• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /**************************************************************************
2  *
3  * Copyright 2009 VMware, Inc.
4  * Copyright 2007 VMware, Inc.
5  * All Rights Reserved.
6  *
7  * Permission is hereby granted, free of charge, to any person obtaining a
8  * copy of this software and associated documentation files (the
9  * "Software"), to deal in the Software without restriction, including
10  * without limitation the rights to use, copy, modify, merge, publish,
11  * distribute, sub license, and/or sell copies of the Software, and to
12  * permit persons to whom the Software is furnished to do so, subject to
13  * the following conditions:
14  *
15  * The above copyright notice and this permission notice (including the
16  * next paragraph) shall be included in all copies or substantial portions
17  * of the Software.
18  *
19  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20  * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22  * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
23  * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24  * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25  * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26  *
27  **************************************************************************/
28 
29 /**
30  * @file
31  * Code generate the whole fragment pipeline.
32  *
33  * The fragment pipeline consists of the following stages:
34  * - early depth test
35  * - fragment shader
36  * - alpha test
37  * - depth/stencil test
38  * - blending
39  *
40  * This file has only the glue to assemble the fragment pipeline.  The actual
41  * plumbing of converting Gallium state into LLVM IR is done elsewhere, in the
42  * lp_bld_*.[ch] files, and in a complete generic and reusable way. Here we
43  * muster the LLVM JIT execution engine to create a function that follows an
44  * established binary interface and that can be called from C directly.
45  *
46  * A big source of complexity here is that we often want to run different
47  * stages with different precisions and data types and precisions. For example,
48  * the fragment shader needs typically to be done in floats, but the
49  * depth/stencil test and blending is better done in the type that most closely
50  * matches the depth/stencil and color buffer respectively.
51  *
52  * Since the width of a SIMD vector register stays the same regardless of the
53  * element type, different types imply different number of elements, so we must
54  * code generate more instances of the stages with larger types to be able to
55  * feed/consume the stages with smaller types.
56  *
57  * @author Jose Fonseca <jfonseca@vmware.com>
58  */
59 
60 #include <limits.h>
61 #include "pipe/p_defines.h"
62 #include "util/u_inlines.h"
63 #include "util/u_memory.h"
64 #include "util/u_pointer.h"
65 #include "util/format/u_format.h"
66 #include "util/u_dump.h"
67 #include "util/u_string.h"
68 #include "util/simple_list.h"
69 #include "util/u_dual_blend.h"
70 #include "util/u_upload_mgr.h"
71 #include "util/os_time.h"
72 #include "pipe/p_shader_tokens.h"
73 #include "draw/draw_context.h"
74 #include "tgsi/tgsi_dump.h"
75 #include "tgsi/tgsi_scan.h"
76 #include "tgsi/tgsi_parse.h"
77 #include "gallivm/lp_bld_type.h"
78 #include "gallivm/lp_bld_const.h"
79 #include "gallivm/lp_bld_conv.h"
80 #include "gallivm/lp_bld_init.h"
81 #include "gallivm/lp_bld_intr.h"
82 #include "gallivm/lp_bld_logic.h"
83 #include "gallivm/lp_bld_tgsi.h"
84 #include "gallivm/lp_bld_nir.h"
85 #include "gallivm/lp_bld_swizzle.h"
86 #include "gallivm/lp_bld_flow.h"
87 #include "gallivm/lp_bld_debug.h"
88 #include "gallivm/lp_bld_arit.h"
89 #include "gallivm/lp_bld_bitarit.h"
90 #include "gallivm/lp_bld_pack.h"
91 #include "gallivm/lp_bld_format.h"
92 #include "gallivm/lp_bld_quad.h"
93 #include "gallivm/lp_bld_gather.h"
94 
95 #include "lp_bld_alpha.h"
96 #include "lp_bld_blend.h"
97 #include "lp_bld_depth.h"
98 #include "lp_bld_interp.h"
99 #include "lp_context.h"
100 #include "lp_debug.h"
101 #include "lp_perf.h"
102 #include "lp_setup.h"
103 #include "lp_state.h"
104 #include "lp_tex_sample.h"
105 #include "lp_flush.h"
106 #include "lp_state_fs.h"
107 #include "lp_rast.h"
108 #include "nir/nir_to_tgsi_info.h"
109 
110 #include "lp_screen.h"
111 #include "compiler/nir/nir_serialize.h"
112 #include "util/mesa-sha1.h"
113 /** Fragment shader number (for debugging) */
114 static unsigned fs_no = 0;
115 
116 static void
117 load_unswizzled_block(struct gallivm_state *gallivm,
118                       LLVMValueRef base_ptr,
119                       LLVMValueRef stride,
120                       unsigned block_width,
121                       unsigned block_height,
122                       LLVMValueRef* dst,
123                       struct lp_type dst_type,
124                       unsigned dst_count,
125                       unsigned dst_alignment,
126                       LLVMValueRef x_offset,
127                       LLVMValueRef y_offset,
128                       bool fb_fetch_twiddle);
129 /**
130  * Checks if a format description is an arithmetic format
131  *
132  * A format which has irregular channel sizes such as R3_G3_B2 or R5_G6_B5.
133  */
134 static inline boolean
is_arithmetic_format(const struct util_format_description * format_desc)135 is_arithmetic_format(const struct util_format_description *format_desc)
136 {
137    boolean arith = false;
138    unsigned i;
139 
140    for (i = 0; i < format_desc->nr_channels; ++i) {
141       arith |= format_desc->channel[i].size != format_desc->channel[0].size;
142       arith |= (format_desc->channel[i].size % 8) != 0;
143    }
144 
145    return arith;
146 }
147 
148 /**
149  * Checks if this format requires special handling due to required expansion
150  * to floats for blending, and furthermore has "natural" packed AoS -> unpacked
151  * SoA conversion.
152  */
153 static inline boolean
format_expands_to_float_soa(const struct util_format_description * format_desc)154 format_expands_to_float_soa(const struct util_format_description *format_desc)
155 {
156    if (format_desc->format == PIPE_FORMAT_R11G11B10_FLOAT ||
157        format_desc->colorspace == UTIL_FORMAT_COLORSPACE_SRGB) {
158       return true;
159    }
160    return false;
161 }
162 
163 
164 /**
165  * Retrieves the type representing the memory layout for a format
166  *
167  * e.g. RGBA16F = 4x half-float and R3G3B2 = 1x byte
168  */
169 static inline void
lp_mem_type_from_format_desc(const struct util_format_description * format_desc,struct lp_type * type)170 lp_mem_type_from_format_desc(const struct util_format_description *format_desc,
171                              struct lp_type* type)
172 {
173    unsigned i;
174    unsigned chan;
175 
176    if (format_expands_to_float_soa(format_desc)) {
177       /* just make this a uint with width of block */
178       type->floating = false;
179       type->fixed = false;
180       type->sign = false;
181       type->norm = false;
182       type->width = format_desc->block.bits;
183       type->length = 1;
184       return;
185    }
186 
187    for (i = 0; i < 4; i++)
188       if (format_desc->channel[i].type != UTIL_FORMAT_TYPE_VOID)
189          break;
190    chan = i;
191 
192    memset(type, 0, sizeof(struct lp_type));
193    type->floating = format_desc->channel[chan].type == UTIL_FORMAT_TYPE_FLOAT;
194    type->fixed    = format_desc->channel[chan].type == UTIL_FORMAT_TYPE_FIXED;
195    type->sign     = format_desc->channel[chan].type != UTIL_FORMAT_TYPE_UNSIGNED;
196    type->norm     = format_desc->channel[chan].normalized;
197 
198    if (is_arithmetic_format(format_desc)) {
199       type->width = 0;
200       type->length = 1;
201 
202       for (i = 0; i < format_desc->nr_channels; ++i) {
203          type->width += format_desc->channel[i].size;
204       }
205    } else {
206       type->width = format_desc->channel[chan].size;
207       type->length = format_desc->nr_channels;
208    }
209 }
210 
211 /**
212  * Expand the relevant bits of mask_input to a n*4-dword mask for the
213  * n*four pixels in n 2x2 quads.  This will set the n*four elements of the
214  * quad mask vector to 0 or ~0.
215  * Grouping is 01, 23 for 2 quad mode hence only 0 and 2 are valid
216  * quad arguments with fs length 8.
217  *
218  * \param first_quad  which quad(s) of the quad group to test, in [0,3]
219  * \param mask_input  bitwise mask for the whole 4x4 stamp
220  */
221 static LLVMValueRef
generate_quad_mask(struct gallivm_state * gallivm,struct lp_type fs_type,unsigned first_quad,unsigned sample,LLVMValueRef mask_input)222 generate_quad_mask(struct gallivm_state *gallivm,
223                    struct lp_type fs_type,
224                    unsigned first_quad,
225                    unsigned sample,
226                    LLVMValueRef mask_input) /* int64 */
227 {
228    LLVMBuilderRef builder = gallivm->builder;
229    struct lp_type mask_type;
230    LLVMTypeRef i32t = LLVMInt32TypeInContext(gallivm->context);
231    LLVMValueRef bits[16];
232    LLVMValueRef mask, bits_vec;
233    int shift, i;
234 
235    /*
236     * XXX: We'll need a different path for 16 x u8
237     */
238    assert(fs_type.width == 32);
239    assert(fs_type.length <= ARRAY_SIZE(bits));
240    mask_type = lp_int_type(fs_type);
241 
242    /*
243     * mask_input >>= (quad * 4)
244     */
245    switch (first_quad) {
246    case 0:
247       shift = 0;
248       break;
249    case 1:
250       assert(fs_type.length == 4);
251       shift = 2;
252       break;
253    case 2:
254       shift = 8;
255       break;
256    case 3:
257       assert(fs_type.length == 4);
258       shift = 10;
259       break;
260    default:
261       assert(0);
262       shift = 0;
263    }
264 
265    mask_input = LLVMBuildLShr(builder, mask_input, lp_build_const_int64(gallivm, 16 * sample), "");
266    mask_input = LLVMBuildTrunc(builder, mask_input,
267                                i32t, "");
268    mask_input = LLVMBuildAnd(builder, mask_input, lp_build_const_int32(gallivm, 0xffff), "");
269 
270    mask_input = LLVMBuildLShr(builder,
271                               mask_input,
272                               LLVMConstInt(i32t, shift, 0),
273                               "");
274 
275    /*
276     * mask = { mask_input & (1 << i), for i in [0,3] }
277     */
278    mask = lp_build_broadcast(gallivm,
279                              lp_build_vec_type(gallivm, mask_type),
280                              mask_input);
281 
282    for (i = 0; i < fs_type.length / 4; i++) {
283       unsigned j = 2 * (i % 2) + (i / 2) * 8;
284       bits[4*i + 0] = LLVMConstInt(i32t, 1ULL << (j + 0), 0);
285       bits[4*i + 1] = LLVMConstInt(i32t, 1ULL << (j + 1), 0);
286       bits[4*i + 2] = LLVMConstInt(i32t, 1ULL << (j + 4), 0);
287       bits[4*i + 3] = LLVMConstInt(i32t, 1ULL << (j + 5), 0);
288    }
289    bits_vec = LLVMConstVector(bits, fs_type.length);
290    mask = LLVMBuildAnd(builder, mask, bits_vec, "");
291 
292    /*
293     * mask = mask == bits ? ~0 : 0
294     */
295    mask = lp_build_compare(gallivm,
296                            mask_type, PIPE_FUNC_EQUAL,
297                            mask, bits_vec);
298 
299    return mask;
300 }
301 
302 
303 #define EARLY_DEPTH_TEST  0x1
304 #define LATE_DEPTH_TEST   0x2
305 #define EARLY_DEPTH_WRITE 0x4
306 #define LATE_DEPTH_WRITE  0x8
307 
308 static int
find_output_by_semantic(const struct tgsi_shader_info * info,unsigned semantic,unsigned index)309 find_output_by_semantic( const struct tgsi_shader_info *info,
310 			 unsigned semantic,
311 			 unsigned index )
312 {
313    int i;
314 
315    for (i = 0; i < info->num_outputs; i++)
316       if (info->output_semantic_name[i] == semantic &&
317 	  info->output_semantic_index[i] == index)
318 	 return i;
319 
320    return -1;
321 }
322 
323 
324 /**
325  * Fetch the specified lp_jit_viewport structure for a given viewport_index.
326  */
327 static LLVMValueRef
lp_llvm_viewport(LLVMValueRef context_ptr,struct gallivm_state * gallivm,LLVMValueRef viewport_index)328 lp_llvm_viewport(LLVMValueRef context_ptr,
329                  struct gallivm_state *gallivm,
330                  LLVMValueRef viewport_index)
331 {
332    LLVMBuilderRef builder = gallivm->builder;
333    LLVMValueRef ptr;
334    LLVMValueRef res;
335    struct lp_type viewport_type =
336       lp_type_float_vec(32, 32 * LP_JIT_VIEWPORT_NUM_FIELDS);
337 
338    ptr = lp_jit_context_viewports(gallivm, context_ptr);
339    ptr = LLVMBuildPointerCast(builder, ptr,
340             LLVMPointerType(lp_build_vec_type(gallivm, viewport_type), 0), "");
341 
342    res = lp_build_pointer_get(builder, ptr, viewport_index);
343 
344    return res;
345 }
346 
347 
348 static LLVMValueRef
lp_build_depth_clamp(struct gallivm_state * gallivm,LLVMBuilderRef builder,struct lp_type type,LLVMValueRef context_ptr,LLVMValueRef thread_data_ptr,LLVMValueRef z)349 lp_build_depth_clamp(struct gallivm_state *gallivm,
350                      LLVMBuilderRef builder,
351                      struct lp_type type,
352                      LLVMValueRef context_ptr,
353                      LLVMValueRef thread_data_ptr,
354                      LLVMValueRef z)
355 {
356    LLVMValueRef viewport, min_depth, max_depth;
357    LLVMValueRef viewport_index;
358    struct lp_build_context f32_bld;
359 
360    assert(type.floating);
361    lp_build_context_init(&f32_bld, gallivm, type);
362 
363    /*
364     * Assumes clamping of the viewport index will occur in setup/gs. Value
365     * is passed through the rasterization stage via lp_rast_shader_inputs.
366     *
367     * See: draw_clamp_viewport_idx and lp_clamp_viewport_idx for clamping
368     *      semantics.
369     */
370    viewport_index = lp_jit_thread_data_raster_state_viewport_index(gallivm,
371                        thread_data_ptr);
372 
373    /*
374     * Load the min and max depth from the lp_jit_context.viewports
375     * array of lp_jit_viewport structures.
376     */
377    viewport = lp_llvm_viewport(context_ptr, gallivm, viewport_index);
378 
379    /* viewports[viewport_index].min_depth */
380    min_depth = LLVMBuildExtractElement(builder, viewport,
381                   lp_build_const_int32(gallivm, LP_JIT_VIEWPORT_MIN_DEPTH), "");
382    min_depth = lp_build_broadcast_scalar(&f32_bld, min_depth);
383 
384    /* viewports[viewport_index].max_depth */
385    max_depth = LLVMBuildExtractElement(builder, viewport,
386                   lp_build_const_int32(gallivm, LP_JIT_VIEWPORT_MAX_DEPTH), "");
387    max_depth = lp_build_broadcast_scalar(&f32_bld, max_depth);
388 
389    /*
390     * Clamp to the min and max depth values for the given viewport.
391     */
392    return lp_build_clamp(&f32_bld, z, min_depth, max_depth);
393 }
394 
395 static void
lp_build_sample_alpha_to_coverage(struct gallivm_state * gallivm,struct lp_type type,unsigned coverage_samples,LLVMValueRef num_loop,LLVMValueRef loop_counter,LLVMValueRef coverage_mask_store,LLVMValueRef alpha)396 lp_build_sample_alpha_to_coverage(struct gallivm_state *gallivm,
397                                   struct lp_type type,
398                                   unsigned coverage_samples,
399                                   LLVMValueRef num_loop,
400                                   LLVMValueRef loop_counter,
401                                   LLVMValueRef coverage_mask_store,
402                                   LLVMValueRef alpha)
403 {
404    struct lp_build_context bld;
405    LLVMBuilderRef builder = gallivm->builder;
406    float step = 1.0 / coverage_samples;
407 
408    lp_build_context_init(&bld, gallivm, type);
409    for (unsigned s = 0; s < coverage_samples; s++) {
410       LLVMValueRef alpha_ref_value = lp_build_const_vec(gallivm, type, step * s);
411       LLVMValueRef test = lp_build_cmp(&bld, PIPE_FUNC_GREATER, alpha, alpha_ref_value);
412 
413       LLVMValueRef s_mask_idx = LLVMBuildMul(builder, lp_build_const_int32(gallivm, s), num_loop, "");
414       s_mask_idx = LLVMBuildAdd(builder, s_mask_idx, loop_counter, "");
415       LLVMValueRef s_mask_ptr = LLVMBuildGEP(builder, coverage_mask_store, &s_mask_idx, 1, "");
416       LLVMValueRef s_mask = LLVMBuildLoad(builder, s_mask_ptr, "");
417       s_mask = LLVMBuildAnd(builder, s_mask, test, "");
418       LLVMBuildStore(builder, s_mask, s_mask_ptr);
419    }
420 };
421 
422 struct lp_build_fs_llvm_iface {
423    struct lp_build_fs_iface base;
424    struct lp_build_interp_soa_context *interp;
425    struct lp_build_for_loop_state *loop_state;
426    LLVMValueRef mask_store;
427    LLVMValueRef sample_id;
428    LLVMValueRef color_ptr_ptr;
429    LLVMValueRef color_stride_ptr;
430    LLVMValueRef color_sample_stride_ptr;
431    const struct lp_fragment_shader_variant_key *key;
432 };
433 
fs_interp(const struct lp_build_fs_iface * iface,struct lp_build_context * bld,unsigned attrib,unsigned chan,bool centroid,bool sample,LLVMValueRef attrib_indir,LLVMValueRef offsets[2])434 static LLVMValueRef fs_interp(const struct lp_build_fs_iface *iface,
435                               struct lp_build_context *bld,
436                               unsigned attrib, unsigned chan,
437                               bool centroid, bool sample,
438                               LLVMValueRef attrib_indir,
439                               LLVMValueRef offsets[2])
440 {
441    struct lp_build_fs_llvm_iface *fs_iface = (struct lp_build_fs_llvm_iface *)iface;
442    struct lp_build_interp_soa_context *interp = fs_iface->interp;
443    unsigned loc = TGSI_INTERPOLATE_LOC_CENTER;
444    if (centroid)
445       loc = TGSI_INTERPOLATE_LOC_CENTROID;
446    if (sample)
447       loc = TGSI_INTERPOLATE_LOC_SAMPLE;
448 
449    return lp_build_interp_soa(interp, bld->gallivm, fs_iface->loop_state->counter,
450                               fs_iface->mask_store,
451                               attrib, chan, loc, attrib_indir, offsets);
452 }
453 
fs_fb_fetch(const struct lp_build_fs_iface * iface,struct lp_build_context * bld,int location,LLVMValueRef result[4])454 static void fs_fb_fetch(const struct lp_build_fs_iface *iface,
455                         struct lp_build_context *bld,
456                         int location,
457                         LLVMValueRef result[4])
458 {
459    assert(location >= FRAG_RESULT_DATA0 && location <= FRAG_RESULT_DATA7);
460    const int cbuf = location - FRAG_RESULT_DATA0;
461 
462    struct lp_build_fs_llvm_iface *fs_iface = (struct lp_build_fs_llvm_iface *)iface;
463    struct gallivm_state *gallivm = bld->gallivm;
464    LLVMBuilderRef builder = gallivm->builder;
465    const struct lp_fragment_shader_variant_key *key = fs_iface->key;
466    LLVMValueRef index = lp_build_const_int32(gallivm, cbuf);
467    LLVMValueRef color_ptr = LLVMBuildLoad(builder, LLVMBuildGEP(builder, fs_iface->color_ptr_ptr, &index, 1, ""), "");
468    LLVMValueRef stride = LLVMBuildLoad(builder, LLVMBuildGEP(builder, fs_iface->color_stride_ptr, &index, 1, ""), "");
469 
470    LLVMValueRef dst[4 * 4];
471    enum pipe_format cbuf_format = key->cbuf_format[cbuf];
472    const struct util_format_description* out_format_desc = util_format_description(cbuf_format);
473    struct lp_type dst_type;
474    unsigned block_size = bld->type.length;
475    unsigned block_height = key->resource_1d ? 1 : 2;
476    unsigned block_width = block_size / block_height;
477 
478    lp_mem_type_from_format_desc(out_format_desc, &dst_type);
479 
480    struct lp_type blend_type;
481    memset(&blend_type, 0, sizeof blend_type);
482    blend_type.floating = FALSE; /* values are integers */
483    blend_type.sign = FALSE;     /* values are unsigned */
484    blend_type.norm = TRUE;      /* values are in [0,1] or [-1,1] */
485    blend_type.width = 8;        /* 8-bit ubyte values */
486    blend_type.length = 16;      /* 16 elements per vector */
487 
488    uint32_t dst_alignment;
489    /*
490     * Compute the alignment of the destination pointer in bytes
491     * We fetch 1-4 pixels, if the format has pot alignment then those fetches
492     * are always aligned by MIN2(16, fetch_width) except for buffers (not
493     * 1d tex but can't distinguish here) so need to stick with per-pixel
494     * alignment in this case.
495     */
496    if (key->resource_1d) {
497       dst_alignment = (out_format_desc->block.bits + 7)/(out_format_desc->block.width * 8);
498    }
499    else {
500       dst_alignment = dst_type.length * dst_type.width / 8;
501    }
502    /* Force power-of-two alignment by extracting only the least-significant-bit */
503    dst_alignment = 1 << (ffs(dst_alignment) - 1);
504    /*
505     * Resource base and stride pointers are aligned to 16 bytes, so that's
506     * the maximum alignment we can guarantee
507     */
508    dst_alignment = MIN2(16, dst_alignment);
509 
510    LLVMTypeRef blend_vec_type = lp_build_vec_type(gallivm, blend_type);
511    color_ptr = LLVMBuildBitCast(builder, color_ptr, LLVMPointerType(blend_vec_type, 0), "");
512 
513    if (key->multisample) {
514       LLVMValueRef sample_stride = LLVMBuildLoad(builder,
515                                                  LLVMBuildGEP(builder, fs_iface->color_sample_stride_ptr,
516                                                               &index, 1, ""), "");
517       LLVMValueRef sample_offset = LLVMBuildMul(builder, sample_stride, fs_iface->sample_id, "");
518       color_ptr = LLVMBuildGEP(builder, color_ptr, &sample_offset, 1, "");
519    }
520    /* fragment shader executes on 4x4 blocks. depending on vector width it can execute 2 or 4 iterations.
521     * only move to the next row once the top row has completed 8 wide 1 iteration, 4 wide 2 iterations */
522    LLVMValueRef x_offset = NULL, y_offset = NULL;
523    if (!key->resource_1d) {
524       LLVMValueRef counter = fs_iface->loop_state->counter;
525 
526       if (block_size == 4) {
527          x_offset = LLVMBuildShl(builder,
528                                  LLVMBuildAnd(builder, fs_iface->loop_state->counter, lp_build_const_int32(gallivm, 1), ""),
529                                  lp_build_const_int32(gallivm, 1), "");
530          counter = LLVMBuildLShr(builder, fs_iface->loop_state->counter, lp_build_const_int32(gallivm, 1), "");
531       }
532       y_offset = LLVMBuildMul(builder, counter, lp_build_const_int32(gallivm, 2), "");
533    }
534    load_unswizzled_block(gallivm, color_ptr, stride, block_width, block_height, dst, dst_type, block_size, dst_alignment, x_offset, y_offset, true);
535 
536    for (unsigned i = 0; i < block_size; i++) {
537       dst[i] = LLVMBuildBitCast(builder, dst[i], LLVMInt32TypeInContext(gallivm->context), "");
538    }
539    LLVMValueRef packed = lp_build_gather_values(gallivm, dst, block_size);
540 
541    struct lp_type texel_type = bld->type;
542    if (out_format_desc->colorspace == UTIL_FORMAT_COLORSPACE_RGB &&
543        out_format_desc->channel[0].pure_integer) {
544       if (out_format_desc->channel[0].type == UTIL_FORMAT_TYPE_SIGNED) {
545          texel_type = lp_type_int_vec(bld->type.width, bld->type.width * bld->type.length);
546       }
547       else if (out_format_desc->channel[0].type == UTIL_FORMAT_TYPE_UNSIGNED) {
548          texel_type = lp_type_uint_vec(bld->type.width, bld->type.width * bld->type.length);
549       }
550    }
551    lp_build_unpack_rgba_soa(gallivm, out_format_desc,
552                             texel_type,
553                             packed, result);
554 }
555 
556 /**
557  * Generate the fragment shader, depth/stencil test, and alpha tests.
558  */
559 static void
generate_fs_loop(struct gallivm_state * gallivm,struct lp_fragment_shader * shader,const struct lp_fragment_shader_variant_key * key,LLVMBuilderRef builder,struct lp_type type,LLVMValueRef context_ptr,LLVMValueRef sample_pos_array,LLVMValueRef num_loop,struct lp_build_interp_soa_context * interp,const struct lp_build_sampler_soa * sampler,const struct lp_build_image_soa * image,LLVMValueRef mask_store,LLVMValueRef (* out_color)[4],LLVMValueRef depth_base_ptr,LLVMValueRef depth_stride,LLVMValueRef depth_sample_stride,LLVMValueRef color_ptr_ptr,LLVMValueRef color_stride_ptr,LLVMValueRef color_sample_stride_ptr,LLVMValueRef facing,LLVMValueRef thread_data_ptr)560 generate_fs_loop(struct gallivm_state *gallivm,
561                  struct lp_fragment_shader *shader,
562                  const struct lp_fragment_shader_variant_key *key,
563                  LLVMBuilderRef builder,
564                  struct lp_type type,
565                  LLVMValueRef context_ptr,
566                  LLVMValueRef sample_pos_array,
567                  LLVMValueRef num_loop,
568                  struct lp_build_interp_soa_context *interp,
569                  const struct lp_build_sampler_soa *sampler,
570                  const struct lp_build_image_soa *image,
571                  LLVMValueRef mask_store,
572                  LLVMValueRef (*out_color)[4],
573                  LLVMValueRef depth_base_ptr,
574                  LLVMValueRef depth_stride,
575                  LLVMValueRef depth_sample_stride,
576                  LLVMValueRef color_ptr_ptr,
577                  LLVMValueRef color_stride_ptr,
578                  LLVMValueRef color_sample_stride_ptr,
579                  LLVMValueRef facing,
580                  LLVMValueRef thread_data_ptr)
581 {
582    const struct util_format_description *zs_format_desc = NULL;
583    const struct tgsi_token *tokens = shader->base.tokens;
584    struct lp_type int_type = lp_int_type(type);
585    LLVMTypeRef vec_type, int_vec_type;
586    LLVMValueRef mask_ptr = NULL, mask_val = NULL;
587    LLVMValueRef consts_ptr, num_consts_ptr;
588    LLVMValueRef ssbo_ptr, num_ssbo_ptr;
589    LLVMValueRef z;
590    LLVMValueRef z_value, s_value;
591    LLVMValueRef z_fb, s_fb;
592    LLVMValueRef depth_ptr;
593    LLVMValueRef stencil_refs[2];
594    LLVMValueRef outputs[PIPE_MAX_SHADER_OUTPUTS][TGSI_NUM_CHANNELS];
595    LLVMValueRef zs_samples = lp_build_const_int32(gallivm, key->zsbuf_nr_samples);
596    LLVMValueRef z_out = NULL, s_out = NULL;
597    struct lp_build_for_loop_state loop_state, sample_loop_state = {0};
598    struct lp_build_mask_context mask;
599    /*
600     * TODO: figure out if simple_shader optimization is really worthwile to
601     * keep. Disabled because it may hide some real bugs in the (depth/stencil)
602     * code since tests tend to take another codepath than real shaders.
603     */
604    boolean simple_shader = (shader->info.base.file_count[TGSI_FILE_SAMPLER] == 0 &&
605                             shader->info.base.num_inputs < 3 &&
606                             shader->info.base.num_instructions < 8) && 0;
607    const boolean dual_source_blend = key->blend.rt[0].blend_enable &&
608                                      util_blend_state_is_dual(&key->blend, 0);
609    const bool post_depth_coverage = shader->info.base.properties[TGSI_PROPERTY_FS_POST_DEPTH_COVERAGE];
610    unsigned attrib;
611    unsigned chan;
612    unsigned cbuf;
613    unsigned depth_mode;
614 
615    struct lp_bld_tgsi_system_values system_values;
616 
617    memset(&system_values, 0, sizeof(system_values));
618 
619    /* truncate then sign extend. */
620    system_values.front_facing = LLVMBuildTrunc(gallivm->builder, facing, LLVMInt1TypeInContext(gallivm->context), "");
621    system_values.front_facing = LLVMBuildSExt(gallivm->builder, system_values.front_facing, LLVMInt32TypeInContext(gallivm->context), "");
622    system_values.view_index = lp_jit_thread_data_raster_state_view_index(gallivm,
623                                                                          thread_data_ptr);
624    if (key->depth.enabled ||
625        key->stencil[0].enabled) {
626 
627       zs_format_desc = util_format_description(key->zsbuf_format);
628       assert(zs_format_desc);
629 
630       if (shader->info.base.properties[TGSI_PROPERTY_FS_EARLY_DEPTH_STENCIL])
631          depth_mode = EARLY_DEPTH_TEST | EARLY_DEPTH_WRITE;
632       else if (!shader->info.base.writes_z && !shader->info.base.writes_stencil) {
633          if (shader->info.base.writes_memory)
634             depth_mode = LATE_DEPTH_TEST | LATE_DEPTH_WRITE;
635          else if (key->alpha.enabled ||
636              key->blend.alpha_to_coverage ||
637              shader->info.base.uses_kill ||
638              shader->info.base.writes_samplemask) {
639             /* With alpha test and kill, can do the depth test early
640              * and hopefully eliminate some quads.  But need to do a
641              * special deferred depth write once the final mask value
642              * is known. This only works though if there's either no
643              * stencil test or the stencil value isn't written.
644              */
645             if (key->stencil[0].enabled && (key->stencil[0].writemask ||
646                                             (key->stencil[1].enabled &&
647                                              key->stencil[1].writemask)))
648                depth_mode = LATE_DEPTH_TEST | LATE_DEPTH_WRITE;
649             else
650                depth_mode = EARLY_DEPTH_TEST | LATE_DEPTH_WRITE;
651          }
652          else
653             depth_mode = EARLY_DEPTH_TEST | EARLY_DEPTH_WRITE;
654       }
655       else {
656          depth_mode = LATE_DEPTH_TEST | LATE_DEPTH_WRITE;
657       }
658 
659       if (!(key->depth.enabled && key->depth.writemask) &&
660           !(key->stencil[0].enabled && (key->stencil[0].writemask ||
661                                         (key->stencil[1].enabled &&
662                                          key->stencil[1].writemask))))
663          depth_mode &= ~(LATE_DEPTH_WRITE | EARLY_DEPTH_WRITE);
664    }
665    else {
666       depth_mode = 0;
667    }
668 
669    vec_type = lp_build_vec_type(gallivm, type);
670    int_vec_type = lp_build_vec_type(gallivm, int_type);
671 
672    stencil_refs[0] = lp_jit_context_stencil_ref_front_value(gallivm, context_ptr);
673    stencil_refs[1] = lp_jit_context_stencil_ref_back_value(gallivm, context_ptr);
674    /* convert scalar stencil refs into vectors */
675    stencil_refs[0] = lp_build_broadcast(gallivm, int_vec_type, stencil_refs[0]);
676    stencil_refs[1] = lp_build_broadcast(gallivm, int_vec_type, stencil_refs[1]);
677 
678    consts_ptr = lp_jit_context_constants(gallivm, context_ptr);
679    num_consts_ptr = lp_jit_context_num_constants(gallivm, context_ptr);
680 
681    ssbo_ptr = lp_jit_context_ssbos(gallivm, context_ptr);
682    num_ssbo_ptr = lp_jit_context_num_ssbos(gallivm, context_ptr);
683 
684    memset(outputs, 0, sizeof outputs);
685 
686    /* Allocate color storage for each fragment sample */
687    LLVMValueRef color_store_size = num_loop;
688    if (key->min_samples > 1)
689       color_store_size = LLVMBuildMul(builder, num_loop, lp_build_const_int32(gallivm, key->min_samples), "");
690 
691    for(cbuf = 0; cbuf < key->nr_cbufs; cbuf++) {
692       for(chan = 0; chan < TGSI_NUM_CHANNELS; ++chan) {
693          out_color[cbuf][chan] = lp_build_array_alloca(gallivm,
694                                                        lp_build_vec_type(gallivm,
695                                                                          type),
696                                                        color_store_size, "color");
697       }
698    }
699    if (dual_source_blend) {
700       assert(key->nr_cbufs <= 1);
701       for(chan = 0; chan < TGSI_NUM_CHANNELS; ++chan) {
702          out_color[1][chan] = lp_build_array_alloca(gallivm,
703                                                     lp_build_vec_type(gallivm,
704                                                                       type),
705                                                     color_store_size, "color1");
706       }
707    }
708    if (shader->info.base.writes_z) {
709       z_out = lp_build_array_alloca(gallivm,
710                                     lp_build_vec_type(gallivm, type),
711                                     color_store_size, "depth");
712    }
713 
714    if (shader->info.base.writes_stencil) {
715       s_out = lp_build_array_alloca(gallivm,
716                                     lp_build_vec_type(gallivm, type),
717                                     color_store_size, "depth");
718    }
719 
720    lp_build_for_loop_begin(&loop_state, gallivm,
721                            lp_build_const_int32(gallivm, 0),
722                            LLVMIntULT,
723                            num_loop,
724                            lp_build_const_int32(gallivm, 1));
725 
726    LLVMValueRef sample_mask_in;
727    if (key->multisample) {
728       sample_mask_in = lp_build_const_int_vec(gallivm, type, 0);
729       /* create shader execution mask by combining all sample masks. */
730       for (unsigned s = 0; s < key->coverage_samples; s++) {
731          LLVMValueRef s_mask_idx = LLVMBuildMul(builder, num_loop, lp_build_const_int32(gallivm, s), "");
732          s_mask_idx = LLVMBuildAdd(builder, s_mask_idx, loop_state.counter, "");
733          LLVMValueRef s_mask = lp_build_pointer_get(builder, mask_store, s_mask_idx);
734          if (s == 0)
735             mask_val = s_mask;
736          else
737             mask_val = LLVMBuildOr(builder, s_mask, mask_val, "");
738 
739          LLVMValueRef mask_in = LLVMBuildAnd(builder, s_mask, lp_build_const_int_vec(gallivm, type, (1ll << s)), "");
740          sample_mask_in = LLVMBuildOr(builder, sample_mask_in, mask_in, "");
741       }
742    } else {
743       sample_mask_in = lp_build_const_int_vec(gallivm, type, 1);
744       mask_ptr = LLVMBuildGEP(builder, mask_store,
745                               &loop_state.counter, 1, "mask_ptr");
746       mask_val = LLVMBuildLoad(builder, mask_ptr, "");
747 
748       LLVMValueRef mask_in = LLVMBuildAnd(builder, mask_val, lp_build_const_int_vec(gallivm, type, 1), "");
749       sample_mask_in = LLVMBuildOr(builder, sample_mask_in, mask_in, "");
750    }
751 
752    /* 'mask' will control execution based on quad's pixel alive/killed state */
753    lp_build_mask_begin(&mask, gallivm, type, mask_val);
754 
755    if (!(depth_mode & EARLY_DEPTH_TEST) && !simple_shader)
756       lp_build_mask_check(&mask);
757 
758    /* Create storage for recombining sample masks after early Z pass. */
759    LLVMValueRef s_mask_or = lp_build_alloca(gallivm, lp_build_int_vec_type(gallivm, type), "cov_mask_early_depth");
760    LLVMBuildStore(builder, LLVMConstNull(lp_build_int_vec_type(gallivm, type)), s_mask_or);
761 
762    /* Create storage for post depth sample mask */
763    LLVMValueRef post_depth_sample_mask_in = NULL;
764    if (post_depth_coverage)
765       post_depth_sample_mask_in = lp_build_alloca(gallivm, int_vec_type, "post_depth_sample_mask_in");
766 
767    LLVMValueRef s_mask = NULL, s_mask_ptr = NULL;
768    LLVMValueRef z_sample_value_store = NULL, s_sample_value_store = NULL;
769    LLVMValueRef z_fb_store = NULL, s_fb_store = NULL;
770    LLVMTypeRef z_type = NULL, z_fb_type = NULL;
771 
772    /* Run early depth once per sample */
773    if (key->multisample) {
774 
775       if (zs_format_desc) {
776          struct lp_type zs_type = lp_depth_type(zs_format_desc, type.length);
777          struct lp_type z_type = zs_type;
778          struct lp_type s_type = zs_type;
779          if (zs_format_desc->block.bits < type.width)
780             z_type.width = type.width;
781          if (zs_format_desc->block.bits == 8)
782             s_type.width = type.width;
783 
784          else if (zs_format_desc->block.bits > 32) {
785             z_type.width = z_type.width / 2;
786             s_type.width = s_type.width / 2;
787             s_type.floating = 0;
788          }
789          z_sample_value_store = lp_build_array_alloca(gallivm, lp_build_int_vec_type(gallivm, type),
790                                                       zs_samples, "z_sample_store");
791          s_sample_value_store = lp_build_array_alloca(gallivm, lp_build_int_vec_type(gallivm, type),
792                                                       zs_samples, "s_sample_store");
793          z_fb_store = lp_build_array_alloca(gallivm, lp_build_vec_type(gallivm, z_type),
794                                             zs_samples, "z_fb_store");
795          s_fb_store = lp_build_array_alloca(gallivm, lp_build_vec_type(gallivm, s_type),
796                                             zs_samples, "s_fb_store");
797       }
798       lp_build_for_loop_begin(&sample_loop_state, gallivm,
799                               lp_build_const_int32(gallivm, 0),
800                               LLVMIntULT, lp_build_const_int32(gallivm, key->coverage_samples),
801                               lp_build_const_int32(gallivm, 1));
802 
803       LLVMValueRef s_mask_idx = LLVMBuildMul(builder, sample_loop_state.counter, num_loop, "");
804       s_mask_idx = LLVMBuildAdd(builder, s_mask_idx, loop_state.counter, "");
805       s_mask_ptr = LLVMBuildGEP(builder, mask_store, &s_mask_idx, 1, "");
806 
807       s_mask = LLVMBuildLoad(builder, s_mask_ptr, "");
808       s_mask = LLVMBuildAnd(builder, s_mask, mask_val, "");
809    }
810 
811 
812    /* for multisample Z needs to be interpolated at sample points for testing. */
813    lp_build_interp_soa_update_pos_dyn(interp, gallivm, loop_state.counter, key->multisample ? sample_loop_state.counter : NULL);
814    z = interp->pos[2];
815 
816    depth_ptr = depth_base_ptr;
817    if (key->multisample) {
818       LLVMValueRef sample_offset = LLVMBuildMul(builder, sample_loop_state.counter, depth_sample_stride, "");
819       depth_ptr = LLVMBuildGEP(builder, depth_ptr, &sample_offset, 1, "");
820    }
821 
822    if (depth_mode & EARLY_DEPTH_TEST) {
823       /*
824        * Clamp according to ARB_depth_clamp semantics.
825        */
826       if (key->depth_clamp) {
827          z = lp_build_depth_clamp(gallivm, builder, type, context_ptr,
828                                   thread_data_ptr, z);
829       }
830       lp_build_depth_stencil_load_swizzled(gallivm, type,
831                                            zs_format_desc, key->resource_1d,
832                                            depth_ptr, depth_stride,
833                                            &z_fb, &s_fb, loop_state.counter);
834       lp_build_depth_stencil_test(gallivm,
835                                   &key->depth,
836                                   key->stencil,
837                                   type,
838                                   zs_format_desc,
839                                   key->multisample ? NULL : &mask,
840                                   &s_mask,
841                                   stencil_refs,
842                                   z, z_fb, s_fb,
843                                   facing,
844                                   &z_value, &s_value,
845                                   !simple_shader && !key->multisample);
846 
847       if (depth_mode & EARLY_DEPTH_WRITE) {
848          lp_build_depth_stencil_write_swizzled(gallivm, type,
849                                                zs_format_desc, key->resource_1d,
850                                                NULL, NULL, NULL, loop_state.counter,
851                                                depth_ptr, depth_stride,
852                                                z_value, s_value);
853       }
854       /*
855        * Note mask check if stencil is enabled must be after ds write not after
856        * stencil test otherwise new stencil values may not get written if all
857        * fragments got killed by depth/stencil test.
858        */
859       if (!simple_shader && key->stencil[0].enabled && !key->multisample)
860          lp_build_mask_check(&mask);
861 
862       if (key->multisample) {
863          z_fb_type = LLVMTypeOf(z_fb);
864          z_type = LLVMTypeOf(z_value);
865          lp_build_pointer_set(builder, z_sample_value_store, sample_loop_state.counter, LLVMBuildBitCast(builder, z_value, lp_build_int_vec_type(gallivm, type), ""));
866          lp_build_pointer_set(builder, s_sample_value_store, sample_loop_state.counter, LLVMBuildBitCast(builder, s_value, lp_build_int_vec_type(gallivm, type), ""));
867          lp_build_pointer_set(builder, z_fb_store, sample_loop_state.counter, z_fb);
868          lp_build_pointer_set(builder, s_fb_store, sample_loop_state.counter, s_fb);
869       }
870    }
871 
872    if (key->multisample) {
873       /*
874        * Store the post-early Z coverage mask.
875        * Recombine the resulting coverage masks post early Z into the fragment
876        * shader execution mask.
877        */
878       LLVMValueRef tmp_s_mask_or = LLVMBuildLoad(builder, s_mask_or, "");
879       tmp_s_mask_or = LLVMBuildOr(builder, tmp_s_mask_or, s_mask, "");
880       LLVMBuildStore(builder, tmp_s_mask_or, s_mask_or);
881 
882       if (post_depth_coverage) {
883          LLVMValueRef mask_bit_idx = LLVMBuildShl(builder, lp_build_const_int32(gallivm, 1), sample_loop_state.counter, "");
884          LLVMValueRef post_depth_mask_in = LLVMBuildLoad(builder, post_depth_sample_mask_in, "");
885          mask_bit_idx = LLVMBuildAnd(builder, s_mask, lp_build_broadcast(gallivm, int_vec_type, mask_bit_idx), "");
886          post_depth_mask_in = LLVMBuildOr(builder, post_depth_mask_in, mask_bit_idx, "");
887          LLVMBuildStore(builder, post_depth_mask_in, post_depth_sample_mask_in);
888       }
889 
890       LLVMBuildStore(builder, s_mask, s_mask_ptr);
891 
892       lp_build_for_loop_end(&sample_loop_state);
893 
894       /* recombined all the coverage masks in the shader exec mask. */
895       tmp_s_mask_or = LLVMBuildLoad(builder, s_mask_or, "");
896       lp_build_mask_update(&mask, tmp_s_mask_or);
897 
898       if (key->min_samples == 1) {
899          /* for multisample Z needs to be re interpolated at pixel center */
900          lp_build_interp_soa_update_pos_dyn(interp, gallivm, loop_state.counter, NULL);
901          z = interp->pos[2];
902          lp_build_mask_update(&mask, tmp_s_mask_or);
903       }
904    } else {
905       if (post_depth_coverage) {
906          LLVMValueRef post_depth_mask_in = LLVMBuildAnd(builder, lp_build_mask_value(&mask), lp_build_const_int_vec(gallivm, type, 1), "");
907          LLVMBuildStore(builder, post_depth_mask_in, post_depth_sample_mask_in);
908       }
909    }
910 
911    LLVMValueRef out_sample_mask_storage = NULL;
912    if (shader->info.base.writes_samplemask) {
913       out_sample_mask_storage = lp_build_alloca(gallivm, int_vec_type, "write_mask");
914       if (key->min_samples > 1)
915          LLVMBuildStore(builder, LLVMConstNull(int_vec_type), out_sample_mask_storage);
916    }
917 
918    if (post_depth_coverage) {
919       system_values.sample_mask_in = LLVMBuildLoad(builder, post_depth_sample_mask_in, "");
920    }
921    else
922       system_values.sample_mask_in = sample_mask_in;
923    if (key->multisample && key->min_samples > 1) {
924       lp_build_for_loop_begin(&sample_loop_state, gallivm,
925                               lp_build_const_int32(gallivm, 0),
926                               LLVMIntULT,
927                               lp_build_const_int32(gallivm, key->min_samples),
928                               lp_build_const_int32(gallivm, 1));
929 
930       LLVMValueRef s_mask_idx = LLVMBuildMul(builder, sample_loop_state.counter, num_loop, "");
931       s_mask_idx = LLVMBuildAdd(builder, s_mask_idx, loop_state.counter, "");
932       s_mask_ptr = LLVMBuildGEP(builder, mask_store, &s_mask_idx, 1, "");
933       s_mask = LLVMBuildLoad(builder, s_mask_ptr, "");
934       lp_build_mask_force(&mask, s_mask);
935       lp_build_interp_soa_update_pos_dyn(interp, gallivm, loop_state.counter, sample_loop_state.counter);
936       system_values.sample_id = sample_loop_state.counter;
937       system_values.sample_mask_in = LLVMBuildAnd(builder, system_values.sample_mask_in,
938                                                   lp_build_broadcast(gallivm, int_vec_type,
939                                                                      LLVMBuildShl(builder, lp_build_const_int32(gallivm, 1), sample_loop_state.counter, "")), "");
940    } else {
941       system_values.sample_id = lp_build_const_int32(gallivm, 0);
942 
943    }
944    system_values.sample_pos = sample_pos_array;
945 
946    lp_build_interp_soa_update_inputs_dyn(interp, gallivm, loop_state.counter, mask_store, sample_loop_state.counter);
947 
948    struct lp_build_fs_llvm_iface fs_iface = {
949      .base.interp_fn = fs_interp,
950      .base.fb_fetch = fs_fb_fetch,
951      .interp = interp,
952      .loop_state = &loop_state,
953      .sample_id = system_values.sample_id,
954      .mask_store = mask_store,
955      .color_ptr_ptr = color_ptr_ptr,
956      .color_stride_ptr = color_stride_ptr,
957      .color_sample_stride_ptr = color_sample_stride_ptr,
958      .key = key,
959    };
960 
961    struct lp_build_tgsi_params params;
962    memset(&params, 0, sizeof(params));
963 
964    params.type = type;
965    params.mask = &mask;
966    params.fs_iface = &fs_iface.base;
967    params.consts_ptr = consts_ptr;
968    params.const_sizes_ptr = num_consts_ptr;
969    params.system_values = &system_values;
970    params.inputs = interp->inputs;
971    params.context_ptr = context_ptr;
972    params.thread_data_ptr = thread_data_ptr;
973    params.sampler = sampler;
974    params.info = &shader->info.base;
975    params.ssbo_ptr = ssbo_ptr;
976    params.ssbo_sizes_ptr = num_ssbo_ptr;
977    params.image = image;
978    params.aniso_filter_table = lp_jit_context_aniso_filter_table(gallivm, context_ptr);
979 
980    /* Build the actual shader */
981    if (shader->base.type == PIPE_SHADER_IR_TGSI)
982       lp_build_tgsi_soa(gallivm, tokens, &params,
983                         outputs);
984    else
985       lp_build_nir_soa(gallivm, shader->base.ir.nir, &params,
986                        outputs);
987 
988    /* Alpha test */
989    if (key->alpha.enabled) {
990       int color0 = find_output_by_semantic(&shader->info.base,
991                                            TGSI_SEMANTIC_COLOR,
992                                            0);
993 
994       if (color0 != -1 && outputs[color0][3]) {
995          const struct util_format_description *cbuf_format_desc;
996          LLVMValueRef alpha = LLVMBuildLoad(builder, outputs[color0][3], "alpha");
997          LLVMValueRef alpha_ref_value;
998 
999          alpha_ref_value = lp_jit_context_alpha_ref_value(gallivm, context_ptr);
1000          alpha_ref_value = lp_build_broadcast(gallivm, vec_type, alpha_ref_value);
1001 
1002          cbuf_format_desc = util_format_description(key->cbuf_format[0]);
1003 
1004          lp_build_alpha_test(gallivm, key->alpha.func, type, cbuf_format_desc,
1005                              &mask, alpha, alpha_ref_value,
1006                              (depth_mode & LATE_DEPTH_TEST) != 0);
1007       }
1008    }
1009 
1010    /* Emulate Alpha to Coverage with Alpha test */
1011    if (key->blend.alpha_to_coverage) {
1012       int color0 = find_output_by_semantic(&shader->info.base,
1013                                            TGSI_SEMANTIC_COLOR,
1014                                            0);
1015 
1016       if (color0 != -1 && outputs[color0][3]) {
1017          LLVMValueRef alpha = LLVMBuildLoad(builder, outputs[color0][3], "alpha");
1018 
1019          if (!key->multisample) {
1020             lp_build_alpha_to_coverage(gallivm, type,
1021                                        &mask, alpha,
1022                                        (depth_mode & LATE_DEPTH_TEST) != 0);
1023          } else {
1024             lp_build_sample_alpha_to_coverage(gallivm, type, key->coverage_samples, num_loop,
1025                                               loop_state.counter,
1026                                               mask_store, alpha);
1027          }
1028       }
1029    }
1030    if (key->blend.alpha_to_one && key->multisample) {
1031       for (attrib = 0; attrib < shader->info.base.num_outputs; ++attrib) {
1032          unsigned cbuf = shader->info.base.output_semantic_index[attrib];
1033          if ((shader->info.base.output_semantic_name[attrib] == TGSI_SEMANTIC_COLOR) &&
1034              ((cbuf < key->nr_cbufs) || (cbuf == 1 && dual_source_blend)))
1035             if (outputs[cbuf][3]) {
1036                LLVMBuildStore(builder, lp_build_const_vec(gallivm, type, 1.0), outputs[cbuf][3]);
1037             }
1038       }
1039    }
1040    if (shader->info.base.writes_samplemask) {
1041       LLVMValueRef output_smask = NULL;
1042       int smaski = find_output_by_semantic(&shader->info.base,
1043                                            TGSI_SEMANTIC_SAMPLEMASK,
1044                                            0);
1045       struct lp_build_context smask_bld;
1046       lp_build_context_init(&smask_bld, gallivm, int_type);
1047 
1048       assert(smaski >= 0);
1049       output_smask = LLVMBuildLoad(builder, outputs[smaski][0], "smask");
1050       output_smask = LLVMBuildBitCast(builder, output_smask, smask_bld.vec_type, "");
1051       if (!key->multisample && key->no_ms_sample_mask_out) {
1052          output_smask = lp_build_and(&smask_bld, output_smask, smask_bld.one);
1053          output_smask = lp_build_cmp(&smask_bld, PIPE_FUNC_NOTEQUAL, output_smask, smask_bld.zero);
1054          lp_build_mask_update(&mask, output_smask);
1055       }
1056 
1057       if (key->min_samples > 1) {
1058          /* only the bit corresponding to this sample is to be used. */
1059          LLVMValueRef tmp_mask = LLVMBuildLoad(builder, out_sample_mask_storage, "tmp_mask");
1060          LLVMValueRef out_smask_idx = LLVMBuildShl(builder, lp_build_const_int32(gallivm, 1), sample_loop_state.counter, "");
1061          LLVMValueRef smask_bit = LLVMBuildAnd(builder, output_smask, lp_build_broadcast(gallivm, int_vec_type, out_smask_idx), "");
1062          output_smask = LLVMBuildOr(builder, tmp_mask, smask_bit, "");
1063       }
1064 
1065       LLVMBuildStore(builder, output_smask, out_sample_mask_storage);
1066    }
1067 
1068    if (shader->info.base.writes_z) {
1069       int pos0 = find_output_by_semantic(&shader->info.base,
1070                                          TGSI_SEMANTIC_POSITION,
1071                                          0);
1072       LLVMValueRef out = LLVMBuildLoad(builder, outputs[pos0][2], "");
1073       LLVMValueRef idx = loop_state.counter;
1074       if (key->min_samples > 1)
1075          idx = LLVMBuildAdd(builder, idx,
1076                             LLVMBuildMul(builder, sample_loop_state.counter, num_loop, ""), "");
1077       LLVMValueRef ptr = LLVMBuildGEP(builder, z_out, &idx, 1, "");
1078       LLVMBuildStore(builder, out, ptr);
1079    }
1080 
1081    if (shader->info.base.writes_stencil) {
1082       int sten_out = find_output_by_semantic(&shader->info.base,
1083                                              TGSI_SEMANTIC_STENCIL,
1084                                              0);
1085       LLVMValueRef out = LLVMBuildLoad(builder, outputs[sten_out][1], "output.s");
1086       LLVMValueRef idx = loop_state.counter;
1087       if (key->min_samples > 1)
1088          idx = LLVMBuildAdd(builder, idx,
1089                             LLVMBuildMul(builder, sample_loop_state.counter, num_loop, ""), "");
1090       LLVMValueRef ptr = LLVMBuildGEP(builder, s_out, &idx, 1, "");
1091       LLVMBuildStore(builder, out, ptr);
1092    }
1093 
1094 
1095    /* Color write - per fragment sample */
1096    for (attrib = 0; attrib < shader->info.base.num_outputs; ++attrib)
1097    {
1098       unsigned cbuf = shader->info.base.output_semantic_index[attrib];
1099       if ((shader->info.base.output_semantic_name[attrib] == TGSI_SEMANTIC_COLOR) &&
1100            ((cbuf < key->nr_cbufs) || (cbuf == 1 && dual_source_blend)))
1101       {
1102          for(chan = 0; chan < TGSI_NUM_CHANNELS; ++chan) {
1103             if(outputs[attrib][chan]) {
1104                /* XXX: just initialize outputs to point at colors[] and
1105                 * skip this.
1106                 */
1107                LLVMValueRef out = LLVMBuildLoad(builder, outputs[attrib][chan], "");
1108                LLVMValueRef color_ptr;
1109                LLVMValueRef color_idx = loop_state.counter;
1110                if (key->min_samples > 1)
1111                   color_idx = LLVMBuildAdd(builder, color_idx,
1112                                            LLVMBuildMul(builder, sample_loop_state.counter, num_loop, ""), "");
1113                color_ptr = LLVMBuildGEP(builder, out_color[cbuf][chan],
1114                                         &color_idx, 1, "");
1115                lp_build_name(out, "color%u.%c", attrib, "rgba"[chan]);
1116                LLVMBuildStore(builder, out, color_ptr);
1117             }
1118          }
1119       }
1120    }
1121 
1122    if (key->multisample && key->min_samples > 1) {
1123       LLVMBuildStore(builder, lp_build_mask_value(&mask), s_mask_ptr);
1124       lp_build_for_loop_end(&sample_loop_state);
1125    }
1126 
1127    if (key->multisample) {
1128       /* execute depth test for each sample */
1129       lp_build_for_loop_begin(&sample_loop_state, gallivm,
1130                               lp_build_const_int32(gallivm, 0),
1131                               LLVMIntULT, lp_build_const_int32(gallivm, key->coverage_samples),
1132                               lp_build_const_int32(gallivm, 1));
1133 
1134       /* load the per-sample coverage mask */
1135       LLVMValueRef s_mask_idx = LLVMBuildMul(builder, sample_loop_state.counter, num_loop, "");
1136       s_mask_idx = LLVMBuildAdd(builder, s_mask_idx, loop_state.counter, "");
1137       s_mask_ptr = LLVMBuildGEP(builder, mask_store, &s_mask_idx, 1, "");
1138 
1139       /* combine the execution mask post fragment shader with the coverage mask. */
1140       s_mask = LLVMBuildLoad(builder, s_mask_ptr, "");
1141       if (key->min_samples == 1)
1142          s_mask = LLVMBuildAnd(builder, s_mask, lp_build_mask_value(&mask), "");
1143 
1144       /* if the shader writes sample mask use that */
1145       if (shader->info.base.writes_samplemask) {
1146          LLVMValueRef out_smask_idx = LLVMBuildShl(builder, lp_build_const_int32(gallivm, 1), sample_loop_state.counter, "");
1147          out_smask_idx = lp_build_broadcast(gallivm, int_vec_type, out_smask_idx);
1148          LLVMValueRef output_smask = LLVMBuildLoad(builder, out_sample_mask_storage, "");
1149          LLVMValueRef smask_bit = LLVMBuildAnd(builder, output_smask, out_smask_idx, "");
1150          LLVMValueRef cmp = LLVMBuildICmp(builder, LLVMIntNE, smask_bit, lp_build_const_int_vec(gallivm, int_type, 0), "");
1151          smask_bit = LLVMBuildSExt(builder, cmp, int_vec_type, "");
1152 
1153          s_mask = LLVMBuildAnd(builder, s_mask, smask_bit, "");
1154       }
1155    }
1156 
1157    depth_ptr = depth_base_ptr;
1158    if (key->multisample) {
1159       LLVMValueRef sample_offset = LLVMBuildMul(builder, sample_loop_state.counter, depth_sample_stride, "");
1160       depth_ptr = LLVMBuildGEP(builder, depth_ptr, &sample_offset, 1, "");
1161    }
1162 
1163    /* Late Z test */
1164    if (depth_mode & LATE_DEPTH_TEST) {
1165       if (shader->info.base.writes_z) {
1166          LLVMValueRef idx = loop_state.counter;
1167          if (key->min_samples > 1)
1168             idx = LLVMBuildAdd(builder, idx,
1169                                LLVMBuildMul(builder, sample_loop_state.counter, num_loop, ""), "");
1170          LLVMValueRef ptr = LLVMBuildGEP(builder, z_out, &idx, 1, "");
1171          z = LLVMBuildLoad(builder, ptr, "output.z");
1172       } else {
1173          if (key->multisample) {
1174             lp_build_interp_soa_update_pos_dyn(interp, gallivm, loop_state.counter, key->multisample ? sample_loop_state.counter : NULL);
1175             z = interp->pos[2];
1176          }
1177       }
1178 
1179       /*
1180        * Clamp according to ARB_depth_clamp semantics.
1181        */
1182       if (key->depth_clamp) {
1183          z = lp_build_depth_clamp(gallivm, builder, type, context_ptr,
1184                                   thread_data_ptr, z);
1185       } else {
1186          struct lp_build_context f32_bld;
1187          lp_build_context_init(&f32_bld, gallivm, type);
1188          z = lp_build_clamp(&f32_bld, z,
1189                             lp_build_const_vec(gallivm, type, 0.0),
1190                             lp_build_const_vec(gallivm, type, 1.0));
1191       }
1192 
1193       if (shader->info.base.writes_stencil) {
1194          LLVMValueRef idx = loop_state.counter;
1195          if (key->min_samples > 1)
1196             idx = LLVMBuildAdd(builder, idx,
1197                                LLVMBuildMul(builder, sample_loop_state.counter, num_loop, ""), "");
1198          LLVMValueRef ptr = LLVMBuildGEP(builder, s_out, &idx, 1, "");
1199          stencil_refs[0] = LLVMBuildLoad(builder, ptr, "output.s");
1200          /* there's only one value, and spec says to discard additional bits */
1201          LLVMValueRef s_max_mask = lp_build_const_int_vec(gallivm, int_type, 255);
1202          stencil_refs[0] = LLVMBuildBitCast(builder, stencil_refs[0], int_vec_type, "");
1203          stencil_refs[0] = LLVMBuildAnd(builder, stencil_refs[0], s_max_mask, "");
1204          stencil_refs[1] = stencil_refs[0];
1205       }
1206 
1207       lp_build_depth_stencil_load_swizzled(gallivm, type,
1208                                            zs_format_desc, key->resource_1d,
1209                                            depth_ptr, depth_stride,
1210                                            &z_fb, &s_fb, loop_state.counter);
1211 
1212       lp_build_depth_stencil_test(gallivm,
1213                                   &key->depth,
1214                                   key->stencil,
1215                                   type,
1216                                   zs_format_desc,
1217                                   key->multisample ? NULL : &mask,
1218                                   &s_mask,
1219                                   stencil_refs,
1220                                   z, z_fb, s_fb,
1221                                   facing,
1222                                   &z_value, &s_value,
1223                                   !simple_shader);
1224       /* Late Z write */
1225       if (depth_mode & LATE_DEPTH_WRITE) {
1226          lp_build_depth_stencil_write_swizzled(gallivm, type,
1227                                                zs_format_desc, key->resource_1d,
1228                                                NULL, NULL, NULL, loop_state.counter,
1229                                                depth_ptr, depth_stride,
1230                                                z_value, s_value);
1231       }
1232    }
1233    else if ((depth_mode & EARLY_DEPTH_TEST) &&
1234             (depth_mode & LATE_DEPTH_WRITE))
1235    {
1236       /* Need to apply a reduced mask to the depth write.  Reload the
1237        * depth value, update from zs_value with the new mask value and
1238        * write that out.
1239        */
1240       if (key->multisample) {
1241          z_value = LLVMBuildBitCast(builder, lp_build_pointer_get(builder, z_sample_value_store, sample_loop_state.counter), z_type, "");;
1242          s_value = lp_build_pointer_get(builder, s_sample_value_store, sample_loop_state.counter);
1243          z_fb = LLVMBuildBitCast(builder, lp_build_pointer_get(builder, z_fb_store, sample_loop_state.counter), z_fb_type, "");
1244          s_fb = lp_build_pointer_get(builder, s_fb_store, sample_loop_state.counter);
1245       }
1246       lp_build_depth_stencil_write_swizzled(gallivm, type,
1247                                             zs_format_desc, key->resource_1d,
1248                                             key->multisample ? s_mask : lp_build_mask_value(&mask), z_fb, s_fb, loop_state.counter,
1249                                             depth_ptr, depth_stride,
1250                                             z_value, s_value);
1251    }
1252 
1253    if (key->occlusion_count) {
1254       LLVMValueRef counter = lp_jit_thread_data_counter(gallivm, thread_data_ptr);
1255       lp_build_name(counter, "counter");
1256 
1257       lp_build_occlusion_count(gallivm, type,
1258                                key->multisample ? s_mask : lp_build_mask_value(&mask), counter);
1259    }
1260 
1261    if (key->multisample) {
1262       /* store the sample mask for this loop */
1263       LLVMBuildStore(builder, s_mask, s_mask_ptr);
1264       lp_build_for_loop_end(&sample_loop_state);
1265    }
1266 
1267    mask_val = lp_build_mask_end(&mask);
1268    if (!key->multisample)
1269       LLVMBuildStore(builder, mask_val, mask_ptr);
1270    lp_build_for_loop_end(&loop_state);
1271 }
1272 
1273 
1274 /**
1275  * This function will reorder pixels from the fragment shader SoA to memory layout AoS
1276  *
1277  * Fragment Shader outputs pixels in small 2x2 blocks
1278  *  e.g. (0, 0), (1, 0), (0, 1), (1, 1) ; (2, 0) ...
1279  *
1280  * However in memory pixels are stored in rows
1281  *  e.g. (0, 0), (1, 0), (2, 0), (3, 0) ; (0, 1) ...
1282  *
1283  * @param type            fragment shader type (4x or 8x float)
1284  * @param num_fs          number of fs_src
1285  * @param is_1d           whether we're outputting to a 1d resource
1286  * @param dst_channels    number of output channels
1287  * @param fs_src          output from fragment shader
1288  * @param dst             pointer to store result
1289  * @param pad_inline      is channel padding inline or at end of row
1290  * @return                the number of dsts
1291  */
1292 static int
generate_fs_twiddle(struct gallivm_state * gallivm,struct lp_type type,unsigned num_fs,unsigned dst_channels,LLVMValueRef fs_src[][4],LLVMValueRef * dst,bool pad_inline)1293 generate_fs_twiddle(struct gallivm_state *gallivm,
1294                     struct lp_type type,
1295                     unsigned num_fs,
1296                     unsigned dst_channels,
1297                     LLVMValueRef fs_src[][4],
1298                     LLVMValueRef* dst,
1299                     bool pad_inline)
1300 {
1301    LLVMValueRef src[16];
1302 
1303    bool swizzle_pad;
1304    bool twiddle;
1305    bool split;
1306 
1307    unsigned pixels = type.length / 4;
1308    unsigned reorder_group;
1309    unsigned src_channels;
1310    unsigned src_count;
1311    unsigned i;
1312 
1313    src_channels = dst_channels < 3 ? dst_channels : 4;
1314    src_count = num_fs * src_channels;
1315 
1316    assert(pixels == 2 || pixels == 1);
1317    assert(num_fs * src_channels <= ARRAY_SIZE(src));
1318 
1319    /*
1320     * Transpose from SoA -> AoS
1321     */
1322    for (i = 0; i < num_fs; ++i) {
1323       lp_build_transpose_aos_n(gallivm, type, &fs_src[i][0], src_channels, &src[i * src_channels]);
1324    }
1325 
1326    /*
1327     * Pick transformation options
1328     */
1329    swizzle_pad = false;
1330    twiddle = false;
1331    split = false;
1332    reorder_group = 0;
1333 
1334    if (dst_channels == 1) {
1335       twiddle = true;
1336 
1337       if (pixels == 2) {
1338          split = true;
1339       }
1340    } else if (dst_channels == 2) {
1341       if (pixels == 1) {
1342          reorder_group = 1;
1343       }
1344    } else if (dst_channels > 2) {
1345       if (pixels == 1) {
1346          reorder_group = 2;
1347       } else {
1348          twiddle = true;
1349       }
1350 
1351       if (!pad_inline && dst_channels == 3 && pixels > 1) {
1352          swizzle_pad = true;
1353       }
1354    }
1355 
1356    /*
1357     * Split the src in half
1358     */
1359    if (split) {
1360       for (i = num_fs; i > 0; --i) {
1361          src[(i - 1)*2 + 1] = lp_build_extract_range(gallivm, src[i - 1], 4, 4);
1362          src[(i - 1)*2 + 0] = lp_build_extract_range(gallivm, src[i - 1], 0, 4);
1363       }
1364 
1365       src_count *= 2;
1366       type.length = 4;
1367    }
1368 
1369    /*
1370     * Ensure pixels are in memory order
1371     */
1372    if (reorder_group) {
1373       /* Twiddle pixels by reordering the array, e.g.:
1374        *
1375        * src_count =  8 -> 0 2 1 3 4 6 5 7
1376        * src_count = 16 -> 0 1 4 5 2 3 6 7 8 9 12 13 10 11 14 15
1377        */
1378       const unsigned reorder_sw[] = { 0, 2, 1, 3 };
1379 
1380       for (i = 0; i < src_count; ++i) {
1381          unsigned group = i / reorder_group;
1382          unsigned block = (group / 4) * 4 * reorder_group;
1383          unsigned j = block + (reorder_sw[group % 4] * reorder_group) + (i % reorder_group);
1384          dst[i] = src[j];
1385       }
1386    } else if (twiddle) {
1387       /* Twiddle pixels across elements of array */
1388       /*
1389        * XXX: we should avoid this in some cases, but would need to tell
1390        * lp_build_conv to reorder (or deal with it ourselves).
1391        */
1392       lp_bld_quad_twiddle(gallivm, type, src, src_count, dst);
1393    } else {
1394       /* Do nothing */
1395       memcpy(dst, src, sizeof(LLVMValueRef) * src_count);
1396    }
1397 
1398    /*
1399     * Moves any padding between pixels to the end
1400     * e.g. RGBXRGBX -> RGBRGBXX
1401     */
1402    if (swizzle_pad) {
1403       unsigned char swizzles[16];
1404       unsigned elems = pixels * dst_channels;
1405 
1406       for (i = 0; i < type.length; ++i) {
1407          if (i < elems)
1408             swizzles[i] = i % dst_channels + (i / dst_channels) * 4;
1409          else
1410             swizzles[i] = LP_BLD_SWIZZLE_DONTCARE;
1411       }
1412 
1413       for (i = 0; i < src_count; ++i) {
1414          dst[i] = lp_build_swizzle_aos_n(gallivm, dst[i], swizzles, type.length, type.length);
1415       }
1416    }
1417 
1418    return src_count;
1419 }
1420 
1421 
1422 /*
1423  * Untwiddle and transpose, much like the above.
1424  * However, this is after conversion, so we get packed vectors.
1425  * At this time only handle 4x16i8 rgba / 2x16i8 rg / 1x16i8 r data,
1426  * the vectors will look like:
1427  * r0r1r4r5r2r3r6r7r8r9r12... (albeit color channels may
1428  * be swizzled here). Extending to 16bit should be trivial.
1429  * Should also be extended to handle twice wide vectors with AVX2...
1430  */
1431 static void
fs_twiddle_transpose(struct gallivm_state * gallivm,struct lp_type type,LLVMValueRef * src,unsigned src_count,LLVMValueRef * dst)1432 fs_twiddle_transpose(struct gallivm_state *gallivm,
1433                      struct lp_type type,
1434                      LLVMValueRef *src,
1435                      unsigned src_count,
1436                      LLVMValueRef *dst)
1437 {
1438    unsigned i, j;
1439    struct lp_type type64, type16, type32;
1440    LLVMTypeRef type64_t, type8_t, type16_t, type32_t;
1441    LLVMBuilderRef builder = gallivm->builder;
1442    LLVMValueRef tmp[4], shuf[8];
1443    for (j = 0; j < 2; j++) {
1444       shuf[j*4 + 0] = lp_build_const_int32(gallivm, j*4 + 0);
1445       shuf[j*4 + 1] = lp_build_const_int32(gallivm, j*4 + 2);
1446       shuf[j*4 + 2] = lp_build_const_int32(gallivm, j*4 + 1);
1447       shuf[j*4 + 3] = lp_build_const_int32(gallivm, j*4 + 3);
1448    }
1449 
1450    assert(src_count == 4 || src_count == 2 || src_count == 1);
1451    assert(type.width == 8);
1452    assert(type.length == 16);
1453 
1454    type8_t = lp_build_vec_type(gallivm, type);
1455 
1456    type64 = type;
1457    type64.length /= 8;
1458    type64.width *= 8;
1459    type64_t = lp_build_vec_type(gallivm, type64);
1460 
1461    type16 = type;
1462    type16.length /= 2;
1463    type16.width *= 2;
1464    type16_t = lp_build_vec_type(gallivm, type16);
1465 
1466    type32 = type;
1467    type32.length /= 4;
1468    type32.width *= 4;
1469    type32_t = lp_build_vec_type(gallivm, type32);
1470 
1471    lp_build_transpose_aos_n(gallivm, type, src, src_count, tmp);
1472 
1473    if (src_count == 1) {
1474       /* transpose was no-op, just untwiddle */
1475       LLVMValueRef shuf_vec;
1476       shuf_vec = LLVMConstVector(shuf, 8);
1477       tmp[0] = LLVMBuildBitCast(builder, src[0], type16_t, "");
1478       tmp[0] = LLVMBuildShuffleVector(builder, tmp[0], tmp[0], shuf_vec, "");
1479       dst[0] = LLVMBuildBitCast(builder, tmp[0], type8_t, "");
1480    } else if (src_count == 2) {
1481       LLVMValueRef shuf_vec;
1482       shuf_vec = LLVMConstVector(shuf, 4);
1483 
1484       for (i = 0; i < 2; i++) {
1485          tmp[i] = LLVMBuildBitCast(builder, tmp[i], type32_t, "");
1486          tmp[i] = LLVMBuildShuffleVector(builder, tmp[i], tmp[i], shuf_vec, "");
1487          dst[i] = LLVMBuildBitCast(builder, tmp[i], type8_t, "");
1488       }
1489    } else {
1490       for (j = 0; j < 2; j++) {
1491          LLVMValueRef lo, hi, lo2, hi2;
1492           /*
1493           * Note that if we only really have 3 valid channels (rgb)
1494           * and we don't need alpha we could substitute a undef here
1495           * for the respective channel (causing llvm to drop conversion
1496           * for alpha).
1497           */
1498          /* we now have rgba0rgba1rgba4rgba5 etc, untwiddle */
1499          lo2 = LLVMBuildBitCast(builder, tmp[j*2], type64_t, "");
1500          hi2 = LLVMBuildBitCast(builder, tmp[j*2 + 1], type64_t, "");
1501          lo = lp_build_interleave2(gallivm, type64, lo2, hi2, 0);
1502          hi = lp_build_interleave2(gallivm, type64, lo2, hi2, 1);
1503          dst[j*2] = LLVMBuildBitCast(builder, lo, type8_t, "");
1504          dst[j*2 + 1] = LLVMBuildBitCast(builder, hi, type8_t, "");
1505       }
1506    }
1507 }
1508 
1509 
1510 /**
1511  * Load an unswizzled block of pixels from memory
1512  */
1513 static void
load_unswizzled_block(struct gallivm_state * gallivm,LLVMValueRef base_ptr,LLVMValueRef stride,unsigned block_width,unsigned block_height,LLVMValueRef * dst,struct lp_type dst_type,unsigned dst_count,unsigned dst_alignment,LLVMValueRef x_offset,LLVMValueRef y_offset,bool fb_fetch_twiddle)1514 load_unswizzled_block(struct gallivm_state *gallivm,
1515                       LLVMValueRef base_ptr,
1516                       LLVMValueRef stride,
1517                       unsigned block_width,
1518                       unsigned block_height,
1519                       LLVMValueRef* dst,
1520                       struct lp_type dst_type,
1521                       unsigned dst_count,
1522                       unsigned dst_alignment,
1523                       LLVMValueRef x_offset,
1524                       LLVMValueRef y_offset,
1525                       bool fb_fetch_twiddle)
1526 {
1527    LLVMBuilderRef builder = gallivm->builder;
1528    unsigned row_size = dst_count / block_height;
1529    unsigned i;
1530 
1531    /* Ensure block exactly fits into dst */
1532    assert((block_width * block_height) % dst_count == 0);
1533 
1534    for (i = 0; i < dst_count; ++i) {
1535       unsigned x = i % row_size;
1536       unsigned y = i / row_size;
1537 
1538       if (block_height == 2 && dst_count == 8 && fb_fetch_twiddle) {
1539          /* remap the raw slots into the fragment shader execution mode. */
1540          /* this math took me way too long to work out, I'm sure it's overkill. */
1541          x = (i & 1) + ((i >> 2) << 1);
1542          y = (i & 2) >> 1;
1543       }
1544 
1545       LLVMValueRef x_val;
1546       if (x_offset) {
1547          x_val = lp_build_const_int32(gallivm, x);
1548          if (x_offset)
1549             x_val = LLVMBuildAdd(builder, x_val, x_offset, "");
1550          x_val = LLVMBuildMul(builder, x_val, lp_build_const_int32(gallivm, (dst_type.width / 8) * dst_type.length), "");
1551       } else
1552          x_val = lp_build_const_int32(gallivm, x * (dst_type.width / 8) * dst_type.length);
1553 
1554       LLVMValueRef bx = x_val;
1555 
1556       LLVMValueRef y_val = lp_build_const_int32(gallivm, y);
1557       if (y_offset)
1558          y_val = LLVMBuildAdd(builder, y_val, y_offset, "");
1559       LLVMValueRef by = LLVMBuildMul(builder, y_val, stride, "");
1560 
1561       LLVMValueRef gep[2];
1562       LLVMValueRef dst_ptr;
1563 
1564       gep[0] = lp_build_const_int32(gallivm, 0);
1565       gep[1] = LLVMBuildAdd(builder, bx, by, "");
1566 
1567       dst_ptr = LLVMBuildGEP(builder, base_ptr, gep, 2, "");
1568       dst_ptr = LLVMBuildBitCast(builder, dst_ptr,
1569                                  LLVMPointerType(lp_build_vec_type(gallivm, dst_type), 0), "");
1570 
1571       dst[i] = LLVMBuildLoad(builder, dst_ptr, "");
1572 
1573       LLVMSetAlignment(dst[i], dst_alignment);
1574    }
1575 }
1576 
1577 
1578 /**
1579  * Store an unswizzled block of pixels to memory
1580  */
1581 static void
store_unswizzled_block(struct gallivm_state * gallivm,LLVMValueRef base_ptr,LLVMValueRef stride,unsigned block_width,unsigned block_height,LLVMValueRef * src,struct lp_type src_type,unsigned src_count,unsigned src_alignment)1582 store_unswizzled_block(struct gallivm_state *gallivm,
1583                        LLVMValueRef base_ptr,
1584                        LLVMValueRef stride,
1585                        unsigned block_width,
1586                        unsigned block_height,
1587                        LLVMValueRef* src,
1588                        struct lp_type src_type,
1589                        unsigned src_count,
1590                        unsigned src_alignment)
1591 {
1592    LLVMBuilderRef builder = gallivm->builder;
1593    unsigned row_size = src_count / block_height;
1594    unsigned i;
1595 
1596    /* Ensure src exactly fits into block */
1597    assert((block_width * block_height) % src_count == 0);
1598 
1599    for (i = 0; i < src_count; ++i) {
1600       unsigned x = i % row_size;
1601       unsigned y = i / row_size;
1602 
1603       LLVMValueRef bx = lp_build_const_int32(gallivm, x * (src_type.width / 8) * src_type.length);
1604       LLVMValueRef by = LLVMBuildMul(builder, lp_build_const_int32(gallivm, y), stride, "");
1605 
1606       LLVMValueRef gep[2];
1607       LLVMValueRef src_ptr;
1608 
1609       gep[0] = lp_build_const_int32(gallivm, 0);
1610       gep[1] = LLVMBuildAdd(builder, bx, by, "");
1611 
1612       src_ptr = LLVMBuildGEP(builder, base_ptr, gep, 2, "");
1613       src_ptr = LLVMBuildBitCast(builder, src_ptr,
1614                                  LLVMPointerType(lp_build_vec_type(gallivm, src_type), 0), "");
1615 
1616       src_ptr = LLVMBuildStore(builder, src[i], src_ptr);
1617 
1618       LLVMSetAlignment(src_ptr, src_alignment);
1619    }
1620 }
1621 
1622 
1623 
1624 /**
1625  * Retrieves the type for a format which is usable in the blending code.
1626  *
1627  * e.g. RGBA16F = 4x float, R3G3B2 = 3x byte
1628  */
1629 static inline void
lp_blend_type_from_format_desc(const struct util_format_description * format_desc,struct lp_type * type)1630 lp_blend_type_from_format_desc(const struct util_format_description *format_desc,
1631                                struct lp_type* type)
1632 {
1633    unsigned i;
1634    unsigned chan;
1635 
1636    if (format_expands_to_float_soa(format_desc)) {
1637       /* always use ordinary floats for blending */
1638       type->floating = true;
1639       type->fixed = false;
1640       type->sign = true;
1641       type->norm = false;
1642       type->width = 32;
1643       type->length = 4;
1644       return;
1645    }
1646 
1647    for (i = 0; i < 4; i++)
1648       if (format_desc->channel[i].type != UTIL_FORMAT_TYPE_VOID)
1649          break;
1650    chan = i;
1651 
1652    memset(type, 0, sizeof(struct lp_type));
1653    type->floating = format_desc->channel[chan].type == UTIL_FORMAT_TYPE_FLOAT;
1654    type->fixed    = format_desc->channel[chan].type == UTIL_FORMAT_TYPE_FIXED;
1655    type->sign     = format_desc->channel[chan].type != UTIL_FORMAT_TYPE_UNSIGNED;
1656    type->norm     = format_desc->channel[chan].normalized;
1657    type->width    = format_desc->channel[chan].size;
1658    type->length   = format_desc->nr_channels;
1659 
1660    for (i = 1; i < format_desc->nr_channels; ++i) {
1661       if (format_desc->channel[i].size > type->width)
1662          type->width = format_desc->channel[i].size;
1663    }
1664 
1665    if (type->floating) {
1666       type->width = 32;
1667    } else {
1668       if (type->width <= 8) {
1669          type->width = 8;
1670       } else if (type->width <= 16) {
1671          type->width = 16;
1672       } else {
1673          type->width = 32;
1674       }
1675    }
1676 
1677    if (is_arithmetic_format(format_desc) && type->length == 3) {
1678       type->length = 4;
1679    }
1680 }
1681 
1682 
1683 /**
1684  * Scale a normalized value from src_bits to dst_bits.
1685  *
1686  * The exact calculation is
1687  *
1688  *    dst = iround(src * dst_mask / src_mask)
1689  *
1690  *  or with integer rounding
1691  *
1692  *    dst = src * (2*dst_mask + sign(src)*src_mask) / (2*src_mask)
1693  *
1694  *  where
1695  *
1696  *    src_mask = (1 << src_bits) - 1
1697  *    dst_mask = (1 << dst_bits) - 1
1698  *
1699  * but we try to avoid division and multiplication through shifts.
1700  */
1701 static inline LLVMValueRef
scale_bits(struct gallivm_state * gallivm,int src_bits,int dst_bits,LLVMValueRef src,struct lp_type src_type)1702 scale_bits(struct gallivm_state *gallivm,
1703            int src_bits,
1704            int dst_bits,
1705            LLVMValueRef src,
1706            struct lp_type src_type)
1707 {
1708    LLVMBuilderRef builder = gallivm->builder;
1709    LLVMValueRef result = src;
1710 
1711    if (dst_bits < src_bits) {
1712       int delta_bits = src_bits - dst_bits;
1713 
1714       if (delta_bits <= dst_bits) {
1715 
1716          if (dst_bits == 4) {
1717             struct lp_type flt_type = lp_type_float_vec(32, src_type.length * 32);
1718 
1719             result = lp_build_unsigned_norm_to_float(gallivm, src_bits, flt_type, src);
1720             result = lp_build_clamped_float_to_unsigned_norm(gallivm, flt_type, dst_bits, result);
1721             return result;
1722          }
1723 
1724          /*
1725           * Approximate the rescaling with a single shift.
1726           *
1727           * This gives the wrong rounding.
1728           */
1729 
1730          result = LLVMBuildLShr(builder,
1731                                 src,
1732                                 lp_build_const_int_vec(gallivm, src_type, delta_bits),
1733                                 "");
1734 
1735       } else {
1736          /*
1737           * Try more accurate rescaling.
1738           */
1739 
1740          /*
1741           * Drop the least significant bits to make space for the multiplication.
1742           *
1743           * XXX: A better approach would be to use a wider integer type as intermediate.  But
1744           * this is enough to convert alpha from 16bits -> 2 when rendering to
1745           * PIPE_FORMAT_R10G10B10A2_UNORM.
1746           */
1747          result = LLVMBuildLShr(builder,
1748                                 src,
1749                                 lp_build_const_int_vec(gallivm, src_type, dst_bits),
1750                                 "");
1751 
1752 
1753          result = LLVMBuildMul(builder,
1754                                result,
1755                                lp_build_const_int_vec(gallivm, src_type, (1LL << dst_bits) - 1),
1756                                "");
1757 
1758          /*
1759           * Add a rounding term before the division.
1760           *
1761           * TODO: Handle signed integers too.
1762           */
1763          if (!src_type.sign) {
1764             result = LLVMBuildAdd(builder,
1765                                   result,
1766                                   lp_build_const_int_vec(gallivm, src_type, (1LL << (delta_bits - 1))),
1767                                   "");
1768          }
1769 
1770          /*
1771           * Approximate the division by src_mask with a src_bits shift.
1772           *
1773           * Given the src has already been shifted by dst_bits, all we need
1774           * to do is to shift by the difference.
1775           */
1776 
1777          result = LLVMBuildLShr(builder,
1778                                 result,
1779                                 lp_build_const_int_vec(gallivm, src_type, delta_bits),
1780                                 "");
1781       }
1782 
1783    } else if (dst_bits > src_bits) {
1784       /* Scale up bits */
1785       int db = dst_bits - src_bits;
1786 
1787       /* Shift left by difference in bits */
1788       result = LLVMBuildShl(builder,
1789                             src,
1790                             lp_build_const_int_vec(gallivm, src_type, db),
1791                             "");
1792 
1793       if (db <= src_bits) {
1794          /* Enough bits in src to fill the remainder */
1795          LLVMValueRef lower = LLVMBuildLShr(builder,
1796                                             src,
1797                                             lp_build_const_int_vec(gallivm, src_type, src_bits - db),
1798                                             "");
1799 
1800          result = LLVMBuildOr(builder, result, lower, "");
1801       } else if (db > src_bits) {
1802          /* Need to repeatedly copy src bits to fill remainder in dst */
1803          unsigned n;
1804 
1805          for (n = src_bits; n < dst_bits; n *= 2) {
1806             LLVMValueRef shuv = lp_build_const_int_vec(gallivm, src_type, n);
1807 
1808             result = LLVMBuildOr(builder,
1809                                  result,
1810                                  LLVMBuildLShr(builder, result, shuv, ""),
1811                                  "");
1812          }
1813       }
1814    }
1815 
1816    return result;
1817 }
1818 
1819 /**
1820  * If RT is a smallfloat (needing denorms) format
1821  */
1822 static inline int
have_smallfloat_format(struct lp_type dst_type,enum pipe_format format)1823 have_smallfloat_format(struct lp_type dst_type,
1824                        enum pipe_format format)
1825 {
1826    return ((dst_type.floating && dst_type.width != 32) ||
1827     /* due to format handling hacks this format doesn't have floating set
1828      * here (and actually has width set to 32 too) so special case this. */
1829     (format == PIPE_FORMAT_R11G11B10_FLOAT));
1830 }
1831 
1832 
1833 /**
1834  * Convert from memory format to blending format
1835  *
1836  * e.g. GL_R3G3B2 is 1 byte in memory but 3 bytes for blending
1837  */
1838 static void
convert_to_blend_type(struct gallivm_state * gallivm,unsigned block_size,const struct util_format_description * src_fmt,struct lp_type src_type,struct lp_type dst_type,LLVMValueRef * src,unsigned num_srcs)1839 convert_to_blend_type(struct gallivm_state *gallivm,
1840                       unsigned block_size,
1841                       const struct util_format_description *src_fmt,
1842                       struct lp_type src_type,
1843                       struct lp_type dst_type,
1844                       LLVMValueRef* src, // and dst
1845                       unsigned num_srcs)
1846 {
1847    LLVMValueRef *dst = src;
1848    LLVMBuilderRef builder = gallivm->builder;
1849    struct lp_type blend_type;
1850    struct lp_type mem_type;
1851    unsigned i, j;
1852    unsigned pixels = block_size / num_srcs;
1853    bool is_arith;
1854 
1855    /*
1856     * full custom path for packed floats and srgb formats - none of the later
1857     * functions would do anything useful, and given the lp_type representation they
1858     * can't be fixed. Should really have some SoA blend path for these kind of
1859     * formats rather than hacking them in here.
1860     */
1861    if (format_expands_to_float_soa(src_fmt)) {
1862       LLVMValueRef tmpsrc[4];
1863       /*
1864        * This is pretty suboptimal for this case blending in SoA would be much
1865        * better, since conversion gets us SoA values so need to convert back.
1866        */
1867       assert(src_type.width == 32 || src_type.width == 16);
1868       assert(dst_type.floating);
1869       assert(dst_type.width == 32);
1870       assert(dst_type.length % 4 == 0);
1871       assert(num_srcs % 4 == 0);
1872 
1873       if (src_type.width == 16) {
1874          /* expand 4x16bit values to 4x32bit */
1875          struct lp_type type32x4 = src_type;
1876          LLVMTypeRef ltype32x4;
1877          unsigned num_fetch = dst_type.length == 8 ? num_srcs / 2 : num_srcs / 4;
1878          type32x4.width = 32;
1879          ltype32x4 = lp_build_vec_type(gallivm, type32x4);
1880          for (i = 0; i < num_fetch; i++) {
1881             src[i] = LLVMBuildZExt(builder, src[i], ltype32x4, "");
1882          }
1883          src_type.width = 32;
1884       }
1885       for (i = 0; i < 4; i++) {
1886          tmpsrc[i] = src[i];
1887       }
1888       for (i = 0; i < num_srcs / 4; i++) {
1889          LLVMValueRef tmpsoa[4];
1890          LLVMValueRef tmps = tmpsrc[i];
1891          if (dst_type.length == 8) {
1892             LLVMValueRef shuffles[8];
1893             unsigned j;
1894             /* fetch was 4 values but need 8-wide output values */
1895             tmps = lp_build_concat(gallivm, &tmpsrc[i * 2], src_type, 2);
1896             /*
1897              * for 8-wide aos transpose would give us wrong order not matching
1898              * incoming converted fs values and mask. ARGH.
1899              */
1900             for (j = 0; j < 4; j++) {
1901                shuffles[j] = lp_build_const_int32(gallivm, j * 2);
1902                shuffles[j + 4] = lp_build_const_int32(gallivm, j * 2 + 1);
1903             }
1904             tmps = LLVMBuildShuffleVector(builder, tmps, tmps,
1905                                           LLVMConstVector(shuffles, 8), "");
1906          }
1907          if (src_fmt->format == PIPE_FORMAT_R11G11B10_FLOAT) {
1908             lp_build_r11g11b10_to_float(gallivm, tmps, tmpsoa);
1909          }
1910          else {
1911             lp_build_unpack_rgba_soa(gallivm, src_fmt, dst_type, tmps, tmpsoa);
1912          }
1913          lp_build_transpose_aos(gallivm, dst_type, tmpsoa, &src[i * 4]);
1914       }
1915       return;
1916    }
1917 
1918    lp_mem_type_from_format_desc(src_fmt, &mem_type);
1919    lp_blend_type_from_format_desc(src_fmt, &blend_type);
1920 
1921    /* Is the format arithmetic */
1922    is_arith = blend_type.length * blend_type.width != mem_type.width * mem_type.length;
1923    is_arith &= !(mem_type.width == 16 && mem_type.floating);
1924 
1925    /* Pad if necessary */
1926    if (!is_arith && src_type.length < dst_type.length) {
1927       for (i = 0; i < num_srcs; ++i) {
1928          dst[i] = lp_build_pad_vector(gallivm, src[i], dst_type.length);
1929       }
1930 
1931       src_type.length = dst_type.length;
1932    }
1933 
1934    /* Special case for half-floats */
1935    if (mem_type.width == 16 && mem_type.floating) {
1936       assert(blend_type.width == 32 && blend_type.floating);
1937       lp_build_conv_auto(gallivm, src_type, &dst_type, dst, num_srcs, dst);
1938       is_arith = false;
1939    }
1940 
1941    if (!is_arith) {
1942       return;
1943    }
1944 
1945    src_type.width = blend_type.width * blend_type.length;
1946    blend_type.length *= pixels;
1947    src_type.length *= pixels / (src_type.length / mem_type.length);
1948 
1949    for (i = 0; i < num_srcs; ++i) {
1950       LLVMValueRef chans[4];
1951       LLVMValueRef res = NULL;
1952 
1953       dst[i] = LLVMBuildZExt(builder, src[i], lp_build_vec_type(gallivm, src_type), "");
1954 
1955       for (j = 0; j < src_fmt->nr_channels; ++j) {
1956          unsigned mask = 0;
1957          unsigned sa = src_fmt->channel[j].shift;
1958 #if UTIL_ARCH_LITTLE_ENDIAN
1959          unsigned from_lsb = j;
1960 #else
1961          unsigned from_lsb = src_fmt->nr_channels - j - 1;
1962 #endif
1963 
1964          mask = (1 << src_fmt->channel[j].size) - 1;
1965 
1966          /* Extract bits from source */
1967          chans[j] = LLVMBuildLShr(builder,
1968                                   dst[i],
1969                                   lp_build_const_int_vec(gallivm, src_type, sa),
1970                                   "");
1971 
1972          chans[j] = LLVMBuildAnd(builder,
1973                                  chans[j],
1974                                  lp_build_const_int_vec(gallivm, src_type, mask),
1975                                  "");
1976 
1977          /* Scale bits */
1978          if (src_type.norm) {
1979             chans[j] = scale_bits(gallivm, src_fmt->channel[j].size,
1980                                   blend_type.width, chans[j], src_type);
1981          }
1982 
1983          /* Insert bits into correct position */
1984          chans[j] = LLVMBuildShl(builder,
1985                                  chans[j],
1986                                  lp_build_const_int_vec(gallivm, src_type, from_lsb * blend_type.width),
1987                                  "");
1988 
1989          if (j == 0) {
1990             res = chans[j];
1991          } else {
1992             res = LLVMBuildOr(builder, res, chans[j], "");
1993          }
1994       }
1995 
1996       dst[i] = LLVMBuildBitCast(builder, res, lp_build_vec_type(gallivm, blend_type), "");
1997    }
1998 }
1999 
2000 
2001 /**
2002  * Convert from blending format to memory format
2003  *
2004  * e.g. GL_R3G3B2 is 3 bytes for blending but 1 byte in memory
2005  */
2006 static void
convert_from_blend_type(struct gallivm_state * gallivm,unsigned block_size,const struct util_format_description * src_fmt,struct lp_type src_type,struct lp_type dst_type,LLVMValueRef * src,unsigned num_srcs)2007 convert_from_blend_type(struct gallivm_state *gallivm,
2008                         unsigned block_size,
2009                         const struct util_format_description *src_fmt,
2010                         struct lp_type src_type,
2011                         struct lp_type dst_type,
2012                         LLVMValueRef* src, // and dst
2013                         unsigned num_srcs)
2014 {
2015    LLVMValueRef* dst = src;
2016    unsigned i, j, k;
2017    struct lp_type mem_type;
2018    struct lp_type blend_type;
2019    LLVMBuilderRef builder = gallivm->builder;
2020    unsigned pixels = block_size / num_srcs;
2021    bool is_arith;
2022 
2023    /*
2024     * full custom path for packed floats and srgb formats - none of the later
2025     * functions would do anything useful, and given the lp_type representation they
2026     * can't be fixed. Should really have some SoA blend path for these kind of
2027     * formats rather than hacking them in here.
2028     */
2029    if (format_expands_to_float_soa(src_fmt)) {
2030       /*
2031        * This is pretty suboptimal for this case blending in SoA would be much
2032        * better - we need to transpose the AoS values back to SoA values for
2033        * conversion/packing.
2034        */
2035       assert(src_type.floating);
2036       assert(src_type.width == 32);
2037       assert(src_type.length % 4 == 0);
2038       assert(dst_type.width == 32 || dst_type.width == 16);
2039 
2040       for (i = 0; i < num_srcs / 4; i++) {
2041          LLVMValueRef tmpsoa[4], tmpdst;
2042          lp_build_transpose_aos(gallivm, src_type, &src[i * 4], tmpsoa);
2043          /* really really need SoA here */
2044 
2045          if (src_fmt->format == PIPE_FORMAT_R11G11B10_FLOAT) {
2046             tmpdst = lp_build_float_to_r11g11b10(gallivm, tmpsoa);
2047          }
2048          else {
2049             tmpdst = lp_build_float_to_srgb_packed(gallivm, src_fmt,
2050                                                    src_type, tmpsoa);
2051          }
2052 
2053          if (src_type.length == 8) {
2054             LLVMValueRef tmpaos, shuffles[8];
2055             unsigned j;
2056             /*
2057              * for 8-wide aos transpose has given us wrong order not matching
2058              * output order. HMPF. Also need to split the output values manually.
2059              */
2060             for (j = 0; j < 4; j++) {
2061                shuffles[j * 2] = lp_build_const_int32(gallivm, j);
2062                shuffles[j * 2 + 1] = lp_build_const_int32(gallivm, j + 4);
2063             }
2064             tmpaos = LLVMBuildShuffleVector(builder, tmpdst, tmpdst,
2065                                             LLVMConstVector(shuffles, 8), "");
2066             src[i * 2] = lp_build_extract_range(gallivm, tmpaos, 0, 4);
2067             src[i * 2 + 1] = lp_build_extract_range(gallivm, tmpaos, 4, 4);
2068          }
2069          else {
2070             src[i] = tmpdst;
2071          }
2072       }
2073       if (dst_type.width == 16) {
2074          struct lp_type type16x8 = dst_type;
2075          struct lp_type type32x4 = dst_type;
2076          LLVMTypeRef ltype16x4, ltypei64, ltypei128;
2077          unsigned num_fetch = src_type.length == 8 ? num_srcs / 2 : num_srcs / 4;
2078          type16x8.length = 8;
2079          type32x4.width = 32;
2080          ltypei128 = LLVMIntTypeInContext(gallivm->context, 128);
2081          ltypei64 = LLVMIntTypeInContext(gallivm->context, 64);
2082          ltype16x4 = lp_build_vec_type(gallivm, dst_type);
2083          /* We could do vector truncation but it doesn't generate very good code */
2084          for (i = 0; i < num_fetch; i++) {
2085             src[i] = lp_build_pack2(gallivm, type32x4, type16x8,
2086                                     src[i], lp_build_zero(gallivm, type32x4));
2087             src[i] = LLVMBuildBitCast(builder, src[i], ltypei128, "");
2088             src[i] = LLVMBuildTrunc(builder, src[i], ltypei64, "");
2089             src[i] = LLVMBuildBitCast(builder, src[i], ltype16x4, "");
2090          }
2091       }
2092       return;
2093    }
2094 
2095    lp_mem_type_from_format_desc(src_fmt, &mem_type);
2096    lp_blend_type_from_format_desc(src_fmt, &blend_type);
2097 
2098    is_arith = (blend_type.length * blend_type.width != mem_type.width * mem_type.length);
2099 
2100    /* Special case for half-floats */
2101    if (mem_type.width == 16 && mem_type.floating) {
2102       int length = dst_type.length;
2103       assert(blend_type.width == 32 && blend_type.floating);
2104 
2105       dst_type.length = src_type.length;
2106 
2107       lp_build_conv_auto(gallivm, src_type, &dst_type, dst, num_srcs, dst);
2108 
2109       dst_type.length = length;
2110       is_arith = false;
2111    }
2112 
2113    /* Remove any padding */
2114    if (!is_arith && (src_type.length % mem_type.length)) {
2115       src_type.length -= (src_type.length % mem_type.length);
2116 
2117       for (i = 0; i < num_srcs; ++i) {
2118          dst[i] = lp_build_extract_range(gallivm, dst[i], 0, src_type.length);
2119       }
2120    }
2121 
2122    /* No bit arithmetic to do */
2123    if (!is_arith) {
2124       return;
2125    }
2126 
2127    src_type.length = pixels;
2128    src_type.width = blend_type.length * blend_type.width;
2129    dst_type.length = pixels;
2130 
2131    for (i = 0; i < num_srcs; ++i) {
2132       LLVMValueRef chans[4];
2133       LLVMValueRef res = NULL;
2134 
2135       dst[i] = LLVMBuildBitCast(builder, src[i], lp_build_vec_type(gallivm, src_type), "");
2136 
2137       for (j = 0; j < src_fmt->nr_channels; ++j) {
2138          unsigned mask = 0;
2139          unsigned sa = src_fmt->channel[j].shift;
2140          unsigned sz_a = src_fmt->channel[j].size;
2141 #if UTIL_ARCH_LITTLE_ENDIAN
2142          unsigned from_lsb = j;
2143 #else
2144          unsigned from_lsb = src_fmt->nr_channels - j - 1;
2145 #endif
2146 
2147          assert(blend_type.width > src_fmt->channel[j].size);
2148 
2149          for (k = 0; k < blend_type.width; ++k) {
2150             mask |= 1 << k;
2151          }
2152 
2153          /* Extract bits */
2154          chans[j] = LLVMBuildLShr(builder,
2155                                   dst[i],
2156                                   lp_build_const_int_vec(gallivm, src_type,
2157                                                          from_lsb * blend_type.width),
2158                                   "");
2159 
2160          chans[j] = LLVMBuildAnd(builder,
2161                                  chans[j],
2162                                  lp_build_const_int_vec(gallivm, src_type, mask),
2163                                  "");
2164 
2165          /* Scale down bits */
2166          if (src_type.norm) {
2167             chans[j] = scale_bits(gallivm, blend_type.width,
2168                                   src_fmt->channel[j].size, chans[j], src_type);
2169          } else if (!src_type.floating && sz_a < blend_type.width) {
2170             LLVMValueRef mask_val = lp_build_const_int_vec(gallivm, src_type, (1UL << sz_a) - 1);
2171             LLVMValueRef mask = LLVMBuildICmp(builder, LLVMIntUGT, chans[j], mask_val, "");
2172             chans[j] = LLVMBuildSelect(builder, mask, mask_val, chans[j], "");
2173          }
2174 
2175          /* Insert bits */
2176          chans[j] = LLVMBuildShl(builder,
2177                                  chans[j],
2178                                  lp_build_const_int_vec(gallivm, src_type, sa),
2179                                  "");
2180 
2181          sa += src_fmt->channel[j].size;
2182 
2183          if (j == 0) {
2184             res = chans[j];
2185          } else {
2186             res = LLVMBuildOr(builder, res, chans[j], "");
2187          }
2188       }
2189 
2190       assert (dst_type.width != 24);
2191 
2192       dst[i] = LLVMBuildTrunc(builder, res, lp_build_vec_type(gallivm, dst_type), "");
2193    }
2194 }
2195 
2196 
2197 /**
2198  * Convert alpha to same blend type as src
2199  */
2200 static void
convert_alpha(struct gallivm_state * gallivm,struct lp_type row_type,struct lp_type alpha_type,const unsigned block_size,const unsigned block_height,const unsigned src_count,const unsigned dst_channels,const bool pad_inline,LLVMValueRef * src_alpha)2201 convert_alpha(struct gallivm_state *gallivm,
2202               struct lp_type row_type,
2203               struct lp_type alpha_type,
2204               const unsigned block_size,
2205               const unsigned block_height,
2206               const unsigned src_count,
2207               const unsigned dst_channels,
2208               const bool pad_inline,
2209               LLVMValueRef* src_alpha)
2210 {
2211    LLVMBuilderRef builder = gallivm->builder;
2212    unsigned i, j;
2213    unsigned length = row_type.length;
2214    row_type.length = alpha_type.length;
2215 
2216    /* Twiddle the alpha to match pixels */
2217    lp_bld_quad_twiddle(gallivm, alpha_type, src_alpha, block_height, src_alpha);
2218 
2219    /*
2220     * TODO this should use single lp_build_conv call for
2221     * src_count == 1 && dst_channels == 1 case (dropping the concat below)
2222     */
2223    for (i = 0; i < block_height; ++i) {
2224       lp_build_conv(gallivm, alpha_type, row_type, &src_alpha[i], 1, &src_alpha[i], 1);
2225    }
2226 
2227    alpha_type = row_type;
2228    row_type.length = length;
2229 
2230    /* If only one channel we can only need the single alpha value per pixel */
2231    if (src_count == 1 && dst_channels == 1) {
2232 
2233       lp_build_concat_n(gallivm, alpha_type, src_alpha, block_height, src_alpha, src_count);
2234    } else {
2235       /* If there are more srcs than rows then we need to split alpha up */
2236       if (src_count > block_height) {
2237          for (i = src_count; i > 0; --i) {
2238             unsigned pixels = block_size / src_count;
2239             unsigned idx = i - 1;
2240 
2241             src_alpha[idx] = lp_build_extract_range(gallivm, src_alpha[(idx * pixels) / 4],
2242                                                     (idx * pixels) % 4, pixels);
2243          }
2244       }
2245 
2246       /* If there is a src for each pixel broadcast the alpha across whole row */
2247       if (src_count == block_size) {
2248          for (i = 0; i < src_count; ++i) {
2249             src_alpha[i] = lp_build_broadcast(gallivm,
2250                               lp_build_vec_type(gallivm, row_type), src_alpha[i]);
2251          }
2252       } else {
2253          unsigned pixels = block_size / src_count;
2254          unsigned channels = pad_inline ? TGSI_NUM_CHANNELS : dst_channels;
2255          unsigned alpha_span = 1;
2256          LLVMValueRef shuffles[LP_MAX_VECTOR_LENGTH];
2257 
2258          /* Check if we need 2 src_alphas for our shuffles */
2259          if (pixels > alpha_type.length) {
2260             alpha_span = 2;
2261          }
2262 
2263          /* Broadcast alpha across all channels, e.g. a1a2 to a1a1a1a1a2a2a2a2 */
2264          for (j = 0; j < row_type.length; ++j) {
2265             if (j < pixels * channels) {
2266                shuffles[j] = lp_build_const_int32(gallivm, j / channels);
2267             } else {
2268                shuffles[j] = LLVMGetUndef(LLVMInt32TypeInContext(gallivm->context));
2269             }
2270          }
2271 
2272          for (i = 0; i < src_count; ++i) {
2273             unsigned idx1 = i, idx2 = i;
2274 
2275             if (alpha_span > 1){
2276                idx1 *= alpha_span;
2277                idx2 = idx1 + 1;
2278             }
2279 
2280             src_alpha[i] = LLVMBuildShuffleVector(builder,
2281                                                   src_alpha[idx1],
2282                                                   src_alpha[idx2],
2283                                                   LLVMConstVector(shuffles, row_type.length),
2284                                                   "");
2285          }
2286       }
2287    }
2288 }
2289 
2290 
2291 /**
2292  * Generates the blend function for unswizzled colour buffers
2293  * Also generates the read & write from colour buffer
2294  */
2295 static void
generate_unswizzled_blend(struct gallivm_state * gallivm,unsigned rt,struct lp_fragment_shader_variant * variant,enum pipe_format out_format,unsigned int num_fs,struct lp_type fs_type,LLVMValueRef * fs_mask,LLVMValueRef fs_out_color[PIPE_MAX_COLOR_BUFS][TGSI_NUM_CHANNELS][4],LLVMValueRef context_ptr,LLVMValueRef color_ptr,LLVMValueRef stride,unsigned partial_mask,boolean do_branch)2296 generate_unswizzled_blend(struct gallivm_state *gallivm,
2297                           unsigned rt,
2298                           struct lp_fragment_shader_variant *variant,
2299                           enum pipe_format out_format,
2300                           unsigned int num_fs,
2301                           struct lp_type fs_type,
2302                           LLVMValueRef* fs_mask,
2303                           LLVMValueRef fs_out_color[PIPE_MAX_COLOR_BUFS][TGSI_NUM_CHANNELS][4],
2304                           LLVMValueRef context_ptr,
2305                           LLVMValueRef color_ptr,
2306                           LLVMValueRef stride,
2307                           unsigned partial_mask,
2308                           boolean do_branch)
2309 {
2310    const unsigned alpha_channel = 3;
2311    const unsigned block_width = LP_RASTER_BLOCK_SIZE;
2312    const unsigned block_height = LP_RASTER_BLOCK_SIZE;
2313    const unsigned block_size = block_width * block_height;
2314    const unsigned lp_integer_vector_width = 128;
2315 
2316    LLVMBuilderRef builder = gallivm->builder;
2317    LLVMValueRef fs_src[4][TGSI_NUM_CHANNELS];
2318    LLVMValueRef fs_src1[4][TGSI_NUM_CHANNELS];
2319    LLVMValueRef src_alpha[4 * 4];
2320    LLVMValueRef src1_alpha[4 * 4] = { NULL };
2321    LLVMValueRef src_mask[4 * 4];
2322    LLVMValueRef src[4 * 4];
2323    LLVMValueRef src1[4 * 4];
2324    LLVMValueRef dst[4 * 4];
2325    LLVMValueRef blend_color;
2326    LLVMValueRef blend_alpha;
2327    LLVMValueRef i32_zero;
2328    LLVMValueRef check_mask;
2329    LLVMValueRef undef_src_val;
2330 
2331    struct lp_build_mask_context mask_ctx;
2332    struct lp_type mask_type;
2333    struct lp_type blend_type;
2334    struct lp_type row_type;
2335    struct lp_type dst_type;
2336    struct lp_type ls_type;
2337 
2338    unsigned char swizzle[TGSI_NUM_CHANNELS];
2339    unsigned vector_width;
2340    unsigned src_channels = TGSI_NUM_CHANNELS;
2341    unsigned dst_channels;
2342    unsigned dst_count;
2343    unsigned src_count;
2344    unsigned i, j;
2345 
2346    const struct util_format_description* out_format_desc = util_format_description(out_format);
2347 
2348    unsigned dst_alignment;
2349 
2350    bool pad_inline = is_arithmetic_format(out_format_desc);
2351    bool has_alpha = false;
2352    const boolean dual_source_blend = variant->key.blend.rt[0].blend_enable &&
2353                                      util_blend_state_is_dual(&variant->key.blend, 0);
2354 
2355    const boolean is_1d = variant->key.resource_1d;
2356    boolean twiddle_after_convert = FALSE;
2357    unsigned num_fullblock_fs = is_1d ? 2 * num_fs : num_fs;
2358    LLVMValueRef fpstate = 0;
2359 
2360    /* Get type from output format */
2361    lp_blend_type_from_format_desc(out_format_desc, &row_type);
2362    lp_mem_type_from_format_desc(out_format_desc, &dst_type);
2363 
2364    /*
2365     * Technically this code should go into lp_build_smallfloat_to_float
2366     * and lp_build_float_to_smallfloat but due to the
2367     * http://llvm.org/bugs/show_bug.cgi?id=6393
2368     * llvm reorders the mxcsr intrinsics in a way that breaks the code.
2369     * So the ordering is important here and there shouldn't be any
2370     * llvm ir instrunctions in this function before
2371     * this, otherwise half-float format conversions won't work
2372     * (again due to llvm bug #6393).
2373     */
2374    if (have_smallfloat_format(dst_type, out_format)) {
2375       /* We need to make sure that denorms are ok for half float
2376          conversions */
2377       fpstate = lp_build_fpstate_get(gallivm);
2378       lp_build_fpstate_set_denorms_zero(gallivm, FALSE);
2379    }
2380 
2381    mask_type = lp_int32_vec4_type();
2382    mask_type.length = fs_type.length;
2383 
2384    for (i = num_fs; i < num_fullblock_fs; i++) {
2385       fs_mask[i] = lp_build_zero(gallivm, mask_type);
2386    }
2387 
2388    /* Do not bother executing code when mask is empty.. */
2389    if (do_branch) {
2390       check_mask = LLVMConstNull(lp_build_int_vec_type(gallivm, mask_type));
2391 
2392       for (i = 0; i < num_fullblock_fs; ++i) {
2393          check_mask = LLVMBuildOr(builder, check_mask, fs_mask[i], "");
2394       }
2395 
2396       lp_build_mask_begin(&mask_ctx, gallivm, mask_type, check_mask);
2397       lp_build_mask_check(&mask_ctx);
2398    }
2399 
2400    partial_mask |= !variant->opaque;
2401    i32_zero = lp_build_const_int32(gallivm, 0);
2402 
2403    undef_src_val = lp_build_undef(gallivm, fs_type);
2404 
2405    row_type.length = fs_type.length;
2406    vector_width    = dst_type.floating ? lp_native_vector_width : lp_integer_vector_width;
2407 
2408    /* Compute correct swizzle and count channels */
2409    memset(swizzle, LP_BLD_SWIZZLE_DONTCARE, TGSI_NUM_CHANNELS);
2410    dst_channels = 0;
2411 
2412    for (i = 0; i < TGSI_NUM_CHANNELS; ++i) {
2413       /* Ensure channel is used */
2414       if (out_format_desc->swizzle[i] >= TGSI_NUM_CHANNELS) {
2415          continue;
2416       }
2417 
2418       /* Ensure not already written to (happens in case with GL_ALPHA) */
2419       if (swizzle[out_format_desc->swizzle[i]] < TGSI_NUM_CHANNELS) {
2420          continue;
2421       }
2422 
2423       /* Ensure we haven't already found all channels */
2424       if (dst_channels >= out_format_desc->nr_channels) {
2425          continue;
2426       }
2427 
2428       swizzle[out_format_desc->swizzle[i]] = i;
2429       ++dst_channels;
2430 
2431       if (i == alpha_channel) {
2432          has_alpha = true;
2433       }
2434    }
2435 
2436    if (format_expands_to_float_soa(out_format_desc)) {
2437       /*
2438        * the code above can't work for layout_other
2439        * for srgb it would sort of work but we short-circuit swizzles, etc.
2440        * as that is done as part of unpack / pack.
2441        */
2442       dst_channels = 4; /* HACK: this is fake 4 really but need it due to transpose stuff later */
2443       has_alpha = true;
2444       swizzle[0] = 0;
2445       swizzle[1] = 1;
2446       swizzle[2] = 2;
2447       swizzle[3] = 3;
2448       pad_inline = true; /* HACK: prevent rgbxrgbx->rgbrgbxx conversion later */
2449    }
2450 
2451    /* If 3 channels then pad to include alpha for 4 element transpose */
2452    if (dst_channels == 3) {
2453       assert (!has_alpha);
2454       for (i = 0; i < TGSI_NUM_CHANNELS; i++) {
2455          if (swizzle[i] > TGSI_NUM_CHANNELS)
2456             swizzle[i] = 3;
2457       }
2458       if (out_format_desc->nr_channels == 4) {
2459          dst_channels = 4;
2460          /*
2461           * We use alpha from the color conversion, not separate one.
2462           * We had to include it for transpose, hence it will get converted
2463           * too (albeit when doing transpose after conversion, that would
2464           * no longer be the case necessarily).
2465           * (It works only with 4 channel dsts, e.g. rgbx formats, because
2466           * otherwise we really have padding, not alpha, included.)
2467           */
2468          has_alpha = true;
2469       }
2470    }
2471 
2472    /*
2473     * Load shader output
2474     */
2475    for (i = 0; i < num_fullblock_fs; ++i) {
2476       /* Always load alpha for use in blending */
2477       LLVMValueRef alpha;
2478       if (i < num_fs) {
2479          alpha = LLVMBuildLoad(builder, fs_out_color[rt][alpha_channel][i], "");
2480       }
2481       else {
2482          alpha = undef_src_val;
2483       }
2484 
2485       /* Load each channel */
2486       for (j = 0; j < dst_channels; ++j) {
2487          assert(swizzle[j] < 4);
2488          if (i < num_fs) {
2489             fs_src[i][j] = LLVMBuildLoad(builder, fs_out_color[rt][swizzle[j]][i], "");
2490          }
2491          else {
2492             fs_src[i][j] = undef_src_val;
2493          }
2494       }
2495 
2496       /* If 3 channels then pad to include alpha for 4 element transpose */
2497       /*
2498        * XXX If we include that here maybe could actually use it instead of
2499        * separate alpha for blending?
2500        * (Difficult though we actually convert pad channels, not alpha.)
2501        */
2502       if (dst_channels == 3 && !has_alpha) {
2503          fs_src[i][3] = alpha;
2504       }
2505 
2506       /* We split the row_mask and row_alpha as we want 128bit interleave */
2507       if (fs_type.length == 8) {
2508          src_mask[i*2 + 0]  = lp_build_extract_range(gallivm, fs_mask[i],
2509                                                      0, src_channels);
2510          src_mask[i*2 + 1]  = lp_build_extract_range(gallivm, fs_mask[i],
2511                                                      src_channels, src_channels);
2512 
2513          src_alpha[i*2 + 0] = lp_build_extract_range(gallivm, alpha, 0, src_channels);
2514          src_alpha[i*2 + 1] = lp_build_extract_range(gallivm, alpha,
2515                                                      src_channels, src_channels);
2516       } else {
2517          src_mask[i] = fs_mask[i];
2518          src_alpha[i] = alpha;
2519       }
2520    }
2521    if (dual_source_blend) {
2522       /* same as above except different src/dst, skip masks and comments... */
2523       for (i = 0; i < num_fullblock_fs; ++i) {
2524          LLVMValueRef alpha;
2525          if (i < num_fs) {
2526             alpha = LLVMBuildLoad(builder, fs_out_color[1][alpha_channel][i], "");
2527          }
2528          else {
2529             alpha = undef_src_val;
2530          }
2531 
2532          for (j = 0; j < dst_channels; ++j) {
2533             assert(swizzle[j] < 4);
2534             if (i < num_fs) {
2535                fs_src1[i][j] = LLVMBuildLoad(builder, fs_out_color[1][swizzle[j]][i], "");
2536             }
2537             else {
2538                fs_src1[i][j] = undef_src_val;
2539             }
2540          }
2541          if (dst_channels == 3 && !has_alpha) {
2542             fs_src1[i][3] = alpha;
2543          }
2544          if (fs_type.length == 8) {
2545             src1_alpha[i*2 + 0] = lp_build_extract_range(gallivm, alpha, 0, src_channels);
2546             src1_alpha[i*2 + 1] = lp_build_extract_range(gallivm, alpha,
2547                                                          src_channels, src_channels);
2548          } else {
2549             src1_alpha[i] = alpha;
2550          }
2551       }
2552    }
2553 
2554    if (util_format_is_pure_integer(out_format)) {
2555       /*
2556        * In this case fs_type was really ints or uints disguised as floats,
2557        * fix that up now.
2558        */
2559       fs_type.floating = 0;
2560       fs_type.sign = dst_type.sign;
2561       for (i = 0; i < num_fullblock_fs; ++i) {
2562          for (j = 0; j < dst_channels; ++j) {
2563             fs_src[i][j] = LLVMBuildBitCast(builder, fs_src[i][j],
2564                                             lp_build_vec_type(gallivm, fs_type), "");
2565          }
2566          if (dst_channels == 3 && !has_alpha) {
2567             fs_src[i][3] = LLVMBuildBitCast(builder, fs_src[i][3],
2568                                             lp_build_vec_type(gallivm, fs_type), "");
2569          }
2570       }
2571    }
2572 
2573    /*
2574     * We actually should generally do conversion first (for non-1d cases)
2575     * when the blend format is 8 or 16 bits. The reason is obvious,
2576     * there's 2 or 4 times less vectors to deal with for the interleave...
2577     * Albeit for the AVX (not AVX2) case there's no benefit with 16 bit
2578     * vectors (as it can do 32bit unpack with 256bit vectors, but 8/16bit
2579     * unpack only with 128bit vectors).
2580     * Note: for 16bit sizes really need matching pack conversion code
2581     */
2582    if (!is_1d && dst_channels != 3 && dst_type.width == 8) {
2583       twiddle_after_convert = TRUE;
2584    }
2585 
2586    /*
2587     * Pixel twiddle from fragment shader order to memory order
2588     */
2589    if (!twiddle_after_convert) {
2590       src_count = generate_fs_twiddle(gallivm, fs_type, num_fullblock_fs,
2591                                       dst_channels, fs_src, src, pad_inline);
2592       if (dual_source_blend) {
2593          generate_fs_twiddle(gallivm, fs_type, num_fullblock_fs, dst_channels,
2594                              fs_src1, src1, pad_inline);
2595       }
2596    } else {
2597       src_count = num_fullblock_fs * dst_channels;
2598       /*
2599        * We reorder things a bit here, so the cases for 4-wide and 8-wide
2600        * (AVX) turn out the same later when untwiddling/transpose (albeit
2601        * for true AVX2 path untwiddle needs to be different).
2602        * For now just order by colors first (so we can use unpack later).
2603        */
2604       for (j = 0; j < num_fullblock_fs; j++) {
2605          for (i = 0; i < dst_channels; i++) {
2606             src[i*num_fullblock_fs + j] = fs_src[j][i];
2607             if (dual_source_blend) {
2608                src1[i*num_fullblock_fs + j] = fs_src1[j][i];
2609             }
2610          }
2611       }
2612    }
2613 
2614    src_channels = dst_channels < 3 ? dst_channels : 4;
2615    if (src_count != num_fullblock_fs * src_channels) {
2616       unsigned ds = src_count / (num_fullblock_fs * src_channels);
2617       row_type.length /= ds;
2618       fs_type.length = row_type.length;
2619    }
2620 
2621    blend_type = row_type;
2622    mask_type.length = 4;
2623 
2624    /* Convert src to row_type */
2625    if (dual_source_blend) {
2626       struct lp_type old_row_type = row_type;
2627       lp_build_conv_auto(gallivm, fs_type, &row_type, src, src_count, src);
2628       src_count = lp_build_conv_auto(gallivm, fs_type, &old_row_type, src1, src_count, src1);
2629    }
2630    else {
2631       src_count = lp_build_conv_auto(gallivm, fs_type, &row_type, src, src_count, src);
2632    }
2633 
2634    /* If the rows are not an SSE vector, combine them to become SSE size! */
2635    if ((row_type.width * row_type.length) % 128) {
2636       unsigned bits = row_type.width * row_type.length;
2637       unsigned combined;
2638 
2639       assert(src_count >= (vector_width / bits));
2640 
2641       dst_count = src_count / (vector_width / bits);
2642 
2643       combined = lp_build_concat_n(gallivm, row_type, src, src_count, src, dst_count);
2644       if (dual_source_blend) {
2645          lp_build_concat_n(gallivm, row_type, src1, src_count, src1, dst_count);
2646       }
2647 
2648       row_type.length *= combined;
2649       src_count /= combined;
2650 
2651       bits = row_type.width * row_type.length;
2652       assert(bits == 128 || bits == 256);
2653    }
2654 
2655    if (twiddle_after_convert) {
2656       fs_twiddle_transpose(gallivm, row_type, src, src_count, src);
2657       if (dual_source_blend) {
2658          fs_twiddle_transpose(gallivm, row_type, src1, src_count, src1);
2659       }
2660    }
2661 
2662    /*
2663     * Blend Colour conversion
2664     */
2665    blend_color = lp_jit_context_f_blend_color(gallivm, context_ptr);
2666    blend_color = LLVMBuildPointerCast(builder, blend_color,
2667                     LLVMPointerType(lp_build_vec_type(gallivm, fs_type), 0), "");
2668    blend_color = LLVMBuildLoad(builder, LLVMBuildGEP(builder, blend_color,
2669                                &i32_zero, 1, ""), "");
2670 
2671    /* Convert */
2672    lp_build_conv(gallivm, fs_type, blend_type, &blend_color, 1, &blend_color, 1);
2673 
2674    if (out_format_desc->colorspace == UTIL_FORMAT_COLORSPACE_SRGB) {
2675       /*
2676        * since blending is done with floats, there was no conversion.
2677        * However, the rules according to fixed point renderbuffers still
2678        * apply, that is we must clamp inputs to 0.0/1.0.
2679        * (This would apply to separate alpha conversion too but we currently
2680        * force has_alpha to be true.)
2681        * TODO: should skip this with "fake" blend, since post-blend conversion
2682        * will clamp anyway.
2683        * TODO: could also skip this if fragment color clamping is enabled. We
2684        * don't support it natively so it gets baked into the shader however, so
2685        * can't really tell here.
2686        */
2687       struct lp_build_context f32_bld;
2688       assert(row_type.floating);
2689       lp_build_context_init(&f32_bld, gallivm, row_type);
2690       for (i = 0; i < src_count; i++) {
2691          src[i] = lp_build_clamp_zero_one_nanzero(&f32_bld, src[i]);
2692       }
2693       if (dual_source_blend) {
2694          for (i = 0; i < src_count; i++) {
2695             src1[i] = lp_build_clamp_zero_one_nanzero(&f32_bld, src1[i]);
2696          }
2697       }
2698       /* probably can't be different than row_type but better safe than sorry... */
2699       lp_build_context_init(&f32_bld, gallivm, blend_type);
2700       blend_color = lp_build_clamp(&f32_bld, blend_color, f32_bld.zero, f32_bld.one);
2701    }
2702 
2703    /* Extract alpha */
2704    blend_alpha = lp_build_extract_broadcast(gallivm, blend_type, row_type, blend_color, lp_build_const_int32(gallivm, 3));
2705 
2706    /* Swizzle to appropriate channels, e.g. from RGBA to BGRA BGRA */
2707    pad_inline &= (dst_channels * (block_size / src_count) * row_type.width) != vector_width;
2708    if (pad_inline) {
2709       /* Use all 4 channels e.g. from RGBA RGBA to RGxx RGxx */
2710       blend_color = lp_build_swizzle_aos_n(gallivm, blend_color, swizzle, TGSI_NUM_CHANNELS, row_type.length);
2711    } else {
2712       /* Only use dst_channels e.g. RGBA RGBA to RG RG xxxx */
2713       blend_color = lp_build_swizzle_aos_n(gallivm, blend_color, swizzle, dst_channels, row_type.length);
2714    }
2715 
2716    /*
2717     * Mask conversion
2718     */
2719    lp_bld_quad_twiddle(gallivm, mask_type, &src_mask[0], block_height, &src_mask[0]);
2720 
2721    if (src_count < block_height) {
2722       lp_build_concat_n(gallivm, mask_type, src_mask, 4, src_mask, src_count);
2723    } else if (src_count > block_height) {
2724       for (i = src_count; i > 0; --i) {
2725          unsigned pixels = block_size / src_count;
2726          unsigned idx = i - 1;
2727 
2728          src_mask[idx] = lp_build_extract_range(gallivm, src_mask[(idx * pixels) / 4],
2729                                                 (idx * pixels) % 4, pixels);
2730       }
2731    }
2732 
2733    assert(mask_type.width == 32);
2734 
2735    for (i = 0; i < src_count; ++i) {
2736       unsigned pixels = block_size / src_count;
2737       unsigned pixel_width = row_type.width * dst_channels;
2738 
2739       if (pixel_width == 24) {
2740          mask_type.width = 8;
2741          mask_type.length = vector_width / mask_type.width;
2742       } else {
2743          mask_type.length = pixels;
2744          mask_type.width = row_type.width * dst_channels;
2745 
2746          /*
2747           * If mask_type width is smaller than 32bit, this doesn't quite
2748           * generate the most efficient code (could use some pack).
2749           */
2750          src_mask[i] = LLVMBuildIntCast(builder, src_mask[i],
2751                                         lp_build_int_vec_type(gallivm, mask_type), "");
2752 
2753          mask_type.length *= dst_channels;
2754          mask_type.width /= dst_channels;
2755       }
2756 
2757       src_mask[i] = LLVMBuildBitCast(builder, src_mask[i],
2758                                      lp_build_int_vec_type(gallivm, mask_type), "");
2759       src_mask[i] = lp_build_pad_vector(gallivm, src_mask[i], row_type.length);
2760    }
2761 
2762    /*
2763     * Alpha conversion
2764     */
2765    if (!has_alpha) {
2766       struct lp_type alpha_type = fs_type;
2767       alpha_type.length = 4;
2768       convert_alpha(gallivm, row_type, alpha_type,
2769                     block_size, block_height,
2770                     src_count, dst_channels,
2771                     pad_inline, src_alpha);
2772       if (dual_source_blend) {
2773          convert_alpha(gallivm, row_type, alpha_type,
2774                        block_size, block_height,
2775                        src_count, dst_channels,
2776                        pad_inline, src1_alpha);
2777       }
2778    }
2779 
2780 
2781    /*
2782     * Load dst from memory
2783     */
2784    if (src_count < block_height) {
2785       dst_count = block_height;
2786    } else {
2787       dst_count = src_count;
2788    }
2789 
2790    dst_type.length *= block_size / dst_count;
2791 
2792    if (format_expands_to_float_soa(out_format_desc)) {
2793       /*
2794        * we need multiple values at once for the conversion, so can as well
2795        * load them vectorized here too instead of concatenating later.
2796        * (Still need concatenation later for 8-wide vectors).
2797        */
2798       dst_count = block_height;
2799       dst_type.length = block_width;
2800    }
2801 
2802    /*
2803     * Compute the alignment of the destination pointer in bytes
2804     * We fetch 1-4 pixels, if the format has pot alignment then those fetches
2805     * are always aligned by MIN2(16, fetch_width) except for buffers (not
2806     * 1d tex but can't distinguish here) so need to stick with per-pixel
2807     * alignment in this case.
2808     */
2809    if (is_1d) {
2810       dst_alignment = (out_format_desc->block.bits + 7)/(out_format_desc->block.width * 8);
2811    }
2812    else {
2813       dst_alignment = dst_type.length * dst_type.width / 8;
2814    }
2815    /* Force power-of-two alignment by extracting only the least-significant-bit */
2816    dst_alignment = 1 << (ffs(dst_alignment) - 1);
2817    /*
2818     * Resource base and stride pointers are aligned to 16 bytes, so that's
2819     * the maximum alignment we can guarantee
2820     */
2821    dst_alignment = MIN2(16, dst_alignment);
2822 
2823    ls_type = dst_type;
2824 
2825    if (dst_count > src_count) {
2826       if ((dst_type.width == 8 || dst_type.width == 16) &&
2827           util_is_power_of_two_or_zero(dst_type.length) &&
2828           dst_type.length * dst_type.width < 128) {
2829          /*
2830           * Never try to load values as 4xi8 which we will then
2831           * concatenate to larger vectors. This gives llvm a real
2832           * headache (the problem is the type legalizer (?) will
2833           * try to load that as 4xi8 zext to 4xi32 to fill the vector,
2834           * then the shuffles to concatenate are more or less impossible
2835           * - llvm is easily capable of generating a sequence of 32
2836           * pextrb/pinsrb instructions for that. Albeit it appears to
2837           * be fixed in llvm 4.0. So, load and concatenate with 32bit
2838           * width to avoid the trouble (16bit seems not as bad, llvm
2839           * probably recognizes the load+shuffle as only one shuffle
2840           * is necessary, but we can do just the same anyway).
2841           */
2842          ls_type.length = dst_type.length * dst_type.width / 32;
2843          ls_type.width = 32;
2844       }
2845    }
2846 
2847    if (is_1d) {
2848       load_unswizzled_block(gallivm, color_ptr, stride, block_width, 1,
2849                             dst, ls_type, dst_count / 4, dst_alignment, NULL, NULL, false);
2850       for (i = dst_count / 4; i < dst_count; i++) {
2851          dst[i] = lp_build_undef(gallivm, ls_type);
2852       }
2853 
2854    }
2855    else {
2856       load_unswizzled_block(gallivm, color_ptr, stride, block_width, block_height,
2857                             dst, ls_type, dst_count, dst_alignment, NULL, NULL, false);
2858    }
2859 
2860 
2861    /*
2862     * Convert from dst/output format to src/blending format.
2863     *
2864     * This is necessary as we can only read 1 row from memory at a time,
2865     * so the minimum dst_count will ever be at this point is 4.
2866     *
2867     * With, for example, R8 format you can have all 16 pixels in a 128 bit vector,
2868     * this will take the 4 dsts and combine them into 1 src so we can perform blending
2869     * on all 16 pixels in that single vector at once.
2870     */
2871    if (dst_count > src_count) {
2872       if (ls_type.length != dst_type.length && ls_type.length == 1) {
2873          LLVMTypeRef elem_type = lp_build_elem_type(gallivm, ls_type);
2874          LLVMTypeRef ls_vec_type = LLVMVectorType(elem_type, 1);
2875          for (i = 0; i < dst_count; i++) {
2876             dst[i] = LLVMBuildBitCast(builder, dst[i], ls_vec_type, "");
2877          }
2878       }
2879 
2880       lp_build_concat_n(gallivm, ls_type, dst, 4, dst, src_count);
2881 
2882       if (ls_type.length != dst_type.length) {
2883          struct lp_type tmp_type = dst_type;
2884          tmp_type.length = dst_type.length * 4 / src_count;
2885          for (i = 0; i < src_count; i++) {
2886             dst[i] = LLVMBuildBitCast(builder, dst[i],
2887                                       lp_build_vec_type(gallivm, tmp_type), "");
2888          }
2889       }
2890    }
2891 
2892    /*
2893     * Blending
2894     */
2895    /* XXX this is broken for RGB8 formats -
2896     * they get expanded from 12 to 16 elements (to include alpha)
2897     * by convert_to_blend_type then reduced to 15 instead of 12
2898     * by convert_from_blend_type (a simple fix though breaks A8...).
2899     * R16G16B16 also crashes differently however something going wrong
2900     * inside llvm handling npot vector sizes seemingly.
2901     * It seems some cleanup could be done here (like skipping conversion/blend
2902     * when not needed).
2903     */
2904    convert_to_blend_type(gallivm, block_size, out_format_desc, dst_type,
2905                          row_type, dst, src_count);
2906 
2907    /*
2908     * FIXME: Really should get logic ops / masks out of generic blend / row
2909     * format. Logic ops will definitely not work on the blend float format
2910     * used for SRGB here and I think OpenGL expects this to work as expected
2911     * (that is incoming values converted to srgb then logic op applied).
2912     */
2913    for (i = 0; i < src_count; ++i) {
2914       dst[i] = lp_build_blend_aos(gallivm,
2915                                   &variant->key.blend,
2916                                   out_format,
2917                                   row_type,
2918                                   rt,
2919                                   src[i],
2920                                   has_alpha ? NULL : src_alpha[i],
2921                                   src1[i],
2922                                   has_alpha ? NULL : src1_alpha[i],
2923                                   dst[i],
2924                                   partial_mask ? src_mask[i] : NULL,
2925                                   blend_color,
2926                                   has_alpha ? NULL : blend_alpha,
2927                                   swizzle,
2928                                   pad_inline ? 4 : dst_channels);
2929    }
2930 
2931    convert_from_blend_type(gallivm, block_size, out_format_desc,
2932                            row_type, dst_type, dst, src_count);
2933 
2934    /* Split the blend rows back to memory rows */
2935    if (dst_count > src_count) {
2936       row_type.length = dst_type.length * (dst_count / src_count);
2937 
2938       if (src_count == 1) {
2939          dst[1] = lp_build_extract_range(gallivm, dst[0], row_type.length / 2, row_type.length / 2);
2940          dst[0] = lp_build_extract_range(gallivm, dst[0], 0, row_type.length / 2);
2941 
2942          row_type.length /= 2;
2943          src_count *= 2;
2944       }
2945 
2946       dst[3] = lp_build_extract_range(gallivm, dst[1], row_type.length / 2, row_type.length / 2);
2947       dst[2] = lp_build_extract_range(gallivm, dst[1], 0, row_type.length / 2);
2948       dst[1] = lp_build_extract_range(gallivm, dst[0], row_type.length / 2, row_type.length / 2);
2949       dst[0] = lp_build_extract_range(gallivm, dst[0], 0, row_type.length / 2);
2950 
2951       row_type.length /= 2;
2952       src_count *= 2;
2953    }
2954 
2955    /*
2956     * Store blend result to memory
2957     */
2958    if (is_1d) {
2959       store_unswizzled_block(gallivm, color_ptr, stride, block_width, 1,
2960                              dst, dst_type, dst_count / 4, dst_alignment);
2961    }
2962    else {
2963       store_unswizzled_block(gallivm, color_ptr, stride, block_width, block_height,
2964                              dst, dst_type, dst_count, dst_alignment);
2965    }
2966 
2967    if (have_smallfloat_format(dst_type, out_format)) {
2968       lp_build_fpstate_set(gallivm, fpstate);
2969    }
2970 
2971    if (do_branch) {
2972       lp_build_mask_end(&mask_ctx);
2973    }
2974 }
2975 
2976 
2977 /**
2978  * Generate the runtime callable function for the whole fragment pipeline.
2979  * Note that the function which we generate operates on a block of 16
2980  * pixels at at time.  The block contains 2x2 quads.  Each quad contains
2981  * 2x2 pixels.
2982  */
2983 static void
generate_fragment(struct llvmpipe_context * lp,struct lp_fragment_shader * shader,struct lp_fragment_shader_variant * variant,unsigned partial_mask)2984 generate_fragment(struct llvmpipe_context *lp,
2985                   struct lp_fragment_shader *shader,
2986                   struct lp_fragment_shader_variant *variant,
2987                   unsigned partial_mask)
2988 {
2989    struct gallivm_state *gallivm = variant->gallivm;
2990    struct lp_fragment_shader_variant_key *key = &variant->key;
2991    struct lp_shader_input inputs[PIPE_MAX_SHADER_INPUTS];
2992    char func_name[64];
2993    struct lp_type fs_type;
2994    struct lp_type blend_type;
2995    LLVMTypeRef fs_elem_type;
2996    LLVMTypeRef blend_vec_type;
2997    LLVMTypeRef arg_types[15];
2998    LLVMTypeRef func_type;
2999    LLVMTypeRef int32_type = LLVMInt32TypeInContext(gallivm->context);
3000    LLVMTypeRef int8_type = LLVMInt8TypeInContext(gallivm->context);
3001    LLVMValueRef context_ptr;
3002    LLVMValueRef x;
3003    LLVMValueRef y;
3004    LLVMValueRef a0_ptr;
3005    LLVMValueRef dadx_ptr;
3006    LLVMValueRef dady_ptr;
3007    LLVMValueRef color_ptr_ptr;
3008    LLVMValueRef stride_ptr;
3009    LLVMValueRef color_sample_stride_ptr;
3010    LLVMValueRef depth_ptr;
3011    LLVMValueRef depth_stride;
3012    LLVMValueRef depth_sample_stride;
3013    LLVMValueRef mask_input;
3014    LLVMValueRef thread_data_ptr;
3015    LLVMBasicBlockRef block;
3016    LLVMBuilderRef builder;
3017    struct lp_build_sampler_soa *sampler;
3018    struct lp_build_image_soa *image;
3019    struct lp_build_interp_soa_context interp;
3020    LLVMValueRef fs_mask[(16 / 4) * LP_MAX_SAMPLES];
3021    LLVMValueRef fs_out_color[LP_MAX_SAMPLES][PIPE_MAX_COLOR_BUFS][TGSI_NUM_CHANNELS][16 / 4];
3022    LLVMValueRef function;
3023    LLVMValueRef facing;
3024    unsigned num_fs;
3025    unsigned i;
3026    unsigned chan;
3027    unsigned cbuf;
3028    boolean cbuf0_write_all;
3029    const boolean dual_source_blend = key->blend.rt[0].blend_enable &&
3030                                      util_blend_state_is_dual(&key->blend, 0);
3031 
3032    assert(lp_native_vector_width / 32 >= 4);
3033 
3034    /* Adjust color input interpolation according to flatshade state:
3035     */
3036    memcpy(inputs, shader->inputs, shader->info.base.num_inputs * sizeof inputs[0]);
3037    for (i = 0; i < shader->info.base.num_inputs; i++) {
3038       if (inputs[i].interp == LP_INTERP_COLOR) {
3039 	 if (key->flatshade)
3040 	    inputs[i].interp = LP_INTERP_CONSTANT;
3041 	 else
3042 	    inputs[i].interp = LP_INTERP_PERSPECTIVE;
3043       }
3044    }
3045 
3046    /* check if writes to cbuf[0] are to be copied to all cbufs */
3047    cbuf0_write_all =
3048      shader->info.base.properties[TGSI_PROPERTY_FS_COLOR0_WRITES_ALL_CBUFS];
3049 
3050    /* TODO: actually pick these based on the fs and color buffer
3051     * characteristics. */
3052 
3053    memset(&fs_type, 0, sizeof fs_type);
3054    fs_type.floating = TRUE;      /* floating point values */
3055    fs_type.sign = TRUE;          /* values are signed */
3056    fs_type.norm = FALSE;         /* values are not limited to [0,1] or [-1,1] */
3057    fs_type.width = 32;           /* 32-bit float */
3058    fs_type.length = MIN2(lp_native_vector_width / 32, 16); /* n*4 elements per vector */
3059 
3060    memset(&blend_type, 0, sizeof blend_type);
3061    blend_type.floating = FALSE; /* values are integers */
3062    blend_type.sign = FALSE;     /* values are unsigned */
3063    blend_type.norm = TRUE;      /* values are in [0,1] or [-1,1] */
3064    blend_type.width = 8;        /* 8-bit ubyte values */
3065    blend_type.length = 16;      /* 16 elements per vector */
3066 
3067    /*
3068     * Generate the function prototype. Any change here must be reflected in
3069     * lp_jit.h's lp_jit_frag_func function pointer type, and vice-versa.
3070     */
3071 
3072    fs_elem_type = lp_build_elem_type(gallivm, fs_type);
3073 
3074    blend_vec_type = lp_build_vec_type(gallivm, blend_type);
3075 
3076    snprintf(func_name, sizeof(func_name), "fs_variant_%s",
3077             partial_mask ? "partial" : "whole");
3078 
3079    arg_types[0] = variant->jit_context_ptr_type;       /* context */
3080    arg_types[1] = int32_type;                          /* x */
3081    arg_types[2] = int32_type;                          /* y */
3082    arg_types[3] = int32_type;                          /* facing */
3083    arg_types[4] = LLVMPointerType(fs_elem_type, 0);    /* a0 */
3084    arg_types[5] = LLVMPointerType(fs_elem_type, 0);    /* dadx */
3085    arg_types[6] = LLVMPointerType(fs_elem_type, 0);    /* dady */
3086    arg_types[7] = LLVMPointerType(LLVMPointerType(int8_type, 0), 0);  /* color */
3087    arg_types[8] = LLVMPointerType(int8_type, 0);       /* depth */
3088    arg_types[9] = LLVMInt64TypeInContext(gallivm->context);  /* mask_input */
3089    arg_types[10] = variant->jit_thread_data_ptr_type;  /* per thread data */
3090    arg_types[11] = LLVMPointerType(int32_type, 0);     /* stride */
3091    arg_types[12] = int32_type;                         /* depth_stride */
3092    arg_types[13] = LLVMPointerType(int32_type, 0);     /* color sample strides */
3093    arg_types[14] = int32_type;                         /* depth sample stride */
3094 
3095    func_type = LLVMFunctionType(LLVMVoidTypeInContext(gallivm->context),
3096                                 arg_types, ARRAY_SIZE(arg_types), 0);
3097 
3098    function = LLVMAddFunction(gallivm->module, func_name, func_type);
3099    LLVMSetFunctionCallConv(function, LLVMCCallConv);
3100 
3101    variant->function[partial_mask] = function;
3102 
3103    /* XXX: need to propagate noalias down into color param now we are
3104     * passing a pointer-to-pointer?
3105     */
3106    for(i = 0; i < ARRAY_SIZE(arg_types); ++i)
3107       if(LLVMGetTypeKind(arg_types[i]) == LLVMPointerTypeKind)
3108          lp_add_function_attr(function, i + 1, LP_FUNC_ATTR_NOALIAS);
3109 
3110    if (variant->gallivm->cache->data_size)
3111       return;
3112 
3113    context_ptr  = LLVMGetParam(function, 0);
3114    x            = LLVMGetParam(function, 1);
3115    y            = LLVMGetParam(function, 2);
3116    facing       = LLVMGetParam(function, 3);
3117    a0_ptr       = LLVMGetParam(function, 4);
3118    dadx_ptr     = LLVMGetParam(function, 5);
3119    dady_ptr     = LLVMGetParam(function, 6);
3120    color_ptr_ptr = LLVMGetParam(function, 7);
3121    depth_ptr    = LLVMGetParam(function, 8);
3122    mask_input   = LLVMGetParam(function, 9);
3123    thread_data_ptr  = LLVMGetParam(function, 10);
3124    stride_ptr   = LLVMGetParam(function, 11);
3125    depth_stride = LLVMGetParam(function, 12);
3126    color_sample_stride_ptr = LLVMGetParam(function, 13);
3127    depth_sample_stride = LLVMGetParam(function, 14);
3128 
3129    lp_build_name(context_ptr, "context");
3130    lp_build_name(x, "x");
3131    lp_build_name(y, "y");
3132    lp_build_name(a0_ptr, "a0");
3133    lp_build_name(dadx_ptr, "dadx");
3134    lp_build_name(dady_ptr, "dady");
3135    lp_build_name(color_ptr_ptr, "color_ptr_ptr");
3136    lp_build_name(depth_ptr, "depth");
3137    lp_build_name(mask_input, "mask_input");
3138    lp_build_name(thread_data_ptr, "thread_data");
3139    lp_build_name(stride_ptr, "stride_ptr");
3140    lp_build_name(depth_stride, "depth_stride");
3141    lp_build_name(color_sample_stride_ptr, "color_sample_stride_ptr");
3142    lp_build_name(depth_sample_stride, "depth_sample_stride");
3143 
3144    /*
3145     * Function body
3146     */
3147 
3148    block = LLVMAppendBasicBlockInContext(gallivm->context, function, "entry");
3149    builder = gallivm->builder;
3150    assert(builder);
3151    LLVMPositionBuilderAtEnd(builder, block);
3152 
3153    /*
3154     * Must not count ps invocations if there's a null shader.
3155     * (It would be ok to count with null shader if there's d/s tests,
3156     * but only if there's d/s buffers too, which is different
3157     * to implicit rasterization disable which must not depend
3158     * on the d/s buffers.)
3159     * Could use popcount on mask, but pixel accuracy is not required.
3160     * Could disable if there's no stats query, but maybe not worth it.
3161     */
3162    if (shader->info.base.num_instructions > 1) {
3163       LLVMValueRef invocs, val;
3164       invocs = lp_jit_thread_data_invocations(gallivm, thread_data_ptr);
3165       val = LLVMBuildLoad(builder, invocs, "");
3166       val = LLVMBuildAdd(builder, val,
3167                          LLVMConstInt(LLVMInt64TypeInContext(gallivm->context), 1, 0),
3168                          "invoc_count");
3169       LLVMBuildStore(builder, val, invocs);
3170    }
3171 
3172    /* code generated texture sampling */
3173    sampler = lp_llvm_sampler_soa_create(lp_fs_variant_key_samplers(key), key->nr_samplers);
3174    image = lp_llvm_image_soa_create(lp_fs_variant_key_images(key), key->nr_images);
3175 
3176    num_fs = 16 / fs_type.length; /* number of loops per 4x4 stamp */
3177    /* for 1d resources only run "upper half" of stamp */
3178    if (key->resource_1d)
3179       num_fs /= 2;
3180 
3181    {
3182       LLVMValueRef num_loop = lp_build_const_int32(gallivm, num_fs);
3183       LLVMTypeRef mask_type = lp_build_int_vec_type(gallivm, fs_type);
3184       LLVMValueRef num_loop_samp = lp_build_const_int32(gallivm, num_fs * key->coverage_samples);
3185       LLVMValueRef mask_store = lp_build_array_alloca(gallivm, mask_type,
3186                                                       num_loop_samp, "mask_store");
3187 
3188       LLVMTypeRef flt_type = LLVMFloatTypeInContext(gallivm->context);
3189       LLVMValueRef glob_sample_pos = LLVMAddGlobal(gallivm->module, LLVMArrayType(flt_type, key->coverage_samples * 2), "");
3190       LLVMValueRef sample_pos_array;
3191 
3192       if (key->multisample && key->coverage_samples == 4) {
3193          LLVMValueRef sample_pos_arr[8];
3194          for (unsigned i = 0; i < 4; i++) {
3195             sample_pos_arr[i * 2] = LLVMConstReal(flt_type, lp_sample_pos_4x[i][0]);
3196             sample_pos_arr[i * 2 + 1] = LLVMConstReal(flt_type, lp_sample_pos_4x[i][1]);
3197          }
3198          sample_pos_array = LLVMConstArray(LLVMFloatTypeInContext(gallivm->context), sample_pos_arr, 8);
3199       } else {
3200          LLVMValueRef sample_pos_arr[2];
3201          sample_pos_arr[0] = LLVMConstReal(flt_type, 0.5);
3202          sample_pos_arr[1] = LLVMConstReal(flt_type, 0.5);
3203          sample_pos_array = LLVMConstArray(LLVMFloatTypeInContext(gallivm->context), sample_pos_arr, 2);
3204       }
3205       LLVMSetInitializer(glob_sample_pos, sample_pos_array);
3206 
3207       LLVMValueRef color_store[PIPE_MAX_COLOR_BUFS][TGSI_NUM_CHANNELS];
3208       boolean pixel_center_integer =
3209          shader->info.base.properties[TGSI_PROPERTY_FS_COORD_PIXEL_CENTER];
3210 
3211       /*
3212        * The shader input interpolation info is not explicitely baked in the
3213        * shader key, but everything it derives from (TGSI, and flatshade) is
3214        * already included in the shader key.
3215        */
3216       lp_build_interp_soa_init(&interp,
3217                                gallivm,
3218                                shader->info.base.num_inputs,
3219                                inputs,
3220                                pixel_center_integer,
3221                                key->coverage_samples, glob_sample_pos,
3222                                num_loop,
3223                                key->depth_clamp,
3224                                builder, fs_type,
3225                                a0_ptr, dadx_ptr, dady_ptr,
3226                                x, y);
3227 
3228       for (i = 0; i < num_fs; i++) {
3229          if (key->multisample) {
3230             LLVMValueRef smask_val = LLVMBuildLoad(builder, lp_jit_context_sample_mask(gallivm, context_ptr), "");
3231 
3232             /*
3233              * For multisampling, extract the per-sample mask from the incoming 64-bit mask,
3234              * store to the per sample mask storage. Or all of them together to generate
3235              * the fragment shader mask. (sample shading TODO).
3236              * Take the incoming state coverage mask into account.
3237              */
3238             for (unsigned s = 0; s < key->coverage_samples; s++) {
3239                LLVMValueRef sindexi = lp_build_const_int32(gallivm, i + (s * num_fs));
3240                LLVMValueRef sample_mask_ptr = LLVMBuildGEP(builder, mask_store,
3241                                                            &sindexi, 1, "sample_mask_ptr");
3242                LLVMValueRef s_mask = generate_quad_mask(gallivm, fs_type,
3243                                                         i*fs_type.length/4, s, mask_input);
3244 
3245                LLVMValueRef smask_bit = LLVMBuildAnd(builder, smask_val, lp_build_const_int32(gallivm, (1 << s)), "");
3246                LLVMValueRef cmp = LLVMBuildICmp(builder, LLVMIntNE, smask_bit, lp_build_const_int32(gallivm, 0), "");
3247                smask_bit = LLVMBuildSExt(builder, cmp, int32_type, "");
3248                smask_bit = lp_build_broadcast(gallivm, mask_type, smask_bit);
3249 
3250                s_mask = LLVMBuildAnd(builder, s_mask, smask_bit, "");
3251                LLVMBuildStore(builder, s_mask, sample_mask_ptr);
3252             }
3253          } else {
3254             LLVMValueRef mask;
3255             LLVMValueRef indexi = lp_build_const_int32(gallivm, i);
3256             LLVMValueRef mask_ptr = LLVMBuildGEP(builder, mask_store,
3257                                                  &indexi, 1, "mask_ptr");
3258 
3259             if (partial_mask) {
3260                mask = generate_quad_mask(gallivm, fs_type,
3261                                          i*fs_type.length/4, 0, mask_input);
3262             }
3263             else {
3264                mask = lp_build_const_int_vec(gallivm, fs_type, ~0);
3265             }
3266             LLVMBuildStore(builder, mask, mask_ptr);
3267          }
3268       }
3269 
3270       generate_fs_loop(gallivm,
3271                        shader, key,
3272                        builder,
3273                        fs_type,
3274                        context_ptr,
3275                        glob_sample_pos,
3276                        num_loop,
3277                        &interp,
3278                        sampler,
3279                        image,
3280                        mask_store, /* output */
3281                        color_store,
3282                        depth_ptr,
3283                        depth_stride,
3284                        depth_sample_stride,
3285                        color_ptr_ptr,
3286                        stride_ptr,
3287                        color_sample_stride_ptr,
3288                        facing,
3289                        thread_data_ptr);
3290 
3291       for (i = 0; i < num_fs; i++) {
3292          LLVMValueRef ptr;
3293          for (unsigned s = 0; s < key->coverage_samples; s++) {
3294             int idx = (i + (s * num_fs));
3295             LLVMValueRef sindexi = lp_build_const_int32(gallivm, idx);
3296             ptr = LLVMBuildGEP(builder, mask_store, &sindexi, 1, "");
3297 
3298             fs_mask[idx] = LLVMBuildLoad(builder, ptr, "smask");
3299          }
3300 
3301          for (unsigned s = 0; s < key->min_samples; s++) {
3302             /* This is fucked up need to reorganize things */
3303             int idx = s * num_fs + i;
3304             LLVMValueRef sindexi = lp_build_const_int32(gallivm, idx);
3305             for (cbuf = 0; cbuf < key->nr_cbufs; cbuf++) {
3306                for (chan = 0; chan < TGSI_NUM_CHANNELS; ++chan) {
3307                   ptr = LLVMBuildGEP(builder,
3308                                      color_store[cbuf * !cbuf0_write_all][chan],
3309                                      &sindexi, 1, "");
3310                   fs_out_color[s][cbuf][chan][i] = ptr;
3311                }
3312             }
3313             if (dual_source_blend) {
3314                /* only support one dual source blend target hence always use output 1 */
3315                for (chan = 0; chan < TGSI_NUM_CHANNELS; ++chan) {
3316                   ptr = LLVMBuildGEP(builder,
3317                                      color_store[1][chan],
3318                                      &sindexi, 1, "");
3319                   fs_out_color[s][1][chan][i] = ptr;
3320                }
3321             }
3322          }
3323       }
3324    }
3325 
3326    sampler->destroy(sampler);
3327    image->destroy(image);
3328    /* Loop over color outputs / color buffers to do blending.
3329     */
3330    for(cbuf = 0; cbuf < key->nr_cbufs; cbuf++) {
3331       if (key->cbuf_format[cbuf] != PIPE_FORMAT_NONE) {
3332          LLVMValueRef color_ptr;
3333          LLVMValueRef stride;
3334          LLVMValueRef sample_stride = NULL;
3335          LLVMValueRef index = lp_build_const_int32(gallivm, cbuf);
3336 
3337          boolean do_branch = ((key->depth.enabled
3338                                || key->stencil[0].enabled
3339                                || key->alpha.enabled)
3340                               && !shader->info.base.uses_kill);
3341 
3342          color_ptr = LLVMBuildLoad(builder,
3343                                    LLVMBuildGEP(builder, color_ptr_ptr,
3344                                                 &index, 1, ""),
3345                                    "");
3346 
3347          stride = LLVMBuildLoad(builder,
3348                                 LLVMBuildGEP(builder, stride_ptr, &index, 1, ""),
3349                                 "");
3350 
3351          if (key->cbuf_nr_samples[cbuf] > 1)
3352             sample_stride = LLVMBuildLoad(builder,
3353                                           LLVMBuildGEP(builder, color_sample_stride_ptr,
3354                                                        &index, 1, ""), "");
3355 
3356          for (unsigned s = 0; s < key->cbuf_nr_samples[cbuf]; s++) {
3357             unsigned mask_idx = num_fs * (key->multisample ? s : 0);
3358             unsigned out_idx = key->min_samples == 1 ? 0 : s;
3359             LLVMValueRef out_ptr = color_ptr;;
3360 
3361             if (sample_stride) {
3362                LLVMValueRef sample_offset = LLVMBuildMul(builder, sample_stride, lp_build_const_int32(gallivm, s), "");
3363                out_ptr = LLVMBuildGEP(builder, out_ptr, &sample_offset, 1, "");
3364             }
3365             out_ptr = LLVMBuildBitCast(builder, out_ptr, LLVMPointerType(blend_vec_type, 0), "");
3366 
3367             lp_build_name(out_ptr, "color_ptr%d", cbuf);
3368 
3369             generate_unswizzled_blend(gallivm, cbuf, variant,
3370                                       key->cbuf_format[cbuf],
3371                                       num_fs, fs_type, &fs_mask[mask_idx], fs_out_color[out_idx],
3372                                       context_ptr, out_ptr, stride,
3373                                       partial_mask, do_branch);
3374          }
3375       }
3376    }
3377 
3378    LLVMBuildRetVoid(builder);
3379 
3380    gallivm_verify_function(gallivm, function);
3381 }
3382 
3383 
3384 static void
dump_fs_variant_key(struct lp_fragment_shader_variant_key * key)3385 dump_fs_variant_key(struct lp_fragment_shader_variant_key *key)
3386 {
3387    unsigned i;
3388 
3389    debug_printf("fs variant %p:\n", (void *) key);
3390 
3391    if (key->flatshade) {
3392       debug_printf("flatshade = 1\n");
3393    }
3394    if (key->multisample) {
3395       debug_printf("multisample = 1\n");
3396       debug_printf("coverage samples = %d\n", key->coverage_samples);
3397       debug_printf("min samples = %d\n", key->min_samples);
3398    }
3399    for (i = 0; i < key->nr_cbufs; ++i) {
3400       debug_printf("cbuf_format[%u] = %s\n", i, util_format_name(key->cbuf_format[i]));
3401       debug_printf("cbuf nr_samples[%u] = %d\n", i, key->cbuf_nr_samples[i]);
3402    }
3403    if (key->depth.enabled || key->stencil[0].enabled) {
3404       debug_printf("depth.format = %s\n", util_format_name(key->zsbuf_format));
3405       debug_printf("depth nr_samples = %d\n", key->zsbuf_nr_samples);
3406    }
3407    if (key->depth.enabled) {
3408       debug_printf("depth.func = %s\n", util_str_func(key->depth.func, TRUE));
3409       debug_printf("depth.writemask = %u\n", key->depth.writemask);
3410    }
3411 
3412    for (i = 0; i < 2; ++i) {
3413       if (key->stencil[i].enabled) {
3414          debug_printf("stencil[%u].func = %s\n", i, util_str_func(key->stencil[i].func, TRUE));
3415          debug_printf("stencil[%u].fail_op = %s\n", i, util_str_stencil_op(key->stencil[i].fail_op, TRUE));
3416          debug_printf("stencil[%u].zpass_op = %s\n", i, util_str_stencil_op(key->stencil[i].zpass_op, TRUE));
3417          debug_printf("stencil[%u].zfail_op = %s\n", i, util_str_stencil_op(key->stencil[i].zfail_op, TRUE));
3418          debug_printf("stencil[%u].valuemask = 0x%x\n", i, key->stencil[i].valuemask);
3419          debug_printf("stencil[%u].writemask = 0x%x\n", i, key->stencil[i].writemask);
3420       }
3421    }
3422 
3423    if (key->alpha.enabled) {
3424       debug_printf("alpha.func = %s\n", util_str_func(key->alpha.func, TRUE));
3425    }
3426 
3427    if (key->occlusion_count) {
3428       debug_printf("occlusion_count = 1\n");
3429    }
3430 
3431    if (key->blend.logicop_enable) {
3432       debug_printf("blend.logicop_func = %s\n", util_str_logicop(key->blend.logicop_func, TRUE));
3433    }
3434    else if (key->blend.rt[0].blend_enable) {
3435       debug_printf("blend.rgb_func = %s\n",   util_str_blend_func  (key->blend.rt[0].rgb_func, TRUE));
3436       debug_printf("blend.rgb_src_factor = %s\n",   util_str_blend_factor(key->blend.rt[0].rgb_src_factor, TRUE));
3437       debug_printf("blend.rgb_dst_factor = %s\n",   util_str_blend_factor(key->blend.rt[0].rgb_dst_factor, TRUE));
3438       debug_printf("blend.alpha_func = %s\n",       util_str_blend_func  (key->blend.rt[0].alpha_func, TRUE));
3439       debug_printf("blend.alpha_src_factor = %s\n", util_str_blend_factor(key->blend.rt[0].alpha_src_factor, TRUE));
3440       debug_printf("blend.alpha_dst_factor = %s\n", util_str_blend_factor(key->blend.rt[0].alpha_dst_factor, TRUE));
3441    }
3442    debug_printf("blend.colormask = 0x%x\n", key->blend.rt[0].colormask);
3443    if (key->blend.alpha_to_coverage) {
3444       debug_printf("blend.alpha_to_coverage is enabled\n");
3445    }
3446    for (i = 0; i < key->nr_samplers; ++i) {
3447       const struct lp_sampler_static_state *samplers = lp_fs_variant_key_samplers(key);
3448       const struct lp_static_sampler_state *sampler = &samplers[i].sampler_state;
3449       debug_printf("sampler[%u] = \n", i);
3450       debug_printf("  .wrap = %s %s %s\n",
3451                    util_str_tex_wrap(sampler->wrap_s, TRUE),
3452                    util_str_tex_wrap(sampler->wrap_t, TRUE),
3453                    util_str_tex_wrap(sampler->wrap_r, TRUE));
3454       debug_printf("  .min_img_filter = %s\n",
3455                    util_str_tex_filter(sampler->min_img_filter, TRUE));
3456       debug_printf("  .min_mip_filter = %s\n",
3457                    util_str_tex_mipfilter(sampler->min_mip_filter, TRUE));
3458       debug_printf("  .mag_img_filter = %s\n",
3459                    util_str_tex_filter(sampler->mag_img_filter, TRUE));
3460       if (sampler->compare_mode != PIPE_TEX_COMPARE_NONE)
3461          debug_printf("  .compare_func = %s\n", util_str_func(sampler->compare_func, TRUE));
3462       debug_printf("  .normalized_coords = %u\n", sampler->normalized_coords);
3463       debug_printf("  .min_max_lod_equal = %u\n", sampler->min_max_lod_equal);
3464       debug_printf("  .lod_bias_non_zero = %u\n", sampler->lod_bias_non_zero);
3465       debug_printf("  .apply_min_lod = %u\n", sampler->apply_min_lod);
3466       debug_printf("  .apply_max_lod = %u\n", sampler->apply_max_lod);
3467       debug_printf("  .reduction_mode = %u\n", sampler->reduction_mode);
3468       debug_printf("  .aniso = %u\n", sampler->aniso);
3469    }
3470    for (i = 0; i < key->nr_sampler_views; ++i) {
3471       const struct lp_sampler_static_state *samplers = lp_fs_variant_key_samplers(key);
3472       const struct lp_static_texture_state *texture = &samplers[i].texture_state;
3473       debug_printf("texture[%u] = \n", i);
3474       debug_printf("  .format = %s\n",
3475                    util_format_name(texture->format));
3476       debug_printf("  .target = %s\n",
3477                    util_str_tex_target(texture->target, TRUE));
3478       debug_printf("  .level_zero_only = %u\n",
3479                    texture->level_zero_only);
3480       debug_printf("  .pot = %u %u %u\n",
3481                    texture->pot_width,
3482                    texture->pot_height,
3483                    texture->pot_depth);
3484    }
3485    struct lp_image_static_state *images = lp_fs_variant_key_images(key);
3486    for (i = 0; i < key->nr_images; ++i) {
3487       const struct lp_static_texture_state *image = &images[i].image_state;
3488       debug_printf("image[%u] = \n", i);
3489       debug_printf("  .format = %s\n",
3490                    util_format_name(image->format));
3491       debug_printf("  .target = %s\n",
3492                    util_str_tex_target(image->target, TRUE));
3493       debug_printf("  .level_zero_only = %u\n",
3494                    image->level_zero_only);
3495       debug_printf("  .pot = %u %u %u\n",
3496                    image->pot_width,
3497                    image->pot_height,
3498                    image->pot_depth);
3499    }
3500 }
3501 
3502 const char *
lp_debug_fs_kind(enum lp_fs_kind kind)3503 lp_debug_fs_kind(enum lp_fs_kind kind)
3504 {
3505    switch(kind) {
3506    case LP_FS_KIND_GENERAL:
3507       return "GENERAL";
3508    case LP_FS_KIND_BLIT_RGBA:
3509       return "BLIT_RGBA";
3510    case LP_FS_KIND_BLIT_RGB1:
3511       return "BLIT_RGB1";
3512    case LP_FS_KIND_AERO_MINIFICATION:
3513       return "AERO_MINIFICATION";
3514    case LP_FS_KIND_LLVM_LINEAR:
3515       return "LLVM_LINEAR";
3516    default:
3517       return "unknown";
3518    }
3519 }
3520 
3521 void
lp_debug_fs_variant(struct lp_fragment_shader_variant * variant)3522 lp_debug_fs_variant(struct lp_fragment_shader_variant *variant)
3523 {
3524    debug_printf("llvmpipe: Fragment shader #%u variant #%u:\n",
3525                 variant->shader->no, variant->no);
3526    if (variant->shader->base.type == PIPE_SHADER_IR_TGSI)
3527       tgsi_dump(variant->shader->base.tokens, 0);
3528    else
3529       nir_print_shader(variant->shader->base.ir.nir, stderr);
3530    dump_fs_variant_key(&variant->key);
3531    debug_printf("variant->opaque = %u\n", variant->opaque);
3532    debug_printf("variant->potentially_opaque = %u\n", variant->potentially_opaque);
3533    debug_printf("variant->blit = %u\n", variant->blit);
3534    debug_printf("shader->kind = %s\n", lp_debug_fs_kind(variant->shader->kind));
3535    debug_printf("\n");
3536 }
3537 
3538 static void
lp_fs_get_ir_cache_key(struct lp_fragment_shader_variant * variant,unsigned char ir_sha1_cache_key[20])3539 lp_fs_get_ir_cache_key(struct lp_fragment_shader_variant *variant,
3540                             unsigned char ir_sha1_cache_key[20])
3541 {
3542    struct blob blob = { 0 };
3543    unsigned ir_size;
3544    void *ir_binary;
3545 
3546    blob_init(&blob);
3547    nir_serialize(&blob, variant->shader->base.ir.nir, true);
3548    ir_binary = blob.data;
3549    ir_size = blob.size;
3550 
3551    struct mesa_sha1 ctx;
3552    _mesa_sha1_init(&ctx);
3553    _mesa_sha1_update(&ctx, &variant->key, variant->shader->variant_key_size);
3554    _mesa_sha1_update(&ctx, ir_binary, ir_size);
3555    _mesa_sha1_final(&ctx, ir_sha1_cache_key);
3556 
3557    blob_finish(&blob);
3558 }
3559 
3560 /**
3561  * Generate a new fragment shader variant from the shader code and
3562  * other state indicated by the key.
3563  */
3564 static struct lp_fragment_shader_variant *
generate_variant(struct llvmpipe_context * lp,struct lp_fragment_shader * shader,const struct lp_fragment_shader_variant_key * key)3565 generate_variant(struct llvmpipe_context *lp,
3566                  struct lp_fragment_shader *shader,
3567                  const struct lp_fragment_shader_variant_key *key)
3568 {
3569    struct llvmpipe_screen *screen = llvmpipe_screen(lp->pipe.screen);
3570    struct lp_fragment_shader_variant *variant;
3571    const struct util_format_description *cbuf0_format_desc = NULL;
3572    boolean fullcolormask;
3573    boolean no_kill;
3574    boolean linear;
3575    char module_name[64];
3576    unsigned char ir_sha1_cache_key[20];
3577    struct lp_cached_code cached = { 0 };
3578    bool needs_caching = false;
3579    variant = MALLOC(sizeof *variant + shader->variant_key_size - sizeof variant->key);
3580    if (!variant)
3581       return NULL;
3582 
3583    memset(variant, 0, sizeof(*variant));
3584    snprintf(module_name, sizeof(module_name), "fs%u_variant%u",
3585             shader->no, shader->variants_created);
3586 
3587    pipe_reference_init(&variant->reference, 1);
3588    lp_fs_reference(lp, &variant->shader, shader);
3589 
3590    memcpy(&variant->key, key, shader->variant_key_size);
3591 
3592    if (shader->base.ir.nir) {
3593       lp_fs_get_ir_cache_key(variant, ir_sha1_cache_key);
3594 
3595       lp_disk_cache_find_shader(screen, &cached, ir_sha1_cache_key);
3596       if (!cached.data_size)
3597          needs_caching = true;
3598    }
3599    variant->gallivm = gallivm_create(module_name, lp->context, &cached);
3600    if (!variant->gallivm) {
3601       FREE(variant);
3602       return NULL;
3603    }
3604 
3605    variant->list_item_global.base = variant;
3606    variant->list_item_local.base = variant;
3607    variant->no = shader->variants_created++;
3608 
3609 
3610 
3611    /*
3612     * Determine whether we are touching all channels in the color buffer.
3613     */
3614    fullcolormask = FALSE;
3615    if (key->nr_cbufs == 1) {
3616       cbuf0_format_desc = util_format_description(key->cbuf_format[0]);
3617       fullcolormask = util_format_colormask_full(cbuf0_format_desc, key->blend.rt[0].colormask);
3618    }
3619 
3620    /* The scissor is ignored here as only tiles inside the scissoring
3621     * rectangle will refer to this */
3622    no_kill =
3623          fullcolormask &&
3624          !key->stencil[0].enabled &&
3625          !key->alpha.enabled &&
3626          !key->multisample &&
3627          !key->blend.alpha_to_coverage &&
3628          !key->depth.enabled &&
3629          !shader->info.base.uses_kill &&
3630          !shader->info.base.writes_samplemask;
3631 
3632    variant->opaque =
3633          no_kill &&
3634          !key->blend.logicop_enable &&
3635          !key->blend.rt[0].blend_enable
3636          ? TRUE : FALSE;
3637 
3638    variant->potentially_opaque =
3639          no_kill &&
3640          !key->blend.logicop_enable &&
3641          key->blend.rt[0].blend_enable &&
3642          key->blend.rt[0].rgb_func == PIPE_BLEND_ADD &&
3643          key->blend.rt[0].rgb_dst_factor == PIPE_BLENDFACTOR_INV_SRC_ALPHA &&
3644          key->blend.rt[0].alpha_func == key->blend.rt[0].rgb_func &&
3645          key->blend.rt[0].alpha_dst_factor == key->blend.rt[0].rgb_dst_factor &&
3646          shader->base.type == PIPE_SHADER_IR_TGSI &&
3647          /*
3648           * FIXME: for NIR, all of the fields of info.xxx (except info.base)
3649           * are zeros, hence shader analysis (here and elsewhere) using these
3650           * bits cannot work and will silently fail (cbuf is the only pointer
3651           * field, hence causing a crash).
3652           */
3653          shader->info.cbuf[0][3].file != TGSI_FILE_NULL
3654          ? TRUE : FALSE;
3655 
3656    /* We only care about opaque blits for now */
3657    if (variant->opaque &&
3658        (shader->kind == LP_FS_KIND_BLIT_RGBA ||
3659         shader->kind == LP_FS_KIND_BLIT_RGB1)) {
3660       unsigned target, min_img_filter, mag_img_filter, min_mip_filter;
3661       enum pipe_format texture_format;
3662       struct lp_sampler_static_state *samp0 = lp_fs_variant_key_sampler_idx(key, 0);
3663       assert(samp0);
3664       texture_format = samp0->texture_state.format;
3665       target = samp0->texture_state.target;
3666       min_img_filter = samp0->sampler_state.min_img_filter;
3667       mag_img_filter = samp0->sampler_state.mag_img_filter;
3668       if (samp0->texture_state.level_zero_only) {
3669          min_mip_filter = PIPE_TEX_MIPFILTER_NONE;
3670       } else {
3671          min_mip_filter = samp0->sampler_state.min_mip_filter;
3672       }
3673 
3674       if (target == PIPE_TEXTURE_2D &&
3675           min_img_filter == PIPE_TEX_FILTER_NEAREST &&
3676           mag_img_filter == PIPE_TEX_FILTER_NEAREST &&
3677           min_mip_filter == PIPE_TEX_MIPFILTER_NONE &&
3678           ((texture_format &&
3679             util_is_format_compatible(util_format_description(texture_format),
3680                                       cbuf0_format_desc)) ||
3681            (shader->kind == LP_FS_KIND_BLIT_RGB1 &&
3682             (texture_format == PIPE_FORMAT_B8G8R8A8_UNORM ||
3683              texture_format == PIPE_FORMAT_B8G8R8X8_UNORM) &&
3684             (key->cbuf_format[0] == PIPE_FORMAT_B8G8R8A8_UNORM ||
3685              key->cbuf_format[0] == PIPE_FORMAT_B8G8R8X8_UNORM))))
3686          variant->blit = 1;
3687    }
3688 
3689 
3690    /* Whether this is a candidate for the linear path */
3691    linear =
3692          !key->stencil[0].enabled &&
3693          !key->depth.enabled &&
3694          !shader->info.base.uses_kill &&
3695          !key->blend.logicop_enable &&
3696          (key->cbuf_format[0] == PIPE_FORMAT_B8G8R8A8_UNORM ||
3697           key->cbuf_format[0] == PIPE_FORMAT_B8G8R8X8_UNORM);
3698 
3699    memcpy(&variant->key, key, sizeof *key);
3700 
3701    if ((LP_DEBUG & DEBUG_FS) || (gallivm_debug & GALLIVM_DEBUG_IR)) {
3702       lp_debug_fs_variant(variant);
3703    }
3704 
3705    llvmpipe_fs_variant_fastpath(variant);
3706 
3707    lp_jit_init_types(variant);
3708 
3709    if (variant->jit_function[RAST_EDGE_TEST] == NULL)
3710       generate_fragment(lp, shader, variant, RAST_EDGE_TEST);
3711 
3712    if (variant->jit_function[RAST_WHOLE] == NULL) {
3713       if (variant->opaque) {
3714          /* Specialized shader, which doesn't need to read the color buffer. */
3715          generate_fragment(lp, shader, variant, RAST_WHOLE);
3716       }
3717    }
3718 
3719    if (linear) {
3720       /* Currently keeping both the old fastpaths and new linear path
3721        * active.  The older code is still somewhat faster for the cases
3722        * it covers.
3723        *
3724        * XXX: consider restricting this to aero-mode only.
3725        */
3726       if (fullcolormask &&
3727           !key->alpha.enabled &&
3728           !key->blend.alpha_to_coverage) {
3729          llvmpipe_fs_variant_linear_fastpath(variant);
3730       }
3731 
3732       /* If the original fastpath doesn't cover this variant, try the new
3733        * code:
3734        */
3735       if (variant->jit_linear == NULL) {
3736          if (shader->kind == LP_FS_KIND_BLIT_RGBA ||
3737              shader->kind == LP_FS_KIND_BLIT_RGB1 ||
3738              shader->kind == LP_FS_KIND_LLVM_LINEAR) {
3739             llvmpipe_fs_variant_linear_llvm(lp, shader, variant);
3740          }
3741       }
3742    } else {
3743       if (LP_DEBUG & DEBUG_LINEAR) {
3744          lp_debug_fs_variant(variant);
3745          debug_printf("    ----> no linear path for this variant\n");
3746       }
3747    }
3748 
3749    /*
3750     * Compile everything
3751     */
3752 
3753    gallivm_compile_module(variant->gallivm);
3754 
3755    variant->nr_instrs += lp_build_count_ir_module(variant->gallivm->module);
3756 
3757    if (variant->function[RAST_EDGE_TEST]) {
3758       variant->jit_function[RAST_EDGE_TEST] = (lp_jit_frag_func)
3759             gallivm_jit_function(variant->gallivm,
3760                                  variant->function[RAST_EDGE_TEST]);
3761    }
3762 
3763    if (variant->function[RAST_WHOLE]) {
3764          variant->jit_function[RAST_WHOLE] = (lp_jit_frag_func)
3765                gallivm_jit_function(variant->gallivm,
3766                                     variant->function[RAST_WHOLE]);
3767    } else if (!variant->jit_function[RAST_WHOLE]) {
3768       variant->jit_function[RAST_WHOLE] = variant->jit_function[RAST_EDGE_TEST];
3769    }
3770 
3771    if (linear) {
3772       if (variant->linear_function) {
3773          variant->jit_linear_llvm = (lp_jit_linear_llvm_func)
3774                gallivm_jit_function(variant->gallivm, variant->linear_function);
3775       }
3776 
3777       /*
3778        * This must be done after LLVM compilation, as it will call the JIT'ed
3779        * code to determine active inputs.
3780        */
3781       lp_linear_check_variant(variant);
3782    }
3783 
3784    if (needs_caching) {
3785       lp_disk_cache_insert_shader(screen, &cached, ir_sha1_cache_key);
3786    }
3787 
3788    gallivm_free_ir(variant->gallivm);
3789 
3790    return variant;
3791 }
3792 
3793 
3794 static void *
llvmpipe_create_fs_state(struct pipe_context * pipe,const struct pipe_shader_state * templ)3795 llvmpipe_create_fs_state(struct pipe_context *pipe,
3796                          const struct pipe_shader_state *templ)
3797 {
3798    struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
3799    struct lp_fragment_shader *shader;
3800    int nr_samplers;
3801    int nr_sampler_views;
3802    int nr_images;
3803    int i;
3804 
3805    shader = CALLOC_STRUCT(lp_fragment_shader);
3806    if (!shader)
3807       return NULL;
3808 
3809    pipe_reference_init(&shader->reference, 1);
3810    shader->no = fs_no++;
3811    make_empty_list(&shader->variants);
3812 
3813    shader->base.type = templ->type;
3814    if (templ->type == PIPE_SHADER_IR_TGSI) {
3815       /* get/save the summary info for this shader */
3816       lp_build_tgsi_info(templ->tokens, &shader->info);
3817 
3818       /* we need to keep a local copy of the tokens */
3819       shader->base.tokens = tgsi_dup_tokens(templ->tokens);
3820    } else {
3821       shader->base.ir.nir = templ->ir.nir;
3822       nir_tgsi_scan_shader(templ->ir.nir, &shader->info.base, true);
3823    }
3824 
3825    shader->draw_data = draw_create_fragment_shader(llvmpipe->draw, templ);
3826    if (shader->draw_data == NULL) {
3827       FREE((void *) shader->base.tokens);
3828       FREE(shader);
3829       return NULL;
3830    }
3831 
3832    nr_samplers = shader->info.base.file_max[TGSI_FILE_SAMPLER] + 1;
3833    nr_sampler_views = shader->info.base.file_max[TGSI_FILE_SAMPLER_VIEW] + 1;
3834    nr_images = shader->info.base.file_max[TGSI_FILE_IMAGE] + 1;
3835    shader->variant_key_size = lp_fs_variant_key_size(MAX2(nr_samplers, nr_sampler_views), nr_images);
3836 
3837    for (i = 0; i < shader->info.base.num_inputs; i++) {
3838       shader->inputs[i].usage_mask = shader->info.base.input_usage_mask[i];
3839       shader->inputs[i].location = shader->info.base.input_interpolate_loc[i];
3840 
3841       switch (shader->info.base.input_interpolate[i]) {
3842       case TGSI_INTERPOLATE_CONSTANT:
3843          shader->inputs[i].interp = LP_INTERP_CONSTANT;
3844          break;
3845       case TGSI_INTERPOLATE_LINEAR:
3846          shader->inputs[i].interp = LP_INTERP_LINEAR;
3847          break;
3848       case TGSI_INTERPOLATE_PERSPECTIVE:
3849          shader->inputs[i].interp = LP_INTERP_PERSPECTIVE;
3850          break;
3851       case TGSI_INTERPOLATE_COLOR:
3852          shader->inputs[i].interp = LP_INTERP_COLOR;
3853          break;
3854       default:
3855          assert(0);
3856          break;
3857       }
3858 
3859       switch (shader->info.base.input_semantic_name[i]) {
3860       case TGSI_SEMANTIC_FACE:
3861          shader->inputs[i].interp = LP_INTERP_FACING;
3862          break;
3863       case TGSI_SEMANTIC_POSITION:
3864          /* Position was already emitted above
3865           */
3866          shader->inputs[i].interp = LP_INTERP_POSITION;
3867          shader->inputs[i].src_index = 0;
3868          continue;
3869       }
3870 
3871       /* XXX this is a completely pointless index map... */
3872       shader->inputs[i].src_index = i+1;
3873    }
3874 
3875    if (LP_DEBUG & DEBUG_TGSI && templ->type == PIPE_SHADER_IR_TGSI) {
3876       unsigned attrib;
3877       debug_printf("llvmpipe: Create fragment shader #%u %p:\n",
3878                    shader->no, (void *) shader);
3879       tgsi_dump(templ->tokens, 0);
3880       debug_printf("usage masks:\n");
3881       for (attrib = 0; attrib < shader->info.base.num_inputs; ++attrib) {
3882          unsigned usage_mask = shader->info.base.input_usage_mask[attrib];
3883          debug_printf("  IN[%u].%s%s%s%s\n",
3884                       attrib,
3885                       usage_mask & TGSI_WRITEMASK_X ? "x" : "",
3886                       usage_mask & TGSI_WRITEMASK_Y ? "y" : "",
3887                       usage_mask & TGSI_WRITEMASK_Z ? "z" : "",
3888                       usage_mask & TGSI_WRITEMASK_W ? "w" : "");
3889       }
3890       debug_printf("\n");
3891    }
3892 
3893    /* This will put a derived copy of the tokens into shader->base.tokens */
3894    if (templ->type == PIPE_SHADER_IR_TGSI)
3895      llvmpipe_fs_analyse(shader, templ->tokens);
3896    else
3897      shader->kind = LP_FS_KIND_GENERAL;
3898 
3899    return shader;
3900 }
3901 
3902 
3903 static void
llvmpipe_bind_fs_state(struct pipe_context * pipe,void * fs)3904 llvmpipe_bind_fs_state(struct pipe_context *pipe, void *fs)
3905 {
3906    struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
3907    struct lp_fragment_shader *lp_fs = (struct lp_fragment_shader *)fs;
3908    if (llvmpipe->fs == lp_fs)
3909       return;
3910 
3911    draw_bind_fragment_shader(llvmpipe->draw,
3912                              (lp_fs ? lp_fs->draw_data : NULL));
3913 
3914    lp_fs_reference(llvmpipe, &llvmpipe->fs, lp_fs);
3915 
3916    /* invalidate the setup link, NEW_FS will make it update */
3917    lp_setup_set_fs_variant(llvmpipe->setup, NULL);
3918    llvmpipe->dirty |= LP_NEW_FS;
3919 }
3920 
3921 
3922 /**
3923  * Remove shader variant from two lists: the shader's variant list
3924  * and the context's variant list.
3925  */
3926 
3927 static
llvmpipe_remove_shader_variant(struct llvmpipe_context * lp,struct lp_fragment_shader_variant * variant)3928 void llvmpipe_remove_shader_variant(struct llvmpipe_context *lp,
3929                                     struct lp_fragment_shader_variant *variant)
3930 {
3931    if ((LP_DEBUG & DEBUG_FS) || (gallivm_debug & GALLIVM_DEBUG_IR)) {
3932       debug_printf("llvmpipe: del fs #%u var %u v created %u v cached %u "
3933                    "v total cached %u inst %u total inst %u\n",
3934                    variant->shader->no, variant->no,
3935                    variant->shader->variants_created,
3936                    variant->shader->variants_cached,
3937                    lp->nr_fs_variants, variant->nr_instrs, lp->nr_fs_instrs);
3938    }
3939 
3940    /* remove from shader's list */
3941    remove_from_list(&variant->list_item_local);
3942    variant->shader->variants_cached--;
3943 
3944    /* remove from context's list */
3945    remove_from_list(&variant->list_item_global);
3946    lp->nr_fs_variants--;
3947    lp->nr_fs_instrs -= variant->nr_instrs;
3948 }
3949 
3950 void
llvmpipe_destroy_shader_variant(struct llvmpipe_context * lp,struct lp_fragment_shader_variant * variant)3951 llvmpipe_destroy_shader_variant(struct llvmpipe_context *lp,
3952                                struct lp_fragment_shader_variant *variant)
3953 {
3954    gallivm_destroy(variant->gallivm);
3955 
3956    lp_fs_reference(lp, &variant->shader, NULL);
3957 
3958    FREE(variant);
3959 }
3960 
3961 void
llvmpipe_destroy_fs(struct llvmpipe_context * llvmpipe,struct lp_fragment_shader * shader)3962 llvmpipe_destroy_fs(struct llvmpipe_context *llvmpipe,
3963                     struct lp_fragment_shader *shader)
3964 {
3965    /* Delete draw module's data */
3966    draw_delete_fragment_shader(llvmpipe->draw, shader->draw_data);
3967 
3968    if (shader->base.ir.nir)
3969       ralloc_free(shader->base.ir.nir);
3970    assert(shader->variants_cached == 0);
3971    FREE((void *) shader->base.tokens);
3972    FREE(shader);
3973 }
3974 
3975 static void
llvmpipe_delete_fs_state(struct pipe_context * pipe,void * fs)3976 llvmpipe_delete_fs_state(struct pipe_context *pipe, void *fs)
3977 {
3978    struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
3979    struct lp_fragment_shader *shader = fs;
3980    struct lp_fs_variant_list_item *li;
3981 
3982    /* Delete all the variants */
3983    li = first_elem(&shader->variants);
3984    while(!at_end(&shader->variants, li)) {
3985       struct lp_fs_variant_list_item *next = next_elem(li);
3986       struct lp_fragment_shader_variant *variant;
3987       variant = li->base;
3988       llvmpipe_remove_shader_variant(llvmpipe, li->base);
3989       lp_fs_variant_reference(llvmpipe, &variant, NULL);
3990       li = next;
3991    }
3992 
3993    lp_fs_reference(llvmpipe, &shader, NULL);
3994 }
3995 
3996 static void
llvmpipe_set_constant_buffer(struct pipe_context * pipe,enum pipe_shader_type shader,uint index,bool take_ownership,const struct pipe_constant_buffer * cb)3997 llvmpipe_set_constant_buffer(struct pipe_context *pipe,
3998                              enum pipe_shader_type shader, uint index,
3999                              bool take_ownership,
4000                              const struct pipe_constant_buffer *cb)
4001 {
4002    struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
4003    struct pipe_constant_buffer *constants = &llvmpipe->constants[shader][index];
4004 
4005    assert(shader < PIPE_SHADER_TYPES);
4006    assert(index < ARRAY_SIZE(llvmpipe->constants[shader]));
4007 
4008    /* note: reference counting */
4009    util_copy_constant_buffer(&llvmpipe->constants[shader][index], cb,
4010                              take_ownership);
4011 
4012    /* user_buffer is only valid until the next set_constant_buffer (at most,
4013     * possibly until shader deletion), so we need to upload it now to make sure
4014     * it doesn't get updated/freed out from under us.
4015     */
4016    if (constants->user_buffer) {
4017       u_upload_data(llvmpipe->pipe.const_uploader, 0, constants->buffer_size, 16,
4018                     constants->user_buffer, &constants->buffer_offset,
4019                     &constants->buffer);
4020    }
4021    if (constants->buffer) {
4022        if (!(constants->buffer->bind & PIPE_BIND_CONSTANT_BUFFER)) {
4023          debug_printf("Illegal set constant without bind flag\n");
4024          constants->buffer->bind |= PIPE_BIND_CONSTANT_BUFFER;
4025       }
4026    }
4027 
4028    if (shader == PIPE_SHADER_VERTEX ||
4029        shader == PIPE_SHADER_GEOMETRY ||
4030        shader == PIPE_SHADER_TESS_CTRL ||
4031        shader == PIPE_SHADER_TESS_EVAL) {
4032       /* Pass the constants to the 'draw' module */
4033       const unsigned size = cb ? cb->buffer_size : 0;
4034 
4035       const ubyte *data = NULL;
4036       if (constants->buffer)
4037          data = (ubyte *) llvmpipe_resource_data(constants->buffer) + constants->buffer_offset;
4038 
4039       draw_set_mapped_constant_buffer(llvmpipe->draw, shader,
4040                                       index, data, size);
4041    }
4042    else if (shader == PIPE_SHADER_COMPUTE)
4043       llvmpipe->cs_dirty |= LP_CSNEW_CONSTANTS;
4044    else
4045       llvmpipe->dirty |= LP_NEW_FS_CONSTANTS;
4046 }
4047 
4048 static void
llvmpipe_set_shader_buffers(struct pipe_context * pipe,enum pipe_shader_type shader,unsigned start_slot,unsigned count,const struct pipe_shader_buffer * buffers,unsigned writable_bitmask)4049 llvmpipe_set_shader_buffers(struct pipe_context *pipe,
4050                             enum pipe_shader_type shader, unsigned start_slot,
4051                             unsigned count, const struct pipe_shader_buffer *buffers,
4052                             unsigned writable_bitmask)
4053 {
4054    struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
4055    unsigned i, idx;
4056    for (i = start_slot, idx = 0; i < start_slot + count; i++, idx++) {
4057       const struct pipe_shader_buffer *buffer = buffers ? &buffers[idx] : NULL;
4058 
4059       util_copy_shader_buffer(&llvmpipe->ssbos[shader][i], buffer);
4060 
4061       if (shader == PIPE_SHADER_VERTEX ||
4062           shader == PIPE_SHADER_GEOMETRY ||
4063           shader == PIPE_SHADER_TESS_CTRL ||
4064           shader == PIPE_SHADER_TESS_EVAL) {
4065          const unsigned size = buffer ? buffer->buffer_size : 0;
4066          const ubyte *data = NULL;
4067          if (buffer && buffer->buffer)
4068             data = (ubyte *) llvmpipe_resource_data(buffer->buffer);
4069          if (data)
4070             data += buffer->buffer_offset;
4071          draw_set_mapped_shader_buffer(llvmpipe->draw, shader,
4072                                        i, data, size);
4073       } else if (shader == PIPE_SHADER_COMPUTE) {
4074 	 llvmpipe->cs_dirty |= LP_CSNEW_SSBOS;
4075       } else if (shader == PIPE_SHADER_FRAGMENT) {
4076          llvmpipe->dirty |= LP_NEW_FS_SSBOS;
4077       }
4078    }
4079 }
4080 
4081 static void
llvmpipe_set_shader_images(struct pipe_context * pipe,enum pipe_shader_type shader,unsigned start_slot,unsigned count,unsigned unbind_num_trailing_slots,const struct pipe_image_view * images)4082 llvmpipe_set_shader_images(struct pipe_context *pipe,
4083                             enum pipe_shader_type shader, unsigned start_slot,
4084                            unsigned count, unsigned unbind_num_trailing_slots,
4085                            const struct pipe_image_view *images)
4086 {
4087    struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
4088    unsigned i, idx;
4089 
4090    draw_flush(llvmpipe->draw);
4091    for (i = start_slot, idx = 0; i < start_slot + count; i++, idx++) {
4092       const struct pipe_image_view *image = images ? &images[idx] : NULL;
4093 
4094       util_copy_image_view(&llvmpipe->images[shader][i], image);
4095    }
4096 
4097    llvmpipe->num_images[shader] = start_slot + count;
4098    if (shader == PIPE_SHADER_VERTEX ||
4099        shader == PIPE_SHADER_GEOMETRY ||
4100        shader == PIPE_SHADER_TESS_CTRL ||
4101        shader == PIPE_SHADER_TESS_EVAL) {
4102       draw_set_images(llvmpipe->draw,
4103                       shader,
4104                       llvmpipe->images[shader],
4105                       start_slot + count);
4106    } else if (shader == PIPE_SHADER_COMPUTE)
4107       llvmpipe->cs_dirty |= LP_CSNEW_IMAGES;
4108    else
4109       llvmpipe->dirty |= LP_NEW_FS_IMAGES;
4110 
4111    if (unbind_num_trailing_slots) {
4112       llvmpipe_set_shader_images(pipe, shader, start_slot + count,
4113                                  unbind_num_trailing_slots, 0, NULL);
4114    }
4115 }
4116 
4117 /**
4118  * Return the blend factor equivalent to a destination alpha of one.
4119  */
4120 static inline unsigned
force_dst_alpha_one(unsigned factor,boolean clamped_zero)4121 force_dst_alpha_one(unsigned factor, boolean clamped_zero)
4122 {
4123    switch(factor) {
4124    case PIPE_BLENDFACTOR_DST_ALPHA:
4125       return PIPE_BLENDFACTOR_ONE;
4126    case PIPE_BLENDFACTOR_INV_DST_ALPHA:
4127       return PIPE_BLENDFACTOR_ZERO;
4128    case PIPE_BLENDFACTOR_SRC_ALPHA_SATURATE:
4129       if (clamped_zero)
4130          return PIPE_BLENDFACTOR_ZERO;
4131       else
4132          return PIPE_BLENDFACTOR_SRC_ALPHA_SATURATE;
4133    }
4134 
4135    return factor;
4136 }
4137 
4138 
4139 /**
4140  * We need to generate several variants of the fragment pipeline to match
4141  * all the combinations of the contributing state atoms.
4142  *
4143  * TODO: there is actually no reason to tie this to context state -- the
4144  * generated code could be cached globally in the screen.
4145  */
4146 static struct lp_fragment_shader_variant_key *
make_variant_key(struct llvmpipe_context * lp,struct lp_fragment_shader * shader,char * store)4147 make_variant_key(struct llvmpipe_context *lp,
4148                  struct lp_fragment_shader *shader,
4149                  char *store)
4150 {
4151    unsigned i;
4152    struct lp_fragment_shader_variant_key *key;
4153 
4154    key = (struct lp_fragment_shader_variant_key *)store;
4155 
4156    memset(key, 0, sizeof(*key));
4157 
4158    if (lp->framebuffer.zsbuf) {
4159       enum pipe_format zsbuf_format = lp->framebuffer.zsbuf->format;
4160       const struct util_format_description *zsbuf_desc =
4161          util_format_description(zsbuf_format);
4162 
4163       if (lp->depth_stencil->depth_enabled &&
4164           util_format_has_depth(zsbuf_desc)) {
4165          key->zsbuf_format = zsbuf_format;
4166          key->depth.enabled = lp->depth_stencil->depth_enabled;
4167          key->depth.writemask = lp->depth_stencil->depth_writemask;
4168          key->depth.func = lp->depth_stencil->depth_func;
4169       }
4170       if (lp->depth_stencil->stencil[0].enabled &&
4171           util_format_has_stencil(zsbuf_desc)) {
4172          key->zsbuf_format = zsbuf_format;
4173          memcpy(&key->stencil, &lp->depth_stencil->stencil, sizeof key->stencil);
4174       }
4175       if (llvmpipe_resource_is_1d(lp->framebuffer.zsbuf->texture)) {
4176          key->resource_1d = TRUE;
4177       }
4178       key->zsbuf_nr_samples = util_res_sample_count(lp->framebuffer.zsbuf->texture);
4179    }
4180 
4181    /*
4182     * Propagate the depth clamp setting from the rasterizer state.
4183     */
4184    key->depth_clamp = lp->rasterizer->depth_clamp;
4185 
4186    /* alpha test only applies if render buffer 0 is non-integer (or does not exist) */
4187    if (!lp->framebuffer.nr_cbufs ||
4188        !lp->framebuffer.cbufs[0] ||
4189        !util_format_is_pure_integer(lp->framebuffer.cbufs[0]->format)) {
4190       key->alpha.enabled = lp->depth_stencil->alpha_enabled;
4191    }
4192    if(key->alpha.enabled)
4193       key->alpha.func = lp->depth_stencil->alpha_func;
4194    /* alpha.ref_value is passed in jit_context */
4195 
4196    key->flatshade = lp->rasterizer->flatshade;
4197    key->multisample = lp->rasterizer->multisample;
4198    key->no_ms_sample_mask_out = lp->rasterizer->no_ms_sample_mask_out;
4199    if (lp->active_occlusion_queries && !lp->queries_disabled) {
4200       key->occlusion_count = TRUE;
4201    }
4202 
4203    memcpy(&key->blend, lp->blend, sizeof key->blend);
4204 
4205    key->coverage_samples = 1;
4206    key->min_samples = 1;
4207    if (key->multisample) {
4208       key->coverage_samples = util_framebuffer_get_num_samples(&lp->framebuffer);
4209       key->min_samples = lp->min_samples == 1 ? 1 : key->coverage_samples;
4210    }
4211    key->nr_cbufs = lp->framebuffer.nr_cbufs;
4212 
4213    if (!key->blend.independent_blend_enable) {
4214       /* we always need independent blend otherwise the fixups below won't work */
4215       for (i = 1; i < key->nr_cbufs; i++) {
4216          memcpy(&key->blend.rt[i], &key->blend.rt[0], sizeof(key->blend.rt[0]));
4217       }
4218       key->blend.independent_blend_enable = 1;
4219    }
4220 
4221    for (i = 0; i < lp->framebuffer.nr_cbufs; i++) {
4222       struct pipe_rt_blend_state *blend_rt = &key->blend.rt[i];
4223 
4224       if (lp->framebuffer.cbufs[i]) {
4225          enum pipe_format format = lp->framebuffer.cbufs[i]->format;
4226          const struct util_format_description *format_desc;
4227 
4228          key->cbuf_format[i] = format;
4229          key->cbuf_nr_samples[i] = util_res_sample_count(lp->framebuffer.cbufs[i]->texture);
4230 
4231          /*
4232           * Figure out if this is a 1d resource. Note that OpenGL allows crazy
4233           * mixing of 2d textures with height 1 and 1d textures, so make sure
4234           * we pick 1d if any cbuf or zsbuf is 1d.
4235           */
4236          if (llvmpipe_resource_is_1d(lp->framebuffer.cbufs[i]->texture)) {
4237             key->resource_1d = TRUE;
4238          }
4239 
4240          format_desc = util_format_description(format);
4241          assert(format_desc->colorspace == UTIL_FORMAT_COLORSPACE_RGB ||
4242                 format_desc->colorspace == UTIL_FORMAT_COLORSPACE_SRGB);
4243 
4244          /*
4245           * Mask out color channels not present in the color buffer.
4246           */
4247          blend_rt->colormask &= util_format_colormask(format_desc);
4248 
4249          /*
4250           * Disable blend for integer formats.
4251           */
4252          if (util_format_is_pure_integer(format)) {
4253             blend_rt->blend_enable = 0;
4254          }
4255 
4256          /*
4257           * Our swizzled render tiles always have an alpha channel, but the
4258           * linear render target format often does not, so force here the dst
4259           * alpha to be one.
4260           *
4261           * This is not a mere optimization. Wrong results will be produced if
4262           * the dst alpha is used, the dst format does not have alpha, and the
4263           * previous rendering was not flushed from the swizzled to linear
4264           * buffer. For example, NonPowTwo DCT.
4265           *
4266           * TODO: This should be generalized to all channels for better
4267           * performance, but only alpha causes correctness issues.
4268           *
4269           * Also, force rgb/alpha func/factors match, to make AoS blending
4270           * easier.
4271           */
4272          if (format_desc->swizzle[3] > PIPE_SWIZZLE_W ||
4273              format_desc->swizzle[3] == format_desc->swizzle[0]) {
4274             /* Doesn't cover mixed snorm/unorm but can't render to them anyway */
4275             boolean clamped_zero = !util_format_is_float(format) &&
4276                                    !util_format_is_snorm(format);
4277             blend_rt->rgb_src_factor =
4278                force_dst_alpha_one(blend_rt->rgb_src_factor, clamped_zero);
4279             blend_rt->rgb_dst_factor =
4280                force_dst_alpha_one(blend_rt->rgb_dst_factor, clamped_zero);
4281             blend_rt->alpha_func       = blend_rt->rgb_func;
4282             blend_rt->alpha_src_factor = blend_rt->rgb_src_factor;
4283             blend_rt->alpha_dst_factor = blend_rt->rgb_dst_factor;
4284          }
4285       }
4286       else {
4287          /* no color buffer for this fragment output */
4288          key->cbuf_format[i] = PIPE_FORMAT_NONE;
4289          key->cbuf_nr_samples[i] = 0;
4290          blend_rt->colormask = 0x0;
4291          blend_rt->blend_enable = 0;
4292       }
4293    }
4294 
4295    /* This value will be the same for all the variants of a given shader:
4296     */
4297    key->nr_samplers = shader->info.base.file_max[TGSI_FILE_SAMPLER] + 1;
4298 
4299    struct lp_sampler_static_state *fs_sampler;
4300 
4301    fs_sampler = lp_fs_variant_key_samplers(key);
4302 
4303    memset(fs_sampler, 0, MAX2(key->nr_samplers, key->nr_sampler_views) * sizeof *fs_sampler);
4304 
4305    for(i = 0; i < key->nr_samplers; ++i) {
4306       if(shader->info.base.file_mask[TGSI_FILE_SAMPLER] & (1 << i)) {
4307          lp_sampler_static_sampler_state(&fs_sampler[i].sampler_state,
4308                                          lp->samplers[PIPE_SHADER_FRAGMENT][i]);
4309       }
4310    }
4311 
4312    /*
4313     * XXX If TGSI_FILE_SAMPLER_VIEW exists assume all texture opcodes
4314     * are dx10-style? Can't really have mixed opcodes, at least not
4315     * if we want to skip the holes here (without rescanning tgsi).
4316     */
4317    if (shader->info.base.file_max[TGSI_FILE_SAMPLER_VIEW] != -1) {
4318       key->nr_sampler_views = shader->info.base.file_max[TGSI_FILE_SAMPLER_VIEW] + 1;
4319       for(i = 0; i < key->nr_sampler_views; ++i) {
4320          /*
4321           * Note sview may exceed what's representable by file_mask.
4322           * This will still work, the only downside is that not actually
4323           * used views may be included in the shader key.
4324           */
4325          if(shader->info.base.file_mask[TGSI_FILE_SAMPLER_VIEW] & (1u << (i & 31))) {
4326             lp_sampler_static_texture_state(&fs_sampler[i].texture_state,
4327                                             lp->sampler_views[PIPE_SHADER_FRAGMENT][i]);
4328          }
4329       }
4330    }
4331    else {
4332       key->nr_sampler_views = key->nr_samplers;
4333       for(i = 0; i < key->nr_sampler_views; ++i) {
4334          if(shader->info.base.file_mask[TGSI_FILE_SAMPLER] & (1 << i)) {
4335             lp_sampler_static_texture_state(&fs_sampler[i].texture_state,
4336                                             lp->sampler_views[PIPE_SHADER_FRAGMENT][i]);
4337          }
4338       }
4339    }
4340 
4341    struct lp_image_static_state *lp_image;
4342    lp_image = lp_fs_variant_key_images(key);
4343    key->nr_images = shader->info.base.file_max[TGSI_FILE_IMAGE] + 1;
4344    for (i = 0; i < key->nr_images; ++i) {
4345       if (shader->info.base.file_mask[TGSI_FILE_IMAGE] & (1 << i)) {
4346          lp_sampler_static_texture_state_image(&lp_image[i].image_state,
4347                                                &lp->images[PIPE_SHADER_FRAGMENT][i]);
4348       }
4349    }
4350 
4351    if (shader->kind == LP_FS_KIND_AERO_MINIFICATION) {
4352       struct lp_sampler_static_state *samp0 = lp_fs_variant_key_sampler_idx(key, 0);
4353       assert(samp0);
4354       samp0->sampler_state.min_img_filter = PIPE_TEX_FILTER_NEAREST;
4355       samp0->sampler_state.mag_img_filter = PIPE_TEX_FILTER_NEAREST;
4356    }
4357 
4358    return key;
4359 }
4360 
4361 
4362 /**
4363  * Update fragment shader state.  This is called just prior to drawing
4364  * something when some fragment-related state has changed.
4365  */
4366 void
llvmpipe_update_fs(struct llvmpipe_context * lp)4367 llvmpipe_update_fs(struct llvmpipe_context *lp)
4368 {
4369    struct lp_fragment_shader *shader = lp->fs;
4370    struct lp_fragment_shader_variant_key *key;
4371    struct lp_fragment_shader_variant *variant = NULL;
4372    struct lp_fs_variant_list_item *li;
4373    char store[LP_FS_MAX_VARIANT_KEY_SIZE];
4374 
4375    key = make_variant_key(lp, shader, store);
4376 
4377    /* Search the variants for one which matches the key */
4378    li = first_elem(&shader->variants);
4379    while(!at_end(&shader->variants, li)) {
4380       if(memcmp(&li->base->key, key, shader->variant_key_size) == 0) {
4381          variant = li->base;
4382          break;
4383       }
4384       li = next_elem(li);
4385    }
4386 
4387    if (variant) {
4388       /* Move this variant to the head of the list to implement LRU
4389        * deletion of shader's when we have too many.
4390        */
4391       move_to_head(&lp->fs_variants_list, &variant->list_item_global);
4392    }
4393    else {
4394       /* variant not found, create it now */
4395       int64_t t0, t1, dt;
4396       unsigned i;
4397       unsigned variants_to_cull;
4398 
4399       if (LP_DEBUG & DEBUG_FS) {
4400          debug_printf("%u variants,\t%u instrs,\t%u instrs/variant\n",
4401                       lp->nr_fs_variants,
4402                       lp->nr_fs_instrs,
4403                       lp->nr_fs_variants ? lp->nr_fs_instrs / lp->nr_fs_variants : 0);
4404       }
4405 
4406       /* First, check if we've exceeded the max number of shader variants.
4407        * If so, free 6.25% of them (the least recently used ones).
4408        */
4409       variants_to_cull = lp->nr_fs_variants >= LP_MAX_SHADER_VARIANTS ? LP_MAX_SHADER_VARIANTS / 16 : 0;
4410 
4411       if (variants_to_cull ||
4412           lp->nr_fs_instrs >= LP_MAX_SHADER_INSTRUCTIONS) {
4413          if (gallivm_debug & GALLIVM_DEBUG_PERF) {
4414             debug_printf("Evicting FS: %u fs variants,\t%u total variants,"
4415                          "\t%u instrs,\t%u instrs/variant\n",
4416                          shader->variants_cached,
4417                          lp->nr_fs_variants, lp->nr_fs_instrs,
4418                          lp->nr_fs_instrs / lp->nr_fs_variants);
4419          }
4420 
4421          /*
4422           * We need to re-check lp->nr_fs_variants because an arbitrarliy large
4423           * number of shader variants (potentially all of them) could be
4424           * pending for destruction on flush.
4425           */
4426 
4427          for (i = 0; i < variants_to_cull || lp->nr_fs_instrs >= LP_MAX_SHADER_INSTRUCTIONS; i++) {
4428             struct lp_fs_variant_list_item *item;
4429             if (is_empty_list(&lp->fs_variants_list)) {
4430                break;
4431             }
4432             item = last_elem(&lp->fs_variants_list);
4433             assert(item);
4434             assert(item->base);
4435             llvmpipe_remove_shader_variant(lp, item->base);
4436             struct lp_fragment_shader_variant *variant = item->base;
4437             lp_fs_variant_reference(lp, &variant, NULL);
4438          }
4439       }
4440 
4441       /*
4442        * Generate the new variant.
4443        */
4444       t0 = os_time_get();
4445       variant = generate_variant(lp, shader, key);
4446       t1 = os_time_get();
4447       dt = t1 - t0;
4448       LP_COUNT_ADD(llvm_compile_time, dt);
4449       LP_COUNT_ADD(nr_llvm_compiles, 2);  /* emit vs. omit in/out test */
4450 
4451       /* Put the new variant into the list */
4452       if (variant) {
4453          insert_at_head(&shader->variants, &variant->list_item_local);
4454          insert_at_head(&lp->fs_variants_list, &variant->list_item_global);
4455          lp->nr_fs_variants++;
4456          lp->nr_fs_instrs += variant->nr_instrs;
4457          shader->variants_cached++;
4458       }
4459    }
4460 
4461    /* Bind this variant */
4462    lp_setup_set_fs_variant(lp->setup, variant);
4463 }
4464 
4465 
4466 
4467 
4468 
4469 void
llvmpipe_init_fs_funcs(struct llvmpipe_context * llvmpipe)4470 llvmpipe_init_fs_funcs(struct llvmpipe_context *llvmpipe)
4471 {
4472    llvmpipe->pipe.create_fs_state = llvmpipe_create_fs_state;
4473    llvmpipe->pipe.bind_fs_state   = llvmpipe_bind_fs_state;
4474    llvmpipe->pipe.delete_fs_state = llvmpipe_delete_fs_state;
4475 
4476    llvmpipe->pipe.set_constant_buffer = llvmpipe_set_constant_buffer;
4477 
4478    llvmpipe->pipe.set_shader_buffers = llvmpipe_set_shader_buffers;
4479    llvmpipe->pipe.set_shader_images = llvmpipe_set_shader_images;
4480 }
4481 
4482 
4483