1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Machine check handler.
4 *
5 * K8 parts Copyright 2002,2003 Andi Kleen, SuSE Labs.
6 * Rest from unknown author(s).
7 * 2004 Andi Kleen. Rewrote most of it.
8 * Copyright 2008 Intel Corporation
9 * Author: Andi Kleen
10 */
11
12 #include <linux/thread_info.h>
13 #include <linux/capability.h>
14 #include <linux/miscdevice.h>
15 #include <linux/ratelimit.h>
16 #include <linux/rcupdate.h>
17 #include <linux/kobject.h>
18 #include <linux/uaccess.h>
19 #include <linux/kdebug.h>
20 #include <linux/kernel.h>
21 #include <linux/percpu.h>
22 #include <linux/string.h>
23 #include <linux/device.h>
24 #include <linux/syscore_ops.h>
25 #include <linux/delay.h>
26 #include <linux/ctype.h>
27 #include <linux/sched.h>
28 #include <linux/sysfs.h>
29 #include <linux/types.h>
30 #include <linux/slab.h>
31 #include <linux/init.h>
32 #include <linux/kmod.h>
33 #include <linux/poll.h>
34 #include <linux/nmi.h>
35 #include <linux/cpu.h>
36 #include <linux/ras.h>
37 #include <linux/smp.h>
38 #include <linux/fs.h>
39 #include <linux/mm.h>
40 #include <linux/debugfs.h>
41 #include <linux/irq_work.h>
42 #include <linux/export.h>
43 #include <linux/set_memory.h>
44 #include <linux/sync_core.h>
45 #include <linux/task_work.h>
46 #include <linux/hardirq.h>
47
48 #include <asm/intel-family.h>
49 #include <asm/processor.h>
50 #include <asm/traps.h>
51 #include <asm/tlbflush.h>
52 #include <asm/mce.h>
53 #include <asm/msr.h>
54 #include <asm/reboot.h>
55
56 #include "internal.h"
57
58 /* sysfs synchronization */
59 static DEFINE_MUTEX(mce_sysfs_mutex);
60
61 #define CREATE_TRACE_POINTS
62 #include <trace/events/mce.h>
63
64 #define SPINUNIT 100 /* 100ns */
65
66 DEFINE_PER_CPU(unsigned, mce_exception_count);
67
68 DEFINE_PER_CPU_READ_MOSTLY(unsigned int, mce_num_banks);
69
70 struct mce_bank {
71 u64 ctl; /* subevents to enable */
72 bool init; /* initialise bank? */
73 };
74 static DEFINE_PER_CPU_READ_MOSTLY(struct mce_bank[MAX_NR_BANKS], mce_banks_array);
75
76 #define ATTR_LEN 16
77 /* One object for each MCE bank, shared by all CPUs */
78 struct mce_bank_dev {
79 struct device_attribute attr; /* device attribute */
80 char attrname[ATTR_LEN]; /* attribute name */
81 u8 bank; /* bank number */
82 };
83 static struct mce_bank_dev mce_bank_devs[MAX_NR_BANKS];
84
85 struct mce_vendor_flags mce_flags __read_mostly;
86
87 struct mca_config mca_cfg __read_mostly = {
88 .bootlog = -1,
89 /*
90 * Tolerant levels:
91 * 0: always panic on uncorrected errors, log corrected errors
92 * 1: panic or SIGBUS on uncorrected errors, log corrected errors
93 * 2: SIGBUS or log uncorrected errors (if possible), log corr. errors
94 * 3: never panic or SIGBUS, log all errors (for testing only)
95 */
96 .tolerant = 1,
97 .monarch_timeout = -1
98 };
99
100 static DEFINE_PER_CPU(struct mce, mces_seen);
101 static unsigned long mce_need_notify;
102 static int cpu_missing;
103
104 /*
105 * MCA banks polled by the period polling timer for corrected events.
106 * With Intel CMCI, this only has MCA banks which do not support CMCI (if any).
107 */
108 DEFINE_PER_CPU(mce_banks_t, mce_poll_banks) = {
109 [0 ... BITS_TO_LONGS(MAX_NR_BANKS)-1] = ~0UL
110 };
111
112 /*
113 * MCA banks controlled through firmware first for corrected errors.
114 * This is a global list of banks for which we won't enable CMCI and we
115 * won't poll. Firmware controls these banks and is responsible for
116 * reporting corrected errors through GHES. Uncorrected/recoverable
117 * errors are still notified through a machine check.
118 */
119 mce_banks_t mce_banks_ce_disabled;
120
121 static struct work_struct mce_work;
122 static struct irq_work mce_irq_work;
123
124 static void (*quirk_no_way_out)(int bank, struct mce *m, struct pt_regs *regs);
125
126 /*
127 * CPU/chipset specific EDAC code can register a notifier call here to print
128 * MCE errors in a human-readable form.
129 */
130 BLOCKING_NOTIFIER_HEAD(x86_mce_decoder_chain);
131
132 /* Do initial initialization of a struct mce */
mce_setup(struct mce * m)133 noinstr void mce_setup(struct mce *m)
134 {
135 memset(m, 0, sizeof(struct mce));
136 m->cpu = m->extcpu = smp_processor_id();
137 /* need the internal __ version to avoid deadlocks */
138 m->time = __ktime_get_real_seconds();
139 m->cpuvendor = boot_cpu_data.x86_vendor;
140 m->cpuid = cpuid_eax(1);
141 m->socketid = cpu_data(m->extcpu).phys_proc_id;
142 m->apicid = cpu_data(m->extcpu).initial_apicid;
143 m->mcgcap = __rdmsr(MSR_IA32_MCG_CAP);
144
145 if (this_cpu_has(X86_FEATURE_INTEL_PPIN))
146 m->ppin = __rdmsr(MSR_PPIN);
147 else if (this_cpu_has(X86_FEATURE_AMD_PPIN))
148 m->ppin = __rdmsr(MSR_AMD_PPIN);
149
150 m->microcode = boot_cpu_data.microcode;
151 }
152
153 DEFINE_PER_CPU(struct mce, injectm);
154 EXPORT_PER_CPU_SYMBOL_GPL(injectm);
155
mce_log(struct mce * m)156 void mce_log(struct mce *m)
157 {
158 if (!mce_gen_pool_add(m))
159 irq_work_queue(&mce_irq_work);
160 }
161 EXPORT_SYMBOL_GPL(mce_log);
162
mce_register_decode_chain(struct notifier_block * nb)163 void mce_register_decode_chain(struct notifier_block *nb)
164 {
165 if (WARN_ON(nb->priority < MCE_PRIO_LOWEST ||
166 nb->priority > MCE_PRIO_HIGHEST))
167 return;
168
169 blocking_notifier_chain_register(&x86_mce_decoder_chain, nb);
170 }
171 EXPORT_SYMBOL_GPL(mce_register_decode_chain);
172
mce_unregister_decode_chain(struct notifier_block * nb)173 void mce_unregister_decode_chain(struct notifier_block *nb)
174 {
175 blocking_notifier_chain_unregister(&x86_mce_decoder_chain, nb);
176 }
177 EXPORT_SYMBOL_GPL(mce_unregister_decode_chain);
178
ctl_reg(int bank)179 static inline u32 ctl_reg(int bank)
180 {
181 return MSR_IA32_MCx_CTL(bank);
182 }
183
status_reg(int bank)184 static inline u32 status_reg(int bank)
185 {
186 return MSR_IA32_MCx_STATUS(bank);
187 }
188
addr_reg(int bank)189 static inline u32 addr_reg(int bank)
190 {
191 return MSR_IA32_MCx_ADDR(bank);
192 }
193
misc_reg(int bank)194 static inline u32 misc_reg(int bank)
195 {
196 return MSR_IA32_MCx_MISC(bank);
197 }
198
smca_ctl_reg(int bank)199 static inline u32 smca_ctl_reg(int bank)
200 {
201 return MSR_AMD64_SMCA_MCx_CTL(bank);
202 }
203
smca_status_reg(int bank)204 static inline u32 smca_status_reg(int bank)
205 {
206 return MSR_AMD64_SMCA_MCx_STATUS(bank);
207 }
208
smca_addr_reg(int bank)209 static inline u32 smca_addr_reg(int bank)
210 {
211 return MSR_AMD64_SMCA_MCx_ADDR(bank);
212 }
213
smca_misc_reg(int bank)214 static inline u32 smca_misc_reg(int bank)
215 {
216 return MSR_AMD64_SMCA_MCx_MISC(bank);
217 }
218
219 struct mca_msr_regs msr_ops = {
220 .ctl = ctl_reg,
221 .status = status_reg,
222 .addr = addr_reg,
223 .misc = misc_reg
224 };
225
__print_mce(struct mce * m)226 static void __print_mce(struct mce *m)
227 {
228 pr_emerg(HW_ERR "CPU %d: Machine Check%s: %Lx Bank %d: %016Lx\n",
229 m->extcpu,
230 (m->mcgstatus & MCG_STATUS_MCIP ? " Exception" : ""),
231 m->mcgstatus, m->bank, m->status);
232
233 if (m->ip) {
234 pr_emerg(HW_ERR "RIP%s %02x:<%016Lx> ",
235 !(m->mcgstatus & MCG_STATUS_EIPV) ? " !INEXACT!" : "",
236 m->cs, m->ip);
237
238 if (m->cs == __KERNEL_CS)
239 pr_cont("{%pS}", (void *)(unsigned long)m->ip);
240 pr_cont("\n");
241 }
242
243 pr_emerg(HW_ERR "TSC %llx ", m->tsc);
244 if (m->addr)
245 pr_cont("ADDR %llx ", m->addr);
246 if (m->misc)
247 pr_cont("MISC %llx ", m->misc);
248 if (m->ppin)
249 pr_cont("PPIN %llx ", m->ppin);
250
251 if (mce_flags.smca) {
252 if (m->synd)
253 pr_cont("SYND %llx ", m->synd);
254 if (m->ipid)
255 pr_cont("IPID %llx ", m->ipid);
256 }
257
258 pr_cont("\n");
259
260 /*
261 * Note this output is parsed by external tools and old fields
262 * should not be changed.
263 */
264 pr_emerg(HW_ERR "PROCESSOR %u:%x TIME %llu SOCKET %u APIC %x microcode %x\n",
265 m->cpuvendor, m->cpuid, m->time, m->socketid, m->apicid,
266 m->microcode);
267 }
268
print_mce(struct mce * m)269 static void print_mce(struct mce *m)
270 {
271 __print_mce(m);
272
273 if (m->cpuvendor != X86_VENDOR_AMD && m->cpuvendor != X86_VENDOR_HYGON)
274 pr_emerg_ratelimited(HW_ERR "Run the above through 'mcelog --ascii'\n");
275 }
276
277 #define PANIC_TIMEOUT 5 /* 5 seconds */
278
279 static atomic_t mce_panicked;
280
281 static int fake_panic;
282 static atomic_t mce_fake_panicked;
283
284 /* Panic in progress. Enable interrupts and wait for final IPI */
wait_for_panic(void)285 static void wait_for_panic(void)
286 {
287 long timeout = PANIC_TIMEOUT*USEC_PER_SEC;
288
289 preempt_disable();
290 local_irq_enable();
291 while (timeout-- > 0)
292 udelay(1);
293 if (panic_timeout == 0)
294 panic_timeout = mca_cfg.panic_timeout;
295 panic("Panicing machine check CPU died");
296 }
297
mce_panic(const char * msg,struct mce * final,char * exp)298 static noinstr void mce_panic(const char *msg, struct mce *final, char *exp)
299 {
300 struct llist_node *pending;
301 struct mce_evt_llist *l;
302 int apei_err = 0;
303
304 /*
305 * Allow instrumentation around external facilities usage. Not that it
306 * matters a whole lot since the machine is going to panic anyway.
307 */
308 instrumentation_begin();
309
310 if (!fake_panic) {
311 /*
312 * Make sure only one CPU runs in machine check panic
313 */
314 if (atomic_inc_return(&mce_panicked) > 1)
315 wait_for_panic();
316 barrier();
317
318 bust_spinlocks(1);
319 console_verbose();
320 } else {
321 /* Don't log too much for fake panic */
322 if (atomic_inc_return(&mce_fake_panicked) > 1)
323 goto out;
324 }
325 pending = mce_gen_pool_prepare_records();
326 /* First print corrected ones that are still unlogged */
327 llist_for_each_entry(l, pending, llnode) {
328 struct mce *m = &l->mce;
329 if (!(m->status & MCI_STATUS_UC)) {
330 print_mce(m);
331 if (!apei_err)
332 apei_err = apei_write_mce(m);
333 }
334 }
335 /* Now print uncorrected but with the final one last */
336 llist_for_each_entry(l, pending, llnode) {
337 struct mce *m = &l->mce;
338 if (!(m->status & MCI_STATUS_UC))
339 continue;
340 if (!final || mce_cmp(m, final)) {
341 print_mce(m);
342 if (!apei_err)
343 apei_err = apei_write_mce(m);
344 }
345 }
346 if (final) {
347 print_mce(final);
348 if (!apei_err)
349 apei_err = apei_write_mce(final);
350 }
351 if (cpu_missing)
352 pr_emerg(HW_ERR "Some CPUs didn't answer in synchronization\n");
353 if (exp)
354 pr_emerg(HW_ERR "Machine check: %s\n", exp);
355 if (!fake_panic) {
356 if (panic_timeout == 0)
357 panic_timeout = mca_cfg.panic_timeout;
358 panic(msg);
359 } else
360 pr_emerg(HW_ERR "Fake kernel panic: %s\n", msg);
361
362 out:
363 instrumentation_end();
364 }
365
366 /* Support code for software error injection */
367
msr_to_offset(u32 msr)368 static int msr_to_offset(u32 msr)
369 {
370 unsigned bank = __this_cpu_read(injectm.bank);
371
372 if (msr == mca_cfg.rip_msr)
373 return offsetof(struct mce, ip);
374 if (msr == msr_ops.status(bank))
375 return offsetof(struct mce, status);
376 if (msr == msr_ops.addr(bank))
377 return offsetof(struct mce, addr);
378 if (msr == msr_ops.misc(bank))
379 return offsetof(struct mce, misc);
380 if (msr == MSR_IA32_MCG_STATUS)
381 return offsetof(struct mce, mcgstatus);
382 return -1;
383 }
384
ex_handler_rdmsr_fault(const struct exception_table_entry * fixup,struct pt_regs * regs,int trapnr,unsigned long error_code,unsigned long fault_addr)385 __visible bool ex_handler_rdmsr_fault(const struct exception_table_entry *fixup,
386 struct pt_regs *regs, int trapnr,
387 unsigned long error_code,
388 unsigned long fault_addr)
389 {
390 pr_emerg("MSR access error: RDMSR from 0x%x at rIP: 0x%lx (%pS)\n",
391 (unsigned int)regs->cx, regs->ip, (void *)regs->ip);
392
393 show_stack_regs(regs);
394
395 panic("MCA architectural violation!\n");
396
397 while (true)
398 cpu_relax();
399
400 return true;
401 }
402
403 /* MSR access wrappers used for error injection */
mce_rdmsrl(u32 msr)404 static noinstr u64 mce_rdmsrl(u32 msr)
405 {
406 DECLARE_ARGS(val, low, high);
407
408 if (__this_cpu_read(injectm.finished)) {
409 int offset;
410 u64 ret;
411
412 instrumentation_begin();
413
414 offset = msr_to_offset(msr);
415 if (offset < 0)
416 ret = 0;
417 else
418 ret = *(u64 *)((char *)this_cpu_ptr(&injectm) + offset);
419
420 instrumentation_end();
421
422 return ret;
423 }
424
425 /*
426 * RDMSR on MCA MSRs should not fault. If they do, this is very much an
427 * architectural violation and needs to be reported to hw vendor. Panic
428 * the box to not allow any further progress.
429 */
430 asm volatile("1: rdmsr\n"
431 "2:\n"
432 _ASM_EXTABLE_HANDLE(1b, 2b, ex_handler_rdmsr_fault)
433 : EAX_EDX_RET(val, low, high) : "c" (msr));
434
435
436 return EAX_EDX_VAL(val, low, high);
437 }
438
ex_handler_wrmsr_fault(const struct exception_table_entry * fixup,struct pt_regs * regs,int trapnr,unsigned long error_code,unsigned long fault_addr)439 __visible bool ex_handler_wrmsr_fault(const struct exception_table_entry *fixup,
440 struct pt_regs *regs, int trapnr,
441 unsigned long error_code,
442 unsigned long fault_addr)
443 {
444 pr_emerg("MSR access error: WRMSR to 0x%x (tried to write 0x%08x%08x) at rIP: 0x%lx (%pS)\n",
445 (unsigned int)regs->cx, (unsigned int)regs->dx, (unsigned int)regs->ax,
446 regs->ip, (void *)regs->ip);
447
448 show_stack_regs(regs);
449
450 panic("MCA architectural violation!\n");
451
452 while (true)
453 cpu_relax();
454
455 return true;
456 }
457
mce_wrmsrl(u32 msr,u64 v)458 static noinstr void mce_wrmsrl(u32 msr, u64 v)
459 {
460 u32 low, high;
461
462 if (__this_cpu_read(injectm.finished)) {
463 int offset;
464
465 instrumentation_begin();
466
467 offset = msr_to_offset(msr);
468 if (offset >= 0)
469 *(u64 *)((char *)this_cpu_ptr(&injectm) + offset) = v;
470
471 instrumentation_end();
472
473 return;
474 }
475
476 low = (u32)v;
477 high = (u32)(v >> 32);
478
479 /* See comment in mce_rdmsrl() */
480 asm volatile("1: wrmsr\n"
481 "2:\n"
482 _ASM_EXTABLE_HANDLE(1b, 2b, ex_handler_wrmsr_fault)
483 : : "c" (msr), "a"(low), "d" (high) : "memory");
484 }
485
486 /*
487 * Collect all global (w.r.t. this processor) status about this machine
488 * check into our "mce" struct so that we can use it later to assess
489 * the severity of the problem as we read per-bank specific details.
490 */
mce_gather_info(struct mce * m,struct pt_regs * regs)491 static inline void mce_gather_info(struct mce *m, struct pt_regs *regs)
492 {
493 mce_setup(m);
494
495 m->mcgstatus = mce_rdmsrl(MSR_IA32_MCG_STATUS);
496 if (regs) {
497 /*
498 * Get the address of the instruction at the time of
499 * the machine check error.
500 */
501 if (m->mcgstatus & (MCG_STATUS_RIPV|MCG_STATUS_EIPV)) {
502 m->ip = regs->ip;
503 m->cs = regs->cs;
504
505 /*
506 * When in VM86 mode make the cs look like ring 3
507 * always. This is a lie, but it's better than passing
508 * the additional vm86 bit around everywhere.
509 */
510 if (v8086_mode(regs))
511 m->cs |= 3;
512 }
513 /* Use accurate RIP reporting if available. */
514 if (mca_cfg.rip_msr)
515 m->ip = mce_rdmsrl(mca_cfg.rip_msr);
516 }
517 }
518
mce_available(struct cpuinfo_x86 * c)519 int mce_available(struct cpuinfo_x86 *c)
520 {
521 if (mca_cfg.disabled)
522 return 0;
523 return cpu_has(c, X86_FEATURE_MCE) && cpu_has(c, X86_FEATURE_MCA);
524 }
525
mce_schedule_work(void)526 static void mce_schedule_work(void)
527 {
528 if (!mce_gen_pool_empty())
529 schedule_work(&mce_work);
530 }
531
mce_irq_work_cb(struct irq_work * entry)532 static void mce_irq_work_cb(struct irq_work *entry)
533 {
534 mce_schedule_work();
535 }
536
537 /*
538 * Check if the address reported by the CPU is in a format we can parse.
539 * It would be possible to add code for most other cases, but all would
540 * be somewhat complicated (e.g. segment offset would require an instruction
541 * parser). So only support physical addresses up to page granuality for now.
542 */
mce_usable_address(struct mce * m)543 int mce_usable_address(struct mce *m)
544 {
545 if (!(m->status & MCI_STATUS_ADDRV))
546 return 0;
547
548 /* Checks after this one are Intel/Zhaoxin-specific: */
549 if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL &&
550 boot_cpu_data.x86_vendor != X86_VENDOR_ZHAOXIN)
551 return 1;
552
553 if (!(m->status & MCI_STATUS_MISCV))
554 return 0;
555
556 if (MCI_MISC_ADDR_LSB(m->misc) > PAGE_SHIFT)
557 return 0;
558
559 if (MCI_MISC_ADDR_MODE(m->misc) != MCI_MISC_ADDR_PHYS)
560 return 0;
561
562 return 1;
563 }
564 EXPORT_SYMBOL_GPL(mce_usable_address);
565
mce_is_memory_error(struct mce * m)566 bool mce_is_memory_error(struct mce *m)
567 {
568 switch (m->cpuvendor) {
569 case X86_VENDOR_AMD:
570 case X86_VENDOR_HYGON:
571 return amd_mce_is_memory_error(m);
572
573 case X86_VENDOR_INTEL:
574 case X86_VENDOR_ZHAOXIN:
575 /*
576 * Intel SDM Volume 3B - 15.9.2 Compound Error Codes
577 *
578 * Bit 7 of the MCACOD field of IA32_MCi_STATUS is used for
579 * indicating a memory error. Bit 8 is used for indicating a
580 * cache hierarchy error. The combination of bit 2 and bit 3
581 * is used for indicating a `generic' cache hierarchy error
582 * But we can't just blindly check the above bits, because if
583 * bit 11 is set, then it is a bus/interconnect error - and
584 * either way the above bits just gives more detail on what
585 * bus/interconnect error happened. Note that bit 12 can be
586 * ignored, as it's the "filter" bit.
587 */
588 return (m->status & 0xef80) == BIT(7) ||
589 (m->status & 0xef00) == BIT(8) ||
590 (m->status & 0xeffc) == 0xc;
591
592 default:
593 return false;
594 }
595 }
596 EXPORT_SYMBOL_GPL(mce_is_memory_error);
597
whole_page(struct mce * m)598 static bool whole_page(struct mce *m)
599 {
600 if (!mca_cfg.ser || !(m->status & MCI_STATUS_MISCV))
601 return true;
602
603 return MCI_MISC_ADDR_LSB(m->misc) >= PAGE_SHIFT;
604 }
605
mce_is_correctable(struct mce * m)606 bool mce_is_correctable(struct mce *m)
607 {
608 if (m->cpuvendor == X86_VENDOR_AMD && m->status & MCI_STATUS_DEFERRED)
609 return false;
610
611 if (m->cpuvendor == X86_VENDOR_HYGON && m->status & MCI_STATUS_DEFERRED)
612 return false;
613
614 if (m->status & MCI_STATUS_UC)
615 return false;
616
617 return true;
618 }
619 EXPORT_SYMBOL_GPL(mce_is_correctable);
620
mce_early_notifier(struct notifier_block * nb,unsigned long val,void * data)621 static int mce_early_notifier(struct notifier_block *nb, unsigned long val,
622 void *data)
623 {
624 struct mce *m = (struct mce *)data;
625
626 if (!m)
627 return NOTIFY_DONE;
628
629 /* Emit the trace record: */
630 trace_mce_record(m);
631
632 set_bit(0, &mce_need_notify);
633
634 mce_notify_irq();
635
636 return NOTIFY_DONE;
637 }
638
639 static struct notifier_block early_nb = {
640 .notifier_call = mce_early_notifier,
641 .priority = MCE_PRIO_EARLY,
642 };
643
uc_decode_notifier(struct notifier_block * nb,unsigned long val,void * data)644 static int uc_decode_notifier(struct notifier_block *nb, unsigned long val,
645 void *data)
646 {
647 struct mce *mce = (struct mce *)data;
648 unsigned long pfn;
649
650 if (!mce || !mce_usable_address(mce))
651 return NOTIFY_DONE;
652
653 if (mce->severity != MCE_AO_SEVERITY &&
654 mce->severity != MCE_DEFERRED_SEVERITY)
655 return NOTIFY_DONE;
656
657 pfn = mce->addr >> PAGE_SHIFT;
658 if (!memory_failure(pfn, 0)) {
659 set_mce_nospec(pfn, whole_page(mce));
660 mce->kflags |= MCE_HANDLED_UC;
661 }
662
663 return NOTIFY_OK;
664 }
665
666 static struct notifier_block mce_uc_nb = {
667 .notifier_call = uc_decode_notifier,
668 .priority = MCE_PRIO_UC,
669 };
670
mce_default_notifier(struct notifier_block * nb,unsigned long val,void * data)671 static int mce_default_notifier(struct notifier_block *nb, unsigned long val,
672 void *data)
673 {
674 struct mce *m = (struct mce *)data;
675
676 if (!m)
677 return NOTIFY_DONE;
678
679 if (mca_cfg.print_all || !m->kflags)
680 __print_mce(m);
681
682 return NOTIFY_DONE;
683 }
684
685 static struct notifier_block mce_default_nb = {
686 .notifier_call = mce_default_notifier,
687 /* lowest prio, we want it to run last. */
688 .priority = MCE_PRIO_LOWEST,
689 };
690
691 /*
692 * Read ADDR and MISC registers.
693 */
mce_read_aux(struct mce * m,int i)694 static noinstr void mce_read_aux(struct mce *m, int i)
695 {
696 if (m->status & MCI_STATUS_MISCV)
697 m->misc = mce_rdmsrl(msr_ops.misc(i));
698
699 if (m->status & MCI_STATUS_ADDRV) {
700 m->addr = mce_rdmsrl(msr_ops.addr(i));
701
702 /*
703 * Mask the reported address by the reported granularity.
704 */
705 if (mca_cfg.ser && (m->status & MCI_STATUS_MISCV)) {
706 u8 shift = MCI_MISC_ADDR_LSB(m->misc);
707 m->addr >>= shift;
708 m->addr <<= shift;
709 }
710
711 /*
712 * Extract [55:<lsb>] where lsb is the least significant
713 * *valid* bit of the address bits.
714 */
715 if (mce_flags.smca) {
716 u8 lsb = (m->addr >> 56) & 0x3f;
717
718 m->addr &= GENMASK_ULL(55, lsb);
719 }
720 }
721
722 if (mce_flags.smca) {
723 m->ipid = mce_rdmsrl(MSR_AMD64_SMCA_MCx_IPID(i));
724
725 if (m->status & MCI_STATUS_SYNDV)
726 m->synd = mce_rdmsrl(MSR_AMD64_SMCA_MCx_SYND(i));
727 }
728 }
729
730 DEFINE_PER_CPU(unsigned, mce_poll_count);
731
732 /*
733 * Poll for corrected events or events that happened before reset.
734 * Those are just logged through /dev/mcelog.
735 *
736 * This is executed in standard interrupt context.
737 *
738 * Note: spec recommends to panic for fatal unsignalled
739 * errors here. However this would be quite problematic --
740 * we would need to reimplement the Monarch handling and
741 * it would mess up the exclusion between exception handler
742 * and poll handler -- * so we skip this for now.
743 * These cases should not happen anyways, or only when the CPU
744 * is already totally * confused. In this case it's likely it will
745 * not fully execute the machine check handler either.
746 */
machine_check_poll(enum mcp_flags flags,mce_banks_t * b)747 bool machine_check_poll(enum mcp_flags flags, mce_banks_t *b)
748 {
749 struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
750 bool error_seen = false;
751 struct mce m;
752 int i;
753
754 this_cpu_inc(mce_poll_count);
755
756 mce_gather_info(&m, NULL);
757
758 if (flags & MCP_TIMESTAMP)
759 m.tsc = rdtsc();
760
761 for (i = 0; i < this_cpu_read(mce_num_banks); i++) {
762 if (!mce_banks[i].ctl || !test_bit(i, *b))
763 continue;
764
765 m.misc = 0;
766 m.addr = 0;
767 m.bank = i;
768
769 barrier();
770 m.status = mce_rdmsrl(msr_ops.status(i));
771
772 /* If this entry is not valid, ignore it */
773 if (!(m.status & MCI_STATUS_VAL))
774 continue;
775
776 /*
777 * If we are logging everything (at CPU online) or this
778 * is a corrected error, then we must log it.
779 */
780 if ((flags & MCP_UC) || !(m.status & MCI_STATUS_UC))
781 goto log_it;
782
783 /*
784 * Newer Intel systems that support software error
785 * recovery need to make additional checks. Other
786 * CPUs should skip over uncorrected errors, but log
787 * everything else.
788 */
789 if (!mca_cfg.ser) {
790 if (m.status & MCI_STATUS_UC)
791 continue;
792 goto log_it;
793 }
794
795 /* Log "not enabled" (speculative) errors */
796 if (!(m.status & MCI_STATUS_EN))
797 goto log_it;
798
799 /*
800 * Log UCNA (SDM: 15.6.3 "UCR Error Classification")
801 * UC == 1 && PCC == 0 && S == 0
802 */
803 if (!(m.status & MCI_STATUS_PCC) && !(m.status & MCI_STATUS_S))
804 goto log_it;
805
806 /*
807 * Skip anything else. Presumption is that our read of this
808 * bank is racing with a machine check. Leave the log alone
809 * for do_machine_check() to deal with it.
810 */
811 continue;
812
813 log_it:
814 error_seen = true;
815
816 if (flags & MCP_DONTLOG)
817 goto clear_it;
818
819 mce_read_aux(&m, i);
820 m.severity = mce_severity(&m, NULL, mca_cfg.tolerant, NULL, false);
821 /*
822 * Don't get the IP here because it's unlikely to
823 * have anything to do with the actual error location.
824 */
825
826 if (mca_cfg.dont_log_ce && !mce_usable_address(&m))
827 goto clear_it;
828
829 if (flags & MCP_QUEUE_LOG)
830 mce_gen_pool_add(&m);
831 else
832 mce_log(&m);
833
834 clear_it:
835 /*
836 * Clear state for this bank.
837 */
838 mce_wrmsrl(msr_ops.status(i), 0);
839 }
840
841 /*
842 * Don't clear MCG_STATUS here because it's only defined for
843 * exceptions.
844 */
845
846 sync_core();
847
848 return error_seen;
849 }
850 EXPORT_SYMBOL_GPL(machine_check_poll);
851
852 /*
853 * Do a quick check if any of the events requires a panic.
854 * This decides if we keep the events around or clear them.
855 */
mce_no_way_out(struct mce * m,char ** msg,unsigned long * validp,struct pt_regs * regs)856 static int mce_no_way_out(struct mce *m, char **msg, unsigned long *validp,
857 struct pt_regs *regs)
858 {
859 char *tmp = *msg;
860 int i;
861
862 for (i = 0; i < this_cpu_read(mce_num_banks); i++) {
863 m->status = mce_rdmsrl(msr_ops.status(i));
864 if (!(m->status & MCI_STATUS_VAL))
865 continue;
866
867 __set_bit(i, validp);
868 if (quirk_no_way_out)
869 quirk_no_way_out(i, m, regs);
870
871 m->bank = i;
872 if (mce_severity(m, regs, mca_cfg.tolerant, &tmp, true) >= MCE_PANIC_SEVERITY) {
873 mce_read_aux(m, i);
874 *msg = tmp;
875 return 1;
876 }
877 }
878 return 0;
879 }
880
881 /*
882 * Variable to establish order between CPUs while scanning.
883 * Each CPU spins initially until executing is equal its number.
884 */
885 static atomic_t mce_executing;
886
887 /*
888 * Defines order of CPUs on entry. First CPU becomes Monarch.
889 */
890 static atomic_t mce_callin;
891
892 /*
893 * Check if a timeout waiting for other CPUs happened.
894 */
mce_timed_out(u64 * t,const char * msg)895 static int mce_timed_out(u64 *t, const char *msg)
896 {
897 /*
898 * The others already did panic for some reason.
899 * Bail out like in a timeout.
900 * rmb() to tell the compiler that system_state
901 * might have been modified by someone else.
902 */
903 rmb();
904 if (atomic_read(&mce_panicked))
905 wait_for_panic();
906 if (!mca_cfg.monarch_timeout)
907 goto out;
908 if ((s64)*t < SPINUNIT) {
909 if (mca_cfg.tolerant <= 1)
910 mce_panic(msg, NULL, NULL);
911 cpu_missing = 1;
912 return 1;
913 }
914 *t -= SPINUNIT;
915 out:
916 touch_nmi_watchdog();
917 return 0;
918 }
919
920 /*
921 * The Monarch's reign. The Monarch is the CPU who entered
922 * the machine check handler first. It waits for the others to
923 * raise the exception too and then grades them. When any
924 * error is fatal panic. Only then let the others continue.
925 *
926 * The other CPUs entering the MCE handler will be controlled by the
927 * Monarch. They are called Subjects.
928 *
929 * This way we prevent any potential data corruption in a unrecoverable case
930 * and also makes sure always all CPU's errors are examined.
931 *
932 * Also this detects the case of a machine check event coming from outer
933 * space (not detected by any CPUs) In this case some external agent wants
934 * us to shut down, so panic too.
935 *
936 * The other CPUs might still decide to panic if the handler happens
937 * in a unrecoverable place, but in this case the system is in a semi-stable
938 * state and won't corrupt anything by itself. It's ok to let the others
939 * continue for a bit first.
940 *
941 * All the spin loops have timeouts; when a timeout happens a CPU
942 * typically elects itself to be Monarch.
943 */
mce_reign(void)944 static void mce_reign(void)
945 {
946 int cpu;
947 struct mce *m = NULL;
948 int global_worst = 0;
949 char *msg = NULL;
950
951 /*
952 * This CPU is the Monarch and the other CPUs have run
953 * through their handlers.
954 * Grade the severity of the errors of all the CPUs.
955 */
956 for_each_possible_cpu(cpu) {
957 struct mce *mtmp = &per_cpu(mces_seen, cpu);
958
959 if (mtmp->severity > global_worst) {
960 global_worst = mtmp->severity;
961 m = &per_cpu(mces_seen, cpu);
962 }
963 }
964
965 /*
966 * Cannot recover? Panic here then.
967 * This dumps all the mces in the log buffer and stops the
968 * other CPUs.
969 */
970 if (m && global_worst >= MCE_PANIC_SEVERITY && mca_cfg.tolerant < 3) {
971 /* call mce_severity() to get "msg" for panic */
972 mce_severity(m, NULL, mca_cfg.tolerant, &msg, true);
973 mce_panic("Fatal machine check", m, msg);
974 }
975
976 /*
977 * For UC somewhere we let the CPU who detects it handle it.
978 * Also must let continue the others, otherwise the handling
979 * CPU could deadlock on a lock.
980 */
981
982 /*
983 * No machine check event found. Must be some external
984 * source or one CPU is hung. Panic.
985 */
986 if (global_worst <= MCE_KEEP_SEVERITY && mca_cfg.tolerant < 3)
987 mce_panic("Fatal machine check from unknown source", NULL, NULL);
988
989 /*
990 * Now clear all the mces_seen so that they don't reappear on
991 * the next mce.
992 */
993 for_each_possible_cpu(cpu)
994 memset(&per_cpu(mces_seen, cpu), 0, sizeof(struct mce));
995 }
996
997 static atomic_t global_nwo;
998
999 /*
1000 * Start of Monarch synchronization. This waits until all CPUs have
1001 * entered the exception handler and then determines if any of them
1002 * saw a fatal event that requires panic. Then it executes them
1003 * in the entry order.
1004 * TBD double check parallel CPU hotunplug
1005 */
mce_start(int * no_way_out)1006 static int mce_start(int *no_way_out)
1007 {
1008 int order;
1009 int cpus = num_online_cpus();
1010 u64 timeout = (u64)mca_cfg.monarch_timeout * NSEC_PER_USEC;
1011
1012 if (!timeout)
1013 return -1;
1014
1015 atomic_add(*no_way_out, &global_nwo);
1016 /*
1017 * Rely on the implied barrier below, such that global_nwo
1018 * is updated before mce_callin.
1019 */
1020 order = atomic_inc_return(&mce_callin);
1021
1022 /*
1023 * Wait for everyone.
1024 */
1025 while (atomic_read(&mce_callin) != cpus) {
1026 if (mce_timed_out(&timeout,
1027 "Timeout: Not all CPUs entered broadcast exception handler")) {
1028 atomic_set(&global_nwo, 0);
1029 return -1;
1030 }
1031 ndelay(SPINUNIT);
1032 }
1033
1034 /*
1035 * mce_callin should be read before global_nwo
1036 */
1037 smp_rmb();
1038
1039 if (order == 1) {
1040 /*
1041 * Monarch: Starts executing now, the others wait.
1042 */
1043 atomic_set(&mce_executing, 1);
1044 } else {
1045 /*
1046 * Subject: Now start the scanning loop one by one in
1047 * the original callin order.
1048 * This way when there are any shared banks it will be
1049 * only seen by one CPU before cleared, avoiding duplicates.
1050 */
1051 while (atomic_read(&mce_executing) < order) {
1052 if (mce_timed_out(&timeout,
1053 "Timeout: Subject CPUs unable to finish machine check processing")) {
1054 atomic_set(&global_nwo, 0);
1055 return -1;
1056 }
1057 ndelay(SPINUNIT);
1058 }
1059 }
1060
1061 /*
1062 * Cache the global no_way_out state.
1063 */
1064 *no_way_out = atomic_read(&global_nwo);
1065
1066 return order;
1067 }
1068
1069 /*
1070 * Synchronize between CPUs after main scanning loop.
1071 * This invokes the bulk of the Monarch processing.
1072 */
mce_end(int order)1073 static noinstr int mce_end(int order)
1074 {
1075 u64 timeout = (u64)mca_cfg.monarch_timeout * NSEC_PER_USEC;
1076 int ret = -1;
1077
1078 /* Allow instrumentation around external facilities. */
1079 instrumentation_begin();
1080
1081 if (!timeout)
1082 goto reset;
1083 if (order < 0)
1084 goto reset;
1085
1086 /*
1087 * Allow others to run.
1088 */
1089 atomic_inc(&mce_executing);
1090
1091 if (order == 1) {
1092 /* CHECKME: Can this race with a parallel hotplug? */
1093 int cpus = num_online_cpus();
1094
1095 /*
1096 * Monarch: Wait for everyone to go through their scanning
1097 * loops.
1098 */
1099 while (atomic_read(&mce_executing) <= cpus) {
1100 if (mce_timed_out(&timeout,
1101 "Timeout: Monarch CPU unable to finish machine check processing"))
1102 goto reset;
1103 ndelay(SPINUNIT);
1104 }
1105
1106 mce_reign();
1107 barrier();
1108 ret = 0;
1109 } else {
1110 /*
1111 * Subject: Wait for Monarch to finish.
1112 */
1113 while (atomic_read(&mce_executing) != 0) {
1114 if (mce_timed_out(&timeout,
1115 "Timeout: Monarch CPU did not finish machine check processing"))
1116 goto reset;
1117 ndelay(SPINUNIT);
1118 }
1119
1120 /*
1121 * Don't reset anything. That's done by the Monarch.
1122 */
1123 ret = 0;
1124 goto out;
1125 }
1126
1127 /*
1128 * Reset all global state.
1129 */
1130 reset:
1131 atomic_set(&global_nwo, 0);
1132 atomic_set(&mce_callin, 0);
1133 barrier();
1134
1135 /*
1136 * Let others run again.
1137 */
1138 atomic_set(&mce_executing, 0);
1139
1140 out:
1141 instrumentation_end();
1142
1143 return ret;
1144 }
1145
mce_clear_state(unsigned long * toclear)1146 static void mce_clear_state(unsigned long *toclear)
1147 {
1148 int i;
1149
1150 for (i = 0; i < this_cpu_read(mce_num_banks); i++) {
1151 if (test_bit(i, toclear))
1152 mce_wrmsrl(msr_ops.status(i), 0);
1153 }
1154 }
1155
1156 /*
1157 * Cases where we avoid rendezvous handler timeout:
1158 * 1) If this CPU is offline.
1159 *
1160 * 2) If crashing_cpu was set, e.g. we're entering kdump and we need to
1161 * skip those CPUs which remain looping in the 1st kernel - see
1162 * crash_nmi_callback().
1163 *
1164 * Note: there still is a small window between kexec-ing and the new,
1165 * kdump kernel establishing a new #MC handler where a broadcasted MCE
1166 * might not get handled properly.
1167 */
mce_check_crashing_cpu(void)1168 static noinstr bool mce_check_crashing_cpu(void)
1169 {
1170 unsigned int cpu = smp_processor_id();
1171
1172 if (arch_cpu_is_offline(cpu) ||
1173 (crashing_cpu != -1 && crashing_cpu != cpu)) {
1174 u64 mcgstatus;
1175
1176 mcgstatus = __rdmsr(MSR_IA32_MCG_STATUS);
1177
1178 if (boot_cpu_data.x86_vendor == X86_VENDOR_ZHAOXIN) {
1179 if (mcgstatus & MCG_STATUS_LMCES)
1180 return false;
1181 }
1182
1183 if (mcgstatus & MCG_STATUS_RIPV) {
1184 __wrmsr(MSR_IA32_MCG_STATUS, 0, 0);
1185 return true;
1186 }
1187 }
1188 return false;
1189 }
1190
__mc_scan_banks(struct mce * m,struct pt_regs * regs,struct mce * final,unsigned long * toclear,unsigned long * valid_banks,int no_way_out,int * worst)1191 static void __mc_scan_banks(struct mce *m, struct pt_regs *regs, struct mce *final,
1192 unsigned long *toclear, unsigned long *valid_banks,
1193 int no_way_out, int *worst)
1194 {
1195 struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
1196 struct mca_config *cfg = &mca_cfg;
1197 int severity, i;
1198
1199 for (i = 0; i < this_cpu_read(mce_num_banks); i++) {
1200 __clear_bit(i, toclear);
1201 if (!test_bit(i, valid_banks))
1202 continue;
1203
1204 if (!mce_banks[i].ctl)
1205 continue;
1206
1207 m->misc = 0;
1208 m->addr = 0;
1209 m->bank = i;
1210
1211 m->status = mce_rdmsrl(msr_ops.status(i));
1212 if (!(m->status & MCI_STATUS_VAL))
1213 continue;
1214
1215 /*
1216 * Corrected or non-signaled errors are handled by
1217 * machine_check_poll(). Leave them alone, unless this panics.
1218 */
1219 if (!(m->status & (cfg->ser ? MCI_STATUS_S : MCI_STATUS_UC)) &&
1220 !no_way_out)
1221 continue;
1222
1223 /* Set taint even when machine check was not enabled. */
1224 add_taint(TAINT_MACHINE_CHECK, LOCKDEP_NOW_UNRELIABLE);
1225
1226 severity = mce_severity(m, regs, cfg->tolerant, NULL, true);
1227
1228 /*
1229 * When machine check was for corrected/deferred handler don't
1230 * touch, unless we're panicking.
1231 */
1232 if ((severity == MCE_KEEP_SEVERITY ||
1233 severity == MCE_UCNA_SEVERITY) && !no_way_out)
1234 continue;
1235
1236 __set_bit(i, toclear);
1237
1238 /* Machine check event was not enabled. Clear, but ignore. */
1239 if (severity == MCE_NO_SEVERITY)
1240 continue;
1241
1242 mce_read_aux(m, i);
1243
1244 /* assuming valid severity level != 0 */
1245 m->severity = severity;
1246
1247 mce_log(m);
1248
1249 if (severity > *worst) {
1250 *final = *m;
1251 *worst = severity;
1252 }
1253 }
1254
1255 /* mce_clear_state will clear *final, save locally for use later */
1256 *m = *final;
1257 }
1258
kill_me_now(struct callback_head * ch)1259 static void kill_me_now(struct callback_head *ch)
1260 {
1261 struct task_struct *p = container_of(ch, struct task_struct, mce_kill_me);
1262
1263 p->mce_count = 0;
1264 force_sig(SIGBUS);
1265 }
1266
kill_me_maybe(struct callback_head * cb)1267 static void kill_me_maybe(struct callback_head *cb)
1268 {
1269 struct task_struct *p = container_of(cb, struct task_struct, mce_kill_me);
1270 int flags = MF_ACTION_REQUIRED;
1271
1272 p->mce_count = 0;
1273 pr_err("Uncorrected hardware memory error in user-access at %llx", p->mce_addr);
1274
1275 if (!p->mce_ripv)
1276 flags |= MF_MUST_KILL;
1277
1278 if (!memory_failure(p->mce_addr >> PAGE_SHIFT, flags) &&
1279 !(p->mce_kflags & MCE_IN_KERNEL_COPYIN)) {
1280 set_mce_nospec(p->mce_addr >> PAGE_SHIFT, p->mce_whole_page);
1281 sync_core();
1282 return;
1283 }
1284
1285 if (p->mce_vaddr != (void __user *)-1l) {
1286 force_sig_mceerr(BUS_MCEERR_AR, p->mce_vaddr, PAGE_SHIFT);
1287 } else {
1288 pr_err("Memory error not recovered");
1289 kill_me_now(cb);
1290 }
1291 }
1292
queue_task_work(struct mce * m,char * msg,int kill_current_task)1293 static void queue_task_work(struct mce *m, char *msg, int kill_current_task)
1294 {
1295 int count = ++current->mce_count;
1296
1297 /* First call, save all the details */
1298 if (count == 1) {
1299 current->mce_addr = m->addr;
1300 current->mce_kflags = m->kflags;
1301 current->mce_ripv = !!(m->mcgstatus & MCG_STATUS_RIPV);
1302 current->mce_whole_page = whole_page(m);
1303
1304 if (kill_current_task)
1305 current->mce_kill_me.func = kill_me_now;
1306 else
1307 current->mce_kill_me.func = kill_me_maybe;
1308 }
1309
1310 /* Ten is likely overkill. Don't expect more than two faults before task_work() */
1311 if (count > 10)
1312 mce_panic("Too many consecutive machine checks while accessing user data", m, msg);
1313
1314 /* Second or later call, make sure page address matches the one from first call */
1315 if (count > 1 && (current->mce_addr >> PAGE_SHIFT) != (m->addr >> PAGE_SHIFT))
1316 mce_panic("Consecutive machine checks to different user pages", m, msg);
1317
1318 /* Do not call task_work_add() more than once */
1319 if (count > 1)
1320 return;
1321
1322 task_work_add(current, ¤t->mce_kill_me, TWA_RESUME);
1323 }
1324
1325 /*
1326 * The actual machine check handler. This only handles real
1327 * exceptions when something got corrupted coming in through int 18.
1328 *
1329 * This is executed in NMI context not subject to normal locking rules. This
1330 * implies that most kernel services cannot be safely used. Don't even
1331 * think about putting a printk in there!
1332 *
1333 * On Intel systems this is entered on all CPUs in parallel through
1334 * MCE broadcast. However some CPUs might be broken beyond repair,
1335 * so be always careful when synchronizing with others.
1336 *
1337 * Tracing and kprobes are disabled: if we interrupted a kernel context
1338 * with IF=1, we need to minimize stack usage. There are also recursion
1339 * issues: if the machine check was due to a failure of the memory
1340 * backing the user stack, tracing that reads the user stack will cause
1341 * potentially infinite recursion.
1342 */
do_machine_check(struct pt_regs * regs)1343 noinstr void do_machine_check(struct pt_regs *regs)
1344 {
1345 DECLARE_BITMAP(valid_banks, MAX_NR_BANKS);
1346 DECLARE_BITMAP(toclear, MAX_NR_BANKS);
1347 struct mca_config *cfg = &mca_cfg;
1348 struct mce m, *final;
1349 char *msg = NULL;
1350 int worst = 0;
1351
1352 /*
1353 * Establish sequential order between the CPUs entering the machine
1354 * check handler.
1355 */
1356 int order = -1;
1357
1358 /*
1359 * If no_way_out gets set, there is no safe way to recover from this
1360 * MCE. If mca_cfg.tolerant is cranked up, we'll try anyway.
1361 */
1362 int no_way_out = 0;
1363
1364 /*
1365 * If kill_it gets set, there might be a way to recover from this
1366 * error.
1367 */
1368 int kill_it = 0;
1369
1370 /*
1371 * MCEs are always local on AMD. Same is determined by MCG_STATUS_LMCES
1372 * on Intel.
1373 */
1374 int lmce = 1;
1375
1376 this_cpu_inc(mce_exception_count);
1377
1378 mce_gather_info(&m, regs);
1379 m.tsc = rdtsc();
1380
1381 final = this_cpu_ptr(&mces_seen);
1382 *final = m;
1383
1384 memset(valid_banks, 0, sizeof(valid_banks));
1385 no_way_out = mce_no_way_out(&m, &msg, valid_banks, regs);
1386
1387 barrier();
1388
1389 /*
1390 * When no restart IP might need to kill or panic.
1391 * Assume the worst for now, but if we find the
1392 * severity is MCE_AR_SEVERITY we have other options.
1393 */
1394 if (!(m.mcgstatus & MCG_STATUS_RIPV))
1395 kill_it = 1;
1396
1397 /*
1398 * Check if this MCE is signaled to only this logical processor,
1399 * on Intel, Zhaoxin only.
1400 */
1401 if (m.cpuvendor == X86_VENDOR_INTEL ||
1402 m.cpuvendor == X86_VENDOR_ZHAOXIN)
1403 lmce = m.mcgstatus & MCG_STATUS_LMCES;
1404
1405 /*
1406 * Local machine check may already know that we have to panic.
1407 * Broadcast machine check begins rendezvous in mce_start()
1408 * Go through all banks in exclusion of the other CPUs. This way we
1409 * don't report duplicated events on shared banks because the first one
1410 * to see it will clear it.
1411 */
1412 if (lmce) {
1413 if (no_way_out)
1414 mce_panic("Fatal local machine check", &m, msg);
1415 } else {
1416 order = mce_start(&no_way_out);
1417 }
1418
1419 __mc_scan_banks(&m, regs, final, toclear, valid_banks, no_way_out, &worst);
1420
1421 if (!no_way_out)
1422 mce_clear_state(toclear);
1423
1424 /*
1425 * Do most of the synchronization with other CPUs.
1426 * When there's any problem use only local no_way_out state.
1427 */
1428 if (!lmce) {
1429 if (mce_end(order) < 0) {
1430 if (!no_way_out)
1431 no_way_out = worst >= MCE_PANIC_SEVERITY;
1432 }
1433 } else {
1434 /*
1435 * If there was a fatal machine check we should have
1436 * already called mce_panic earlier in this function.
1437 * Since we re-read the banks, we might have found
1438 * something new. Check again to see if we found a
1439 * fatal error. We call "mce_severity()" again to
1440 * make sure we have the right "msg".
1441 */
1442 if (worst >= MCE_PANIC_SEVERITY && mca_cfg.tolerant < 3) {
1443 mce_severity(&m, regs, cfg->tolerant, &msg, true);
1444 mce_panic("Local fatal machine check!", &m, msg);
1445 }
1446 }
1447
1448 /*
1449 * If tolerant is at an insane level we drop requests to kill
1450 * processes and continue even when there is no way out.
1451 */
1452 if (cfg->tolerant == 3)
1453 kill_it = 0;
1454 else if (no_way_out)
1455 mce_panic("Fatal machine check on current CPU", &m, msg);
1456
1457 if (worst > 0)
1458 irq_work_queue(&mce_irq_work);
1459
1460 if (worst != MCE_AR_SEVERITY && !kill_it)
1461 goto out;
1462
1463 /*
1464 * Enable instrumentation around the external facilities like
1465 * task_work_add() (via queue_task_work()), fixup_exception() etc.
1466 * For now, that is. Fixing this properly would need a lot more involved
1467 * reorganization.
1468 */
1469 instrumentation_begin();
1470
1471 /* Fault was in user mode and we need to take some action */
1472 if ((m.cs & 3) == 3) {
1473 /* If this triggers there is no way to recover. Die hard. */
1474 BUG_ON(!on_thread_stack() || !user_mode(regs));
1475
1476 queue_task_work(&m, msg, kill_it);
1477
1478 } else {
1479 /*
1480 * Handle an MCE which has happened in kernel space but from
1481 * which the kernel can recover: ex_has_fault_handler() has
1482 * already verified that the rIP at which the error happened is
1483 * a rIP from which the kernel can recover (by jumping to
1484 * recovery code specified in _ASM_EXTABLE_FAULT()) and the
1485 * corresponding exception handler which would do that is the
1486 * proper one.
1487 */
1488 if (m.kflags & MCE_IN_KERNEL_RECOV) {
1489 if (!fixup_exception(regs, X86_TRAP_MC, 0, 0))
1490 mce_panic("Failed kernel mode recovery", &m, msg);
1491 }
1492
1493 if (m.kflags & MCE_IN_KERNEL_COPYIN)
1494 queue_task_work(&m, msg, kill_it);
1495 }
1496
1497 instrumentation_end();
1498
1499 out:
1500 mce_wrmsrl(MSR_IA32_MCG_STATUS, 0);
1501 }
1502 EXPORT_SYMBOL_GPL(do_machine_check);
1503
1504 #ifndef CONFIG_MEMORY_FAILURE
memory_failure(unsigned long pfn,int flags)1505 int memory_failure(unsigned long pfn, int flags)
1506 {
1507 /* mce_severity() should not hand us an ACTION_REQUIRED error */
1508 BUG_ON(flags & MF_ACTION_REQUIRED);
1509 pr_err("Uncorrected memory error in page 0x%lx ignored\n"
1510 "Rebuild kernel with CONFIG_MEMORY_FAILURE=y for smarter handling\n",
1511 pfn);
1512
1513 return 0;
1514 }
1515 #endif
1516
1517 /*
1518 * Periodic polling timer for "silent" machine check errors. If the
1519 * poller finds an MCE, poll 2x faster. When the poller finds no more
1520 * errors, poll 2x slower (up to check_interval seconds).
1521 */
1522 static unsigned long check_interval = INITIAL_CHECK_INTERVAL;
1523
1524 static DEFINE_PER_CPU(unsigned long, mce_next_interval); /* in jiffies */
1525 static DEFINE_PER_CPU(struct timer_list, mce_timer);
1526
mce_adjust_timer_default(unsigned long interval)1527 static unsigned long mce_adjust_timer_default(unsigned long interval)
1528 {
1529 return interval;
1530 }
1531
1532 static unsigned long (*mce_adjust_timer)(unsigned long interval) = mce_adjust_timer_default;
1533
__start_timer(struct timer_list * t,unsigned long interval)1534 static void __start_timer(struct timer_list *t, unsigned long interval)
1535 {
1536 unsigned long when = jiffies + interval;
1537 unsigned long flags;
1538
1539 local_irq_save(flags);
1540
1541 if (!timer_pending(t) || time_before(when, t->expires))
1542 mod_timer(t, round_jiffies(when));
1543
1544 local_irq_restore(flags);
1545 }
1546
mce_timer_fn(struct timer_list * t)1547 static void mce_timer_fn(struct timer_list *t)
1548 {
1549 struct timer_list *cpu_t = this_cpu_ptr(&mce_timer);
1550 unsigned long iv;
1551
1552 WARN_ON(cpu_t != t);
1553
1554 iv = __this_cpu_read(mce_next_interval);
1555
1556 if (mce_available(this_cpu_ptr(&cpu_info))) {
1557 machine_check_poll(0, this_cpu_ptr(&mce_poll_banks));
1558
1559 if (mce_intel_cmci_poll()) {
1560 iv = mce_adjust_timer(iv);
1561 goto done;
1562 }
1563 }
1564
1565 /*
1566 * Alert userspace if needed. If we logged an MCE, reduce the polling
1567 * interval, otherwise increase the polling interval.
1568 */
1569 if (mce_notify_irq())
1570 iv = max(iv / 2, (unsigned long) HZ/100);
1571 else
1572 iv = min(iv * 2, round_jiffies_relative(check_interval * HZ));
1573
1574 done:
1575 __this_cpu_write(mce_next_interval, iv);
1576 __start_timer(t, iv);
1577 }
1578
1579 /*
1580 * Ensure that the timer is firing in @interval from now.
1581 */
mce_timer_kick(unsigned long interval)1582 void mce_timer_kick(unsigned long interval)
1583 {
1584 struct timer_list *t = this_cpu_ptr(&mce_timer);
1585 unsigned long iv = __this_cpu_read(mce_next_interval);
1586
1587 __start_timer(t, interval);
1588
1589 if (interval < iv)
1590 __this_cpu_write(mce_next_interval, interval);
1591 }
1592
1593 /* Must not be called in IRQ context where del_timer_sync() can deadlock */
mce_timer_delete_all(void)1594 static void mce_timer_delete_all(void)
1595 {
1596 int cpu;
1597
1598 for_each_online_cpu(cpu)
1599 del_timer_sync(&per_cpu(mce_timer, cpu));
1600 }
1601
1602 /*
1603 * Notify the user(s) about new machine check events.
1604 * Can be called from interrupt context, but not from machine check/NMI
1605 * context.
1606 */
mce_notify_irq(void)1607 int mce_notify_irq(void)
1608 {
1609 /* Not more than two messages every minute */
1610 static DEFINE_RATELIMIT_STATE(ratelimit, 60*HZ, 2);
1611
1612 if (test_and_clear_bit(0, &mce_need_notify)) {
1613 mce_work_trigger();
1614
1615 if (__ratelimit(&ratelimit))
1616 pr_info(HW_ERR "Machine check events logged\n");
1617
1618 return 1;
1619 }
1620 return 0;
1621 }
1622 EXPORT_SYMBOL_GPL(mce_notify_irq);
1623
__mcheck_cpu_mce_banks_init(void)1624 static void __mcheck_cpu_mce_banks_init(void)
1625 {
1626 struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
1627 u8 n_banks = this_cpu_read(mce_num_banks);
1628 int i;
1629
1630 for (i = 0; i < n_banks; i++) {
1631 struct mce_bank *b = &mce_banks[i];
1632
1633 /*
1634 * Init them all, __mcheck_cpu_apply_quirks() is going to apply
1635 * the required vendor quirks before
1636 * __mcheck_cpu_init_clear_banks() does the final bank setup.
1637 */
1638 b->ctl = -1ULL;
1639 b->init = 1;
1640 }
1641 }
1642
1643 /*
1644 * Initialize Machine Checks for a CPU.
1645 */
__mcheck_cpu_cap_init(void)1646 static void __mcheck_cpu_cap_init(void)
1647 {
1648 u64 cap;
1649 u8 b;
1650
1651 rdmsrl(MSR_IA32_MCG_CAP, cap);
1652
1653 b = cap & MCG_BANKCNT_MASK;
1654
1655 if (b > MAX_NR_BANKS) {
1656 pr_warn("CPU%d: Using only %u machine check banks out of %u\n",
1657 smp_processor_id(), MAX_NR_BANKS, b);
1658 b = MAX_NR_BANKS;
1659 }
1660
1661 this_cpu_write(mce_num_banks, b);
1662
1663 __mcheck_cpu_mce_banks_init();
1664
1665 /* Use accurate RIP reporting if available. */
1666 if ((cap & MCG_EXT_P) && MCG_EXT_CNT(cap) >= 9)
1667 mca_cfg.rip_msr = MSR_IA32_MCG_EIP;
1668
1669 if (cap & MCG_SER_P)
1670 mca_cfg.ser = 1;
1671 }
1672
__mcheck_cpu_init_generic(void)1673 static void __mcheck_cpu_init_generic(void)
1674 {
1675 enum mcp_flags m_fl = 0;
1676 mce_banks_t all_banks;
1677 u64 cap;
1678
1679 if (!mca_cfg.bootlog)
1680 m_fl = MCP_DONTLOG;
1681
1682 /*
1683 * Log the machine checks left over from the previous reset. Log them
1684 * only, do not start processing them. That will happen in mcheck_late_init()
1685 * when all consumers have been registered on the notifier chain.
1686 */
1687 bitmap_fill(all_banks, MAX_NR_BANKS);
1688 machine_check_poll(MCP_UC | MCP_QUEUE_LOG | m_fl, &all_banks);
1689
1690 cr4_set_bits(X86_CR4_MCE);
1691
1692 rdmsrl(MSR_IA32_MCG_CAP, cap);
1693 if (cap & MCG_CTL_P)
1694 wrmsr(MSR_IA32_MCG_CTL, 0xffffffff, 0xffffffff);
1695 }
1696
__mcheck_cpu_init_clear_banks(void)1697 static void __mcheck_cpu_init_clear_banks(void)
1698 {
1699 struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
1700 int i;
1701
1702 for (i = 0; i < this_cpu_read(mce_num_banks); i++) {
1703 struct mce_bank *b = &mce_banks[i];
1704
1705 if (!b->init)
1706 continue;
1707 wrmsrl(msr_ops.ctl(i), b->ctl);
1708 wrmsrl(msr_ops.status(i), 0);
1709 }
1710 }
1711
1712 /*
1713 * Do a final check to see if there are any unused/RAZ banks.
1714 *
1715 * This must be done after the banks have been initialized and any quirks have
1716 * been applied.
1717 *
1718 * Do not call this from any user-initiated flows, e.g. CPU hotplug or sysfs.
1719 * Otherwise, a user who disables a bank will not be able to re-enable it
1720 * without a system reboot.
1721 */
__mcheck_cpu_check_banks(void)1722 static void __mcheck_cpu_check_banks(void)
1723 {
1724 struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
1725 u64 msrval;
1726 int i;
1727
1728 for (i = 0; i < this_cpu_read(mce_num_banks); i++) {
1729 struct mce_bank *b = &mce_banks[i];
1730
1731 if (!b->init)
1732 continue;
1733
1734 rdmsrl(msr_ops.ctl(i), msrval);
1735 b->init = !!msrval;
1736 }
1737 }
1738
1739 /*
1740 * During IFU recovery Sandy Bridge -EP4S processors set the RIPV and
1741 * EIPV bits in MCG_STATUS to zero on the affected logical processor (SDM
1742 * Vol 3B Table 15-20). But this confuses both the code that determines
1743 * whether the machine check occurred in kernel or user mode, and also
1744 * the severity assessment code. Pretend that EIPV was set, and take the
1745 * ip/cs values from the pt_regs that mce_gather_info() ignored earlier.
1746 */
quirk_sandybridge_ifu(int bank,struct mce * m,struct pt_regs * regs)1747 static void quirk_sandybridge_ifu(int bank, struct mce *m, struct pt_regs *regs)
1748 {
1749 if (bank != 0)
1750 return;
1751 if ((m->mcgstatus & (MCG_STATUS_EIPV|MCG_STATUS_RIPV)) != 0)
1752 return;
1753 if ((m->status & (MCI_STATUS_OVER|MCI_STATUS_UC|
1754 MCI_STATUS_EN|MCI_STATUS_MISCV|MCI_STATUS_ADDRV|
1755 MCI_STATUS_PCC|MCI_STATUS_S|MCI_STATUS_AR|
1756 MCACOD)) !=
1757 (MCI_STATUS_UC|MCI_STATUS_EN|
1758 MCI_STATUS_MISCV|MCI_STATUS_ADDRV|MCI_STATUS_S|
1759 MCI_STATUS_AR|MCACOD_INSTR))
1760 return;
1761
1762 m->mcgstatus |= MCG_STATUS_EIPV;
1763 m->ip = regs->ip;
1764 m->cs = regs->cs;
1765 }
1766
1767 /* Add per CPU specific workarounds here */
__mcheck_cpu_apply_quirks(struct cpuinfo_x86 * c)1768 static int __mcheck_cpu_apply_quirks(struct cpuinfo_x86 *c)
1769 {
1770 struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
1771 struct mca_config *cfg = &mca_cfg;
1772
1773 if (c->x86_vendor == X86_VENDOR_UNKNOWN) {
1774 pr_info("unknown CPU type - not enabling MCE support\n");
1775 return -EOPNOTSUPP;
1776 }
1777
1778 /* This should be disabled by the BIOS, but isn't always */
1779 if (c->x86_vendor == X86_VENDOR_AMD) {
1780 if (c->x86 == 15 && this_cpu_read(mce_num_banks) > 4) {
1781 /*
1782 * disable GART TBL walk error reporting, which
1783 * trips off incorrectly with the IOMMU & 3ware
1784 * & Cerberus:
1785 */
1786 clear_bit(10, (unsigned long *)&mce_banks[4].ctl);
1787 }
1788 if (c->x86 < 0x11 && cfg->bootlog < 0) {
1789 /*
1790 * Lots of broken BIOS around that don't clear them
1791 * by default and leave crap in there. Don't log:
1792 */
1793 cfg->bootlog = 0;
1794 }
1795 /*
1796 * Various K7s with broken bank 0 around. Always disable
1797 * by default.
1798 */
1799 if (c->x86 == 6 && this_cpu_read(mce_num_banks) > 0)
1800 mce_banks[0].ctl = 0;
1801
1802 /*
1803 * overflow_recov is supported for F15h Models 00h-0fh
1804 * even though we don't have a CPUID bit for it.
1805 */
1806 if (c->x86 == 0x15 && c->x86_model <= 0xf)
1807 mce_flags.overflow_recov = 1;
1808
1809 }
1810
1811 if (c->x86_vendor == X86_VENDOR_INTEL) {
1812 /*
1813 * SDM documents that on family 6 bank 0 should not be written
1814 * because it aliases to another special BIOS controlled
1815 * register.
1816 * But it's not aliased anymore on model 0x1a+
1817 * Don't ignore bank 0 completely because there could be a
1818 * valid event later, merely don't write CTL0.
1819 */
1820
1821 if (c->x86 == 6 && c->x86_model < 0x1A && this_cpu_read(mce_num_banks) > 0)
1822 mce_banks[0].init = 0;
1823
1824 /*
1825 * All newer Intel systems support MCE broadcasting. Enable
1826 * synchronization with a one second timeout.
1827 */
1828 if ((c->x86 > 6 || (c->x86 == 6 && c->x86_model >= 0xe)) &&
1829 cfg->monarch_timeout < 0)
1830 cfg->monarch_timeout = USEC_PER_SEC;
1831
1832 /*
1833 * There are also broken BIOSes on some Pentium M and
1834 * earlier systems:
1835 */
1836 if (c->x86 == 6 && c->x86_model <= 13 && cfg->bootlog < 0)
1837 cfg->bootlog = 0;
1838
1839 if (c->x86 == 6 && c->x86_model == 45)
1840 quirk_no_way_out = quirk_sandybridge_ifu;
1841 }
1842
1843 if (c->x86_vendor == X86_VENDOR_ZHAOXIN) {
1844 /*
1845 * All newer Zhaoxin CPUs support MCE broadcasting. Enable
1846 * synchronization with a one second timeout.
1847 */
1848 if (c->x86 > 6 || (c->x86_model == 0x19 || c->x86_model == 0x1f)) {
1849 if (cfg->monarch_timeout < 0)
1850 cfg->monarch_timeout = USEC_PER_SEC;
1851 }
1852 }
1853
1854 if (cfg->monarch_timeout < 0)
1855 cfg->monarch_timeout = 0;
1856 if (cfg->bootlog != 0)
1857 cfg->panic_timeout = 30;
1858
1859 return 0;
1860 }
1861
__mcheck_cpu_ancient_init(struct cpuinfo_x86 * c)1862 static int __mcheck_cpu_ancient_init(struct cpuinfo_x86 *c)
1863 {
1864 if (c->x86 != 5)
1865 return 0;
1866
1867 switch (c->x86_vendor) {
1868 case X86_VENDOR_INTEL:
1869 intel_p5_mcheck_init(c);
1870 return 1;
1871 break;
1872 case X86_VENDOR_CENTAUR:
1873 winchip_mcheck_init(c);
1874 return 1;
1875 break;
1876 default:
1877 return 0;
1878 }
1879
1880 return 0;
1881 }
1882
1883 /*
1884 * Init basic CPU features needed for early decoding of MCEs.
1885 */
__mcheck_cpu_init_early(struct cpuinfo_x86 * c)1886 static void __mcheck_cpu_init_early(struct cpuinfo_x86 *c)
1887 {
1888 if (c->x86_vendor == X86_VENDOR_AMD || c->x86_vendor == X86_VENDOR_HYGON) {
1889 mce_flags.overflow_recov = !!cpu_has(c, X86_FEATURE_OVERFLOW_RECOV);
1890 mce_flags.succor = !!cpu_has(c, X86_FEATURE_SUCCOR);
1891 mce_flags.smca = !!cpu_has(c, X86_FEATURE_SMCA);
1892 mce_flags.amd_threshold = 1;
1893
1894 if (mce_flags.smca) {
1895 msr_ops.ctl = smca_ctl_reg;
1896 msr_ops.status = smca_status_reg;
1897 msr_ops.addr = smca_addr_reg;
1898 msr_ops.misc = smca_misc_reg;
1899 }
1900 }
1901 }
1902
mce_centaur_feature_init(struct cpuinfo_x86 * c)1903 static void mce_centaur_feature_init(struct cpuinfo_x86 *c)
1904 {
1905 struct mca_config *cfg = &mca_cfg;
1906
1907 /*
1908 * All newer Centaur CPUs support MCE broadcasting. Enable
1909 * synchronization with a one second timeout.
1910 */
1911 if ((c->x86 == 6 && c->x86_model == 0xf && c->x86_stepping >= 0xe) ||
1912 c->x86 > 6) {
1913 if (cfg->monarch_timeout < 0)
1914 cfg->monarch_timeout = USEC_PER_SEC;
1915 }
1916 }
1917
mce_zhaoxin_feature_init(struct cpuinfo_x86 * c)1918 static void mce_zhaoxin_feature_init(struct cpuinfo_x86 *c)
1919 {
1920 struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
1921
1922 /*
1923 * These CPUs have MCA bank 8 which reports only one error type called
1924 * SVAD (System View Address Decoder). The reporting of that error is
1925 * controlled by IA32_MC8.CTL.0.
1926 *
1927 * If enabled, prefetching on these CPUs will cause SVAD MCE when
1928 * virtual machines start and result in a system panic. Always disable
1929 * bank 8 SVAD error by default.
1930 */
1931 if ((c->x86 == 7 && c->x86_model == 0x1b) ||
1932 (c->x86_model == 0x19 || c->x86_model == 0x1f)) {
1933 if (this_cpu_read(mce_num_banks) > 8)
1934 mce_banks[8].ctl = 0;
1935 }
1936
1937 intel_init_cmci();
1938 intel_init_lmce();
1939 mce_adjust_timer = cmci_intel_adjust_timer;
1940 }
1941
mce_zhaoxin_feature_clear(struct cpuinfo_x86 * c)1942 static void mce_zhaoxin_feature_clear(struct cpuinfo_x86 *c)
1943 {
1944 intel_clear_lmce();
1945 }
1946
__mcheck_cpu_init_vendor(struct cpuinfo_x86 * c)1947 static void __mcheck_cpu_init_vendor(struct cpuinfo_x86 *c)
1948 {
1949 switch (c->x86_vendor) {
1950 case X86_VENDOR_INTEL:
1951 mce_intel_feature_init(c);
1952 mce_adjust_timer = cmci_intel_adjust_timer;
1953 break;
1954
1955 case X86_VENDOR_AMD: {
1956 mce_amd_feature_init(c);
1957 break;
1958 }
1959
1960 case X86_VENDOR_HYGON:
1961 mce_hygon_feature_init(c);
1962 break;
1963
1964 case X86_VENDOR_CENTAUR:
1965 mce_centaur_feature_init(c);
1966 break;
1967
1968 case X86_VENDOR_ZHAOXIN:
1969 mce_zhaoxin_feature_init(c);
1970 break;
1971
1972 default:
1973 break;
1974 }
1975 }
1976
__mcheck_cpu_clear_vendor(struct cpuinfo_x86 * c)1977 static void __mcheck_cpu_clear_vendor(struct cpuinfo_x86 *c)
1978 {
1979 switch (c->x86_vendor) {
1980 case X86_VENDOR_INTEL:
1981 mce_intel_feature_clear(c);
1982 break;
1983
1984 case X86_VENDOR_ZHAOXIN:
1985 mce_zhaoxin_feature_clear(c);
1986 break;
1987
1988 default:
1989 break;
1990 }
1991 }
1992
mce_start_timer(struct timer_list * t)1993 static void mce_start_timer(struct timer_list *t)
1994 {
1995 unsigned long iv = check_interval * HZ;
1996
1997 if (mca_cfg.ignore_ce || !iv)
1998 return;
1999
2000 this_cpu_write(mce_next_interval, iv);
2001 __start_timer(t, iv);
2002 }
2003
__mcheck_cpu_setup_timer(void)2004 static void __mcheck_cpu_setup_timer(void)
2005 {
2006 struct timer_list *t = this_cpu_ptr(&mce_timer);
2007
2008 timer_setup(t, mce_timer_fn, TIMER_PINNED);
2009 }
2010
__mcheck_cpu_init_timer(void)2011 static void __mcheck_cpu_init_timer(void)
2012 {
2013 struct timer_list *t = this_cpu_ptr(&mce_timer);
2014
2015 timer_setup(t, mce_timer_fn, TIMER_PINNED);
2016 mce_start_timer(t);
2017 }
2018
filter_mce(struct mce * m)2019 bool filter_mce(struct mce *m)
2020 {
2021 if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD)
2022 return amd_filter_mce(m);
2023 if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL)
2024 return intel_filter_mce(m);
2025
2026 return false;
2027 }
2028
2029 /* Handle unconfigured int18 (should never happen) */
unexpected_machine_check(struct pt_regs * regs)2030 static noinstr void unexpected_machine_check(struct pt_regs *regs)
2031 {
2032 instrumentation_begin();
2033 pr_err("CPU#%d: Unexpected int18 (Machine Check)\n",
2034 smp_processor_id());
2035 instrumentation_end();
2036 }
2037
2038 /* Call the installed machine check handler for this CPU setup. */
2039 void (*machine_check_vector)(struct pt_regs *) = unexpected_machine_check;
2040
exc_machine_check_kernel(struct pt_regs * regs)2041 static __always_inline void exc_machine_check_kernel(struct pt_regs *regs)
2042 {
2043 irqentry_state_t irq_state;
2044
2045 WARN_ON_ONCE(user_mode(regs));
2046
2047 /*
2048 * Only required when from kernel mode. See
2049 * mce_check_crashing_cpu() for details.
2050 */
2051 if (machine_check_vector == do_machine_check &&
2052 mce_check_crashing_cpu())
2053 return;
2054
2055 irq_state = irqentry_nmi_enter(regs);
2056 /*
2057 * The call targets are marked noinstr, but objtool can't figure
2058 * that out because it's an indirect call. Annotate it.
2059 */
2060 instrumentation_begin();
2061 trace_hardirqs_off_finish();
2062 machine_check_vector(regs);
2063 if (regs->flags & X86_EFLAGS_IF)
2064 trace_hardirqs_on_prepare();
2065 instrumentation_end();
2066 irqentry_nmi_exit(regs, irq_state);
2067 }
2068
exc_machine_check_user(struct pt_regs * regs)2069 static __always_inline void exc_machine_check_user(struct pt_regs *regs)
2070 {
2071 irqentry_enter_from_user_mode(regs);
2072 instrumentation_begin();
2073 machine_check_vector(regs);
2074 instrumentation_end();
2075 irqentry_exit_to_user_mode(regs);
2076 }
2077
2078 #ifdef CONFIG_X86_64
2079 /* MCE hit kernel mode */
DEFINE_IDTENTRY_MCE(exc_machine_check)2080 DEFINE_IDTENTRY_MCE(exc_machine_check)
2081 {
2082 unsigned long dr7;
2083
2084 dr7 = local_db_save();
2085 exc_machine_check_kernel(regs);
2086 local_db_restore(dr7);
2087 }
2088
2089 /* The user mode variant. */
DEFINE_IDTENTRY_MCE_USER(exc_machine_check)2090 DEFINE_IDTENTRY_MCE_USER(exc_machine_check)
2091 {
2092 unsigned long dr7;
2093
2094 dr7 = local_db_save();
2095 exc_machine_check_user(regs);
2096 local_db_restore(dr7);
2097 }
2098 #else
2099 /* 32bit unified entry point */
DEFINE_IDTENTRY_RAW(exc_machine_check)2100 DEFINE_IDTENTRY_RAW(exc_machine_check)
2101 {
2102 unsigned long dr7;
2103
2104 dr7 = local_db_save();
2105 if (user_mode(regs))
2106 exc_machine_check_user(regs);
2107 else
2108 exc_machine_check_kernel(regs);
2109 local_db_restore(dr7);
2110 }
2111 #endif
2112
2113 /*
2114 * Called for each booted CPU to set up machine checks.
2115 * Must be called with preempt off:
2116 */
mcheck_cpu_init(struct cpuinfo_x86 * c)2117 void mcheck_cpu_init(struct cpuinfo_x86 *c)
2118 {
2119 if (mca_cfg.disabled)
2120 return;
2121
2122 if (__mcheck_cpu_ancient_init(c))
2123 return;
2124
2125 if (!mce_available(c))
2126 return;
2127
2128 __mcheck_cpu_cap_init();
2129
2130 if (__mcheck_cpu_apply_quirks(c) < 0) {
2131 mca_cfg.disabled = 1;
2132 return;
2133 }
2134
2135 if (mce_gen_pool_init()) {
2136 mca_cfg.disabled = 1;
2137 pr_emerg("Couldn't allocate MCE records pool!\n");
2138 return;
2139 }
2140
2141 machine_check_vector = do_machine_check;
2142
2143 __mcheck_cpu_init_early(c);
2144 __mcheck_cpu_init_generic();
2145 __mcheck_cpu_init_vendor(c);
2146 __mcheck_cpu_init_clear_banks();
2147 __mcheck_cpu_check_banks();
2148 __mcheck_cpu_setup_timer();
2149 }
2150
2151 /*
2152 * Called for each booted CPU to clear some machine checks opt-ins
2153 */
mcheck_cpu_clear(struct cpuinfo_x86 * c)2154 void mcheck_cpu_clear(struct cpuinfo_x86 *c)
2155 {
2156 if (mca_cfg.disabled)
2157 return;
2158
2159 if (!mce_available(c))
2160 return;
2161
2162 /*
2163 * Possibly to clear general settings generic to x86
2164 * __mcheck_cpu_clear_generic(c);
2165 */
2166 __mcheck_cpu_clear_vendor(c);
2167
2168 }
2169
__mce_disable_bank(void * arg)2170 static void __mce_disable_bank(void *arg)
2171 {
2172 int bank = *((int *)arg);
2173 __clear_bit(bank, this_cpu_ptr(mce_poll_banks));
2174 cmci_disable_bank(bank);
2175 }
2176
mce_disable_bank(int bank)2177 void mce_disable_bank(int bank)
2178 {
2179 if (bank >= this_cpu_read(mce_num_banks)) {
2180 pr_warn(FW_BUG
2181 "Ignoring request to disable invalid MCA bank %d.\n",
2182 bank);
2183 return;
2184 }
2185 set_bit(bank, mce_banks_ce_disabled);
2186 on_each_cpu(__mce_disable_bank, &bank, 1);
2187 }
2188
2189 /*
2190 * mce=off Disables machine check
2191 * mce=no_cmci Disables CMCI
2192 * mce=no_lmce Disables LMCE
2193 * mce=dont_log_ce Clears corrected events silently, no log created for CEs.
2194 * mce=print_all Print all machine check logs to console
2195 * mce=ignore_ce Disables polling and CMCI, corrected events are not cleared.
2196 * mce=TOLERANCELEVEL[,monarchtimeout] (number, see above)
2197 * monarchtimeout is how long to wait for other CPUs on machine
2198 * check, or 0 to not wait
2199 * mce=bootlog Log MCEs from before booting. Disabled by default on AMD Fam10h
2200 and older.
2201 * mce=nobootlog Don't log MCEs from before booting.
2202 * mce=bios_cmci_threshold Don't program the CMCI threshold
2203 * mce=recovery force enable copy_mc_fragile()
2204 */
mcheck_enable(char * str)2205 static int __init mcheck_enable(char *str)
2206 {
2207 struct mca_config *cfg = &mca_cfg;
2208
2209 if (*str == 0) {
2210 enable_p5_mce();
2211 return 1;
2212 }
2213 if (*str == '=')
2214 str++;
2215 if (!strcmp(str, "off"))
2216 cfg->disabled = 1;
2217 else if (!strcmp(str, "no_cmci"))
2218 cfg->cmci_disabled = true;
2219 else if (!strcmp(str, "no_lmce"))
2220 cfg->lmce_disabled = 1;
2221 else if (!strcmp(str, "dont_log_ce"))
2222 cfg->dont_log_ce = true;
2223 else if (!strcmp(str, "print_all"))
2224 cfg->print_all = true;
2225 else if (!strcmp(str, "ignore_ce"))
2226 cfg->ignore_ce = true;
2227 else if (!strcmp(str, "bootlog") || !strcmp(str, "nobootlog"))
2228 cfg->bootlog = (str[0] == 'b');
2229 else if (!strcmp(str, "bios_cmci_threshold"))
2230 cfg->bios_cmci_threshold = 1;
2231 else if (!strcmp(str, "recovery"))
2232 cfg->recovery = 1;
2233 else if (isdigit(str[0])) {
2234 if (get_option(&str, &cfg->tolerant) == 2)
2235 get_option(&str, &(cfg->monarch_timeout));
2236 } else {
2237 pr_info("mce argument %s ignored. Please use /sys\n", str);
2238 return 0;
2239 }
2240 return 1;
2241 }
2242 __setup("mce", mcheck_enable);
2243
mcheck_init(void)2244 int __init mcheck_init(void)
2245 {
2246 mcheck_intel_therm_init();
2247 mce_register_decode_chain(&early_nb);
2248 mce_register_decode_chain(&mce_uc_nb);
2249 mce_register_decode_chain(&mce_default_nb);
2250 mcheck_vendor_init_severity();
2251
2252 INIT_WORK(&mce_work, mce_gen_pool_process);
2253 init_irq_work(&mce_irq_work, mce_irq_work_cb);
2254
2255 return 0;
2256 }
2257
2258 /*
2259 * mce_syscore: PM support
2260 */
2261
2262 /*
2263 * Disable machine checks on suspend and shutdown. We can't really handle
2264 * them later.
2265 */
mce_disable_error_reporting(void)2266 static void mce_disable_error_reporting(void)
2267 {
2268 struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
2269 int i;
2270
2271 for (i = 0; i < this_cpu_read(mce_num_banks); i++) {
2272 struct mce_bank *b = &mce_banks[i];
2273
2274 if (b->init)
2275 wrmsrl(msr_ops.ctl(i), 0);
2276 }
2277 return;
2278 }
2279
vendor_disable_error_reporting(void)2280 static void vendor_disable_error_reporting(void)
2281 {
2282 /*
2283 * Don't clear on Intel or AMD or Hygon or Zhaoxin CPUs. Some of these
2284 * MSRs are socket-wide. Disabling them for just a single offlined CPU
2285 * is bad, since it will inhibit reporting for all shared resources on
2286 * the socket like the last level cache (LLC), the integrated memory
2287 * controller (iMC), etc.
2288 */
2289 if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL ||
2290 boot_cpu_data.x86_vendor == X86_VENDOR_HYGON ||
2291 boot_cpu_data.x86_vendor == X86_VENDOR_AMD ||
2292 boot_cpu_data.x86_vendor == X86_VENDOR_ZHAOXIN)
2293 return;
2294
2295 mce_disable_error_reporting();
2296 }
2297
mce_syscore_suspend(void)2298 static int mce_syscore_suspend(void)
2299 {
2300 vendor_disable_error_reporting();
2301 return 0;
2302 }
2303
mce_syscore_shutdown(void)2304 static void mce_syscore_shutdown(void)
2305 {
2306 vendor_disable_error_reporting();
2307 }
2308
2309 /*
2310 * On resume clear all MCE state. Don't want to see leftovers from the BIOS.
2311 * Only one CPU is active at this time, the others get re-added later using
2312 * CPU hotplug:
2313 */
mce_syscore_resume(void)2314 static void mce_syscore_resume(void)
2315 {
2316 __mcheck_cpu_init_generic();
2317 __mcheck_cpu_init_vendor(raw_cpu_ptr(&cpu_info));
2318 __mcheck_cpu_init_clear_banks();
2319 }
2320
2321 static struct syscore_ops mce_syscore_ops = {
2322 .suspend = mce_syscore_suspend,
2323 .shutdown = mce_syscore_shutdown,
2324 .resume = mce_syscore_resume,
2325 };
2326
2327 /*
2328 * mce_device: Sysfs support
2329 */
2330
mce_cpu_restart(void * data)2331 static void mce_cpu_restart(void *data)
2332 {
2333 if (!mce_available(raw_cpu_ptr(&cpu_info)))
2334 return;
2335 __mcheck_cpu_init_generic();
2336 __mcheck_cpu_init_clear_banks();
2337 __mcheck_cpu_init_timer();
2338 }
2339
2340 /* Reinit MCEs after user configuration changes */
mce_restart(void)2341 static void mce_restart(void)
2342 {
2343 mce_timer_delete_all();
2344 on_each_cpu(mce_cpu_restart, NULL, 1);
2345 }
2346
2347 /* Toggle features for corrected errors */
mce_disable_cmci(void * data)2348 static void mce_disable_cmci(void *data)
2349 {
2350 if (!mce_available(raw_cpu_ptr(&cpu_info)))
2351 return;
2352 cmci_clear();
2353 }
2354
mce_enable_ce(void * all)2355 static void mce_enable_ce(void *all)
2356 {
2357 if (!mce_available(raw_cpu_ptr(&cpu_info)))
2358 return;
2359 cmci_reenable();
2360 cmci_recheck();
2361 if (all)
2362 __mcheck_cpu_init_timer();
2363 }
2364
2365 static struct bus_type mce_subsys = {
2366 .name = "machinecheck",
2367 .dev_name = "machinecheck",
2368 };
2369
2370 DEFINE_PER_CPU(struct device *, mce_device);
2371
attr_to_bank(struct device_attribute * attr)2372 static inline struct mce_bank_dev *attr_to_bank(struct device_attribute *attr)
2373 {
2374 return container_of(attr, struct mce_bank_dev, attr);
2375 }
2376
show_bank(struct device * s,struct device_attribute * attr,char * buf)2377 static ssize_t show_bank(struct device *s, struct device_attribute *attr,
2378 char *buf)
2379 {
2380 u8 bank = attr_to_bank(attr)->bank;
2381 struct mce_bank *b;
2382
2383 if (bank >= per_cpu(mce_num_banks, s->id))
2384 return -EINVAL;
2385
2386 b = &per_cpu(mce_banks_array, s->id)[bank];
2387
2388 if (!b->init)
2389 return -ENODEV;
2390
2391 return sprintf(buf, "%llx\n", b->ctl);
2392 }
2393
set_bank(struct device * s,struct device_attribute * attr,const char * buf,size_t size)2394 static ssize_t set_bank(struct device *s, struct device_attribute *attr,
2395 const char *buf, size_t size)
2396 {
2397 u8 bank = attr_to_bank(attr)->bank;
2398 struct mce_bank *b;
2399 u64 new;
2400
2401 if (kstrtou64(buf, 0, &new) < 0)
2402 return -EINVAL;
2403
2404 if (bank >= per_cpu(mce_num_banks, s->id))
2405 return -EINVAL;
2406
2407 b = &per_cpu(mce_banks_array, s->id)[bank];
2408
2409 if (!b->init)
2410 return -ENODEV;
2411
2412 b->ctl = new;
2413 mce_restart();
2414
2415 return size;
2416 }
2417
set_ignore_ce(struct device * s,struct device_attribute * attr,const char * buf,size_t size)2418 static ssize_t set_ignore_ce(struct device *s,
2419 struct device_attribute *attr,
2420 const char *buf, size_t size)
2421 {
2422 u64 new;
2423
2424 if (kstrtou64(buf, 0, &new) < 0)
2425 return -EINVAL;
2426
2427 mutex_lock(&mce_sysfs_mutex);
2428 if (mca_cfg.ignore_ce ^ !!new) {
2429 if (new) {
2430 /* disable ce features */
2431 mce_timer_delete_all();
2432 on_each_cpu(mce_disable_cmci, NULL, 1);
2433 mca_cfg.ignore_ce = true;
2434 } else {
2435 /* enable ce features */
2436 mca_cfg.ignore_ce = false;
2437 on_each_cpu(mce_enable_ce, (void *)1, 1);
2438 }
2439 }
2440 mutex_unlock(&mce_sysfs_mutex);
2441
2442 return size;
2443 }
2444
set_cmci_disabled(struct device * s,struct device_attribute * attr,const char * buf,size_t size)2445 static ssize_t set_cmci_disabled(struct device *s,
2446 struct device_attribute *attr,
2447 const char *buf, size_t size)
2448 {
2449 u64 new;
2450
2451 if (kstrtou64(buf, 0, &new) < 0)
2452 return -EINVAL;
2453
2454 mutex_lock(&mce_sysfs_mutex);
2455 if (mca_cfg.cmci_disabled ^ !!new) {
2456 if (new) {
2457 /* disable cmci */
2458 on_each_cpu(mce_disable_cmci, NULL, 1);
2459 mca_cfg.cmci_disabled = true;
2460 } else {
2461 /* enable cmci */
2462 mca_cfg.cmci_disabled = false;
2463 on_each_cpu(mce_enable_ce, NULL, 1);
2464 }
2465 }
2466 mutex_unlock(&mce_sysfs_mutex);
2467
2468 return size;
2469 }
2470
store_int_with_restart(struct device * s,struct device_attribute * attr,const char * buf,size_t size)2471 static ssize_t store_int_with_restart(struct device *s,
2472 struct device_attribute *attr,
2473 const char *buf, size_t size)
2474 {
2475 unsigned long old_check_interval = check_interval;
2476 ssize_t ret = device_store_ulong(s, attr, buf, size);
2477
2478 if (check_interval == old_check_interval)
2479 return ret;
2480
2481 mutex_lock(&mce_sysfs_mutex);
2482 mce_restart();
2483 mutex_unlock(&mce_sysfs_mutex);
2484
2485 return ret;
2486 }
2487
2488 static DEVICE_INT_ATTR(tolerant, 0644, mca_cfg.tolerant);
2489 static DEVICE_INT_ATTR(monarch_timeout, 0644, mca_cfg.monarch_timeout);
2490 static DEVICE_BOOL_ATTR(dont_log_ce, 0644, mca_cfg.dont_log_ce);
2491 static DEVICE_BOOL_ATTR(print_all, 0644, mca_cfg.print_all);
2492
2493 static struct dev_ext_attribute dev_attr_check_interval = {
2494 __ATTR(check_interval, 0644, device_show_int, store_int_with_restart),
2495 &check_interval
2496 };
2497
2498 static struct dev_ext_attribute dev_attr_ignore_ce = {
2499 __ATTR(ignore_ce, 0644, device_show_bool, set_ignore_ce),
2500 &mca_cfg.ignore_ce
2501 };
2502
2503 static struct dev_ext_attribute dev_attr_cmci_disabled = {
2504 __ATTR(cmci_disabled, 0644, device_show_bool, set_cmci_disabled),
2505 &mca_cfg.cmci_disabled
2506 };
2507
2508 static struct device_attribute *mce_device_attrs[] = {
2509 &dev_attr_tolerant.attr,
2510 &dev_attr_check_interval.attr,
2511 #ifdef CONFIG_X86_MCELOG_LEGACY
2512 &dev_attr_trigger,
2513 #endif
2514 &dev_attr_monarch_timeout.attr,
2515 &dev_attr_dont_log_ce.attr,
2516 &dev_attr_print_all.attr,
2517 &dev_attr_ignore_ce.attr,
2518 &dev_attr_cmci_disabled.attr,
2519 NULL
2520 };
2521
2522 static cpumask_var_t mce_device_initialized;
2523
mce_device_release(struct device * dev)2524 static void mce_device_release(struct device *dev)
2525 {
2526 kfree(dev);
2527 }
2528
2529 /* Per CPU device init. All of the CPUs still share the same bank device: */
mce_device_create(unsigned int cpu)2530 static int mce_device_create(unsigned int cpu)
2531 {
2532 struct device *dev;
2533 int err;
2534 int i, j;
2535
2536 if (!mce_available(&boot_cpu_data))
2537 return -EIO;
2538
2539 dev = per_cpu(mce_device, cpu);
2540 if (dev)
2541 return 0;
2542
2543 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2544 if (!dev)
2545 return -ENOMEM;
2546 dev->id = cpu;
2547 dev->bus = &mce_subsys;
2548 dev->release = &mce_device_release;
2549
2550 err = device_register(dev);
2551 if (err) {
2552 put_device(dev);
2553 return err;
2554 }
2555
2556 for (i = 0; mce_device_attrs[i]; i++) {
2557 err = device_create_file(dev, mce_device_attrs[i]);
2558 if (err)
2559 goto error;
2560 }
2561 for (j = 0; j < per_cpu(mce_num_banks, cpu); j++) {
2562 err = device_create_file(dev, &mce_bank_devs[j].attr);
2563 if (err)
2564 goto error2;
2565 }
2566 cpumask_set_cpu(cpu, mce_device_initialized);
2567 per_cpu(mce_device, cpu) = dev;
2568
2569 return 0;
2570 error2:
2571 while (--j >= 0)
2572 device_remove_file(dev, &mce_bank_devs[j].attr);
2573 error:
2574 while (--i >= 0)
2575 device_remove_file(dev, mce_device_attrs[i]);
2576
2577 device_unregister(dev);
2578
2579 return err;
2580 }
2581
mce_device_remove(unsigned int cpu)2582 static void mce_device_remove(unsigned int cpu)
2583 {
2584 struct device *dev = per_cpu(mce_device, cpu);
2585 int i;
2586
2587 if (!cpumask_test_cpu(cpu, mce_device_initialized))
2588 return;
2589
2590 for (i = 0; mce_device_attrs[i]; i++)
2591 device_remove_file(dev, mce_device_attrs[i]);
2592
2593 for (i = 0; i < per_cpu(mce_num_banks, cpu); i++)
2594 device_remove_file(dev, &mce_bank_devs[i].attr);
2595
2596 device_unregister(dev);
2597 cpumask_clear_cpu(cpu, mce_device_initialized);
2598 per_cpu(mce_device, cpu) = NULL;
2599 }
2600
2601 /* Make sure there are no machine checks on offlined CPUs. */
mce_disable_cpu(void)2602 static void mce_disable_cpu(void)
2603 {
2604 if (!mce_available(raw_cpu_ptr(&cpu_info)))
2605 return;
2606
2607 if (!cpuhp_tasks_frozen)
2608 cmci_clear();
2609
2610 vendor_disable_error_reporting();
2611 }
2612
mce_reenable_cpu(void)2613 static void mce_reenable_cpu(void)
2614 {
2615 struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
2616 int i;
2617
2618 if (!mce_available(raw_cpu_ptr(&cpu_info)))
2619 return;
2620
2621 if (!cpuhp_tasks_frozen)
2622 cmci_reenable();
2623 for (i = 0; i < this_cpu_read(mce_num_banks); i++) {
2624 struct mce_bank *b = &mce_banks[i];
2625
2626 if (b->init)
2627 wrmsrl(msr_ops.ctl(i), b->ctl);
2628 }
2629 }
2630
mce_cpu_dead(unsigned int cpu)2631 static int mce_cpu_dead(unsigned int cpu)
2632 {
2633 mce_intel_hcpu_update(cpu);
2634
2635 /* intentionally ignoring frozen here */
2636 if (!cpuhp_tasks_frozen)
2637 cmci_rediscover();
2638 return 0;
2639 }
2640
mce_cpu_online(unsigned int cpu)2641 static int mce_cpu_online(unsigned int cpu)
2642 {
2643 struct timer_list *t = this_cpu_ptr(&mce_timer);
2644 int ret;
2645
2646 mce_device_create(cpu);
2647
2648 ret = mce_threshold_create_device(cpu);
2649 if (ret) {
2650 mce_device_remove(cpu);
2651 return ret;
2652 }
2653 mce_reenable_cpu();
2654 mce_start_timer(t);
2655 return 0;
2656 }
2657
mce_cpu_pre_down(unsigned int cpu)2658 static int mce_cpu_pre_down(unsigned int cpu)
2659 {
2660 struct timer_list *t = this_cpu_ptr(&mce_timer);
2661
2662 mce_disable_cpu();
2663 del_timer_sync(t);
2664 mce_threshold_remove_device(cpu);
2665 mce_device_remove(cpu);
2666 return 0;
2667 }
2668
mce_init_banks(void)2669 static __init void mce_init_banks(void)
2670 {
2671 int i;
2672
2673 for (i = 0; i < MAX_NR_BANKS; i++) {
2674 struct mce_bank_dev *b = &mce_bank_devs[i];
2675 struct device_attribute *a = &b->attr;
2676
2677 b->bank = i;
2678
2679 sysfs_attr_init(&a->attr);
2680 a->attr.name = b->attrname;
2681 snprintf(b->attrname, ATTR_LEN, "bank%d", i);
2682
2683 a->attr.mode = 0644;
2684 a->show = show_bank;
2685 a->store = set_bank;
2686 }
2687 }
2688
2689 /*
2690 * When running on XEN, this initcall is ordered against the XEN mcelog
2691 * initcall:
2692 *
2693 * device_initcall(xen_late_init_mcelog);
2694 * device_initcall_sync(mcheck_init_device);
2695 */
mcheck_init_device(void)2696 static __init int mcheck_init_device(void)
2697 {
2698 int err;
2699
2700 /*
2701 * Check if we have a spare virtual bit. This will only become
2702 * a problem if/when we move beyond 5-level page tables.
2703 */
2704 MAYBE_BUILD_BUG_ON(__VIRTUAL_MASK_SHIFT >= 63);
2705
2706 if (!mce_available(&boot_cpu_data)) {
2707 err = -EIO;
2708 goto err_out;
2709 }
2710
2711 if (!zalloc_cpumask_var(&mce_device_initialized, GFP_KERNEL)) {
2712 err = -ENOMEM;
2713 goto err_out;
2714 }
2715
2716 mce_init_banks();
2717
2718 err = subsys_system_register(&mce_subsys, NULL);
2719 if (err)
2720 goto err_out_mem;
2721
2722 err = cpuhp_setup_state(CPUHP_X86_MCE_DEAD, "x86/mce:dead", NULL,
2723 mce_cpu_dead);
2724 if (err)
2725 goto err_out_mem;
2726
2727 /*
2728 * Invokes mce_cpu_online() on all CPUs which are online when
2729 * the state is installed.
2730 */
2731 err = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "x86/mce:online",
2732 mce_cpu_online, mce_cpu_pre_down);
2733 if (err < 0)
2734 goto err_out_online;
2735
2736 register_syscore_ops(&mce_syscore_ops);
2737
2738 return 0;
2739
2740 err_out_online:
2741 cpuhp_remove_state(CPUHP_X86_MCE_DEAD);
2742
2743 err_out_mem:
2744 free_cpumask_var(mce_device_initialized);
2745
2746 err_out:
2747 pr_err("Unable to init MCE device (rc: %d)\n", err);
2748
2749 return err;
2750 }
2751 device_initcall_sync(mcheck_init_device);
2752
2753 /*
2754 * Old style boot options parsing. Only for compatibility.
2755 */
mcheck_disable(char * str)2756 static int __init mcheck_disable(char *str)
2757 {
2758 mca_cfg.disabled = 1;
2759 return 1;
2760 }
2761 __setup("nomce", mcheck_disable);
2762
2763 #ifdef CONFIG_DEBUG_FS
mce_get_debugfs_dir(void)2764 struct dentry *mce_get_debugfs_dir(void)
2765 {
2766 static struct dentry *dmce;
2767
2768 if (!dmce)
2769 dmce = debugfs_create_dir("mce", NULL);
2770
2771 return dmce;
2772 }
2773
mce_reset(void)2774 static void mce_reset(void)
2775 {
2776 cpu_missing = 0;
2777 atomic_set(&mce_fake_panicked, 0);
2778 atomic_set(&mce_executing, 0);
2779 atomic_set(&mce_callin, 0);
2780 atomic_set(&global_nwo, 0);
2781 }
2782
fake_panic_get(void * data,u64 * val)2783 static int fake_panic_get(void *data, u64 *val)
2784 {
2785 *val = fake_panic;
2786 return 0;
2787 }
2788
fake_panic_set(void * data,u64 val)2789 static int fake_panic_set(void *data, u64 val)
2790 {
2791 mce_reset();
2792 fake_panic = val;
2793 return 0;
2794 }
2795
2796 DEFINE_DEBUGFS_ATTRIBUTE(fake_panic_fops, fake_panic_get, fake_panic_set,
2797 "%llu\n");
2798
mcheck_debugfs_init(void)2799 static void __init mcheck_debugfs_init(void)
2800 {
2801 struct dentry *dmce;
2802
2803 dmce = mce_get_debugfs_dir();
2804 debugfs_create_file_unsafe("fake_panic", 0444, dmce, NULL,
2805 &fake_panic_fops);
2806 }
2807 #else
mcheck_debugfs_init(void)2808 static void __init mcheck_debugfs_init(void) { }
2809 #endif
2810
mcheck_late_init(void)2811 static int __init mcheck_late_init(void)
2812 {
2813 if (mca_cfg.recovery)
2814 enable_copy_mc_fragile();
2815
2816 mcheck_debugfs_init();
2817
2818 /*
2819 * Flush out everything that has been logged during early boot, now that
2820 * everything has been initialized (workqueues, decoders, ...).
2821 */
2822 mce_schedule_work();
2823
2824 return 0;
2825 }
2826 late_initcall(mcheck_late_init);
2827