1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright 2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
4 */
5
6 #include <linux/cpu.h>
7 #include <linux/kvm_host.h>
8 #include <linux/preempt.h>
9 #include <linux/export.h>
10 #include <linux/sched.h>
11 #include <linux/spinlock.h>
12 #include <linux/init.h>
13 #include <linux/memblock.h>
14 #include <linux/sizes.h>
15 #include <linux/cma.h>
16 #include <linux/bitops.h>
17
18 #include <asm/asm-prototypes.h>
19 #include <asm/cputable.h>
20 #include <asm/kvm_ppc.h>
21 #include <asm/kvm_book3s.h>
22 #include <asm/archrandom.h>
23 #include <asm/xics.h>
24 #include <asm/xive.h>
25 #include <asm/dbell.h>
26 #include <asm/cputhreads.h>
27 #include <asm/io.h>
28 #include <asm/opal.h>
29 #include <asm/smp.h>
30
31 #define KVM_CMA_CHUNK_ORDER 18
32
33 #include "book3s_xics.h"
34 #include "book3s_xive.h"
35
36 /*
37 * The XIVE module will populate these when it loads
38 */
39 unsigned long (*__xive_vm_h_xirr)(struct kvm_vcpu *vcpu);
40 unsigned long (*__xive_vm_h_ipoll)(struct kvm_vcpu *vcpu, unsigned long server);
41 int (*__xive_vm_h_ipi)(struct kvm_vcpu *vcpu, unsigned long server,
42 unsigned long mfrr);
43 int (*__xive_vm_h_cppr)(struct kvm_vcpu *vcpu, unsigned long cppr);
44 int (*__xive_vm_h_eoi)(struct kvm_vcpu *vcpu, unsigned long xirr);
45 EXPORT_SYMBOL_GPL(__xive_vm_h_xirr);
46 EXPORT_SYMBOL_GPL(__xive_vm_h_ipoll);
47 EXPORT_SYMBOL_GPL(__xive_vm_h_ipi);
48 EXPORT_SYMBOL_GPL(__xive_vm_h_cppr);
49 EXPORT_SYMBOL_GPL(__xive_vm_h_eoi);
50
51 /*
52 * Hash page table alignment on newer cpus(CPU_FTR_ARCH_206)
53 * should be power of 2.
54 */
55 #define HPT_ALIGN_PAGES ((1 << 18) >> PAGE_SHIFT) /* 256k */
56 /*
57 * By default we reserve 5% of memory for hash pagetable allocation.
58 */
59 static unsigned long kvm_cma_resv_ratio = 5;
60
61 static struct cma *kvm_cma;
62
early_parse_kvm_cma_resv(char * p)63 static int __init early_parse_kvm_cma_resv(char *p)
64 {
65 pr_debug("%s(%s)\n", __func__, p);
66 if (!p)
67 return -EINVAL;
68 return kstrtoul(p, 0, &kvm_cma_resv_ratio);
69 }
70 early_param("kvm_cma_resv_ratio", early_parse_kvm_cma_resv);
71
kvm_alloc_hpt_cma(unsigned long nr_pages)72 struct page *kvm_alloc_hpt_cma(unsigned long nr_pages)
73 {
74 VM_BUG_ON(order_base_2(nr_pages) < KVM_CMA_CHUNK_ORDER - PAGE_SHIFT);
75
76 return cma_alloc(kvm_cma, nr_pages, order_base_2(HPT_ALIGN_PAGES),
77 false);
78 }
79 EXPORT_SYMBOL_GPL(kvm_alloc_hpt_cma);
80
kvm_free_hpt_cma(struct page * page,unsigned long nr_pages)81 void kvm_free_hpt_cma(struct page *page, unsigned long nr_pages)
82 {
83 cma_release(kvm_cma, page, nr_pages);
84 }
85 EXPORT_SYMBOL_GPL(kvm_free_hpt_cma);
86
87 /**
88 * kvm_cma_reserve() - reserve area for kvm hash pagetable
89 *
90 * This function reserves memory from early allocator. It should be
91 * called by arch specific code once the memblock allocator
92 * has been activated and all other subsystems have already allocated/reserved
93 * memory.
94 */
kvm_cma_reserve(void)95 void __init kvm_cma_reserve(void)
96 {
97 unsigned long align_size;
98 phys_addr_t selected_size;
99
100 /*
101 * We need CMA reservation only when we are in HV mode
102 */
103 if (!cpu_has_feature(CPU_FTR_HVMODE))
104 return;
105
106 selected_size = PAGE_ALIGN(memblock_phys_mem_size() * kvm_cma_resv_ratio / 100);
107 if (selected_size) {
108 pr_info("%s: reserving %ld MiB for global area\n", __func__,
109 (unsigned long)selected_size / SZ_1M);
110 align_size = HPT_ALIGN_PAGES << PAGE_SHIFT;
111 cma_declare_contiguous(0, selected_size, 0, align_size,
112 KVM_CMA_CHUNK_ORDER - PAGE_SHIFT, false, "kvm_cma",
113 &kvm_cma);
114 }
115 }
116
117 /*
118 * Real-mode H_CONFER implementation.
119 * We check if we are the only vcpu out of this virtual core
120 * still running in the guest and not ceded. If so, we pop up
121 * to the virtual-mode implementation; if not, just return to
122 * the guest.
123 */
kvmppc_rm_h_confer(struct kvm_vcpu * vcpu,int target,unsigned int yield_count)124 long int kvmppc_rm_h_confer(struct kvm_vcpu *vcpu, int target,
125 unsigned int yield_count)
126 {
127 struct kvmppc_vcore *vc = local_paca->kvm_hstate.kvm_vcore;
128 int ptid = local_paca->kvm_hstate.ptid;
129 int threads_running;
130 int threads_ceded;
131 int threads_conferring;
132 u64 stop = get_tb() + 10 * tb_ticks_per_usec;
133 int rv = H_SUCCESS; /* => don't yield */
134
135 set_bit(ptid, &vc->conferring_threads);
136 while ((get_tb() < stop) && !VCORE_IS_EXITING(vc)) {
137 threads_running = VCORE_ENTRY_MAP(vc);
138 threads_ceded = vc->napping_threads;
139 threads_conferring = vc->conferring_threads;
140 if ((threads_ceded | threads_conferring) == threads_running) {
141 rv = H_TOO_HARD; /* => do yield */
142 break;
143 }
144 }
145 clear_bit(ptid, &vc->conferring_threads);
146 return rv;
147 }
148
149 /*
150 * When running HV mode KVM we need to block certain operations while KVM VMs
151 * exist in the system. We use a counter of VMs to track this.
152 *
153 * One of the operations we need to block is onlining of secondaries, so we
154 * protect hv_vm_count with get/put_online_cpus().
155 */
156 static atomic_t hv_vm_count;
157
kvm_hv_vm_activated(void)158 void kvm_hv_vm_activated(void)
159 {
160 get_online_cpus();
161 atomic_inc(&hv_vm_count);
162 put_online_cpus();
163 }
164 EXPORT_SYMBOL_GPL(kvm_hv_vm_activated);
165
kvm_hv_vm_deactivated(void)166 void kvm_hv_vm_deactivated(void)
167 {
168 get_online_cpus();
169 atomic_dec(&hv_vm_count);
170 put_online_cpus();
171 }
172 EXPORT_SYMBOL_GPL(kvm_hv_vm_deactivated);
173
kvm_hv_mode_active(void)174 bool kvm_hv_mode_active(void)
175 {
176 return atomic_read(&hv_vm_count) != 0;
177 }
178
179 extern int hcall_real_table[], hcall_real_table_end[];
180
kvmppc_hcall_impl_hv_realmode(unsigned long cmd)181 int kvmppc_hcall_impl_hv_realmode(unsigned long cmd)
182 {
183 cmd /= 4;
184 if (cmd < hcall_real_table_end - hcall_real_table &&
185 hcall_real_table[cmd])
186 return 1;
187
188 return 0;
189 }
190 EXPORT_SYMBOL_GPL(kvmppc_hcall_impl_hv_realmode);
191
kvmppc_hwrng_present(void)192 int kvmppc_hwrng_present(void)
193 {
194 return powernv_hwrng_present();
195 }
196 EXPORT_SYMBOL_GPL(kvmppc_hwrng_present);
197
kvmppc_h_random(struct kvm_vcpu * vcpu)198 long kvmppc_h_random(struct kvm_vcpu *vcpu)
199 {
200 int r;
201
202 /* Only need to do the expensive mfmsr() on radix */
203 if (kvm_is_radix(vcpu->kvm) && (mfmsr() & MSR_IR))
204 r = powernv_get_random_long(&vcpu->arch.regs.gpr[4]);
205 else
206 r = powernv_get_random_real_mode(&vcpu->arch.regs.gpr[4]);
207 if (r)
208 return H_SUCCESS;
209
210 return H_HARDWARE;
211 }
212
213 /*
214 * Send an interrupt or message to another CPU.
215 * The caller needs to include any barrier needed to order writes
216 * to memory vs. the IPI/message.
217 */
kvmhv_rm_send_ipi(int cpu)218 void kvmhv_rm_send_ipi(int cpu)
219 {
220 void __iomem *xics_phys;
221 unsigned long msg = PPC_DBELL_TYPE(PPC_DBELL_SERVER);
222
223 /* For a nested hypervisor, use the XICS via hcall */
224 if (kvmhv_on_pseries()) {
225 unsigned long retbuf[PLPAR_HCALL_BUFSIZE];
226
227 plpar_hcall_raw(H_IPI, retbuf, get_hard_smp_processor_id(cpu),
228 IPI_PRIORITY);
229 return;
230 }
231
232 /* On POWER9 we can use msgsnd for any destination cpu. */
233 if (cpu_has_feature(CPU_FTR_ARCH_300)) {
234 msg |= get_hard_smp_processor_id(cpu);
235 __asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg));
236 return;
237 }
238
239 /* On POWER8 for IPIs to threads in the same core, use msgsnd. */
240 if (cpu_has_feature(CPU_FTR_ARCH_207S) &&
241 cpu_first_thread_sibling(cpu) ==
242 cpu_first_thread_sibling(raw_smp_processor_id())) {
243 msg |= cpu_thread_in_core(cpu);
244 __asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg));
245 return;
246 }
247
248 /* We should never reach this */
249 if (WARN_ON_ONCE(xics_on_xive()))
250 return;
251
252 /* Else poke the target with an IPI */
253 xics_phys = paca_ptrs[cpu]->kvm_hstate.xics_phys;
254 if (xics_phys)
255 __raw_rm_writeb(IPI_PRIORITY, xics_phys + XICS_MFRR);
256 else
257 opal_int_set_mfrr(get_hard_smp_processor_id(cpu), IPI_PRIORITY);
258 }
259
260 /*
261 * The following functions are called from the assembly code
262 * in book3s_hv_rmhandlers.S.
263 */
kvmhv_interrupt_vcore(struct kvmppc_vcore * vc,int active)264 static void kvmhv_interrupt_vcore(struct kvmppc_vcore *vc, int active)
265 {
266 int cpu = vc->pcpu;
267
268 /* Order setting of exit map vs. msgsnd/IPI */
269 smp_mb();
270 for (; active; active >>= 1, ++cpu)
271 if (active & 1)
272 kvmhv_rm_send_ipi(cpu);
273 }
274
kvmhv_commence_exit(int trap)275 void kvmhv_commence_exit(int trap)
276 {
277 struct kvmppc_vcore *vc = local_paca->kvm_hstate.kvm_vcore;
278 int ptid = local_paca->kvm_hstate.ptid;
279 struct kvm_split_mode *sip = local_paca->kvm_hstate.kvm_split_mode;
280 int me, ee, i, t;
281 int cpu0;
282
283 /* Set our bit in the threads-exiting-guest map in the 0xff00
284 bits of vcore->entry_exit_map */
285 me = 0x100 << ptid;
286 do {
287 ee = vc->entry_exit_map;
288 } while (cmpxchg(&vc->entry_exit_map, ee, ee | me) != ee);
289
290 /* Are we the first here? */
291 if ((ee >> 8) != 0)
292 return;
293
294 /*
295 * Trigger the other threads in this vcore to exit the guest.
296 * If this is a hypervisor decrementer interrupt then they
297 * will be already on their way out of the guest.
298 */
299 if (trap != BOOK3S_INTERRUPT_HV_DECREMENTER)
300 kvmhv_interrupt_vcore(vc, ee & ~(1 << ptid));
301
302 /*
303 * If we are doing dynamic micro-threading, interrupt the other
304 * subcores to pull them out of their guests too.
305 */
306 if (!sip)
307 return;
308
309 for (i = 0; i < MAX_SUBCORES; ++i) {
310 vc = sip->vc[i];
311 if (!vc)
312 break;
313 do {
314 ee = vc->entry_exit_map;
315 /* Already asked to exit? */
316 if ((ee >> 8) != 0)
317 break;
318 } while (cmpxchg(&vc->entry_exit_map, ee,
319 ee | VCORE_EXIT_REQ) != ee);
320 if ((ee >> 8) == 0)
321 kvmhv_interrupt_vcore(vc, ee);
322 }
323
324 /*
325 * On POWER9 when running a HPT guest on a radix host (sip != NULL),
326 * we have to interrupt inactive CPU threads to get them to
327 * restore the host LPCR value.
328 */
329 if (sip->lpcr_req) {
330 if (cmpxchg(&sip->do_restore, 0, 1) == 0) {
331 vc = local_paca->kvm_hstate.kvm_vcore;
332 cpu0 = vc->pcpu + ptid - local_paca->kvm_hstate.tid;
333 for (t = 1; t < threads_per_core; ++t) {
334 if (sip->napped[t])
335 kvmhv_rm_send_ipi(cpu0 + t);
336 }
337 }
338 }
339 }
340
341 struct kvmppc_host_rm_ops *kvmppc_host_rm_ops_hv;
342 EXPORT_SYMBOL_GPL(kvmppc_host_rm_ops_hv);
343
344 #ifdef CONFIG_KVM_XICS
get_irqmap(struct kvmppc_passthru_irqmap * pimap,u32 xisr)345 static struct kvmppc_irq_map *get_irqmap(struct kvmppc_passthru_irqmap *pimap,
346 u32 xisr)
347 {
348 int i;
349
350 /*
351 * We access the mapped array here without a lock. That
352 * is safe because we never reduce the number of entries
353 * in the array and we never change the v_hwirq field of
354 * an entry once it is set.
355 *
356 * We have also carefully ordered the stores in the writer
357 * and the loads here in the reader, so that if we find a matching
358 * hwirq here, the associated GSI and irq_desc fields are valid.
359 */
360 for (i = 0; i < pimap->n_mapped; i++) {
361 if (xisr == pimap->mapped[i].r_hwirq) {
362 /*
363 * Order subsequent reads in the caller to serialize
364 * with the writer.
365 */
366 smp_rmb();
367 return &pimap->mapped[i];
368 }
369 }
370 return NULL;
371 }
372
373 /*
374 * If we have an interrupt that's not an IPI, check if we have a
375 * passthrough adapter and if so, check if this external interrupt
376 * is for the adapter.
377 * We will attempt to deliver the IRQ directly to the target VCPU's
378 * ICP, the virtual ICP (based on affinity - the xive value in ICS).
379 *
380 * If the delivery fails or if this is not for a passthrough adapter,
381 * return to the host to handle this interrupt. We earlier
382 * saved a copy of the XIRR in the PACA, it will be picked up by
383 * the host ICP driver.
384 */
kvmppc_check_passthru(u32 xisr,__be32 xirr,bool * again)385 static int kvmppc_check_passthru(u32 xisr, __be32 xirr, bool *again)
386 {
387 struct kvmppc_passthru_irqmap *pimap;
388 struct kvmppc_irq_map *irq_map;
389 struct kvm_vcpu *vcpu;
390
391 vcpu = local_paca->kvm_hstate.kvm_vcpu;
392 if (!vcpu)
393 return 1;
394 pimap = kvmppc_get_passthru_irqmap(vcpu->kvm);
395 if (!pimap)
396 return 1;
397 irq_map = get_irqmap(pimap, xisr);
398 if (!irq_map)
399 return 1;
400
401 /* We're handling this interrupt, generic code doesn't need to */
402 local_paca->kvm_hstate.saved_xirr = 0;
403
404 return kvmppc_deliver_irq_passthru(vcpu, xirr, irq_map, pimap, again);
405 }
406
407 #else
kvmppc_check_passthru(u32 xisr,__be32 xirr,bool * again)408 static inline int kvmppc_check_passthru(u32 xisr, __be32 xirr, bool *again)
409 {
410 return 1;
411 }
412 #endif
413
414 /*
415 * Determine what sort of external interrupt is pending (if any).
416 * Returns:
417 * 0 if no interrupt is pending
418 * 1 if an interrupt is pending that needs to be handled by the host
419 * 2 Passthrough that needs completion in the host
420 * -1 if there was a guest wakeup IPI (which has now been cleared)
421 * -2 if there is PCI passthrough external interrupt that was handled
422 */
423 static long kvmppc_read_one_intr(bool *again);
424
kvmppc_read_intr(void)425 long kvmppc_read_intr(void)
426 {
427 long ret = 0;
428 long rc;
429 bool again;
430
431 if (xive_enabled())
432 return 1;
433
434 do {
435 again = false;
436 rc = kvmppc_read_one_intr(&again);
437 if (rc && (ret == 0 || rc > ret))
438 ret = rc;
439 } while (again);
440 return ret;
441 }
442
kvmppc_read_one_intr(bool * again)443 static long kvmppc_read_one_intr(bool *again)
444 {
445 void __iomem *xics_phys;
446 u32 h_xirr;
447 __be32 xirr;
448 u32 xisr;
449 u8 host_ipi;
450 int64_t rc;
451
452 if (xive_enabled())
453 return 1;
454
455 /* see if a host IPI is pending */
456 host_ipi = local_paca->kvm_hstate.host_ipi;
457 if (host_ipi)
458 return 1;
459
460 /* Now read the interrupt from the ICP */
461 if (kvmhv_on_pseries()) {
462 unsigned long retbuf[PLPAR_HCALL_BUFSIZE];
463
464 rc = plpar_hcall_raw(H_XIRR, retbuf, 0xFF);
465 xirr = cpu_to_be32(retbuf[0]);
466 } else {
467 xics_phys = local_paca->kvm_hstate.xics_phys;
468 rc = 0;
469 if (!xics_phys)
470 rc = opal_int_get_xirr(&xirr, false);
471 else
472 xirr = __raw_rm_readl(xics_phys + XICS_XIRR);
473 }
474 if (rc < 0)
475 return 1;
476
477 /*
478 * Save XIRR for later. Since we get control in reverse endian
479 * on LE systems, save it byte reversed and fetch it back in
480 * host endian. Note that xirr is the value read from the
481 * XIRR register, while h_xirr is the host endian version.
482 */
483 h_xirr = be32_to_cpu(xirr);
484 local_paca->kvm_hstate.saved_xirr = h_xirr;
485 xisr = h_xirr & 0xffffff;
486 /*
487 * Ensure that the store/load complete to guarantee all side
488 * effects of loading from XIRR has completed
489 */
490 smp_mb();
491
492 /* if nothing pending in the ICP */
493 if (!xisr)
494 return 0;
495
496 /* We found something in the ICP...
497 *
498 * If it is an IPI, clear the MFRR and EOI it.
499 */
500 if (xisr == XICS_IPI) {
501 rc = 0;
502 if (kvmhv_on_pseries()) {
503 unsigned long retbuf[PLPAR_HCALL_BUFSIZE];
504
505 plpar_hcall_raw(H_IPI, retbuf,
506 hard_smp_processor_id(), 0xff);
507 plpar_hcall_raw(H_EOI, retbuf, h_xirr);
508 } else if (xics_phys) {
509 __raw_rm_writeb(0xff, xics_phys + XICS_MFRR);
510 __raw_rm_writel(xirr, xics_phys + XICS_XIRR);
511 } else {
512 opal_int_set_mfrr(hard_smp_processor_id(), 0xff);
513 rc = opal_int_eoi(h_xirr);
514 }
515 /* If rc > 0, there is another interrupt pending */
516 *again = rc > 0;
517
518 /*
519 * Need to ensure side effects of above stores
520 * complete before proceeding.
521 */
522 smp_mb();
523
524 /*
525 * We need to re-check host IPI now in case it got set in the
526 * meantime. If it's clear, we bounce the interrupt to the
527 * guest
528 */
529 host_ipi = local_paca->kvm_hstate.host_ipi;
530 if (unlikely(host_ipi != 0)) {
531 /* We raced with the host,
532 * we need to resend that IPI, bummer
533 */
534 if (kvmhv_on_pseries()) {
535 unsigned long retbuf[PLPAR_HCALL_BUFSIZE];
536
537 plpar_hcall_raw(H_IPI, retbuf,
538 hard_smp_processor_id(),
539 IPI_PRIORITY);
540 } else if (xics_phys)
541 __raw_rm_writeb(IPI_PRIORITY,
542 xics_phys + XICS_MFRR);
543 else
544 opal_int_set_mfrr(hard_smp_processor_id(),
545 IPI_PRIORITY);
546 /* Let side effects complete */
547 smp_mb();
548 return 1;
549 }
550
551 /* OK, it's an IPI for us */
552 local_paca->kvm_hstate.saved_xirr = 0;
553 return -1;
554 }
555
556 return kvmppc_check_passthru(xisr, xirr, again);
557 }
558
559 #ifdef CONFIG_KVM_XICS
is_rm(void)560 static inline bool is_rm(void)
561 {
562 return !(mfmsr() & MSR_DR);
563 }
564
kvmppc_rm_h_xirr(struct kvm_vcpu * vcpu)565 unsigned long kvmppc_rm_h_xirr(struct kvm_vcpu *vcpu)
566 {
567 if (!kvmppc_xics_enabled(vcpu))
568 return H_TOO_HARD;
569 if (xics_on_xive()) {
570 if (is_rm())
571 return xive_rm_h_xirr(vcpu);
572 if (unlikely(!__xive_vm_h_xirr))
573 return H_NOT_AVAILABLE;
574 return __xive_vm_h_xirr(vcpu);
575 } else
576 return xics_rm_h_xirr(vcpu);
577 }
578
kvmppc_rm_h_xirr_x(struct kvm_vcpu * vcpu)579 unsigned long kvmppc_rm_h_xirr_x(struct kvm_vcpu *vcpu)
580 {
581 if (!kvmppc_xics_enabled(vcpu))
582 return H_TOO_HARD;
583 vcpu->arch.regs.gpr[5] = get_tb();
584 if (xics_on_xive()) {
585 if (is_rm())
586 return xive_rm_h_xirr(vcpu);
587 if (unlikely(!__xive_vm_h_xirr))
588 return H_NOT_AVAILABLE;
589 return __xive_vm_h_xirr(vcpu);
590 } else
591 return xics_rm_h_xirr(vcpu);
592 }
593
kvmppc_rm_h_ipoll(struct kvm_vcpu * vcpu,unsigned long server)594 unsigned long kvmppc_rm_h_ipoll(struct kvm_vcpu *vcpu, unsigned long server)
595 {
596 if (!kvmppc_xics_enabled(vcpu))
597 return H_TOO_HARD;
598 if (xics_on_xive()) {
599 if (is_rm())
600 return xive_rm_h_ipoll(vcpu, server);
601 if (unlikely(!__xive_vm_h_ipoll))
602 return H_NOT_AVAILABLE;
603 return __xive_vm_h_ipoll(vcpu, server);
604 } else
605 return H_TOO_HARD;
606 }
607
kvmppc_rm_h_ipi(struct kvm_vcpu * vcpu,unsigned long server,unsigned long mfrr)608 int kvmppc_rm_h_ipi(struct kvm_vcpu *vcpu, unsigned long server,
609 unsigned long mfrr)
610 {
611 if (!kvmppc_xics_enabled(vcpu))
612 return H_TOO_HARD;
613 if (xics_on_xive()) {
614 if (is_rm())
615 return xive_rm_h_ipi(vcpu, server, mfrr);
616 if (unlikely(!__xive_vm_h_ipi))
617 return H_NOT_AVAILABLE;
618 return __xive_vm_h_ipi(vcpu, server, mfrr);
619 } else
620 return xics_rm_h_ipi(vcpu, server, mfrr);
621 }
622
kvmppc_rm_h_cppr(struct kvm_vcpu * vcpu,unsigned long cppr)623 int kvmppc_rm_h_cppr(struct kvm_vcpu *vcpu, unsigned long cppr)
624 {
625 if (!kvmppc_xics_enabled(vcpu))
626 return H_TOO_HARD;
627 if (xics_on_xive()) {
628 if (is_rm())
629 return xive_rm_h_cppr(vcpu, cppr);
630 if (unlikely(!__xive_vm_h_cppr))
631 return H_NOT_AVAILABLE;
632 return __xive_vm_h_cppr(vcpu, cppr);
633 } else
634 return xics_rm_h_cppr(vcpu, cppr);
635 }
636
kvmppc_rm_h_eoi(struct kvm_vcpu * vcpu,unsigned long xirr)637 int kvmppc_rm_h_eoi(struct kvm_vcpu *vcpu, unsigned long xirr)
638 {
639 if (!kvmppc_xics_enabled(vcpu))
640 return H_TOO_HARD;
641 if (xics_on_xive()) {
642 if (is_rm())
643 return xive_rm_h_eoi(vcpu, xirr);
644 if (unlikely(!__xive_vm_h_eoi))
645 return H_NOT_AVAILABLE;
646 return __xive_vm_h_eoi(vcpu, xirr);
647 } else
648 return xics_rm_h_eoi(vcpu, xirr);
649 }
650 #endif /* CONFIG_KVM_XICS */
651
kvmppc_bad_interrupt(struct pt_regs * regs)652 void kvmppc_bad_interrupt(struct pt_regs *regs)
653 {
654 /*
655 * 100 could happen at any time, 200 can happen due to invalid real
656 * address access for example (or any time due to a hardware problem).
657 */
658 if (TRAP(regs) == 0x100) {
659 get_paca()->in_nmi++;
660 system_reset_exception(regs);
661 get_paca()->in_nmi--;
662 } else if (TRAP(regs) == 0x200) {
663 machine_check_exception(regs);
664 } else {
665 die("Bad interrupt in KVM entry/exit code", regs, SIGABRT);
666 }
667 panic("Bad KVM trap");
668 }
669
670 /*
671 * Functions used to switch LPCR HR and UPRT bits on all threads
672 * when entering and exiting HPT guests on a radix host.
673 */
674
675 #define PHASE_REALMODE 1 /* in real mode */
676 #define PHASE_SET_LPCR 2 /* have set LPCR */
677 #define PHASE_OUT_OF_GUEST 4 /* have finished executing in guest */
678 #define PHASE_RESET_LPCR 8 /* have reset LPCR to host value */
679
680 #define ALL(p) (((p) << 24) | ((p) << 16) | ((p) << 8) | (p))
681
wait_for_sync(struct kvm_split_mode * sip,int phase)682 static void wait_for_sync(struct kvm_split_mode *sip, int phase)
683 {
684 int thr = local_paca->kvm_hstate.tid;
685
686 sip->lpcr_sync.phase[thr] |= phase;
687 phase = ALL(phase);
688 while ((sip->lpcr_sync.allphases & phase) != phase) {
689 HMT_low();
690 barrier();
691 }
692 HMT_medium();
693 }
694
kvmhv_p9_set_lpcr(struct kvm_split_mode * sip)695 void kvmhv_p9_set_lpcr(struct kvm_split_mode *sip)
696 {
697 unsigned long rb, set;
698
699 /* wait for every other thread to get to real mode */
700 wait_for_sync(sip, PHASE_REALMODE);
701
702 /* Set LPCR and LPIDR */
703 mtspr(SPRN_LPCR, sip->lpcr_req);
704 mtspr(SPRN_LPID, sip->lpidr_req);
705 isync();
706
707 /* Invalidate the TLB on thread 0 */
708 if (local_paca->kvm_hstate.tid == 0) {
709 sip->do_set = 0;
710 asm volatile("ptesync" : : : "memory");
711 for (set = 0; set < POWER9_TLB_SETS_RADIX; ++set) {
712 rb = TLBIEL_INVAL_SET_LPID +
713 (set << TLBIEL_INVAL_SET_SHIFT);
714 asm volatile(PPC_TLBIEL(%0, %1, 0, 0, 0) : :
715 "r" (rb), "r" (0));
716 }
717 asm volatile("ptesync" : : : "memory");
718 }
719
720 /* indicate that we have done so and wait for others */
721 wait_for_sync(sip, PHASE_SET_LPCR);
722 /* order read of sip->lpcr_sync.allphases vs. sip->do_set */
723 smp_rmb();
724 }
725
726 /*
727 * Called when a thread that has been in the guest needs
728 * to reload the host LPCR value - but only on POWER9 when
729 * running a HPT guest on a radix host.
730 */
kvmhv_p9_restore_lpcr(struct kvm_split_mode * sip)731 void kvmhv_p9_restore_lpcr(struct kvm_split_mode *sip)
732 {
733 /* we're out of the guest... */
734 wait_for_sync(sip, PHASE_OUT_OF_GUEST);
735
736 mtspr(SPRN_LPID, 0);
737 mtspr(SPRN_LPCR, sip->host_lpcr);
738 isync();
739
740 if (local_paca->kvm_hstate.tid == 0) {
741 sip->do_restore = 0;
742 smp_wmb(); /* order store of do_restore vs. phase */
743 }
744
745 wait_for_sync(sip, PHASE_RESET_LPCR);
746 smp_mb();
747 local_paca->kvm_hstate.kvm_split_mode = NULL;
748 }
749
kvmppc_end_cede(struct kvm_vcpu * vcpu)750 static void kvmppc_end_cede(struct kvm_vcpu *vcpu)
751 {
752 vcpu->arch.ceded = 0;
753 if (vcpu->arch.timer_running) {
754 hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
755 vcpu->arch.timer_running = 0;
756 }
757 }
758
kvmppc_set_msr_hv(struct kvm_vcpu * vcpu,u64 msr)759 void kvmppc_set_msr_hv(struct kvm_vcpu *vcpu, u64 msr)
760 {
761 /*
762 * Check for illegal transactional state bit combination
763 * and if we find it, force the TS field to a safe state.
764 */
765 if ((msr & MSR_TS_MASK) == MSR_TS_MASK)
766 msr &= ~MSR_TS_MASK;
767 vcpu->arch.shregs.msr = msr;
768 kvmppc_end_cede(vcpu);
769 }
770 EXPORT_SYMBOL_GPL(kvmppc_set_msr_hv);
771
inject_interrupt(struct kvm_vcpu * vcpu,int vec,u64 srr1_flags)772 static void inject_interrupt(struct kvm_vcpu *vcpu, int vec, u64 srr1_flags)
773 {
774 unsigned long msr, pc, new_msr, new_pc;
775
776 msr = kvmppc_get_msr(vcpu);
777 pc = kvmppc_get_pc(vcpu);
778 new_msr = vcpu->arch.intr_msr;
779 new_pc = vec;
780
781 /* If transactional, change to suspend mode on IRQ delivery */
782 if (MSR_TM_TRANSACTIONAL(msr))
783 new_msr |= MSR_TS_S;
784 else
785 new_msr |= msr & MSR_TS_MASK;
786
787 /*
788 * Perform MSR and PC adjustment for LPCR[AIL]=3 if it is set and
789 * applicable. AIL=2 is not supported.
790 *
791 * AIL does not apply to SRESET, MCE, or HMI (which is never
792 * delivered to the guest), and does not apply if IR=0 or DR=0.
793 */
794 if (vec != BOOK3S_INTERRUPT_SYSTEM_RESET &&
795 vec != BOOK3S_INTERRUPT_MACHINE_CHECK &&
796 (vcpu->arch.vcore->lpcr & LPCR_AIL) == LPCR_AIL_3 &&
797 (msr & (MSR_IR|MSR_DR)) == (MSR_IR|MSR_DR) ) {
798 new_msr |= MSR_IR | MSR_DR;
799 new_pc += 0xC000000000004000ULL;
800 }
801
802 kvmppc_set_srr0(vcpu, pc);
803 kvmppc_set_srr1(vcpu, (msr & SRR1_MSR_BITS) | srr1_flags);
804 kvmppc_set_pc(vcpu, new_pc);
805 vcpu->arch.shregs.msr = new_msr;
806 }
807
kvmppc_inject_interrupt_hv(struct kvm_vcpu * vcpu,int vec,u64 srr1_flags)808 void kvmppc_inject_interrupt_hv(struct kvm_vcpu *vcpu, int vec, u64 srr1_flags)
809 {
810 inject_interrupt(vcpu, vec, srr1_flags);
811 kvmppc_end_cede(vcpu);
812 }
813 EXPORT_SYMBOL_GPL(kvmppc_inject_interrupt_hv);
814
815 /*
816 * Is there a PRIV_DOORBELL pending for the guest (on POWER9)?
817 * Can we inject a Decrementer or a External interrupt?
818 */
kvmppc_guest_entry_inject_int(struct kvm_vcpu * vcpu)819 void kvmppc_guest_entry_inject_int(struct kvm_vcpu *vcpu)
820 {
821 int ext;
822 unsigned long lpcr;
823
824 /* Insert EXTERNAL bit into LPCR at the MER bit position */
825 ext = (vcpu->arch.pending_exceptions >> BOOK3S_IRQPRIO_EXTERNAL) & 1;
826 lpcr = mfspr(SPRN_LPCR);
827 lpcr |= ext << LPCR_MER_SH;
828 mtspr(SPRN_LPCR, lpcr);
829 isync();
830
831 if (vcpu->arch.shregs.msr & MSR_EE) {
832 if (ext) {
833 inject_interrupt(vcpu, BOOK3S_INTERRUPT_EXTERNAL, 0);
834 } else {
835 long int dec = mfspr(SPRN_DEC);
836 if (!(lpcr & LPCR_LD))
837 dec = (int) dec;
838 if (dec < 0)
839 inject_interrupt(vcpu,
840 BOOK3S_INTERRUPT_DECREMENTER, 0);
841 }
842 }
843
844 if (vcpu->arch.doorbell_request) {
845 mtspr(SPRN_DPDES, 1);
846 vcpu->arch.vcore->dpdes = 1;
847 smp_wmb();
848 vcpu->arch.doorbell_request = 0;
849 }
850 }
851
flush_guest_tlb(struct kvm * kvm)852 static void flush_guest_tlb(struct kvm *kvm)
853 {
854 unsigned long rb, set;
855
856 rb = PPC_BIT(52); /* IS = 2 */
857 if (kvm_is_radix(kvm)) {
858 /* R=1 PRS=1 RIC=2 */
859 asm volatile(PPC_TLBIEL(%0, %4, %3, %2, %1)
860 : : "r" (rb), "i" (1), "i" (1), "i" (2),
861 "r" (0) : "memory");
862 for (set = 1; set < kvm->arch.tlb_sets; ++set) {
863 rb += PPC_BIT(51); /* increment set number */
864 /* R=1 PRS=1 RIC=0 */
865 asm volatile(PPC_TLBIEL(%0, %4, %3, %2, %1)
866 : : "r" (rb), "i" (1), "i" (1), "i" (0),
867 "r" (0) : "memory");
868 }
869 asm volatile("ptesync": : :"memory");
870 // POWER9 congruence-class TLBIEL leaves ERAT. Flush it now.
871 asm volatile(PPC_RADIX_INVALIDATE_ERAT_GUEST : : :"memory");
872 } else {
873 for (set = 0; set < kvm->arch.tlb_sets; ++set) {
874 /* R=0 PRS=0 RIC=0 */
875 asm volatile(PPC_TLBIEL(%0, %4, %3, %2, %1)
876 : : "r" (rb), "i" (0), "i" (0), "i" (0),
877 "r" (0) : "memory");
878 rb += PPC_BIT(51); /* increment set number */
879 }
880 asm volatile("ptesync": : :"memory");
881 // POWER9 congruence-class TLBIEL leaves ERAT. Flush it now.
882 if (cpu_has_feature(CPU_FTR_ARCH_300))
883 asm volatile(PPC_ISA_3_0_INVALIDATE_ERAT : : :"memory");
884 }
885 }
886
kvmppc_check_need_tlb_flush(struct kvm * kvm,int pcpu,struct kvm_nested_guest * nested)887 void kvmppc_check_need_tlb_flush(struct kvm *kvm, int pcpu,
888 struct kvm_nested_guest *nested)
889 {
890 cpumask_t *need_tlb_flush;
891
892 /*
893 * On POWER9, individual threads can come in here, but the
894 * TLB is shared between the 4 threads in a core, hence
895 * invalidating on one thread invalidates for all.
896 * Thus we make all 4 threads use the same bit.
897 */
898 if (cpu_has_feature(CPU_FTR_ARCH_300))
899 pcpu = cpu_first_tlb_thread_sibling(pcpu);
900
901 if (nested)
902 need_tlb_flush = &nested->need_tlb_flush;
903 else
904 need_tlb_flush = &kvm->arch.need_tlb_flush;
905
906 if (cpumask_test_cpu(pcpu, need_tlb_flush)) {
907 flush_guest_tlb(kvm);
908
909 /* Clear the bit after the TLB flush */
910 cpumask_clear_cpu(pcpu, need_tlb_flush);
911 }
912 }
913 EXPORT_SYMBOL_GPL(kvmppc_check_need_tlb_flush);
914