• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 // CAN bus driver for Bosch M_CAN controller
3 // Copyright (C) 2014 Freescale Semiconductor, Inc.
4 //      Dong Aisheng <b29396@freescale.com>
5 // Copyright (C) 2018-19 Texas Instruments Incorporated - http://www.ti.com/
6 
7 /* Bosch M_CAN user manual can be obtained from:
8  * http://www.bosch-semiconductors.de/media/pdf_1/ipmodules_1/m_can/
9  * mcan_users_manual_v302.pdf
10  */
11 
12 #include <linux/interrupt.h>
13 #include <linux/io.h>
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/netdevice.h>
17 #include <linux/of.h>
18 #include <linux/of_device.h>
19 #include <linux/platform_device.h>
20 #include <linux/pm_runtime.h>
21 #include <linux/iopoll.h>
22 #include <linux/can/dev.h>
23 #include <linux/pinctrl/consumer.h>
24 
25 #include "m_can.h"
26 
27 /* registers definition */
28 enum m_can_reg {
29 	M_CAN_CREL	= 0x0,
30 	M_CAN_ENDN	= 0x4,
31 	M_CAN_CUST	= 0x8,
32 	M_CAN_DBTP	= 0xc,
33 	M_CAN_TEST	= 0x10,
34 	M_CAN_RWD	= 0x14,
35 	M_CAN_CCCR	= 0x18,
36 	M_CAN_NBTP	= 0x1c,
37 	M_CAN_TSCC	= 0x20,
38 	M_CAN_TSCV	= 0x24,
39 	M_CAN_TOCC	= 0x28,
40 	M_CAN_TOCV	= 0x2c,
41 	M_CAN_ECR	= 0x40,
42 	M_CAN_PSR	= 0x44,
43 /* TDCR Register only available for version >=3.1.x */
44 	M_CAN_TDCR	= 0x48,
45 	M_CAN_IR	= 0x50,
46 	M_CAN_IE	= 0x54,
47 	M_CAN_ILS	= 0x58,
48 	M_CAN_ILE	= 0x5c,
49 	M_CAN_GFC	= 0x80,
50 	M_CAN_SIDFC	= 0x84,
51 	M_CAN_XIDFC	= 0x88,
52 	M_CAN_XIDAM	= 0x90,
53 	M_CAN_HPMS	= 0x94,
54 	M_CAN_NDAT1	= 0x98,
55 	M_CAN_NDAT2	= 0x9c,
56 	M_CAN_RXF0C	= 0xa0,
57 	M_CAN_RXF0S	= 0xa4,
58 	M_CAN_RXF0A	= 0xa8,
59 	M_CAN_RXBC	= 0xac,
60 	M_CAN_RXF1C	= 0xb0,
61 	M_CAN_RXF1S	= 0xb4,
62 	M_CAN_RXF1A	= 0xb8,
63 	M_CAN_RXESC	= 0xbc,
64 	M_CAN_TXBC	= 0xc0,
65 	M_CAN_TXFQS	= 0xc4,
66 	M_CAN_TXESC	= 0xc8,
67 	M_CAN_TXBRP	= 0xcc,
68 	M_CAN_TXBAR	= 0xd0,
69 	M_CAN_TXBCR	= 0xd4,
70 	M_CAN_TXBTO	= 0xd8,
71 	M_CAN_TXBCF	= 0xdc,
72 	M_CAN_TXBTIE	= 0xe0,
73 	M_CAN_TXBCIE	= 0xe4,
74 	M_CAN_TXEFC	= 0xf0,
75 	M_CAN_TXEFS	= 0xf4,
76 	M_CAN_TXEFA	= 0xf8,
77 };
78 
79 /* napi related */
80 #define M_CAN_NAPI_WEIGHT	64
81 
82 /* message ram configuration data length */
83 #define MRAM_CFG_LEN	8
84 
85 /* Core Release Register (CREL) */
86 #define CREL_REL_SHIFT		28
87 #define CREL_REL_MASK		(0xF << CREL_REL_SHIFT)
88 #define CREL_STEP_SHIFT		24
89 #define CREL_STEP_MASK		(0xF << CREL_STEP_SHIFT)
90 #define CREL_SUBSTEP_SHIFT	20
91 #define CREL_SUBSTEP_MASK	(0xF << CREL_SUBSTEP_SHIFT)
92 
93 /* Data Bit Timing & Prescaler Register (DBTP) */
94 #define DBTP_TDC		BIT(23)
95 #define DBTP_DBRP_SHIFT		16
96 #define DBTP_DBRP_MASK		(0x1f << DBTP_DBRP_SHIFT)
97 #define DBTP_DTSEG1_SHIFT	8
98 #define DBTP_DTSEG1_MASK	(0x1f << DBTP_DTSEG1_SHIFT)
99 #define DBTP_DTSEG2_SHIFT	4
100 #define DBTP_DTSEG2_MASK	(0xf << DBTP_DTSEG2_SHIFT)
101 #define DBTP_DSJW_SHIFT		0
102 #define DBTP_DSJW_MASK		(0xf << DBTP_DSJW_SHIFT)
103 
104 /* Transmitter Delay Compensation Register (TDCR) */
105 #define TDCR_TDCO_SHIFT		8
106 #define TDCR_TDCO_MASK		(0x7F << TDCR_TDCO_SHIFT)
107 #define TDCR_TDCF_SHIFT		0
108 #define TDCR_TDCF_MASK		(0x7F << TDCR_TDCF_SHIFT)
109 
110 /* Test Register (TEST) */
111 #define TEST_LBCK		BIT(4)
112 
113 /* CC Control Register(CCCR) */
114 #define CCCR_CMR_MASK		0x3
115 #define CCCR_CMR_SHIFT		10
116 #define CCCR_CMR_CANFD		0x1
117 #define CCCR_CMR_CANFD_BRS	0x2
118 #define CCCR_CMR_CAN		0x3
119 #define CCCR_CME_MASK		0x3
120 #define CCCR_CME_SHIFT		8
121 #define CCCR_CME_CAN		0
122 #define CCCR_CME_CANFD		0x1
123 #define CCCR_CME_CANFD_BRS	0x2
124 #define CCCR_TXP		BIT(14)
125 #define CCCR_TEST		BIT(7)
126 #define CCCR_DAR		BIT(6)
127 #define CCCR_MON		BIT(5)
128 #define CCCR_CSR		BIT(4)
129 #define CCCR_CSA		BIT(3)
130 #define CCCR_ASM		BIT(2)
131 #define CCCR_CCE		BIT(1)
132 #define CCCR_INIT		BIT(0)
133 #define CCCR_CANFD		0x10
134 /* for version >=3.1.x */
135 #define CCCR_EFBI		BIT(13)
136 #define CCCR_PXHD		BIT(12)
137 #define CCCR_BRSE		BIT(9)
138 #define CCCR_FDOE		BIT(8)
139 /* only for version >=3.2.x */
140 #define CCCR_NISO		BIT(15)
141 
142 /* Nominal Bit Timing & Prescaler Register (NBTP) */
143 #define NBTP_NSJW_SHIFT		25
144 #define NBTP_NSJW_MASK		(0x7f << NBTP_NSJW_SHIFT)
145 #define NBTP_NBRP_SHIFT		16
146 #define NBTP_NBRP_MASK		(0x1ff << NBTP_NBRP_SHIFT)
147 #define NBTP_NTSEG1_SHIFT	8
148 #define NBTP_NTSEG1_MASK	(0xff << NBTP_NTSEG1_SHIFT)
149 #define NBTP_NTSEG2_SHIFT	0
150 #define NBTP_NTSEG2_MASK	(0x7f << NBTP_NTSEG2_SHIFT)
151 
152 /* Error Counter Register(ECR) */
153 #define ECR_RP			BIT(15)
154 #define ECR_REC_SHIFT		8
155 #define ECR_REC_MASK		(0x7f << ECR_REC_SHIFT)
156 #define ECR_TEC_SHIFT		0
157 #define ECR_TEC_MASK		0xff
158 
159 /* Protocol Status Register(PSR) */
160 #define PSR_BO		BIT(7)
161 #define PSR_EW		BIT(6)
162 #define PSR_EP		BIT(5)
163 #define PSR_LEC_MASK	0x7
164 
165 /* Interrupt Register(IR) */
166 #define IR_ALL_INT	0xffffffff
167 
168 /* Renamed bits for versions > 3.1.x */
169 #define IR_ARA		BIT(29)
170 #define IR_PED		BIT(28)
171 #define IR_PEA		BIT(27)
172 
173 /* Bits for version 3.0.x */
174 #define IR_STE		BIT(31)
175 #define IR_FOE		BIT(30)
176 #define IR_ACKE		BIT(29)
177 #define IR_BE		BIT(28)
178 #define IR_CRCE		BIT(27)
179 #define IR_WDI		BIT(26)
180 #define IR_BO		BIT(25)
181 #define IR_EW		BIT(24)
182 #define IR_EP		BIT(23)
183 #define IR_ELO		BIT(22)
184 #define IR_BEU		BIT(21)
185 #define IR_BEC		BIT(20)
186 #define IR_DRX		BIT(19)
187 #define IR_TOO		BIT(18)
188 #define IR_MRAF		BIT(17)
189 #define IR_TSW		BIT(16)
190 #define IR_TEFL		BIT(15)
191 #define IR_TEFF		BIT(14)
192 #define IR_TEFW		BIT(13)
193 #define IR_TEFN		BIT(12)
194 #define IR_TFE		BIT(11)
195 #define IR_TCF		BIT(10)
196 #define IR_TC		BIT(9)
197 #define IR_HPM		BIT(8)
198 #define IR_RF1L		BIT(7)
199 #define IR_RF1F		BIT(6)
200 #define IR_RF1W		BIT(5)
201 #define IR_RF1N		BIT(4)
202 #define IR_RF0L		BIT(3)
203 #define IR_RF0F		BIT(2)
204 #define IR_RF0W		BIT(1)
205 #define IR_RF0N		BIT(0)
206 #define IR_ERR_STATE	(IR_BO | IR_EW | IR_EP)
207 
208 /* Interrupts for version 3.0.x */
209 #define IR_ERR_LEC_30X	(IR_STE	| IR_FOE | IR_ACKE | IR_BE | IR_CRCE)
210 #define IR_ERR_BUS_30X	(IR_ERR_LEC_30X | IR_WDI | IR_BEU | IR_BEC | \
211 			 IR_TOO | IR_MRAF | IR_TSW | IR_TEFL | IR_RF1L | \
212 			 IR_RF0L)
213 #define IR_ERR_ALL_30X	(IR_ERR_STATE | IR_ERR_BUS_30X)
214 /* Interrupts for version >= 3.1.x */
215 #define IR_ERR_LEC_31X	(IR_PED | IR_PEA)
216 #define IR_ERR_BUS_31X      (IR_ERR_LEC_31X | IR_WDI | IR_BEU | IR_BEC | \
217 			 IR_TOO | IR_MRAF | IR_TSW | IR_TEFL | IR_RF1L | \
218 			 IR_RF0L)
219 #define IR_ERR_ALL_31X	(IR_ERR_STATE | IR_ERR_BUS_31X)
220 
221 /* Interrupt Line Select (ILS) */
222 #define ILS_ALL_INT0	0x0
223 #define ILS_ALL_INT1	0xFFFFFFFF
224 
225 /* Interrupt Line Enable (ILE) */
226 #define ILE_EINT1	BIT(1)
227 #define ILE_EINT0	BIT(0)
228 
229 /* Rx FIFO 0/1 Configuration (RXF0C/RXF1C) */
230 #define RXFC_FWM_SHIFT	24
231 #define RXFC_FWM_MASK	(0x7f << RXFC_FWM_SHIFT)
232 #define RXFC_FS_SHIFT	16
233 #define RXFC_FS_MASK	(0x7f << RXFC_FS_SHIFT)
234 
235 /* Rx FIFO 0/1 Status (RXF0S/RXF1S) */
236 #define RXFS_RFL	BIT(25)
237 #define RXFS_FF		BIT(24)
238 #define RXFS_FPI_SHIFT	16
239 #define RXFS_FPI_MASK	0x3f0000
240 #define RXFS_FGI_SHIFT	8
241 #define RXFS_FGI_MASK	0x3f00
242 #define RXFS_FFL_MASK	0x7f
243 
244 /* Rx Buffer / FIFO Element Size Configuration (RXESC) */
245 #define M_CAN_RXESC_8BYTES	0x0
246 #define M_CAN_RXESC_64BYTES	0x777
247 
248 /* Tx Buffer Configuration(TXBC) */
249 #define TXBC_NDTB_SHIFT		16
250 #define TXBC_NDTB_MASK		(0x3f << TXBC_NDTB_SHIFT)
251 #define TXBC_TFQS_SHIFT		24
252 #define TXBC_TFQS_MASK		(0x3f << TXBC_TFQS_SHIFT)
253 
254 /* Tx FIFO/Queue Status (TXFQS) */
255 #define TXFQS_TFQF		BIT(21)
256 #define TXFQS_TFQPI_SHIFT	16
257 #define TXFQS_TFQPI_MASK	(0x1f << TXFQS_TFQPI_SHIFT)
258 #define TXFQS_TFGI_SHIFT	8
259 #define TXFQS_TFGI_MASK		(0x1f << TXFQS_TFGI_SHIFT)
260 #define TXFQS_TFFL_SHIFT	0
261 #define TXFQS_TFFL_MASK		(0x3f << TXFQS_TFFL_SHIFT)
262 
263 /* Tx Buffer Element Size Configuration(TXESC) */
264 #define TXESC_TBDS_8BYTES	0x0
265 #define TXESC_TBDS_64BYTES	0x7
266 
267 /* Tx Event FIFO Configuration (TXEFC) */
268 #define TXEFC_EFS_SHIFT		16
269 #define TXEFC_EFS_MASK		(0x3f << TXEFC_EFS_SHIFT)
270 
271 /* Tx Event FIFO Status (TXEFS) */
272 #define TXEFS_TEFL		BIT(25)
273 #define TXEFS_EFF		BIT(24)
274 #define TXEFS_EFGI_SHIFT	8
275 #define	TXEFS_EFGI_MASK		(0x1f << TXEFS_EFGI_SHIFT)
276 #define TXEFS_EFFL_SHIFT	0
277 #define TXEFS_EFFL_MASK		(0x3f << TXEFS_EFFL_SHIFT)
278 
279 /* Tx Event FIFO Acknowledge (TXEFA) */
280 #define TXEFA_EFAI_SHIFT	0
281 #define TXEFA_EFAI_MASK		(0x1f << TXEFA_EFAI_SHIFT)
282 
283 /* Message RAM Configuration (in bytes) */
284 #define SIDF_ELEMENT_SIZE	4
285 #define XIDF_ELEMENT_SIZE	8
286 #define RXF0_ELEMENT_SIZE	72
287 #define RXF1_ELEMENT_SIZE	72
288 #define RXB_ELEMENT_SIZE	72
289 #define TXE_ELEMENT_SIZE	8
290 #define TXB_ELEMENT_SIZE	72
291 
292 /* Message RAM Elements */
293 #define M_CAN_FIFO_ID		0x0
294 #define M_CAN_FIFO_DLC		0x4
295 #define M_CAN_FIFO_DATA(n)	(0x8 + ((n) << 2))
296 
297 /* Rx Buffer Element */
298 /* R0 */
299 #define RX_BUF_ESI		BIT(31)
300 #define RX_BUF_XTD		BIT(30)
301 #define RX_BUF_RTR		BIT(29)
302 /* R1 */
303 #define RX_BUF_ANMF		BIT(31)
304 #define RX_BUF_FDF		BIT(21)
305 #define RX_BUF_BRS		BIT(20)
306 
307 /* Tx Buffer Element */
308 /* T0 */
309 #define TX_BUF_ESI		BIT(31)
310 #define TX_BUF_XTD		BIT(30)
311 #define TX_BUF_RTR		BIT(29)
312 /* T1 */
313 #define TX_BUF_EFC		BIT(23)
314 #define TX_BUF_FDF		BIT(21)
315 #define TX_BUF_BRS		BIT(20)
316 #define TX_BUF_MM_SHIFT		24
317 #define TX_BUF_MM_MASK		(0xff << TX_BUF_MM_SHIFT)
318 
319 /* Tx event FIFO Element */
320 /* E1 */
321 #define TX_EVENT_MM_SHIFT	TX_BUF_MM_SHIFT
322 #define TX_EVENT_MM_MASK	(0xff << TX_EVENT_MM_SHIFT)
323 
m_can_read(struct m_can_classdev * cdev,enum m_can_reg reg)324 static inline u32 m_can_read(struct m_can_classdev *cdev, enum m_can_reg reg)
325 {
326 	return cdev->ops->read_reg(cdev, reg);
327 }
328 
m_can_write(struct m_can_classdev * cdev,enum m_can_reg reg,u32 val)329 static inline void m_can_write(struct m_can_classdev *cdev, enum m_can_reg reg,
330 			       u32 val)
331 {
332 	cdev->ops->write_reg(cdev, reg, val);
333 }
334 
m_can_fifo_read(struct m_can_classdev * cdev,u32 fgi,unsigned int offset)335 static u32 m_can_fifo_read(struct m_can_classdev *cdev,
336 			   u32 fgi, unsigned int offset)
337 {
338 	u32 addr_offset = cdev->mcfg[MRAM_RXF0].off + fgi * RXF0_ELEMENT_SIZE +
339 			  offset;
340 
341 	return cdev->ops->read_fifo(cdev, addr_offset);
342 }
343 
m_can_fifo_write(struct m_can_classdev * cdev,u32 fpi,unsigned int offset,u32 val)344 static void m_can_fifo_write(struct m_can_classdev *cdev,
345 			     u32 fpi, unsigned int offset, u32 val)
346 {
347 	u32 addr_offset = cdev->mcfg[MRAM_TXB].off + fpi * TXB_ELEMENT_SIZE +
348 			  offset;
349 
350 	cdev->ops->write_fifo(cdev, addr_offset, val);
351 }
352 
m_can_fifo_write_no_off(struct m_can_classdev * cdev,u32 fpi,u32 val)353 static inline void m_can_fifo_write_no_off(struct m_can_classdev *cdev,
354 					   u32 fpi, u32 val)
355 {
356 	cdev->ops->write_fifo(cdev, fpi, val);
357 }
358 
m_can_txe_fifo_read(struct m_can_classdev * cdev,u32 fgi,u32 offset)359 static u32 m_can_txe_fifo_read(struct m_can_classdev *cdev, u32 fgi, u32 offset)
360 {
361 	u32 addr_offset = cdev->mcfg[MRAM_TXE].off + fgi * TXE_ELEMENT_SIZE +
362 			  offset;
363 
364 	return cdev->ops->read_fifo(cdev, addr_offset);
365 }
366 
m_can_tx_fifo_full(struct m_can_classdev * cdev)367 static inline bool m_can_tx_fifo_full(struct m_can_classdev *cdev)
368 {
369 		return !!(m_can_read(cdev, M_CAN_TXFQS) & TXFQS_TFQF);
370 }
371 
m_can_config_endisable(struct m_can_classdev * cdev,bool enable)372 void m_can_config_endisable(struct m_can_classdev *cdev, bool enable)
373 {
374 	u32 cccr = m_can_read(cdev, M_CAN_CCCR);
375 	u32 timeout = 10;
376 	u32 val = 0;
377 
378 	/* Clear the Clock stop request if it was set */
379 	if (cccr & CCCR_CSR)
380 		cccr &= ~CCCR_CSR;
381 
382 	if (enable) {
383 		/* enable m_can configuration */
384 		m_can_write(cdev, M_CAN_CCCR, cccr | CCCR_INIT);
385 		udelay(5);
386 		/* CCCR.CCE can only be set/reset while CCCR.INIT = '1' */
387 		m_can_write(cdev, M_CAN_CCCR, cccr | CCCR_INIT | CCCR_CCE);
388 	} else {
389 		m_can_write(cdev, M_CAN_CCCR, cccr & ~(CCCR_INIT | CCCR_CCE));
390 	}
391 
392 	/* there's a delay for module initialization */
393 	if (enable)
394 		val = CCCR_INIT | CCCR_CCE;
395 
396 	while ((m_can_read(cdev, M_CAN_CCCR) & (CCCR_INIT | CCCR_CCE)) != val) {
397 		if (timeout == 0) {
398 			netdev_warn(cdev->net, "Failed to init module\n");
399 			return;
400 		}
401 		timeout--;
402 		udelay(1);
403 	}
404 }
405 
m_can_enable_all_interrupts(struct m_can_classdev * cdev)406 static inline void m_can_enable_all_interrupts(struct m_can_classdev *cdev)
407 {
408 	/* Only interrupt line 0 is used in this driver */
409 	m_can_write(cdev, M_CAN_ILE, ILE_EINT0);
410 }
411 
m_can_disable_all_interrupts(struct m_can_classdev * cdev)412 static inline void m_can_disable_all_interrupts(struct m_can_classdev *cdev)
413 {
414 	m_can_write(cdev, M_CAN_ILE, 0x0);
415 }
416 
m_can_clean(struct net_device * net)417 static void m_can_clean(struct net_device *net)
418 {
419 	struct m_can_classdev *cdev = netdev_priv(net);
420 
421 	if (cdev->tx_skb) {
422 		int putidx = 0;
423 
424 		net->stats.tx_errors++;
425 		if (cdev->version > 30)
426 			putidx = ((m_can_read(cdev, M_CAN_TXFQS) &
427 				   TXFQS_TFQPI_MASK) >> TXFQS_TFQPI_SHIFT);
428 
429 		can_free_echo_skb(cdev->net, putidx);
430 		cdev->tx_skb = NULL;
431 	}
432 }
433 
m_can_read_fifo(struct net_device * dev,u32 rxfs)434 static void m_can_read_fifo(struct net_device *dev, u32 rxfs)
435 {
436 	struct net_device_stats *stats = &dev->stats;
437 	struct m_can_classdev *cdev = netdev_priv(dev);
438 	struct canfd_frame *cf;
439 	struct sk_buff *skb;
440 	u32 id, fgi, dlc;
441 	int i;
442 
443 	/* calculate the fifo get index for where to read data */
444 	fgi = (rxfs & RXFS_FGI_MASK) >> RXFS_FGI_SHIFT;
445 	dlc = m_can_fifo_read(cdev, fgi, M_CAN_FIFO_DLC);
446 	if (dlc & RX_BUF_FDF)
447 		skb = alloc_canfd_skb(dev, &cf);
448 	else
449 		skb = alloc_can_skb(dev, (struct can_frame **)&cf);
450 	if (!skb) {
451 		stats->rx_dropped++;
452 		return;
453 	}
454 
455 	if (dlc & RX_BUF_FDF)
456 		cf->len = can_dlc2len((dlc >> 16) & 0x0F);
457 	else
458 		cf->len = get_can_dlc((dlc >> 16) & 0x0F);
459 
460 	id = m_can_fifo_read(cdev, fgi, M_CAN_FIFO_ID);
461 	if (id & RX_BUF_XTD)
462 		cf->can_id = (id & CAN_EFF_MASK) | CAN_EFF_FLAG;
463 	else
464 		cf->can_id = (id >> 18) & CAN_SFF_MASK;
465 
466 	if (id & RX_BUF_ESI) {
467 		cf->flags |= CANFD_ESI;
468 		netdev_dbg(dev, "ESI Error\n");
469 	}
470 
471 	if (!(dlc & RX_BUF_FDF) && (id & RX_BUF_RTR)) {
472 		cf->can_id |= CAN_RTR_FLAG;
473 	} else {
474 		if (dlc & RX_BUF_BRS)
475 			cf->flags |= CANFD_BRS;
476 
477 		for (i = 0; i < cf->len; i += 4)
478 			*(u32 *)(cf->data + i) =
479 				m_can_fifo_read(cdev, fgi,
480 						M_CAN_FIFO_DATA(i / 4));
481 	}
482 
483 	/* acknowledge rx fifo 0 */
484 	m_can_write(cdev, M_CAN_RXF0A, fgi);
485 
486 	stats->rx_packets++;
487 	stats->rx_bytes += cf->len;
488 
489 	netif_receive_skb(skb);
490 }
491 
m_can_do_rx_poll(struct net_device * dev,int quota)492 static int m_can_do_rx_poll(struct net_device *dev, int quota)
493 {
494 	struct m_can_classdev *cdev = netdev_priv(dev);
495 	u32 pkts = 0;
496 	u32 rxfs;
497 
498 	rxfs = m_can_read(cdev, M_CAN_RXF0S);
499 	if (!(rxfs & RXFS_FFL_MASK)) {
500 		netdev_dbg(dev, "no messages in fifo0\n");
501 		return 0;
502 	}
503 
504 	while ((rxfs & RXFS_FFL_MASK) && (quota > 0)) {
505 		m_can_read_fifo(dev, rxfs);
506 
507 		quota--;
508 		pkts++;
509 		rxfs = m_can_read(cdev, M_CAN_RXF0S);
510 	}
511 
512 	if (pkts)
513 		can_led_event(dev, CAN_LED_EVENT_RX);
514 
515 	return pkts;
516 }
517 
m_can_handle_lost_msg(struct net_device * dev)518 static int m_can_handle_lost_msg(struct net_device *dev)
519 {
520 	struct net_device_stats *stats = &dev->stats;
521 	struct sk_buff *skb;
522 	struct can_frame *frame;
523 
524 	netdev_err(dev, "msg lost in rxf0\n");
525 
526 	stats->rx_errors++;
527 	stats->rx_over_errors++;
528 
529 	skb = alloc_can_err_skb(dev, &frame);
530 	if (unlikely(!skb))
531 		return 0;
532 
533 	frame->can_id |= CAN_ERR_CRTL;
534 	frame->data[1] = CAN_ERR_CRTL_RX_OVERFLOW;
535 
536 	netif_receive_skb(skb);
537 
538 	return 1;
539 }
540 
m_can_handle_lec_err(struct net_device * dev,enum m_can_lec_type lec_type)541 static int m_can_handle_lec_err(struct net_device *dev,
542 				enum m_can_lec_type lec_type)
543 {
544 	struct m_can_classdev *cdev = netdev_priv(dev);
545 	struct net_device_stats *stats = &dev->stats;
546 	struct can_frame *cf;
547 	struct sk_buff *skb;
548 
549 	cdev->can.can_stats.bus_error++;
550 	stats->rx_errors++;
551 
552 	/* propagate the error condition to the CAN stack */
553 	skb = alloc_can_err_skb(dev, &cf);
554 	if (unlikely(!skb))
555 		return 0;
556 
557 	/* check for 'last error code' which tells us the
558 	 * type of the last error to occur on the CAN bus
559 	 */
560 	cf->can_id |= CAN_ERR_PROT | CAN_ERR_BUSERROR;
561 
562 	switch (lec_type) {
563 	case LEC_STUFF_ERROR:
564 		netdev_dbg(dev, "stuff error\n");
565 		cf->data[2] |= CAN_ERR_PROT_STUFF;
566 		break;
567 	case LEC_FORM_ERROR:
568 		netdev_dbg(dev, "form error\n");
569 		cf->data[2] |= CAN_ERR_PROT_FORM;
570 		break;
571 	case LEC_ACK_ERROR:
572 		netdev_dbg(dev, "ack error\n");
573 		cf->data[3] = CAN_ERR_PROT_LOC_ACK;
574 		break;
575 	case LEC_BIT1_ERROR:
576 		netdev_dbg(dev, "bit1 error\n");
577 		cf->data[2] |= CAN_ERR_PROT_BIT1;
578 		break;
579 	case LEC_BIT0_ERROR:
580 		netdev_dbg(dev, "bit0 error\n");
581 		cf->data[2] |= CAN_ERR_PROT_BIT0;
582 		break;
583 	case LEC_CRC_ERROR:
584 		netdev_dbg(dev, "CRC error\n");
585 		cf->data[3] = CAN_ERR_PROT_LOC_CRC_SEQ;
586 		break;
587 	default:
588 		break;
589 	}
590 
591 	stats->rx_packets++;
592 	stats->rx_bytes += cf->can_dlc;
593 	netif_receive_skb(skb);
594 
595 	return 1;
596 }
597 
__m_can_get_berr_counter(const struct net_device * dev,struct can_berr_counter * bec)598 static int __m_can_get_berr_counter(const struct net_device *dev,
599 				    struct can_berr_counter *bec)
600 {
601 	struct m_can_classdev *cdev = netdev_priv(dev);
602 	unsigned int ecr;
603 
604 	ecr = m_can_read(cdev, M_CAN_ECR);
605 	bec->rxerr = (ecr & ECR_REC_MASK) >> ECR_REC_SHIFT;
606 	bec->txerr = (ecr & ECR_TEC_MASK) >> ECR_TEC_SHIFT;
607 
608 	return 0;
609 }
610 
m_can_clk_start(struct m_can_classdev * cdev)611 static int m_can_clk_start(struct m_can_classdev *cdev)
612 {
613 	int err;
614 
615 	if (cdev->pm_clock_support == 0)
616 		return 0;
617 
618 	err = pm_runtime_get_sync(cdev->dev);
619 	if (err < 0) {
620 		pm_runtime_put_noidle(cdev->dev);
621 		return err;
622 	}
623 
624 	return 0;
625 }
626 
m_can_clk_stop(struct m_can_classdev * cdev)627 static void m_can_clk_stop(struct m_can_classdev *cdev)
628 {
629 	if (cdev->pm_clock_support)
630 		pm_runtime_put_sync(cdev->dev);
631 }
632 
m_can_get_berr_counter(const struct net_device * dev,struct can_berr_counter * bec)633 static int m_can_get_berr_counter(const struct net_device *dev,
634 				  struct can_berr_counter *bec)
635 {
636 	struct m_can_classdev *cdev = netdev_priv(dev);
637 	int err;
638 
639 	err = m_can_clk_start(cdev);
640 	if (err)
641 		return err;
642 
643 	__m_can_get_berr_counter(dev, bec);
644 
645 	m_can_clk_stop(cdev);
646 
647 	return 0;
648 }
649 
m_can_handle_state_change(struct net_device * dev,enum can_state new_state)650 static int m_can_handle_state_change(struct net_device *dev,
651 				     enum can_state new_state)
652 {
653 	struct m_can_classdev *cdev = netdev_priv(dev);
654 	struct net_device_stats *stats = &dev->stats;
655 	struct can_frame *cf;
656 	struct sk_buff *skb;
657 	struct can_berr_counter bec;
658 	unsigned int ecr;
659 
660 	switch (new_state) {
661 	case CAN_STATE_ERROR_WARNING:
662 		/* error warning state */
663 		cdev->can.can_stats.error_warning++;
664 		cdev->can.state = CAN_STATE_ERROR_WARNING;
665 		break;
666 	case CAN_STATE_ERROR_PASSIVE:
667 		/* error passive state */
668 		cdev->can.can_stats.error_passive++;
669 		cdev->can.state = CAN_STATE_ERROR_PASSIVE;
670 		break;
671 	case CAN_STATE_BUS_OFF:
672 		/* bus-off state */
673 		cdev->can.state = CAN_STATE_BUS_OFF;
674 		m_can_disable_all_interrupts(cdev);
675 		cdev->can.can_stats.bus_off++;
676 		can_bus_off(dev);
677 		break;
678 	default:
679 		break;
680 	}
681 
682 	/* propagate the error condition to the CAN stack */
683 	skb = alloc_can_err_skb(dev, &cf);
684 	if (unlikely(!skb))
685 		return 0;
686 
687 	__m_can_get_berr_counter(dev, &bec);
688 
689 	switch (new_state) {
690 	case CAN_STATE_ERROR_WARNING:
691 		/* error warning state */
692 		cf->can_id |= CAN_ERR_CRTL;
693 		cf->data[1] = (bec.txerr > bec.rxerr) ?
694 			CAN_ERR_CRTL_TX_WARNING :
695 			CAN_ERR_CRTL_RX_WARNING;
696 		cf->data[6] = bec.txerr;
697 		cf->data[7] = bec.rxerr;
698 		break;
699 	case CAN_STATE_ERROR_PASSIVE:
700 		/* error passive state */
701 		cf->can_id |= CAN_ERR_CRTL;
702 		ecr = m_can_read(cdev, M_CAN_ECR);
703 		if (ecr & ECR_RP)
704 			cf->data[1] |= CAN_ERR_CRTL_RX_PASSIVE;
705 		if (bec.txerr > 127)
706 			cf->data[1] |= CAN_ERR_CRTL_TX_PASSIVE;
707 		cf->data[6] = bec.txerr;
708 		cf->data[7] = bec.rxerr;
709 		break;
710 	case CAN_STATE_BUS_OFF:
711 		/* bus-off state */
712 		cf->can_id |= CAN_ERR_BUSOFF;
713 		break;
714 	default:
715 		break;
716 	}
717 
718 	stats->rx_packets++;
719 	stats->rx_bytes += cf->can_dlc;
720 	netif_receive_skb(skb);
721 
722 	return 1;
723 }
724 
m_can_handle_state_errors(struct net_device * dev,u32 psr)725 static int m_can_handle_state_errors(struct net_device *dev, u32 psr)
726 {
727 	struct m_can_classdev *cdev = netdev_priv(dev);
728 	int work_done = 0;
729 
730 	if (psr & PSR_EW && cdev->can.state != CAN_STATE_ERROR_WARNING) {
731 		netdev_dbg(dev, "entered error warning state\n");
732 		work_done += m_can_handle_state_change(dev,
733 						       CAN_STATE_ERROR_WARNING);
734 	}
735 
736 	if (psr & PSR_EP && cdev->can.state != CAN_STATE_ERROR_PASSIVE) {
737 		netdev_dbg(dev, "entered error passive state\n");
738 		work_done += m_can_handle_state_change(dev,
739 						       CAN_STATE_ERROR_PASSIVE);
740 	}
741 
742 	if (psr & PSR_BO && cdev->can.state != CAN_STATE_BUS_OFF) {
743 		netdev_dbg(dev, "entered error bus off state\n");
744 		work_done += m_can_handle_state_change(dev,
745 						       CAN_STATE_BUS_OFF);
746 	}
747 
748 	return work_done;
749 }
750 
m_can_handle_other_err(struct net_device * dev,u32 irqstatus)751 static void m_can_handle_other_err(struct net_device *dev, u32 irqstatus)
752 {
753 	if (irqstatus & IR_WDI)
754 		netdev_err(dev, "Message RAM Watchdog event due to missing READY\n");
755 	if (irqstatus & IR_BEU)
756 		netdev_err(dev, "Bit Error Uncorrected\n");
757 	if (irqstatus & IR_BEC)
758 		netdev_err(dev, "Bit Error Corrected\n");
759 	if (irqstatus & IR_TOO)
760 		netdev_err(dev, "Timeout reached\n");
761 	if (irqstatus & IR_MRAF)
762 		netdev_err(dev, "Message RAM access failure occurred\n");
763 }
764 
is_lec_err(u32 psr)765 static inline bool is_lec_err(u32 psr)
766 {
767 	psr &= LEC_UNUSED;
768 
769 	return psr && (psr != LEC_UNUSED);
770 }
771 
m_can_is_protocol_err(u32 irqstatus)772 static inline bool m_can_is_protocol_err(u32 irqstatus)
773 {
774 	return irqstatus & IR_ERR_LEC_31X;
775 }
776 
m_can_handle_protocol_error(struct net_device * dev,u32 irqstatus)777 static int m_can_handle_protocol_error(struct net_device *dev, u32 irqstatus)
778 {
779 	struct net_device_stats *stats = &dev->stats;
780 	struct m_can_classdev *cdev = netdev_priv(dev);
781 	struct can_frame *cf;
782 	struct sk_buff *skb;
783 
784 	/* propagate the error condition to the CAN stack */
785 	skb = alloc_can_err_skb(dev, &cf);
786 
787 	/* update tx error stats since there is protocol error */
788 	stats->tx_errors++;
789 
790 	/* update arbitration lost status */
791 	if (cdev->version >= 31 && (irqstatus & IR_PEA)) {
792 		netdev_dbg(dev, "Protocol error in Arbitration fail\n");
793 		cdev->can.can_stats.arbitration_lost++;
794 		if (skb) {
795 			cf->can_id |= CAN_ERR_LOSTARB;
796 			cf->data[0] |= CAN_ERR_LOSTARB_UNSPEC;
797 		}
798 	}
799 
800 	if (unlikely(!skb)) {
801 		netdev_dbg(dev, "allocation of skb failed\n");
802 		return 0;
803 	}
804 	netif_receive_skb(skb);
805 
806 	return 1;
807 }
808 
m_can_handle_bus_errors(struct net_device * dev,u32 irqstatus,u32 psr)809 static int m_can_handle_bus_errors(struct net_device *dev, u32 irqstatus,
810 				   u32 psr)
811 {
812 	struct m_can_classdev *cdev = netdev_priv(dev);
813 	int work_done = 0;
814 
815 	if (irqstatus & IR_RF0L)
816 		work_done += m_can_handle_lost_msg(dev);
817 
818 	/* handle lec errors on the bus */
819 	if ((cdev->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING) &&
820 	    is_lec_err(psr))
821 		work_done += m_can_handle_lec_err(dev, psr & LEC_UNUSED);
822 
823 	/* handle protocol errors in arbitration phase */
824 	if ((cdev->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING) &&
825 	    m_can_is_protocol_err(irqstatus))
826 		work_done += m_can_handle_protocol_error(dev, irqstatus);
827 
828 	/* other unproccessed error interrupts */
829 	m_can_handle_other_err(dev, irqstatus);
830 
831 	return work_done;
832 }
833 
m_can_rx_handler(struct net_device * dev,int quota)834 static int m_can_rx_handler(struct net_device *dev, int quota)
835 {
836 	struct m_can_classdev *cdev = netdev_priv(dev);
837 	int work_done = 0;
838 	u32 irqstatus, psr;
839 
840 	irqstatus = cdev->irqstatus | m_can_read(cdev, M_CAN_IR);
841 	if (!irqstatus)
842 		goto end;
843 
844 	/* Errata workaround for issue "Needless activation of MRAF irq"
845 	 * During frame reception while the MCAN is in Error Passive state
846 	 * and the Receive Error Counter has the value MCAN_ECR.REC = 127,
847 	 * it may happen that MCAN_IR.MRAF is set although there was no
848 	 * Message RAM access failure.
849 	 * If MCAN_IR.MRAF is enabled, an interrupt to the Host CPU is generated
850 	 * The Message RAM Access Failure interrupt routine needs to check
851 	 * whether MCAN_ECR.RP = ’1’ and MCAN_ECR.REC = 127.
852 	 * In this case, reset MCAN_IR.MRAF. No further action is required.
853 	 */
854 	if (cdev->version <= 31 && irqstatus & IR_MRAF &&
855 	    m_can_read(cdev, M_CAN_ECR) & ECR_RP) {
856 		struct can_berr_counter bec;
857 
858 		__m_can_get_berr_counter(dev, &bec);
859 		if (bec.rxerr == 127) {
860 			m_can_write(cdev, M_CAN_IR, IR_MRAF);
861 			irqstatus &= ~IR_MRAF;
862 		}
863 	}
864 
865 	psr = m_can_read(cdev, M_CAN_PSR);
866 
867 	if (irqstatus & IR_ERR_STATE)
868 		work_done += m_can_handle_state_errors(dev, psr);
869 
870 	if (irqstatus & IR_ERR_BUS_30X)
871 		work_done += m_can_handle_bus_errors(dev, irqstatus, psr);
872 
873 	if (irqstatus & IR_RF0N)
874 		work_done += m_can_do_rx_poll(dev, (quota - work_done));
875 end:
876 	return work_done;
877 }
878 
m_can_rx_peripheral(struct net_device * dev)879 static int m_can_rx_peripheral(struct net_device *dev)
880 {
881 	struct m_can_classdev *cdev = netdev_priv(dev);
882 
883 	m_can_rx_handler(dev, M_CAN_NAPI_WEIGHT);
884 
885 	m_can_enable_all_interrupts(cdev);
886 
887 	return 0;
888 }
889 
m_can_poll(struct napi_struct * napi,int quota)890 static int m_can_poll(struct napi_struct *napi, int quota)
891 {
892 	struct net_device *dev = napi->dev;
893 	struct m_can_classdev *cdev = netdev_priv(dev);
894 	int work_done;
895 
896 	work_done = m_can_rx_handler(dev, quota);
897 	if (work_done < quota) {
898 		napi_complete_done(napi, work_done);
899 		m_can_enable_all_interrupts(cdev);
900 	}
901 
902 	return work_done;
903 }
904 
m_can_echo_tx_event(struct net_device * dev)905 static void m_can_echo_tx_event(struct net_device *dev)
906 {
907 	u32 txe_count = 0;
908 	u32 m_can_txefs;
909 	u32 fgi = 0;
910 	int i = 0;
911 	unsigned int msg_mark;
912 
913 	struct m_can_classdev *cdev = netdev_priv(dev);
914 	struct net_device_stats *stats = &dev->stats;
915 
916 	/* read tx event fifo status */
917 	m_can_txefs = m_can_read(cdev, M_CAN_TXEFS);
918 
919 	/* Get Tx Event fifo element count */
920 	txe_count = (m_can_txefs & TXEFS_EFFL_MASK)
921 			>> TXEFS_EFFL_SHIFT;
922 
923 	/* Get and process all sent elements */
924 	for (i = 0; i < txe_count; i++) {
925 		/* retrieve get index */
926 		fgi = (m_can_read(cdev, M_CAN_TXEFS) & TXEFS_EFGI_MASK)
927 			>> TXEFS_EFGI_SHIFT;
928 
929 		/* get message marker */
930 		msg_mark = (m_can_txe_fifo_read(cdev, fgi, 4) &
931 			    TX_EVENT_MM_MASK) >> TX_EVENT_MM_SHIFT;
932 
933 		/* ack txe element */
934 		m_can_write(cdev, M_CAN_TXEFA, (TXEFA_EFAI_MASK &
935 						(fgi << TXEFA_EFAI_SHIFT)));
936 
937 		/* update stats */
938 		stats->tx_bytes += can_get_echo_skb(dev, msg_mark);
939 		stats->tx_packets++;
940 	}
941 }
942 
m_can_isr(int irq,void * dev_id)943 static irqreturn_t m_can_isr(int irq, void *dev_id)
944 {
945 	struct net_device *dev = (struct net_device *)dev_id;
946 	struct m_can_classdev *cdev = netdev_priv(dev);
947 	struct net_device_stats *stats = &dev->stats;
948 	u32 ir;
949 
950 	if (pm_runtime_suspended(cdev->dev))
951 		return IRQ_NONE;
952 	ir = m_can_read(cdev, M_CAN_IR);
953 	if (!ir)
954 		return IRQ_NONE;
955 
956 	/* ACK all irqs */
957 	if (ir & IR_ALL_INT)
958 		m_can_write(cdev, M_CAN_IR, ir);
959 
960 	if (cdev->ops->clear_interrupts)
961 		cdev->ops->clear_interrupts(cdev);
962 
963 	/* schedule NAPI in case of
964 	 * - rx IRQ
965 	 * - state change IRQ
966 	 * - bus error IRQ and bus error reporting
967 	 */
968 	if ((ir & IR_RF0N) || (ir & IR_ERR_ALL_30X)) {
969 		cdev->irqstatus = ir;
970 		m_can_disable_all_interrupts(cdev);
971 		if (!cdev->is_peripheral)
972 			napi_schedule(&cdev->napi);
973 		else
974 			m_can_rx_peripheral(dev);
975 	}
976 
977 	if (cdev->version == 30) {
978 		if (ir & IR_TC) {
979 			/* Transmission Complete Interrupt*/
980 			stats->tx_bytes += can_get_echo_skb(dev, 0);
981 			stats->tx_packets++;
982 			can_led_event(dev, CAN_LED_EVENT_TX);
983 			netif_wake_queue(dev);
984 		}
985 	} else  {
986 		if (ir & IR_TEFN) {
987 			/* New TX FIFO Element arrived */
988 			m_can_echo_tx_event(dev);
989 			can_led_event(dev, CAN_LED_EVENT_TX);
990 			if (netif_queue_stopped(dev) &&
991 			    !m_can_tx_fifo_full(cdev))
992 				netif_wake_queue(dev);
993 		}
994 	}
995 
996 	return IRQ_HANDLED;
997 }
998 
999 static const struct can_bittiming_const m_can_bittiming_const_30X = {
1000 	.name = KBUILD_MODNAME,
1001 	.tseg1_min = 2,		/* Time segment 1 = prop_seg + phase_seg1 */
1002 	.tseg1_max = 64,
1003 	.tseg2_min = 1,		/* Time segment 2 = phase_seg2 */
1004 	.tseg2_max = 16,
1005 	.sjw_max = 16,
1006 	.brp_min = 1,
1007 	.brp_max = 1024,
1008 	.brp_inc = 1,
1009 };
1010 
1011 static const struct can_bittiming_const m_can_data_bittiming_const_30X = {
1012 	.name = KBUILD_MODNAME,
1013 	.tseg1_min = 2,		/* Time segment 1 = prop_seg + phase_seg1 */
1014 	.tseg1_max = 16,
1015 	.tseg2_min = 1,		/* Time segment 2 = phase_seg2 */
1016 	.tseg2_max = 8,
1017 	.sjw_max = 4,
1018 	.brp_min = 1,
1019 	.brp_max = 32,
1020 	.brp_inc = 1,
1021 };
1022 
1023 static const struct can_bittiming_const m_can_bittiming_const_31X = {
1024 	.name = KBUILD_MODNAME,
1025 	.tseg1_min = 2,		/* Time segment 1 = prop_seg + phase_seg1 */
1026 	.tseg1_max = 256,
1027 	.tseg2_min = 2,		/* Time segment 2 = phase_seg2 */
1028 	.tseg2_max = 128,
1029 	.sjw_max = 128,
1030 	.brp_min = 1,
1031 	.brp_max = 512,
1032 	.brp_inc = 1,
1033 };
1034 
1035 static const struct can_bittiming_const m_can_data_bittiming_const_31X = {
1036 	.name = KBUILD_MODNAME,
1037 	.tseg1_min = 1,		/* Time segment 1 = prop_seg + phase_seg1 */
1038 	.tseg1_max = 32,
1039 	.tseg2_min = 1,		/* Time segment 2 = phase_seg2 */
1040 	.tseg2_max = 16,
1041 	.sjw_max = 16,
1042 	.brp_min = 1,
1043 	.brp_max = 32,
1044 	.brp_inc = 1,
1045 };
1046 
m_can_set_bittiming(struct net_device * dev)1047 static int m_can_set_bittiming(struct net_device *dev)
1048 {
1049 	struct m_can_classdev *cdev = netdev_priv(dev);
1050 	const struct can_bittiming *bt = &cdev->can.bittiming;
1051 	const struct can_bittiming *dbt = &cdev->can.data_bittiming;
1052 	u16 brp, sjw, tseg1, tseg2;
1053 	u32 reg_btp;
1054 
1055 	brp = bt->brp - 1;
1056 	sjw = bt->sjw - 1;
1057 	tseg1 = bt->prop_seg + bt->phase_seg1 - 1;
1058 	tseg2 = bt->phase_seg2 - 1;
1059 	reg_btp = (brp << NBTP_NBRP_SHIFT) | (sjw << NBTP_NSJW_SHIFT) |
1060 		(tseg1 << NBTP_NTSEG1_SHIFT) | (tseg2 << NBTP_NTSEG2_SHIFT);
1061 	m_can_write(cdev, M_CAN_NBTP, reg_btp);
1062 
1063 	if (cdev->can.ctrlmode & CAN_CTRLMODE_FD) {
1064 		reg_btp = 0;
1065 		brp = dbt->brp - 1;
1066 		sjw = dbt->sjw - 1;
1067 		tseg1 = dbt->prop_seg + dbt->phase_seg1 - 1;
1068 		tseg2 = dbt->phase_seg2 - 1;
1069 
1070 		/* TDC is only needed for bitrates beyond 2.5 MBit/s.
1071 		 * This is mentioned in the "Bit Time Requirements for CAN FD"
1072 		 * paper presented at the International CAN Conference 2013
1073 		 */
1074 		if (dbt->bitrate > 2500000) {
1075 			u32 tdco, ssp;
1076 
1077 			/* Use the same value of secondary sampling point
1078 			 * as the data sampling point
1079 			 */
1080 			ssp = dbt->sample_point;
1081 
1082 			/* Equation based on Bosch's M_CAN User Manual's
1083 			 * Transmitter Delay Compensation Section
1084 			 */
1085 			tdco = (cdev->can.clock.freq / 1000) *
1086 			       ssp / dbt->bitrate;
1087 
1088 			/* Max valid TDCO value is 127 */
1089 			if (tdco > 127) {
1090 				netdev_warn(dev, "TDCO value of %u is beyond maximum. Using maximum possible value\n",
1091 					    tdco);
1092 				tdco = 127;
1093 			}
1094 
1095 			reg_btp |= DBTP_TDC;
1096 			m_can_write(cdev, M_CAN_TDCR,
1097 				    tdco << TDCR_TDCO_SHIFT);
1098 		}
1099 
1100 		reg_btp |= (brp << DBTP_DBRP_SHIFT) |
1101 			   (sjw << DBTP_DSJW_SHIFT) |
1102 			   (tseg1 << DBTP_DTSEG1_SHIFT) |
1103 			   (tseg2 << DBTP_DTSEG2_SHIFT);
1104 
1105 		m_can_write(cdev, M_CAN_DBTP, reg_btp);
1106 	}
1107 
1108 	return 0;
1109 }
1110 
1111 /* Configure M_CAN chip:
1112  * - set rx buffer/fifo element size
1113  * - configure rx fifo
1114  * - accept non-matching frame into fifo 0
1115  * - configure tx buffer
1116  *		- >= v3.1.x: TX FIFO is used
1117  * - configure mode
1118  * - setup bittiming
1119  */
m_can_chip_config(struct net_device * dev)1120 static void m_can_chip_config(struct net_device *dev)
1121 {
1122 	struct m_can_classdev *cdev = netdev_priv(dev);
1123 	u32 cccr, test;
1124 
1125 	m_can_config_endisable(cdev, true);
1126 
1127 	/* RX Buffer/FIFO Element Size 64 bytes data field */
1128 	m_can_write(cdev, M_CAN_RXESC, M_CAN_RXESC_64BYTES);
1129 
1130 	/* Accept Non-matching Frames Into FIFO 0 */
1131 	m_can_write(cdev, M_CAN_GFC, 0x0);
1132 
1133 	if (cdev->version == 30) {
1134 		/* only support one Tx Buffer currently */
1135 		m_can_write(cdev, M_CAN_TXBC, (1 << TXBC_NDTB_SHIFT) |
1136 				cdev->mcfg[MRAM_TXB].off);
1137 	} else {
1138 		/* TX FIFO is used for newer IP Core versions */
1139 		m_can_write(cdev, M_CAN_TXBC,
1140 			    (cdev->mcfg[MRAM_TXB].num << TXBC_TFQS_SHIFT) |
1141 			    (cdev->mcfg[MRAM_TXB].off));
1142 	}
1143 
1144 	/* support 64 bytes payload */
1145 	m_can_write(cdev, M_CAN_TXESC, TXESC_TBDS_64BYTES);
1146 
1147 	/* TX Event FIFO */
1148 	if (cdev->version == 30) {
1149 		m_can_write(cdev, M_CAN_TXEFC, (1 << TXEFC_EFS_SHIFT) |
1150 				cdev->mcfg[MRAM_TXE].off);
1151 	} else {
1152 		/* Full TX Event FIFO is used */
1153 		m_can_write(cdev, M_CAN_TXEFC,
1154 			    ((cdev->mcfg[MRAM_TXE].num << TXEFC_EFS_SHIFT)
1155 			     & TXEFC_EFS_MASK) |
1156 			    cdev->mcfg[MRAM_TXE].off);
1157 	}
1158 
1159 	/* rx fifo configuration, blocking mode, fifo size 1 */
1160 	m_can_write(cdev, M_CAN_RXF0C,
1161 		    (cdev->mcfg[MRAM_RXF0].num << RXFC_FS_SHIFT) |
1162 		     cdev->mcfg[MRAM_RXF0].off);
1163 
1164 	m_can_write(cdev, M_CAN_RXF1C,
1165 		    (cdev->mcfg[MRAM_RXF1].num << RXFC_FS_SHIFT) |
1166 		     cdev->mcfg[MRAM_RXF1].off);
1167 
1168 	cccr = m_can_read(cdev, M_CAN_CCCR);
1169 	test = m_can_read(cdev, M_CAN_TEST);
1170 	test &= ~TEST_LBCK;
1171 	if (cdev->version == 30) {
1172 	/* Version 3.0.x */
1173 
1174 		cccr &= ~(CCCR_TEST | CCCR_MON | CCCR_DAR |
1175 			(CCCR_CMR_MASK << CCCR_CMR_SHIFT) |
1176 			(CCCR_CME_MASK << CCCR_CME_SHIFT));
1177 
1178 		if (cdev->can.ctrlmode & CAN_CTRLMODE_FD)
1179 			cccr |= CCCR_CME_CANFD_BRS << CCCR_CME_SHIFT;
1180 
1181 	} else {
1182 	/* Version 3.1.x or 3.2.x */
1183 		cccr &= ~(CCCR_TEST | CCCR_MON | CCCR_BRSE | CCCR_FDOE |
1184 			  CCCR_NISO | CCCR_DAR);
1185 
1186 		/* Only 3.2.x has NISO Bit implemented */
1187 		if (cdev->can.ctrlmode & CAN_CTRLMODE_FD_NON_ISO)
1188 			cccr |= CCCR_NISO;
1189 
1190 		if (cdev->can.ctrlmode & CAN_CTRLMODE_FD)
1191 			cccr |= (CCCR_BRSE | CCCR_FDOE);
1192 	}
1193 
1194 	/* Loopback Mode */
1195 	if (cdev->can.ctrlmode & CAN_CTRLMODE_LOOPBACK) {
1196 		cccr |= CCCR_TEST | CCCR_MON;
1197 		test |= TEST_LBCK;
1198 	}
1199 
1200 	/* Enable Monitoring (all versions) */
1201 	if (cdev->can.ctrlmode & CAN_CTRLMODE_LISTENONLY)
1202 		cccr |= CCCR_MON;
1203 
1204 	/* Disable Auto Retransmission (all versions) */
1205 	if (cdev->can.ctrlmode & CAN_CTRLMODE_ONE_SHOT)
1206 		cccr |= CCCR_DAR;
1207 
1208 	/* Write config */
1209 	m_can_write(cdev, M_CAN_CCCR, cccr);
1210 	m_can_write(cdev, M_CAN_TEST, test);
1211 
1212 	/* Enable interrupts */
1213 	m_can_write(cdev, M_CAN_IR, IR_ALL_INT);
1214 	if (!(cdev->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING))
1215 		if (cdev->version == 30)
1216 			m_can_write(cdev, M_CAN_IE, IR_ALL_INT &
1217 				    ~(IR_ERR_LEC_30X));
1218 		else
1219 			m_can_write(cdev, M_CAN_IE, IR_ALL_INT &
1220 				    ~(IR_ERR_LEC_31X));
1221 	else
1222 		m_can_write(cdev, M_CAN_IE, IR_ALL_INT);
1223 
1224 	/* route all interrupts to INT0 */
1225 	m_can_write(cdev, M_CAN_ILS, ILS_ALL_INT0);
1226 
1227 	/* set bittiming params */
1228 	m_can_set_bittiming(dev);
1229 
1230 	m_can_config_endisable(cdev, false);
1231 
1232 	if (cdev->ops->init)
1233 		cdev->ops->init(cdev);
1234 }
1235 
m_can_start(struct net_device * dev)1236 static void m_can_start(struct net_device *dev)
1237 {
1238 	struct m_can_classdev *cdev = netdev_priv(dev);
1239 
1240 	/* basic m_can configuration */
1241 	m_can_chip_config(dev);
1242 
1243 	cdev->can.state = CAN_STATE_ERROR_ACTIVE;
1244 
1245 	m_can_enable_all_interrupts(cdev);
1246 }
1247 
m_can_set_mode(struct net_device * dev,enum can_mode mode)1248 static int m_can_set_mode(struct net_device *dev, enum can_mode mode)
1249 {
1250 	switch (mode) {
1251 	case CAN_MODE_START:
1252 		m_can_clean(dev);
1253 		m_can_start(dev);
1254 		netif_wake_queue(dev);
1255 		break;
1256 	default:
1257 		return -EOPNOTSUPP;
1258 	}
1259 
1260 	return 0;
1261 }
1262 
1263 /* Checks core release number of M_CAN
1264  * returns 0 if an unsupported device is detected
1265  * else it returns the release and step coded as:
1266  * return value = 10 * <release> + 1 * <step>
1267  */
m_can_check_core_release(struct m_can_classdev * cdev)1268 static int m_can_check_core_release(struct m_can_classdev *cdev)
1269 {
1270 	u32 crel_reg;
1271 	u8 rel;
1272 	u8 step;
1273 	int res;
1274 
1275 	/* Read Core Release Version and split into version number
1276 	 * Example: Version 3.2.1 => rel = 3; step = 2; substep = 1;
1277 	 */
1278 	crel_reg = m_can_read(cdev, M_CAN_CREL);
1279 	rel = (u8)((crel_reg & CREL_REL_MASK) >> CREL_REL_SHIFT);
1280 	step = (u8)((crel_reg & CREL_STEP_MASK) >> CREL_STEP_SHIFT);
1281 
1282 	if (rel == 3) {
1283 		/* M_CAN v3.x.y: create return value */
1284 		res = 30 + step;
1285 	} else {
1286 		/* Unsupported M_CAN version */
1287 		res = 0;
1288 	}
1289 
1290 	return res;
1291 }
1292 
1293 /* Selectable Non ISO support only in version 3.2.x
1294  * This function checks if the bit is writable.
1295  */
m_can_niso_supported(struct m_can_classdev * cdev)1296 static bool m_can_niso_supported(struct m_can_classdev *cdev)
1297 {
1298 	u32 cccr_reg, cccr_poll = 0;
1299 	int niso_timeout = -ETIMEDOUT;
1300 	int i;
1301 
1302 	m_can_config_endisable(cdev, true);
1303 	cccr_reg = m_can_read(cdev, M_CAN_CCCR);
1304 	cccr_reg |= CCCR_NISO;
1305 	m_can_write(cdev, M_CAN_CCCR, cccr_reg);
1306 
1307 	for (i = 0; i <= 10; i++) {
1308 		cccr_poll = m_can_read(cdev, M_CAN_CCCR);
1309 		if (cccr_poll == cccr_reg) {
1310 			niso_timeout = 0;
1311 			break;
1312 		}
1313 
1314 		usleep_range(1, 5);
1315 	}
1316 
1317 	/* Clear NISO */
1318 	cccr_reg &= ~(CCCR_NISO);
1319 	m_can_write(cdev, M_CAN_CCCR, cccr_reg);
1320 
1321 	m_can_config_endisable(cdev, false);
1322 
1323 	/* return false if time out (-ETIMEDOUT), else return true */
1324 	return !niso_timeout;
1325 }
1326 
m_can_dev_setup(struct m_can_classdev * m_can_dev)1327 static int m_can_dev_setup(struct m_can_classdev *m_can_dev)
1328 {
1329 	struct net_device *dev = m_can_dev->net;
1330 	int m_can_version;
1331 
1332 	m_can_version = m_can_check_core_release(m_can_dev);
1333 	/* return if unsupported version */
1334 	if (!m_can_version) {
1335 		dev_err(m_can_dev->dev, "Unsupported version number: %2d",
1336 			m_can_version);
1337 		return -EINVAL;
1338 	}
1339 
1340 	if (!m_can_dev->is_peripheral)
1341 		netif_napi_add(dev, &m_can_dev->napi,
1342 			       m_can_poll, M_CAN_NAPI_WEIGHT);
1343 
1344 	/* Shared properties of all M_CAN versions */
1345 	m_can_dev->version = m_can_version;
1346 	m_can_dev->can.do_set_mode = m_can_set_mode;
1347 	m_can_dev->can.do_get_berr_counter = m_can_get_berr_counter;
1348 
1349 	/* Set M_CAN supported operations */
1350 	m_can_dev->can.ctrlmode_supported = CAN_CTRLMODE_LOOPBACK |
1351 					CAN_CTRLMODE_LISTENONLY |
1352 					CAN_CTRLMODE_BERR_REPORTING |
1353 					CAN_CTRLMODE_FD |
1354 					CAN_CTRLMODE_ONE_SHOT;
1355 
1356 	/* Set properties depending on M_CAN version */
1357 	switch (m_can_dev->version) {
1358 	case 30:
1359 		/* CAN_CTRLMODE_FD_NON_ISO is fixed with M_CAN IP v3.0.x */
1360 		can_set_static_ctrlmode(dev, CAN_CTRLMODE_FD_NON_ISO);
1361 		m_can_dev->can.bittiming_const = m_can_dev->bit_timing ?
1362 			m_can_dev->bit_timing : &m_can_bittiming_const_30X;
1363 
1364 		m_can_dev->can.data_bittiming_const = m_can_dev->data_timing ?
1365 						m_can_dev->data_timing :
1366 						&m_can_data_bittiming_const_30X;
1367 		break;
1368 	case 31:
1369 		/* CAN_CTRLMODE_FD_NON_ISO is fixed with M_CAN IP v3.1.x */
1370 		can_set_static_ctrlmode(dev, CAN_CTRLMODE_FD_NON_ISO);
1371 		m_can_dev->can.bittiming_const = m_can_dev->bit_timing ?
1372 			m_can_dev->bit_timing : &m_can_bittiming_const_31X;
1373 
1374 		m_can_dev->can.data_bittiming_const = m_can_dev->data_timing ?
1375 						m_can_dev->data_timing :
1376 						&m_can_data_bittiming_const_31X;
1377 		break;
1378 	case 32:
1379 	case 33:
1380 		/* Support both MCAN version v3.2.x and v3.3.0 */
1381 		m_can_dev->can.bittiming_const = m_can_dev->bit_timing ?
1382 			m_can_dev->bit_timing : &m_can_bittiming_const_31X;
1383 
1384 		m_can_dev->can.data_bittiming_const = m_can_dev->data_timing ?
1385 						m_can_dev->data_timing :
1386 						&m_can_data_bittiming_const_31X;
1387 
1388 		m_can_dev->can.ctrlmode_supported |=
1389 						(m_can_niso_supported(m_can_dev)
1390 						? CAN_CTRLMODE_FD_NON_ISO
1391 						: 0);
1392 		break;
1393 	default:
1394 		dev_err(m_can_dev->dev, "Unsupported version number: %2d",
1395 			m_can_dev->version);
1396 		return -EINVAL;
1397 	}
1398 
1399 	if (m_can_dev->ops->init)
1400 		m_can_dev->ops->init(m_can_dev);
1401 
1402 	return 0;
1403 }
1404 
m_can_stop(struct net_device * dev)1405 static void m_can_stop(struct net_device *dev)
1406 {
1407 	struct m_can_classdev *cdev = netdev_priv(dev);
1408 
1409 	/* disable all interrupts */
1410 	m_can_disable_all_interrupts(cdev);
1411 
1412 	/* Set init mode to disengage from the network */
1413 	m_can_config_endisable(cdev, true);
1414 
1415 	/* set the state as STOPPED */
1416 	cdev->can.state = CAN_STATE_STOPPED;
1417 }
1418 
m_can_close(struct net_device * dev)1419 static int m_can_close(struct net_device *dev)
1420 {
1421 	struct m_can_classdev *cdev = netdev_priv(dev);
1422 
1423 	netif_stop_queue(dev);
1424 
1425 	if (!cdev->is_peripheral)
1426 		napi_disable(&cdev->napi);
1427 
1428 	m_can_stop(dev);
1429 	m_can_clk_stop(cdev);
1430 	free_irq(dev->irq, dev);
1431 
1432 	if (cdev->is_peripheral) {
1433 		cdev->tx_skb = NULL;
1434 		destroy_workqueue(cdev->tx_wq);
1435 		cdev->tx_wq = NULL;
1436 	}
1437 
1438 	close_candev(dev);
1439 	can_led_event(dev, CAN_LED_EVENT_STOP);
1440 
1441 	return 0;
1442 }
1443 
m_can_next_echo_skb_occupied(struct net_device * dev,int putidx)1444 static int m_can_next_echo_skb_occupied(struct net_device *dev, int putidx)
1445 {
1446 	struct m_can_classdev *cdev = netdev_priv(dev);
1447 	/*get wrap around for loopback skb index */
1448 	unsigned int wrap = cdev->can.echo_skb_max;
1449 	int next_idx;
1450 
1451 	/* calculate next index */
1452 	next_idx = (++putidx >= wrap ? 0 : putidx);
1453 
1454 	/* check if occupied */
1455 	return !!cdev->can.echo_skb[next_idx];
1456 }
1457 
m_can_tx_handler(struct m_can_classdev * cdev)1458 static netdev_tx_t m_can_tx_handler(struct m_can_classdev *cdev)
1459 {
1460 	struct canfd_frame *cf = (struct canfd_frame *)cdev->tx_skb->data;
1461 	struct net_device *dev = cdev->net;
1462 	struct sk_buff *skb = cdev->tx_skb;
1463 	u32 id, cccr, fdflags;
1464 	int i;
1465 	int putidx;
1466 
1467 	cdev->tx_skb = NULL;
1468 
1469 	/* Generate ID field for TX buffer Element */
1470 	/* Common to all supported M_CAN versions */
1471 	if (cf->can_id & CAN_EFF_FLAG) {
1472 		id = cf->can_id & CAN_EFF_MASK;
1473 		id |= TX_BUF_XTD;
1474 	} else {
1475 		id = ((cf->can_id & CAN_SFF_MASK) << 18);
1476 	}
1477 
1478 	if (cf->can_id & CAN_RTR_FLAG)
1479 		id |= TX_BUF_RTR;
1480 
1481 	if (cdev->version == 30) {
1482 		netif_stop_queue(dev);
1483 
1484 		/* message ram configuration */
1485 		m_can_fifo_write(cdev, 0, M_CAN_FIFO_ID, id);
1486 		m_can_fifo_write(cdev, 0, M_CAN_FIFO_DLC,
1487 				 can_len2dlc(cf->len) << 16);
1488 
1489 		for (i = 0; i < cf->len; i += 4)
1490 			m_can_fifo_write(cdev, 0,
1491 					 M_CAN_FIFO_DATA(i / 4),
1492 					 *(u32 *)(cf->data + i));
1493 
1494 		can_put_echo_skb(skb, dev, 0);
1495 
1496 		if (cdev->can.ctrlmode & CAN_CTRLMODE_FD) {
1497 			cccr = m_can_read(cdev, M_CAN_CCCR);
1498 			cccr &= ~(CCCR_CMR_MASK << CCCR_CMR_SHIFT);
1499 			if (can_is_canfd_skb(skb)) {
1500 				if (cf->flags & CANFD_BRS)
1501 					cccr |= CCCR_CMR_CANFD_BRS <<
1502 						CCCR_CMR_SHIFT;
1503 				else
1504 					cccr |= CCCR_CMR_CANFD <<
1505 						CCCR_CMR_SHIFT;
1506 			} else {
1507 				cccr |= CCCR_CMR_CAN << CCCR_CMR_SHIFT;
1508 			}
1509 			m_can_write(cdev, M_CAN_CCCR, cccr);
1510 		}
1511 		m_can_write(cdev, M_CAN_TXBTIE, 0x1);
1512 		m_can_write(cdev, M_CAN_TXBAR, 0x1);
1513 		/* End of xmit function for version 3.0.x */
1514 	} else {
1515 		/* Transmit routine for version >= v3.1.x */
1516 
1517 		/* Check if FIFO full */
1518 		if (m_can_tx_fifo_full(cdev)) {
1519 			/* This shouldn't happen */
1520 			netif_stop_queue(dev);
1521 			netdev_warn(dev,
1522 				    "TX queue active although FIFO is full.");
1523 
1524 			if (cdev->is_peripheral) {
1525 				kfree_skb(skb);
1526 				dev->stats.tx_dropped++;
1527 				return NETDEV_TX_OK;
1528 			} else {
1529 				return NETDEV_TX_BUSY;
1530 			}
1531 		}
1532 
1533 		/* get put index for frame */
1534 		putidx = ((m_can_read(cdev, M_CAN_TXFQS) & TXFQS_TFQPI_MASK)
1535 				  >> TXFQS_TFQPI_SHIFT);
1536 		/* Write ID Field to FIFO Element */
1537 		m_can_fifo_write(cdev, putidx, M_CAN_FIFO_ID, id);
1538 
1539 		/* get CAN FD configuration of frame */
1540 		fdflags = 0;
1541 		if (can_is_canfd_skb(skb)) {
1542 			fdflags |= TX_BUF_FDF;
1543 			if (cf->flags & CANFD_BRS)
1544 				fdflags |= TX_BUF_BRS;
1545 		}
1546 
1547 		/* Construct DLC Field. Also contains CAN-FD configuration
1548 		 * use put index of fifo as message marker
1549 		 * it is used in TX interrupt for
1550 		 * sending the correct echo frame
1551 		 */
1552 		m_can_fifo_write(cdev, putidx, M_CAN_FIFO_DLC,
1553 				 ((putidx << TX_BUF_MM_SHIFT) &
1554 				  TX_BUF_MM_MASK) |
1555 				 (can_len2dlc(cf->len) << 16) |
1556 				 fdflags | TX_BUF_EFC);
1557 
1558 		for (i = 0; i < cf->len; i += 4)
1559 			m_can_fifo_write(cdev, putidx, M_CAN_FIFO_DATA(i / 4),
1560 					 *(u32 *)(cf->data + i));
1561 
1562 		/* Push loopback echo.
1563 		 * Will be looped back on TX interrupt based on message marker
1564 		 */
1565 		can_put_echo_skb(skb, dev, putidx);
1566 
1567 		/* Enable TX FIFO element to start transfer  */
1568 		m_can_write(cdev, M_CAN_TXBAR, (1 << putidx));
1569 
1570 		/* stop network queue if fifo full */
1571 		if (m_can_tx_fifo_full(cdev) ||
1572 		    m_can_next_echo_skb_occupied(dev, putidx))
1573 			netif_stop_queue(dev);
1574 	}
1575 
1576 	return NETDEV_TX_OK;
1577 }
1578 
m_can_tx_work_queue(struct work_struct * ws)1579 static void m_can_tx_work_queue(struct work_struct *ws)
1580 {
1581 	struct m_can_classdev *cdev = container_of(ws, struct m_can_classdev,
1582 						tx_work);
1583 
1584 	m_can_tx_handler(cdev);
1585 }
1586 
m_can_start_xmit(struct sk_buff * skb,struct net_device * dev)1587 static netdev_tx_t m_can_start_xmit(struct sk_buff *skb,
1588 				    struct net_device *dev)
1589 {
1590 	struct m_can_classdev *cdev = netdev_priv(dev);
1591 
1592 	if (can_dropped_invalid_skb(dev, skb))
1593 		return NETDEV_TX_OK;
1594 
1595 	if (cdev->is_peripheral) {
1596 		if (cdev->tx_skb) {
1597 			netdev_err(dev, "hard_xmit called while tx busy\n");
1598 			return NETDEV_TX_BUSY;
1599 		}
1600 
1601 		if (cdev->can.state == CAN_STATE_BUS_OFF) {
1602 			m_can_clean(dev);
1603 		} else {
1604 			/* Need to stop the queue to avoid numerous requests
1605 			 * from being sent.  Suggested improvement is to create
1606 			 * a queueing mechanism that will queue the skbs and
1607 			 * process them in order.
1608 			 */
1609 			cdev->tx_skb = skb;
1610 			netif_stop_queue(cdev->net);
1611 			queue_work(cdev->tx_wq, &cdev->tx_work);
1612 		}
1613 	} else {
1614 		cdev->tx_skb = skb;
1615 		return m_can_tx_handler(cdev);
1616 	}
1617 
1618 	return NETDEV_TX_OK;
1619 }
1620 
m_can_open(struct net_device * dev)1621 static int m_can_open(struct net_device *dev)
1622 {
1623 	struct m_can_classdev *cdev = netdev_priv(dev);
1624 	int err;
1625 
1626 	err = m_can_clk_start(cdev);
1627 	if (err)
1628 		return err;
1629 
1630 	/* open the can device */
1631 	err = open_candev(dev);
1632 	if (err) {
1633 		netdev_err(dev, "failed to open can device\n");
1634 		goto exit_disable_clks;
1635 	}
1636 
1637 	/* register interrupt handler */
1638 	if (cdev->is_peripheral) {
1639 		cdev->tx_skb = NULL;
1640 		cdev->tx_wq = alloc_workqueue("mcan_wq",
1641 					      WQ_FREEZABLE | WQ_MEM_RECLAIM, 0);
1642 		if (!cdev->tx_wq) {
1643 			err = -ENOMEM;
1644 			goto out_wq_fail;
1645 		}
1646 
1647 		INIT_WORK(&cdev->tx_work, m_can_tx_work_queue);
1648 
1649 		err = request_threaded_irq(dev->irq, NULL, m_can_isr,
1650 					   IRQF_ONESHOT,
1651 					   dev->name, dev);
1652 	} else {
1653 		err = request_irq(dev->irq, m_can_isr, IRQF_SHARED, dev->name,
1654 				  dev);
1655 	}
1656 
1657 	if (err < 0) {
1658 		netdev_err(dev, "failed to request interrupt\n");
1659 		goto exit_irq_fail;
1660 	}
1661 
1662 	/* start the m_can controller */
1663 	m_can_start(dev);
1664 
1665 	can_led_event(dev, CAN_LED_EVENT_OPEN);
1666 
1667 	if (!cdev->is_peripheral)
1668 		napi_enable(&cdev->napi);
1669 
1670 	netif_start_queue(dev);
1671 
1672 	return 0;
1673 
1674 exit_irq_fail:
1675 	if (cdev->is_peripheral)
1676 		destroy_workqueue(cdev->tx_wq);
1677 out_wq_fail:
1678 	close_candev(dev);
1679 exit_disable_clks:
1680 	m_can_clk_stop(cdev);
1681 	return err;
1682 }
1683 
1684 static const struct net_device_ops m_can_netdev_ops = {
1685 	.ndo_open = m_can_open,
1686 	.ndo_stop = m_can_close,
1687 	.ndo_start_xmit = m_can_start_xmit,
1688 	.ndo_change_mtu = can_change_mtu,
1689 };
1690 
register_m_can_dev(struct net_device * dev)1691 static int register_m_can_dev(struct net_device *dev)
1692 {
1693 	dev->flags |= IFF_ECHO;	/* we support local echo */
1694 	dev->netdev_ops = &m_can_netdev_ops;
1695 
1696 	return register_candev(dev);
1697 }
1698 
m_can_of_parse_mram(struct m_can_classdev * cdev,const u32 * mram_config_vals)1699 static void m_can_of_parse_mram(struct m_can_classdev *cdev,
1700 				const u32 *mram_config_vals)
1701 {
1702 	cdev->mcfg[MRAM_SIDF].off = mram_config_vals[0];
1703 	cdev->mcfg[MRAM_SIDF].num = mram_config_vals[1];
1704 	cdev->mcfg[MRAM_XIDF].off = cdev->mcfg[MRAM_SIDF].off +
1705 			cdev->mcfg[MRAM_SIDF].num * SIDF_ELEMENT_SIZE;
1706 	cdev->mcfg[MRAM_XIDF].num = mram_config_vals[2];
1707 	cdev->mcfg[MRAM_RXF0].off = cdev->mcfg[MRAM_XIDF].off +
1708 			cdev->mcfg[MRAM_XIDF].num * XIDF_ELEMENT_SIZE;
1709 	cdev->mcfg[MRAM_RXF0].num = mram_config_vals[3] &
1710 			(RXFC_FS_MASK >> RXFC_FS_SHIFT);
1711 	cdev->mcfg[MRAM_RXF1].off = cdev->mcfg[MRAM_RXF0].off +
1712 			cdev->mcfg[MRAM_RXF0].num * RXF0_ELEMENT_SIZE;
1713 	cdev->mcfg[MRAM_RXF1].num = mram_config_vals[4] &
1714 			(RXFC_FS_MASK >> RXFC_FS_SHIFT);
1715 	cdev->mcfg[MRAM_RXB].off = cdev->mcfg[MRAM_RXF1].off +
1716 			cdev->mcfg[MRAM_RXF1].num * RXF1_ELEMENT_SIZE;
1717 	cdev->mcfg[MRAM_RXB].num = mram_config_vals[5];
1718 	cdev->mcfg[MRAM_TXE].off = cdev->mcfg[MRAM_RXB].off +
1719 			cdev->mcfg[MRAM_RXB].num * RXB_ELEMENT_SIZE;
1720 	cdev->mcfg[MRAM_TXE].num = mram_config_vals[6];
1721 	cdev->mcfg[MRAM_TXB].off = cdev->mcfg[MRAM_TXE].off +
1722 			cdev->mcfg[MRAM_TXE].num * TXE_ELEMENT_SIZE;
1723 	cdev->mcfg[MRAM_TXB].num = mram_config_vals[7] &
1724 			(TXBC_NDTB_MASK >> TXBC_NDTB_SHIFT);
1725 
1726 	dev_dbg(cdev->dev,
1727 		"sidf 0x%x %d xidf 0x%x %d rxf0 0x%x %d rxf1 0x%x %d rxb 0x%x %d txe 0x%x %d txb 0x%x %d\n",
1728 		cdev->mcfg[MRAM_SIDF].off, cdev->mcfg[MRAM_SIDF].num,
1729 		cdev->mcfg[MRAM_XIDF].off, cdev->mcfg[MRAM_XIDF].num,
1730 		cdev->mcfg[MRAM_RXF0].off, cdev->mcfg[MRAM_RXF0].num,
1731 		cdev->mcfg[MRAM_RXF1].off, cdev->mcfg[MRAM_RXF1].num,
1732 		cdev->mcfg[MRAM_RXB].off, cdev->mcfg[MRAM_RXB].num,
1733 		cdev->mcfg[MRAM_TXE].off, cdev->mcfg[MRAM_TXE].num,
1734 		cdev->mcfg[MRAM_TXB].off, cdev->mcfg[MRAM_TXB].num);
1735 }
1736 
m_can_init_ram(struct m_can_classdev * cdev)1737 void m_can_init_ram(struct m_can_classdev *cdev)
1738 {
1739 	int end, i, start;
1740 
1741 	/* initialize the entire Message RAM in use to avoid possible
1742 	 * ECC/parity checksum errors when reading an uninitialized buffer
1743 	 */
1744 	start = cdev->mcfg[MRAM_SIDF].off;
1745 	end = cdev->mcfg[MRAM_TXB].off +
1746 		cdev->mcfg[MRAM_TXB].num * TXB_ELEMENT_SIZE;
1747 
1748 	for (i = start; i < end; i += 4)
1749 		m_can_fifo_write_no_off(cdev, i, 0x0);
1750 }
1751 EXPORT_SYMBOL_GPL(m_can_init_ram);
1752 
m_can_class_get_clocks(struct m_can_classdev * m_can_dev)1753 int m_can_class_get_clocks(struct m_can_classdev *m_can_dev)
1754 {
1755 	int ret = 0;
1756 
1757 	m_can_dev->hclk = devm_clk_get(m_can_dev->dev, "hclk");
1758 	m_can_dev->cclk = devm_clk_get(m_can_dev->dev, "cclk");
1759 
1760 	if (IS_ERR(m_can_dev->cclk)) {
1761 		dev_err(m_can_dev->dev, "no clock found\n");
1762 		ret = -ENODEV;
1763 	}
1764 
1765 	return ret;
1766 }
1767 EXPORT_SYMBOL_GPL(m_can_class_get_clocks);
1768 
m_can_class_allocate_dev(struct device * dev)1769 struct m_can_classdev *m_can_class_allocate_dev(struct device *dev)
1770 {
1771 	struct m_can_classdev *class_dev = NULL;
1772 	u32 mram_config_vals[MRAM_CFG_LEN];
1773 	struct net_device *net_dev;
1774 	u32 tx_fifo_size;
1775 	int ret;
1776 
1777 	ret = fwnode_property_read_u32_array(dev_fwnode(dev),
1778 					     "bosch,mram-cfg",
1779 					     mram_config_vals,
1780 					     sizeof(mram_config_vals) / 4);
1781 	if (ret) {
1782 		dev_err(dev, "Could not get Message RAM configuration.");
1783 		goto out;
1784 	}
1785 
1786 	/* Get TX FIFO size
1787 	 * Defines the total amount of echo buffers for loopback
1788 	 */
1789 	tx_fifo_size = mram_config_vals[7];
1790 
1791 	/* allocate the m_can device */
1792 	net_dev = alloc_candev(sizeof(*class_dev), tx_fifo_size);
1793 	if (!net_dev) {
1794 		dev_err(dev, "Failed to allocate CAN device");
1795 		goto out;
1796 	}
1797 
1798 	class_dev = netdev_priv(net_dev);
1799 	if (!class_dev) {
1800 		dev_err(dev, "Failed to init netdev cdevate");
1801 		goto out;
1802 	}
1803 
1804 	class_dev->net = net_dev;
1805 	class_dev->dev = dev;
1806 	SET_NETDEV_DEV(net_dev, dev);
1807 
1808 	m_can_of_parse_mram(class_dev, mram_config_vals);
1809 out:
1810 	return class_dev;
1811 }
1812 EXPORT_SYMBOL_GPL(m_can_class_allocate_dev);
1813 
m_can_class_free_dev(struct net_device * net)1814 void m_can_class_free_dev(struct net_device *net)
1815 {
1816 	free_candev(net);
1817 }
1818 EXPORT_SYMBOL_GPL(m_can_class_free_dev);
1819 
m_can_class_register(struct m_can_classdev * m_can_dev)1820 int m_can_class_register(struct m_can_classdev *m_can_dev)
1821 {
1822 	int ret;
1823 
1824 	if (m_can_dev->pm_clock_support) {
1825 		pm_runtime_enable(m_can_dev->dev);
1826 		ret = m_can_clk_start(m_can_dev);
1827 		if (ret)
1828 			goto pm_runtime_fail;
1829 	}
1830 
1831 	ret = m_can_dev_setup(m_can_dev);
1832 	if (ret)
1833 		goto clk_disable;
1834 
1835 	ret = register_m_can_dev(m_can_dev->net);
1836 	if (ret) {
1837 		dev_err(m_can_dev->dev, "registering %s failed (err=%d)\n",
1838 			m_can_dev->net->name, ret);
1839 		goto clk_disable;
1840 	}
1841 
1842 	devm_can_led_init(m_can_dev->net);
1843 
1844 	of_can_transceiver(m_can_dev->net);
1845 
1846 	dev_info(m_can_dev->dev, "%s device registered (irq=%d, version=%d)\n",
1847 		 KBUILD_MODNAME, m_can_dev->net->irq, m_can_dev->version);
1848 
1849 	/* Probe finished
1850 	 * Stop clocks. They will be reactivated once the M_CAN device is opened
1851 	 */
1852 clk_disable:
1853 	m_can_clk_stop(m_can_dev);
1854 pm_runtime_fail:
1855 	if (ret) {
1856 		if (m_can_dev->pm_clock_support)
1857 			pm_runtime_disable(m_can_dev->dev);
1858 	}
1859 
1860 	return ret;
1861 }
1862 EXPORT_SYMBOL_GPL(m_can_class_register);
1863 
m_can_class_suspend(struct device * dev)1864 int m_can_class_suspend(struct device *dev)
1865 {
1866 	struct net_device *ndev = dev_get_drvdata(dev);
1867 	struct m_can_classdev *cdev = netdev_priv(ndev);
1868 
1869 	if (netif_running(ndev)) {
1870 		netif_stop_queue(ndev);
1871 		netif_device_detach(ndev);
1872 		m_can_stop(ndev);
1873 		m_can_clk_stop(cdev);
1874 	}
1875 
1876 	pinctrl_pm_select_sleep_state(dev);
1877 
1878 	cdev->can.state = CAN_STATE_SLEEPING;
1879 
1880 	return 0;
1881 }
1882 EXPORT_SYMBOL_GPL(m_can_class_suspend);
1883 
m_can_class_resume(struct device * dev)1884 int m_can_class_resume(struct device *dev)
1885 {
1886 	struct net_device *ndev = dev_get_drvdata(dev);
1887 	struct m_can_classdev *cdev = netdev_priv(ndev);
1888 
1889 	pinctrl_pm_select_default_state(dev);
1890 
1891 	cdev->can.state = CAN_STATE_ERROR_ACTIVE;
1892 
1893 	if (netif_running(ndev)) {
1894 		int ret;
1895 
1896 		ret = m_can_clk_start(cdev);
1897 		if (ret)
1898 			return ret;
1899 
1900 		m_can_init_ram(cdev);
1901 		m_can_start(ndev);
1902 		netif_device_attach(ndev);
1903 		netif_start_queue(ndev);
1904 	}
1905 
1906 	return 0;
1907 }
1908 EXPORT_SYMBOL_GPL(m_can_class_resume);
1909 
m_can_class_unregister(struct m_can_classdev * m_can_dev)1910 void m_can_class_unregister(struct m_can_classdev *m_can_dev)
1911 {
1912 	unregister_candev(m_can_dev->net);
1913 }
1914 EXPORT_SYMBOL_GPL(m_can_class_unregister);
1915 
1916 MODULE_AUTHOR("Dong Aisheng <b29396@freescale.com>");
1917 MODULE_AUTHOR("Dan Murphy <dmurphy@ti.com>");
1918 MODULE_LICENSE("GPL v2");
1919 MODULE_DESCRIPTION("CAN bus driver for Bosch M_CAN controller");
1920