA32_MC0_CTL &&
2859 msr < MSR_IA32_MCx_CTL(bank_num)) {
2860 u32 offset = array_index_nospec(
2861 msr - MSR_IA32_MC0_CTL,
2862 MSR_IA32_MCx_CTL(bank_num) - MSR_IA32_MC0_CTL);
2863
2864 /* only 0 or all 1s can be written to IA32_MCi_CTL
2865 * some Linux kernels though clear bit 10 in bank 4 to
2866 * workaround a BIOS/GART TBL issue on AMD K8s, ignore
2867 * this to avoid an uncatched #GP in the guest
2868 */
2869 if ((offset & 0x3) == 0 &&
2870 data != 0 && (data | (1 << 10)) != ~(u64)0)
2871 return -1;
2872
2873 /* MCi_STATUS */
2874 if (!msr_info->host_initiated &&
2875 (offset & 0x3) == 1 && data != 0) {
2876 if (!can_set_mci_status(vcpu))
2877 return -1;
2878 }
2879
2880 vcpu->arch.mce_banks[offset] = data;
2881 break;
2882 }
2883 return 1;
2884 }
2885 return 0;
2886 }
2887
xen_hvm_config(struct kvm_vcpu * vcpu,u64 data)2888 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
2889 {
2890 struct kvm *kvm = vcpu->kvm;
2891 int lm = is_long_mode(vcpu);
2892 u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
2893 : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
2894 u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
2895 : kvm->arch.xen_hvm_config.blob_size_32;
2896 u32 page_num = data & ~PAGE_MASK;
2897 u64 page_addr = data & PAGE_MASK;
2898 u8 *page;
2899
2900 if (page_num >= blob_size)
2901 return 1;
2902
2903 page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE);
2904 if (IS_ERR(page))
2905 return PTR_ERR(page);
2906
2907 if (kvm_vcpu_write_guest(vcpu, page_addr, page, PAGE_SIZE)) {
2908 kfree(page);
2909 return 1;
2910 }
2911 return 0;
2912 }
2913
kvm_pv_async_pf_enabled(struct kvm_vcpu * vcpu)2914 static inline bool kvm_pv_async_pf_enabled(struct kvm_vcpu *vcpu)
2915 {
2916 u64 mask = KVM_ASYNC_PF_ENABLED | KVM_ASYNC_PF_DELIVERY_AS_INT;
2917
2918 return (vcpu->arch.apf.msr_en_val & mask) == mask;
2919 }
2920
kvm_pv_enable_async_pf(struct kvm_vcpu * vcpu,u64 data)2921 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
2922 {
2923 gpa_t gpa = data & ~0x3f;
2924
2925 /* Bits 4:5 are reserved, Should be zero */
2926 if (data & 0x30)
2927 return 1;
2928
2929 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_VMEXIT) &&
2930 (data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT))
2931 return 1;
2932
2933 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT) &&
2934 (data & KVM_ASYNC_PF_DELIVERY_AS_INT))
2935 return 1;
2936
2937 if (!lapic_in_kernel(vcpu))
2938 return data ? 1 : 0;
2939
2940 vcpu->arch.apf.msr_en_val = data;
2941
2942 if (!kvm_pv_async_pf_enabled(vcpu)) {
2943 kvm_clear_async_pf_completion_queue(vcpu);
2944 kvm_async_pf_hash_reset(vcpu);
2945 return 0;
2946 }
2947
2948 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
2949 sizeof(u64)))
2950 return 1;
2951
2952 vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
2953 vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT;
2954
2955 kvm_async_pf_wakeup_all(vcpu);
2956
2957 return 0;
2958 }
2959
kvm_pv_enable_async_pf_int(struct kvm_vcpu * vcpu,u64 data)2960 static int kvm_pv_enable_async_pf_int(struct kvm_vcpu *vcpu, u64 data)
2961 {
2962 /* Bits 8-63 are reserved */
2963 if (data >> 8)
2964 return 1;
2965
2966 if (!lapic_in_kernel(vcpu))
2967 return 1;
2968
2969 vcpu->arch.apf.msr_int_val = data;
2970
2971 vcpu->arch.apf.vec = data & KVM_ASYNC_PF_VEC_MASK;
2972
2973 return 0;
2974 }
2975
kvmclock_reset(struct kvm_vcpu * vcpu)2976 static void kvmclock_reset(struct kvm_vcpu *vcpu)
2977 {
2978 vcpu->arch.pv_time_enabled = false;
2979 vcpu->arch.time = 0;
2980 }
2981
kvm_vcpu_flush_tlb_all(struct kvm_vcpu * vcpu)2982 static void kvm_vcpu_flush_tlb_all(struct kvm_vcpu *vcpu)
2983 {
2984 ++vcpu->stat.tlb_flush;
2985 kvm_x86_ops.tlb_flush_all(vcpu);
2986 }
2987
kvm_vcpu_flush_tlb_guest(struct kvm_vcpu * vcpu)2988 static void kvm_vcpu_flush_tlb_guest(struct kvm_vcpu *vcpu)
2989 {
2990 ++vcpu->stat.tlb_flush;
2991 kvm_x86_ops.tlb_flush_guest(vcpu);
2992 }
2993
record_steal_time(struct kvm_vcpu * vcpu)2994 static void record_steal_time(struct kvm_vcpu *vcpu)
2995 {
2996 struct kvm_host_map map;
2997 struct kvm_steal_time *st;
2998
2999 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
3000 return;
3001
3002 /* -EAGAIN is returned in atomic context so we can just return. */
3003 if (kvm_map_gfn(vcpu, vcpu->arch.st.msr_val >> PAGE_SHIFT,
3004 &map, &vcpu->arch.st.cache, false))
3005 return;
3006
3007 st = map.hva +
3008 offset_in_page(vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS);
3009
3010 /*
3011 * Doing a TLB flush here, on the guest's behalf, can avoid
3012 * expensive IPIs.
3013 */
3014 if (guest_pv_has(vcpu, KVM_FEATURE_PV_TLB_FLUSH)) {
3015 trace_kvm_pv_tlb_flush(vcpu->vcpu_id,
3016 st->preempted & KVM_VCPU_FLUSH_TLB);
3017 if (xchg(&st->preempted, 0) & KVM_VCPU_FLUSH_TLB)
3018 kvm_vcpu_flush_tlb_guest(vcpu);
3019 } else {
3020 st->preempted = 0;
3021 }
3022
3023 vcpu->arch.st.preempted = 0;
3024
3025 if (st->version & 1)
3026 st->version += 1; /* first time write, random junk */
3027
3028 st->version += 1;
3029
3030 smp_wmb();
3031
3032 st->steal += current->sched_info.run_delay -
3033 vcpu->arch.st.last_steal;
3034 vcpu->arch.st.last_steal = current->sched_info.run_delay;
3035
3036 smp_wmb();
3037
3038 st->version += 1;
3039
3040 kvm_unmap_gfn(vcpu, &map, &vcpu->arch.st.cache, true, false);
3041 }
3042
kvm_set_msr_common(struct kvm_vcpu * vcpu,struct msr_data * msr_info)3043 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3044 {
3045 bool pr = false;
3046 u32 msr = msr_info->index;
3047 u64 data = msr_info->data;
3048
3049 switch (msr) {
3050 case MSR_AMD64_NB_CFG:
3051 case MSR_IA32_UCODE_WRITE:
3052 case MSR_VM_HSAVE_PA:
3053 case MSR_AMD64_PATCH_LOADER:
3054 case MSR_AMD64_BU_CFG2:
3055 case MSR_AMD64_DC_CFG:
3056 case MSR_F15H_EX_CFG:
3057 break;
3058
3059 case MSR_IA32_UCODE_REV:
3060 if (msr_info->host_initiated)
3061 vcpu->arch.microcode_version = data;
3062 break;
3063 case MSR_IA32_ARCH_CAPABILITIES:
3064 if (!msr_info->host_initiated)
3065 return 1;
3066 vcpu->arch.arch_capabilities = data;
3067 break;
3068 case MSR_IA32_PERF_CAPABILITIES: {
3069 struct kvm_msr_entry msr_ent = {.index = msr, .data = 0};
3070
3071 if (!msr_info->host_initiated)
3072 return 1;
3073 if (kvm_get_msr_feature(&msr_ent))
3074 return 1;
3075 if (data & ~msr_ent.data)
3076 return 1;
3077
3078 vcpu->arch.perf_capabilities = data;
3079
3080 return 0;
3081 }
3082 case MSR_EFER:
3083 return set_efer(vcpu, msr_info);
3084 case MSR_K7_HWCR:
3085 data &= ~(u64)0x40; /* ignore flush filter disable */
3086 data &= ~(u64)0x100; /* ignore ignne emulation enable */
3087 data &= ~(u64)0x8; /* ignore TLB cache disable */
3088
3089 /* Handle McStatusWrEn */
3090 if (data == BIT_ULL(18)) {
3091 vcpu->arch.msr_hwcr = data;
3092 } else if (data != 0) {
3093 vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
3094 data);
3095 return 1;
3096 }
3097 break;
3098 case MSR_FAM10H_MMIO_CONF_BASE:
3099 if (data != 0) {
3100 vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
3101 "0x%llx\n", data);
3102 return 1;
3103 }
3104 break;
3105 case MSR_IA32_DEBUGCTLMSR:
3106 if (!data) {
3107 /* We support the non-activated case already */
3108 break;
3109 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
3110 /* Values other than LBR and BTF are vendor-specific,
3111 thus reserved and should throw a #GP */
3112 return 1;
3113 } else if (report_ignored_msrs)
3114 vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
3115 __func__, data);
3116 break;
3117 case 0x200 ... 0x2ff:
3118 return kvm_mtrr_set_msr(vcpu, msr, data);
3119 case MSR_IA32_APICBASE:
3120 return kvm_set_apic_base(vcpu, msr_info);
3121 case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
3122 return kvm_x2apic_msr_write(vcpu, msr, data);
3123 case MSR_IA32_TSCDEADLINE:
3124 kvm_set_lapic_tscdeadline_msr(vcpu, data);
3125 break;
3126 case MSR_IA32_TSC_ADJUST:
3127 if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) {
3128 if (!msr_info->host_initiated) {
3129 s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
3130 adjust_tsc_offset_guest(vcpu, adj);
3131 /* Before back to guest, tsc_timestamp must be adjusted
3132 * as well, otherwise guest's percpu pvclock time could jump.
3133 */
3134 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3135 }
3136 vcpu->arch.ia32_tsc_adjust_msr = data;
3137 }
3138 break;
3139 case MSR_IA32_MISC_ENABLE:
3140 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT) &&
3141 ((vcpu->arch.ia32_misc_enable_msr ^ data) & MSR_IA32_MISC_ENABLE_MWAIT)) {
3142 if (!guest_cpuid_has(vcpu, X86_FEATURE_XMM3))
3143 return 1;
3144 vcpu->arch.ia32_misc_enable_msr = data;
3145 kvm_update_cpuid_runtime(vcpu);
3146 } else {
3147 vcpu->arch.ia32_misc_enable_msr = data;
3148 }
3149 break;
3150 case MSR_IA32_SMBASE:
3151 if (!msr_info->host_initiated)
3152 return 1;
3153 vcpu->arch.smbase = data;
3154 break;
3155 case MSR_IA32_POWER_CTL:
3156 vcpu->arch.msr_ia32_power_ctl = data;
3157 break;
3158 case MSR_IA32_TSC:
3159 if (msr_info->host_initiated) {
3160 kvm_synchronize_tsc(vcpu, data);
3161 } else {
3162 u64 adj = kvm_compute_tsc_offset(vcpu, data) - vcpu->arch.l1_tsc_offset;
3163 adjust_tsc_offset_guest(vcpu, adj);
3164 vcpu->arch.ia32_tsc_adjust_msr += adj;
3165 }
3166 break;
3167 case MSR_IA32_XSS:
3168 if (!msr_info->host_initiated &&
3169 !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
3170 return 1;
3171 /*
3172 * KVM supports exposing PT to the guest, but does not support
3173 * IA32_XSS[bit 8]. Guests have to use RDMSR/WRMSR rather than
3174 * XSAVES/XRSTORS to save/restore PT MSRs.
3175 */
3176 if (data & ~supported_xss)
3177 return 1;
3178 vcpu->arch.ia32_xss = data;
3179 kvm_update_cpuid_runtime(vcpu);
3180 break;
3181 case MSR_SMI_COUNT:
3182 if (!msr_info->host_initiated)
3183 return 1;
3184 vcpu->arch.smi_count = data;
3185 break;
3186 case MSR_KVM_WALL_CLOCK_NEW:
3187 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3188 return 1;
3189
3190 kvm_write_wall_clock(vcpu->kvm, data);
3191 break;
3192 case MSR_KVM_WALL_CLOCK:
3193 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3194 return 1;
3195
3196 kvm_write_wall_clock(vcpu->kvm, data);
3197 break;
3198 case MSR_KVM_SYSTEM_TIME_NEW:
3199 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3200 return 1;
3201
3202 kvm_write_system_time(vcpu, data, false, msr_info->host_initiated);
3203 break;
3204 case MSR_KVM_SYSTEM_TIME:
3205 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3206 return 1;
3207
3208 kvm_write_system_time(vcpu, data, true, msr_info->host_initiated);
3209 break;
3210 case MSR_KVM_ASYNC_PF_EN:
3211 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
3212 return 1;
3213
3214 if (kvm_pv_enable_async_pf(vcpu, data))
3215 return 1;
3216 break;
3217 case MSR_KVM_ASYNC_PF_INT:
3218 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3219 return 1;
3220
3221 if (kvm_pv_enable_async_pf_int(vcpu, data))
3222 return 1;
3223 break;
3224 case MSR_KVM_ASYNC_PF_ACK:
3225 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3226 return 1;
3227 if (data & 0x1) {
3228 vcpu->arch.apf.pageready_pending = false;
3229 kvm_check_async_pf_completion(vcpu);
3230 }
3231 break;
3232 case MSR_KVM_STEAL_TIME:
3233 if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
3234 return 1;
3235
3236 if (unlikely(!sched_info_on()))
3237 return 1;
3238
3239 if (data & KVM_STEAL_RESERVED_MASK)
3240 return 1;
3241
3242 vcpu->arch.st.msr_val = data;
3243
3244 if (!(data & KVM_MSR_ENABLED))
3245 break;
3246
3247 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
3248
3249 break;
3250 case MSR_KVM_PV_EOI_EN:
3251 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
3252 return 1;
3253
3254 if (kvm_lapic_enable_pv_eoi(vcpu, data, sizeof(u8)))
3255 return 1;
3256 break;
3257
3258 case MSR_KVM_POLL_CONTROL:
3259 if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
3260 return 1;
3261
3262 /* only enable bit supported */
3263 if (data & (-1ULL << 1))
3264 return 1;
3265
3266 vcpu->arch.msr_kvm_poll_control = data;
3267 break;
3268
3269 case MSR_IA32_MCG_CTL:
3270 case MSR_IA32_MCG_STATUS:
3271 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
3272 return set_msr_mce(vcpu, msr_info);
3273
3274 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
3275 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
3276 pr = true;
3277 fallthrough;
3278 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
3279 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
3280 if (kvm_pmu_is_valid_msr(vcpu, msr))
3281 return kvm_pmu_set_msr(vcpu, msr_info);
3282
3283 if (pr || data != 0)
3284 vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
3285 "0x%x data 0x%llx\n", msr, data);
3286 break;
3287 case MSR_K7_CLK_CTL:
3288 /*
3289 * Ignore all writes to this no longer documented MSR.
3290 * Writes are only relevant for old K7 processors,
3291 * all pre-dating SVM, but a recommended workaround from
3292 * AMD for these chips. It is possible to specify the
3293 * affected processor models on the command line, hence
3294 * the need to ignore the workaround.
3295 */
3296 break;
3297 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
3298 case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
3299 case HV_X64_MSR_SYNDBG_OPTIONS:
3300 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
3301 case HV_X64_MSR_CRASH_CTL:
3302 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
3303 case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
3304 case HV_X64_MSR_TSC_EMULATION_CONTROL:
3305 case HV_X64_MSR_TSC_EMULATION_STATUS:
3306 return kvm_hv_set_msr_common(vcpu, msr, data,
3307 msr_info->host_initiated);
3308 case MSR_IA32_BBL_CR_CTL3:
3309 /* Drop writes to this legacy MSR -- see rdmsr
3310 * counterpart for further detail.
3311 */
3312 if (report_ignored_msrs)
3313 vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n",
3314 msr, data);
3315 break;
3316 case MSR_AMD64_OSVW_ID_LENGTH:
3317 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3318 return 1;
3319 vcpu->arch.osvw.length = data;
3320 break;
3321 case MSR_AMD64_OSVW_STATUS:
3322 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3323 return 1;
3324 vcpu->arch.osvw.status = data;
3325 break;
3326 case MSR_PLATFORM_INFO:
3327 if (!msr_info->host_initiated ||
3328 (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) &&
3329 cpuid_fault_enabled(vcpu)))
3330 return 1;
3331 vcpu->arch.msr_platform_info = data;
3332 break;
3333 case MSR_MISC_FEATURES_ENABLES:
3334 if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT ||
3335 (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT &&
3336 !supports_cpuid_fault(vcpu)))
3337 return 1;
3338 vcpu->arch.msr_misc_features_enables = data;
3339 break;
3340 default:
3341 if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
3342 return xen_hvm_config(vcpu, data);
3343 if (kvm_pmu_is_valid_msr(vcpu, msr))
3344 return kvm_pmu_set_msr(vcpu, msr_info);
3345 return KVM_MSR_RET_INVALID;
3346 }
3347 return 0;
3348 }
3349 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
3350
get_msr_mce(struct kvm_vcpu * vcpu,u32 msr,u64 * pdata,bool host)3351 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host)
3352 {
3353 u64 data;
3354 u64 mcg_cap = vcpu->arch.mcg_cap;
3355 unsigned bank_num = mcg_cap & 0xff;
3356
3357 switch (msr) {
3358 case MSR_IA32_P5_MC_ADDR:
3359 case MSR_IA32_P5_MC_TYPE:
3360 data = 0;
3361 break;
3362 case MSR_IA32_MCG_CAP:
3363 data = vcpu->arch.mcg_cap;
3364 break;
3365 case MSR_IA32_MCG_CTL:
3366 if (!(mcg_cap & MCG_CTL_P) && !host)
3367 return 1;
3368 data = vcpu->arch.mcg_ctl;
3369 break;
3370 case MSR_IA32_MCG_STATUS:
3371 data = vcpu->arch.mcg_status;
3372 break;
3373 default:
3374 if (msr >= MSR_IA32_MC0_CTL &&
3375 msr < MSR_IA32_MCx_CTL(bank_num)) {
3376 u32 offset = array_index_nospec(
3377 msr - MSR_IA32_MC0_CTL,
3378 MSR_IA32_MCx_CTL(bank_num) - MSR_IA32_MC0_CTL);
3379
3380 data = vcpu->arch.mce_banks[offset];
3381 break;
3382 }
3383 return 1;
3384 }
3385 *pdata = data;
3386 return 0;
3387 }
3388
kvm_get_msr_common(struct kvm_vcpu * vcpu,struct msr_data * msr_info)3389 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3390 {
3391 switch (msr_info->index) {
3392 case MSR_IA32_PLATFORM_ID:
3393 case MSR_IA32_EBL_CR_POWERON:
3394 case MSR_IA32_DEBUGCTLMSR:
3395 case MSR_IA32_LASTBRANCHFROMIP:
3396 case MSR_IA32_LASTBRANCHTOIP:
3397 case MSR_IA32_LASTINTFROMIP:
3398 case MSR_IA32_LASTINTTOIP:
3399 case MSR_K8_SYSCFG:
3400 case MSR_K8_TSEG_ADDR:
3401 case MSR_K8_TSEG_MASK:
3402 case MSR_VM_HSAVE_PA:
3403 case MSR_K8_INT_PENDING_MSG:
3404 case MSR_AMD64_NB_CFG:
3405 case MSR_FAM10H_MMIO_CONF_BASE:
3406 case MSR_AMD64_BU_CFG2:
3407 case MSR_IA32_PERF_CTL:
3408 case MSR_AMD64_DC_CFG:
3409 case MSR_F15H_EX_CFG:
3410 /*
3411 * Intel Sandy Bridge CPUs must support the RAPL (running average power
3412 * limit) MSRs. Just return 0, as we do not want to expose the host
3413 * data here. Do not conditionalize this on CPUID, as KVM does not do
3414 * so for existing CPU-specific MSRs.
3415 */
3416 case MSR_RAPL_POWER_UNIT:
3417 case MSR_PP0_ENERGY_STATUS: /* Power plane 0 (core) */
3418 case MSR_PP1_ENERGY_STATUS: /* Power plane 1 (graphics uncore) */
3419 case MSR_PKG_ENERGY_STATUS: /* Total package */
3420 case MSR_DRAM_ENERGY_STATUS: /* DRAM controller */
3421 msr_info->data = 0;
3422 break;
3423 case MSR_F15H_PERF_CTL0 ... MSR_F15H_PERF_CTR5:
3424 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
3425 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
3426 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
3427 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
3428 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
3429 return kvm_pmu_get_msr(vcpu, msr_info);
3430 msr_info->data = 0;
3431 break;
3432 case MSR_IA32_UCODE_REV:
3433 msr_info->data = vcpu->arch.microcode_version;
3434 break;
3435 case MSR_IA32_ARCH_CAPABILITIES:
3436 if (!msr_info->host_initiated &&
3437 !guest_cpuid_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES))
3438 return 1;
3439 msr_info->data = vcpu->arch.arch_capabilities;
3440 break;
3441 case MSR_IA32_PERF_CAPABILITIES:
3442 if (!msr_info->host_initiated &&
3443 !guest_cpuid_has(vcpu, X86_FEATURE_PDCM))
3444 return 1;
3445 msr_info->data = vcpu->arch.perf_capabilities;
3446 break;
3447 case MSR_IA32_POWER_CTL:
3448 msr_info->data = vcpu->arch.msr_ia32_power_ctl;
3449 break;
3450 case MSR_IA32_TSC: {
3451 /*
3452 * Intel SDM states that MSR_IA32_TSC read adds the TSC offset
3453 * even when not intercepted. AMD manual doesn't explicitly
3454 * state this but appears to behave the same.
3455 *
3456 * On userspace reads and writes, however, we unconditionally
3457 * return L1's TSC value to ensure backwards-compatible
3458 * behavior for migration.
3459 */
3460 u64 tsc_offset = msr_info->host_initiated ? vcpu->arch.l1_tsc_offset :
3461 vcpu->arch.tsc_offset;
3462
3463 msr_info->data = kvm_scale_tsc(vcpu, rdtsc()) + tsc_offset;
3464 break;
3465 }
3466 case MSR_MTRRcap:
3467 case 0x200 ... 0x2ff:
3468 return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
3469 case 0xcd: /* fsb frequency */
3470 msr_info->data = 3;
3471 break;
3472 /*
3473 * MSR_EBC_FREQUENCY_ID
3474 * Conservative value valid for even the basic CPU models.
3475 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
3476 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
3477 * and 266MHz for model 3, or 4. Set Core Clock
3478 * Frequency to System Bus Frequency Ratio to 1 (bits
3479 * 31:24) even though these are only valid for CPU
3480 * models > 2, however guests may end up dividing or
3481 * multiplying by zero otherwise.
3482 */
3483 case MSR_EBC_FREQUENCY_ID:
3484 msr_info->data = 1 << 24;
3485 break;
3486 case MSR_IA32_APICBASE:
3487 msr_info->data = kvm_get_apic_base(vcpu);
3488 break;
3489 case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
3490 return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
3491 case MSR_IA32_TSCDEADLINE:
3492 msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
3493 break;
3494 case MSR_IA32_TSC_ADJUST:
3495 msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
3496 break;
3497 case MSR_IA32_MISC_ENABLE:
3498 msr_info->data = vcpu->arch.ia32_misc_enable_msr;
3499 break;
3500 case MSR_IA32_SMBASE:
3501 if (!msr_info->host_initiated)
3502 return 1;
3503 msr_info->data = vcpu->arch.smbase;
3504 break;
3505 case MSR_SMI_COUNT:
3506 msr_info->data = vcpu->arch.smi_count;
3507 break;
3508 case MSR_IA32_PERF_STATUS:
3509 /* TSC increment by tick */
3510 msr_info->data = 1000ULL;
3511 /* CPU multiplier */
3512 msr_info->data |= (((uint64_t)4ULL) << 40);
3513 break;
3514 case MSR_EFER:
3515 msr_info->data = vcpu->arch.efer;
3516 break;
3517 case MSR_KVM_WALL_CLOCK:
3518 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3519 return 1;
3520
3521 msr_info->data = vcpu->kvm->arch.wall_clock;
3522 break;
3523 case MSR_KVM_WALL_CLOCK_NEW:
3524 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3525 return 1;
3526
3527 msr_info->data = vcpu->kvm->arch.wall_clock;
3528 break;
3529 case MSR_KVM_SYSTEM_TIME:
3530 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3531 return 1;
3532
3533 msr_info->data = vcpu->arch.time;
3534 break;
3535 case MSR_KVM_SYSTEM_TIME_NEW:
3536 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3537 return 1;
3538
3539 msr_info->data = vcpu->arch.time;
3540 break;
3541 case MSR_KVM_ASYNC_PF_EN:
3542 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
3543 return 1;
3544
3545 msr_info->data = vcpu->arch.apf.msr_en_val;
3546 break;
3547 case MSR_KVM_ASYNC_PF_INT:
3548 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3549 return 1;
3550
3551 msr_info->data = vcpu->arch.apf.msr_int_val;
3552 break;
3553 case MSR_KVM_ASYNC_PF_ACK:
3554 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3555 return 1;
3556
3557 msr_info->data = 0;
3558 break;
3559 case MSR_KVM_STEAL_TIME:
3560 if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
3561 return 1;
3562
3563 msr_info->data = vcpu->arch.st.msr_val;
3564 break;
3565 case MSR_KVM_PV_EOI_EN:
3566 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
3567 return 1;
3568
3569 msr_info->data = vcpu->arch.pv_eoi.msr_val;
3570 break;
3571 case MSR_KVM_POLL_CONTROL:
3572 if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
3573 return 1;
3574
3575 msr_info->data = vcpu->arch.msr_kvm_poll_control;
3576 break;
3577 case MSR_IA32_P5_MC_ADDR:
3578 case MSR_IA32_P5_MC_TYPE:
3579 case MSR_IA32_MCG_CAP:
3580 case MSR_IA32_MCG_CTL:
3581 case MSR_IA32_MCG_STATUS:
3582 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
3583 return get_msr_mce(vcpu, msr_info->index, &msr_info->data,
3584 msr_info->host_initiated);
3585 case MSR_IA32_XSS:
3586 if (!msr_info->host_initiated &&
3587 !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
3588 return 1;
3589 msr_info->data = vcpu->arch.ia32_xss;
3590 break;
3591 case MSR_K7_CLK_CTL:
3592 /*
3593 * Provide expected ramp-up count for K7. All other
3594 * are set to zero, indicating minimum divisors for
3595 * every field.
3596 *
3597 * This prevents guest kernels on AMD host with CPU
3598 * type 6, model 8 and higher from exploding due to
3599 * the rdmsr failing.
3600 */
3601 msr_info->data = 0x20000000;
3602 break;
3603 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
3604 case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
3605 case HV_X64_MSR_SYNDBG_OPTIONS:
3606 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
3607 case HV_X64_MSR_CRASH_CTL:
3608 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
3609 case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
3610 case HV_X64_MSR_TSC_EMULATION_CONTROL:
3611 case HV_X64_MSR_TSC_EMULATION_STATUS:
3612 return kvm_hv_get_msr_common(vcpu,
3613 msr_info->index, &msr_info->data,
3614 msr_info->host_initiated);
3615 case MSR_IA32_BBL_CR_CTL3:
3616 /* This legacy MSR exists but isn't fully documented in current
3617 * silicon. It is however accessed by winxp in very narrow
3618 * scenarios where it sets bit #19, itself documented as
3619 * a "reserved" bit. Best effort attempt to source coherent
3620 * read data here should the balance of the register be
3621 * interpreted by the guest:
3622 *
3623 * L2 cache control register 3: 64GB range, 256KB size,
3624 * enabled, latency 0x1, configured
3625 */
3626 msr_info->data = 0xbe702111;
3627 break;
3628 case MSR_AMD64_OSVW_ID_LENGTH:
3629 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3630 return 1;
3631 msr_info->data = vcpu->arch.osvw.length;
3632 break;
3633 case MSR_AMD64_OSVW_STATUS:
3634 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3635 return 1;
3636 msr_info->data = vcpu->arch.osvw.status;
3637 break;
3638 case MSR_PLATFORM_INFO:
3639 if (!msr_info->host_initiated &&
3640 !vcpu->kvm->arch.guest_can_read_msr_platform_info)
3641 return 1;
3642 msr_info->data = vcpu->arch.msr_platform_info;
3643 break;
3644 case MSR_MISC_FEATURES_ENABLES:
3645 msr_info->data = vcpu->arch.msr_misc_features_enables;
3646 break;
3647 case MSR_K7_HWCR:
3648 msr_info->data = vcpu->arch.msr_hwcr;
3649 break;
3650 default:
3651 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
3652 return kvm_pmu_get_msr(vcpu, msr_info);
3653 return KVM_MSR_RET_INVALID;
3654 }
3655 return 0;
3656 }
3657 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
3658
3659 /*
3660 * Read or write a bunch of msrs. All parameters are kernel addresses.
3661 *
3662 * @return number of msrs set successfully.
3663 */
__msr_io(struct kvm_vcpu * vcpu,struct kvm_msrs * msrs,struct kvm_msr_entry * entries,int (* do_msr)(struct kvm_vcpu * vcpu,unsigned index,u64 * data))3664 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
3665 struct kvm_msr_entry *entries,
3666 int (*do_msr)(struct kvm_vcpu *vcpu,
3667 unsigned index, u64 *data))
3668 {
3669 int i;
3670
3671 for (i = 0; i < msrs->nmsrs; ++i)
3672 if (do_msr(vcpu, entries[i].index, &entries[i].data))
3673 break;
3674
3675 return i;
3676 }
3677
3678 /*
3679 * Read or write a bunch of msrs. Parameters are user addresses.
3680 *
3681 * @return number of msrs set successfully.
3682 */
msr_io(struct kvm_vcpu * vcpu,struct kvm_msrs __user * user_msrs,int (* do_msr)(struct kvm_vcpu * vcpu,unsigned index,u64 * data),int writeback)3683 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
3684 int (*do_msr)(struct kvm_vcpu *vcpu,
3685 unsigned index, u64 *data),
3686 int writeback)
3687 {
3688 struct kvm_msrs msrs;
3689 struct kvm_msr_entry *entries;
3690 int r, n;
3691 unsigned size;
3692
3693 r = -EFAULT;
3694 if (copy_from_user(&msrs, user_msrs, sizeof(msrs)))
3695 goto out;
3696
3697 r = -E2BIG;
3698 if (msrs.nmsrs >= MAX_IO_MSRS)
3699 goto out;
3700
3701 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
3702 entries = memdup_user(user_msrs->entries, size);
3703 if (IS_ERR(entries)) {
3704 r = PTR_ERR(entries);
3705 goto out;
3706 }
3707
3708 r = n = __msr_io(vcpu, &msrs, entries, do_msr);
3709 if (r < 0)
3710 goto out_free;
3711
3712 r = -EFAULT;
3713 if (writeback && copy_to_user(user_msrs->entries, entries, size))
3714 goto out_free;
3715
3716 r = n;
3717
3718 out_free:
3719 kfree(entries);
3720 out:
3721 return r;
3722 }
3723
kvm_can_mwait_in_guest(void)3724 static inline bool kvm_can_mwait_in_guest(void)
3725 {
3726 return boot_cpu_has(X86_FEATURE_MWAIT) &&
3727 !boot_cpu_has_bug(X86_BUG_MONITOR) &&
3728 boot_cpu_has(X86_FEATURE_ARAT);
3729 }
3730
kvm_vm_ioctl_check_extension(struct kvm * kvm,long ext)3731 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
3732 {
3733 int r = 0;
3734
3735 switch (ext) {
3736 case KVM_CAP_IRQCHIP:
3737 case KVM_CAP_HLT:
3738 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
3739 case KVM_CAP_SET_TSS_ADDR:
3740 case KVM_CAP_EXT_CPUID:
3741 case KVM_CAP_EXT_EMUL_CPUID:
3742 case KVM_CAP_CLOCKSOURCE:
3743 case KVM_CAP_PIT:
3744 case KVM_CAP_NOP_IO_DELAY:
3745 case KVM_CAP_MP_STATE:
3746 case KVM_CAP_SYNC_MMU:
3747 case KVM_CAP_USER_NMI:
3748 case KVM_CAP_REINJECT_CONTROL:
3749 case KVM_CAP_IRQ_INJECT_STATUS:
3750 case KVM_CAP_IOEVENTFD:
3751 case KVM_CAP_IOEVENTFD_NO_LENGTH:
3752 case KVM_CAP_PIT2:
3753 case KVM_CAP_PIT_STATE2:
3754 case KVM_CAP_SET_IDENTITY_MAP_ADDR:
3755 case KVM_CAP_XEN_HVM:
3756 case KVM_CAP_VCPU_EVENTS:
3757 case KVM_CAP_HYPERV:
3758 case KVM_CAP_HYPERV_VAPIC:
3759 case KVM_CAP_HYPERV_SPIN:
3760 case KVM_CAP_HYPERV_SYNIC:
3761 case KVM_CAP_HYPERV_SYNIC2:
3762 case KVM_CAP_HYPERV_VP_INDEX:
3763 case KVM_CAP_HYPERV_EVENTFD:
3764 case KVM_CAP_HYPERV_TLBFLUSH:
3765 case KVM_CAP_HYPERV_SEND_IPI:
3766 case KVM_CAP_HYPERV_CPUID:
3767 case KVM_CAP_PCI_SEGMENT:
3768 case KVM_CAP_DEBUGREGS:
3769 case KVM_CAP_X86_ROBUST_SINGLESTEP:
3770 case KVM_CAP_XSAVE:
3771 case KVM_CAP_ASYNC_PF:
3772 case KVM_CAP_ASYNC_PF_INT:
3773 case KVM_CAP_GET_TSC_KHZ:
3774 case KVM_CAP_KVMCLOCK_CTRL:
3775 case KVM_CAP_READONLY_MEM:
3776 case KVM_CAP_HYPERV_TIME:
3777 case KVM_CAP_IOAPIC_POLARITY_IGNORED:
3778 case KVM_CAP_TSC_DEADLINE_TIMER:
3779 case KVM_CAP_DISABLE_QUIRKS:
3780 case KVM_CAP_SET_BOOT_CPU_ID:
3781 case KVM_CAP_SPLIT_IRQCHIP:
3782 case KVM_CAP_IMMEDIATE_EXIT:
3783 case KVM_CAP_PMU_EVENT_FILTER:
3784 case KVM_CAP_GET_MSR_FEATURES:
3785 case KVM_CAP_MSR_PLATFORM_INFO:
3786 case KVM_CAP_EXCEPTION_PAYLOAD:
3787 case KVM_CAP_SET_GUEST_DEBUG:
3788 case KVM_CAP_LAST_CPU:
3789 case KVM_CAP_X86_USER_SPACE_MSR:
3790 case KVM_CAP_X86_MSR_FILTER:
3791 case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
3792 r = 1;
3793 break;
3794 case KVM_CAP_SYNC_REGS:
3795 r = KVM_SYNC_X86_VALID_FIELDS;
3796 break;
3797 case KVM_CAP_ADJUST_CLOCK:
3798 r = KVM_CLOCK_TSC_STABLE;
3799 break;
3800 case KVM_CAP_X86_DISABLE_EXITS:
3801 r |= KVM_X86_DISABLE_EXITS_HLT | KVM_X86_DISABLE_EXITS_PAUSE |
3802 KVM_X86_DISABLE_EXITS_CSTATE;
3803 if(kvm_can_mwait_in_guest())
3804 r |= KVM_X86_DISABLE_EXITS_MWAIT;
3805 break;
3806 case KVM_CAP_X86_SMM:
3807 /* SMBASE is usually relocated above 1M on modern chipsets,
3808 * and SMM handlers might indeed rely on 4G segment limits,
3809 * so do not report SMM to be available if real mode is
3810 * emulated via vm86 mode. Still, do not go to great lengths
3811 * to avoid userspace's usage of the feature, because it is a
3812 * fringe case that is not enabled except via specific settings
3813 * of the module parameters.
3814 */
3815 r = kvm_x86_ops.has_emulated_msr(MSR_IA32_SMBASE);
3816 break;
3817 case KVM_CAP_VAPIC:
3818 r = !kvm_x86_ops.cpu_has_accelerated_tpr();
3819 break;
3820 case KVM_CAP_NR_VCPUS:
3821 r = KVM_SOFT_MAX_VCPUS;
3822 break;
3823 case KVM_CAP_MAX_VCPUS:
3824 r = KVM_MAX_VCPUS;
3825 break;
3826 case KVM_CAP_MAX_VCPU_ID:
3827 r = KVM_MAX_VCPU_ID;
3828 break;
3829 case KVM_CAP_PV_MMU: /* obsolete */
3830 r = 0;
3831 break;
3832 case KVM_CAP_MCE:
3833 r = KVM_MAX_MCE_BANKS;
3834 break;
3835 case KVM_CAP_XCRS:
3836 r = boot_cpu_has(X86_FEATURE_XSAVE);
3837 break;
3838 case KVM_CAP_TSC_CONTROL:
3839 r = kvm_has_tsc_control;
3840 break;
3841 case KVM_CAP_X2APIC_API:
3842 r = KVM_X2APIC_API_VALID_FLAGS;
3843 break;
3844 case KVM_CAP_NESTED_STATE:
3845 r = kvm_x86_ops.nested_ops->get_state ?
3846 kvm_x86_ops.nested_ops->get_state(NULL, NULL, 0) : 0;
3847 break;
3848 case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
3849 r = kvm_x86_ops.enable_direct_tlbflush != NULL;
3850 break;
3851 case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
3852 r = kvm_x86_ops.nested_ops->enable_evmcs != NULL;
3853 break;
3854 case KVM_CAP_SMALLER_MAXPHYADDR:
3855 r = (int) allow_smaller_maxphyaddr;
3856 break;
3857 case KVM_CAP_STEAL_TIME:
3858 r = sched_info_on();
3859 break;
3860 default:
3861 break;
3862 }
3863 return r;
3864
3865 }
3866
kvm_arch_dev_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)3867 long kvm_arch_dev_ioctl(struct file *filp,
3868 unsigned int ioctl, unsigned long arg)
3869 {
3870 void __user *argp = (void __user *)arg;
3871 long r;
3872
3873 switch (ioctl) {
3874 case KVM_GET_MSR_INDEX_LIST: {
3875 struct kvm_msr_list __user *user_msr_list = argp;
3876 struct kvm_msr_list msr_list;
3877 unsigned n;
3878
3879 r = -EFAULT;
3880 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
3881 goto out;
3882 n = msr_list.nmsrs;
3883 msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
3884 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
3885 goto out;
3886 r = -E2BIG;
3887 if (n < msr_list.nmsrs)
3888 goto out;
3889 r = -EFAULT;
3890 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
3891 num_msrs_to_save * sizeof(u32)))
3892 goto out;
3893 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
3894 &emulated_msrs,
3895 num_emulated_msrs * sizeof(u32)))
3896 goto out;
3897 r = 0;
3898 break;
3899 }
3900 case KVM_GET_SUPPORTED_CPUID:
3901 case KVM_GET_EMULATED_CPUID: {
3902 struct kvm_cpuid2 __user *cpuid_arg = argp;
3903 struct kvm_cpuid2 cpuid;
3904
3905 r = -EFAULT;
3906 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
3907 goto out;
3908
3909 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
3910 ioctl);
3911 if (r)
3912 goto out;
3913
3914 r = -EFAULT;
3915 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
3916 goto out;
3917 r = 0;
3918 break;
3919 }
3920 case KVM_X86_GET_MCE_CAP_SUPPORTED:
3921 r = -EFAULT;
3922 if (copy_to_user(argp, &kvm_mce_cap_supported,
3923 sizeof(kvm_mce_cap_supported)))
3924 goto out;
3925 r = 0;
3926 break;
3927 case KVM_GET_MSR_FEATURE_INDEX_LIST: {
3928 struct kvm_msr_list __user *user_msr_list = argp;
3929 struct kvm_msr_list msr_list;
3930 unsigned int n;
3931
3932 r = -EFAULT;
3933 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
3934 goto out;
3935 n = msr_list.nmsrs;
3936 msr_list.nmsrs = num_msr_based_features;
3937 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
3938 goto out;
3939 r = -E2BIG;
3940 if (n < msr_list.nmsrs)
3941 goto out;
3942 r = -EFAULT;
3943 if (copy_to_user(user_msr_list->indices, &msr_based_features,
3944 num_msr_based_features * sizeof(u32)))
3945 goto out;
3946 r = 0;
3947 break;
3948 }
3949 case KVM_GET_MSRS:
3950 r = msr_io(NULL, argp, do_get_msr_feature, 1);
3951 break;
3952 default:
3953 r = -EINVAL;
3954 break;
3955 }
3956 out:
3957 return r;
3958 }
3959
wbinvd_ipi(void * garbage)3960 static void wbinvd_ipi(void *garbage)
3961 {
3962 wbinvd();
3963 }
3964
need_emulate_wbinvd(struct kvm_vcpu * vcpu)3965 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
3966 {
3967 return kvm_arch_has_noncoherent_dma(vcpu->kvm);
3968 }
3969
kvm_arch_vcpu_load(struct kvm_vcpu * vcpu,int cpu)3970 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
3971 {
3972 /* Address WBINVD may be executed by guest */
3973 if (need_emulate_wbinvd(vcpu)) {
3974 if (kvm_x86_ops.has_wbinvd_exit())
3975 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
3976 else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
3977 smp_call_function_single(vcpu->cpu,
3978 wbinvd_ipi, NULL, 1);
3979 }
3980
3981 kvm_x86_ops.vcpu_load(vcpu, cpu);
3982
3983 /* Save host pkru register if supported */
3984 vcpu->arch.host_pkru = read_pkru();
3985
3986 /* Apply any externally detected TSC adjustments (due to suspend) */
3987 if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
3988 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
3989 vcpu->arch.tsc_offset_adjustment = 0;
3990 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3991 }
3992
3993 if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) {
3994 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
3995 rdtsc() - vcpu->arch.last_host_tsc;
3996 if (tsc_delta < 0)
3997 mark_tsc_unstable("KVM discovered backwards TSC");
3998
3999 if (kvm_check_tsc_unstable()) {
4000 u64 offset = kvm_compute_tsc_offset(vcpu,
4001 vcpu->arch.last_guest_tsc);
4002 kvm_vcpu_write_tsc_offset(vcpu, offset);
4003 vcpu->arch.tsc_catchup = 1;
4004 }
4005
4006 if (kvm_lapic_hv_timer_in_use(vcpu))
4007 kvm_lapic_restart_hv_timer(vcpu);
4008
4009 /*
4010 * On a host with synchronized TSC, there is no need to update
4011 * kvmclock on vcpu->cpu migration
4012 */
4013 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
4014 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
4015 if (vcpu->cpu != cpu)
4016 kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu);
4017 vcpu->cpu = cpu;
4018 }
4019
4020 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
4021 }
4022
kvm_steal_time_set_preempted(struct kvm_vcpu * vcpu)4023 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu)
4024 {
4025 struct kvm_host_map map;
4026 struct kvm_steal_time *st;
4027
4028 /*
4029 * The vCPU can be marked preempted if and only if the VM-Exit was on
4030 * an instruction boundary and will not trigger guest emulation of any
4031 * kind (see vcpu_run). Vendor specific code controls (conservatively)
4032 * when this is true, for example allowing the vCPU to be marked
4033 * preempted if and only if the VM-Exit was due to a host interrupt.
4034 */
4035 if (!vcpu->arch.at_instruction_boundary) {
4036 vcpu->stat.preemption_other++;
4037 return;
4038 }
4039
4040 vcpu->stat.preemption_reported++;
4041 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
4042 return;
4043
4044 if (vcpu->arch.st.preempted)
4045 return;
4046
4047 if (kvm_map_gfn(vcpu, vcpu->arch.st.msr_val >> PAGE_SHIFT, &map,
4048 &vcpu->arch.st.cache, true))
4049 return;
4050
4051 st = map.hva +
4052 offset_in_page(vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS);
4053
4054 st->preempted = vcpu->arch.st.preempted = KVM_VCPU_PREEMPTED;
4055
4056 kvm_unmap_gfn(vcpu, &map, &vcpu->arch.st.cache, true, true);
4057 }
4058
kvm_arch_vcpu_put(struct kvm_vcpu * vcpu)4059 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
4060 {
4061 int idx;
4062
4063 if (vcpu->preempted)
4064 vcpu->arch.preempted_in_kernel = !kvm_x86_ops.get_cpl(vcpu);
4065
4066 /*
4067 * Disable page faults because we're in atomic context here.
4068 * kvm_write_guest_offset_cached() would call might_fault()
4069 * that relies on pagefault_disable() to tell if there's a
4070 * bug. NOTE: the write to guest memory may not go through if
4071 * during postcopy live migration or if there's heavy guest
4072 * paging.
4073 */
4074 pagefault_disable();
4075 /*
4076 * kvm_memslots() will be called by
4077 * kvm_write_guest_offset_cached() so take the srcu lock.
4078 */
4079 idx = srcu_read_lock(&vcpu->kvm->srcu);
4080 kvm_steal_time_set_preempted(vcpu);
4081 srcu_read_unlock(&vcpu->kvm->srcu, idx);
4082 pagefault_enable();
4083 kvm_x86_ops.vcpu_put(vcpu);
4084 vcpu->arch.last_host_tsc = rdtsc();
4085 /*
4086 * If userspace has set any breakpoints or watchpoints, dr6 is restored
4087 * on every vmexit, but if not, we might have a stale dr6 from the
4088 * guest. do_debug expects dr6 to be cleared after it runs, do the same.
4089 */
4090 set_debugreg(0, 6);
4091 }
4092
kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu * vcpu,struct kvm_lapic_state * s)4093 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
4094 struct kvm_lapic_state *s)
4095 {
4096 if (vcpu->arch.apicv_active)
4097 kvm_x86_ops.sync_pir_to_irr(vcpu);
4098
4099 return kvm_apic_get_state(vcpu, s);
4100 }
4101
kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu * vcpu,struct kvm_lapic_state * s)4102 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
4103 struct kvm_lapic_state *s)
4104 {
4105 int r;
4106
4107 r = kvm_apic_set_state(vcpu, s);
4108 if (r)
4109 return r;
4110 update_cr8_intercept(vcpu);
4111
4112 return 0;
4113 }
4114
kvm_cpu_accept_dm_intr(struct kvm_vcpu * vcpu)4115 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
4116 {
4117 /*
4118 * We can accept userspace's request for interrupt injection
4119 * as long as we have a place to store the interrupt number.
4120 * The actual injection will happen when the CPU is able to
4121 * deliver the interrupt.
4122 */
4123 if (kvm_cpu_has_extint(vcpu))
4124 return false;
4125
4126 /* Acknowledging ExtINT does not happen if LINT0 is masked. */
4127 return (!lapic_in_kernel(vcpu) ||
4128 kvm_apic_accept_pic_intr(vcpu));
4129 }
4130
kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu * vcpu)4131 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
4132 {
4133 /*
4134 * Do not cause an interrupt window exit if an exception
4135 * is pending or an event needs reinjection; userspace
4136 * might want to inject the interrupt manually using KVM_SET_REGS
4137 * or KVM_SET_SREGS. For that to work, we must be at an
4138 * instruction boundary and with no events half-injected.
4139 */
4140 return (kvm_arch_interrupt_allowed(vcpu) &&
4141 kvm_cpu_accept_dm_intr(vcpu) &&
4142 !kvm_event_needs_reinjection(vcpu) &&
4143 !vcpu->arch.exception.pending);
4144 }
4145
kvm_vcpu_ioctl_interrupt(struct kvm_vcpu * vcpu,struct kvm_interrupt * irq)4146 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
4147 struct kvm_interrupt *irq)
4148 {
4149 if (irq->irq >= KVM_NR_INTERRUPTS)
4150 return -EINVAL;
4151
4152 if (!irqchip_in_kernel(vcpu->kvm)) {
4153 kvm_queue_interrupt(vcpu, irq->irq, false);
4154 kvm_make_request(KVM_REQ_EVENT, vcpu);
4155 return 0;
4156 }
4157
4158 /*
4159 * With in-kernel LAPIC, we only use this to inject EXTINT, so
4160 * fail for in-kernel 8259.
4161 */
4162 if (pic_in_kernel(vcpu->kvm))
4163 return -ENXIO;
4164
4165 if (vcpu->arch.pending_external_vector != -1)
4166 return -EEXIST;
4167
4168 vcpu->arch.pending_external_vector = irq->irq;
4169 kvm_make_request(KVM_REQ_EVENT, vcpu);
4170 return 0;
4171 }
4172
kvm_vcpu_ioctl_nmi(struct kvm_vcpu * vcpu)4173 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
4174 {
4175 kvm_inject_nmi(vcpu);
4176
4177 return 0;
4178 }
4179
kvm_vcpu_ioctl_smi(struct kvm_vcpu * vcpu)4180 static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu)
4181 {
4182 kvm_make_request(KVM_REQ_SMI, vcpu);
4183
4184 return 0;
4185 }
4186
vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu * vcpu,struct kvm_tpr_access_ctl * tac)4187 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
4188 struct kvm_tpr_access_ctl *tac)
4189 {
4190 if (tac->flags)
4191 return -EINVAL;
4192 vcpu->arch.tpr_access_reporting = !!tac->enabled;
4193 return 0;
4194 }
4195
kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu * vcpu,u64 mcg_cap)4196 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
4197 u64 mcg_cap)
4198 {
4199 int r;
4200 unsigned bank_num = mcg_cap & 0xff, bank;
4201
4202 r = -EINVAL;
4203 if (!bank_num || bank_num > KVM_MAX_MCE_BANKS)
4204 goto out;
4205 if (mcg_cap & ~(kvm_mce_cap_supported | 0xff | 0xff0000))
4206 goto out;
4207 r = 0;
4208 vcpu->arch.mcg_cap = mcg_cap;
4209 /* Init IA32_MCG_CTL to all 1s */
4210 if (mcg_cap & MCG_CTL_P)
4211 vcpu->arch.mcg_ctl = ~(u64)0;
4212 /* Init IA32_MCi_CTL to all 1s */
4213 for (bank = 0; bank < bank_num; bank++)
4214 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
4215
4216 kvm_x86_ops.setup_mce(vcpu);
4217 out:
4218 return r;
4219 }
4220
kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu * vcpu,struct kvm_x86_mce * mce)4221 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
4222 struct kvm_x86_mce *mce)
4223 {
4224 u64 mcg_cap = vcpu->arch.mcg_cap;
4225 unsigned bank_num = mcg_cap & 0xff;
4226 u64 *banks = vcpu->arch.mce_banks;
4227
4228 if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
4229 return -EINVAL;
4230 /*
4231 * if IA32_MCG_CTL is not all 1s, the uncorrected error
4232 * reporting is disabled
4233 */
4234 if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
4235 vcpu->arch.mcg_ctl != ~(u64)0)
4236 return 0;
4237 banks += 4 * mce->bank;
4238 /*
4239 * if IA32_MCi_CTL is not all 1s, the uncorrected error
4240 * reporting is disabled for the bank
4241 */
4242 if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
4243 return 0;
4244 if (mce->status & MCI_STATUS_UC) {
4245 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
4246 !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
4247 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
4248 return 0;
4249 }
4250 if (banks[1] & MCI_STATUS_VAL)
4251 mce->status |= MCI_STATUS_OVER;
4252 banks[2] = mce->addr;
4253 banks[3] = mce->misc;
4254 vcpu->arch.mcg_status = mce->mcg_status;
4255 banks[1] = mce->status;
4256 kvm_queue_exception(vcpu, MC_VECTOR);
4257 } else if (!(banks[1] & MCI_STATUS_VAL)
4258 || !(banks[1] & MCI_STATUS_UC)) {
4259 if (banks[1] & MCI_STATUS_VAL)
4260 mce->status |= MCI_STATUS_OVER;
4261 banks[2] = mce->addr;
4262 banks[3] = mce->misc;
4263 banks[1] = mce->status;
4264 } else
4265 banks[1] |= MCI_STATUS_OVER;
4266 return 0;
4267 }
4268
kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu * vcpu,struct kvm_vcpu_events * events)4269 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
4270 struct kvm_vcpu_events *events)
4271 {
4272 process_nmi(vcpu);
4273
4274 if (kvm_check_request(KVM_REQ_SMI, vcpu))
4275 process_smi(vcpu);
4276
4277 /*
4278 * In guest mode, payload delivery should be deferred,
4279 * so that the L1 hypervisor can intercept #PF before
4280 * CR2 is modified (or intercept #DB before DR6 is
4281 * modified under nVMX). Unless the per-VM capability,
4282 * KVM_CAP_EXCEPTION_PAYLOAD, is set, we may not defer the delivery of
4283 * an exception payload and handle after a KVM_GET_VCPU_EVENTS. Since we
4284 * opportunistically defer the exception payload, deliver it if the
4285 * capability hasn't been requested before processing a
4286 * KVM_GET_VCPU_EVENTS.
4287 */
4288 if (!vcpu->kvm->arch.exception_payload_enabled &&
4289 vcpu->arch.exception.pending && vcpu->arch.exception.has_payload)
4290 kvm_deliver_exception_payload(vcpu);
4291
4292 /*
4293 * The API doesn't provide the instruction length for software
4294 * exceptions, so don't report them. As long as the guest RIP
4295 * isn't advanced, we should expect to encounter the exception
4296 * again.
4297 */
4298 if (kvm_exception_is_soft(vcpu->arch.exception.nr)) {
4299 events->exception.injected = 0;
4300 events->exception.pending = 0;
4301 } else {
4302 events->exception.injected = vcpu->arch.exception.injected;
4303 events->exception.pending = vcpu->arch.exception.pending;
4304 /*
4305 * For ABI compatibility, deliberately conflate
4306 * pending and injected exceptions when
4307 * KVM_CAP_EXCEPTION_PAYLOAD isn't enabled.
4308 */
4309 if (!vcpu->kvm->arch.exception_payload_enabled)
4310 events->exception.injected |=
4311 vcpu->arch.exception.pending;
4312 }
4313 events->exception.nr = vcpu->arch.exception.nr;
4314 events->exception.has_error_code = vcpu->arch.exception.has_error_code;
4315 events->exception.error_code = vcpu->arch.exception.error_code;
4316 events->exception_has_payload = vcpu->arch.exception.has_payload;
4317 events->exception_payload = vcpu->arch.exception.payload;
4318
4319 events->interrupt.injected =
4320 vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft;
4321 events->interrupt.nr = vcpu->arch.interrupt.nr;
4322 events->interrupt.soft = 0;
4323 events->interrupt.shadow = kvm_x86_ops.get_interrupt_shadow(vcpu);
4324
4325 events->nmi.injected = vcpu->arch.nmi_injected;
4326 events->nmi.pending = vcpu->arch.nmi_pending != 0;
4327 events->nmi.masked = kvm_x86_ops.get_nmi_mask(vcpu);
4328 events->nmi.pad = 0;
4329
4330 events->sipi_vector = 0; /* never valid when reporting to user space */
4331
4332 events->smi.smm = is_smm(vcpu);
4333 events->smi.pending = vcpu->arch.smi_pending;
4334 events->smi.smm_inside_nmi =
4335 !!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
4336 events->smi.latched_init = kvm_lapic_latched_init(vcpu);
4337
4338 events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
4339 | KVM_VCPUEVENT_VALID_SHADOW
4340 | KVM_VCPUEVENT_VALID_SMM);
4341 if (vcpu->kvm->arch.exception_payload_enabled)
4342 events->flags |= KVM_VCPUEVENT_VALID_PAYLOAD;
4343
4344 memset(&events->reserved, 0, sizeof(events->reserved));
4345 }
4346
4347 static void kvm_smm_changed(struct kvm_vcpu *vcpu);
4348
kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu * vcpu,struct kvm_vcpu_events * events)4349 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
4350 struct kvm_vcpu_events *events)
4351 {
4352 if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
4353 | KVM_VCPUEVENT_VALID_SIPI_VECTOR
4354 | KVM_VCPUEVENT_VALID_SHADOW
4355 | KVM_VCPUEVENT_VALID_SMM
4356 | KVM_VCPUEVENT_VALID_PAYLOAD))
4357 return -EINVAL;
4358
4359 if (events->flags & KVM_VCPUEVENT_VALID_PAYLOAD) {
4360 if (!vcpu->kvm->arch.exception_payload_enabled)
4361 return -EINVAL;
4362 if (events->exception.pending)
4363 events->exception.injected = 0;
4364 else
4365 events->exception_has_payload = 0;
4366 } else {
4367 events->exception.pending = 0;
4368 events->exception_has_payload = 0;
4369 }
4370
4371 if ((events->exception.injected || events->exception.pending) &&
4372 (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR))
4373 return -EINVAL;
4374
4375 /* INITs are latched while in SMM */
4376 if (events->flags & KVM_VCPUEVENT_VALID_SMM &&
4377 (events->smi.smm || events->smi.pending) &&
4378 vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
4379 return -EINVAL;
4380
4381 process_nmi(vcpu);
4382 vcpu->arch.exception.injected = events->exception.injected;
4383 vcpu->arch.exception.pending = events->exception.pending;
4384 vcpu->arch.exception.nr = events->exception.nr;
4385 vcpu->arch.exception.has_error_code = events->exception.has_error_code;
4386 vcpu->arch.exception.error_code = events->exception.error_code;
4387 vcpu->arch.exception.has_payload = events->exception_has_payload;
4388 vcpu->arch.exception.payload = events->exception_payload;
4389
4390 vcpu->arch.interrupt.injected = events->interrupt.injected;
4391 vcpu->arch.interrupt.nr = events->interrupt.nr;
4392 vcpu->arch.interrupt.soft = events->interrupt.soft;
4393 if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
4394 kvm_x86_ops.set_interrupt_shadow(vcpu,
4395 events->interrupt.shadow);
4396
4397 vcpu->arch.nmi_injected = events->nmi.injected;
4398 if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
4399 vcpu->arch.nmi_pending = events->nmi.pending;
4400 kvm_x86_ops.set_nmi_mask(vcpu, events->nmi.masked);
4401
4402 if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
4403 lapic_in_kernel(vcpu))
4404 vcpu->arch.apic->sipi_vector = events->sipi_vector;
4405
4406 if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
4407 if (!!(vcpu->arch.hflags & HF_SMM_MASK) != events->smi.smm) {
4408 if (events->smi.smm)
4409 vcpu->arch.hflags |= HF_SMM_MASK;
4410 else
4411 vcpu->arch.hflags &= ~HF_SMM_MASK;
4412
4413 kvm_x86_ops.nested_ops->leave_nested(vcpu);
4414 kvm_smm_changed(vcpu);
4415 }
4416
4417 vcpu->arch.smi_pending = events->smi.pending;
4418
4419 if (events->smi.smm) {
4420 if (events->smi.smm_inside_nmi)
4421 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
4422 else
4423 vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
4424 }
4425
4426 if (lapic_in_kernel(vcpu)) {
4427 if (events->smi.latched_init)
4428 set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
4429 else
4430 clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
4431 }
4432 }
4433
4434 kvm_make_request(KVM_REQ_EVENT, vcpu);
4435
4436 return 0;
4437 }
4438
kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu * vcpu,struct kvm_debugregs * dbgregs)4439 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
4440 struct kvm_debugregs *dbgregs)
4441 {
4442 unsigned long val;
4443
4444 memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
4445 kvm_get_dr(vcpu, 6, &val);
4446 dbgregs->dr6 = val;
4447 dbgregs->dr7 = vcpu->arch.dr7;
4448 dbgregs->flags = 0;
4449 memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
4450 }
4451
kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu * vcpu,struct kvm_debugregs * dbgregs)4452 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
4453 struct kvm_debugregs *dbgregs)
4454 {
4455 if (dbgregs->flags)
4456 return -EINVAL;
4457
4458 if (dbgregs->dr6 & ~0xffffffffull)
4459 return -EINVAL;
4460 if (dbgregs->dr7 & ~0xffffffffull)
4461 return -EINVAL;
4462
4463 memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
4464 kvm_update_dr0123(vcpu);
4465 vcpu->arch.dr6 = dbgregs->dr6;
4466 vcpu->arch.dr7 = dbgregs->dr7;
4467 kvm_update_dr7(vcpu);
4468
4469 return 0;
4470 }
4471
4472 #define XSTATE_COMPACTION_ENABLED (1ULL << 63)
4473
fill_xsave(u8 * dest,struct kvm_vcpu * vcpu)4474 static void fill_xsave(u8 *dest, struct kvm_vcpu *vcpu)
4475 {
4476 struct xregs_state *xsave = &vcpu->arch.guest_fpu->state.xsave;
4477 u64 xstate_bv = xsave->header.xfeatures;
4478 u64 valid;
4479
4480 /*
4481 * Copy legacy XSAVE area, to avoid complications with CPUID
4482 * leaves 0 and 1 in the loop below.
4483 */
4484 memcpy(dest, xsave, XSAVE_HDR_OFFSET);
4485
4486 /* Set XSTATE_BV */
4487 xstate_bv &= vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FPSSE;
4488 *(u64 *)(dest + XSAVE_HDR_OFFSET) = xstate_bv;
4489
4490 /*
4491 * Copy each region from the possibly compacted offset to the
4492 * non-compacted offset.
4493 */
4494 valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
4495 while (valid) {
4496 u64 xfeature_mask = valid & -valid;
4497 int xfeature_nr = fls64(xfeature_mask) - 1;
4498 void *src = get_xsave_addr(xsave, xfeature_nr);
4499
4500 if (src) {
4501 u32 size, offset, ecx, edx;
4502 cpuid_count(XSTATE_CPUID, xfeature_nr,
4503 &size, &offset, &ecx, &edx);
4504 if (xfeature_nr == XFEATURE_PKRU)
4505 memcpy(dest + offset, &vcpu->arch.pkru,
4506 sizeof(vcpu->arch.pkru));
4507 else
4508 memcpy(dest + offset, src, size);
4509
4510 }
4511
4512 valid -= xfeature_mask;
4513 }
4514 }
4515
load_xsave(struct kvm_vcpu * vcpu,u8 * src)4516 static void load_xsave(struct kvm_vcpu *vcpu, u8 *src)
4517 {
4518 struct xregs_state *xsave = &vcpu->arch.guest_fpu->state.xsave;
4519 u64 xstate_bv = *(u64 *)(src + XSAVE_HDR_OFFSET);
4520 u64 valid;
4521
4522 /*
4523 * Copy legacy XSAVE area, to avoid complications with CPUID
4524 * leaves 0 and 1 in the loop below.
4525 */
4526 memcpy(xsave, src, XSAVE_HDR_OFFSET);
4527
4528 /* Set XSTATE_BV and possibly XCOMP_BV. */
4529 xsave->header.xfeatures = xstate_bv;
4530 if (boot_cpu_has(X86_FEATURE_XSAVES))
4531 xsave->header.xcomp_bv = host_xcr0 | XSTATE_COMPACTION_ENABLED;
4532
4533 /*
4534 * Copy each region from the non-compacted offset to the
4535 * possibly compacted offset.
4536 */
4537 valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
4538 while (valid) {
4539 u64 xfeature_mask = valid & -valid;
4540 int xfeature_nr = fls64(xfeature_mask) - 1;
4541 void *dest = get_xsave_addr(xsave, xfeature_nr);
4542
4543 if (dest) {
4544 u32 size, offset, ecx, edx;
4545 cpuid_count(XSTATE_CPUID, xfeature_nr,
4546 &size, &offset, &ecx, &edx);
4547 if (xfeature_nr == XFEATURE_PKRU)
4548 memcpy(&vcpu->arch.pkru, src + offset,
4549 sizeof(vcpu->arch.pkru));
4550 else
4551 memcpy(dest, src + offset, size);
4552 }
4553
4554 valid -= xfeature_mask;
4555 }
4556 }
4557
kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu * vcpu,struct kvm_xsave * guest_xsave)4558 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
4559 struct kvm_xsave *guest_xsave)
4560 {
4561 if (boot_cpu_has(X86_FEATURE_XSAVE)) {
4562 memset(guest_xsave, 0, sizeof(struct kvm_xsave));
4563 fill_xsave((u8 *) guest_xsave->region, vcpu);
4564 } else {
4565 memcpy(guest_xsave->region,
4566 &vcpu->arch.guest_fpu->state.fxsave,
4567 sizeof(struct fxregs_state));
4568 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
4569 XFEATURE_MASK_FPSSE;
4570 }
4571 }
4572
4573 #define XSAVE_MXCSR_OFFSET 24
4574
kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu * vcpu,struct kvm_xsave * guest_xsave)4575 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
4576 struct kvm_xsave *guest_xsave)
4577 {
4578 u64 xstate_bv =
4579 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
4580 u32 mxcsr = *(u32 *)&guest_xsave->region[XSAVE_MXCSR_OFFSET / sizeof(u32)];
4581
4582 if (boot_cpu_has(X86_FEATURE_XSAVE)) {
4583 /*
4584 * Here we allow setting states that are not present in
4585 * CPUID leaf 0xD, index 0, EDX:EAX. This is for compatibility
4586 * with old userspace.
4587 */
4588 if (xstate_bv & ~supported_xcr0 || mxcsr & ~mxcsr_feature_mask)
4589 return -EINVAL;
4590 load_xsave(vcpu, (u8 *)guest_xsave->region);
4591 } else {
4592 if (xstate_bv & ~XFEATURE_MASK_FPSSE ||
4593 mxcsr & ~mxcsr_feature_mask)
4594 return -EINVAL;
4595 memcpy(&vcpu->arch.guest_fpu->state.fxsave,
4596 guest_xsave->region, sizeof(struct fxregs_state));
4597 }
4598 return 0;
4599 }
4600
kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu * vcpu,struct kvm_xcrs * guest_xcrs)4601 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
4602 struct kvm_xcrs *guest_xcrs)
4603 {
4604 if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
4605 guest_xcrs->nr_xcrs = 0;
4606 return;
4607 }
4608
4609 guest_xcrs->nr_xcrs = 1;
4610 guest_xcrs->flags = 0;
4611 guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
4612 guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
4613 }
4614
kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu * vcpu,struct kvm_xcrs * guest_xcrs)4615 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
4616 struct kvm_xcrs *guest_xcrs)
4617 {
4618 int i, r = 0;
4619
4620 if (!boot_cpu_has(X86_FEATURE_XSAVE))
4621 return -EINVAL;
4622
4623 if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
4624 return -EINVAL;
4625
4626 for (i = 0; i < guest_xcrs->nr_xcrs; i++)
4627 /* Only support XCR0 currently */
4628 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
4629 r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
4630 guest_xcrs->xcrs[i].value);
4631 break;
4632 }
4633 if (r)
4634 r = -EINVAL;
4635 return r;
4636 }
4637
4638 /*
4639 * kvm_set_guest_paused() indicates to the guest kernel that it has been
4640 * stopped by the hypervisor. This function will be called from the host only.
4641 * EINVAL is returned when the host attempts to set the flag for a guest that
4642 * does not support pv clocks.
4643 */
kvm_set_guest_paused(struct kvm_vcpu * vcpu)4644 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
4645 {
4646 if (!vcpu->arch.pv_time_enabled)
4647 return -EINVAL;
4648 vcpu->arch.pvclock_set_guest_stopped_request = true;
4649 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
4650 return 0;
4651 }
4652
kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu * vcpu,struct kvm_enable_cap * cap)4653 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
4654 struct kvm_enable_cap *cap)
4655 {
4656 int r;
4657 uint16_t vmcs_version;
4658 void __user *user_ptr;
4659
4660 if (cap->flags)
4661 return -EINVAL;
4662
4663 switch (cap->cap) {
4664 case KVM_CAP_HYPERV_SYNIC2:
4665 if (cap->args[0])
4666 return -EINVAL;
4667 fallthrough;
4668
4669 case KVM_CAP_HYPERV_SYNIC:
4670 if (!irqchip_in_kernel(vcpu->kvm))
4671 return -EINVAL;
4672 return kvm_hv_activate_synic(vcpu, cap->cap ==
4673 KVM_CAP_HYPERV_SYNIC2);
4674 case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
4675 if (!kvm_x86_ops.nested_ops->enable_evmcs)
4676 return -ENOTTY;
4677 r = kvm_x86_ops.nested_ops->enable_evmcs(vcpu, &vmcs_version);
4678 if (!r) {
4679 user_ptr = (void __user *)(uintptr_t)cap->args[0];
4680 if (copy_to_user(user_ptr, &vmcs_version,
4681 sizeof(vmcs_version)))
4682 r = -EFAULT;
4683 }
4684 return r;
4685 case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
4686 if (!kvm_x86_ops.enable_direct_tlbflush)
4687 return -ENOTTY;
4688
4689 return kvm_x86_ops.enable_direct_tlbflush(vcpu);
4690
4691 case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
4692 vcpu->arch.pv_cpuid.enforce = cap->args[0];
4693 if (vcpu->arch.pv_cpuid.enforce)
4694 kvm_update_pv_runtime(vcpu);
4695
4696 return 0;
4697
4698 default:
4699 return -EINVAL;
4700 }
4701 }
4702
kvm_arch_vcpu_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)4703 long kvm_arch_vcpu_ioctl(struct file *filp,
4704 unsigned int ioctl, unsigned long arg)
4705 {
4706 struct kvm_vcpu *vcpu = filp->private_data;
4707 void __user *argp = (void __user *)arg;
4708 int r;
4709 union {
4710 struct kvm_lapic_state *lapic;
4711 struct kvm_xsave *xsave;
4712 struct kvm_xcrs *xcrs;
4713 void *buffer;
4714 } u;
4715
4716 vcpu_load(vcpu);
4717
4718 u.buffer = NULL;
4719 switch (ioctl) {
4720 case KVM_GET_LAPIC: {
4721 r = -EINVAL;
4722 if (!lapic_in_kernel(vcpu))
4723 goto out;
4724 u.lapic = kzalloc(sizeof(struct kvm_lapic_state),
4725 GFP_KERNEL_ACCOUNT);
4726
4727 r = -ENOMEM;
4728 if (!u.lapic)
4729 goto out;
4730 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
4731 if (r)
4732 goto out;
4733 r = -EFAULT;
4734 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
4735 goto out;
4736 r = 0;
4737 break;
4738 }
4739 case KVM_SET_LAPIC: {
4740 r = -EINVAL;
4741 if (!lapic_in_kernel(vcpu))
4742 goto out;
4743 u.lapic = memdup_user(argp, sizeof(*u.lapic));
4744 if (IS_ERR(u.lapic)) {
4745 r = PTR_ERR(u.lapic);
4746 goto out_nofree;
4747 }
4748
4749 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
4750 break;
4751 }
4752 case KVM_INTERRUPT: {
4753 struct kvm_interrupt irq;
4754
4755 r = -EFAULT;
4756 if (copy_from_user(&irq, argp, sizeof(irq)))
4757 goto out;
4758 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
4759 break;
4760 }
4761 case KVM_NMI: {
4762 r = kvm_vcpu_ioctl_nmi(vcpu);
4763 break;
4764 }
4765 case KVM_SMI: {
4766 r = kvm_vcpu_ioctl_smi(vcpu);
4767 break;
4768 }
4769 case KVM_SET_CPUID: {
4770 struct kvm_cpuid __user *cpuid_arg = argp;
4771 struct kvm_cpuid cpuid;
4772
4773 r = -EFAULT;
4774 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4775 goto out;
4776 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
4777 break;
4778 }
4779 case KVM_SET_CPUID2: {
4780 struct kvm_cpuid2 __user *cpuid_arg = argp;
4781 struct kvm_cpuid2 cpuid;
4782
4783 r = -EFAULT;
4784 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4785 goto out;
4786 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
4787 cpuid_arg->entries);
4788 break;
4789 }
4790 case KVM_GET_CPUID2: {
4791 struct kvm_cpuid2 __user *cpuid_arg = argp;
4792 struct kvm_cpuid2 cpuid;
4793
4794 r = -EFAULT;
4795 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4796 goto out;
4797 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
4798 cpuid_arg->entries);
4799 if (r)
4800 goto out;
4801 r = -EFAULT;
4802 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4803 goto out;
4804 r = 0;
4805 break;
4806 }
4807 case KVM_GET_MSRS: {
4808 int idx = srcu_read_lock(&vcpu->kvm->srcu);
4809 r = msr_io(vcpu, argp, do_get_msr, 1);
4810 srcu_read_unlock(&vcpu->kvm->srcu, idx);
4811 break;
4812 }
4813 case KVM_SET_MSRS: {
4814 int idx = srcu_read_lock(&vcpu->kvm->srcu);
4815 r = msr_io(vcpu, argp, do_set_msr, 0);
4816 srcu_read_unlock(&vcpu->kvm->srcu, idx);
4817 break;
4818 }
4819 case KVM_TPR_ACCESS_REPORTING: {
4820 struct kvm_tpr_access_ctl tac;
4821
4822 r = -EFAULT;
4823 if (copy_from_user(&tac, argp, sizeof(tac)))
4824 goto out;
4825 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
4826 if (r)
4827 goto out;
4828 r = -EFAULT;
4829 if (copy_to_user(argp, &tac, sizeof(tac)))
4830 goto out;
4831 r = 0;
4832 break;
4833 };
4834 case KVM_SET_VAPIC_ADDR: {
4835 struct kvm_vapic_addr va;
4836 int idx;
4837
4838 r = -EINVAL;
4839 if (!lapic_in_kernel(vcpu))
4840 goto out;
4841 r = -EFAULT;
4842 if (copy_from_user(&va, argp, sizeof(va)))
4843 goto out;
4844 idx = srcu_read_lock(&vcpu->kvm->srcu);
4845 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
4846 srcu_read_unlock(&vcpu->kvm->srcu, idx);
4847 break;
4848 }
4849 case KVM_X86_SETUP_MCE: {
4850 u64 mcg_cap;
4851
4852 r = -EFAULT;
4853 if (copy_from_user(&mcg_cap, argp, sizeof(mcg_cap)))
4854 goto out;
4855 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
4856 break;
4857 }
4858 case KVM_X86_SET_MCE: {
4859 struct kvm_x86_mce mce;
4860
4861 r = -EFAULT;
4862 if (copy_from_user(&mce, argp, sizeof(mce)))
4863 goto out;
4864 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
4865 break;
4866 }
4867 case KVM_GET_VCPU_EVENTS: {
4868 struct kvm_vcpu_events events;
4869
4870 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
4871
4872 r = -EFAULT;
4873 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
4874 break;
4875 r = 0;
4876 break;
4877 }
4878 case KVM_SET_VCPU_EVENTS: {
4879 struct kvm_vcpu_events events;
4880
4881 r = -EFAULT;
4882 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
4883 break;
4884
4885 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
4886 break;
4887 }
4888 case KVM_GET_DEBUGREGS: {
4889 struct kvm_debugregs dbgregs;
4890
4891 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
4892
4893 r = -EFAULT;
4894 if (copy_to_user(argp, &dbgregs,
4895 sizeof(struct kvm_debugregs)))
4896 break;
4897 r = 0;
4898 break;
4899 }
4900 case KVM_SET_DEBUGREGS: {
4901 struct kvm_debugregs dbgregs;
4902
4903 r = -EFAULT;
4904 if (copy_from_user(&dbgregs, argp,
4905 sizeof(struct kvm_debugregs)))
4906 break;
4907
4908 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
4909 break;
4910 }
4911 case KVM_GET_XSAVE: {
4912 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL_ACCOUNT);
4913 r = -ENOMEM;
4914 if (!u.xsave)
4915 break;
4916
4917 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
4918
4919 r = -EFAULT;
4920 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
4921 break;
4922 r = 0;
4923 break;
4924 }
4925 case KVM_SET_XSAVE: {
4926 u.xsave = memdup_user(argp, sizeof(*u.xsave));
4927 if (IS_ERR(u.xsave)) {
4928 r = PTR_ERR(u.xsave);
4929 goto out_nofree;
4930 }
4931
4932 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
4933 break;
4934 }
4935 case KVM_GET_XCRS: {
4936 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL_ACCOUNT);
4937 r = -ENOMEM;
4938 if (!u.xcrs)
4939 break;
4940
4941 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
4942
4943 r = -EFAULT;
4944 if (copy_to_user(argp, u.xcrs,
4945 sizeof(struct kvm_xcrs)))
4946 break;
4947 r = 0;
4948 break;
4949 }
4950 case KVM_SET_XCRS: {
4951 u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
4952 if (IS_ERR(u.xcrs)) {
4953 r = PTR_ERR(u.xcrs);
4954 goto out_nofree;
4955 }
4956
4957 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
4958 break;
4959 }
4960 case KVM_SET_TSC_KHZ: {
4961 u32 user_tsc_khz;
4962
4963 r = -EINVAL;
4964 user_tsc_khz = (u32)arg;
4965
4966 if (kvm_has_tsc_control &&
4967 user_tsc_khz >= kvm_max_guest_tsc_khz)
4968 goto out;
4969
4970 if (user_tsc_khz == 0)
4971 user_tsc_khz = tsc_khz;
4972
4973 if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
4974 r = 0;
4975
4976 goto out;
4977 }
4978 case KVM_GET_TSC_KHZ: {
4979 r = vcpu->arch.virtual_tsc_khz;
4980 goto out;
4981 }
4982 case KVM_KVMCLOCK_CTRL: {
4983 r = kvm_set_guest_paused(vcpu);
4984 goto out;
4985 }
4986 case KVM_ENABLE_CAP: {
4987 struct kvm_enable_cap cap;
4988
4989 r = -EFAULT;
4990 if (copy_from_user(&cap, argp, sizeof(cap)))
4991 goto out;
4992 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
4993 break;
4994 }
4995 case KVM_GET_NESTED_STATE: {
4996 struct kvm_nested_state __user *user_kvm_nested_state = argp;
4997 u32 user_data_size;
4998
4999 r = -EINVAL;
5000 if (!kvm_x86_ops.nested_ops->get_state)
5001 break;
5002
5003 BUILD_BUG_ON(sizeof(user_data_size) != sizeof(user_kvm_nested_state->size));
5004 r = -EFAULT;
5005 if (get_user(user_data_size, &user_kvm_nested_state->size))
5006 break;
5007
5008 r = kvm_x86_ops.nested_ops->get_state(vcpu, user_kvm_nested_state,
5009 user_data_size);
5010 if (r < 0)
5011 break;
5012
5013 if (r > user_data_size) {
5014 if (put_user(r, &user_kvm_nested_state->size))
5015 r = -EFAULT;
5016 else
5017 r = -E2BIG;
5018 break;
5019 }
5020
5021 r = 0;
5022 break;
5023 }
5024 case KVM_SET_NESTED_STATE: {
5025 struct kvm_nested_state __user *user_kvm_nested_state = argp;
5026 struct kvm_nested_state kvm_state;
5027 int idx;
5028
5029 r = -EINVAL;
5030 if (!kvm_x86_ops.nested_ops->set_state)
5031 break;
5032
5033 r = -EFAULT;
5034 if (copy_from_user(&kvm_state, user_kvm_nested_state, sizeof(kvm_state)))
5035 break;
5036
5037 r = -EINVAL;
5038 if (kvm_state.size < sizeof(kvm_state))
5039 break;
5040
5041 if (kvm_state.flags &
5042 ~(KVM_STATE_NESTED_RUN_PENDING | KVM_STATE_NESTED_GUEST_MODE
5043 | KVM_STATE_NESTED_EVMCS | KVM_STATE_NESTED_MTF_PENDING
5044 | KVM_STATE_NESTED_GIF_SET))
5045 break;
5046
5047 /* nested_run_pending implies guest_mode. */
5048 if ((kvm_state.flags & KVM_STATE_NESTED_RUN_PENDING)
5049 && !(kvm_state.flags & KVM_STATE_NESTED_GUEST_MODE))
5050 break;
5051
5052 idx = srcu_read_lock(&vcpu->kvm->srcu);
5053 r = kvm_x86_ops.nested_ops->set_state(vcpu, user_kvm_nested_state, &kvm_state);
5054 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5055 break;
5056 }
5057 case KVM_GET_SUPPORTED_HV_CPUID: {
5058 struct kvm_cpuid2 __user *cpuid_arg = argp;
5059 struct kvm_cpuid2 cpuid;
5060
5061 r = -EFAULT;
5062 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5063 goto out;
5064
5065 r = kvm_vcpu_ioctl_get_hv_cpuid(vcpu, &cpuid,
5066 cpuid_arg->entries);
5067 if (r)
5068 goto out;
5069
5070 r = -EFAULT;
5071 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
5072 goto out;
5073 r = 0;
5074 break;
5075 }
5076 default:
5077 r = -EINVAL;
5078 }
5079 out:
5080 kfree(u.buffer);
5081 out_nofree:
5082 vcpu_put(vcpu);
5083 return r;
5084 }
5085
kvm_arch_vcpu_fault(struct kvm_vcpu * vcpu,struct vm_fault * vmf)5086 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
5087 {
5088 return VM_FAULT_SIGBUS;
5089 }
5090
kvm_vm_ioctl_set_tss_addr(struct kvm * kvm,unsigned long addr)5091 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
5092 {
5093 int ret;
5094
5095 if (addr > (unsigned int)(-3 * PAGE_SIZE))
5096 return -EINVAL;
5097 ret = kvm_x86_ops.set_tss_addr(kvm, addr);
5098 return ret;
5099 }
5100
kvm_vm_ioctl_set_identity_map_addr(struct kvm * kvm,u64 ident_addr)5101 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
5102 u64 ident_addr)
5103 {
5104 return kvm_x86_ops.set_identity_map_addr(kvm, ident_addr);
5105 }
5106
kvm_vm_ioctl_set_nr_mmu_pages(struct kvm * kvm,unsigned long kvm_nr_mmu_pages)5107 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
5108 unsigned long kvm_nr_mmu_pages)
5109 {
5110 if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
5111 return -EINVAL;
5112
5113 mutex_lock(&kvm->slots_lock);
5114
5115 kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
5116 kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
5117
5118 mutex_unlock(&kvm->slots_lock);
5119 return 0;
5120 }
5121
kvm_vm_ioctl_get_nr_mmu_pages(struct kvm * kvm)5122 static unsigned long kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
5123 {
5124 return kvm->arch.n_max_mmu_pages;
5125 }
5126
kvm_vm_ioctl_get_irqchip(struct kvm * kvm,struct kvm_irqchip * chip)5127 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
5128 {
5129 struct kvm_pic *pic = kvm->arch.vpic;
5130 int r;
5131
5132 r = 0;
5133 switch (chip->chip_id) {
5134 case KVM_IRQCHIP_PIC_MASTER:
5135 memcpy(&chip->chip.pic, &pic->pics[0],
5136 sizeof(struct kvm_pic_state));
5137 break;
5138 case KVM_IRQCHIP_PIC_SLAVE:
5139 memcpy(&chip->chip.pic, &pic->pics[1],
5140 sizeof(struct kvm_pic_state));
5141 break;
5142 case KVM_IRQCHIP_IOAPIC:
5143 kvm_get_ioapic(kvm, &chip->chip.ioapic);
5144 break;
5145 default:
5146 r = -EINVAL;
5147 break;
5148 }
5149 return r;
5150 }
5151
kvm_vm_ioctl_set_irqchip(struct kvm * kvm,struct kvm_irqchip * chip)5152 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
5153 {
5154 struct kvm_pic *pic = kvm->arch.vpic;
5155 int r;
5156
5157 r = 0;
5158 switch (chip->chip_id) {
5159 case KVM_IRQCHIP_PIC_MASTER:
5160 spin_lock(&pic->lock);
5161 memcpy(&pic->pics[0], &chip->chip.pic,
5162 sizeof(struct kvm_pic_state));
5163 spin_unlock(&pic->lock);
5164 break;
5165 case KVM_IRQCHIP_PIC_SLAVE:
5166 spin_lock(&pic->lock);
5167 memcpy(&pic->pics[1], &chip->chip.pic,
5168 sizeof(struct kvm_pic_state));
5169 spin_unlock(&pic->lock);
5170 break;
5171 case KVM_IRQCHIP_IOAPIC:
5172 kvm_set_ioapic(kvm, &chip->chip.ioapic);
5173 break;
5174 default:
5175 r = -EINVAL;
5176 break;
5177 }
5178 kvm_pic_update_irq(pic);
5179 return r;
5180 }
5181
kvm_vm_ioctl_get_pit(struct kvm * kvm,struct kvm_pit_state * ps)5182 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
5183 {
5184 struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state;
5185
5186 BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels));
5187
5188 mutex_lock(&kps->lock);
5189 memcpy(ps, &kps->channels, sizeof(*ps));
5190 mutex_unlock(&kps->lock);
5191 return 0;
5192 }
5193
kvm_vm_ioctl_set_pit(struct kvm * kvm,struct kvm_pit_state * ps)5194 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
5195 {
5196 int i;
5197 struct kvm_pit *pit = kvm->arch.vpit;
5198
5199 mutex_lock(&pit->pit_state.lock);
5200 memcpy(&pit->pit_state.channels, ps, sizeof(*ps));
5201 for (i = 0; i < 3; i++)
5202 kvm_pit_load_count(pit, i, ps->channels[i].count, 0);
5203 mutex_unlock(&pit->pit_state.lock);
5204 return 0;
5205 }
5206
kvm_vm_ioctl_get_pit2(struct kvm * kvm,struct kvm_pit_state2 * ps)5207 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
5208 {
5209 mutex_lock(&kvm->arch.vpit->pit_state.lock);
5210 memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
5211 sizeof(ps->channels));
5212 ps->flags = kvm->arch.vpit->pit_state.flags;
5213 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
5214 memset(&ps->reserved, 0, sizeof(ps->reserved));
5215 return 0;
5216 }
5217
kvm_vm_ioctl_set_pit2(struct kvm * kvm,struct kvm_pit_state2 * ps)5218 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
5219 {
5220 int start = 0;
5221 int i;
5222 u32 prev_legacy, cur_legacy;
5223 struct kvm_pit *pit = kvm->arch.vpit;
5224
5225 mutex_lock(&pit->pit_state.lock);
5226 prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
5227 cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
5228 if (!prev_legacy && cur_legacy)
5229 start = 1;
5230 memcpy(&pit->pit_state.channels, &ps->channels,
5231 sizeof(pit->pit_state.channels));
5232 pit->pit_state.flags = ps->flags;
5233 for (i = 0; i < 3; i++)
5234 kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count,
5235 start && i == 0);
5236 mutex_unlock(&pit->pit_state.lock);
5237 return 0;
5238 }
5239
kvm_vm_ioctl_reinject(struct kvm * kvm,struct kvm_reinject_control * control)5240 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
5241 struct kvm_reinject_control *control)
5242 {
5243 struct kvm_pit *pit = kvm->arch.vpit;
5244
5245 /* pit->pit_state.lock was overloaded to prevent userspace from getting
5246 * an inconsistent state after running multiple KVM_REINJECT_CONTROL
5247 * ioctls in parallel. Use a separate lock if that ioctl isn't rare.
5248 */
5249 mutex_lock(&pit->pit_state.lock);
5250 kvm_pit_set_reinject(pit, control->pit_reinject);
5251 mutex_unlock(&pit->pit_state.lock);
5252
5253 return 0;
5254 }
5255
kvm_arch_sync_dirty_log(struct kvm * kvm,struct kvm_memory_slot * memslot)5256 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
5257 {
5258 /*
5259 * Flush potentially hardware-cached dirty pages to dirty_bitmap.
5260 */
5261 if (kvm_x86_ops.flush_log_dirty)
5262 kvm_x86_ops.flush_log_dirty(kvm);
5263 }
5264
kvm_vm_ioctl_irq_line(struct kvm * kvm,struct kvm_irq_level * irq_event,bool line_status)5265 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
5266 bool line_status)
5267 {
5268 if (!irqchip_in_kernel(kvm))
5269 return -ENXIO;
5270
5271 irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
5272 irq_event->irq, irq_event->level,
5273 line_status);
5274 return 0;
5275 }
5276
kvm_vm_ioctl_enable_cap(struct kvm * kvm,struct kvm_enable_cap * cap)5277 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
5278 struct kvm_enable_cap *cap)
5279 {
5280 int r;
5281
5282 if (cap->flags)
5283 return -EINVAL;
5284
5285 switch (cap->cap) {
5286 case KVM_CAP_DISABLE_QUIRKS:
5287 kvm->arch.disabled_quirks = cap->args[0];
5288 r = 0;
5289 break;
5290 case KVM_CAP_SPLIT_IRQCHIP: {
5291 mutex_lock(&kvm->lock);
5292 r = -EINVAL;
5293 if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
5294 goto split_irqchip_unlock;
5295 r = -EEXIST;
5296 if (irqchip_in_kernel(kvm))
5297 goto split_irqchip_unlock;
5298 if (kvm->created_vcpus)
5299 goto split_irqchip_unlock;
5300 r = kvm_setup_empty_irq_routing(kvm);
5301 if (r)
5302 goto split_irqchip_unlock;
5303 /* Pairs with irqchip_in_kernel. */
5304 smp_wmb();
5305 kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT;
5306 kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
5307 r = 0;
5308 split_irqchip_unlock:
5309 mutex_unlock(&kvm->lock);
5310 break;
5311 }
5312 case KVM_CAP_X2APIC_API:
5313 r = -EINVAL;
5314 if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS)
5315 break;
5316
5317 if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS)
5318 kvm->arch.x2apic_format = true;
5319 if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
5320 kvm->arch.x2apic_broadcast_quirk_disabled = true;
5321
5322 r = 0;
5323 break;
5324 case KVM_CAP_X86_DISABLE_EXITS:
5325 r = -EINVAL;
5326 if (cap->args[0] & ~KVM_X86_DISABLE_VALID_EXITS)
5327 break;
5328
5329 if ((cap->args[0] & KVM_X86_DISABLE_EXITS_MWAIT) &&
5330 kvm_can_mwait_in_guest())
5331 kvm->arch.mwait_in_guest = true;
5332 if (cap->args[0] & KVM_X86_DISABLE_EXITS_HLT)
5333 kvm->arch.hlt_in_guest = true;
5334 if (cap->args[0] & KVM_X86_DISABLE_EXITS_PAUSE)
5335 kvm->arch.pause_in_guest = true;
5336 if (cap->args[0] & KVM_X86_DISABLE_EXITS_CSTATE)
5337 kvm->arch.cstate_in_guest = true;
5338 r = 0;
5339 break;
5340 case KVM_CAP_MSR_PLATFORM_INFO:
5341 kvm->arch.guest_can_read_msr_platform_info = cap->args[0];
5342 r = 0;
5343 break;
5344 case KVM_CAP_EXCEPTION_PAYLOAD:
5345 kvm->arch.exception_payload_enabled = cap->args[0];
5346 r = 0;
5347 break;
5348 case KVM_CAP_X86_USER_SPACE_MSR:
5349 kvm->arch.user_space_msr_mask = cap->args[0];
5350 r = 0;
5351 break;
5352 default:
5353 r = -EINVAL;
5354 break;
5355 }
5356 return r;
5357 }
5358
kvm_alloc_msr_filter(bool default_allow)5359 static struct kvm_x86_msr_filter *kvm_alloc_msr_filter(bool default_allow)
5360 {
5361 struct kvm_x86_msr_filter *msr_filter;
5362
5363 msr_filter = kzalloc(sizeof(*msr_filter), GFP_KERNEL_ACCOUNT);
5364 if (!msr_filter)
5365 return NULL;
5366
5367 msr_filter->default_allow = default_allow;
5368 return msr_filter;
5369 }
5370
kvm_free_msr_filter(struct kvm_x86_msr_filter * msr_filter)5371 static void kvm_free_msr_filter(struct kvm_x86_msr_filter *msr_filter)
5372 {
5373 u32 i;
5374
5375 if (!msr_filter)
5376 return;
5377
5378 for (i = 0; i < msr_filter->count; i++)
5379 kfree(msr_filter->ranges[i].bitmap);
5380
5381 kfree(msr_filter);
5382 }
5383
kvm_add_msr_filter(struct kvm_x86_msr_filter * msr_filter,struct kvm_msr_filter_range * user_range)5384 static int kvm_add_msr_filter(struct kvm_x86_msr_filter *msr_filter,
5385 struct kvm_msr_filter_range *user_range)
5386 {
5387 struct msr_bitmap_range range;
5388 unsigned long *bitmap = NULL;
5389 size_t bitmap_size;
5390 int r;
5391
5392 if (!user_range->nmsrs)
5393 return 0;
5394
5395 bitmap_size = BITS_TO_LONGS(user_range->nmsrs) * sizeof(long);
5396 if (!bitmap_size || bitmap_size > KVM_MSR_FILTER_MAX_BITMAP_SIZE)
5397 return -EINVAL;
5398
5399 bitmap = memdup_user((__user u8*)user_range->bitmap, bitmap_size);
5400 if (IS_ERR(bitmap))
5401 return PTR_ERR(bitmap);
5402
5403 range = (struct msr_bitmap_range) {
5404 .flags = user_range->flags,
5405 .base = user_range->base,
5406 .nmsrs = user_range->nmsrs,
5407 .bitmap = bitmap,
5408 };
5409
5410 if (range.flags & ~(KVM_MSR_FILTER_READ | KVM_MSR_FILTER_WRITE)) {
5411 r = -EINVAL;
5412 goto err;
5413 }
5414
5415 if (!range.flags) {
5416 r = -EINVAL;
5417 goto err;
5418 }
5419
5420 /* Everything ok, add this range identifier. */
5421 msr_filter->ranges[msr_filter->count] = range;
5422 msr_filter->count++;
5423
5424 return 0;
5425 err:
5426 kfree(bitmap);
5427 return r;
5428 }
5429
kvm_vm_ioctl_set_msr_filter(struct kvm * kvm,void __user * argp)5430 static int kvm_vm_ioctl_set_msr_filter(struct kvm *kvm, void __user *argp)
5431 {
5432 struct kvm_msr_filter __user *user_msr_filter = argp;
5433 struct kvm_x86_msr_filter *new_filter, *old_filter;
5434 struct kvm_msr_filter filter;
5435 bool default_allow;
5436 bool empty = true;
5437 int r = 0;
5438 u32 i;
5439
5440 if (copy_from_user(&filter, user_msr_filter, sizeof(filter)))
5441 return -EFAULT;
5442
5443 for (i = 0; i < ARRAY_SIZE(filter.ranges); i++)
5444 empty &= !filter.ranges[i].nmsrs;
5445
5446 default_allow = !(filter.flags & KVM_MSR_FILTER_DEFAULT_DENY);
5447 if (empty && !default_allow)
5448 return -EINVAL;
5449
5450 new_filter = kvm_alloc_msr_filter(default_allow);
5451 if (!new_filter)
5452 return -ENOMEM;
5453
5454 for (i = 0; i < ARRAY_SIZE(filter.ranges); i++) {
5455 r = kvm_add_msr_filter(new_filter, &filter.ranges[i]);
5456 if (r) {
5457 kvm_free_msr_filter(new_filter);
5458 return r;
5459 }
5460 }
5461
5462 mutex_lock(&kvm->lock);
5463
5464 /* The per-VM filter is protected by kvm->lock... */
5465 old_filter = srcu_dereference_check(kvm->arch.msr_filter, &kvm->srcu, 1);
5466
5467 rcu_assign_pointer(kvm->arch.msr_filter, new_filter);
5468 synchronize_srcu(&kvm->srcu);
5469
5470 kvm_free_msr_filter(old_filter);
5471
5472 kvm_make_all_cpus_request(kvm, KVM_REQ_MSR_FILTER_CHANGED);
5473 mutex_unlock(&kvm->lock);
5474
5475 return 0;
5476 }
5477
kvm_arch_vm_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)5478 long kvm_arch_vm_ioctl(struct file *filp,
5479 unsigned int ioctl, unsigned long arg)
5480 {
5481 struct kvm *kvm = filp->private_data;
5482 void __user *argp = (void __user *)arg;
5483 int r = -ENOTTY;
5484 /*
5485 * This union makes it completely explicit to gcc-3.x
5486 * that these two variables' stack usage should be
5487 * combined, not added together.
5488 */
5489 union {
5490 struct kvm_pit_state ps;
5491 struct kvm_pit_state2 ps2;
5492 struct kvm_pit_config pit_config;
5493 } u;
5494
5495 switch (ioctl) {
5496 case KVM_SET_TSS_ADDR:
5497 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
5498 break;
5499 case KVM_SET_IDENTITY_MAP_ADDR: {
5500 u64 ident_addr;
5501
5502 mutex_lock(&kvm->lock);
5503 r = -EINVAL;
5504 if (kvm->created_vcpus)
5505 goto set_identity_unlock;
5506 r = -EFAULT;
5507 if (copy_from_user(&ident_addr, argp, sizeof(ident_addr)))
5508 goto set_identity_unlock;
5509 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
5510 set_identity_unlock:
5511 mutex_unlock(&kvm->lock);
5512 break;
5513 }
5514 case KVM_SET_NR_MMU_PAGES:
5515 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
5516 break;
5517 case KVM_GET_NR_MMU_PAGES:
5518 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
5519 break;
5520 case KVM_CREATE_IRQCHIP: {
5521 mutex_lock(&kvm->lock);
5522
5523 r = -EEXIST;
5524 if (irqchip_in_kernel(kvm))
5525 goto create_irqchip_unlock;
5526
5527 r = -EINVAL;
5528 if (kvm->created_vcpus)
5529 goto create_irqchip_unlock;
5530
5531 r = kvm_pic_init(kvm);
5532 if (r)
5533 goto create_irqchip_unlock;
5534
5535 r = kvm_ioapic_init(kvm);
5536 if (r) {
5537 kvm_pic_destroy(kvm);
5538 goto create_irqchip_unlock;
5539 }
5540
5541 r = kvm_setup_default_irq_routing(kvm);
5542 if (r) {
5543 kvm_ioapic_destroy(kvm);
5544 kvm_pic_destroy(kvm);
5545 goto create_irqchip_unlock;
5546 }
5547 /* Write kvm->irq_routing before enabling irqchip_in_kernel. */
5548 smp_wmb();
5549 kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL;
5550 create_irqchip_unlock:
5551 mutex_unlock(&kvm->lock);
5552 break;
5553 }
5554 case KVM_CREATE_PIT:
5555 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
5556 goto create_pit;
5557 case KVM_CREATE_PIT2:
5558 r = -EFAULT;
5559 if (copy_from_user(&u.pit_config, argp,
5560 sizeof(struct kvm_pit_config)))
5561 goto out;
5562 create_pit:
5563 mutex_lock(&kvm->lock);
5564 r = -EEXIST;
5565 if (kvm->arch.vpit)
5566 goto create_pit_unlock;
5567 r = -ENOMEM;
5568 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
5569 if (kvm->arch.vpit)
5570 r = 0;
5571 create_pit_unlock:
5572 mutex_unlock(&kvm->lock);
5573 break;
5574 case KVM_GET_IRQCHIP: {
5575 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
5576 struct kvm_irqchip *chip;
5577
5578 chip = memdup_user(argp, sizeof(*chip));
5579 if (IS_ERR(chip)) {
5580 r = PTR_ERR(chip);
5581 goto out;
5582 }
5583
5584 r = -ENXIO;
5585 if (!irqchip_kernel(kvm))
5586 goto get_irqchip_out;
5587 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
5588 if (r)
5589 goto get_irqchip_out;
5590 r = -EFAULT;
5591 if (copy_to_user(argp, chip, sizeof(*chip)))
5592 goto get_irqchip_out;
5593 r = 0;
5594 get_irqchip_out:
5595 kfree(chip);
5596 break;
5597 }
5598 case KVM_SET_IRQCHIP: {
5599 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
5600 struct kvm_irqchip *chip;
5601
5602 chip = memdup_user(argp, sizeof(*chip));
5603 if (IS_ERR(chip)) {
5604 r = PTR_ERR(chip);
5605 goto out;
5606 }
5607
5608 r = -ENXIO;
5609 if (!irqchip_kernel(kvm))
5610 goto set_irqchip_out;
5611 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
5612 set_irqchip_out:
5613 kfree(chip);
5614 break;
5615 }
5616 case KVM_GET_PIT: {
5617 r = -EFAULT;
5618 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
5619 goto out;
5620 r = -ENXIO;
5621 if (!kvm->arch.vpit)
5622 goto out;
5623 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
5624 if (r)
5625 goto out;
5626 r = -EFAULT;
5627 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
5628 goto out;
5629 r = 0;
5630 break;
5631 }
5632 case KVM_SET_PIT: {
5633 r = -EFAULT;
5634 if (copy_from_user(&u.ps, argp, sizeof(u.ps)))
5635 goto out;
5636 mutex_lock(&kvm->lock);
5637 r = -ENXIO;
5638 if (!kvm->arch.vpit)
5639 goto set_pit_out;
5640 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
5641 set_pit_out:
5642 mutex_unlock(&kvm->lock);
5643 break;
5644 }
5645 case KVM_GET_PIT2: {
5646 r = -ENXIO;
5647 if (!kvm->arch.vpit)
5648 goto out;
5649 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
5650 if (r)
5651 goto out;
5652 r = -EFAULT;
5653 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
5654 goto out;
5655 r = 0;
5656 break;
5657 }
5658 case KVM_SET_PIT2: {
5659 r = -EFAULT;
5660 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
5661 goto out;
5662 mutex_lock(&kvm->lock);
5663 r = -ENXIO;
5664 if (!kvm->arch.vpit)
5665 goto set_pit2_out;
5666 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
5667 set_pit2_out:
5668 mutex_unlock(&kvm->lock);
5669 break;
5670 }
5671 case KVM_REINJECT_CONTROL: {
5672 struct kvm_reinject_control control;
5673 r = -EFAULT;
5674 if (copy_from_user(&control, argp, sizeof(control)))
5675 goto out;
5676 r = -ENXIO;
5677 if (!kvm->arch.vpit)
5678 goto out;
5679 r = kvm_vm_ioctl_reinject(kvm, &control);
5680 break;
5681 }
5682 case KVM_SET_BOOT_CPU_ID:
5683 r = 0;
5684 mutex_lock(&kvm->lock);
5685 if (kvm->created_vcpus)
5686 r = -EBUSY;
5687 else
5688 kvm->arch.bsp_vcpu_id = arg;
5689 mutex_unlock(&kvm->lock);
5690 break;
5691 case KVM_XEN_HVM_CONFIG: {
5692 struct kvm_xen_hvm_config xhc;
5693 r = -EFAULT;
5694 if (copy_from_user(&xhc, argp, sizeof(xhc)))
5695 goto out;
5696 r = -EINVAL;
5697 if (xhc.flags)
5698 goto out;
5699 memcpy(&kvm->arch.xen_hvm_config, &xhc, sizeof(xhc));
5700 r = 0;
5701 break;
5702 }
5703 case KVM_SET_CLOCK: {
5704 struct kvm_clock_data user_ns;
5705 u64 now_ns;
5706
5707 r = -EFAULT;
5708 if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
5709 goto out;
5710
5711 r = -EINVAL;
5712 if (user_ns.flags)
5713 goto out;
5714
5715 r = 0;
5716 /*
5717 * TODO: userspace has to take care of races with VCPU_RUN, so
5718 * kvm_gen_update_masterclock() can be cut down to locked
5719 * pvclock_update_vm_gtod_copy().
5720 */
5721 kvm_gen_update_masterclock(kvm);
5722 now_ns = get_kvmclock_ns(kvm);
5723 kvm->arch.kvmclock_offset += user_ns.clock - now_ns;
5724 kvm_make_all_cpus_request(kvm, KVM_REQ_CLOCK_UPDATE);
5725 break;
5726 }
5727 case KVM_GET_CLOCK: {
5728 struct kvm_clock_data user_ns;
5729 u64 now_ns;
5730
5731 now_ns = get_kvmclock_ns(kvm);
5732 user_ns.clock = now_ns;
5733 user_ns.flags = kvm->arch.use_master_clock ? KVM_CLOCK_TSC_STABLE : 0;
5734 memset(&user_ns.pad, 0, sizeof(user_ns.pad));
5735
5736 r = -EFAULT;
5737 if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
5738 goto out;
5739 r = 0;
5740 break;
5741 }
5742 case KVM_MEMORY_ENCRYPT_OP: {
5743 r = -ENOTTY;
5744 if (kvm_x86_ops.mem_enc_op)
5745 r = kvm_x86_ops.mem_enc_op(kvm, argp);
5746 break;
5747 }
5748 case KVM_MEMORY_ENCRYPT_REG_REGION: {
5749 struct kvm_enc_region region;
5750
5751 r = -EFAULT;
5752 if (copy_from_user(®ion, argp, sizeof(region)))
5753 goto out;
5754
5755 r = -ENOTTY;
5756 if (kvm_x86_ops.mem_enc_reg_region)
5757 r = kvm_x86_ops.mem_enc_reg_region(kvm, ®ion);
5758 break;
5759 }
5760 case KVM_MEMORY_ENCRYPT_UNREG_REGION: {
5761 struct kvm_enc_region region;
5762
5763 r = -EFAULT;
5764 if (copy_from_user(®ion, argp, sizeof(region)))
5765 goto out;
5766
5767 r = -ENOTTY;
5768 if (kvm_x86_ops.mem_enc_unreg_region)
5769 r = kvm_x86_ops.mem_enc_unreg_region(kvm, ®ion);
5770 break;
5771 }
5772 case KVM_HYPERV_EVENTFD: {
5773 struct kvm_hyperv_eventfd hvevfd;
5774
5775 r = -EFAULT;
5776 if (copy_from_user(&hvevfd, argp, sizeof(hvevfd)))
5777 goto out;
5778 r = kvm_vm_ioctl_hv_eventfd(kvm, &hvevfd);
5779 break;
5780 }
5781 case KVM_SET_PMU_EVENT_FILTER:
5782 r = kvm_vm_ioctl_set_pmu_event_filter(kvm, argp);
5783 break;
5784 case KVM_X86_SET_MSR_FILTER:
5785 r = kvm_vm_ioctl_set_msr_filter(kvm, argp);
5786 break;
5787 default:
5788 r = -ENOTTY;
5789 }
5790 out:
5791 return r;
5792 }
5793
kvm_init_msr_list(void)5794 static void kvm_init_msr_list(void)
5795 {
5796 struct x86_pmu_capability x86_pmu;
5797 u32 dummy[2];
5798 unsigned i;
5799
5800 BUILD_BUG_ON_MSG(INTEL_PMC_MAX_FIXED != 4,
5801 "Please update the fixed PMCs in msrs_to_saved_all[]");
5802
5803 perf_get_x86_pmu_capability(&x86_pmu);
5804
5805 num_msrs_to_save = 0;
5806 num_emulated_msrs = 0;
5807 num_msr_based_features = 0;
5808
5809 for (i = 0; i < ARRAY_SIZE(msrs_to_save_all); i++) {
5810 if (rdmsr_safe(msrs_to_save_all[i], &dummy[0], &dummy[1]) < 0)
5811 continue;
5812
5813 /*
5814 * Even MSRs that are valid in the host may not be exposed
5815 * to the guests in some cases.
5816 */
5817 switch (msrs_to_save_all[i]) {
5818 case MSR_IA32_BNDCFGS:
5819 if (!kvm_mpx_supported())
5820 continue;
5821 break;
5822 case MSR_TSC_AUX:
5823 if (!kvm_cpu_cap_has(X86_FEATURE_RDTSCP))
5824 continue;
5825 break;
5826 case MSR_IA32_UMWAIT_CONTROL:
5827 if (!kvm_cpu_cap_has(X86_FEATURE_WAITPKG))
5828 continue;
5829 break;
5830 case MSR_IA32_RTIT_CTL:
5831 case MSR_IA32_RTIT_STATUS:
5832 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT))
5833 continue;
5834 break;
5835 case MSR_IA32_RTIT_CR3_MATCH:
5836 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
5837 !intel_pt_validate_hw_cap(PT_CAP_cr3_filtering))
5838 continue;
5839 break;
5840 case MSR_IA32_RTIT_OUTPUT_BASE:
5841 case MSR_IA32_RTIT_OUTPUT_MASK:
5842 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
5843 (!intel_pt_validate_hw_cap(PT_CAP_topa_output) &&
5844 !intel_pt_validate_hw_cap(PT_CAP_single_range_output)))
5845 continue;
5846 break;
5847 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
5848 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
5849 msrs_to_save_all[i] - MSR_IA32_RTIT_ADDR0_A >=
5850 intel_pt_validate_hw_cap(PT_CAP_num_address_ranges) * 2)
5851 continue;
5852 break;
5853 case MSR_ARCH_PERFMON_PERFCTR0 ... MSR_ARCH_PERFMON_PERFCTR0 + 17:
5854 if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_PERFCTR0 >=
5855 min(INTEL_PMC_MAX_GENERIC, x86_pmu.num_counters_gp))
5856 continue;
5857 break;
5858 case MSR_ARCH_PERFMON_EVENTSEL0 ... MSR_ARCH_PERFMON_EVENTSEL0 + 17:
5859 if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_EVENTSEL0 >=
5860 min(INTEL_PMC_MAX_GENERIC, x86_pmu.num_counters_gp))
5861 continue;
5862 break;
5863 default:
5864 break;
5865 }
5866
5867 msrs_to_save[num_msrs_to_save++] = msrs_to_save_all[i];
5868 }
5869
5870 for (i = 0; i < ARRAY_SIZE(emulated_msrs_all); i++) {
5871 if (!kvm_x86_ops.has_emulated_msr(emulated_msrs_all[i]))
5872 continue;
5873
5874 emulated_msrs[num_emulated_msrs++] = emulated_msrs_all[i];
5875 }
5876
5877 for (i = 0; i < ARRAY_SIZE(msr_based_features_all); i++) {
5878 struct kvm_msr_entry msr;
5879
5880 msr.index = msr_based_features_all[i];
5881 if (kvm_get_msr_feature(&msr))
5882 continue;
5883
5884 msr_based_features[num_msr_based_features++] = msr_based_features_all[i];
5885 }
5886 }
5887
vcpu_mmio_write(struct kvm_vcpu * vcpu,gpa_t addr,int len,const void * v)5888 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
5889 const void *v)
5890 {
5891 int handled = 0;
5892 int n;
5893
5894 do {
5895 n = min(len, 8);
5896 if (!(lapic_in_kernel(vcpu) &&
5897 !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
5898 && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
5899 break;
5900 handled += n;
5901 addr += n;
5902 len -= n;
5903 v += n;
5904 } while (len);
5905
5906 return handled;
5907 }
5908
vcpu_mmio_read(struct kvm_vcpu * vcpu,gpa_t addr,int len,void * v)5909 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
5910 {
5911 int handled = 0;
5912 int n;
5913
5914 do {
5915 n = min(len, 8);
5916 if (!(lapic_in_kernel(vcpu) &&
5917 !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
5918 addr, n, v))
5919 && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
5920 break;
5921 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v);
5922 handled += n;
5923 addr += n;
5924 len -= n;
5925 v += n;
5926 } while (len);
5927
5928 return handled;
5929 }
5930
kvm_set_segment(struct kvm_vcpu * vcpu,struct kvm_segment * var,int seg)5931 static void kvm_set_segment(struct kvm_vcpu *vcpu,
5932 struct kvm_segment *var, int seg)
5933 {
5934 kvm_x86_ops.set_segment(vcpu, var, seg);
5935 }
5936
kvm_get_segment(struct kvm_vcpu * vcpu,struct kvm_segment * var,int seg)5937 void kvm_get_segment(struct kvm_vcpu *vcpu,
5938 struct kvm_segment *var, int seg)
5939 {
5940 kvm_x86_ops.get_segment(vcpu, var, seg);
5941 }
5942
translate_nested_gpa(struct kvm_vcpu * vcpu,gpa_t gpa,u32 access,struct x86_exception * exception)5943 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
5944 struct x86_exception *exception)
5945 {
5946 gpa_t t_gpa;
5947
5948 BUG_ON(!mmu_is_nested(vcpu));
5949
5950 /* NPT walks are always user-walks */
5951 access |= PFERR_USER_MASK;
5952 t_gpa = vcpu->arch.mmu->gva_to_gpa(vcpu, gpa, access, exception);
5953
5954 return t_gpa;
5955 }
5956
kvm_mmu_gva_to_gpa_read(struct kvm_vcpu * vcpu,gva_t gva,struct x86_exception * exception)5957 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
5958 struct x86_exception *exception)
5959 {
5960 u32 access = (kvm_x86_ops.get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5961 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
5962 }
5963
kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu * vcpu,gva_t gva,struct x86_exception * exception)5964 gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
5965 struct x86_exception *exception)
5966 {
5967 u32 access = (kvm_x86_ops.get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5968 access |= PFERR_FETCH_MASK;
5969 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
5970 }
5971
kvm_mmu_gva_to_gpa_write(struct kvm_vcpu * vcpu,gva_t gva,struct x86_exception * exception)5972 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
5973 struct x86_exception *exception)
5974 {
5975 u32 access = (kvm_x86_ops.get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5976 access |= PFERR_WRITE_MASK;
5977 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
5978 }
5979
5980 /* uses this to access any guest's mapped memory without checking CPL */
kvm_mmu_gva_to_gpa_system(struct kvm_vcpu * vcpu,gva_t gva,struct x86_exception * exception)5981 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
5982 struct x86_exception *exception)
5983 {
5984 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
5985 }
5986
kvm_read_guest_virt_helper(gva_t addr,void * val,unsigned int bytes,struct kvm_vcpu * vcpu,u32 access,struct x86_exception * exception)5987 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
5988 struct kvm_vcpu *vcpu, u32 access,
5989 struct x86_exception *exception)
5990 {
5991 void *data = val;
5992 int r = X86EMUL_CONTINUE;
5993
5994 while (bytes) {
5995 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
5996 exception);
5997 unsigned offset = addr & (PAGE_SIZE-1);
5998 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
5999 int ret;
6000
6001 if (gpa == UNMAPPED_GVA)
6002 return X86EMUL_PROPAGATE_FAULT;
6003 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
6004 offset, toread);
6005 if (ret < 0) {
6006 r = X86EMUL_IO_NEEDED;
6007 goto out;
6008 }
6009
6010 bytes -= toread;
6011 data += toread;
6012 addr += toread;
6013 }
6014 out:
6015 return r;
6016 }
6017
6018 /* used for instruction fetching */
kvm_fetch_guest_virt(struct x86_emulate_ctxt * ctxt,gva_t addr,void * val,unsigned int bytes,struct x86_exception * exception)6019 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
6020 gva_t addr, void *val, unsigned int bytes,
6021 struct x86_exception *exception)
6022 {
6023 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6024 u32 access = (kvm_x86_ops.get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
6025 unsigned offset;
6026 int ret;
6027
6028 /* Inline kvm_read_guest_virt_helper for speed. */
6029 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access|PFERR_FETCH_MASK,
6030 exception);
6031 if (unlikely(gpa == UNMAPPED_GVA))
6032 return X86EMUL_PROPAGATE_FAULT;
6033
6034 offset = addr & (PAGE_SIZE-1);
6035 if (WARN_ON(offset + bytes > PAGE_SIZE))
6036 bytes = (unsigned)PAGE_SIZE - offset;
6037 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
6038 offset, bytes);
6039 if (unlikely(ret < 0))
6040 return X86EMUL_IO_NEEDED;
6041
6042 return X86EMUL_CONTINUE;
6043 }
6044
kvm_read_guest_virt(struct kvm_vcpu * vcpu,gva_t addr,void * val,unsigned int bytes,struct x86_exception * exception)6045 int kvm_read_guest_virt(struct kvm_vcpu *vcpu,
6046 gva_t addr, void *val, unsigned int bytes,
6047 struct x86_exception *exception)
6048 {
6049 u32 access = (kvm_x86_ops.get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
6050
6051 /*
6052 * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED
6053 * is returned, but our callers are not ready for that and they blindly
6054 * call kvm_inject_page_fault. Ensure that they at least do not leak
6055 * uninitialized kernel stack memory into cr2 and error code.
6056 */
6057 memset(exception, 0, sizeof(*exception));
6058 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
6059 exception);
6060 }
6061 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
6062
emulator_read_std(struct x86_emulate_ctxt * ctxt,gva_t addr,void * val,unsigned int bytes,struct x86_exception * exception,bool system)6063 static int emulator_read_std(struct x86_emulate_ctxt *ctxt,
6064 gva_t addr, void *val, unsigned int bytes,
6065 struct x86_exception *exception, bool system)
6066 {
6067 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6068 u32 access = 0;
6069
6070 if (!system && kvm_x86_ops.get_cpl(vcpu) == 3)
6071 access |= PFERR_USER_MASK;
6072
6073 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception);
6074 }
6075
kvm_read_guest_phys_system(struct x86_emulate_ctxt * ctxt,unsigned long addr,void * val,unsigned int bytes)6076 static int kvm_read_guest_phys_system(struct x86_emulate_ctxt *ctxt,
6077 unsigned long addr, void *val, unsigned int bytes)
6078 {
6079 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6080 int r = kvm_vcpu_read_guest(vcpu, addr, val, bytes);
6081
6082 return r < 0 ? X86EMUL_IO_NEEDED : X86EMUL_CONTINUE;
6083 }
6084
kvm_write_guest_virt_helper(gva_t addr,void * val,unsigned int bytes,struct kvm_vcpu * vcpu,u32 access,struct x86_exception * exception)6085 static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
6086 struct kvm_vcpu *vcpu, u32 access,
6087 struct x86_exception *exception)
6088 {
6089 void *data = val;
6090 int r = X86EMUL_CONTINUE;
6091
6092 while (bytes) {
6093 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
6094 access,
6095 exception);
6096 unsigned offset = addr & (PAGE_SIZE-1);
6097 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
6098 int ret;
6099
6100 if (gpa == UNMAPPED_GVA)
6101 return X86EMUL_PROPAGATE_FAULT;
6102 ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
6103 if (ret < 0) {
6104 r = X86EMUL_IO_NEEDED;
6105 goto out;
6106 }
6107
6108 bytes -= towrite;
6109 data += towrite;
6110 addr += towrite;
6111 }
6112 out:
6113 return r;
6114 }
6115
emulator_write_std(struct x86_emulate_ctxt * ctxt,gva_t addr,void * val,unsigned int bytes,struct x86_exception * exception,bool system)6116 static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val,
6117 unsigned int bytes, struct x86_exception *exception,
6118 bool system)
6119 {
6120 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6121 u32 access = PFERR_WRITE_MASK;
6122
6123 if (!system && kvm_x86_ops.get_cpl(vcpu) == 3)
6124 access |= PFERR_USER_MASK;
6125
6126 return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
6127 access, exception);
6128 }
6129
kvm_write_guest_virt_system(struct kvm_vcpu * vcpu,gva_t addr,void * val,unsigned int bytes,struct x86_exception * exception)6130 int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val,
6131 unsigned int bytes, struct x86_exception *exception)
6132 {
6133 /* kvm_write_guest_virt_system can pull in tons of pages. */
6134 vcpu->arch.l1tf_flush_l1d = true;
6135
6136 return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
6137 PFERR_WRITE_MASK, exception);
6138 }
6139 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
6140
handle_ud(struct kvm_vcpu * vcpu)6141 int handle_ud(struct kvm_vcpu *vcpu)
6142 {
6143 static const char kvm_emulate_prefix[] = { __KVM_EMULATE_PREFIX };
6144 int emul_type = EMULTYPE_TRAP_UD;
6145 char sig[5]; /* ud2; .ascii "kvm" */
6146 struct x86_exception e;
6147
6148 if (unlikely(!kvm_x86_ops.can_emulate_instruction(vcpu, NULL, 0)))
6149 return 1;
6150
6151 if (force_emulation_prefix &&
6152 kvm_read_guest_virt(vcpu, kvm_get_linear_rip(vcpu),
6153 sig, sizeof(sig), &e) == 0 &&
6154 memcmp(sig, kvm_emulate_prefix, sizeof(sig)) == 0) {
6155 kvm_rip_write(vcpu, kvm_rip_read(vcpu) + sizeof(sig));
6156 emul_type = EMULTYPE_TRAP_UD_FORCED;
6157 }
6158
6159 return kvm_emulate_instruction(vcpu, emul_type);
6160 }
6161 EXPORT_SYMBOL_GPL(handle_ud);
6162
vcpu_is_mmio_gpa(struct kvm_vcpu * vcpu,unsigned long gva,gpa_t gpa,bool write)6163 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
6164 gpa_t gpa, bool write)
6165 {
6166 /* For APIC access vmexit */
6167 if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
6168 return 1;
6169
6170 if (vcpu_match_mmio_gpa(vcpu, gpa)) {
6171 trace_vcpu_match_mmio(gva, gpa, write, true);
6172 return 1;
6173 }
6174
6175 return 0;
6176 }
6177
vcpu_mmio_gva_to_gpa(struct kvm_vcpu * vcpu,unsigned long gva,gpa_t * gpa,struct x86_exception * exception,bool write)6178 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
6179 gpa_t *gpa, struct x86_exception *exception,
6180 bool write)
6181 {
6182 u32 access = ((kvm_x86_ops.get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0)
6183 | (write ? PFERR_WRITE_MASK : 0);
6184
6185 /*
6186 * currently PKRU is only applied to ept enabled guest so
6187 * there is no pkey in EPT page table for L1 guest or EPT
6188 * shadow page table for L2 guest.
6189 */
6190 if (vcpu_match_mmio_gva(vcpu, gva)
6191 && !permission_fault(vcpu, vcpu->arch.walk_mmu,
6192 vcpu->arch.mmio_access, 0, access)) {
6193 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
6194 (gva & (PAGE_SIZE - 1));
6195 trace_vcpu_match_mmio(gva, *gpa, write, false);
6196 return 1;
6197 }
6198
6199 *gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
6200
6201 if (*gpa == UNMAPPED_GVA)
6202 return -1;
6203
6204 return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write);
6205 }
6206
emulator_write_phys(struct kvm_vcpu * vcpu,gpa_t gpa,const void * val,int bytes)6207 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
6208 const void *val, int bytes)
6209 {
6210 int ret;
6211
6212 ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
6213 if (ret < 0)
6214 return 0;
6215 kvm_page_track_write(vcpu, gpa, val, bytes);
6216 return 1;
6217 }
6218
6219 struct read_write_emulator_ops {
6220 int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
6221 int bytes);
6222 int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
6223 void *val, int bytes);
6224 int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
6225 int bytes, void *val);
6226 int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
6227 void *val, int bytes);
6228 bool write;
6229 };
6230
read_prepare(struct kvm_vcpu * vcpu,void * val,int bytes)6231 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
6232 {
6233 if (vcpu->mmio_read_completed) {
6234 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
6235 vcpu->mmio_fragments[0].gpa, val);
6236 vcpu->mmio_read_completed = 0;
6237 return 1;
6238 }
6239
6240 return 0;
6241 }
6242
read_emulate(struct kvm_vcpu * vcpu,gpa_t gpa,void * val,int bytes)6243 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
6244 void *val, int bytes)
6245 {
6246 return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
6247 }
6248
write_emulate(struct kvm_vcpu * vcpu,gpa_t gpa,void * val,int bytes)6249 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
6250 void *val, int bytes)
6251 {
6252 return emulator_write_phys(vcpu, gpa, val, bytes);
6253 }
6254
write_mmio(struct kvm_vcpu * vcpu,gpa_t gpa,int bytes,void * val)6255 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
6256 {
6257 trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val);
6258 return vcpu_mmio_write(vcpu, gpa, bytes, val);
6259 }
6260
read_exit_mmio(struct kvm_vcpu * vcpu,gpa_t gpa,void * val,int bytes)6261 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
6262 void *val, int bytes)
6263 {
6264 trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL);
6265 return X86EMUL_IO_NEEDED;
6266 }
6267
write_exit_mmio(struct kvm_vcpu * vcpu,gpa_t gpa,void * val,int bytes)6268 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
6269 void *val, int bytes)
6270 {
6271 struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
6272
6273 memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
6274 return X86EMUL_CONTINUE;
6275 }
6276
6277 static const struct read_write_emulator_ops read_emultor = {
6278 .read_write_prepare = read_prepare,
6279 .read_write_emulate = read_emulate,
6280 .read_write_mmio = vcpu_mmio_read,
6281 .read_write_exit_mmio = read_exit_mmio,
6282 };
6283
6284 static const struct read_write_emulator_ops write_emultor = {
6285 .read_write_emulate = write_emulate,
6286 .read_write_mmio = write_mmio,
6287 .read_write_exit_mmio = write_exit_mmio,
6288 .write = true,
6289 };
6290
emulator_read_write_onepage(unsigned long addr,void * val,unsigned int bytes,struct x86_exception * exception,struct kvm_vcpu * vcpu,const struct read_write_emulator_ops * ops)6291 static int emulator_read_write_onepage(unsigned long addr, void *val,
6292 unsigned int bytes,
6293 struct x86_exception *exception,
6294 struct kvm_vcpu *vcpu,
6295 const struct read_write_emulator_ops *ops)
6296 {
6297 gpa_t gpa;
6298 int handled, ret;
6299 bool write = ops->write;
6300 struct kvm_mmio_fragment *frag;
6301 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
6302
6303 /*
6304 * If the exit was due to a NPF we may already have a GPA.
6305 * If the GPA is present, use it to avoid the GVA to GPA table walk.
6306 * Note, this cannot be used on string operations since string
6307 * operation using rep will only have the initial GPA from the NPF
6308 * occurred.
6309 */
6310 if (ctxt->gpa_available && emulator_can_use_gpa(ctxt) &&
6311 (addr & ~PAGE_MASK) == (ctxt->gpa_val & ~PAGE_MASK)) {
6312 gpa = ctxt->gpa_val;
6313 ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write);
6314 } else {
6315 ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
6316 if (ret < 0)
6317 return X86EMUL_PROPAGATE_FAULT;
6318 }
6319
6320 if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes))
6321 return X86EMUL_CONTINUE;
6322
6323 /*
6324 * Is this MMIO handled locally?
6325 */
6326 handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
6327 if (handled == bytes)
6328 return X86EMUL_CONTINUE;
6329
6330 gpa += handled;
6331 bytes -= handled;
6332 val += handled;
6333
6334 WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
6335 frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
6336 frag->gpa = gpa;
6337 frag->data = val;
6338 frag->len = bytes;
6339 return X86EMUL_CONTINUE;
6340 }
6341
emulator_read_write(struct x86_emulate_ctxt * ctxt,unsigned long addr,void * val,unsigned int bytes,struct x86_exception * exception,const struct read_write_emulator_ops * ops)6342 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
6343 unsigned long addr,
6344 void *val, unsigned int bytes,
6345 struct x86_exception *exception,
6346 const struct read_write_emulator_ops *ops)
6347 {
6348 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6349 gpa_t gpa;
6350 int rc;
6351
6352 if (ops->read_write_prepare &&
6353 ops->read_write_prepare(vcpu, val, bytes))
6354 return X86EMUL_CONTINUE;
6355
6356 vcpu->mmio_nr_fragments = 0;
6357
6358 /* Crossing a page boundary? */
6359 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
6360 int now;
6361
6362 now = -addr & ~PAGE_MASK;
6363 rc = emulator_read_write_onepage(addr, val, now, exception,
6364 vcpu, ops);
6365
6366 if (rc != X86EMUL_CONTINUE)
6367 return rc;
6368 addr += now;
6369 if (ctxt->mode != X86EMUL_MODE_PROT64)
6370 addr = (u32)addr;
6371 val += now;
6372 bytes -= now;
6373 }
6374
6375 rc = emulator_read_write_onepage(addr, val, bytes, exception,
6376 vcpu, ops);
6377 if (rc != X86EMUL_CONTINUE)
6378 return rc;
6379
6380 if (!vcpu->mmio_nr_fragments)
6381 return rc;
6382
6383 gpa = vcpu->mmio_fragments[0].gpa;
6384
6385 vcpu->mmio_needed = 1;
6386 vcpu->mmio_cur_fragment = 0;
6387
6388 vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
6389 vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
6390 vcpu->run->exit_reason = KVM_EXIT_MMIO;
6391 vcpu->run->mmio.phys_addr = gpa;
6392
6393 return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
6394 }
6395
emulator_read_emulated(struct x86_emulate_ctxt * ctxt,unsigned long addr,void * val,unsigned int bytes,struct x86_exception * exception)6396 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
6397 unsigned long addr,
6398 void *val,
6399 unsigned int bytes,
6400 struct x86_exception *exception)
6401 {
6402 return emulator_read_write(ctxt, addr, val, bytes,
6403 exception, &read_emultor);
6404 }
6405
emulator_write_emulated(struct x86_emulate_ctxt * ctxt,unsigned long addr,const void * val,unsigned int bytes,struct x86_exception * exception)6406 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
6407 unsigned long addr,
6408 const void *val,
6409 unsigned int bytes,
6410 struct x86_exception *exception)
6411 {
6412 return emulator_read_write(ctxt, addr, (void *)val, bytes,
6413 exception, &write_emultor);
6414 }
6415
6416 #define CMPXCHG_TYPE(t, ptr, old, new) \
6417 (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
6418
6419 #ifdef CONFIG_X86_64
6420 # define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
6421 #else
6422 # define CMPXCHG64(ptr, old, new) \
6423 (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
6424 #endif
6425
emulator_cmpxchg_emulated(struct x86_emulate_ctxt * ctxt,unsigned long addr,const void * old,const void * new,unsigned int bytes,struct x86_exception * exception)6426 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
6427 unsigned long addr,
6428 const void *old,
6429 const void *new,
6430 unsigned int bytes,
6431 struct x86_exception *exception)
6432 {
6433 struct kvm_host_map map;
6434 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6435 u64 page_line_mask;
6436 gpa_t gpa;
6437 char *kaddr;
6438 bool exchanged;
6439
6440 /* guests cmpxchg8b have to be emulated atomically */
6441 if (bytes > 8 || (bytes & (bytes - 1)))
6442 goto emul_write;
6443
6444 gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
6445
6446 if (gpa == UNMAPPED_GVA ||
6447 (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
6448 goto emul_write;
6449
6450 /*
6451 * Emulate the atomic as a straight write to avoid #AC if SLD is
6452 * enabled in the host and the access splits a cache line.
6453 */
6454 if (boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT))
6455 page_line_mask = ~(cache_line_size() - 1);
6456 else
6457 page_line_mask = PAGE_MASK;
6458
6459 if (((gpa + bytes - 1) & page_line_mask) != (gpa & page_line_mask))
6460 goto emul_write;
6461
6462 if (kvm_vcpu_map(vcpu, gpa_to_gfn(gpa), &map))
6463 goto emul_write;
6464
6465 kaddr = map.hva + offset_in_page(gpa);
6466
6467 switch (bytes) {
6468 case 1:
6469 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
6470 break;
6471 case 2:
6472 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
6473 break;
6474 case 4:
6475 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
6476 break;
6477 case 8:
6478 exchanged = CMPXCHG64(kaddr, old, new);
6479 break;
6480 default:
6481 BUG();
6482 }
6483
6484 kvm_vcpu_unmap(vcpu, &map, true);
6485
6486 if (!exchanged)
6487 return X86EMUL_CMPXCHG_FAILED;
6488
6489 kvm_page_track_write(vcpu, gpa, new, bytes);
6490
6491 return X86EMUL_CONTINUE;
6492
6493 emul_write:
6494 printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
6495
6496 return emulator_write_emulated(ctxt, addr, new, bytes, exception);
6497 }
6498
kernel_pio(struct kvm_vcpu * vcpu,void * pd)6499 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
6500 {
6501 int r = 0, i;
6502
6503 for (i = 0; i < vcpu->arch.pio.count; i++) {
6504 if (vcpu->arch.pio.in)
6505 r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port,
6506 vcpu->arch.pio.size, pd);
6507 else
6508 r = kvm_io_bus_write(vcpu, KVM_PIO_BUS,
6509 vcpu->arch.pio.port, vcpu->arch.pio.size,
6510 pd);
6511 if (r)
6512 break;
6513 pd += vcpu->arch.pio.size;
6514 }
6515 return r;
6516 }
6517
emulator_pio_in_out(struct kvm_vcpu * vcpu,int size,unsigned short port,void * val,unsigned int count,bool in)6518 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
6519 unsigned short port, void *val,
6520 unsigned int count, bool in)
6521 {
6522 vcpu->arch.pio.port = port;
6523 vcpu->arch.pio.in = in;
6524 vcpu->arch.pio.count = count;
6525 vcpu->arch.pio.size = size;
6526
6527 if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
6528 vcpu->arch.pio.count = 0;
6529 return 1;
6530 }
6531
6532 vcpu->run->exit_reason = KVM_EXIT_IO;
6533 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
6534 vcpu->run->io.size = size;
6535 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
6536 vcpu->run->io.count = count;
6537 vcpu->run->io.port = port;
6538
6539 return 0;
6540 }
6541
emulator_pio_in(struct kvm_vcpu * vcpu,int size,unsigned short port,void * val,unsigned int count)6542 static int emulator_pio_in(struct kvm_vcpu *vcpu, int size,
6543 unsigned short port, void *val, unsigned int count)
6544 {
6545 int ret;
6546
6547 if (vcpu->arch.pio.count)
6548 goto data_avail;
6549
6550 memset(vcpu->arch.pio_data, 0, size * count);
6551
6552 ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
6553 if (ret) {
6554 data_avail:
6555 memcpy(val, vcpu->arch.pio_data, size * count);
6556 trace_kvm_pio(KVM_PIO_IN, port, size, count, vcpu->arch.pio_data);
6557 vcpu->arch.pio.count = 0;
6558 return 1;
6559 }
6560
6561 return 0;
6562 }
6563
emulator_pio_in_emulated(struct x86_emulate_ctxt * ctxt,int size,unsigned short port,void * val,unsigned int count)6564 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
6565 int size, unsigned short port, void *val,
6566 unsigned int count)
6567 {
6568 return emulator_pio_in(emul_to_vcpu(ctxt), size, port, val, count);
6569
6570 }
6571
emulator_pio_out(struct kvm_vcpu * vcpu,int size,unsigned short port,const void * val,unsigned int count)6572 static int emulator_pio_out(struct kvm_vcpu *vcpu, int size,
6573 unsigned short port, const void *val,
6574 unsigned int count)
6575 {
6576 memcpy(vcpu->arch.pio_data, val, size * count);
6577 trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data);
6578 return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
6579 }
6580
emulator_pio_out_emulated(struct x86_emulate_ctxt * ctxt,int size,unsigned short port,const void * val,unsigned int count)6581 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
6582 int size, unsigned short port,
6583 const void *val, unsigned int count)
6584 {
6585 return emulator_pio_out(emul_to_vcpu(ctxt), size, port, val, count);
6586 }
6587
get_segment_base(struct kvm_vcpu * vcpu,int seg)6588 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
6589 {
6590 return kvm_x86_ops.get_segment_base(vcpu, seg);
6591 }
6592
emulator_invlpg(struct x86_emulate_ctxt * ctxt,ulong address)6593 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
6594 {
6595 kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
6596 }
6597
kvm_emulate_wbinvd_noskip(struct kvm_vcpu * vcpu)6598 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
6599 {
6600 if (!need_emulate_wbinvd(vcpu))
6601 return X86EMUL_CONTINUE;
6602
6603 if (kvm_x86_ops.has_wbinvd_exit()) {
6604 int cpu = get_cpu();
6605
6606 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
6607 smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
6608 wbinvd_ipi, NULL, 1);
6609 put_cpu();
6610 cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
6611 } else
6612 wbinvd();
6613 return X86EMUL_CONTINUE;
6614 }
6615
kvm_emulate_wbinvd(struct kvm_vcpu * vcpu)6616 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
6617 {
6618 kvm_emulate_wbinvd_noskip(vcpu);
6619 return kvm_skip_emulated_instruction(vcpu);
6620 }
6621 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
6622
6623
6624
emulator_wbinvd(struct x86_emulate_ctxt * ctxt)6625 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
6626 {
6627 kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
6628 }
6629
emulator_get_dr(struct x86_emulate_ctxt * ctxt,int dr,unsigned long * dest)6630 static int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
6631 unsigned long *dest)
6632 {
6633 return kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
6634 }
6635
emulator_set_dr(struct x86_emulate_ctxt * ctxt,int dr,unsigned long value)6636 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
6637 unsigned long value)
6638 {
6639
6640 return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
6641 }
6642
mk_cr_64(u64 curr_cr,u32 new_val)6643 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
6644 {
6645 return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
6646 }
6647
emulator_get_cr(struct x86_emulate_ctxt * ctxt,int cr)6648 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
6649 {
6650 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6651 unsigned long value;
6652
6653 switch (cr) {
6654 case 0:
6655 value = kvm_read_cr0(vcpu);
6656 break;
6657 case 2:
6658 value = vcpu->arch.cr2;
6659 break;
6660 case 3:
6661 value = kvm_read_cr3(vcpu);
6662 break;
6663 case 4:
6664 value = kvm_read_cr4(vcpu);
6665 break;
6666 case 8:
6667 value = kvm_get_cr8(vcpu);
6668 break;
6669 default:
6670 kvm_err("%s: unexpected cr %u\n", __func__, cr);
6671 return 0;
6672 }
6673
6674 return value;
6675 }
6676
emulator_set_cr(struct x86_emulate_ctxt * ctxt,int cr,ulong val)6677 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
6678 {
6679 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6680 int res = 0;
6681
6682 switch (cr) {
6683 case 0:
6684 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
6685 break;
6686 case 2:
6687 vcpu->arch.cr2 = val;
6688 break;
6689 case 3:
6690 res = kvm_set_cr3(vcpu, val);
6691 break;
6692 case 4:
6693 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
6694 break;
6695 case 8:
6696 res = kvm_set_cr8(vcpu, val);
6697 break;
6698 default:
6699 kvm_err("%s: unexpected cr %u\n", __func__, cr);
6700 res = -1;
6701 }
6702
6703 return res;
6704 }
6705
emulator_get_cpl(struct x86_emulate_ctxt * ctxt)6706 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
6707 {
6708 return kvm_x86_ops.get_cpl(emul_to_vcpu(ctxt));
6709 }
6710
emulator_get_gdt(struct x86_emulate_ctxt * ctxt,struct desc_ptr * dt)6711 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
6712 {
6713 kvm_x86_ops.get_gdt(emul_to_vcpu(ctxt), dt);
6714 }
6715
emulator_get_idt(struct x86_emulate_ctxt * ctxt,struct desc_ptr * dt)6716 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
6717 {
6718 kvm_x86_ops.get_idt(emul_to_vcpu(ctxt), dt);
6719 }
6720
emulator_set_gdt(struct x86_emulate_ctxt * ctxt,struct desc_ptr * dt)6721 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
6722 {
6723 kvm_x86_ops.set_gdt(emul_to_vcpu(ctxt), dt);
6724 }
6725
emulator_set_idt(struct x86_emulate_ctxt * ctxt,struct desc_ptr * dt)6726 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
6727 {
6728 kvm_x86_ops.set_idt(emul_to_vcpu(ctxt), dt);
6729 }
6730
emulator_get_cached_segment_base(struct x86_emulate_ctxt * ctxt,int seg)6731 static unsigned long emulator_get_cached_segment_base(
6732 struct x86_emulate_ctxt *ctxt, int seg)
6733 {
6734 return get_segment_base(emul_to_vcpu(ctxt), seg);
6735 }
6736
emulator_get_segment(struct x86_emulate_ctxt * ctxt,u16 * selector,struct desc_struct * desc,u32 * base3,int seg)6737 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
6738 struct desc_struct *desc, u32 *base3,
6739 int seg)
6740 {
6741 struct kvm_segment var;
6742
6743 kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
6744 *selector = var.selector;
6745
6746 if (var.unusable) {
6747 memset(desc, 0, sizeof(*desc));
6748 if (base3)
6749 *base3 = 0;
6750 return false;
6751 }
6752
6753 if (var.g)
6754 var.limit >>= 12;
6755 set_desc_limit(desc, var.limit);
6756 set_desc_base(desc, (unsigned long)var.base);
6757 #ifdef CONFIG_X86_64
6758 if (base3)
6759 *base3 = var.base >> 32;
6760 #endif
6761 desc->type = var.type;
6762 desc->s = var.s;
6763 desc->dpl = var.dpl;
6764 desc->p = var.present;
6765 desc->avl = var.avl;
6766 desc->l = var.l;
6767 desc->d = var.db;
6768 desc->g = var.g;
6769
6770 return true;
6771 }
6772
emulator_set_segment(struct x86_emulate_ctxt * ctxt,u16 selector,struct desc_struct * desc,u32 base3,int seg)6773 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
6774 struct desc_struct *desc, u32 base3,
6775 int seg)
6776 {
6777 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6778 struct kvm_segment var;
6779
6780 var.selector = selector;
6781 var.base = get_desc_base(desc);
6782 #ifdef CONFIG_X86_64
6783 var.base |= ((u64)base3) << 32;
6784 #endif
6785 var.limit = get_desc_limit(desc);
6786 if (desc->g)
6787 var.limit = (var.limit << 12) | 0xfff;
6788 var.type = desc->type;
6789 var.dpl = desc->dpl;
6790 var.db = desc->d;
6791 var.s = desc->s;
6792 var.l = desc->l;
6793 var.g = desc->g;
6794 var.avl = desc->avl;
6795 var.present = desc->p;
6796 var.unusable = !var.present;
6797 var.padding = 0;
6798
6799 kvm_set_segment(vcpu, &var, seg);
6800 return;
6801 }
6802
emulator_get_msr(struct x86_emulate_ctxt * ctxt,u32 msr_index,u64 * pdata)6803 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
6804 u32 msr_index, u64 *pdata)
6805 {
6806 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6807 int r;
6808
6809 r = kvm_get_msr(vcpu, msr_index, pdata);
6810
6811 if (r && kvm_get_msr_user_space(vcpu, msr_index, r)) {
6812 /* Bounce to user space */
6813 return X86EMUL_IO_NEEDED;
6814 }
6815
6816 return r;
6817 }
6818
emulator_set_msr(struct x86_emulate_ctxt * ctxt,u32 msr_index,u64 data)6819 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
6820 u32 msr_index, u64 data)
6821 {
6822 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6823 int r;
6824
6825 r = kvm_set_msr(vcpu, msr_index, data);
6826
6827 if (r && kvm_set_msr_user_space(vcpu, msr_index, data, r)) {
6828 /* Bounce to user space */
6829 return X86EMUL_IO_NEEDED;
6830 }
6831
6832 return r;
6833 }
6834
emulator_get_smbase(struct x86_emulate_ctxt * ctxt)6835 static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt)
6836 {
6837 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6838
6839 return vcpu->arch.smbase;
6840 }
6841
emulator_set_smbase(struct x86_emulate_ctxt * ctxt,u64 smbase)6842 static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase)
6843 {
6844 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6845
6846 vcpu->arch.smbase = smbase;
6847 }
6848
emulator_check_pmc(struct x86_emulate_ctxt * ctxt,u32 pmc)6849 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
6850 u32 pmc)
6851 {
6852 return kvm_pmu_is_valid_rdpmc_ecx(emul_to_vcpu(ctxt), pmc);
6853 }
6854
emulator_read_pmc(struct x86_emulate_ctxt * ctxt,u32 pmc,u64 * pdata)6855 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
6856 u32 pmc, u64 *pdata)
6857 {
6858 return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
6859 }
6860
emulator_halt(struct x86_emulate_ctxt * ctxt)6861 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
6862 {
6863 emul_to_vcpu(ctxt)->arch.halt_request = 1;
6864 }
6865
emulator_intercept(struct x86_emulate_ctxt * ctxt,struct x86_instruction_info * info,enum x86_intercept_stage stage)6866 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
6867 struct x86_instruction_info *info,
6868 enum x86_intercept_stage stage)
6869 {
6870 return kvm_x86_ops.check_intercept(emul_to_vcpu(ctxt), info, stage,
6871 &ctxt->exception);
6872 }
6873
emulator_get_cpuid(struct x86_emulate_ctxt * ctxt,u32 * eax,u32 * ebx,u32 * ecx,u32 * edx,bool exact_only)6874 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
6875 u32 *eax, u32 *ebx, u32 *ecx, u32 *edx,
6876 bool exact_only)
6877 {
6878 return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, exact_only);
6879 }
6880
emulator_guest_has_long_mode(struct x86_emulate_ctxt * ctxt)6881 static bool emulator_guest_has_long_mode(struct x86_emulate_ctxt *ctxt)
6882 {
6883 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_LM);
6884 }
6885
emulator_guest_has_movbe(struct x86_emulate_ctxt * ctxt)6886 static bool emulator_guest_has_movbe(struct x86_emulate_ctxt *ctxt)
6887 {
6888 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_MOVBE);
6889 }
6890
emulator_guest_has_fxsr(struct x86_emulate_ctxt * ctxt)6891 static bool emulator_guest_has_fxsr(struct x86_emulate_ctxt *ctxt)
6892 {
6893 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_FXSR);
6894 }
6895
emulator_read_gpr(struct x86_emulate_ctxt * ctxt,unsigned reg)6896 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
6897 {
6898 return kvm_register_read(emul_to_vcpu(ctxt), reg);
6899 }
6900
emulator_write_gpr(struct x86_emulate_ctxt * ctxt,unsigned reg,ulong val)6901 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
6902 {
6903 kvm_register_write(emul_to_vcpu(ctxt), reg, val);
6904 }
6905
emulator_set_nmi_mask(struct x86_emulate_ctxt * ctxt,bool masked)6906 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
6907 {
6908 kvm_x86_ops.set_nmi_mask(emul_to_vcpu(ctxt), masked);
6909 }
6910
emulator_get_hflags(struct x86_emulate_ctxt * ctxt)6911 static unsigned emulator_get_hflags(struct x86_emulate_ctxt *ctxt)
6912 {
6913 return emul_to_vcpu(ctxt)->arch.hflags;
6914 }
6915
emulator_set_hflags(struct x86_emulate_ctxt * ctxt,unsigned emul_flags)6916 static void emulator_set_hflags(struct x86_emulate_ctxt *ctxt, unsigned emul_flags)
6917 {
6918 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6919
6920 vcpu->arch.hflags = emul_flags;
6921 kvm_mmu_reset_context(vcpu);
6922 }
6923
emulator_pre_leave_smm(struct x86_emulate_ctxt * ctxt,const char * smstate)6924 static int emulator_pre_leave_smm(struct x86_emulate_ctxt *ctxt,
6925 const char *smstate)
6926 {
6927 return kvm_x86_ops.pre_leave_smm(emul_to_vcpu(ctxt), smstate);
6928 }
6929
emulator_post_leave_smm(struct x86_emulate_ctxt * ctxt)6930 static void emulator_post_leave_smm(struct x86_emulate_ctxt *ctxt)
6931 {
6932 kvm_smm_changed(emul_to_vcpu(ctxt));
6933 }
6934
emulator_set_xcr(struct x86_emulate_ctxt * ctxt,u32 index,u64 xcr)6935 static int emulator_set_xcr(struct x86_emulate_ctxt *ctxt, u32 index, u64 xcr)
6936 {
6937 return __kvm_set_xcr(emul_to_vcpu(ctxt), index, xcr);
6938 }
6939
6940 static const struct x86_emulate_ops emulate_ops = {
6941 .read_gpr = emulator_read_gpr,
6942 .write_gpr = emulator_write_gpr,
6943 .read_std = emulator_read_std,
6944 .write_std = emulator_write_std,
6945 .read_phys = kvm_read_guest_phys_system,
6946 .fetch = kvm_fetch_guest_virt,
6947 .read_emulated = emulator_read_emulated,
6948 .write_emulated = emulator_write_emulated,
6949 .cmpxchg_emulated = emulator_cmpxchg_emulated,
6950 .invlpg = emulator_invlpg,
6951 .pio_in_emulated = emulator_pio_in_emulated,
6952 .pio_out_emulated = emulator_pio_out_emulated,
6953 .get_segment = emulator_get_segment,
6954 .set_segment = emulator_set_segment,
6955 .get_cached_segment_base = emulator_get_cached_segment_base,
6956 .get_gdt = emulator_get_gdt,
6957 .get_idt = emulator_get_idt,
6958 .set_gdt = emulator_set_gdt,
6959 .set_idt = emulator_set_idt,
6960 .get_cr = emulator_get_cr,
6961 .set_cr = emulator_set_cr,
6962 .cpl = emulator_get_cpl,
6963 .get_dr = emulator_get_dr,
6964 .set_dr = emulator_set_dr,
6965 .get_smbase = emulator_get_smbase,
6966 .set_smbase = emulator_set_smbase,
6967 .set_msr = emulator_set_msr,
6968 .get_msr = emulator_get_msr,
6969 .check_pmc = emulator_check_pmc,
6970 .read_pmc = emulator_read_pmc,
6971 .halt = emulator_halt,
6972 .wbinvd = emulator_wbinvd,
6973 .fix_hypercall = emulator_fix_hypercall,
6974 .intercept = emulator_intercept,
6975 .get_cpuid = emulator_get_cpuid,
6976 .guest_has_long_mode = emulator_guest_has_long_mode,
6977 .guest_has_movbe = emulator_guest_has_movbe,
6978 .guest_has_fxsr = emulator_guest_has_fxsr,
6979 .set_nmi_mask = emulator_set_nmi_mask,
6980 .get_hflags = emulator_get_hflags,
6981 .set_hflags = emulator_set_hflags,
6982 .pre_leave_smm = emulator_pre_leave_smm,
6983 .post_leave_smm = emulator_post_leave_smm,
6984 .set_xcr = emulator_set_xcr,
6985 };
6986
toggle_interruptibility(struct kvm_vcpu * vcpu,u32 mask)6987 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
6988 {
6989 u32 int_shadow = kvm_x86_ops.get_interrupt_shadow(vcpu);
6990 /*
6991 * an sti; sti; sequence only disable interrupts for the first
6992 * instruction. So, if the last instruction, be it emulated or
6993 * not, left the system with the INT_STI flag enabled, it
6994 * means that the last instruction is an sti. We should not
6995 * leave the flag on in this case. The same goes for mov ss
6996 */
6997 if (int_shadow & mask)
6998 mask = 0;
6999 if (unlikely(int_shadow || mask)) {
7000 kvm_x86_ops.set_interrupt_shadow(vcpu, mask);
7001 if (!mask)
7002 kvm_make_request(KVM_REQ_EVENT, vcpu);
7003 }
7004 }
7005
inject_emulated_exception(struct kvm_vcpu * vcpu)7006 static bool inject_emulated_exception(struct kvm_vcpu *vcpu)
7007 {
7008 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7009 if (ctxt->exception.vector == PF_VECTOR)
7010 return kvm_inject_emulated_page_fault(vcpu, &ctxt->exception);
7011
7012 if (ctxt->exception.error_code_valid)
7013 kvm_queue_exception_e(vcpu, ctxt->exception.vector,
7014 ctxt->exception.error_code);
7015 else
7016 kvm_queue_exception(vcpu, ctxt->exception.vector);
7017 return false;
7018 }
7019
alloc_emulate_ctxt(struct kvm_vcpu * vcpu)7020 static struct x86_emulate_ctxt *alloc_emulate_ctxt(struct kvm_vcpu *vcpu)
7021 {
7022 struct x86_emulate_ctxt *ctxt;
7023
7024 ctxt = kmem_cache_zalloc(x86_emulator_cache, GFP_KERNEL_ACCOUNT);
7025 if (!ctxt) {
7026 pr_err("kvm: failed to allocate vcpu's emulator\n");
7027 return NULL;
7028 }
7029
7030 ctxt->vcpu = vcpu;
7031 ctxt->ops = &emulate_ops;
7032 vcpu->arch.emulate_ctxt = ctxt;
7033
7034 return ctxt;
7035 }
7036
init_emulate_ctxt(struct kvm_vcpu * vcpu)7037 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
7038 {
7039 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7040 int cs_db, cs_l;
7041
7042 kvm_x86_ops.get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
7043
7044 ctxt->gpa_available = false;
7045 ctxt->eflags = kvm_get_rflags(vcpu);
7046 ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0;
7047
7048 ctxt->eip = kvm_rip_read(vcpu);
7049 ctxt->mode = (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL :
7050 (ctxt->eflags & X86_EFLAGS_VM) ? X86EMUL_MODE_VM86 :
7051 (cs_l && is_long_mode(vcpu)) ? X86EMUL_MODE_PROT64 :
7052 cs_db ? X86EMUL_MODE_PROT32 :
7053 X86EMUL_MODE_PROT16;
7054 BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK);
7055 BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK);
7056 BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK);
7057
7058 ctxt->interruptibility = 0;
7059 ctxt->have_exception = false;
7060 ctxt->exception.vector = -1;
7061 ctxt->perm_ok = false;
7062
7063 init_decode_cache(ctxt);
7064 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
7065 }
7066
kvm_inject_realmode_interrupt(struct kvm_vcpu * vcpu,int irq,int inc_eip)7067 void kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
7068 {
7069 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7070 int ret;
7071
7072 init_emulate_ctxt(vcpu);
7073
7074 ctxt->op_bytes = 2;
7075 ctxt->ad_bytes = 2;
7076 ctxt->_eip = ctxt->eip + inc_eip;
7077 ret = emulate_int_real(ctxt, irq);
7078
7079 if (ret != X86EMUL_CONTINUE) {
7080 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
7081 } else {
7082 ctxt->eip = ctxt->_eip;
7083 kvm_rip_write(vcpu, ctxt->eip);
7084 kvm_set_rflags(vcpu, ctxt->eflags);
7085 }
7086 }
7087 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
7088
handle_emulation_failure(struct kvm_vcpu * vcpu,int emulation_type)7089 static int handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type)
7090 {
7091 ++vcpu->stat.insn_emulation_fail;
7092 trace_kvm_emulate_insn_failed(vcpu);
7093
7094 if (emulation_type & EMULTYPE_VMWARE_GP) {
7095 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
7096 return 1;
7097 }
7098
7099 if (emulation_type & EMULTYPE_SKIP) {
7100 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
7101 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
7102 vcpu->run->internal.ndata = 0;
7103 return 0;
7104 }
7105
7106 kvm_queue_exception(vcpu, UD_VECTOR);
7107
7108 if (!is_guest_mode(vcpu) && kvm_x86_ops.get_cpl(vcpu) == 0) {
7109 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
7110 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
7111 vcpu->run->internal.ndata = 0;
7112 return 0;
7113 }
7114
7115 return 1;
7116 }
7117
reexecute_instruction(struct kvm_vcpu * vcpu,gpa_t cr2_or_gpa,bool write_fault_to_shadow_pgtable,int emulation_type)7118 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
7119 bool write_fault_to_shadow_pgtable,
7120 int emulation_type)
7121 {
7122 gpa_t gpa = cr2_or_gpa;
7123 kvm_pfn_t pfn;
7124
7125 if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
7126 return false;
7127
7128 if (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
7129 WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))
7130 return false;
7131
7132 if (!vcpu->arch.mmu->direct_map) {
7133 /*
7134 * Write permission should be allowed since only
7135 * write access need to be emulated.
7136 */
7137 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
7138
7139 /*
7140 * If the mapping is invalid in guest, let cpu retry
7141 * it to generate fault.
7142 */
7143 if (gpa == UNMAPPED_GVA)
7144 return true;
7145 }
7146
7147 /*
7148 * Do not retry the unhandleable instruction if it faults on the
7149 * readonly host memory, otherwise it will goto a infinite loop:
7150 * retry instruction -> write #PF -> emulation fail -> retry
7151 * instruction -> ...
7152 */
7153 pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
7154
7155 /*
7156 * If the instruction failed on the error pfn, it can not be fixed,
7157 * report the error to userspace.
7158 */
7159 if (is_error_noslot_pfn(pfn))
7160 return false;
7161
7162 kvm_release_pfn_clean(pfn);
7163
7164 /* The instructions are well-emulated on direct mmu. */
7165 if (vcpu->arch.mmu->direct_map) {
7166 unsigned int indirect_shadow_pages;
7167
7168 spin_lock(&vcpu->kvm->mmu_lock);
7169 indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
7170 spin_unlock(&vcpu->kvm->mmu_lock);
7171
7172 if (indirect_shadow_pages)
7173 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
7174
7175 return true;
7176 }
7177
7178 /*
7179 * if emulation was due to access to shadowed page table
7180 * and it failed try to unshadow page and re-enter the
7181 * guest to let CPU execute the instruction.
7182 */
7183 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
7184
7185 /*
7186 * If the access faults on its page table, it can not
7187 * be fixed by unprotecting shadow page and it should
7188 * be reported to userspace.
7189 */
7190 return !write_fault_to_shadow_pgtable;
7191 }
7192
retry_instruction(struct x86_emulate_ctxt * ctxt,gpa_t cr2_or_gpa,int emulation_type)7193 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
7194 gpa_t cr2_or_gpa, int emulation_type)
7195 {
7196 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7197 unsigned long last_retry_eip, last_retry_addr, gpa = cr2_or_gpa;
7198
7199 last_retry_eip = vcpu->arch.last_retry_eip;
7200 last_retry_addr = vcpu->arch.last_retry_addr;
7201
7202 /*
7203 * If the emulation is caused by #PF and it is non-page_table
7204 * writing instruction, it means the VM-EXIT is caused by shadow
7205 * page protected, we can zap the shadow page and retry this
7206 * instruction directly.
7207 *
7208 * Note: if the guest uses a non-page-table modifying instruction
7209 * on the PDE that points to the instruction, then we will unmap
7210 * the instruction and go to an infinite loop. So, we cache the
7211 * last retried eip and the last fault address, if we meet the eip
7212 * and the address again, we can break out of the potential infinite
7213 * loop.
7214 */
7215 vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
7216
7217 if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
7218 return false;
7219
7220 if (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
7221 WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))
7222 return false;
7223
7224 if (x86_page_table_writing_insn(ctxt))
7225 return false;
7226
7227 if (ctxt->eip == last_retry_eip && last_retry_addr == cr2_or_gpa)
7228 return false;
7229
7230 vcpu->arch.last_retry_eip = ctxt->eip;
7231 vcpu->arch.last_retry_addr = cr2_or_gpa;
7232
7233 if (!vcpu->arch.mmu->direct_map)
7234 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
7235
7236 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
7237
7238 return true;
7239 }
7240
7241 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
7242 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
7243
kvm_smm_changed(struct kvm_vcpu * vcpu)7244 static void kvm_smm_changed(struct kvm_vcpu *vcpu)
7245 {
7246 if (!(vcpu->arch.hflags & HF_SMM_MASK)) {
7247 /* This is a good place to trace that we are exiting SMM. */
7248 trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, false);
7249
7250 /* Process a latched INIT or SMI, if any. */
7251 kvm_make_request(KVM_REQ_EVENT, vcpu);
7252 }
7253
7254 kvm_mmu_reset_context(vcpu);
7255 }
7256
kvm_vcpu_check_hw_bp(unsigned long addr,u32 type,u32 dr7,unsigned long * db)7257 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
7258 unsigned long *db)
7259 {
7260 u32 dr6 = 0;
7261 int i;
7262 u32 enable, rwlen;
7263
7264 enable = dr7;
7265 rwlen = dr7 >> 16;
7266 for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
7267 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
7268 dr6 |= (1 << i);
7269 return dr6;
7270 }
7271
kvm_vcpu_do_singlestep(struct kvm_vcpu * vcpu)7272 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu)
7273 {
7274 struct kvm_run *kvm_run = vcpu->run;
7275
7276 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
7277 kvm_run->debug.arch.dr6 = DR6_BS | DR6_FIXED_1 | DR6_RTM;
7278 kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu);
7279 kvm_run->debug.arch.exception = DB_VECTOR;
7280 kvm_run->exit_reason = KVM_EXIT_DEBUG;
7281 return 0;
7282 }
7283 kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BS);
7284 return 1;
7285 }
7286
kvm_skip_emulated_instruction(struct kvm_vcpu * vcpu)7287 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
7288 {
7289 unsigned long rflags = kvm_x86_ops.get_rflags(vcpu);
7290 int r;
7291
7292 r = kvm_x86_ops.skip_emulated_instruction(vcpu);
7293 if (unlikely(!r))
7294 return 0;
7295
7296 /*
7297 * rflags is the old, "raw" value of the flags. The new value has
7298 * not been saved yet.
7299 *
7300 * This is correct even for TF set by the guest, because "the
7301 * processor will not generate this exception after the instruction
7302 * that sets the TF flag".
7303 */
7304 if (unlikely(rflags & X86_EFLAGS_TF))
7305 r = kvm_vcpu_do_singlestep(vcpu);
7306 return r;
7307 }
7308 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction);
7309
kvm_vcpu_check_breakpoint(struct kvm_vcpu * vcpu,int * r)7310 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r)
7311 {
7312 if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
7313 (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
7314 struct kvm_run *kvm_run = vcpu->run;
7315 unsigned long eip = kvm_get_linear_rip(vcpu);
7316 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
7317 vcpu->arch.guest_debug_dr7,
7318 vcpu->arch.eff_db);
7319
7320 if (dr6 != 0) {
7321 kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1 | DR6_RTM;
7322 kvm_run->debug.arch.pc = eip;
7323 kvm_run->debug.arch.exception = DB_VECTOR;
7324 kvm_run->exit_reason = KVM_EXIT_DEBUG;
7325 *r = 0;
7326 return true;
7327 }
7328 }
7329
7330 if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
7331 !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) {
7332 unsigned long eip = kvm_get_linear_rip(vcpu);
7333 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
7334 vcpu->arch.dr7,
7335 vcpu->arch.db);
7336
7337 if (dr6 != 0) {
7338 kvm_queue_exception_p(vcpu, DB_VECTOR, dr6);
7339 *r = 1;
7340 return true;
7341 }
7342 }
7343
7344 return false;
7345 }
7346
is_vmware_backdoor_opcode(struct x86_emulate_ctxt * ctxt)7347 static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt *ctxt)
7348 {
7349 switch (ctxt->opcode_len) {
7350 case 1:
7351 switch (ctxt->b) {
7352 case 0xe4: /* IN */
7353 case 0xe5:
7354 case 0xec:
7355 case 0xed:
7356 case 0xe6: /* OUT */
7357 case 0xe7:
7358 case 0xee:
7359 case 0xef:
7360 case 0x6c: /* INS */
7361 case 0x6d:
7362 case 0x6e: /* OUTS */
7363 case 0x6f:
7364 return true;
7365 }
7366 break;
7367 case 2:
7368 switch (ctxt->b) {
7369 case 0x33: /* RDPMC */
7370 return true;
7371 }
7372 break;
7373 }
7374
7375 return false;
7376 }
7377
7378 /*
7379 * Decode to be emulated instruction. Return EMULATION_OK if success.
7380 */
x86_decode_emulated_instruction(struct kvm_vcpu * vcpu,int emulation_type,void * insn,int insn_len)7381 int x86_decode_emulated_instruction(struct kvm_vcpu *vcpu, int emulation_type,
7382 void *insn, int insn_len)
7383 {
7384 int r = EMULATION_OK;
7385 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7386
7387 init_emulate_ctxt(vcpu);
7388
7389 /*
7390 * We will reenter on the same instruction since we do not set
7391 * complete_userspace_io. This does not handle watchpoints yet,
7392 * those would be handled in the emulate_ops.
7393 */
7394 if (!(emulation_type & EMULTYPE_SKIP) &&
7395 kvm_vcpu_check_breakpoint(vcpu, &r))
7396 return r;
7397
7398 ctxt->ud = emulation_type & EMULTYPE_TRAP_UD;
7399
7400 r = x86_decode_insn(ctxt, insn, insn_len);
7401
7402 trace_kvm_emulate_insn_start(vcpu);
7403 ++vcpu->stat.insn_emulation;
7404
7405 return r;
7406 }
7407 EXPORT_SYMBOL_GPL(x86_decode_emulated_instruction);
7408
x86_emulate_instruction(struct kvm_vcpu * vcpu,gpa_t cr2_or_gpa,int emulation_type,void * insn,int insn_len)7409 int x86_emulate_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
7410 int emulation_type, void *insn, int insn_len)
7411 {
7412 int r;
7413 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7414 bool writeback = true;
7415 bool write_fault_to_spt;
7416
7417 if (unlikely(!kvm_x86_ops.can_emulate_instruction(vcpu, insn, insn_len)))
7418 return 1;
7419
7420 vcpu->arch.l1tf_flush_l1d = true;
7421
7422 /*
7423 * Clear write_fault_to_shadow_pgtable here to ensure it is
7424 * never reused.
7425 */
7426 write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
7427 vcpu->arch.write_fault_to_shadow_pgtable = false;
7428
7429 if (!(emulation_type & EMULTYPE_NO_DECODE)) {
7430 kvm_clear_exception_queue(vcpu);
7431
7432 r = x86_decode_emulated_instruction(vcpu, emulation_type,
7433 insn, insn_len);
7434 if (r != EMULATION_OK) {
7435 if ((emulation_type & EMULTYPE_TRAP_UD) ||
7436 (emulation_type & EMULTYPE_TRAP_UD_FORCED)) {
7437 kvm_queue_exception(vcpu, UD_VECTOR);
7438 return 1;
7439 }
7440 if (reexecute_instruction(vcpu, cr2_or_gpa,
7441 write_fault_to_spt,
7442 emulation_type))
7443 return 1;
7444 if (ctxt->have_exception) {
7445 /*
7446 * #UD should result in just EMULATION_FAILED, and trap-like
7447 * exception should not be encountered during decode.
7448 */
7449 WARN_ON_ONCE(ctxt->exception.vector == UD_VECTOR ||
7450 exception_type(ctxt->exception.vector) == EXCPT_TRAP);
7451 inject_emulated_exception(vcpu);
7452 return 1;
7453 }
7454 return handle_emulation_failure(vcpu, emulation_type);
7455 }
7456 }
7457
7458 if ((emulation_type & EMULTYPE_VMWARE_GP) &&
7459 !is_vmware_backdoor_opcode(ctxt)) {
7460 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
7461 return 1;
7462 }
7463
7464 /*
7465 * Note, EMULTYPE_SKIP is intended for use *only* by vendor callbacks
7466 * for kvm_skip_emulated_instruction(). The caller is responsible for
7467 * updating interruptibility state and injecting single-step #DBs.
7468 */
7469 if (emulation_type & EMULTYPE_SKIP) {
7470 kvm_rip_write(vcpu, ctxt->_eip);
7471 if (ctxt->eflags & X86_EFLAGS_RF)
7472 kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
7473 return 1;
7474 }
7475
7476 if (retry_instruction(ctxt, cr2_or_gpa, emulation_type))
7477 return 1;
7478
7479 /* this is needed for vmware backdoor interface to work since it
7480 changes registers values during IO operation */
7481 if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
7482 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
7483 emulator_invalidate_register_cache(ctxt);
7484 }
7485
7486 restart:
7487 if (emulation_type & EMULTYPE_PF) {
7488 /* Save the faulting GPA (cr2) in the address field */
7489 ctxt->exception.address = cr2_or_gpa;
7490
7491 /* With shadow page tables, cr2 contains a GVA or nGPA. */
7492 if (vcpu->arch.mmu->direct_map) {
7493 ctxt->gpa_available = true;
7494 ctxt->gpa_val = cr2_or_gpa;
7495 }
7496 } else {
7497 /* Sanitize the address out of an abundance of paranoia. */
7498 ctxt->exception.address = 0;
7499 }
7500
7501 r = x86_emulate_insn(ctxt);
7502
7503 if (r == EMULATION_INTERCEPTED)
7504 return 1;
7505
7506 if (r == EMULATION_FAILED) {
7507 if (reexecute_instruction(vcpu, cr2_or_gpa, write_fault_to_spt,
7508 emulation_type))
7509 return 1;
7510
7511 return handle_emulation_failure(vcpu, emulation_type);
7512 }
7513
7514 if (ctxt->have_exception) {
7515 r = 1;
7516 if (inject_emulated_exception(vcpu))
7517 return r;
7518 } else if (vcpu->arch.pio.count) {
7519 if (!vcpu->arch.pio.in) {
7520 /* FIXME: return into emulator if single-stepping. */
7521 vcpu->arch.pio.count = 0;
7522 } else {
7523 writeback = false;
7524 vcpu->arch.complete_userspace_io = complete_emulated_pio;
7525 }
7526 r = 0;
7527 } else if (vcpu->mmio_needed) {
7528 ++vcpu->stat.mmio_exits;
7529
7530 if (!vcpu->mmio_is_write)
7531 writeback = false;
7532 r = 0;
7533 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
7534 } else if (r == EMULATION_RESTART)
7535 goto restart;
7536 else
7537 r = 1;
7538
7539 if (writeback) {
7540 unsigned long rflags = kvm_x86_ops.get_rflags(vcpu);
7541 toggle_interruptibility(vcpu, ctxt->interruptibility);
7542 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
7543 if (!ctxt->have_exception ||
7544 exception_type(ctxt->exception.vector) == EXCPT_TRAP) {
7545 kvm_rip_write(vcpu, ctxt->eip);
7546 if (r && (ctxt->tf || (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)))
7547 r = kvm_vcpu_do_singlestep(vcpu);
7548 if (kvm_x86_ops.update_emulated_instruction)
7549 kvm_x86_ops.update_emulated_instruction(vcpu);
7550 __kvm_set_rflags(vcpu, ctxt->eflags);
7551 }
7552
7553 /*
7554 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
7555 * do nothing, and it will be requested again as soon as
7556 * the shadow expires. But we still need to check here,
7557 * because POPF has no interrupt shadow.
7558 */
7559 if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
7560 kvm_make_request(KVM_REQ_EVENT, vcpu);
7561 } else
7562 vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
7563
7564 return r;
7565 }
7566
kvm_emulate_instruction(struct kvm_vcpu * vcpu,int emulation_type)7567 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type)
7568 {
7569 return x86_emulate_instruction(vcpu, 0, emulation_type, NULL, 0);
7570 }
7571 EXPORT_SYMBOL_GPL(kvm_emulate_instruction);
7572
kvm_emulate_instruction_from_buffer(struct kvm_vcpu * vcpu,void * insn,int insn_len)7573 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu,
7574 void *insn, int insn_len)
7575 {
7576 return x86_emulate_instruction(vcpu, 0, 0, insn, insn_len);
7577 }
7578 EXPORT_SYMBOL_GPL(kvm_emulate_instruction_from_buffer);
7579
complete_fast_pio_out_port_0x7e(struct kvm_vcpu * vcpu)7580 static int complete_fast_pio_out_port_0x7e(struct kvm_vcpu *vcpu)
7581 {
7582 vcpu->arch.pio.count = 0;
7583 return 1;
7584 }
7585
complete_fast_pio_out(struct kvm_vcpu * vcpu)7586 static int complete_fast_pio_out(struct kvm_vcpu *vcpu)
7587 {
7588 vcpu->arch.pio.count = 0;
7589
7590 if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip)))
7591 return 1;
7592
7593 return kvm_skip_emulated_instruction(vcpu);
7594 }
7595
kvm_fast_pio_out(struct kvm_vcpu * vcpu,int size,unsigned short port)7596 static int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size,
7597 unsigned short port)
7598 {
7599 unsigned long val = kvm_rax_read(vcpu);
7600 int ret = emulator_pio_out(vcpu, size, port, &val, 1);
7601
7602 if (ret)
7603 return ret;
7604
7605 /*
7606 * Workaround userspace that relies on old KVM behavior of %rip being
7607 * incremented prior to exiting to userspace to handle "OUT 0x7e".
7608 */
7609 if (port == 0x7e &&
7610 kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_OUT_7E_INC_RIP)) {
7611 vcpu->arch.complete_userspace_io =
7612 complete_fast_pio_out_port_0x7e;
7613 kvm_skip_emulated_instruction(vcpu);
7614 } else {
7615 vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
7616 vcpu->arch.complete_userspace_io = complete_fast_pio_out;
7617 }
7618 return 0;
7619 }
7620
complete_fast_pio_in(struct kvm_vcpu * vcpu)7621 static int complete_fast_pio_in(struct kvm_vcpu *vcpu)
7622 {
7623 unsigned long val;
7624
7625 /* We should only ever be called with arch.pio.count equal to 1 */
7626 BUG_ON(vcpu->arch.pio.count != 1);
7627
7628 if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) {
7629 vcpu->arch.pio.count = 0;
7630 return 1;
7631 }
7632
7633 /* For size less than 4 we merge, else we zero extend */
7634 val = (vcpu->arch.pio.size < 4) ? kvm_rax_read(vcpu) : 0;
7635
7636 /*
7637 * Since vcpu->arch.pio.count == 1 let emulator_pio_in perform
7638 * the copy and tracing
7639 */
7640 emulator_pio_in(vcpu, vcpu->arch.pio.size, vcpu->arch.pio.port, &val, 1);
7641 kvm_rax_write(vcpu, val);
7642
7643 return kvm_skip_emulated_instruction(vcpu);
7644 }
7645
kvm_fast_pio_in(struct kvm_vcpu * vcpu,int size,unsigned short port)7646 static int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size,
7647 unsigned short port)
7648 {
7649 unsigned long val;
7650 int ret;
7651
7652 /* For size less than 4 we merge, else we zero extend */
7653 val = (size < 4) ? kvm_rax_read(vcpu) : 0;
7654
7655 ret = emulator_pio_in(vcpu, size, port, &val, 1);
7656 if (ret) {
7657 kvm_rax_write(vcpu, val);
7658 return ret;
7659 }
7660
7661 vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
7662 vcpu->arch.complete_userspace_io = complete_fast_pio_in;
7663
7664 return 0;
7665 }
7666
kvm_fast_pio(struct kvm_vcpu * vcpu,int size,unsigned short port,int in)7667 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in)
7668 {
7669 int ret;
7670
7671 if (in)
7672 ret = kvm_fast_pio_in(vcpu, size, port);
7673 else
7674 ret = kvm_fast_pio_out(vcpu, size, port);
7675 return ret && kvm_skip_emulated_instruction(vcpu);
7676 }
7677 EXPORT_SYMBOL_GPL(kvm_fast_pio);
7678
kvmclock_cpu_down_prep(unsigned int cpu)7679 static int kvmclock_cpu_down_prep(unsigned int cpu)
7680 {
7681 __this_cpu_write(cpu_tsc_khz, 0);
7682 return 0;
7683 }
7684
tsc_khz_changed(void * data)7685 static void tsc_khz_changed(void *data)
7686 {
7687 struct cpufreq_freqs *freq = data;
7688 unsigned long khz = 0;
7689
7690 if (data)
7691 khz = freq->new;
7692 else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
7693 khz = cpufreq_quick_get(raw_smp_processor_id());
7694 if (!khz)
7695 khz = tsc_khz;
7696 __this_cpu_write(cpu_tsc_khz, khz);
7697 }
7698
7699 #ifdef CONFIG_X86_64
kvm_hyperv_tsc_notifier(void)7700 static void kvm_hyperv_tsc_notifier(void)
7701 {
7702 struct kvm *kvm;
7703 struct kvm_vcpu *vcpu;
7704 int cpu;
7705
7706 mutex_lock(&kvm_lock);
7707 list_for_each_entry(kvm, &vm_list, vm_list)
7708 kvm_make_mclock_inprogress_request(kvm);
7709
7710 hyperv_stop_tsc_emulation();
7711
7712 /* TSC frequency always matches when on Hyper-V */
7713 for_each_present_cpu(cpu)
7714 per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
7715 kvm_max_guest_tsc_khz = tsc_khz;
7716
7717 list_for_each_entry(kvm, &vm_list, vm_list) {
7718 struct kvm_arch *ka = &kvm->arch;
7719
7720 spin_lock(&ka->pvclock_gtod_sync_lock);
7721
7722 pvclock_update_vm_gtod_copy(kvm);
7723
7724 kvm_for_each_vcpu(cpu, vcpu, kvm)
7725 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
7726
7727 kvm_for_each_vcpu(cpu, vcpu, kvm)
7728 kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
7729
7730 spin_unlock(&ka->pvclock_gtod_sync_lock);
7731 }
7732 mutex_unlock(&kvm_lock);
7733 }
7734 #endif
7735
__kvmclock_cpufreq_notifier(struct cpufreq_freqs * freq,int cpu)7736 static void __kvmclock_cpufreq_notifier(struct cpufreq_freqs *freq, int cpu)
7737 {
7738 struct kvm *kvm;
7739 struct kvm_vcpu *vcpu;
7740 int i, send_ipi = 0;
7741
7742 /*
7743 * We allow guests to temporarily run on slowing clocks,
7744 * provided we notify them after, or to run on accelerating
7745 * clocks, provided we notify them before. Thus time never
7746 * goes backwards.
7747 *
7748 * However, we have a problem. We can't atomically update
7749 * the frequency of a given CPU from this function; it is
7750 * merely a notifier, which can be called from any CPU.
7751 * Changing the TSC frequency at arbitrary points in time
7752 * requires a recomputation of local variables related to
7753 * the TSC for each VCPU. We must flag these local variables
7754 * to be updated and be sure the update takes place with the
7755 * new frequency before any guests proceed.
7756 *
7757 * Unfortunately, the combination of hotplug CPU and frequency
7758 * change creates an intractable locking scenario; the order
7759 * of when these callouts happen is undefined with respect to
7760 * CPU hotplug, and they can race with each other. As such,
7761 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
7762 * undefined; you can actually have a CPU frequency change take
7763 * place in between the computation of X and the setting of the
7764 * variable. To protect against this problem, all updates of
7765 * the per_cpu tsc_khz variable are done in an interrupt
7766 * protected IPI, and all callers wishing to update the value
7767 * must wait for a synchronous IPI to complete (which is trivial
7768 * if the caller is on the CPU already). This establishes the
7769 * necessary total order on variable updates.
7770 *
7771 * Note that because a guest time update may take place
7772 * anytime after the setting of the VCPU's request bit, the
7773 * correct TSC value must be set before the request. However,
7774 * to ensure the update actually makes it to any guest which
7775 * starts running in hardware virtualization between the set
7776 * and the acquisition of the spinlock, we must also ping the
7777 * CPU after setting the request bit.
7778 *
7779 */
7780
7781 smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
7782
7783 mutex_lock(&kvm_lock);
7784 list_for_each_entry(kvm, &vm_list, vm_list) {
7785 kvm_for_each_vcpu(i, vcpu, kvm) {
7786 if (vcpu->cpu != cpu)
7787 continue;
7788 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
7789 if (vcpu->cpu != raw_smp_processor_id())
7790 send_ipi = 1;
7791 }
7792 }
7793 mutex_unlock(&kvm_lock);
7794
7795 if (freq->old < freq->new && send_ipi) {
7796 /*
7797 * We upscale the frequency. Must make the guest
7798 * doesn't see old kvmclock values while running with
7799 * the new frequency, otherwise we risk the guest sees
7800 * time go backwards.
7801 *
7802 * In case we update the frequency for another cpu
7803 * (which might be in guest context) send an interrupt
7804 * to kick the cpu out of guest context. Next time
7805 * guest context is entered kvmclock will be updated,
7806 * so the guest will not see stale values.
7807 */
7808 smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
7809 }
7810 }
7811
kvmclock_cpufreq_notifier(struct notifier_block * nb,unsigned long val,void * data)7812 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
7813 void *data)
7814 {
7815 struct cpufreq_freqs *freq = data;
7816 int cpu;
7817
7818 if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
7819 return 0;
7820 if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
7821 return 0;
7822
7823 for_each_cpu(cpu, freq->policy->cpus)
7824 __kvmclock_cpufreq_notifier(freq, cpu);
7825
7826 return 0;
7827 }
7828
7829 static struct notifier_block kvmclock_cpufreq_notifier_block = {
7830 .notifier_call = kvmclock_cpufreq_notifier
7831 };
7832
kvmclock_cpu_online(unsigned int cpu)7833 static int kvmclock_cpu_online(unsigned int cpu)
7834 {
7835 tsc_khz_changed(NULL);
7836 return 0;
7837 }
7838
kvm_timer_init(void)7839 static void kvm_timer_init(void)
7840 {
7841 max_tsc_khz = tsc_khz;
7842
7843 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
7844 #ifdef CONFIG_CPU_FREQ
7845 struct cpufreq_policy *policy;
7846 int cpu;
7847
7848 cpu = get_cpu();
7849 policy = cpufreq_cpu_get(cpu);
7850 if (policy) {
7851 if (policy->cpuinfo.max_freq)
7852 max_tsc_khz = policy->cpuinfo.max_freq;
7853 cpufreq_cpu_put(policy);
7854 }
7855 put_cpu();
7856 #endif
7857 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
7858 CPUFREQ_TRANSITION_NOTIFIER);
7859 }
7860
7861 cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online",
7862 kvmclock_cpu_online, kvmclock_cpu_down_prep);
7863 }
7864
7865 DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
7866 EXPORT_PER_CPU_SYMBOL_GPL(current_vcpu);
7867
kvm_is_in_guest(void)7868 int kvm_is_in_guest(void)
7869 {
7870 return __this_cpu_read(current_vcpu) != NULL;
7871 }
7872
kvm_is_user_mode(void)7873 static int kvm_is_user_mode(void)
7874 {
7875 int user_mode = 3;
7876
7877 if (__this_cpu_read(current_vcpu))
7878 user_mode = kvm_x86_ops.get_cpl(__this_cpu_read(current_vcpu));
7879
7880 return user_mode != 0;
7881 }
7882
kvm_get_guest_ip(void)7883 static unsigned long kvm_get_guest_ip(void)
7884 {
7885 unsigned long ip = 0;
7886
7887 if (__this_cpu_read(current_vcpu))
7888 ip = kvm_rip_read(__this_cpu_read(current_vcpu));
7889
7890 return ip;
7891 }
7892
kvm_handle_intel_pt_intr(void)7893 static void kvm_handle_intel_pt_intr(void)
7894 {
7895 struct kvm_vcpu *vcpu = __this_cpu_read(current_vcpu);
7896
7897 kvm_make_request(KVM_REQ_PMI, vcpu);
7898 __set_bit(MSR_CORE_PERF_GLOBAL_OVF_CTRL_TRACE_TOPA_PMI_BIT,
7899 (unsigned long *)&vcpu->arch.pmu.global_status);
7900 }
7901
7902 static struct perf_guest_info_callbacks kvm_guest_cbs = {
7903 .is_in_guest = kvm_is_in_guest,
7904 .is_user_mode = kvm_is_user_mode,
7905 .get_guest_ip = kvm_get_guest_ip,
7906 .handle_intel_pt_intr = NULL,
7907 };
7908
7909 #ifdef CONFIG_X86_64
pvclock_gtod_update_fn(struct work_struct * work)7910 static void pvclock_gtod_update_fn(struct work_struct *work)
7911 {
7912 struct kvm *kvm;
7913
7914 struct kvm_vcpu *vcpu;
7915 int i;
7916
7917 mutex_lock(&kvm_lock);
7918 list_for_each_entry(kvm, &vm_list, vm_list)
7919 kvm_for_each_vcpu(i, vcpu, kvm)
7920 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
7921 atomic_set(&kvm_guest_has_master_clock, 0);
7922 mutex_unlock(&kvm_lock);
7923 }
7924
7925 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
7926
7927 /*
7928 * Indirection to move queue_work() out of the tk_core.seq write held
7929 * region to prevent possible deadlocks against time accessors which
7930 * are invoked with work related locks held.
7931 */
pvclock_irq_work_fn(struct irq_work * w)7932 static void pvclock_irq_work_fn(struct irq_work *w)
7933 {
7934 queue_work(system_long_wq, &pvclock_gtod_work);
7935 }
7936
7937 static DEFINE_IRQ_WORK(pvclock_irq_work, pvclock_irq_work_fn);
7938
7939 /*
7940 * Notification about pvclock gtod data update.
7941 */
pvclock_gtod_notify(struct notifier_block * nb,unsigned long unused,void * priv)7942 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
7943 void *priv)
7944 {
7945 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
7946 struct timekeeper *tk = priv;
7947
7948 update_pvclock_gtod(tk);
7949
7950 /*
7951 * Disable master clock if host does not trust, or does not use,
7952 * TSC based clocksource. Delegate queue_work() to irq_work as
7953 * this is invoked with tk_core.seq write held.
7954 */
7955 if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) &&
7956 atomic_read(&kvm_guest_has_master_clock) != 0)
7957 irq_work_queue(&pvclock_irq_work);
7958 return 0;
7959 }
7960
7961 static struct notifier_block pvclock_gtod_notifier = {
7962 .notifier_call = pvclock_gtod_notify,
7963 };
7964 #endif
7965
kvm_arch_init(void * opaque)7966 int kvm_arch_init(void *opaque)
7967 {
7968 struct kvm_x86_init_ops *ops = opaque;
7969 int r;
7970
7971 if (kvm_x86_ops.hardware_enable) {
7972 printk(KERN_ERR "kvm: already loaded the other module\n");
7973 r = -EEXIST;
7974 goto out;
7975 }
7976
7977 if (!ops->cpu_has_kvm_support()) {
7978 pr_err_ratelimited("kvm: no hardware support\n");
7979 r = -EOPNOTSUPP;
7980 goto out;
7981 }
7982 if (ops->disabled_by_bios()) {
7983 pr_err_ratelimited("kvm: disabled by bios\n");
7984 r = -EOPNOTSUPP;
7985 goto out;
7986 }
7987
7988 /*
7989 * KVM explicitly assumes that the guest has an FPU and
7990 * FXSAVE/FXRSTOR. For example, the KVM_GET_FPU explicitly casts the
7991 * vCPU's FPU state as a fxregs_state struct.
7992 */
7993 if (!boot_cpu_has(X86_FEATURE_FPU) || !boot_cpu_has(X86_FEATURE_FXSR)) {
7994 printk(KERN_ERR "kvm: inadequate fpu\n");
7995 r = -EOPNOTSUPP;
7996 goto out;
7997 }
7998
7999 r = -ENOMEM;
8000 x86_fpu_cache = kmem_cache_create("x86_fpu", sizeof(struct fpu),
8001 __alignof__(struct fpu), SLAB_ACCOUNT,
8002 NULL);
8003 if (!x86_fpu_cache) {
8004 printk(KERN_ERR "kvm: failed to allocate cache for x86 fpu\n");
8005 goto out;
8006 }
8007
8008 x86_emulator_cache = kvm_alloc_emulator_cache();
8009 if (!x86_emulator_cache) {
8010 pr_err("kvm: failed to allocate cache for x86 emulator\n");
8011 goto out_free_x86_fpu_cache;
8012 }
8013
8014 user_return_msrs = alloc_percpu(struct kvm_user_return_msrs);
8015 if (!user_return_msrs) {
8016 printk(KERN_ERR "kvm: failed to allocate percpu kvm_user_return_msrs\n");
8017 goto out_free_x86_emulator_cache;
8018 }
8019
8020 r = kvm_mmu_module_init();
8021 if (r)
8022 goto out_free_percpu;
8023
8024 kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
8025 PT_DIRTY_MASK, PT64_NX_MASK, 0,
8026 PT_PRESENT_MASK, 0, sme_me_mask);
8027 kvm_timer_init();
8028
8029 if (ops->intel_pt_intr_in_guest && ops->intel_pt_intr_in_guest())
8030 kvm_guest_cbs.handle_intel_pt_intr = kvm_handle_intel_pt_intr;
8031 perf_register_guest_info_callbacks(&kvm_guest_cbs);
8032
8033 if (boot_cpu_has(X86_FEATURE_XSAVE)) {
8034 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
8035 supported_xcr0 = host_xcr0 & KVM_SUPPORTED_XCR0;
8036 }
8037
8038 kvm_lapic_init();
8039 if (pi_inject_timer == -1)
8040 pi_inject_timer = housekeeping_enabled(HK_FLAG_TIMER);
8041 #ifdef CONFIG_X86_64
8042 pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
8043
8044 if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
8045 set_hv_tscchange_cb(kvm_hyperv_tsc_notifier);
8046 #endif
8047
8048 return 0;
8049
8050 out_free_percpu:
8051 free_percpu(user_return_msrs);
8052 out_free_x86_emulator_cache:
8053 kmem_cache_destroy(x86_emulator_cache);
8054 out_free_x86_fpu_cache:
8055 kmem_cache_destroy(x86_fpu_cache);
8056 out:
8057 return r;
8058 }
8059
kvm_arch_exit(void)8060 void kvm_arch_exit(void)
8061 {
8062 #ifdef CONFIG_X86_64
8063 if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
8064 clear_hv_tscchange_cb();
8065 #endif
8066 kvm_lapic_exit();
8067 perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
8068 kvm_guest_cbs.handle_intel_pt_intr = NULL;
8069
8070 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
8071 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
8072 CPUFREQ_TRANSITION_NOTIFIER);
8073 cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE);
8074 #ifdef CONFIG_X86_64
8075 pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
8076 irq_work_sync(&pvclock_irq_work);
8077 cancel_work_sync(&pvclock_gtod_work);
8078 #endif
8079 kvm_x86_ops.hardware_enable = NULL;
8080 kvm_mmu_module_exit();
8081 free_percpu(user_return_msrs);
8082 kmem_cache_destroy(x86_emulator_cache);
8083 kmem_cache_destroy(x86_fpu_cache);
8084 }
8085
kvm_vcpu_halt(struct kvm_vcpu * vcpu)8086 int kvm_vcpu_halt(struct kvm_vcpu *vcpu)
8087 {
8088 ++vcpu->stat.halt_exits;
8089 if (lapic_in_kernel(vcpu)) {
8090 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
8091 return 1;
8092 } else {
8093 vcpu->run->exit_reason = KVM_EXIT_HLT;
8094 return 0;
8095 }
8096 }
8097 EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
8098
kvm_emulate_halt(struct kvm_vcpu * vcpu)8099 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
8100 {
8101 int ret = kvm_skip_emulated_instruction(vcpu);
8102 /*
8103 * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered
8104 * KVM_EXIT_DEBUG here.
8105 */
8106 return kvm_vcpu_halt(vcpu) && ret;
8107 }
8108 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
8109
8110 #ifdef CONFIG_X86_64
kvm_pv_clock_pairing(struct kvm_vcpu * vcpu,gpa_t paddr,unsigned long clock_type)8111 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr,
8112 unsigned long clock_type)
8113 {
8114 struct kvm_clock_pairing clock_pairing;
8115 struct timespec64 ts;
8116 u64 cycle;
8117 int ret;
8118
8119 if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK)
8120 return -KVM_EOPNOTSUPP;
8121
8122 if (kvm_get_walltime_and_clockread(&ts, &cycle) == false)
8123 return -KVM_EOPNOTSUPP;
8124
8125 clock_pairing.sec = ts.tv_sec;
8126 clock_pairing.nsec = ts.tv_nsec;
8127 clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle);
8128 clock_pairing.flags = 0;
8129 memset(&clock_pairing.pad, 0, sizeof(clock_pairing.pad));
8130
8131 ret = 0;
8132 if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing,
8133 sizeof(struct kvm_clock_pairing)))
8134 ret = -KVM_EFAULT;
8135
8136 return ret;
8137 }
8138 #endif
8139
8140 /*
8141 * kvm_pv_kick_cpu_op: Kick a vcpu.
8142 *
8143 * @apicid - apicid of vcpu to be kicked.
8144 */
kvm_pv_kick_cpu_op(struct kvm * kvm,unsigned long flags,int apicid)8145 static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid)
8146 {
8147 struct kvm_lapic_irq lapic_irq;
8148
8149 lapic_irq.shorthand = APIC_DEST_NOSHORT;
8150 lapic_irq.dest_mode = APIC_DEST_PHYSICAL;
8151 lapic_irq.level = 0;
8152 lapic_irq.dest_id = apicid;
8153 lapic_irq.msi_redir_hint = false;
8154
8155 lapic_irq.delivery_mode = APIC_DM_REMRD;
8156 kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
8157 }
8158
kvm_apicv_activated(struct kvm * kvm)8159 bool kvm_apicv_activated(struct kvm *kvm)
8160 {
8161 return (READ_ONCE(kvm->arch.apicv_inhibit_reasons) == 0);
8162 }
8163 EXPORT_SYMBOL_GPL(kvm_apicv_activated);
8164
kvm_apicv_init(struct kvm * kvm,bool enable)8165 void kvm_apicv_init(struct kvm *kvm, bool enable)
8166 {
8167 if (enable)
8168 clear_bit(APICV_INHIBIT_REASON_DISABLE,
8169 &kvm->arch.apicv_inhibit_reasons);
8170 else
8171 set_bit(APICV_INHIBIT_REASON_DISABLE,
8172 &kvm->arch.apicv_inhibit_reasons);
8173 }
8174 EXPORT_SYMBOL_GPL(kvm_apicv_init);
8175
kvm_sched_yield(struct kvm * kvm,unsigned long dest_id)8176 static void kvm_sched_yield(struct kvm *kvm, unsigned long dest_id)
8177 {
8178 struct kvm_vcpu *target = NULL;
8179 struct kvm_apic_map *map;
8180
8181 rcu_read_lock();
8182 map = rcu_dereference(kvm->arch.apic_map);
8183
8184 if (likely(map) && dest_id <= map->max_apic_id && map->phys_map[dest_id])
8185 target = map->phys_map[dest_id]->vcpu;
8186
8187 rcu_read_unlock();
8188
8189 if (target && READ_ONCE(target->ready))
8190 kvm_vcpu_yield_to(target);
8191 }
8192
kvm_emulate_hypercall(struct kvm_vcpu * vcpu)8193 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
8194 {
8195 unsigned long nr, a0, a1, a2, a3, ret;
8196 int op_64_bit;
8197
8198 if (kvm_hv_hypercall_enabled(vcpu->kvm))
8199 return kvm_hv_hypercall(vcpu);
8200
8201 nr = kvm_rax_read(vcpu);
8202 a0 = kvm_rbx_read(vcpu);
8203 a1 = kvm_rcx_read(vcpu);
8204 a2 = kvm_rdx_read(vcpu);
8205 a3 = kvm_rsi_read(vcpu);
8206
8207 trace_kvm_hypercall(nr, a0, a1, a2, a3);
8208
8209 op_64_bit = is_64_bit_mode(vcpu);
8210 if (!op_64_bit) {
8211 nr &= 0xFFFFFFFF;
8212 a0 &= 0xFFFFFFFF;
8213 a1 &= 0xFFFFFFFF;
8214 a2 &= 0xFFFFFFFF;
8215 a3 &= 0xFFFFFFFF;
8216 }
8217
8218 if (kvm_x86_ops.get_cpl(vcpu) != 0) {
8219 ret = -KVM_EPERM;
8220 goto out;
8221 }
8222
8223 ret = -KVM_ENOSYS;
8224
8225 switch (nr) {
8226 case KVM_HC_VAPIC_POLL_IRQ:
8227 ret = 0;
8228 break;
8229 case KVM_HC_KICK_CPU:
8230 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_UNHALT))
8231 break;
8232
8233 kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1);
8234 kvm_sched_yield(vcpu->kvm, a1);
8235 ret = 0;
8236 break;
8237 #ifdef CONFIG_X86_64
8238 case KVM_HC_CLOCK_PAIRING:
8239 ret = kvm_pv_clock_pairing(vcpu, a0, a1);
8240 break;
8241 #endif
8242 case KVM_HC_SEND_IPI:
8243 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SEND_IPI))
8244 break;
8245
8246 ret = kvm_pv_send_ipi(vcpu->kvm, a0, a1, a2, a3, op_64_bit);
8247 break;
8248 case KVM_HC_SCHED_YIELD:
8249 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SCHED_YIELD))
8250 break;
8251
8252 kvm_sched_yield(vcpu->kvm, a0);
8253 ret = 0;
8254 break;
8255 default:
8256 ret = -KVM_ENOSYS;
8257 break;
8258 }
8259 out:
8260 if (!op_64_bit)
8261 ret = (u32)ret;
8262 kvm_rax_write(vcpu, ret);
8263
8264 ++vcpu->stat.hypercalls;
8265 return kvm_skip_emulated_instruction(vcpu);
8266 }
8267 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
8268
emulator_fix_hypercall(struct x86_emulate_ctxt * ctxt)8269 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
8270 {
8271 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8272 char instruction[3];
8273 unsigned long rip = kvm_rip_read(vcpu);
8274
8275 kvm_x86_ops.patch_hypercall(vcpu, instruction);
8276
8277 return emulator_write_emulated(ctxt, rip, instruction, 3,
8278 &ctxt->exception);
8279 }
8280
dm_request_for_irq_injection(struct kvm_vcpu * vcpu)8281 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
8282 {
8283 return vcpu->run->request_interrupt_window &&
8284 likely(!pic_in_kernel(vcpu->kvm));
8285 }
8286
post_kvm_run_save(struct kvm_vcpu * vcpu)8287 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
8288 {
8289 struct kvm_run *kvm_run = vcpu->run;
8290
8291 kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
8292 kvm_run->flags = is_smm(vcpu) ? KVM_RUN_X86_SMM : 0;
8293 kvm_run->cr8 = kvm_get_cr8(vcpu);
8294 kvm_run->apic_base = kvm_get_apic_base(vcpu);
8295 kvm_run->ready_for_interrupt_injection =
8296 pic_in_kernel(vcpu->kvm) ||
8297 kvm_vcpu_ready_for_interrupt_injection(vcpu);
8298 }
8299
update_cr8_intercept(struct kvm_vcpu * vcpu)8300 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
8301 {
8302 int max_irr, tpr;
8303
8304 if (!kvm_x86_ops.update_cr8_intercept)
8305 return;
8306
8307 if (!lapic_in_kernel(vcpu))
8308 return;
8309
8310 if (vcpu->arch.apicv_active)
8311 return;
8312
8313 if (!vcpu->arch.apic->vapic_addr)
8314 max_irr = kvm_lapic_find_highest_irr(vcpu);
8315 else
8316 max_irr = -1;
8317
8318 if (max_irr != -1)
8319 max_irr >>= 4;
8320
8321 tpr = kvm_lapic_get_cr8(vcpu);
8322
8323 kvm_x86_ops.update_cr8_intercept(vcpu, tpr, max_irr);
8324 }
8325
kvm_inject_exception(struct kvm_vcpu * vcpu)8326 static void kvm_inject_exception(struct kvm_vcpu *vcpu)
8327 {
8328 if (vcpu->arch.exception.error_code && !is_protmode(vcpu))
8329 vcpu->arch.exception.error_code = false;
8330 kvm_x86_ops.queue_exception(vcpu);
8331 }
8332
inject_pending_event(struct kvm_vcpu * vcpu,bool * req_immediate_exit)8333 static void inject_pending_event(struct kvm_vcpu *vcpu, bool *req_immediate_exit)
8334 {
8335 int r;
8336 bool can_inject = true;
8337
8338 /* try to reinject previous events if any */
8339
8340 if (vcpu->arch.exception.injected) {
8341 kvm_inject_exception(vcpu);
8342 can_inject = false;
8343 }
8344 /*
8345 * Do not inject an NMI or interrupt if there is a pending
8346 * exception. Exceptions and interrupts are recognized at
8347 * instruction boundaries, i.e. the start of an instruction.
8348 * Trap-like exceptions, e.g. #DB, have higher priority than
8349 * NMIs and interrupts, i.e. traps are recognized before an
8350 * NMI/interrupt that's pending on the same instruction.
8351 * Fault-like exceptions, e.g. #GP and #PF, are the lowest
8352 * priority, but are only generated (pended) during instruction
8353 * execution, i.e. a pending fault-like exception means the
8354 * fault occurred on the *previous* instruction and must be
8355 * serviced prior to recognizing any new events in order to
8356 * fully complete the previous instruction.
8357 */
8358 else if (!vcpu->arch.exception.pending) {
8359 if (vcpu->arch.nmi_injected) {
8360 kvm_x86_ops.set_nmi(vcpu);
8361 can_inject = false;
8362 } else if (vcpu->arch.interrupt.injected) {
8363 kvm_x86_ops.set_irq(vcpu);
8364 can_inject = false;
8365 }
8366 }
8367
8368 WARN_ON_ONCE(vcpu->arch.exception.injected &&
8369 vcpu->arch.exception.pending);
8370
8371 /*
8372 * Call check_nested_events() even if we reinjected a previous event
8373 * in order for caller to determine if it should require immediate-exit
8374 * from L2 to L1 due to pending L1 events which require exit
8375 * from L2 to L1.
8376 */
8377 if (is_guest_mode(vcpu)) {
8378 r = kvm_x86_ops.nested_ops->check_events(vcpu);
8379 if (r < 0)
8380 goto busy;
8381 }
8382
8383 /* try to inject new event if pending */
8384 if (vcpu->arch.exception.pending) {
8385 trace_kvm_inj_exception(vcpu->arch.exception.nr,
8386 vcpu->arch.exception.has_error_code,
8387 vcpu->arch.exception.error_code);
8388
8389 vcpu->arch.exception.pending = false;
8390 vcpu->arch.exception.injected = true;
8391
8392 if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT)
8393 __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
8394 X86_EFLAGS_RF);
8395
8396 if (vcpu->arch.exception.nr == DB_VECTOR) {
8397 kvm_deliver_exception_payload(vcpu);
8398 if (vcpu->arch.dr7 & DR7_GD) {
8399 vcpu->arch.dr7 &= ~DR7_GD;
8400 kvm_update_dr7(vcpu);
8401 }
8402 }
8403
8404 kvm_inject_exception(vcpu);
8405 can_inject = false;
8406 }
8407
8408 /*
8409 * Finally, inject interrupt events. If an event cannot be injected
8410 * due to architectural conditions (e.g. IF=0) a window-open exit
8411 * will re-request KVM_REQ_EVENT. Sometimes however an event is pending
8412 * and can architecturally be injected, but we cannot do it right now:
8413 * an interrupt could have arrived just now and we have to inject it
8414 * as a vmexit, or there could already an event in the queue, which is
8415 * indicated by can_inject. In that case we request an immediate exit
8416 * in order to make progress and get back here for another iteration.
8417 * The kvm_x86_ops hooks communicate this by returning -EBUSY.
8418 */
8419 if (vcpu->arch.smi_pending) {
8420 r = can_inject ? kvm_x86_ops.smi_allowed(vcpu, true) : -EBUSY;
8421 if (r < 0)
8422 goto busy;
8423 if (r) {
8424 vcpu->arch.smi_pending = false;
8425 ++vcpu->arch.smi_count;
8426 enter_smm(vcpu);
8427 can_inject = false;
8428 } else
8429 kvm_x86_ops.enable_smi_window(vcpu);
8430 }
8431
8432 if (vcpu->arch.nmi_pending) {
8433 r = can_inject ? kvm_x86_ops.nmi_allowed(vcpu, true) : -EBUSY;
8434 if (r < 0)
8435 goto busy;
8436 if (r) {
8437 --vcpu->arch.nmi_pending;
8438 vcpu->arch.nmi_injected = true;
8439 kvm_x86_ops.set_nmi(vcpu);
8440 can_inject = false;
8441 WARN_ON(kvm_x86_ops.nmi_allowed(vcpu, true) < 0);
8442 }
8443 if (vcpu->arch.nmi_pending)
8444 kvm_x86_ops.enable_nmi_window(vcpu);
8445 }
8446
8447 if (kvm_cpu_has_injectable_intr(vcpu)) {
8448 r = can_inject ? kvm_x86_ops.interrupt_allowed(vcpu, true) : -EBUSY;
8449 if (r < 0)
8450 goto busy;
8451 if (r) {
8452 kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu), false);
8453 kvm_x86_ops.set_irq(vcpu);
8454 WARN_ON(kvm_x86_ops.interrupt_allowed(vcpu, true) < 0);
8455 }
8456 if (kvm_cpu_has_injectable_intr(vcpu))
8457 kvm_x86_ops.enable_irq_window(vcpu);
8458 }
8459
8460 if (is_guest_mode(vcpu) &&
8461 kvm_x86_ops.nested_ops->hv_timer_pending &&
8462 kvm_x86_ops.nested_ops->hv_timer_pending(vcpu))
8463 *req_immediate_exit = true;
8464
8465 WARN_ON(vcpu->arch.exception.pending);
8466 return;
8467
8468 busy:
8469 *req_immediate_exit = true;
8470 return;
8471 }
8472
process_nmi(struct kvm_vcpu * vcpu)8473 static void process_nmi(struct kvm_vcpu *vcpu)
8474 {
8475 unsigned limit = 2;
8476
8477 /*
8478 * x86 is limited to one NMI running, and one NMI pending after it.
8479 * If an NMI is already in progress, limit further NMIs to just one.
8480 * Otherwise, allow two (and we'll inject the first one immediately).
8481 */
8482 if (kvm_x86_ops.get_nmi_mask(vcpu) || vcpu->arch.nmi_injected)
8483 limit = 1;
8484
8485 vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
8486 vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
8487 kvm_make_request(KVM_REQ_EVENT, vcpu);
8488 }
8489
enter_smm_get_segment_flags(struct kvm_segment * seg)8490 static u32 enter_smm_get_segment_flags(struct kvm_segment *seg)
8491 {
8492 u32 flags = 0;
8493 flags |= seg->g << 23;
8494 flags |= seg->db << 22;
8495 flags |= seg->l << 21;
8496 flags |= seg->avl << 20;
8497 flags |= seg->present << 15;
8498 flags |= seg->dpl << 13;
8499 flags |= seg->s << 12;
8500 flags |= seg->type << 8;
8501 return flags;
8502 }
8503
enter_smm_save_seg_32(struct kvm_vcpu * vcpu,char * buf,int n)8504 static void enter_smm_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n)
8505 {
8506 struct kvm_segment seg;
8507 int offset;
8508
8509 kvm_get_segment(vcpu, &seg, n);
8510 put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector);
8511
8512 if (n < 3)
8513 offset = 0x7f84 + n * 12;
8514 else
8515 offset = 0x7f2c + (n - 3) * 12;
8516
8517 put_smstate(u32, buf, offset + 8, seg.base);
8518 put_smstate(u32, buf, offset + 4, seg.limit);
8519 put_smstate(u32, buf, offset, enter_smm_get_segment_flags(&seg));
8520 }
8521
8522 #ifdef CONFIG_X86_64
enter_smm_save_seg_64(struct kvm_vcpu * vcpu,char * buf,int n)8523 static void enter_smm_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n)
8524 {
8525 struct kvm_segment seg;
8526 int offset;
8527 u16 flags;
8528
8529 kvm_get_segment(vcpu, &seg, n);
8530 offset = 0x7e00 + n * 16;
8531
8532 flags = enter_smm_get_segment_flags(&seg) >> 8;
8533 put_smstate(u16, buf, offset, seg.selector);
8534 put_smstate(u16, buf, offset + 2, flags);
8535 put_smstate(u32, buf, offset + 4, seg.limit);
8536 put_smstate(u64, buf, offset + 8, seg.base);
8537 }
8538 #endif
8539
enter_smm_save_state_32(struct kvm_vcpu * vcpu,char * buf)8540 static void enter_smm_save_state_32(struct kvm_vcpu *vcpu, char *buf)
8541 {
8542 struct desc_ptr dt;
8543 struct kvm_segment seg;
8544 unsigned long val;
8545 int i;
8546
8547 put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu));
8548 put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu));
8549 put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu));
8550 put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu));
8551
8552 for (i = 0; i < 8; i++)
8553 put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read(vcpu, i));
8554
8555 kvm_get_dr(vcpu, 6, &val);
8556 put_smstate(u32, buf, 0x7fcc, (u32)val);
8557 kvm_get_dr(vcpu, 7, &val);
8558 put_smstate(u32, buf, 0x7fc8, (u32)val);
8559
8560 kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
8561 put_smstate(u32, buf, 0x7fc4, seg.selector);
8562 put_smstate(u32, buf, 0x7f64, seg.base);
8563 put_smstate(u32, buf, 0x7f60, seg.limit);
8564 put_smstate(u32, buf, 0x7f5c, enter_smm_get_segment_flags(&seg));
8565
8566 kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
8567 put_smstate(u32, buf, 0x7fc0, seg.selector);
8568 put_smstate(u32, buf, 0x7f80, seg.base);
8569 put_smstate(u32, buf, 0x7f7c, seg.limit);
8570 put_smstate(u32, buf, 0x7f78, enter_smm_get_segment_flags(&seg));
8571
8572 kvm_x86_ops.get_gdt(vcpu, &dt);
8573 put_smstate(u32, buf, 0x7f74, dt.address);
8574 put_smstate(u32, buf, 0x7f70, dt.size);
8575
8576 kvm_x86_ops.get_idt(vcpu, &dt);
8577 put_smstate(u32, buf, 0x7f58, dt.address);
8578 put_smstate(u32, buf, 0x7f54, dt.size);
8579
8580 for (i = 0; i < 6; i++)
8581 enter_smm_save_seg_32(vcpu, buf, i);
8582
8583 put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu));
8584
8585 /* revision id */
8586 put_smstate(u32, buf, 0x7efc, 0x00020000);
8587 put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase);
8588 }
8589
8590 #ifdef CONFIG_X86_64
enter_smm_save_state_64(struct kvm_vcpu * vcpu,char * buf)8591 static void enter_smm_save_state_64(struct kvm_vcpu *vcpu, char *buf)
8592 {
8593 struct desc_ptr dt;
8594 struct kvm_segment seg;
8595 unsigned long val;
8596 int i;
8597
8598 for (i = 0; i < 16; i++)
8599 put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read(vcpu, i));
8600
8601 put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu));
8602 put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu));
8603
8604 kvm_get_dr(vcpu, 6, &val);
8605 put_smstate(u64, buf, 0x7f68, val);
8606 kvm_get_dr(vcpu, 7, &val);
8607 put_smstate(u64, buf, 0x7f60, val);
8608
8609 put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu));
8610 put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu));
8611 put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu));
8612
8613 put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase);
8614
8615 /* revision id */
8616 put_smstate(u32, buf, 0x7efc, 0x00020064);
8617
8618 put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer);
8619
8620 kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
8621 put_smstate(u16, buf, 0x7e90, seg.selector);
8622 put_smstate(u16, buf, 0x7e92, enter_smm_get_segment_flags(&seg) >> 8);
8623 put_smstate(u32, buf, 0x7e94, seg.limit);
8624 put_smstate(u64, buf, 0x7e98, seg.base);
8625
8626 kvm_x86_ops.get_idt(vcpu, &dt);
8627 put_smstate(u32, buf, 0x7e84, dt.size);
8628 put_smstate(u64, buf, 0x7e88, dt.address);
8629
8630 kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
8631 put_smstate(u16, buf, 0x7e70, seg.selector);
8632 put_smstate(u16, buf, 0x7e72, enter_smm_get_segment_flags(&seg) >> 8);
8633 put_smstate(u32, buf, 0x7e74, seg.limit);
8634 put_smstate(u64, buf, 0x7e78, seg.base);
8635
8636 kvm_x86_ops.get_gdt(vcpu, &dt);
8637 put_smstate(u32, buf, 0x7e64, dt.size);
8638 put_smstate(u64, buf, 0x7e68, dt.address);
8639
8640 for (i = 0; i < 6; i++)
8641 enter_smm_save_seg_64(vcpu, buf, i);
8642 }
8643 #endif
8644
enter_smm(struct kvm_vcpu * vcpu)8645 static void enter_smm(struct kvm_vcpu *vcpu)
8646 {
8647 struct kvm_segment cs, ds;
8648 struct desc_ptr dt;
8649 char buf[512];
8650 u32 cr0;
8651
8652 trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, true);
8653 memset(buf, 0, 512);
8654 #ifdef CONFIG_X86_64
8655 if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
8656 enter_smm_save_state_64(vcpu, buf);
8657 else
8658 #endif
8659 enter_smm_save_state_32(vcpu, buf);
8660
8661 /*
8662 * Give pre_enter_smm() a chance to make ISA-specific changes to the
8663 * vCPU state (e.g. leave guest mode) after we've saved the state into
8664 * the SMM state-save area.
8665 */
8666 kvm_x86_ops.pre_enter_smm(vcpu, buf);
8667
8668 vcpu->arch.hflags |= HF_SMM_MASK;
8669 kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf));
8670
8671 if (kvm_x86_ops.get_nmi_mask(vcpu))
8672 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
8673 else
8674 kvm_x86_ops.set_nmi_mask(vcpu, true);
8675
8676 kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
8677 kvm_rip_write(vcpu, 0x8000);
8678
8679 cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG);
8680 kvm_x86_ops.set_cr0(vcpu, cr0);
8681 vcpu->arch.cr0 = cr0;
8682
8683 kvm_x86_ops.set_cr4(vcpu, 0);
8684
8685 /* Undocumented: IDT limit is set to zero on entry to SMM. */
8686 dt.address = dt.size = 0;
8687 kvm_x86_ops.set_idt(vcpu, &dt);
8688
8689 __kvm_set_dr(vcpu, 7, DR7_FIXED_1);
8690
8691 cs.selector = (vcpu->arch.smbase >> 4) & 0xffff;
8692 cs.base = vcpu->arch.smbase;
8693
8694 ds.selector = 0;
8695 ds.base = 0;
8696
8697 cs.limit = ds.limit = 0xffffffff;
8698 cs.type = ds.type = 0x3;
8699 cs.dpl = ds.dpl = 0;
8700 cs.db = ds.db = 0;
8701 cs.s = ds.s = 1;
8702 cs.l = ds.l = 0;
8703 cs.g = ds.g = 1;
8704 cs.avl = ds.avl = 0;
8705 cs.present = ds.present = 1;
8706 cs.unusable = ds.unusable = 0;
8707 cs.padding = ds.padding = 0;
8708
8709 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
8710 kvm_set_segment(vcpu, &ds, VCPU_SREG_DS);
8711 kvm_set_segment(vcpu, &ds, VCPU_SREG_ES);
8712 kvm_set_segment(vcpu, &ds, VCPU_SREG_FS);
8713 kvm_set_segment(vcpu, &ds, VCPU_SREG_GS);
8714 kvm_set_segment(vcpu, &ds, VCPU_SREG_SS);
8715
8716 #ifdef CONFIG_X86_64
8717 if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
8718 kvm_x86_ops.set_efer(vcpu, 0);
8719 #endif
8720
8721 kvm_update_cpuid_runtime(vcpu);
8722 kvm_mmu_reset_context(vcpu);
8723 }
8724
process_smi(struct kvm_vcpu * vcpu)8725 static void process_smi(struct kvm_vcpu *vcpu)
8726 {
8727 vcpu->arch.smi_pending = true;
8728 kvm_make_request(KVM_REQ_EVENT, vcpu);
8729 }
8730
kvm_make_scan_ioapic_request_mask(struct kvm * kvm,unsigned long * vcpu_bitmap)8731 void kvm_make_scan_ioapic_request_mask(struct kvm *kvm,
8732 unsigned long *vcpu_bitmap)
8733 {
8734 cpumask_var_t cpus;
8735
8736 zalloc_cpumask_var(&cpus, GFP_ATOMIC);
8737
8738 kvm_make_vcpus_request_mask(kvm, KVM_REQ_SCAN_IOAPIC,
8739 NULL, vcpu_bitmap, cpus);
8740
8741 free_cpumask_var(cpus);
8742 }
8743
kvm_make_scan_ioapic_request(struct kvm * kvm)8744 void kvm_make_scan_ioapic_request(struct kvm *kvm)
8745 {
8746 kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
8747 }
8748
kvm_vcpu_update_apicv(struct kvm_vcpu * vcpu)8749 void kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu)
8750 {
8751 if (!lapic_in_kernel(vcpu))
8752 return;
8753
8754 vcpu->arch.apicv_active = kvm_apicv_activated(vcpu->kvm);
8755 kvm_apic_update_apicv(vcpu);
8756 kvm_x86_ops.refresh_apicv_exec_ctrl(vcpu);
8757 }
8758 EXPORT_SYMBOL_GPL(kvm_vcpu_update_apicv);
8759
8760 /*
8761 * NOTE: Do not hold any lock prior to calling this.
8762 *
8763 * In particular, kvm_request_apicv_update() expects kvm->srcu not to be
8764 * locked, because it calls __x86_set_memory_region() which does
8765 * synchronize_srcu(&kvm->srcu).
8766 */
kvm_request_apicv_update(struct kvm * kvm,bool activate,ulong bit)8767 void kvm_request_apicv_update(struct kvm *kvm, bool activate, ulong bit)
8768 {
8769 struct kvm_vcpu *except;
8770 unsigned long old, new, expected;
8771
8772 if (!kvm_x86_ops.check_apicv_inhibit_reasons ||
8773 !kvm_x86_ops.check_apicv_inhibit_reasons(bit))
8774 return;
8775
8776 old = READ_ONCE(kvm->arch.apicv_inhibit_reasons);
8777 do {
8778 expected = new = old;
8779 if (activate)
8780 __clear_bit(bit, &new);
8781 else
8782 __set_bit(bit, &new);
8783 if (new == old)
8784 break;
8785 old = cmpxchg(&kvm->arch.apicv_inhibit_reasons, expected, new);
8786 } while (old != expected);
8787
8788 if (!!old == !!new)
8789 return;
8790
8791 trace_kvm_apicv_update_request(activate, bit);
8792 if (kvm_x86_ops.pre_update_apicv_exec_ctrl)
8793 kvm_x86_ops.pre_update_apicv_exec_ctrl(kvm, activate);
8794
8795 /*
8796 * Sending request to update APICV for all other vcpus,
8797 * while update the calling vcpu immediately instead of
8798 * waiting for another #VMEXIT to handle the request.
8799 */
8800 except = kvm_get_running_vcpu();
8801 kvm_make_all_cpus_request_except(kvm, KVM_REQ_APICV_UPDATE,
8802 except);
8803 if (except)
8804 kvm_vcpu_update_apicv(except);
8805 }
8806 EXPORT_SYMBOL_GPL(kvm_request_apicv_update);
8807
vcpu_scan_ioapic(struct kvm_vcpu * vcpu)8808 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
8809 {
8810 if (!kvm_apic_present(vcpu))
8811 return;
8812
8813 bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
8814
8815 if (irqchip_split(vcpu->kvm))
8816 kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
8817 else {
8818 if (vcpu->arch.apicv_active)
8819 kvm_x86_ops.sync_pir_to_irr(vcpu);
8820 if (ioapic_in_kernel(vcpu->kvm))
8821 kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
8822 }
8823
8824 if (is_guest_mode(vcpu))
8825 vcpu->arch.load_eoi_exitmap_pending = true;
8826 else
8827 kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu);
8828 }
8829
vcpu_load_eoi_exitmap(struct kvm_vcpu * vcpu)8830 static void vcpu_load_eoi_exitmap(struct kvm_vcpu *vcpu)
8831 {
8832 u64 eoi_exit_bitmap[4];
8833
8834 if (!kvm_apic_hw_enabled(vcpu->arch.apic))
8835 return;
8836
8837 bitmap_or((ulong *)eoi_exit_bitmap, vcpu->arch.ioapic_handled_vectors,
8838 vcpu_to_synic(vcpu)->vec_bitmap, 256);
8839 kvm_x86_ops.load_eoi_exitmap(vcpu, eoi_exit_bitmap);
8840 }
8841
kvm_arch_mmu_notifier_invalidate_range(struct kvm * kvm,unsigned long start,unsigned long end)8842 void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
8843 unsigned long start, unsigned long end)
8844 {
8845 unsigned long apic_address;
8846
8847 /*
8848 * The physical address of apic access page is stored in the VMCS.
8849 * Update it when it becomes invalid.
8850 */
8851 apic_address = gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
8852 if (start <= apic_address && apic_address < end)
8853 kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
8854 }
8855
kvm_vcpu_reload_apic_access_page(struct kvm_vcpu * vcpu)8856 void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
8857 {
8858 if (!lapic_in_kernel(vcpu))
8859 return;
8860
8861 if (!kvm_x86_ops.set_apic_access_page_addr)
8862 return;
8863
8864 kvm_x86_ops.set_apic_access_page_addr(vcpu);
8865 }
8866
__kvm_request_immediate_exit(struct kvm_vcpu * vcpu)8867 void __kvm_request_immediate_exit(struct kvm_vcpu *vcpu)
8868 {
8869 smp_send_reschedule(vcpu->cpu);
8870 }
8871 EXPORT_SYMBOL_GPL(__kvm_request_immediate_exit);
8872
8873 /*
8874 * Returns 1 to let vcpu_run() continue the guest execution loop without
8875 * exiting to the userspace. Otherwise, the value will be returned to the
8876 * userspace.
8877 */
vcpu_enter_guest(struct kvm_vcpu * vcpu)8878 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
8879 {
8880 int r;
8881 bool req_int_win =
8882 dm_request_for_irq_injection(vcpu) &&
8883 kvm_cpu_accept_dm_intr(vcpu);
8884 fastpath_t exit_fastpath;
8885
8886 bool req_immediate_exit = false;
8887
8888 if (kvm_request_pending(vcpu)) {
8889 if (kvm_check_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu)) {
8890 if (unlikely(!kvm_x86_ops.nested_ops->get_nested_state_pages(vcpu))) {
8891 r = 0;
8892 goto out;
8893 }
8894 }
8895 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
8896 kvm_mmu_unload(vcpu);
8897 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
8898 __kvm_migrate_timers(vcpu);
8899 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
8900 kvm_gen_update_masterclock(vcpu->kvm);
8901 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
8902 kvm_gen_kvmclock_update(vcpu);
8903 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
8904 r = kvm_guest_time_update(vcpu);
8905 if (unlikely(r))
8906 goto out;
8907 }
8908 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
8909 kvm_mmu_sync_roots(vcpu);
8910 if (kvm_check_request(KVM_REQ_LOAD_MMU_PGD, vcpu))
8911 kvm_mmu_load_pgd(vcpu);
8912 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) {
8913 kvm_vcpu_flush_tlb_all(vcpu);
8914
8915 /* Flushing all ASIDs flushes the current ASID... */
8916 kvm_clear_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
8917 }
8918 if (kvm_check_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu))
8919 kvm_vcpu_flush_tlb_current(vcpu);
8920 if (kvm_check_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu))
8921 kvm_vcpu_flush_tlb_guest(vcpu);
8922
8923 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
8924 vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
8925 r = 0;
8926 goto out;
8927 }
8928 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
8929 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
8930 vcpu->mmio_needed = 0;
8931 r = 0;
8932 goto out;
8933 }
8934 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
8935 /* Page is swapped out. Do synthetic halt */
8936 vcpu->arch.apf.halted = true;
8937 r = 1;
8938 goto out;
8939 }
8940 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
8941 record_steal_time(vcpu);
8942 if (kvm_check_request(KVM_REQ_SMI, vcpu))
8943 process_smi(vcpu);
8944 if (kvm_check_request(KVM_REQ_NMI, vcpu))
8945 process_nmi(vcpu);
8946 if (kvm_check_request(KVM_REQ_PMU, vcpu))
8947 kvm_pmu_handle_event(vcpu);
8948 if (kvm_check_request(KVM_REQ_PMI, vcpu))
8949 kvm_pmu_deliver_pmi(vcpu);
8950 if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
8951 BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
8952 if (test_bit(vcpu->arch.pending_ioapic_eoi,
8953 vcpu->arch.ioapic_handled_vectors)) {
8954 vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
8955 vcpu->run->eoi.vector =
8956 vcpu->arch.pending_ioapic_eoi;
8957 r = 0;
8958 goto out;
8959 }
8960 }
8961 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
8962 vcpu_scan_ioapic(vcpu);
8963 if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu))
8964 vcpu_load_eoi_exitmap(vcpu);
8965 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
8966 kvm_vcpu_reload_apic_access_page(vcpu);
8967 if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
8968 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
8969 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
8970 r = 0;
8971 goto out;
8972 }
8973 if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
8974 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
8975 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
8976 r = 0;
8977 goto out;
8978 }
8979 if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
8980 vcpu->run->exit_reason = KVM_EXIT_HYPERV;
8981 vcpu->run->hyperv = vcpu->arch.hyperv.exit;
8982 r = 0;
8983 goto out;
8984 }
8985
8986 /*
8987 * KVM_REQ_HV_STIMER has to be processed after
8988 * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
8989 * depend on the guest clock being up-to-date
8990 */
8991 if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
8992 kvm_hv_process_stimers(vcpu);
8993 if (kvm_check_request(KVM_REQ_APICV_UPDATE, vcpu))
8994 kvm_vcpu_update_apicv(vcpu);
8995 if (kvm_check_request(KVM_REQ_APF_READY, vcpu))
8996 kvm_check_async_pf_completion(vcpu);
8997 if (kvm_check_request(KVM_REQ_MSR_FILTER_CHANGED, vcpu))
8998 kvm_x86_ops.msr_filter_changed(vcpu);
8999 }
9000
9001 if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
9002 ++vcpu->stat.req_event;
9003 kvm_apic_accept_events(vcpu);
9004 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
9005 r = 1;
9006 goto out;
9007 }
9008
9009 inject_pending_event(vcpu, &req_immediate_exit);
9010 if (req_int_win)
9011 kvm_x86_ops.enable_irq_window(vcpu);
9012
9013 if (kvm_lapic_enabled(vcpu)) {
9014 update_cr8_intercept(vcpu);
9015 kvm_lapic_sync_to_vapic(vcpu);
9016 }
9017 }
9018
9019 r = kvm_mmu_reload(vcpu);
9020 if (unlikely(r)) {
9021 goto cancel_injection;
9022 }
9023
9024 preempt_disable();
9025
9026 kvm_x86_ops.prepare_guest_switch(vcpu);
9027
9028 /*
9029 * Disable IRQs before setting IN_GUEST_MODE. Posted interrupt
9030 * IPI are then delayed after guest entry, which ensures that they
9031 * result in virtual interrupt delivery.
9032 */
9033 local_irq_disable();
9034 vcpu->mode = IN_GUEST_MODE;
9035
9036 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
9037
9038 /*
9039 * 1) We should set ->mode before checking ->requests. Please see
9040 * the comment in kvm_vcpu_exiting_guest_mode().
9041 *
9042 * 2) For APICv, we should set ->mode before checking PID.ON. This
9043 * pairs with the memory barrier implicit in pi_test_and_set_on
9044 * (see vmx_deliver_posted_interrupt).
9045 *
9046 * 3) This also orders the write to mode from any reads to the page
9047 * tables done while the VCPU is running. Please see the comment
9048 * in kvm_flush_remote_tlbs.
9049 */
9050 smp_mb__after_srcu_read_unlock();
9051
9052 /*
9053 * This handles the case where a posted interrupt was
9054 * notified with kvm_vcpu_kick.
9055 */
9056 if (kvm_lapic_enabled(vcpu) && vcpu->arch.apicv_active)
9057 kvm_x86_ops.sync_pir_to_irr(vcpu);
9058
9059 if (kvm_vcpu_exit_request(vcpu)) {
9060 vcpu->mode = OUTSIDE_GUEST_MODE;
9061 smp_wmb();
9062 local_irq_enable();
9063 preempt_enable();
9064 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
9065 r = 1;
9066 goto cancel_injection;
9067 }
9068
9069 if (req_immediate_exit) {
9070 kvm_make_request(KVM_REQ_EVENT, vcpu);
9071 kvm_x86_ops.request_immediate_exit(vcpu);
9072 }
9073
9074 trace_kvm_entry(vcpu);
9075
9076 fpregs_assert_state_consistent();
9077 if (test_thread_flag(TIF_NEED_FPU_LOAD))
9078 switch_fpu_return();
9079
9080 if (unlikely(vcpu->arch.switch_db_regs)) {
9081 set_debugreg(0, 7);
9082 set_debugreg(vcpu->arch.eff_db[0], 0);
9083 set_debugreg(vcpu->arch.eff_db[1], 1);
9084 set_debugreg(vcpu->arch.eff_db[2], 2);
9085 set_debugreg(vcpu->arch.eff_db[3], 3);
9086 set_debugreg(vcpu->arch.dr6, 6);
9087 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
9088 } else if (unlikely(hw_breakpoint_active())) {
9089 set_debugreg(0, 7);
9090 }
9091
9092 exit_fastpath = kvm_x86_ops.run(vcpu);
9093
9094 /*
9095 * Do this here before restoring debug registers on the host. And
9096 * since we do this before handling the vmexit, a DR access vmexit
9097 * can (a) read the correct value of the debug registers, (b) set
9098 * KVM_DEBUGREG_WONT_EXIT again.
9099 */
9100 if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
9101 WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
9102 kvm_x86_ops.sync_dirty_debug_regs(vcpu);
9103 kvm_update_dr0123(vcpu);
9104 kvm_update_dr7(vcpu);
9105 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
9106 }
9107
9108 /*
9109 * If the guest has used debug registers, at least dr7
9110 * will be disabled while returning to the host.
9111 * If we don't have active breakpoints in the host, we don't
9112 * care about the messed up debug address registers. But if
9113 * we have some of them active, restore the old state.
9114 */
9115 if (hw_breakpoint_active())
9116 hw_breakpoint_restore();
9117
9118 vcpu->arch.last_vmentry_cpu = vcpu->cpu;
9119 vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
9120
9121 vcpu->mode = OUTSIDE_GUEST_MODE;
9122 smp_wmb();
9123
9124 kvm_x86_ops.handle_exit_irqoff(vcpu);
9125
9126 /*
9127 * Consume any pending interrupts, including the possible source of
9128 * VM-Exit on SVM and any ticks that occur between VM-Exit and now.
9129 * An instruction is required after local_irq_enable() to fully unblock
9130 * interrupts on processors that implement an interrupt shadow, the
9131 * stat.exits increment will do nicely.
9132 */
9133 kvm_before_interrupt(vcpu);
9134 local_irq_enable();
9135 ++vcpu->stat.exits;
9136 local_irq_disable();
9137 kvm_after_interrupt(vcpu);
9138
9139 /*
9140 * Wait until after servicing IRQs to account guest time so that any
9141 * ticks that occurred while running the guest are properly accounted
9142 * to the guest. Waiting until IRQs are enabled degrades the accuracy
9143 * of accounting via context tracking, but the loss of accuracy is
9144 * acceptable for all known use cases.
9145 */
9146 vtime_account_guest_exit();
9147
9148 if (lapic_in_kernel(vcpu)) {
9149 s64 delta = vcpu->arch.apic->lapic_timer.advance_expire_delta;
9150 if (delta != S64_MIN) {
9151 trace_kvm_wait_lapic_expire(vcpu->vcpu_id, delta);
9152 vcpu->arch.apic->lapic_timer.advance_expire_delta = S64_MIN;
9153 }
9154 }
9155
9156 local_irq_enable();
9157 preempt_enable();
9158
9159 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
9160
9161 /*
9162 * Profile KVM exit RIPs:
9163 */
9164 if (unlikely(prof_on == KVM_PROFILING)) {
9165 unsigned long rip = kvm_rip_read(vcpu);
9166 profile_hit(KVM_PROFILING, (void *)rip);
9167 }
9168
9169 if (unlikely(vcpu->arch.tsc_always_catchup))
9170 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
9171
9172 if (vcpu->arch.apic_attention)
9173 kvm_lapic_sync_from_vapic(vcpu);
9174
9175 r = kvm_x86_ops.handle_exit(vcpu, exit_fastpath);
9176 return r;
9177
9178 cancel_injection:
9179 if (req_immediate_exit)
9180 kvm_make_request(KVM_REQ_EVENT, vcpu);
9181 kvm_x86_ops.cancel_injection(vcpu);
9182 if (unlikely(vcpu->arch.apic_attention))
9183 kvm_lapic_sync_from_vapic(vcpu);
9184 out:
9185 return r;
9186 }
9187
vcpu_block(struct kvm * kvm,struct kvm_vcpu * vcpu)9188 static inline int vcpu_block(struct kvm *kvm, struct kvm_vcpu *vcpu)
9189 {
9190 if (!kvm_arch_vcpu_runnable(vcpu) &&
9191 (!kvm_x86_ops.pre_block || kvm_x86_ops.pre_block(vcpu) == 0)) {
9192 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
9193 kvm_vcpu_block(vcpu);
9194 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
9195
9196 if (kvm_x86_ops.post_block)
9197 kvm_x86_ops.post_block(vcpu);
9198
9199 if (!kvm_check_request(KVM_REQ_UNHALT, vcpu))
9200 return 1;
9201 }
9202
9203 kvm_apic_accept_events(vcpu);
9204 switch(vcpu->arch.mp_state) {
9205 case KVM_MP_STATE_HALTED:
9206 vcpu->arch.pv.pv_unhalted = false;
9207 vcpu->arch.mp_state =
9208 KVM_MP_STATE_RUNNABLE;
9209 fallthrough;
9210 case KVM_MP_STATE_RUNNABLE:
9211 vcpu->arch.apf.halted = false;
9212 break;
9213 case KVM_MP_STATE_INIT_RECEIVED:
9214 break;
9215 default:
9216 return -EINTR;
9217 }
9218 return 1;
9219 }
9220
kvm_vcpu_running(struct kvm_vcpu * vcpu)9221 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
9222 {
9223 if (is_guest_mode(vcpu))
9224 kvm_x86_ops.nested_ops->check_events(vcpu);
9225
9226 return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
9227 !vcpu->arch.apf.halted);
9228 }
9229
vcpu_run(struct kvm_vcpu * vcpu)9230 static int vcpu_run(struct kvm_vcpu *vcpu)
9231 {
9232 int r;
9233 struct kvm *kvm = vcpu->kvm;
9234
9235 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
9236 vcpu->arch.l1tf_flush_l1d = true;
9237
9238 for (;;) {
9239 /*
9240 * If another guest vCPU requests a PV TLB flush in the middle
9241 * of instruction emulation, the rest of the emulation could
9242 * use a stale page translation. Assume that any code after
9243 * this point can start executing an instruction.
9244 */
9245 vcpu->arch.at_instruction_boundary = false;
9246 if (kvm_vcpu_running(vcpu)) {
9247 r = vcpu_enter_guest(vcpu);
9248 } else {
9249 r = vcpu_block(kvm, vcpu);
9250 }
9251
9252 if (r <= 0)
9253 break;
9254
9255 kvm_clear_request(KVM_REQ_PENDING_TIMER, vcpu);
9256 if (kvm_cpu_has_pending_timer(vcpu))
9257 kvm_inject_pending_timer_irqs(vcpu);
9258
9259 if (dm_request_for_irq_injection(vcpu) &&
9260 kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
9261 r = 0;
9262 vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
9263 ++vcpu->stat.request_irq_exits;
9264 break;
9265 }
9266
9267 if (__xfer_to_guest_mode_work_pending()) {
9268 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
9269 r = xfer_to_guest_mode_handle_work(vcpu);
9270 if (r)
9271 return r;
9272 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
9273 }
9274 }
9275
9276 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
9277
9278 return r;
9279 }
9280
complete_emulated_io(struct kvm_vcpu * vcpu)9281 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
9282 {
9283 int r;
9284
9285 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
9286 r = kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
9287 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
9288 return r;
9289 }
9290
complete_emulated_pio(struct kvm_vcpu * vcpu)9291 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
9292 {
9293 BUG_ON(!vcpu->arch.pio.count);
9294
9295 return complete_emulated_io(vcpu);
9296 }
9297
9298 /*
9299 * Implements the following, as a state machine:
9300 *
9301 * read:
9302 * for each fragment
9303 * for each mmio piece in the fragment
9304 * write gpa, len
9305 * exit
9306 * copy data
9307 * execute insn
9308 *
9309 * write:
9310 * for each fragment
9311 * for each mmio piece in the fragment
9312 * write gpa, len
9313 * copy data
9314 * exit
9315 */
complete_emulated_mmio(struct kvm_vcpu * vcpu)9316 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
9317 {
9318 struct kvm_run *run = vcpu->run;
9319 struct kvm_mmio_fragment *frag;
9320 unsigned len;
9321
9322 BUG_ON(!vcpu->mmio_needed);
9323
9324 /* Complete previous fragment */
9325 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
9326 len = min(8u, frag->len);
9327 if (!vcpu->mmio_is_write)
9328 memcpy(frag->data, run->mmio.data, len);
9329
9330 if (frag->len <= 8) {
9331 /* Switch to the next fragment. */
9332 frag++;
9333 vcpu->mmio_cur_fragment++;
9334 } else {
9335 /* Go forward to the next mmio piece. */
9336 frag->data += len;
9337 frag->gpa += len;
9338 frag->len -= len;
9339 }
9340
9341 if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
9342 vcpu->mmio_needed = 0;
9343
9344 /* FIXME: return into emulator if single-stepping. */
9345 if (vcpu->mmio_is_write)
9346 return 1;
9347 vcpu->mmio_read_completed = 1;
9348 return complete_emulated_io(vcpu);
9349 }
9350
9351 run->exit_reason = KVM_EXIT_MMIO;
9352 run->mmio.phys_addr = frag->gpa;
9353 if (vcpu->mmio_is_write)
9354 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
9355 run->mmio.len = min(8u, frag->len);
9356 run->mmio.is_write = vcpu->mmio_is_write;
9357 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
9358 return 0;
9359 }
9360
kvm_save_current_fpu(struct fpu * fpu)9361 static void kvm_save_current_fpu(struct fpu *fpu)
9362 {
9363 /*
9364 * If the target FPU state is not resident in the CPU registers, just
9365 * memcpy() from current, else save CPU state directly to the target.
9366 */
9367 if (test_thread_flag(TIF_NEED_FPU_LOAD))
9368 memcpy(&fpu->state, ¤t->thread.fpu.state,
9369 fpu_kernel_xstate_size);
9370 else
9371 copy_fpregs_to_fpstate(fpu);
9372 }
9373
9374 /* Swap (qemu) user FPU context for the guest FPU context. */
kvm_load_guest_fpu(struct kvm_vcpu * vcpu)9375 static void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
9376 {
9377 fpregs_lock();
9378
9379 kvm_save_current_fpu(vcpu->arch.user_fpu);
9380
9381 /* PKRU is separately restored in kvm_x86_ops.run. */
9382 __copy_kernel_to_fpregs(&vcpu->arch.guest_fpu->state,
9383 ~XFEATURE_MASK_PKRU);
9384
9385 fpregs_mark_activate();
9386 fpregs_unlock();
9387
9388 trace_kvm_fpu(1);
9389 }
9390
9391 /* When vcpu_run ends, restore user space FPU context. */
kvm_put_guest_fpu(struct kvm_vcpu * vcpu)9392 static void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
9393 {
9394 fpregs_lock();
9395
9396 kvm_save_current_fpu(vcpu->arch.guest_fpu);
9397
9398 copy_kernel_to_fpregs(&vcpu->arch.user_fpu->state);
9399
9400 fpregs_mark_activate();
9401 fpregs_unlock();
9402
9403 ++vcpu->stat.fpu_reload;
9404 trace_kvm_fpu(0);
9405 }
9406
kvm_arch_vcpu_ioctl_run(struct kvm_vcpu * vcpu)9407 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
9408 {
9409 struct kvm_run *kvm_run = vcpu->run;
9410 int r;
9411
9412 vcpu_load(vcpu);
9413 kvm_sigset_activate(vcpu);
9414 kvm_load_guest_fpu(vcpu);
9415
9416 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
9417 if (kvm_run->immediate_exit) {
9418 r = -EINTR;
9419 goto out;
9420 }
9421 kvm_vcpu_block(vcpu);
9422 kvm_apic_accept_events(vcpu);
9423 kvm_clear_request(KVM_REQ_UNHALT, vcpu);
9424 r = -EAGAIN;
9425 if (signal_pending(current)) {
9426 r = -EINTR;
9427 kvm_run->exit_reason = KVM_EXIT_INTR;
9428 ++vcpu->stat.signal_exits;
9429 }
9430 goto out;
9431 }
9432
9433 if (kvm_run->kvm_valid_regs & ~KVM_SYNC_X86_VALID_FIELDS) {
9434 r = -EINVAL;
9435 goto out;
9436 }
9437
9438 if (kvm_run->kvm_dirty_regs) {
9439 r = sync_regs(vcpu);
9440 if (r != 0)
9441 goto out;
9442 }
9443
9444 /* re-sync apic's tpr */
9445 if (!lapic_in_kernel(vcpu)) {
9446 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
9447 r = -EINVAL;
9448 goto out;
9449 }
9450 }
9451
9452 if (unlikely(vcpu->arch.complete_userspace_io)) {
9453 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
9454 vcpu->arch.complete_userspace_io = NULL;
9455 r = cui(vcpu);
9456 if (r <= 0)
9457 goto out;
9458 } else
9459 WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
9460
9461 if (kvm_run->immediate_exit)
9462 r = -EINTR;
9463 else
9464 r = vcpu_run(vcpu);
9465
9466 out:
9467 kvm_put_guest_fpu(vcpu);
9468 if (kvm_run->kvm_valid_regs)
9469 store_regs(vcpu);
9470 post_kvm_run_save(vcpu);
9471 kvm_sigset_deactivate(vcpu);
9472
9473 vcpu_put(vcpu);
9474 return r;
9475 }
9476
__get_regs(struct kvm_vcpu * vcpu,struct kvm_regs * regs)9477 static void __get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
9478 {
9479 if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
9480 /*
9481 * We are here if userspace calls get_regs() in the middle of
9482 * instruction emulation. Registers state needs to be copied
9483 * back from emulation context to vcpu. Userspace shouldn't do
9484 * that usually, but some bad designed PV devices (vmware
9485 * backdoor interface) need this to work
9486 */
9487 emulator_writeback_register_cache(vcpu->arch.emulate_ctxt);
9488 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
9489 }
9490 regs->rax = kvm_rax_read(vcpu);
9491 regs->rbx = kvm_rbx_read(vcpu);
9492 regs->rcx = kvm_rcx_read(vcpu);
9493 regs->rdx = kvm_rdx_read(vcpu);
9494 regs->rsi = kvm_rsi_read(vcpu);
9495 regs->rdi = kvm_rdi_read(vcpu);
9496 regs->rsp = kvm_rsp_read(vcpu);
9497 regs->rbp = kvm_rbp_read(vcpu);
9498 #ifdef CONFIG_X86_64
9499 regs->r8 = kvm_r8_read(vcpu);
9500 regs->r9 = kvm_r9_read(vcpu);
9501 regs->r10 = kvm_r10_read(vcpu);
9502 regs->r11 = kvm_r11_read(vcpu);
9503 regs->r12 = kvm_r12_read(vcpu);
9504 regs->r13 = kvm_r13_read(vcpu);
9505 regs->r14 = kvm_r14_read(vcpu);
9506 regs->r15 = kvm_r15_read(vcpu);
9507 #endif
9508
9509 regs->rip = kvm_rip_read(vcpu);
9510 regs->rflags = kvm_get_rflags(vcpu);
9511 }
9512
kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu * vcpu,struct kvm_regs * regs)9513 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
9514 {
9515 vcpu_load(vcpu);
9516 __get_regs(vcpu, regs);
9517 vcpu_put(vcpu);
9518 return 0;
9519 }
9520
__set_regs(struct kvm_vcpu * vcpu,struct kvm_regs * regs)9521 static void __set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
9522 {
9523 vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
9524 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
9525
9526 kvm_rax_write(vcpu, regs->rax);
9527 kvm_rbx_write(vcpu, regs->rbx);
9528 kvm_rcx_write(vcpu, regs->rcx);
9529 kvm_rdx_write(vcpu, regs->rdx);
9530 kvm_rsi_write(vcpu, regs->rsi);
9531 kvm_rdi_write(vcpu, regs->rdi);
9532 kvm_rsp_write(vcpu, regs->rsp);
9533 kvm_rbp_write(vcpu, regs->rbp);
9534 #ifdef CONFIG_X86_64
9535 kvm_r8_write(vcpu, regs->r8);
9536 kvm_r9_write(vcpu, regs->r9);
9537 kvm_r10_write(vcpu, regs->r10);
9538 kvm_r11_write(vcpu, regs->r11);
9539 kvm_r12_write(vcpu, regs->r12);
9540 kvm_r13_write(vcpu, regs->r13);
9541 kvm_r14_write(vcpu, regs->r14);
9542 kvm_r15_write(vcpu, regs->r15);
9543 #endif
9544
9545 kvm_rip_write(vcpu, regs->rip);
9546 kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED);
9547
9548 vcpu->arch.exception.pending = false;
9549
9550 kvm_make_request(KVM_REQ_EVENT, vcpu);
9551 }
9552
kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu * vcpu,struct kvm_regs * regs)9553 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
9554 {
9555 vcpu_load(vcpu);
9556 __set_regs(vcpu, regs);
9557 vcpu_put(vcpu);
9558 return 0;
9559 }
9560
kvm_get_cs_db_l_bits(struct kvm_vcpu * vcpu,int * db,int * l)9561 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
9562 {
9563 struct kvm_segment cs;
9564
9565 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
9566 *db = cs.db;
9567 *l = cs.l;
9568 }
9569 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
9570
__get_sregs(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)9571 static void __get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
9572 {
9573 struct desc_ptr dt;
9574
9575 kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
9576 kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
9577 kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
9578 kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
9579 kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
9580 kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
9581
9582 kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
9583 kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
9584
9585 kvm_x86_ops.get_idt(vcpu, &dt);
9586 sregs->idt.limit = dt.size;
9587 sregs->idt.base = dt.address;
9588 kvm_x86_ops.get_gdt(vcpu, &dt);
9589 sregs->gdt.limit = dt.size;
9590 sregs->gdt.base = dt.address;
9591
9592 sregs->cr0 = kvm_read_cr0(vcpu);
9593 sregs->cr2 = vcpu->arch.cr2;
9594 sregs->cr3 = kvm_read_cr3(vcpu);
9595 sregs->cr4 = kvm_read_cr4(vcpu);
9596 sregs->cr8 = kvm_get_cr8(vcpu);
9597 sregs->efer = vcpu->arch.efer;
9598 sregs->apic_base = kvm_get_apic_base(vcpu);
9599
9600 memset(sregs->interrupt_bitmap, 0, sizeof(sregs->interrupt_bitmap));
9601
9602 if (vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft)
9603 set_bit(vcpu->arch.interrupt.nr,
9604 (unsigned long *)sregs->interrupt_bitmap);
9605 }
9606
kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)9607 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
9608 struct kvm_sregs *sregs)
9609 {
9610 vcpu_load(vcpu);
9611 __get_sregs(vcpu, sregs);
9612 vcpu_put(vcpu);
9613 return 0;
9614 }
9615
kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu * vcpu,struct kvm_mp_state * mp_state)9616 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
9617 struct kvm_mp_state *mp_state)
9618 {
9619 vcpu_load(vcpu);
9620 if (kvm_mpx_supported())
9621 kvm_load_guest_fpu(vcpu);
9622
9623 kvm_apic_accept_events(vcpu);
9624 if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED &&
9625 vcpu->arch.pv.pv_unhalted)
9626 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
9627 else
9628 mp_state->mp_state = vcpu->arch.mp_state;
9629
9630 if (kvm_mpx_supported())
9631 kvm_put_guest_fpu(vcpu);
9632 vcpu_put(vcpu);
9633 return 0;
9634 }
9635
kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu * vcpu,struct kvm_mp_state * mp_state)9636 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
9637 struct kvm_mp_state *mp_state)
9638 {
9639 int ret = -EINVAL;
9640
9641 vcpu_load(vcpu);
9642
9643 if (!lapic_in_kernel(vcpu) &&
9644 mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
9645 goto out;
9646
9647 /*
9648 * KVM_MP_STATE_INIT_RECEIVED means the processor is in
9649 * INIT state; latched init should be reported using
9650 * KVM_SET_VCPU_EVENTS, so reject it here.
9651 */
9652 if ((kvm_vcpu_latch_init(vcpu) || vcpu->arch.smi_pending) &&
9653 (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED ||
9654 mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED))
9655 goto out;
9656
9657 if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
9658 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
9659 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
9660 } else
9661 vcpu->arch.mp_state = mp_state->mp_state;
9662 kvm_make_request(KVM_REQ_EVENT, vcpu);
9663
9664 ret = 0;
9665 out:
9666 vcpu_put(vcpu);
9667 return ret;
9668 }
9669
kvm_task_switch(struct kvm_vcpu * vcpu,u16 tss_selector,int idt_index,int reason,bool has_error_code,u32 error_code)9670 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
9671 int reason, bool has_error_code, u32 error_code)
9672 {
9673 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
9674 int ret;
9675
9676 init_emulate_ctxt(vcpu);
9677
9678 ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
9679 has_error_code, error_code);
9680 if (ret) {
9681 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
9682 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
9683 vcpu->run->internal.ndata = 0;
9684 return 0;
9685 }
9686
9687 kvm_rip_write(vcpu, ctxt->eip);
9688 kvm_set_rflags(vcpu, ctxt->eflags);
9689 return 1;
9690 }
9691 EXPORT_SYMBOL_GPL(kvm_task_switch);
9692
kvm_valid_sregs(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)9693 static int kvm_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
9694 {
9695 if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) {
9696 /*
9697 * When EFER.LME and CR0.PG are set, the processor is in
9698 * 64-bit mode (though maybe in a 32-bit code segment).
9699 * CR4.PAE and EFER.LMA must be set.
9700 */
9701 if (!(sregs->cr4 & X86_CR4_PAE)
9702 || !(sregs->efer & EFER_LMA))
9703 return -EINVAL;
9704 if (sregs->cr3 & vcpu->arch.cr3_lm_rsvd_bits)
9705 return -EINVAL;
9706 } else {
9707 /*
9708 * Not in 64-bit mode: EFER.LMA is clear and the code
9709 * segment cannot be 64-bit.
9710 */
9711 if (sregs->efer & EFER_LMA || sregs->cs.l)
9712 return -EINVAL;
9713 }
9714
9715 return kvm_valid_cr4(vcpu, sregs->cr4);
9716 }
9717
__set_sregs(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)9718 static int __set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
9719 {
9720 struct msr_data apic_base_msr;
9721 int mmu_reset_needed = 0;
9722 int cpuid_update_needed = 0;
9723 int pending_vec, max_bits, idx;
9724 struct desc_ptr dt;
9725 int ret = -EINVAL;
9726
9727 if (kvm_valid_sregs(vcpu, sregs))
9728 goto out;
9729
9730 apic_base_msr.data = sregs->apic_base;
9731 apic_base_msr.host_initiated = true;
9732 if (kvm_set_apic_base(vcpu, &apic_base_msr))
9733 goto out;
9734
9735 dt.size = sregs->idt.limit;
9736 dt.address = sregs->idt.base;
9737 kvm_x86_ops.set_idt(vcpu, &dt);
9738 dt.size = sregs->gdt.limit;
9739 dt.address = sregs->gdt.base;
9740 kvm_x86_ops.set_gdt(vcpu, &dt);
9741
9742 vcpu->arch.cr2 = sregs->cr2;
9743 mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
9744 vcpu->arch.cr3 = sregs->cr3;
9745 kvm_register_mark_available(vcpu, VCPU_EXREG_CR3);
9746
9747 kvm_set_cr8(vcpu, sregs->cr8);
9748
9749 mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
9750 kvm_x86_ops.set_efer(vcpu, sregs->efer);
9751
9752 mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
9753 kvm_x86_ops.set_cr0(vcpu, sregs->cr0);
9754 vcpu->arch.cr0 = sregs->cr0;
9755
9756 mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
9757 cpuid_update_needed |= ((kvm_read_cr4(vcpu) ^ sregs->cr4) &
9758 (X86_CR4_OSXSAVE | X86_CR4_PKE));
9759 kvm_x86_ops.set_cr4(vcpu, sregs->cr4);
9760 if (cpuid_update_needed)
9761 kvm_update_cpuid_runtime(vcpu);
9762
9763 idx = srcu_read_lock(&vcpu->kvm->srcu);
9764 if (is_pae_paging(vcpu)) {
9765 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
9766 mmu_reset_needed = 1;
9767 }
9768 srcu_read_unlock(&vcpu->kvm->srcu, idx);
9769
9770 if (mmu_reset_needed)
9771 kvm_mmu_reset_context(vcpu);
9772
9773 max_bits = KVM_NR_INTERRUPTS;
9774 pending_vec = find_first_bit(
9775 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
9776 if (pending_vec < max_bits) {
9777 kvm_queue_interrupt(vcpu, pending_vec, false);
9778 pr_debug("Set back pending irq %d\n", pending_vec);
9779 }
9780
9781 kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
9782 kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
9783 kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
9784 kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
9785 kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
9786 kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
9787
9788 kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
9789 kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
9790
9791 update_cr8_intercept(vcpu);
9792
9793 /* Older userspace won't unhalt the vcpu on reset. */
9794 if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
9795 sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
9796 !is_protmode(vcpu))
9797 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
9798
9799 kvm_make_request(KVM_REQ_EVENT, vcpu);
9800
9801 ret = 0;
9802 out:
9803 return ret;
9804 }
9805
kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)9806 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
9807 struct kvm_sregs *sregs)
9808 {
9809 int ret;
9810
9811 vcpu_load(vcpu);
9812 ret = __set_sregs(vcpu, sregs);
9813 vcpu_put(vcpu);
9814 return ret;
9815 }
9816
kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu * vcpu,struct kvm_guest_debug * dbg)9817 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
9818 struct kvm_guest_debug *dbg)
9819 {
9820 unsigned long rflags;
9821 int i, r;
9822
9823 vcpu_load(vcpu);
9824
9825 if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
9826 r = -EBUSY;
9827 if (vcpu->arch.exception.pending)
9828 goto out;
9829 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
9830 kvm_queue_exception(vcpu, DB_VECTOR);
9831 else
9832 kvm_queue_exception(vcpu, BP_VECTOR);
9833 }
9834
9835 /*
9836 * Read rflags as long as potentially injected trace flags are still
9837 * filtered out.
9838 */
9839 rflags = kvm_get_rflags(vcpu);
9840
9841 vcpu->guest_debug = dbg->control;
9842 if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
9843 vcpu->guest_debug = 0;
9844
9845 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
9846 for (i = 0; i < KVM_NR_DB_REGS; ++i)
9847 vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
9848 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
9849 } else {
9850 for (i = 0; i < KVM_NR_DB_REGS; i++)
9851 vcpu->arch.eff_db[i] = vcpu->arch.db[i];
9852 }
9853 kvm_update_dr7(vcpu);
9854
9855 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
9856 vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
9857 get_segment_base(vcpu, VCPU_SREG_CS);
9858
9859 /*
9860 * Trigger an rflags update that will inject or remove the trace
9861 * flags.
9862 */
9863 kvm_set_rflags(vcpu, rflags);
9864
9865 kvm_x86_ops.update_exception_bitmap(vcpu);
9866
9867 r = 0;
9868
9869 out:
9870 vcpu_put(vcpu);
9871 return r;
9872 }
9873
9874 /*
9875 * Translate a guest virtual address to a guest physical address.
9876 */
kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu * vcpu,struct kvm_translation * tr)9877 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
9878 struct kvm_translation *tr)
9879 {
9880 unsigned long vaddr = tr->linear_address;
9881 gpa_t gpa;
9882 int idx;
9883
9884 vcpu_load(vcpu);
9885
9886 idx = srcu_read_lock(&vcpu->kvm->srcu);
9887 gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
9888 srcu_read_unlock(&vcpu->kvm->srcu, idx);
9889 tr->physical_address = gpa;
9890 tr->valid = gpa != UNMAPPED_GVA;
9891 tr->writeable = 1;
9892 tr->usermode = 0;
9893
9894 vcpu_put(vcpu);
9895 return 0;
9896 }
9897
kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu * vcpu,struct kvm_fpu * fpu)9898 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
9899 {
9900 struct fxregs_state *fxsave;
9901
9902 vcpu_load(vcpu);
9903
9904 fxsave = &vcpu->arch.guest_fpu->state.fxsave;
9905 memcpy(fpu->fpr, fxsave->st_space, 128);
9906 fpu->fcw = fxsave->cwd;
9907 fpu->fsw = fxsave->swd;
9908 fpu->ftwx = fxsave->twd;
9909 fpu->last_opcode = fxsave->fop;
9910 fpu->last_ip = fxsave->rip;
9911 fpu->last_dp = fxsave->rdp;
9912 memcpy(fpu->xmm, fxsave->xmm_space, sizeof(fxsave->xmm_space));
9913
9914 vcpu_put(vcpu);
9915 return 0;
9916 }
9917
kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu * vcpu,struct kvm_fpu * fpu)9918 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
9919 {
9920 struct fxregs_state *fxsave;
9921
9922 vcpu_load(vcpu);
9923
9924 fxsave = &vcpu->arch.guest_fpu->state.fxsave;
9925
9926 memcpy(fxsave->st_space, fpu->fpr, 128);
9927 fxsave->cwd = fpu->fcw;
9928 fxsave->swd = fpu->fsw;
9929 fxsave->twd = fpu->ftwx;
9930 fxsave->fop = fpu->last_opcode;
9931 fxsave->rip = fpu->last_ip;
9932 fxsave->rdp = fpu->last_dp;
9933 memcpy(fxsave->xmm_space, fpu->xmm, sizeof(fxsave->xmm_space));
9934
9935 vcpu_put(vcpu);
9936 return 0;
9937 }
9938
store_regs(struct kvm_vcpu * vcpu)9939 static void store_regs(struct kvm_vcpu *vcpu)
9940 {
9941 BUILD_BUG_ON(sizeof(struct kvm_sync_regs) > SYNC_REGS_SIZE_BYTES);
9942
9943 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_REGS)
9944 __get_regs(vcpu, &vcpu->run->s.regs.regs);
9945
9946 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_SREGS)
9947 __get_sregs(vcpu, &vcpu->run->s.regs.sregs);
9948
9949 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_EVENTS)
9950 kvm_vcpu_ioctl_x86_get_vcpu_events(
9951 vcpu, &vcpu->run->s.regs.events);
9952 }
9953
sync_regs(struct kvm_vcpu * vcpu)9954 static int sync_regs(struct kvm_vcpu *vcpu)
9955 {
9956 if (vcpu->run->kvm_dirty_regs & ~KVM_SYNC_X86_VALID_FIELDS)
9957 return -EINVAL;
9958
9959 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_REGS) {
9960 __set_regs(vcpu, &vcpu->run->s.regs.regs);
9961 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_REGS;
9962 }
9963 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_SREGS) {
9964 if (__set_sregs(vcpu, &vcpu->run->s.regs.sregs))
9965 return -EINVAL;
9966 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_SREGS;
9967 }
9968 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_EVENTS) {
9969 if (kvm_vcpu_ioctl_x86_set_vcpu_events(
9970 vcpu, &vcpu->run->s.regs.events))
9971 return -EINVAL;
9972 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_EVENTS;
9973 }
9974
9975 return 0;
9976 }
9977
fx_init(struct kvm_vcpu * vcpu)9978 static void fx_init(struct kvm_vcpu *vcpu)
9979 {
9980 fpstate_init(&vcpu->arch.guest_fpu->state);
9981 if (boot_cpu_has(X86_FEATURE_XSAVES))
9982 vcpu->arch.guest_fpu->state.xsave.header.xcomp_bv =
9983 host_xcr0 | XSTATE_COMPACTION_ENABLED;
9984
9985 /*
9986 * Ensure guest xcr0 is valid for loading
9987 */
9988 vcpu->arch.xcr0 = XFEATURE_MASK_FP;
9989
9990 vcpu->arch.cr0 |= X86_CR0_ET;
9991 }
9992
kvm_arch_vcpu_precreate(struct kvm * kvm,unsigned int id)9993 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
9994 {
9995 if (kvm_check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
9996 pr_warn_once("kvm: SMP vm created on host with unstable TSC; "
9997 "guest TSC will not be reliable\n");
9998
9999 return 0;
10000 }
10001
kvm_arch_vcpu_create(struct kvm_vcpu * vcpu)10002 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
10003 {
10004 struct page *page;
10005 int r;
10006
10007 if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu))
10008 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
10009 else
10010 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
10011
10012 kvm_set_tsc_khz(vcpu, max_tsc_khz);
10013
10014 r = kvm_mmu_create(vcpu);
10015 if (r < 0)
10016 return r;
10017
10018 if (irqchip_in_kernel(vcpu->kvm)) {
10019 r = kvm_create_lapic(vcpu, lapic_timer_advance_ns);
10020 if (r < 0)
10021 goto fail_mmu_destroy;
10022 if (kvm_apicv_activated(vcpu->kvm))
10023 vcpu->arch.apicv_active = true;
10024 } else
10025 static_key_slow_inc(&kvm_no_apic_vcpu);
10026
10027 r = -ENOMEM;
10028
10029 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
10030 if (!page)
10031 goto fail_free_lapic;
10032 vcpu->arch.pio_data = page_address(page);
10033
10034 vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
10035 GFP_KERNEL_ACCOUNT);
10036 if (!vcpu->arch.mce_banks)
10037 goto fail_free_pio_data;
10038 vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
10039
10040 if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask,
10041 GFP_KERNEL_ACCOUNT))
10042 goto fail_free_mce_banks;
10043
10044 if (!alloc_emulate_ctxt(vcpu))
10045 goto free_wbinvd_dirty_mask;
10046
10047 vcpu->arch.user_fpu = kmem_cache_zalloc(x86_fpu_cache,
10048 GFP_KERNEL_ACCOUNT);
10049 if (!vcpu->arch.user_fpu) {
10050 pr_err("kvm: failed to allocate userspace's fpu\n");
10051 goto free_emulate_ctxt;
10052 }
10053
10054 vcpu->arch.guest_fpu = kmem_cache_zalloc(x86_fpu_cache,
10055 GFP_KERNEL_ACCOUNT);
10056 if (!vcpu->arch.guest_fpu) {
10057 pr_err("kvm: failed to allocate vcpu's fpu\n");
10058 goto free_user_fpu;
10059 }
10060 fx_init(vcpu);
10061
10062 vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
10063 vcpu->arch.cr3_lm_rsvd_bits = rsvd_bits(cpuid_maxphyaddr(vcpu), 63);
10064
10065 vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
10066
10067 kvm_async_pf_hash_reset(vcpu);
10068 kvm_pmu_init(vcpu);
10069
10070 vcpu->arch.pending_external_vector = -1;
10071 vcpu->arch.preempted_in_kernel = false;
10072
10073 kvm_hv_vcpu_init(vcpu);
10074
10075 r = kvm_x86_ops.vcpu_create(vcpu);
10076 if (r)
10077 goto free_guest_fpu;
10078
10079 vcpu->arch.arch_capabilities = kvm_get_arch_capabilities();
10080 vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT;
10081 kvm_vcpu_mtrr_init(vcpu);
10082 vcpu_load(vcpu);
10083 kvm_vcpu_reset(vcpu, false);
10084 kvm_init_mmu(vcpu, false);
10085 vcpu_put(vcpu);
10086 return 0;
10087
10088 free_guest_fpu:
10089 kmem_cache_free(x86_fpu_cache, vcpu->arch.guest_fpu);
10090 free_user_fpu:
10091 kmem_cache_free(x86_fpu_cache, vcpu->arch.user_fpu);
10092 free_emulate_ctxt:
10093 kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
10094 free_wbinvd_dirty_mask:
10095 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
10096 fail_free_mce_banks:
10097 kfree(vcpu->arch.mce_banks);
10098 fail_free_pio_data:
10099 free_page((unsigned long)vcpu->arch.pio_data);
10100 fail_free_lapic:
10101 kvm_free_lapic(vcpu);
10102 fail_mmu_destroy:
10103 kvm_mmu_destroy(vcpu);
10104 return r;
10105 }
10106
kvm_arch_vcpu_postcreate(struct kvm_vcpu * vcpu)10107 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
10108 {
10109 struct kvm *kvm = vcpu->kvm;
10110
10111 kvm_hv_vcpu_postcreate(vcpu);
10112
10113 if (mutex_lock_killable(&vcpu->mutex))
10114 return;
10115 vcpu_load(vcpu);
10116 kvm_synchronize_tsc(vcpu, 0);
10117 vcpu_put(vcpu);
10118
10119 /* poll control enabled by default */
10120 vcpu->arch.msr_kvm_poll_control = 1;
10121
10122 mutex_unlock(&vcpu->mutex);
10123
10124 if (kvmclock_periodic_sync && vcpu->vcpu_idx == 0)
10125 schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
10126 KVMCLOCK_SYNC_PERIOD);
10127 }
10128
kvm_arch_vcpu_destroy(struct kvm_vcpu * vcpu)10129 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
10130 {
10131 struct gfn_to_pfn_cache *cache = &vcpu->arch.st.cache;
10132 int idx;
10133
10134 kvm_release_pfn(cache->pfn, cache->dirty, cache);
10135
10136 kvmclock_reset(vcpu);
10137
10138 kvm_x86_ops.vcpu_free(vcpu);
10139
10140 kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
10141 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
10142 kmem_cache_free(x86_fpu_cache, vcpu->arch.user_fpu);
10143 kmem_cache_free(x86_fpu_cache, vcpu->arch.guest_fpu);
10144
10145 kvm_hv_vcpu_uninit(vcpu);
10146 kvm_pmu_destroy(vcpu);
10147 kfree(vcpu->arch.mce_banks);
10148 kvm_free_lapic(vcpu);
10149 idx = srcu_read_lock(&vcpu->kvm->srcu);
10150 kvm_mmu_destroy(vcpu);
10151 srcu_read_unlock(&vcpu->kvm->srcu, idx);
10152 free_page((unsigned long)vcpu->arch.pio_data);
10153 kvfree(vcpu->arch.cpuid_entries);
10154 if (!lapic_in_kernel(vcpu))
10155 static_key_slow_dec(&kvm_no_apic_vcpu);
10156 }
10157
kvm_vcpu_reset(struct kvm_vcpu * vcpu,bool init_event)10158 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
10159 {
10160 kvm_lapic_reset(vcpu, init_event);
10161
10162 vcpu->arch.hflags = 0;
10163
10164 vcpu->arch.smi_pending = 0;
10165 vcpu->arch.smi_count = 0;
10166 atomic_set(&vcpu->arch.nmi_queued, 0);
10167 vcpu->arch.nmi_pending = 0;
10168 vcpu->arch.nmi_injected = false;
10169 kvm_clear_interrupt_queue(vcpu);
10170 kvm_clear_exception_queue(vcpu);
10171
10172 memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
10173 kvm_update_dr0123(vcpu);
10174 vcpu->arch.dr6 = DR6_INIT;
10175 vcpu->arch.dr7 = DR7_FIXED_1;
10176 kvm_update_dr7(vcpu);
10177
10178 vcpu->arch.cr2 = 0;
10179
10180 kvm_make_request(KVM_REQ_EVENT, vcpu);
10181 vcpu->arch.apf.msr_en_val = 0;
10182 vcpu->arch.apf.msr_int_val = 0;
10183 vcpu->arch.st.msr_val = 0;
10184
10185 kvmclock_reset(vcpu);
10186
10187 kvm_clear_async_pf_completion_queue(vcpu);
10188 kvm_async_pf_hash_reset(vcpu);
10189 vcpu->arch.apf.halted = false;
10190
10191 if (kvm_mpx_supported()) {
10192 void *mpx_state_buffer;
10193
10194 /*
10195 * To avoid have the INIT path from kvm_apic_has_events() that be
10196 * called with loaded FPU and does not let userspace fix the state.
10197 */
10198 if (init_event)
10199 kvm_put_guest_fpu(vcpu);
10200 mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu->state.xsave,
10201 XFEATURE_BNDREGS);
10202 if (mpx_state_buffer)
10203 memset(mpx_state_buffer, 0, sizeof(struct mpx_bndreg_state));
10204 mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu->state.xsave,
10205 XFEATURE_BNDCSR);
10206 if (mpx_state_buffer)
10207 memset(mpx_state_buffer, 0, sizeof(struct mpx_bndcsr));
10208 if (init_event)
10209 kvm_load_guest_fpu(vcpu);
10210 }
10211
10212 if (!init_event) {
10213 kvm_pmu_reset(vcpu);
10214 vcpu->arch.smbase = 0x30000;
10215
10216 vcpu->arch.msr_misc_features_enables = 0;
10217
10218 vcpu->arch.xcr0 = XFEATURE_MASK_FP;
10219 }
10220
10221 memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
10222 vcpu->arch.regs_avail = ~0;
10223 vcpu->arch.regs_dirty = ~0;
10224
10225 vcpu->arch.ia32_xss = 0;
10226
10227 kvm_x86_ops.vcpu_reset(vcpu, init_event);
10228 }
10229
kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu * vcpu,u8 vector)10230 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
10231 {
10232 struct kvm_segment cs;
10233
10234 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
10235 cs.selector = vector << 8;
10236 cs.base = vector << 12;
10237 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
10238 kvm_rip_write(vcpu, 0);
10239 }
10240
kvm_arch_hardware_enable(void)10241 int kvm_arch_hardware_enable(void)
10242 {
10243 struct kvm *kvm;
10244 struct kvm_vcpu *vcpu;
10245 int i;
10246 int ret;
10247 u64 local_tsc;
10248 u64 max_tsc = 0;
10249 bool stable, backwards_tsc = false;
10250
10251 kvm_user_return_msr_cpu_online();
10252 ret = kvm_x86_ops.hardware_enable();
10253 if (ret != 0)
10254 return ret;
10255
10256 local_tsc = rdtsc();
10257 stable = !kvm_check_tsc_unstable();
10258 list_for_each_entry(kvm, &vm_list, vm_list) {
10259 kvm_for_each_vcpu(i, vcpu, kvm) {
10260 if (!stable && vcpu->cpu == smp_processor_id())
10261 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
10262 if (stable && vcpu->arch.last_host_tsc > local_tsc) {
10263 backwards_tsc = true;
10264 if (vcpu->arch.last_host_tsc > max_tsc)
10265 max_tsc = vcpu->arch.last_host_tsc;
10266 }
10267 }
10268 }
10269
10270 /*
10271 * Sometimes, even reliable TSCs go backwards. This happens on
10272 * platforms that reset TSC during suspend or hibernate actions, but
10273 * maintain synchronization. We must compensate. Fortunately, we can
10274 * detect that condition here, which happens early in CPU bringup,
10275 * before any KVM threads can be running. Unfortunately, we can't
10276 * bring the TSCs fully up to date with real time, as we aren't yet far
10277 * enough into CPU bringup that we know how much real time has actually
10278 * elapsed; our helper function, ktime_get_boottime_ns() will be using boot
10279 * variables that haven't been updated yet.
10280 *
10281 * So we simply find the maximum observed TSC above, then record the
10282 * adjustment to TSC in each VCPU. When the VCPU later gets loaded,
10283 * the adjustment will be applied. Note that we accumulate
10284 * adjustments, in case multiple suspend cycles happen before some VCPU
10285 * gets a chance to run again. In the event that no KVM threads get a
10286 * chance to run, we will miss the entire elapsed period, as we'll have
10287 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
10288 * loose cycle time. This isn't too big a deal, since the loss will be
10289 * uniform across all VCPUs (not to mention the scenario is extremely
10290 * unlikely). It is possible that a second hibernate recovery happens
10291 * much faster than a first, causing the observed TSC here to be
10292 * smaller; this would require additional padding adjustment, which is
10293 * why we set last_host_tsc to the local tsc observed here.
10294 *
10295 * N.B. - this code below runs only on platforms with reliable TSC,
10296 * as that is the only way backwards_tsc is set above. Also note
10297 * that this runs for ALL vcpus, which is not a bug; all VCPUs should
10298 * have the same delta_cyc adjustment applied if backwards_tsc
10299 * is detected. Note further, this adjustment is only done once,
10300 * as we reset last_host_tsc on all VCPUs to stop this from being
10301 * called multiple times (one for each physical CPU bringup).
10302 *
10303 * Platforms with unreliable TSCs don't have to deal with this, they
10304 * will be compensated by the logic in vcpu_load, which sets the TSC to
10305 * catchup mode. This will catchup all VCPUs to real time, but cannot
10306 * guarantee that they stay in perfect synchronization.
10307 */
10308 if (backwards_tsc) {
10309 u64 delta_cyc = max_tsc - local_tsc;
10310 list_for_each_entry(kvm, &vm_list, vm_list) {
10311 kvm->arch.backwards_tsc_observed = true;
10312 kvm_for_each_vcpu(i, vcpu, kvm) {
10313 vcpu->arch.tsc_offset_adjustment += delta_cyc;
10314 vcpu->arch.last_host_tsc = local_tsc;
10315 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
10316 }
10317
10318 /*
10319 * We have to disable TSC offset matching.. if you were
10320 * booting a VM while issuing an S4 host suspend....
10321 * you may have some problem. Solving this issue is
10322 * left as an exercise to the reader.
10323 */
10324 kvm->arch.last_tsc_nsec = 0;
10325 kvm->arch.last_tsc_write = 0;
10326 }
10327
10328 }
10329 return 0;
10330 }
10331
kvm_arch_hardware_disable(void)10332 void kvm_arch_hardware_disable(void)
10333 {
10334 kvm_x86_ops.hardware_disable();
10335 drop_user_return_notifiers();
10336 }
10337
kvm_arch_hardware_setup(void * opaque)10338 int kvm_arch_hardware_setup(void *opaque)
10339 {
10340 struct kvm_x86_init_ops *ops = opaque;
10341 int r;
10342
10343 rdmsrl_safe(MSR_EFER, &host_efer);
10344
10345 if (boot_cpu_has(X86_FEATURE_XSAVES))
10346 rdmsrl(MSR_IA32_XSS, host_xss);
10347
10348 r = ops->hardware_setup();
10349 if (r != 0)
10350 return r;
10351
10352 memcpy(&kvm_x86_ops, ops->runtime_ops, sizeof(kvm_x86_ops));
10353
10354 if (!kvm_cpu_cap_has(X86_FEATURE_XSAVES))
10355 supported_xss = 0;
10356
10357 #define __kvm_cpu_cap_has(UNUSED_, f) kvm_cpu_cap_has(f)
10358 cr4_reserved_bits = __cr4_reserved_bits(__kvm_cpu_cap_has, UNUSED_);
10359 #undef __kvm_cpu_cap_has
10360
10361 if (kvm_has_tsc_control) {
10362 /*
10363 * Make sure the user can only configure tsc_khz values that
10364 * fit into a signed integer.
10365 * A min value is not calculated because it will always
10366 * be 1 on all machines.
10367 */
10368 u64 max = min(0x7fffffffULL,
10369 __scale_tsc(kvm_max_tsc_scaling_ratio, tsc_khz));
10370 kvm_max_guest_tsc_khz = max;
10371
10372 kvm_default_tsc_scaling_ratio = 1ULL << kvm_tsc_scaling_ratio_frac_bits;
10373 }
10374
10375 kvm_init_msr_list();
10376 return 0;
10377 }
10378
kvm_arch_hardware_unsetup(void)10379 void kvm_arch_hardware_unsetup(void)
10380 {
10381 kvm_x86_ops.hardware_unsetup();
10382 }
10383
kvm_arch_check_processor_compat(void * opaque)10384 int kvm_arch_check_processor_compat(void *opaque)
10385 {
10386 struct cpuinfo_x86 *c = &cpu_data(smp_processor_id());
10387 struct kvm_x86_init_ops *ops = opaque;
10388
10389 WARN_ON(!irqs_disabled());
10390
10391 if (__cr4_reserved_bits(cpu_has, c) !=
10392 __cr4_reserved_bits(cpu_has, &boot_cpu_data))
10393 return -EIO;
10394
10395 return ops->check_processor_compatibility();
10396 }
10397
kvm_vcpu_is_reset_bsp(struct kvm_vcpu * vcpu)10398 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
10399 {
10400 return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
10401 }
10402 EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp);
10403
kvm_vcpu_is_bsp(struct kvm_vcpu * vcpu)10404 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
10405 {
10406 return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
10407 }
10408
10409 struct static_key kvm_no_apic_vcpu __read_mostly;
10410 EXPORT_SYMBOL_GPL(kvm_no_apic_vcpu);
10411
kvm_arch_sched_in(struct kvm_vcpu * vcpu,int cpu)10412 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
10413 {
10414 struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
10415
10416 vcpu->arch.l1tf_flush_l1d = true;
10417 if (pmu->version && unlikely(pmu->event_count)) {
10418 pmu->need_cleanup = true;
10419 kvm_make_request(KVM_REQ_PMU, vcpu);
10420 }
10421 kvm_x86_ops.sched_in(vcpu, cpu);
10422 }
10423
kvm_arch_free_vm(struct kvm * kvm)10424 void kvm_arch_free_vm(struct kvm *kvm)
10425 {
10426 kfree(kvm->arch.hyperv.hv_pa_pg);
10427 vfree(kvm);
10428 }
10429
10430
kvm_arch_init_vm(struct kvm * kvm,unsigned long type)10431 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
10432 {
10433 int ret;
10434
10435 if (type)
10436 return -EINVAL;
10437
10438 ret = kvm_page_track_init(kvm);
10439 if (ret)
10440 return ret;
10441
10442 INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
10443 INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
10444 INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages);
10445 INIT_LIST_HEAD(&kvm->arch.lpage_disallowed_mmu_pages);
10446 INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
10447 atomic_set(&kvm->arch.noncoherent_dma_count, 0);
10448
10449 /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
10450 set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
10451 /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
10452 set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
10453 &kvm->arch.irq_sources_bitmap);
10454
10455 raw_spin_lock_init(&kvm->arch.tsc_write_lock);
10456 mutex_init(&kvm->arch.apic_map_lock);
10457 spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock);
10458
10459 kvm->arch.kvmclock_offset = -get_kvmclock_base_ns();
10460 pvclock_update_vm_gtod_copy(kvm);
10461
10462 kvm->arch.guest_can_read_msr_platform_info = true;
10463
10464 INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
10465 INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
10466
10467 kvm_hv_init_vm(kvm);
10468 kvm_mmu_init_vm(kvm);
10469
10470 return kvm_x86_ops.vm_init(kvm);
10471 }
10472
kvm_arch_post_init_vm(struct kvm * kvm)10473 int kvm_arch_post_init_vm(struct kvm *kvm)
10474 {
10475 return kvm_mmu_post_init_vm(kvm);
10476 }
10477
kvm_unload_vcpu_mmu(struct kvm_vcpu * vcpu)10478 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
10479 {
10480 vcpu_load(vcpu);
10481 kvm_mmu_unload(vcpu);
10482 vcpu_put(vcpu);
10483 }
10484
kvm_free_vcpus(struct kvm * kvm)10485 static void kvm_free_vcpus(struct kvm *kvm)
10486 {
10487 unsigned int i;
10488 struct kvm_vcpu *vcpu;
10489
10490 /*
10491 * Unpin any mmu pages first.
10492 */
10493 kvm_for_each_vcpu(i, vcpu, kvm) {
10494 kvm_clear_async_pf_completion_queue(vcpu);
10495 kvm_unload_vcpu_mmu(vcpu);
10496 }
10497 kvm_for_each_vcpu(i, vcpu, kvm)
10498 kvm_vcpu_destroy(vcpu);
10499
10500 mutex_lock(&kvm->lock);
10501 for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
10502 kvm->vcpus[i] = NULL;
10503
10504 atomic_set(&kvm->online_vcpus, 0);
10505 mutex_unlock(&kvm->lock);
10506 }
10507
kvm_arch_sync_events(struct kvm * kvm)10508 void kvm_arch_sync_events(struct kvm *kvm)
10509 {
10510 cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
10511 cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
10512 kvm_free_pit(kvm);
10513 }
10514
__x86_set_memory_region(struct kvm * kvm,int id,gpa_t gpa,u32 size)10515 int __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
10516 {
10517 int i, r;
10518 unsigned long hva, old_npages;
10519 struct kvm_memslots *slots = kvm_memslots(kvm);
10520 struct kvm_memory_slot *slot;
10521
10522 /* Called with kvm->slots_lock held. */
10523 if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
10524 return -EINVAL;
10525
10526 slot = id_to_memslot(slots, id);
10527 if (size) {
10528 if (slot && slot->npages)
10529 return -EEXIST;
10530
10531 /*
10532 * MAP_SHARED to prevent internal slot pages from being moved
10533 * by fork()/COW.
10534 */
10535 hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
10536 MAP_SHARED | MAP_ANONYMOUS, 0);
10537 if (IS_ERR((void *)hva))
10538 return PTR_ERR((void *)hva);
10539 } else {
10540 if (!slot || !slot->npages)
10541 return 0;
10542
10543 old_npages = slot->npages;
10544 hva = 0;
10545 }
10546
10547 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
10548 struct kvm_userspace_memory_region m;
10549
10550 m.slot = id | (i << 16);
10551 m.flags = 0;
10552 m.guest_phys_addr = gpa;
10553 m.userspace_addr = hva;
10554 m.memory_size = size;
10555 r = __kvm_set_memory_region(kvm, &m);
10556 if (r < 0)
10557 return r;
10558 }
10559
10560 if (!size)
10561 vm_munmap(hva, old_npages * PAGE_SIZE);
10562
10563 return 0;
10564 }
10565 EXPORT_SYMBOL_GPL(__x86_set_memory_region);
10566
kvm_arch_pre_destroy_vm(struct kvm * kvm)10567 void kvm_arch_pre_destroy_vm(struct kvm *kvm)
10568 {
10569 kvm_mmu_pre_destroy_vm(kvm);
10570 }
10571
kvm_arch_destroy_vm(struct kvm * kvm)10572 void kvm_arch_destroy_vm(struct kvm *kvm)
10573 {
10574 if (current->mm == kvm->mm) {
10575 /*
10576 * Free memory regions allocated on behalf of userspace,
10577 * unless the the memory map has changed due to process exit
10578 * or fd copying.
10579 */
10580 mutex_lock(&kvm->slots_lock);
10581 __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
10582 0, 0);
10583 __x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
10584 0, 0);
10585 __x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
10586 mutex_unlock(&kvm->slots_lock);
10587 }
10588 if (kvm_x86_ops.vm_destroy)
10589 kvm_x86_ops.vm_destroy(kvm);
10590 kvm_free_msr_filter(srcu_dereference_check(kvm->arch.msr_filter, &kvm->srcu, 1));
10591 kvm_pic_destroy(kvm);
10592 kvm_ioapic_destroy(kvm);
10593 kvm_free_vcpus(kvm);
10594 kvfree(rcu_dereference_check(kvm->arch.apic_map, 1));
10595 kfree(srcu_dereference_check(kvm->arch.pmu_event_filter, &kvm->srcu, 1));
10596 kvm_mmu_uninit_vm(kvm);
10597 kvm_page_track_cleanup(kvm);
10598 kvm_hv_destroy_vm(kvm);
10599 }
10600
kvm_arch_free_memslot(struct kvm * kvm,struct kvm_memory_slot * slot)10601 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
10602 {
10603 int i;
10604
10605 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
10606 kvfree(slot->arch.rmap[i]);
10607 slot->arch.rmap[i] = NULL;
10608
10609 if (i == 0)
10610 continue;
10611
10612 kvfree(slot->arch.lpage_info[i - 1]);
10613 slot->arch.lpage_info[i - 1] = NULL;
10614 }
10615
10616 kvm_page_track_free_memslot(slot);
10617 }
10618
kvm_alloc_memslot_metadata(struct kvm_memory_slot * slot,unsigned long npages)10619 static int kvm_alloc_memslot_metadata(struct kvm_memory_slot *slot,
10620 unsigned long npages)
10621 {
10622 int i;
10623
10624 /*
10625 * Clear out the previous array pointers for the KVM_MR_MOVE case. The
10626 * old arrays will be freed by __kvm_set_memory_region() if installing
10627 * the new memslot is successful.
10628 */
10629 memset(&slot->arch, 0, sizeof(slot->arch));
10630
10631 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
10632 struct kvm_lpage_info *linfo;
10633 unsigned long ugfn;
10634 int lpages;
10635 int level = i + 1;
10636
10637 lpages = gfn_to_index(slot->base_gfn + npages - 1,
10638 slot->base_gfn, level) + 1;
10639
10640 slot->arch.rmap[i] =
10641 kvcalloc(lpages, sizeof(*slot->arch.rmap[i]),
10642 GFP_KERNEL_ACCOUNT);
10643 if (!slot->arch.rmap[i])
10644 goto out_free;
10645 if (i == 0)
10646 continue;
10647
10648 linfo = kvcalloc(lpages, sizeof(*linfo), GFP_KERNEL_ACCOUNT);
10649 if (!linfo)
10650 goto out_free;
10651
10652 slot->arch.lpage_info[i - 1] = linfo;
10653
10654 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
10655 linfo[0].disallow_lpage = 1;
10656 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
10657 linfo[lpages - 1].disallow_lpage = 1;
10658 ugfn = slot->userspace_addr >> PAGE_SHIFT;
10659 /*
10660 * If the gfn and userspace address are not aligned wrt each
10661 * other, disable large page support for this slot.
10662 */
10663 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1)) {
10664 unsigned long j;
10665
10666 for (j = 0; j < lpages; ++j)
10667 linfo[j].disallow_lpage = 1;
10668 }
10669 }
10670
10671 if (kvm_page_track_create_memslot(slot, npages))
10672 goto out_free;
10673
10674 return 0;
10675
10676 out_free:
10677 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
10678 kvfree(slot->arch.rmap[i]);
10679 slot->arch.rmap[i] = NULL;
10680 if (i == 0)
10681 continue;
10682
10683 kvfree(slot->arch.lpage_info[i - 1]);
10684 slot->arch.lpage_info[i - 1] = NULL;
10685 }
10686 return -ENOMEM;
10687 }
10688
kvm_arch_memslots_updated(struct kvm * kvm,u64 gen)10689 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen)
10690 {
10691 struct kvm_vcpu *vcpu;
10692 int i;
10693
10694 /*
10695 * memslots->generation has been incremented.
10696 * mmio generation may have reached its maximum value.
10697 */
10698 kvm_mmu_invalidate_mmio_sptes(kvm, gen);
10699
10700 /* Force re-initialization of steal_time cache */
10701 kvm_for_each_vcpu(i, vcpu, kvm)
10702 kvm_vcpu_kick(vcpu);
10703 }
10704
kvm_arch_prepare_memory_region(struct kvm * kvm,struct kvm_memory_slot * memslot,const struct kvm_userspace_memory_region * mem,enum kvm_mr_change change)10705 int kvm_arch_prepare_memory_region(struct kvm *kvm,
10706 struct kvm_memory_slot *memslot,
10707 const struct kvm_userspace_memory_region *mem,
10708 enum kvm_mr_change change)
10709 {
10710 if (change == KVM_MR_CREATE || change == KVM_MR_MOVE)
10711 return kvm_alloc_memslot_metadata(memslot,
10712 mem->memory_size >> PAGE_SHIFT);
10713 return 0;
10714 }
10715
kvm_mmu_slot_apply_flags(struct kvm * kvm,struct kvm_memory_slot * old,struct kvm_memory_slot * new,enum kvm_mr_change change)10716 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
10717 struct kvm_memory_slot *old,
10718 struct kvm_memory_slot *new,
10719 enum kvm_mr_change change)
10720 {
10721 /*
10722 * Nothing to do for RO slots or CREATE/MOVE/DELETE of a slot.
10723 * See comments below.
10724 */
10725 if ((change != KVM_MR_FLAGS_ONLY) || (new->flags & KVM_MEM_READONLY))
10726 return;
10727
10728 /*
10729 * Dirty logging tracks sptes in 4k granularity, meaning that large
10730 * sptes have to be split. If live migration is successful, the guest
10731 * in the source machine will be destroyed and large sptes will be
10732 * created in the destination. However, if the guest continues to run
10733 * in the source machine (for example if live migration fails), small
10734 * sptes will remain around and cause bad performance.
10735 *
10736 * Scan sptes if dirty logging has been stopped, dropping those
10737 * which can be collapsed into a single large-page spte. Later
10738 * page faults will create the large-page sptes.
10739 *
10740 * There is no need to do this in any of the following cases:
10741 * CREATE: No dirty mappings will already exist.
10742 * MOVE/DELETE: The old mappings will already have been cleaned up by
10743 * kvm_arch_flush_shadow_memslot()
10744 */
10745 if ((old->flags & KVM_MEM_LOG_DIRTY_PAGES) &&
10746 !(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
10747 kvm_mmu_zap_collapsible_sptes(kvm, new);
10748
10749 /*
10750 * Enable or disable dirty logging for the slot.
10751 *
10752 * For KVM_MR_DELETE and KVM_MR_MOVE, the shadow pages of the old
10753 * slot have been zapped so no dirty logging updates are needed for
10754 * the old slot.
10755 * For KVM_MR_CREATE and KVM_MR_MOVE, once the new slot is visible
10756 * any mappings that might be created in it will consume the
10757 * properties of the new slot and do not need to be updated here.
10758 *
10759 * When PML is enabled, the kvm_x86_ops dirty logging hooks are
10760 * called to enable/disable dirty logging.
10761 *
10762 * When disabling dirty logging with PML enabled, the D-bit is set
10763 * for sptes in the slot in order to prevent unnecessary GPA
10764 * logging in the PML buffer (and potential PML buffer full VMEXIT).
10765 * This guarantees leaving PML enabled for the guest's lifetime
10766 * won't have any additional overhead from PML when the guest is
10767 * running with dirty logging disabled.
10768 *
10769 * When enabling dirty logging, large sptes are write-protected
10770 * so they can be split on first write. New large sptes cannot
10771 * be created for this slot until the end of the logging.
10772 * See the comments in fast_page_fault().
10773 * For small sptes, nothing is done if the dirty log is in the
10774 * initial-all-set state. Otherwise, depending on whether pml
10775 * is enabled the D-bit or the W-bit will be cleared.
10776 */
10777 if (new->flags & KVM_MEM_LOG_DIRTY_PAGES) {
10778 if (kvm_x86_ops.slot_enable_log_dirty) {
10779 kvm_x86_ops.slot_enable_log_dirty(kvm, new);
10780 } else {
10781 int level =
10782 kvm_dirty_log_manual_protect_and_init_set(kvm) ?
10783 PG_LEVEL_2M : PG_LEVEL_4K;
10784
10785 /*
10786 * If we're with initial-all-set, we don't need
10787 * to write protect any small page because
10788 * they're reported as dirty already. However
10789 * we still need to write-protect huge pages
10790 * so that the page split can happen lazily on
10791 * the first write to the huge page.
10792 */
10793 kvm_mmu_slot_remove_write_access(kvm, new, level);
10794 }
10795 } else {
10796 if (kvm_x86_ops.slot_disable_log_dirty)
10797 kvm_x86_ops.slot_disable_log_dirty(kvm, new);
10798 }
10799 }
10800
kvm_arch_commit_memory_region(struct kvm * kvm,const struct kvm_userspace_memory_region * mem,struct kvm_memory_slot * old,const struct kvm_memory_slot * new,enum kvm_mr_change change)10801 void kvm_arch_commit_memory_region(struct kvm *kvm,
10802 const struct kvm_userspace_memory_region *mem,
10803 struct kvm_memory_slot *old,
10804 const struct kvm_memory_slot *new,
10805 enum kvm_mr_change change)
10806 {
10807 if (!kvm->arch.n_requested_mmu_pages)
10808 kvm_mmu_change_mmu_pages(kvm,
10809 kvm_mmu_calculate_default_mmu_pages(kvm));
10810
10811 /*
10812 * FIXME: const-ify all uses of struct kvm_memory_slot.
10813 */
10814 kvm_mmu_slot_apply_flags(kvm, old, (struct kvm_memory_slot *) new, change);
10815
10816 /* Free the arrays associated with the old memslot. */
10817 if (change == KVM_MR_MOVE)
10818 kvm_arch_free_memslot(kvm, old);
10819 }
10820
kvm_arch_flush_shadow_all(struct kvm * kvm)10821 void kvm_arch_flush_shadow_all(struct kvm *kvm)
10822 {
10823 kvm_mmu_zap_all(kvm);
10824 }
10825
kvm_arch_flush_shadow_memslot(struct kvm * kvm,struct kvm_memory_slot * slot)10826 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
10827 struct kvm_memory_slot *slot)
10828 {
10829 kvm_page_track_flush_slot(kvm, slot);
10830 }
10831
kvm_guest_apic_has_interrupt(struct kvm_vcpu * vcpu)10832 static inline bool kvm_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)
10833 {
10834 return (is_guest_mode(vcpu) &&
10835 kvm_x86_ops.guest_apic_has_interrupt &&
10836 kvm_x86_ops.guest_apic_has_interrupt(vcpu));
10837 }
10838
kvm_vcpu_has_events(struct kvm_vcpu * vcpu)10839 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
10840 {
10841 if (!list_empty_careful(&vcpu->async_pf.done))
10842 return true;
10843
10844 if (kvm_apic_has_events(vcpu))
10845 return true;
10846
10847 if (vcpu->arch.pv.pv_unhalted)
10848 return true;
10849
10850 if (vcpu->arch.exception.pending)
10851 return true;
10852
10853 if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
10854 (vcpu->arch.nmi_pending &&
10855 kvm_x86_ops.nmi_allowed(vcpu, false)))
10856 return true;
10857
10858 if (kvm_test_request(KVM_REQ_SMI, vcpu) ||
10859 (vcpu->arch.smi_pending &&
10860 kvm_x86_ops.smi_allowed(vcpu, false)))
10861 return true;
10862
10863 if (kvm_arch_interrupt_allowed(vcpu) &&
10864 (kvm_cpu_has_interrupt(vcpu) ||
10865 kvm_guest_apic_has_interrupt(vcpu)))
10866 return true;
10867
10868 if (kvm_hv_has_stimer_pending(vcpu))
10869 return true;
10870
10871 if (is_guest_mode(vcpu) &&
10872 kvm_x86_ops.nested_ops->hv_timer_pending &&
10873 kvm_x86_ops.nested_ops->hv_timer_pending(vcpu))
10874 return true;
10875
10876 return false;
10877 }
10878
kvm_arch_vcpu_runnable(struct kvm_vcpu * vcpu)10879 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
10880 {
10881 return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
10882 }
10883
kvm_arch_dy_runnable(struct kvm_vcpu * vcpu)10884 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
10885 {
10886 if (READ_ONCE(vcpu->arch.pv.pv_unhalted))
10887 return true;
10888
10889 if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
10890 kvm_test_request(KVM_REQ_SMI, vcpu) ||
10891 kvm_test_request(KVM_REQ_EVENT, vcpu))
10892 return true;
10893
10894 if (vcpu->arch.apicv_active && kvm_x86_ops.dy_apicv_has_pending_interrupt(vcpu))
10895 return true;
10896
10897 return false;
10898 }
10899
kvm_arch_vcpu_in_kernel(struct kvm_vcpu * vcpu)10900 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
10901 {
10902 return vcpu->arch.preempted_in_kernel;
10903 }
10904
kvm_arch_vcpu_should_kick(struct kvm_vcpu * vcpu)10905 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
10906 {
10907 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
10908 }
10909
kvm_arch_interrupt_allowed(struct kvm_vcpu * vcpu)10910 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
10911 {
10912 return kvm_x86_ops.interrupt_allowed(vcpu, false);
10913 }
10914
kvm_get_linear_rip(struct kvm_vcpu * vcpu)10915 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
10916 {
10917 if (is_64_bit_mode(vcpu))
10918 return kvm_rip_read(vcpu);
10919 return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
10920 kvm_rip_read(vcpu));
10921 }
10922 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
10923
kvm_is_linear_rip(struct kvm_vcpu * vcpu,unsigned long linear_rip)10924 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
10925 {
10926 return kvm_get_linear_rip(vcpu) == linear_rip;
10927 }
10928 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
10929
kvm_get_rflags(struct kvm_vcpu * vcpu)10930 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
10931 {
10932 unsigned long rflags;
10933
10934 rflags = kvm_x86_ops.get_rflags(vcpu);
10935 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
10936 rflags &= ~X86_EFLAGS_TF;
10937 return rflags;
10938 }
10939 EXPORT_SYMBOL_GPL(kvm_get_rflags);
10940
__kvm_set_rflags(struct kvm_vcpu * vcpu,unsigned long rflags)10941 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
10942 {
10943 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
10944 kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
10945 rflags |= X86_EFLAGS_TF;
10946 kvm_x86_ops.set_rflags(vcpu, rflags);
10947 }
10948
kvm_set_rflags(struct kvm_vcpu * vcpu,unsigned long rflags)10949 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
10950 {
10951 __kvm_set_rflags(vcpu, rflags);
10952 kvm_make_request(KVM_REQ_EVENT, vcpu);
10953 }
10954 EXPORT_SYMBOL_GPL(kvm_set_rflags);
10955
kvm_arch_async_page_ready(struct kvm_vcpu * vcpu,struct kvm_async_pf * work)10956 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
10957 {
10958 int r;
10959
10960 if ((vcpu->arch.mmu->direct_map != work->arch.direct_map) ||
10961 work->wakeup_all)
10962 return;
10963
10964 r = kvm_mmu_reload(vcpu);
10965 if (unlikely(r))
10966 return;
10967
10968 if (!vcpu->arch.mmu->direct_map &&
10969 work->arch.cr3 != vcpu->arch.mmu->get_guest_pgd(vcpu))
10970 return;
10971
10972 kvm_mmu_do_page_fault(vcpu, work->cr2_or_gpa, 0, true);
10973 }
10974
kvm_async_pf_hash_fn(gfn_t gfn)10975 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
10976 {
10977 BUILD_BUG_ON(!is_power_of_2(ASYNC_PF_PER_VCPU));
10978
10979 return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
10980 }
10981
kvm_async_pf_next_probe(u32 key)10982 static inline u32 kvm_async_pf_next_probe(u32 key)
10983 {
10984 return (key + 1) & (ASYNC_PF_PER_VCPU - 1);
10985 }
10986
kvm_add_async_pf_gfn(struct kvm_vcpu * vcpu,gfn_t gfn)10987 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
10988 {
10989 u32 key = kvm_async_pf_hash_fn(gfn);
10990
10991 while (vcpu->arch.apf.gfns[key] != ~0)
10992 key = kvm_async_pf_next_probe(key);
10993
10994 vcpu->arch.apf.gfns[key] = gfn;
10995 }
10996
kvm_async_pf_gfn_slot(struct kvm_vcpu * vcpu,gfn_t gfn)10997 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
10998 {
10999 int i;
11000 u32 key = kvm_async_pf_hash_fn(gfn);
11001
11002 for (i = 0; i < ASYNC_PF_PER_VCPU &&
11003 (vcpu->arch.apf.gfns[key] != gfn &&
11004 vcpu->arch.apf.gfns[key] != ~0); i++)
11005 key = kvm_async_pf_next_probe(key);
11006
11007 return key;
11008 }
11009
kvm_find_async_pf_gfn(struct kvm_vcpu * vcpu,gfn_t gfn)11010 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
11011 {
11012 return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
11013 }
11014
kvm_del_async_pf_gfn(struct kvm_vcpu * vcpu,gfn_t gfn)11015 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
11016 {
11017 u32 i, j, k;
11018
11019 i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
11020
11021 if (WARN_ON_ONCE(vcpu->arch.apf.gfns[i] != gfn))
11022 return;
11023
11024 while (true) {
11025 vcpu->arch.apf.gfns[i] = ~0;
11026 do {
11027 j = kvm_async_pf_next_probe(j);
11028 if (vcpu->arch.apf.gfns[j] == ~0)
11029 return;
11030 k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
11031 /*
11032 * k lies cyclically in ]i,j]
11033 * | i.k.j |
11034 * |....j i.k.| or |.k..j i...|
11035 */
11036 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
11037 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
11038 i = j;
11039 }
11040 }
11041
apf_put_user_notpresent(struct kvm_vcpu * vcpu)11042 static inline int apf_put_user_notpresent(struct kvm_vcpu *vcpu)
11043 {
11044 u32 reason = KVM_PV_REASON_PAGE_NOT_PRESENT;
11045
11046 return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &reason,
11047 sizeof(reason));
11048 }
11049
apf_put_user_ready(struct kvm_vcpu * vcpu,u32 token)11050 static inline int apf_put_user_ready(struct kvm_vcpu *vcpu, u32 token)
11051 {
11052 unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
11053
11054 return kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
11055 &token, offset, sizeof(token));
11056 }
11057
apf_pageready_slot_free(struct kvm_vcpu * vcpu)11058 static inline bool apf_pageready_slot_free(struct kvm_vcpu *vcpu)
11059 {
11060 unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
11061 u32 val;
11062
11063 if (kvm_read_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
11064 &val, offset, sizeof(val)))
11065 return false;
11066
11067 return !val;
11068 }
11069
kvm_can_deliver_async_pf(struct kvm_vcpu * vcpu)11070 static bool kvm_can_deliver_async_pf(struct kvm_vcpu *vcpu)
11071 {
11072 if (!vcpu->arch.apf.delivery_as_pf_vmexit && is_guest_mode(vcpu))
11073 return false;
11074
11075 if (!kvm_pv_async_pf_enabled(vcpu) ||
11076 (vcpu->arch.apf.send_user_only && kvm_x86_ops.get_cpl(vcpu) == 0))
11077 return false;
11078
11079 return true;
11080 }
11081
kvm_can_do_async_pf(struct kvm_vcpu * vcpu)11082 bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu)
11083 {
11084 if (unlikely(!lapic_in_kernel(vcpu) ||
11085 kvm_event_needs_reinjection(vcpu) ||
11086 vcpu->arch.exception.pending))
11087 return false;
11088
11089 if (kvm_hlt_in_guest(vcpu->kvm) && !kvm_can_deliver_async_pf(vcpu))
11090 return false;
11091
11092 /*
11093 * If interrupts are off we cannot even use an artificial
11094 * halt state.
11095 */
11096 return kvm_arch_interrupt_allowed(vcpu);
11097 }
11098
kvm_arch_async_page_not_present(struct kvm_vcpu * vcpu,struct kvm_async_pf * work)11099 bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
11100 struct kvm_async_pf *work)
11101 {
11102 struct x86_exception fault;
11103
11104 trace_kvm_async_pf_not_present(work->arch.token, work->cr2_or_gpa);
11105 kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
11106
11107 if (kvm_can_deliver_async_pf(vcpu) &&
11108 !apf_put_user_notpresent(vcpu)) {
11109 fault.vector = PF_VECTOR;
11110 fault.error_code_valid = true;
11111 fault.error_code = 0;
11112 fault.nested_page_fault = false;
11113 fault.address = work->arch.token;
11114 fault.async_page_fault = true;
11115 kvm_inject_page_fault(vcpu, &fault);
11116 return true;
11117 } else {
11118 /*
11119 * It is not possible to deliver a paravirtualized asynchronous
11120 * page fault, but putting the guest in an artificial halt state
11121 * can be beneficial nevertheless: if an interrupt arrives, we
11122 * can deliver it timely and perhaps the guest will schedule
11123 * another process. When the instruction that triggered a page
11124 * fault is retried, hopefully the page will be ready in the host.
11125 */
11126 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
11127 return false;
11128 }
11129 }
11130
kvm_arch_async_page_present(struct kvm_vcpu * vcpu,struct kvm_async_pf * work)11131 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
11132 struct kvm_async_pf *work)
11133 {
11134 struct kvm_lapic_irq irq = {
11135 .delivery_mode = APIC_DM_FIXED,
11136 .vector = vcpu->arch.apf.vec
11137 };
11138
11139 if (work->wakeup_all)
11140 work->arch.token = ~0; /* broadcast wakeup */
11141 else
11142 kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
11143 trace_kvm_async_pf_ready(work->arch.token, work->cr2_or_gpa);
11144
11145 if ((work->wakeup_all || work->notpresent_injected) &&
11146 kvm_pv_async_pf_enabled(vcpu) &&
11147 !apf_put_user_ready(vcpu, work->arch.token)) {
11148 vcpu->arch.apf.pageready_pending = true;
11149 kvm_apic_set_irq(vcpu, &irq, NULL);
11150 }
11151
11152 vcpu->arch.apf.halted = false;
11153 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
11154 }
11155
kvm_arch_async_page_present_queued(struct kvm_vcpu * vcpu)11156 void kvm_arch_async_page_present_queued(struct kvm_vcpu *vcpu)
11157 {
11158 kvm_make_request(KVM_REQ_APF_READY, vcpu);
11159 if (!vcpu->arch.apf.pageready_pending)
11160 kvm_vcpu_kick(vcpu);
11161 }
11162
kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu * vcpu)11163 bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu)
11164 {
11165 if (!kvm_pv_async_pf_enabled(vcpu))
11166 return true;
11167 else
11168 return apf_pageready_slot_free(vcpu);
11169 }
11170
kvm_arch_start_assignment(struct kvm * kvm)11171 void kvm_arch_start_assignment(struct kvm *kvm)
11172 {
11173 atomic_inc(&kvm->arch.assigned_device_count);
11174 }
11175 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
11176
kvm_arch_end_assignment(struct kvm * kvm)11177 void kvm_arch_end_assignment(struct kvm *kvm)
11178 {
11179 atomic_dec(&kvm->arch.assigned_device_count);
11180 }
11181 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
11182
kvm_arch_has_assigned_device(struct kvm * kvm)11183 bool noinstr kvm_arch_has_assigned_device(struct kvm *kvm)
11184 {
11185 return arch_atomic_read(&kvm->arch.assigned_device_count);
11186 }
11187 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
11188
kvm_arch_register_noncoherent_dma(struct kvm * kvm)11189 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
11190 {
11191 atomic_inc(&kvm->arch.noncoherent_dma_count);
11192 }
11193 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
11194
kvm_arch_unregister_noncoherent_dma(struct kvm * kvm)11195 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
11196 {
11197 atomic_dec(&kvm->arch.noncoherent_dma_count);
11198 }
11199 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
11200
kvm_arch_has_noncoherent_dma(struct kvm * kvm)11201 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
11202 {
11203 return atomic_read(&kvm->arch.noncoherent_dma_count);
11204 }
11205 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
11206
kvm_arch_has_irq_bypass(void)11207 bool kvm_arch_has_irq_bypass(void)
11208 {
11209 return true;
11210 }
11211
kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer * cons,struct irq_bypass_producer * prod)11212 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
11213 struct irq_bypass_producer *prod)
11214 {
11215 struct kvm_kernel_irqfd *irqfd =
11216 container_of(cons, struct kvm_kernel_irqfd, consumer);
11217 int ret;
11218
11219 irqfd->producer = prod;
11220 kvm_arch_start_assignment(irqfd->kvm);
11221 ret = kvm_x86_ops.update_pi_irte(irqfd->kvm,
11222 prod->irq, irqfd->gsi, 1);
11223
11224 if (ret)
11225 kvm_arch_end_assignment(irqfd->kvm);
11226
11227 return ret;
11228 }
11229
kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer * cons,struct irq_bypass_producer * prod)11230 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
11231 struct irq_bypass_producer *prod)
11232 {
11233 int ret;
11234 struct kvm_kernel_irqfd *irqfd =
11235 container_of(cons, struct kvm_kernel_irqfd, consumer);
11236
11237 WARN_ON(irqfd->producer != prod);
11238 irqfd->producer = NULL;
11239
11240 /*
11241 * When producer of consumer is unregistered, we change back to
11242 * remapped mode, so we can re-use the current implementation
11243 * when the irq is masked/disabled or the consumer side (KVM
11244 * int this case doesn't want to receive the interrupts.
11245 */
11246 ret = kvm_x86_ops.update_pi_irte(irqfd->kvm, prod->irq, irqfd->gsi, 0);
11247 if (ret)
11248 printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
11249 " fails: %d\n", irqfd->consumer.token, ret);
11250
11251 kvm_arch_end_assignment(irqfd->kvm);
11252 }
11253
kvm_arch_update_irqfd_routing(struct kvm * kvm,unsigned int host_irq,uint32_t guest_irq,bool set)11254 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
11255 uint32_t guest_irq, bool set)
11256 {
11257 return kvm_x86_ops.update_pi_irte(kvm, host_irq, guest_irq, set);
11258 }
11259
kvm_vector_hashing_enabled(void)11260 bool kvm_vector_hashing_enabled(void)
11261 {
11262 return vector_hashing;
11263 }
11264
kvm_arch_no_poll(struct kvm_vcpu * vcpu)11265 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu)
11266 {
11267 return (vcpu->arch.msr_kvm_poll_control & 1) == 0;
11268 }
11269 EXPORT_SYMBOL_GPL(kvm_arch_no_poll);
11270
11271
kvm_spec_ctrl_test_value(u64 value)11272 int kvm_spec_ctrl_test_value(u64 value)
11273 {
11274 /*
11275 * test that setting IA32_SPEC_CTRL to given value
11276 * is allowed by the host processor
11277 */
11278
11279 u64 saved_value;
11280 unsigned long flags;
11281 int ret = 0;
11282
11283 local_irq_save(flags);
11284
11285 if (rdmsrl_safe(MSR_IA32_SPEC_CTRL, &saved_value))
11286 ret = 1;
11287 else if (wrmsrl_safe(MSR_IA32_SPEC_CTRL, value))
11288 ret = 1;
11289 else
11290 wrmsrl(MSR_IA32_SPEC_CTRL, saved_value);
11291
11292 local_irq_restore(flags);
11293
11294 return ret;
11295 }
11296 EXPORT_SYMBOL_GPL(kvm_spec_ctrl_test_value);
11297
kvm_fixup_and_inject_pf_error(struct kvm_vcpu * vcpu,gva_t gva,u16 error_code)11298 void kvm_fixup_and_inject_pf_error(struct kvm_vcpu *vcpu, gva_t gva, u16 error_code)
11299 {
11300 struct x86_exception fault;
11301 u32 access = error_code &
11302 (PFERR_WRITE_MASK | PFERR_FETCH_MASK | PFERR_USER_MASK);
11303
11304 if (!(error_code & PFERR_PRESENT_MASK) ||
11305 vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, &fault) != UNMAPPED_GVA) {
11306 /*
11307 * If vcpu->arch.walk_mmu->gva_to_gpa succeeded, the page
11308 * tables probably do not match the TLB. Just proceed
11309 * with the error code that the processor gave.
11310 */
11311 fault.vector = PF_VECTOR;
11312 fault.error_code_valid = true;
11313 fault.error_code = error_code;
11314 fault.nested_page_fault = false;
11315 fault.address = gva;
11316 }
11317 vcpu->arch.walk_mmu->inject_page_fault(vcpu, &fault);
11318 }
11319 EXPORT_SYMBOL_GPL(kvm_fixup_and_inject_pf_error);
11320
11321 /*
11322 * Handles kvm_read/write_guest_virt*() result and either injects #PF or returns
11323 * KVM_EXIT_INTERNAL_ERROR for cases not currently handled by KVM. Return value
11324 * indicates whether exit to userspace is needed.
11325 */
kvm_handle_memory_failure(struct kvm_vcpu * vcpu,int r,struct x86_exception * e)11326 int kvm_handle_memory_failure(struct kvm_vcpu *vcpu, int r,
11327 struct x86_exception *e)
11328 {
11329 if (r == X86EMUL_PROPAGATE_FAULT) {
11330 kvm_inject_emulated_page_fault(vcpu, e);
11331 return 1;
11332 }
11333
11334 /*
11335 * In case kvm_read/write_guest_virt*() failed with X86EMUL_IO_NEEDED
11336 * while handling a VMX instruction KVM could've handled the request
11337 * correctly by exiting to userspace and performing I/O but there
11338 * doesn't seem to be a real use-case behind such requests, just return
11339 * KVM_EXIT_INTERNAL_ERROR for now.
11340 */
11341 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
11342 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
11343 vcpu->run->internal.ndata = 0;
11344
11345 return 0;
11346 }
11347 EXPORT_SYMBOL_GPL(kvm_handle_memory_failure);
11348
kvm_handle_invpcid(struct kvm_vcpu * vcpu,unsigned long type,gva_t gva)11349 int kvm_handle_invpcid(struct kvm_vcpu *vcpu, unsigned long type, gva_t gva)
11350 {
11351 bool pcid_enabled;
11352 struct x86_exception e;
11353 unsigned i;
11354 unsigned long roots_to_free = 0;
11355 struct {
11356 u64 pcid;
11357 u64 gla;
11358 } operand;
11359 int r;
11360
11361 r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e);
11362 if (r != X86EMUL_CONTINUE)
11363 return kvm_handle_memory_failure(vcpu, r, &e);
11364
11365 if (operand.pcid >> 12 != 0) {
11366 kvm_inject_gp(vcpu, 0);
11367 return 1;
11368 }
11369
11370 pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
11371
11372 switch (type) {
11373 case INVPCID_TYPE_INDIV_ADDR:
11374 if ((!pcid_enabled && (operand.pcid != 0)) ||
11375 is_noncanonical_address(operand.gla, vcpu)) {
11376 kvm_inject_gp(vcpu, 0);
11377 return 1;
11378 }
11379 kvm_mmu_invpcid_gva(vcpu, operand.gla, operand.pcid);
11380 return kvm_skip_emulated_instruction(vcpu);
11381
11382 case INVPCID_TYPE_SINGLE_CTXT:
11383 if (!pcid_enabled && (operand.pcid != 0)) {
11384 kvm_inject_gp(vcpu, 0);
11385 return 1;
11386 }
11387
11388 if (kvm_get_active_pcid(vcpu) == operand.pcid) {
11389 kvm_mmu_sync_roots(vcpu);
11390 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
11391 }
11392
11393 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
11394 if (kvm_get_pcid(vcpu, vcpu->arch.mmu->prev_roots[i].pgd)
11395 == operand.pcid)
11396 roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
11397
11398 kvm_mmu_free_roots(vcpu, vcpu->arch.mmu, roots_to_free);
11399 /*
11400 * If neither the current cr3 nor any of the prev_roots use the
11401 * given PCID, then nothing needs to be done here because a
11402 * resync will happen anyway before switching to any other CR3.
11403 */
11404
11405 return kvm_skip_emulated_instruction(vcpu);
11406
11407 case INVPCID_TYPE_ALL_NON_GLOBAL:
11408 /*
11409 * Currently, KVM doesn't mark global entries in the shadow
11410 * page tables, so a non-global flush just degenerates to a
11411 * global flush. If needed, we could optimize this later by
11412 * keeping track of global entries in shadow page tables.
11413 */
11414
11415 fallthrough;
11416 case INVPCID_TYPE_ALL_INCL_GLOBAL:
11417 kvm_make_request(KVM_REQ_MMU_RELOAD, vcpu);
11418 return kvm_skip_emulated_instruction(vcpu);
11419
11420 default:
11421 BUG(); /* We have already checked above that type <= 3 */
11422 }
11423 }
11424 EXPORT_SYMBOL_GPL(kvm_handle_invpcid);
11425
11426 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
11427 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
11428 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
11429 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
11430 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
11431 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
11432 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
11433 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
11434 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
11435 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
11436 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter_failed);
11437 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
11438 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
11439 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
11440 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
11441 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window_update);
11442 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
11443 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);
11444 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access);
11445 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi);
11446 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_ga_log);
11447 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_apicv_update_request);
11448