• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright 2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
4  */
5 
6 #include <linux/cpu.h>
7 #include <linux/kvm_host.h>
8 #include <linux/preempt.h>
9 #include <linux/export.h>
10 #include <linux/sched.h>
11 #include <linux/spinlock.h>
12 #include <linux/init.h>
13 #include <linux/memblock.h>
14 #include <linux/sizes.h>
15 #include <linux/cma.h>
16 #include <linux/bitops.h>
17 
18 #include <asm/asm-prototypes.h>
19 #include <asm/cputable.h>
20 #include <asm/kvm_ppc.h>
21 #include <asm/kvm_book3s.h>
22 #include <asm/archrandom.h>
23 #include <asm/xics.h>
24 #include <asm/xive.h>
25 #include <asm/dbell.h>
26 #include <asm/cputhreads.h>
27 #include <asm/io.h>
28 #include <asm/opal.h>
29 #include <asm/smp.h>
30 
31 #define KVM_CMA_CHUNK_ORDER	18
32 
33 #include "book3s_xics.h"
34 #include "book3s_xive.h"
35 
36 /*
37  * The XIVE module will populate these when it loads
38  */
39 unsigned long (*__xive_vm_h_xirr)(struct kvm_vcpu *vcpu);
40 unsigned long (*__xive_vm_h_ipoll)(struct kvm_vcpu *vcpu, unsigned long server);
41 int (*__xive_vm_h_ipi)(struct kvm_vcpu *vcpu, unsigned long server,
42 		       unsigned long mfrr);
43 int (*__xive_vm_h_cppr)(struct kvm_vcpu *vcpu, unsigned long cppr);
44 int (*__xive_vm_h_eoi)(struct kvm_vcpu *vcpu, unsigned long xirr);
45 EXPORT_SYMBOL_GPL(__xive_vm_h_xirr);
46 EXPORT_SYMBOL_GPL(__xive_vm_h_ipoll);
47 EXPORT_SYMBOL_GPL(__xive_vm_h_ipi);
48 EXPORT_SYMBOL_GPL(__xive_vm_h_cppr);
49 EXPORT_SYMBOL_GPL(__xive_vm_h_eoi);
50 
51 /*
52  * Hash page table alignment on newer cpus(CPU_FTR_ARCH_206)
53  * should be power of 2.
54  */
55 #define HPT_ALIGN_PAGES		((1 << 18) >> PAGE_SHIFT) /* 256k */
56 /*
57  * By default we reserve 5% of memory for hash pagetable allocation.
58  */
59 static unsigned long kvm_cma_resv_ratio = 5;
60 
61 static struct cma *kvm_cma;
62 
early_parse_kvm_cma_resv(char * p)63 static int __init early_parse_kvm_cma_resv(char *p)
64 {
65 	pr_debug("%s(%s)\n", __func__, p);
66 	if (!p)
67 		return -EINVAL;
68 	return kstrtoul(p, 0, &kvm_cma_resv_ratio);
69 }
70 early_param("kvm_cma_resv_ratio", early_parse_kvm_cma_resv);
71 
kvm_alloc_hpt_cma(unsigned long nr_pages)72 struct page *kvm_alloc_hpt_cma(unsigned long nr_pages)
73 {
74 	VM_BUG_ON(order_base_2(nr_pages) < KVM_CMA_CHUNK_ORDER - PAGE_SHIFT);
75 
76 	return cma_alloc(kvm_cma, nr_pages, order_base_2(HPT_ALIGN_PAGES),
77 			 false);
78 }
79 EXPORT_SYMBOL_GPL(kvm_alloc_hpt_cma);
80 
kvm_free_hpt_cma(struct page * page,unsigned long nr_pages)81 void kvm_free_hpt_cma(struct page *page, unsigned long nr_pages)
82 {
83 	cma_release(kvm_cma, page, nr_pages);
84 }
85 EXPORT_SYMBOL_GPL(kvm_free_hpt_cma);
86 
87 /**
88  * kvm_cma_reserve() - reserve area for kvm hash pagetable
89  *
90  * This function reserves memory from early allocator. It should be
91  * called by arch specific code once the memblock allocator
92  * has been activated and all other subsystems have already allocated/reserved
93  * memory.
94  */
kvm_cma_reserve(void)95 void __init kvm_cma_reserve(void)
96 {
97 	unsigned long align_size;
98 	phys_addr_t selected_size;
99 
100 	/*
101 	 * We need CMA reservation only when we are in HV mode
102 	 */
103 	if (!cpu_has_feature(CPU_FTR_HVMODE))
104 		return;
105 
106 	selected_size = PAGE_ALIGN(memblock_phys_mem_size() * kvm_cma_resv_ratio / 100);
107 	if (selected_size) {
108 		pr_info("%s: reserving %ld MiB for global area\n", __func__,
109 			 (unsigned long)selected_size / SZ_1M);
110 		align_size = HPT_ALIGN_PAGES << PAGE_SHIFT;
111 		cma_declare_contiguous(0, selected_size, 0, align_size,
112 			KVM_CMA_CHUNK_ORDER - PAGE_SHIFT, false, "kvm_cma",
113 			&kvm_cma);
114 	}
115 }
116 
117 /*
118  * Real-mode H_CONFER implementation.
119  * We check if we are the only vcpu out of this virtual core
120  * still running in the guest and not ceded.  If so, we pop up
121  * to the virtual-mode implementation; if not, just return to
122  * the guest.
123  */
kvmppc_rm_h_confer(struct kvm_vcpu * vcpu,int target,unsigned int yield_count)124 long int kvmppc_rm_h_confer(struct kvm_vcpu *vcpu, int target,
125 			    unsigned int yield_count)
126 {
127 	struct kvmppc_vcore *vc = local_paca->kvm_hstate.kvm_vcore;
128 	int ptid = local_paca->kvm_hstate.ptid;
129 	int threads_running;
130 	int threads_ceded;
131 	int threads_conferring;
132 	u64 stop = get_tb() + 10 * tb_ticks_per_usec;
133 	int rv = H_SUCCESS; /* => don't yield */
134 
135 	set_bit(ptid, &vc->conferring_threads);
136 	while ((get_tb() < stop) && !VCORE_IS_EXITING(vc)) {
137 		threads_running = VCORE_ENTRY_MAP(vc);
138 		threads_ceded = vc->napping_threads;
139 		threads_conferring = vc->conferring_threads;
140 		if ((threads_ceded | threads_conferring) == threads_running) {
141 			rv = H_TOO_HARD; /* => do yield */
142 			break;
143 		}
144 	}
145 	clear_bit(ptid, &vc->conferring_threads);
146 	return rv;
147 }
148 
149 /*
150  * When running HV mode KVM we need to block certain operations while KVM VMs
151  * exist in the system. We use a counter of VMs to track this.
152  *
153  * One of the operations we need to block is onlining of secondaries, so we
154  * protect hv_vm_count with get/put_online_cpus().
155  */
156 static atomic_t hv_vm_count;
157 
kvm_hv_vm_activated(void)158 void kvm_hv_vm_activated(void)
159 {
160 	get_online_cpus();
161 	atomic_inc(&hv_vm_count);
162 	put_online_cpus();
163 }
164 EXPORT_SYMBOL_GPL(kvm_hv_vm_activated);
165 
kvm_hv_vm_deactivated(void)166 void kvm_hv_vm_deactivated(void)
167 {
168 	get_online_cpus();
169 	atomic_dec(&hv_vm_count);
170 	put_online_cpus();
171 }
172 EXPORT_SYMBOL_GPL(kvm_hv_vm_deactivated);
173 
kvm_hv_mode_active(void)174 bool kvm_hv_mode_active(void)
175 {
176 	return atomic_read(&hv_vm_count) != 0;
177 }
178 
179 extern int hcall_real_table[], hcall_real_table_end[];
180 
kvmppc_hcall_impl_hv_realmode(unsigned long cmd)181 int kvmppc_hcall_impl_hv_realmode(unsigned long cmd)
182 {
183 	cmd /= 4;
184 	if (cmd < hcall_real_table_end - hcall_real_table &&
185 	    hcall_real_table[cmd])
186 		return 1;
187 
188 	return 0;
189 }
190 EXPORT_SYMBOL_GPL(kvmppc_hcall_impl_hv_realmode);
191 
kvmppc_hwrng_present(void)192 int kvmppc_hwrng_present(void)
193 {
194 	return powernv_hwrng_present();
195 }
196 EXPORT_SYMBOL_GPL(kvmppc_hwrng_present);
197 
kvmppc_h_random(struct kvm_vcpu * vcpu)198 long kvmppc_h_random(struct kvm_vcpu *vcpu)
199 {
200 	int r;
201 
202 	/* Only need to do the expensive mfmsr() on radix */
203 	if (kvm_is_radix(vcpu->kvm) && (mfmsr() & MSR_IR))
204 		r = powernv_get_random_long(&vcpu->arch.regs.gpr[4]);
205 	else
206 		r = powernv_get_random_real_mode(&vcpu->arch.regs.gpr[4]);
207 	if (r)
208 		return H_SUCCESS;
209 
210 	return H_HARDWARE;
211 }
212 
213 /*
214  * Send an interrupt or message to another CPU.
215  * The caller needs to include any barrier needed to order writes
216  * to memory vs. the IPI/message.
217  */
kvmhv_rm_send_ipi(int cpu)218 void kvmhv_rm_send_ipi(int cpu)
219 {
220 	void __iomem *xics_phys;
221 	unsigned long msg = PPC_DBELL_TYPE(PPC_DBELL_SERVER);
222 
223 	/* For a nested hypervisor, use the XICS via hcall */
224 	if (kvmhv_on_pseries()) {
225 		unsigned long retbuf[PLPAR_HCALL_BUFSIZE];
226 
227 		plpar_hcall_raw(H_IPI, retbuf, get_hard_smp_processor_id(cpu),
228 				IPI_PRIORITY);
229 		return;
230 	}
231 
232 	/* On POWER9 we can use msgsnd for any destination cpu. */
233 	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
234 		msg |= get_hard_smp_processor_id(cpu);
235 		__asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg));
236 		return;
237 	}
238 
239 	/* On POWER8 for IPIs to threads in the same core, use msgsnd. */
240 	if (cpu_has_feature(CPU_FTR_ARCH_207S) &&
241 	    cpu_first_thread_sibling(cpu) ==
242 	    cpu_first_thread_sibling(raw_smp_processor_id())) {
243 		msg |= cpu_thread_in_core(cpu);
244 		__asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg));
245 		return;
246 	}
247 
248 	/* We should never reach this */
249 	if (WARN_ON_ONCE(xics_on_xive()))
250 	    return;
251 
252 	/* Else poke the target with an IPI */
253 	xics_phys = paca_ptrs[cpu]->kvm_hstate.xics_phys;
254 	if (xics_phys)
255 		__raw_rm_writeb(IPI_PRIORITY, xics_phys + XICS_MFRR);
256 	else
257 		opal_int_set_mfrr(get_hard_smp_processor_id(cpu), IPI_PRIORITY);
258 }
259 
260 /*
261  * The following functions are called from the assembly code
262  * in book3s_hv_rmhandlers.S.
263  */
kvmhv_interrupt_vcore(struct kvmppc_vcore * vc,int active)264 static void kvmhv_interrupt_vcore(struct kvmppc_vcore *vc, int active)
265 {
266 	int cpu = vc->pcpu;
267 
268 	/* Order setting of exit map vs. msgsnd/IPI */
269 	smp_mb();
270 	for (; active; active >>= 1, ++cpu)
271 		if (active & 1)
272 			kvmhv_rm_send_ipi(cpu);
273 }
274 
kvmhv_commence_exit(int trap)275 void kvmhv_commence_exit(int trap)
276 {
277 	struct kvmppc_vcore *vc = local_paca->kvm_hstate.kvm_vcore;
278 	int ptid = local_paca->kvm_hstate.ptid;
279 	struct kvm_split_mode *sip = local_paca->kvm_hstate.kvm_split_mode;
280 	int me, ee, i, t;
281 	int cpu0;
282 
283 	/* Set our bit in the threads-exiting-guest map in the 0xff00
284 	   bits of vcore->entry_exit_map */
285 	me = 0x100 << ptid;
286 	do {
287 		ee = vc->entry_exit_map;
288 	} while (cmpxchg(&vc->entry_exit_map, ee, ee | me) != ee);
289 
290 	/* Are we the first here? */
291 	if ((ee >> 8) != 0)
292 		return;
293 
294 	/*
295 	 * Trigger the other threads in this vcore to exit the guest.
296 	 * If this is a hypervisor decrementer interrupt then they
297 	 * will be already on their way out of the guest.
298 	 */
299 	if (trap != BOOK3S_INTERRUPT_HV_DECREMENTER)
300 		kvmhv_interrupt_vcore(vc, ee & ~(1 << ptid));
301 
302 	/*
303 	 * If we are doing dynamic micro-threading, interrupt the other
304 	 * subcores to pull them out of their guests too.
305 	 */
306 	if (!sip)
307 		return;
308 
309 	for (i = 0; i < MAX_SUBCORES; ++i) {
310 		vc = sip->vc[i];
311 		if (!vc)
312 			break;
313 		do {
314 			ee = vc->entry_exit_map;
315 			/* Already asked to exit? */
316 			if ((ee >> 8) != 0)
317 				break;
318 		} while (cmpxchg(&vc->entry_exit_map, ee,
319 				 ee | VCORE_EXIT_REQ) != ee);
320 		if ((ee >> 8) == 0)
321 			kvmhv_interrupt_vcore(vc, ee);
322 	}
323 
324 	/*
325 	 * On POWER9 when running a HPT guest on a radix host (sip != NULL),
326 	 * we have to interrupt inactive CPU threads to get them to
327 	 * restore the host LPCR value.
328 	 */
329 	if (sip->lpcr_req) {
330 		if (cmpxchg(&sip->do_restore, 0, 1) == 0) {
331 			vc = local_paca->kvm_hstate.kvm_vcore;
332 			cpu0 = vc->pcpu + ptid - local_paca->kvm_hstate.tid;
333 			for (t = 1; t < threads_per_core; ++t) {
334 				if (sip->napped[t])
335 					kvmhv_rm_send_ipi(cpu0 + t);
336 			}
337 		}
338 	}
339 }
340 
341 struct kvmppc_host_rm_ops *kvmppc_host_rm_ops_hv;
342 EXPORT_SYMBOL_GPL(kvmppc_host_rm_ops_hv);
343 
344 #ifdef CONFIG_KVM_XICS
get_irqmap(struct kvmppc_passthru_irqmap * pimap,u32 xisr)345 static struct kvmppc_irq_map *get_irqmap(struct kvmppc_passthru_irqmap *pimap,
346 					 u32 xisr)
347 {
348 	int i;
349 
350 	/*
351 	 * We access the mapped array here without a lock.  That
352 	 * is safe because we never reduce the number of entries
353 	 * in the array and we never change the v_hwirq field of
354 	 * an entry once it is set.
355 	 *
356 	 * We have also carefully ordered the stores in the writer
357 	 * and the loads here in the reader, so that if we find a matching
358 	 * hwirq here, the associated GSI and irq_desc fields are valid.
359 	 */
360 	for (i = 0; i < pimap->n_mapped; i++)  {
361 		if (xisr == pimap->mapped[i].r_hwirq) {
362 			/*
363 			 * Order subsequent reads in the caller to serialize
364 			 * with the writer.
365 			 */
366 			smp_rmb();
367 			return &pimap->mapped[i];
368 		}
369 	}
370 	return NULL;
371 }
372 
373 /*
374  * If we have an interrupt that's not an IPI, check if we have a
375  * passthrough adapter and if so, check if this external interrupt
376  * is for the adapter.
377  * We will attempt to deliver the IRQ directly to the target VCPU's
378  * ICP, the virtual ICP (based on affinity - the xive value in ICS).
379  *
380  * If the delivery fails or if this is not for a passthrough adapter,
381  * return to the host to handle this interrupt. We earlier
382  * saved a copy of the XIRR in the PACA, it will be picked up by
383  * the host ICP driver.
384  */
kvmppc_check_passthru(u32 xisr,__be32 xirr,bool * again)385 static int kvmppc_check_passthru(u32 xisr, __be32 xirr, bool *again)
386 {
387 	struct kvmppc_passthru_irqmap *pimap;
388 	struct kvmppc_irq_map *irq_map;
389 	struct kvm_vcpu *vcpu;
390 
391 	vcpu = local_paca->kvm_hstate.kvm_vcpu;
392 	if (!vcpu)
393 		return 1;
394 	pimap = kvmppc_get_passthru_irqmap(vcpu->kvm);
395 	if (!pimap)
396 		return 1;
397 	irq_map = get_irqmap(pimap, xisr);
398 	if (!irq_map)
399 		return 1;
400 
401 	/* We're handling this interrupt, generic code doesn't need to */
402 	local_paca->kvm_hstate.saved_xirr = 0;
403 
404 	return kvmppc_deliver_irq_passthru(vcpu, xirr, irq_map, pimap, again);
405 }
406 
407 #else
kvmppc_check_passthru(u32 xisr,__be32 xirr,bool * again)408 static inline int kvmppc_check_passthru(u32 xisr, __be32 xirr, bool *again)
409 {
410 	return 1;
411 }
412 #endif
413 
414 /*
415  * Determine what sort of external interrupt is pending (if any).
416  * Returns:
417  *	0 if no interrupt is pending
418  *	1 if an interrupt is pending that needs to be handled by the host
419  *	2 Passthrough that needs completion in the host
420  *	-1 if there was a guest wakeup IPI (which has now been cleared)
421  *	-2 if there is PCI passthrough external interrupt that was handled
422  */
423 static long kvmppc_read_one_intr(bool *again);
424 
kvmppc_read_intr(void)425 long kvmppc_read_intr(void)
426 {
427 	long ret = 0;
428 	long rc;
429 	bool again;
430 
431 	if (xive_enabled())
432 		return 1;
433 
434 	do {
435 		again = false;
436 		rc = kvmppc_read_one_intr(&again);
437 		if (rc && (ret == 0 || rc > ret))
438 			ret = rc;
439 	} while (again);
440 	return ret;
441 }
442 
kvmppc_read_one_intr(bool * again)443 static long kvmppc_read_one_intr(bool *again)
444 {
445 	void __iomem *xics_phys;
446 	u32 h_xirr;
447 	__be32 xirr;
448 	u32 xisr;
449 	u8 host_ipi;
450 	int64_t rc;
451 
452 	if (xive_enabled())
453 		return 1;
454 
455 	/* see if a host IPI is pending */
456 	host_ipi = local_paca->kvm_hstate.host_ipi;
457 	if (host_ipi)
458 		return 1;
459 
460 	/* Now read the interrupt from the ICP */
461 	if (kvmhv_on_pseries()) {
462 		unsigned long retbuf[PLPAR_HCALL_BUFSIZE];
463 
464 		rc = plpar_hcall_raw(H_XIRR, retbuf, 0xFF);
465 		xirr = cpu_to_be32(retbuf[0]);
466 	} else {
467 		xics_phys = local_paca->kvm_hstate.xics_phys;
468 		rc = 0;
469 		if (!xics_phys)
470 			rc = opal_int_get_xirr(&xirr, false);
471 		else
472 			xirr = __raw_rm_readl(xics_phys + XICS_XIRR);
473 	}
474 	if (rc < 0)
475 		return 1;
476 
477 	/*
478 	 * Save XIRR for later. Since we get control in reverse endian
479 	 * on LE systems, save it byte reversed and fetch it back in
480 	 * host endian. Note that xirr is the value read from the
481 	 * XIRR register, while h_xirr is the host endian version.
482 	 */
483 	h_xirr = be32_to_cpu(xirr);
484 	local_paca->kvm_hstate.saved_xirr = h_xirr;
485 	xisr = h_xirr & 0xffffff;
486 	/*
487 	 * Ensure that the store/load complete to guarantee all side
488 	 * effects of loading from XIRR has completed
489 	 */
490 	smp_mb();
491 
492 	/* if nothing pending in the ICP */
493 	if (!xisr)
494 		return 0;
495 
496 	/* We found something in the ICP...
497 	 *
498 	 * If it is an IPI, clear the MFRR and EOI it.
499 	 */
500 	if (xisr == XICS_IPI) {
501 		rc = 0;
502 		if (kvmhv_on_pseries()) {
503 			unsigned long retbuf[PLPAR_HCALL_BUFSIZE];
504 
505 			plpar_hcall_raw(H_IPI, retbuf,
506 					hard_smp_processor_id(), 0xff);
507 			plpar_hcall_raw(H_EOI, retbuf, h_xirr);
508 		} else if (xics_phys) {
509 			__raw_rm_writeb(0xff, xics_phys + XICS_MFRR);
510 			__raw_rm_writel(xirr, xics_phys + XICS_XIRR);
511 		} else {
512 			opal_int_set_mfrr(hard_smp_processor_id(), 0xff);
513 			rc = opal_int_eoi(h_xirr);
514 		}
515 		/* If rc > 0, there is another interrupt pending */
516 		*again = rc > 0;
517 
518 		/*
519 		 * Need to ensure side effects of above stores
520 		 * complete before proceeding.
521 		 */
522 		smp_mb();
523 
524 		/*
525 		 * We need to re-check host IPI now in case it got set in the
526 		 * meantime. If it's clear, we bounce the interrupt to the
527 		 * guest
528 		 */
529 		host_ipi = local_paca->kvm_hstate.host_ipi;
530 		if (unlikely(host_ipi != 0)) {
531 			/* We raced with the host,
532 			 * we need to resend that IPI, bummer
533 			 */
534 			if (kvmhv_on_pseries()) {
535 				unsigned long retbuf[PLPAR_HCALL_BUFSIZE];
536 
537 				plpar_hcall_raw(H_IPI, retbuf,
538 						hard_smp_processor_id(),
539 						IPI_PRIORITY);
540 			} else if (xics_phys)
541 				__raw_rm_writeb(IPI_PRIORITY,
542 						xics_phys + XICS_MFRR);
543 			else
544 				opal_int_set_mfrr(hard_smp_processor_id(),
545 						  IPI_PRIORITY);
546 			/* Let side effects complete */
547 			smp_mb();
548 			return 1;
549 		}
550 
551 		/* OK, it's an IPI for us */
552 		local_paca->kvm_hstate.saved_xirr = 0;
553 		return -1;
554 	}
555 
556 	return kvmppc_check_passthru(xisr, xirr, again);
557 }
558 
559 #ifdef CONFIG_KVM_XICS
is_rm(void)560 static inline bool is_rm(void)
561 {
562 	return !(mfmsr() & MSR_DR);
563 }
564 
kvmppc_rm_h_xirr(struct kvm_vcpu * vcpu)565 unsigned long kvmppc_rm_h_xirr(struct kvm_vcpu *vcpu)
566 {
567 	if (!kvmppc_xics_enabled(vcpu))
568 		return H_TOO_HARD;
569 	if (xics_on_xive()) {
570 		if (is_rm())
571 			return xive_rm_h_xirr(vcpu);
572 		if (unlikely(!__xive_vm_h_xirr))
573 			return H_NOT_AVAILABLE;
574 		return __xive_vm_h_xirr(vcpu);
575 	} else
576 		return xics_rm_h_xirr(vcpu);
577 }
578 
kvmppc_rm_h_xirr_x(struct kvm_vcpu * vcpu)579 unsigned long kvmppc_rm_h_xirr_x(struct kvm_vcpu *vcpu)
580 {
581 	if (!kvmppc_xics_enabled(vcpu))
582 		return H_TOO_HARD;
583 	vcpu->arch.regs.gpr[5] = get_tb();
584 	if (xics_on_xive()) {
585 		if (is_rm())
586 			return xive_rm_h_xirr(vcpu);
587 		if (unlikely(!__xive_vm_h_xirr))
588 			return H_NOT_AVAILABLE;
589 		return __xive_vm_h_xirr(vcpu);
590 	} else
591 		return xics_rm_h_xirr(vcpu);
592 }
593 
kvmppc_rm_h_ipoll(struct kvm_vcpu * vcpu,unsigned long server)594 unsigned long kvmppc_rm_h_ipoll(struct kvm_vcpu *vcpu, unsigned long server)
595 {
596 	if (!kvmppc_xics_enabled(vcpu))
597 		return H_TOO_HARD;
598 	if (xics_on_xive()) {
599 		if (is_rm())
600 			return xive_rm_h_ipoll(vcpu, server);
601 		if (unlikely(!__xive_vm_h_ipoll))
602 			return H_NOT_AVAILABLE;
603 		return __xive_vm_h_ipoll(vcpu, server);
604 	} else
605 		return H_TOO_HARD;
606 }
607 
kvmppc_rm_h_ipi(struct kvm_vcpu * vcpu,unsigned long server,unsigned long mfrr)608 int kvmppc_rm_h_ipi(struct kvm_vcpu *vcpu, unsigned long server,
609 		    unsigned long mfrr)
610 {
611 	if (!kvmppc_xics_enabled(vcpu))
612 		return H_TOO_HARD;
613 	if (xics_on_xive()) {
614 		if (is_rm())
615 			return xive_rm_h_ipi(vcpu, server, mfrr);
616 		if (unlikely(!__xive_vm_h_ipi))
617 			return H_NOT_AVAILABLE;
618 		return __xive_vm_h_ipi(vcpu, server, mfrr);
619 	} else
620 		return xics_rm_h_ipi(vcpu, server, mfrr);
621 }
622 
kvmppc_rm_h_cppr(struct kvm_vcpu * vcpu,unsigned long cppr)623 int kvmppc_rm_h_cppr(struct kvm_vcpu *vcpu, unsigned long cppr)
624 {
625 	if (!kvmppc_xics_enabled(vcpu))
626 		return H_TOO_HARD;
627 	if (xics_on_xive()) {
628 		if (is_rm())
629 			return xive_rm_h_cppr(vcpu, cppr);
630 		if (unlikely(!__xive_vm_h_cppr))
631 			return H_NOT_AVAILABLE;
632 		return __xive_vm_h_cppr(vcpu, cppr);
633 	} else
634 		return xics_rm_h_cppr(vcpu, cppr);
635 }
636 
kvmppc_rm_h_eoi(struct kvm_vcpu * vcpu,unsigned long xirr)637 int kvmppc_rm_h_eoi(struct kvm_vcpu *vcpu, unsigned long xirr)
638 {
639 	if (!kvmppc_xics_enabled(vcpu))
640 		return H_TOO_HARD;
641 	if (xics_on_xive()) {
642 		if (is_rm())
643 			return xive_rm_h_eoi(vcpu, xirr);
644 		if (unlikely(!__xive_vm_h_eoi))
645 			return H_NOT_AVAILABLE;
646 		return __xive_vm_h_eoi(vcpu, xirr);
647 	} else
648 		return xics_rm_h_eoi(vcpu, xirr);
649 }
650 #endif /* CONFIG_KVM_XICS */
651 
kvmppc_bad_interrupt(struct pt_regs * regs)652 void kvmppc_bad_interrupt(struct pt_regs *regs)
653 {
654 	/*
655 	 * 100 could happen at any time, 200 can happen due to invalid real
656 	 * address access for example (or any time due to a hardware problem).
657 	 */
658 	if (TRAP(regs) == 0x100) {
659 		get_paca()->in_nmi++;
660 		system_reset_exception(regs);
661 		get_paca()->in_nmi--;
662 	} else if (TRAP(regs) == 0x200) {
663 		machine_check_exception(regs);
664 	} else {
665 		die("Bad interrupt in KVM entry/exit code", regs, SIGABRT);
666 	}
667 	panic("Bad KVM trap");
668 }
669 
670 /*
671  * Functions used to switch LPCR HR and UPRT bits on all threads
672  * when entering and exiting HPT guests on a radix host.
673  */
674 
675 #define PHASE_REALMODE		1	/* in real mode */
676 #define PHASE_SET_LPCR		2	/* have set LPCR */
677 #define PHASE_OUT_OF_GUEST	4	/* have finished executing in guest */
678 #define PHASE_RESET_LPCR	8	/* have reset LPCR to host value */
679 
680 #define ALL(p)		(((p) << 24) | ((p) << 16) | ((p) << 8) | (p))
681 
wait_for_sync(struct kvm_split_mode * sip,int phase)682 static void wait_for_sync(struct kvm_split_mode *sip, int phase)
683 {
684 	int thr = local_paca->kvm_hstate.tid;
685 
686 	sip->lpcr_sync.phase[thr] |= phase;
687 	phase = ALL(phase);
688 	while ((sip->lpcr_sync.allphases & phase) != phase) {
689 		HMT_low();
690 		barrier();
691 	}
692 	HMT_medium();
693 }
694 
kvmhv_p9_set_lpcr(struct kvm_split_mode * sip)695 void kvmhv_p9_set_lpcr(struct kvm_split_mode *sip)
696 {
697 	unsigned long rb, set;
698 
699 	/* wait for every other thread to get to real mode */
700 	wait_for_sync(sip, PHASE_REALMODE);
701 
702 	/* Set LPCR and LPIDR */
703 	mtspr(SPRN_LPCR, sip->lpcr_req);
704 	mtspr(SPRN_LPID, sip->lpidr_req);
705 	isync();
706 
707 	/* Invalidate the TLB on thread 0 */
708 	if (local_paca->kvm_hstate.tid == 0) {
709 		sip->do_set = 0;
710 		asm volatile("ptesync" : : : "memory");
711 		for (set = 0; set < POWER9_TLB_SETS_RADIX; ++set) {
712 			rb = TLBIEL_INVAL_SET_LPID +
713 				(set << TLBIEL_INVAL_SET_SHIFT);
714 			asm volatile(PPC_TLBIEL(%0, %1, 0, 0, 0) : :
715 				     "r" (rb), "r" (0));
716 		}
717 		asm volatile("ptesync" : : : "memory");
718 	}
719 
720 	/* indicate that we have done so and wait for others */
721 	wait_for_sync(sip, PHASE_SET_LPCR);
722 	/* order read of sip->lpcr_sync.allphases vs. sip->do_set */
723 	smp_rmb();
724 }
725 
726 /*
727  * Called when a thread that has been in the guest needs
728  * to reload the host LPCR value - but only on POWER9 when
729  * running a HPT guest on a radix host.
730  */
kvmhv_p9_restore_lpcr(struct kvm_split_mode * sip)731 void kvmhv_p9_restore_lpcr(struct kvm_split_mode *sip)
732 {
733 	/* we're out of the guest... */
734 	wait_for_sync(sip, PHASE_OUT_OF_GUEST);
735 
736 	mtspr(SPRN_LPID, 0);
737 	mtspr(SPRN_LPCR, sip->host_lpcr);
738 	isync();
739 
740 	if (local_paca->kvm_hstate.tid == 0) {
741 		sip->do_restore = 0;
742 		smp_wmb();	/* order store of do_restore vs. phase */
743 	}
744 
745 	wait_for_sync(sip, PHASE_RESET_LPCR);
746 	smp_mb();
747 	local_paca->kvm_hstate.kvm_split_mode = NULL;
748 }
749 
kvmppc_end_cede(struct kvm_vcpu * vcpu)750 static void kvmppc_end_cede(struct kvm_vcpu *vcpu)
751 {
752 	vcpu->arch.ceded = 0;
753 	if (vcpu->arch.timer_running) {
754 		hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
755 		vcpu->arch.timer_running = 0;
756 	}
757 }
758 
kvmppc_set_msr_hv(struct kvm_vcpu * vcpu,u64 msr)759 void kvmppc_set_msr_hv(struct kvm_vcpu *vcpu, u64 msr)
760 {
761 	/*
762 	 * Check for illegal transactional state bit combination
763 	 * and if we find it, force the TS field to a safe state.
764 	 */
765 	if ((msr & MSR_TS_MASK) == MSR_TS_MASK)
766 		msr &= ~MSR_TS_MASK;
767 	vcpu->arch.shregs.msr = msr;
768 	kvmppc_end_cede(vcpu);
769 }
770 EXPORT_SYMBOL_GPL(kvmppc_set_msr_hv);
771 
inject_interrupt(struct kvm_vcpu * vcpu,int vec,u64 srr1_flags)772 static void inject_interrupt(struct kvm_vcpu *vcpu, int vec, u64 srr1_flags)
773 {
774 	unsigned long msr, pc, new_msr, new_pc;
775 
776 	msr = kvmppc_get_msr(vcpu);
777 	pc = kvmppc_get_pc(vcpu);
778 	new_msr = vcpu->arch.intr_msr;
779 	new_pc = vec;
780 
781 	/* If transactional, change to suspend mode on IRQ delivery */
782 	if (MSR_TM_TRANSACTIONAL(msr))
783 		new_msr |= MSR_TS_S;
784 	else
785 		new_msr |= msr & MSR_TS_MASK;
786 
787 	/*
788 	 * Perform MSR and PC adjustment for LPCR[AIL]=3 if it is set and
789 	 * applicable. AIL=2 is not supported.
790 	 *
791 	 * AIL does not apply to SRESET, MCE, or HMI (which is never
792 	 * delivered to the guest), and does not apply if IR=0 or DR=0.
793 	 */
794 	if (vec != BOOK3S_INTERRUPT_SYSTEM_RESET &&
795 	    vec != BOOK3S_INTERRUPT_MACHINE_CHECK &&
796 	    (vcpu->arch.vcore->lpcr & LPCR_AIL) == LPCR_AIL_3 &&
797 	    (msr & (MSR_IR|MSR_DR)) == (MSR_IR|MSR_DR) ) {
798 		new_msr |= MSR_IR | MSR_DR;
799 		new_pc += 0xC000000000004000ULL;
800 	}
801 
802 	kvmppc_set_srr0(vcpu, pc);
803 	kvmppc_set_srr1(vcpu, (msr & SRR1_MSR_BITS) | srr1_flags);
804 	kvmppc_set_pc(vcpu, new_pc);
805 	vcpu->arch.shregs.msr = new_msr;
806 }
807 
kvmppc_inject_interrupt_hv(struct kvm_vcpu * vcpu,int vec,u64 srr1_flags)808 void kvmppc_inject_interrupt_hv(struct kvm_vcpu *vcpu, int vec, u64 srr1_flags)
809 {
810 	inject_interrupt(vcpu, vec, srr1_flags);
811 	kvmppc_end_cede(vcpu);
812 }
813 EXPORT_SYMBOL_GPL(kvmppc_inject_interrupt_hv);
814 
815 /*
816  * Is there a PRIV_DOORBELL pending for the guest (on POWER9)?
817  * Can we inject a Decrementer or a External interrupt?
818  */
kvmppc_guest_entry_inject_int(struct kvm_vcpu * vcpu)819 void kvmppc_guest_entry_inject_int(struct kvm_vcpu *vcpu)
820 {
821 	int ext;
822 	unsigned long lpcr;
823 
824 	/* Insert EXTERNAL bit into LPCR at the MER bit position */
825 	ext = (vcpu->arch.pending_exceptions >> BOOK3S_IRQPRIO_EXTERNAL) & 1;
826 	lpcr = mfspr(SPRN_LPCR);
827 	lpcr |= ext << LPCR_MER_SH;
828 	mtspr(SPRN_LPCR, lpcr);
829 	isync();
830 
831 	if (vcpu->arch.shregs.msr & MSR_EE) {
832 		if (ext) {
833 			inject_interrupt(vcpu, BOOK3S_INTERRUPT_EXTERNAL, 0);
834 		} else {
835 			long int dec = mfspr(SPRN_DEC);
836 			if (!(lpcr & LPCR_LD))
837 				dec = (int) dec;
838 			if (dec < 0)
839 				inject_interrupt(vcpu,
840 					BOOK3S_INTERRUPT_DECREMENTER, 0);
841 		}
842 	}
843 
844 	if (vcpu->arch.doorbell_request) {
845 		mtspr(SPRN_DPDES, 1);
846 		vcpu->arch.vcore->dpdes = 1;
847 		smp_wmb();
848 		vcpu->arch.doorbell_request = 0;
849 	}
850 }
851 
flush_guest_tlb(struct kvm * kvm)852 static void flush_guest_tlb(struct kvm *kvm)
853 {
854 	unsigned long rb, set;
855 
856 	rb = PPC_BIT(52);	/* IS = 2 */
857 	if (kvm_is_radix(kvm)) {
858 		/* R=1 PRS=1 RIC=2 */
859 		asm volatile(PPC_TLBIEL(%0, %4, %3, %2, %1)
860 			     : : "r" (rb), "i" (1), "i" (1), "i" (2),
861 			       "r" (0) : "memory");
862 		for (set = 1; set < kvm->arch.tlb_sets; ++set) {
863 			rb += PPC_BIT(51);	/* increment set number */
864 			/* R=1 PRS=1 RIC=0 */
865 			asm volatile(PPC_TLBIEL(%0, %4, %3, %2, %1)
866 				     : : "r" (rb), "i" (1), "i" (1), "i" (0),
867 				       "r" (0) : "memory");
868 		}
869 		asm volatile("ptesync": : :"memory");
870 		// POWER9 congruence-class TLBIEL leaves ERAT. Flush it now.
871 		asm volatile(PPC_RADIX_INVALIDATE_ERAT_GUEST : : :"memory");
872 	} else {
873 		for (set = 0; set < kvm->arch.tlb_sets; ++set) {
874 			/* R=0 PRS=0 RIC=0 */
875 			asm volatile(PPC_TLBIEL(%0, %4, %3, %2, %1)
876 				     : : "r" (rb), "i" (0), "i" (0), "i" (0),
877 				       "r" (0) : "memory");
878 			rb += PPC_BIT(51);	/* increment set number */
879 		}
880 		asm volatile("ptesync": : :"memory");
881 		// POWER9 congruence-class TLBIEL leaves ERAT. Flush it now.
882 		if (cpu_has_feature(CPU_FTR_ARCH_300))
883 			asm volatile(PPC_ISA_3_0_INVALIDATE_ERAT : : :"memory");
884 	}
885 }
886 
kvmppc_check_need_tlb_flush(struct kvm * kvm,int pcpu,struct kvm_nested_guest * nested)887 void kvmppc_check_need_tlb_flush(struct kvm *kvm, int pcpu,
888 				 struct kvm_nested_guest *nested)
889 {
890 	cpumask_t *need_tlb_flush;
891 
892 	/*
893 	 * On POWER9, individual threads can come in here, but the
894 	 * TLB is shared between the 4 threads in a core, hence
895 	 * invalidating on one thread invalidates for all.
896 	 * Thus we make all 4 threads use the same bit.
897 	 */
898 	if (cpu_has_feature(CPU_FTR_ARCH_300))
899 		pcpu = cpu_first_tlb_thread_sibling(pcpu);
900 
901 	if (nested)
902 		need_tlb_flush = &nested->need_tlb_flush;
903 	else
904 		need_tlb_flush = &kvm->arch.need_tlb_flush;
905 
906 	if (cpumask_test_cpu(pcpu, need_tlb_flush)) {
907 		flush_guest_tlb(kvm);
908 
909 		/* Clear the bit after the TLB flush */
910 		cpumask_clear_cpu(pcpu, need_tlb_flush);
911 	}
912 }
913 EXPORT_SYMBOL_GPL(kvmppc_check_need_tlb_flush);
914