• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  Copyright (C) 2009  Red Hat, Inc.
4  */
5 
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 
8 #include <linux/mm.h>
9 #include <linux/sched.h>
10 #include <linux/sched/coredump.h>
11 #include <linux/sched/numa_balancing.h>
12 #include <linux/highmem.h>
13 #include <linux/hugetlb.h>
14 #include <linux/mmu_notifier.h>
15 #include <linux/rmap.h>
16 #include <linux/swap.h>
17 #include <linux/shrinker.h>
18 #include <linux/mm_inline.h>
19 #include <linux/swapops.h>
20 #include <linux/dax.h>
21 #include <linux/khugepaged.h>
22 #include <linux/freezer.h>
23 #include <linux/pfn_t.h>
24 #include <linux/mman.h>
25 #include <linux/memremap.h>
26 #include <linux/pagemap.h>
27 #include <linux/debugfs.h>
28 #include <linux/migrate.h>
29 #include <linux/hashtable.h>
30 #include <linux/userfaultfd_k.h>
31 #include <linux/page_idle.h>
32 #include <linux/shmem_fs.h>
33 #include <linux/oom.h>
34 #include <linux/numa.h>
35 #include <linux/page_owner.h>
36 
37 #include <asm/tlb.h>
38 #include <asm/pgalloc.h>
39 #include "internal.h"
40 
41 /*
42  * By default, transparent hugepage support is disabled in order to avoid
43  * risking an increased memory footprint for applications that are not
44  * guaranteed to benefit from it. When transparent hugepage support is
45  * enabled, it is for all mappings, and khugepaged scans all mappings.
46  * Defrag is invoked by khugepaged hugepage allocations and by page faults
47  * for all hugepage allocations.
48  */
49 unsigned long transparent_hugepage_flags __read_mostly =
50 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
51 	(1<<TRANSPARENT_HUGEPAGE_FLAG)|
52 #endif
53 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
54 	(1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
55 #endif
56 	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
57 	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
58 	(1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
59 
60 static struct shrinker deferred_split_shrinker;
61 
62 static atomic_t huge_zero_refcount;
63 struct page *huge_zero_page __read_mostly;
64 unsigned long huge_zero_pfn __read_mostly = ~0UL;
65 
file_thp_enabled(struct vm_area_struct * vma)66 static inline bool file_thp_enabled(struct vm_area_struct *vma)
67 {
68 	return transhuge_vma_enabled(vma, vma->vm_flags) && vma->vm_file &&
69 	       !inode_is_open_for_write(vma->vm_file->f_inode) &&
70 	       (vma->vm_flags & VM_EXEC);
71 }
72 
transparent_hugepage_active(struct vm_area_struct * vma)73 bool transparent_hugepage_active(struct vm_area_struct *vma)
74 {
75 	/* The addr is used to check if the vma size fits */
76 	unsigned long addr = (vma->vm_end & HPAGE_PMD_MASK) - HPAGE_PMD_SIZE;
77 
78 	if (!transhuge_vma_suitable(vma, addr))
79 		return false;
80 	if (vma_is_anonymous(vma))
81 		return __transparent_hugepage_enabled(vma);
82 	if (vma_is_shmem(vma))
83 		return shmem_huge_enabled(vma);
84 	if (IS_ENABLED(CONFIG_READ_ONLY_THP_FOR_FS))
85 		return file_thp_enabled(vma);
86 
87 	return false;
88 }
89 
get_huge_zero_page(void)90 static struct page *get_huge_zero_page(void)
91 {
92 	struct page *zero_page;
93 retry:
94 	if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
95 		return READ_ONCE(huge_zero_page);
96 
97 	zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
98 			HPAGE_PMD_ORDER);
99 	if (!zero_page) {
100 		count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
101 		return NULL;
102 	}
103 	count_vm_event(THP_ZERO_PAGE_ALLOC);
104 	preempt_disable();
105 	if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
106 		preempt_enable();
107 		__free_pages(zero_page, compound_order(zero_page));
108 		goto retry;
109 	}
110 	WRITE_ONCE(huge_zero_pfn, page_to_pfn(zero_page));
111 
112 	/* We take additional reference here. It will be put back by shrinker */
113 	atomic_set(&huge_zero_refcount, 2);
114 	preempt_enable();
115 	return READ_ONCE(huge_zero_page);
116 }
117 
put_huge_zero_page(void)118 static void put_huge_zero_page(void)
119 {
120 	/*
121 	 * Counter should never go to zero here. Only shrinker can put
122 	 * last reference.
123 	 */
124 	BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
125 }
126 
mm_get_huge_zero_page(struct mm_struct * mm)127 struct page *mm_get_huge_zero_page(struct mm_struct *mm)
128 {
129 	if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
130 		return READ_ONCE(huge_zero_page);
131 
132 	if (!get_huge_zero_page())
133 		return NULL;
134 
135 	if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
136 		put_huge_zero_page();
137 
138 	return READ_ONCE(huge_zero_page);
139 }
140 
mm_put_huge_zero_page(struct mm_struct * mm)141 void mm_put_huge_zero_page(struct mm_struct *mm)
142 {
143 	if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
144 		put_huge_zero_page();
145 }
146 
shrink_huge_zero_page_count(struct shrinker * shrink,struct shrink_control * sc)147 static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
148 					struct shrink_control *sc)
149 {
150 	/* we can free zero page only if last reference remains */
151 	return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
152 }
153 
shrink_huge_zero_page_scan(struct shrinker * shrink,struct shrink_control * sc)154 static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
155 				       struct shrink_control *sc)
156 {
157 	if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
158 		struct page *zero_page = xchg(&huge_zero_page, NULL);
159 		BUG_ON(zero_page == NULL);
160 		WRITE_ONCE(huge_zero_pfn, ~0UL);
161 		__free_pages(zero_page, compound_order(zero_page));
162 		return HPAGE_PMD_NR;
163 	}
164 
165 	return 0;
166 }
167 
168 static struct shrinker huge_zero_page_shrinker = {
169 	.count_objects = shrink_huge_zero_page_count,
170 	.scan_objects = shrink_huge_zero_page_scan,
171 	.seeks = DEFAULT_SEEKS,
172 };
173 
174 #ifdef CONFIG_SYSFS
enabled_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)175 static ssize_t enabled_show(struct kobject *kobj,
176 			    struct kobj_attribute *attr, char *buf)
177 {
178 	if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
179 		return sprintf(buf, "[always] madvise never\n");
180 	else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags))
181 		return sprintf(buf, "always [madvise] never\n");
182 	else
183 		return sprintf(buf, "always madvise [never]\n");
184 }
185 
enabled_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)186 static ssize_t enabled_store(struct kobject *kobj,
187 			     struct kobj_attribute *attr,
188 			     const char *buf, size_t count)
189 {
190 	ssize_t ret = count;
191 
192 	if (sysfs_streq(buf, "always")) {
193 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
194 		set_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
195 	} else if (sysfs_streq(buf, "madvise")) {
196 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
197 		set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
198 	} else if (sysfs_streq(buf, "never")) {
199 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
200 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
201 	} else
202 		ret = -EINVAL;
203 
204 	if (ret > 0) {
205 		int err = start_stop_khugepaged();
206 		if (err)
207 			ret = err;
208 	}
209 	return ret;
210 }
211 static struct kobj_attribute enabled_attr =
212 	__ATTR(enabled, 0644, enabled_show, enabled_store);
213 
single_hugepage_flag_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf,enum transparent_hugepage_flag flag)214 ssize_t single_hugepage_flag_show(struct kobject *kobj,
215 				struct kobj_attribute *attr, char *buf,
216 				enum transparent_hugepage_flag flag)
217 {
218 	return sprintf(buf, "%d\n",
219 		       !!test_bit(flag, &transparent_hugepage_flags));
220 }
221 
single_hugepage_flag_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count,enum transparent_hugepage_flag flag)222 ssize_t single_hugepage_flag_store(struct kobject *kobj,
223 				 struct kobj_attribute *attr,
224 				 const char *buf, size_t count,
225 				 enum transparent_hugepage_flag flag)
226 {
227 	unsigned long value;
228 	int ret;
229 
230 	ret = kstrtoul(buf, 10, &value);
231 	if (ret < 0)
232 		return ret;
233 	if (value > 1)
234 		return -EINVAL;
235 
236 	if (value)
237 		set_bit(flag, &transparent_hugepage_flags);
238 	else
239 		clear_bit(flag, &transparent_hugepage_flags);
240 
241 	return count;
242 }
243 
defrag_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)244 static ssize_t defrag_show(struct kobject *kobj,
245 			   struct kobj_attribute *attr, char *buf)
246 {
247 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
248 		return sprintf(buf, "[always] defer defer+madvise madvise never\n");
249 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
250 		return sprintf(buf, "always [defer] defer+madvise madvise never\n");
251 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
252 		return sprintf(buf, "always defer [defer+madvise] madvise never\n");
253 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
254 		return sprintf(buf, "always defer defer+madvise [madvise] never\n");
255 	return sprintf(buf, "always defer defer+madvise madvise [never]\n");
256 }
257 
defrag_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)258 static ssize_t defrag_store(struct kobject *kobj,
259 			    struct kobj_attribute *attr,
260 			    const char *buf, size_t count)
261 {
262 	if (sysfs_streq(buf, "always")) {
263 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
264 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
265 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
266 		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
267 	} else if (sysfs_streq(buf, "defer+madvise")) {
268 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
269 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
270 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
271 		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
272 	} else if (sysfs_streq(buf, "defer")) {
273 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
274 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
275 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
276 		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
277 	} else if (sysfs_streq(buf, "madvise")) {
278 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
279 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
280 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
281 		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
282 	} else if (sysfs_streq(buf, "never")) {
283 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
284 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
285 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
286 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
287 	} else
288 		return -EINVAL;
289 
290 	return count;
291 }
292 static struct kobj_attribute defrag_attr =
293 	__ATTR(defrag, 0644, defrag_show, defrag_store);
294 
use_zero_page_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)295 static ssize_t use_zero_page_show(struct kobject *kobj,
296 		struct kobj_attribute *attr, char *buf)
297 {
298 	return single_hugepage_flag_show(kobj, attr, buf,
299 				TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
300 }
use_zero_page_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)301 static ssize_t use_zero_page_store(struct kobject *kobj,
302 		struct kobj_attribute *attr, const char *buf, size_t count)
303 {
304 	return single_hugepage_flag_store(kobj, attr, buf, count,
305 				 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
306 }
307 static struct kobj_attribute use_zero_page_attr =
308 	__ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
309 
hpage_pmd_size_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)310 static ssize_t hpage_pmd_size_show(struct kobject *kobj,
311 		struct kobj_attribute *attr, char *buf)
312 {
313 	return sprintf(buf, "%lu\n", HPAGE_PMD_SIZE);
314 }
315 static struct kobj_attribute hpage_pmd_size_attr =
316 	__ATTR_RO(hpage_pmd_size);
317 
318 static struct attribute *hugepage_attr[] = {
319 	&enabled_attr.attr,
320 	&defrag_attr.attr,
321 	&use_zero_page_attr.attr,
322 	&hpage_pmd_size_attr.attr,
323 #ifdef CONFIG_SHMEM
324 	&shmem_enabled_attr.attr,
325 #endif
326 	NULL,
327 };
328 
329 static const struct attribute_group hugepage_attr_group = {
330 	.attrs = hugepage_attr,
331 };
332 
hugepage_init_sysfs(struct kobject ** hugepage_kobj)333 static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
334 {
335 	int err;
336 
337 	*hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
338 	if (unlikely(!*hugepage_kobj)) {
339 		pr_err("failed to create transparent hugepage kobject\n");
340 		return -ENOMEM;
341 	}
342 
343 	err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
344 	if (err) {
345 		pr_err("failed to register transparent hugepage group\n");
346 		goto delete_obj;
347 	}
348 
349 	err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
350 	if (err) {
351 		pr_err("failed to register transparent hugepage group\n");
352 		goto remove_hp_group;
353 	}
354 
355 	return 0;
356 
357 remove_hp_group:
358 	sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
359 delete_obj:
360 	kobject_put(*hugepage_kobj);
361 	return err;
362 }
363 
hugepage_exit_sysfs(struct kobject * hugepage_kobj)364 static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
365 {
366 	sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
367 	sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
368 	kobject_put(hugepage_kobj);
369 }
370 #else
hugepage_init_sysfs(struct kobject ** hugepage_kobj)371 static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
372 {
373 	return 0;
374 }
375 
hugepage_exit_sysfs(struct kobject * hugepage_kobj)376 static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
377 {
378 }
379 #endif /* CONFIG_SYSFS */
380 
hugepage_init(void)381 static int __init hugepage_init(void)
382 {
383 	int err;
384 	struct kobject *hugepage_kobj;
385 
386 	if (!has_transparent_hugepage()) {
387 		/*
388 		 * Hardware doesn't support hugepages, hence disable
389 		 * DAX PMD support.
390 		 */
391 		transparent_hugepage_flags = 1 << TRANSPARENT_HUGEPAGE_NEVER_DAX;
392 		return -EINVAL;
393 	}
394 
395 	/*
396 	 * hugepages can't be allocated by the buddy allocator
397 	 */
398 	MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER >= MAX_ORDER);
399 	/*
400 	 * we use page->mapping and page->index in second tail page
401 	 * as list_head: assuming THP order >= 2
402 	 */
403 	MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);
404 
405 	err = hugepage_init_sysfs(&hugepage_kobj);
406 	if (err)
407 		goto err_sysfs;
408 
409 	err = khugepaged_init();
410 	if (err)
411 		goto err_slab;
412 
413 	err = register_shrinker(&huge_zero_page_shrinker);
414 	if (err)
415 		goto err_hzp_shrinker;
416 	err = register_shrinker(&deferred_split_shrinker);
417 	if (err)
418 		goto err_split_shrinker;
419 
420 	/*
421 	 * By default disable transparent hugepages on smaller systems,
422 	 * where the extra memory used could hurt more than TLB overhead
423 	 * is likely to save.  The admin can still enable it through /sys.
424 	 */
425 	if (totalram_pages() < (512 << (20 - PAGE_SHIFT))) {
426 		transparent_hugepage_flags = 0;
427 		return 0;
428 	}
429 
430 	err = start_stop_khugepaged();
431 	if (err)
432 		goto err_khugepaged;
433 
434 	return 0;
435 err_khugepaged:
436 	unregister_shrinker(&deferred_split_shrinker);
437 err_split_shrinker:
438 	unregister_shrinker(&huge_zero_page_shrinker);
439 err_hzp_shrinker:
440 	khugepaged_destroy();
441 err_slab:
442 	hugepage_exit_sysfs(hugepage_kobj);
443 err_sysfs:
444 	return err;
445 }
446 subsys_initcall(hugepage_init);
447 
setup_transparent_hugepage(char * str)448 static int __init setup_transparent_hugepage(char *str)
449 {
450 	int ret = 0;
451 	if (!str)
452 		goto out;
453 	if (!strcmp(str, "always")) {
454 		set_bit(TRANSPARENT_HUGEPAGE_FLAG,
455 			&transparent_hugepage_flags);
456 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
457 			  &transparent_hugepage_flags);
458 		ret = 1;
459 	} else if (!strcmp(str, "madvise")) {
460 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
461 			  &transparent_hugepage_flags);
462 		set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
463 			&transparent_hugepage_flags);
464 		ret = 1;
465 	} else if (!strcmp(str, "never")) {
466 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
467 			  &transparent_hugepage_flags);
468 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
469 			  &transparent_hugepage_flags);
470 		ret = 1;
471 	}
472 out:
473 	if (!ret)
474 		pr_warn("transparent_hugepage= cannot parse, ignored\n");
475 	return ret;
476 }
477 __setup("transparent_hugepage=", setup_transparent_hugepage);
478 
maybe_pmd_mkwrite(pmd_t pmd,struct vm_area_struct * vma)479 pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
480 {
481 	if (likely(vma->vm_flags & VM_WRITE))
482 		pmd = pmd_mkwrite(pmd);
483 	return pmd;
484 }
485 
486 #ifdef CONFIG_MEMCG
get_deferred_split_queue(struct page * page)487 static inline struct deferred_split *get_deferred_split_queue(struct page *page)
488 {
489 	struct mem_cgroup *memcg = compound_head(page)->mem_cgroup;
490 	struct pglist_data *pgdat = NODE_DATA(page_to_nid(page));
491 
492 	if (memcg)
493 		return &memcg->deferred_split_queue;
494 	else
495 		return &pgdat->deferred_split_queue;
496 }
497 #else
get_deferred_split_queue(struct page * page)498 static inline struct deferred_split *get_deferred_split_queue(struct page *page)
499 {
500 	struct pglist_data *pgdat = NODE_DATA(page_to_nid(page));
501 
502 	return &pgdat->deferred_split_queue;
503 }
504 #endif
505 
prep_transhuge_page(struct page * page)506 void prep_transhuge_page(struct page *page)
507 {
508 	/*
509 	 * we use page->mapping and page->indexlru in second tail page
510 	 * as list_head: assuming THP order >= 2
511 	 */
512 
513 	INIT_LIST_HEAD(page_deferred_list(page));
514 	set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR);
515 }
516 
is_transparent_hugepage(struct page * page)517 bool is_transparent_hugepage(struct page *page)
518 {
519 	if (!PageCompound(page))
520 		return false;
521 
522 	page = compound_head(page);
523 	return is_huge_zero_page(page) ||
524 	       page[1].compound_dtor == TRANSHUGE_PAGE_DTOR;
525 }
526 EXPORT_SYMBOL_GPL(is_transparent_hugepage);
527 
__thp_get_unmapped_area(struct file * filp,unsigned long addr,unsigned long len,loff_t off,unsigned long flags,unsigned long size)528 static unsigned long __thp_get_unmapped_area(struct file *filp,
529 		unsigned long addr, unsigned long len,
530 		loff_t off, unsigned long flags, unsigned long size)
531 {
532 	loff_t off_end = off + len;
533 	loff_t off_align = round_up(off, size);
534 	unsigned long len_pad, ret;
535 
536 	if (off_end <= off_align || (off_end - off_align) < size)
537 		return 0;
538 
539 	len_pad = len + size;
540 	if (len_pad < len || (off + len_pad) < off)
541 		return 0;
542 
543 	ret = current->mm->get_unmapped_area(filp, addr, len_pad,
544 					      off >> PAGE_SHIFT, flags);
545 
546 	/*
547 	 * The failure might be due to length padding. The caller will retry
548 	 * without the padding.
549 	 */
550 	if (IS_ERR_VALUE(ret))
551 		return 0;
552 
553 	/*
554 	 * Do not try to align to THP boundary if allocation at the address
555 	 * hint succeeds.
556 	 */
557 	if (ret == addr)
558 		return addr;
559 
560 	ret += (off - ret) & (size - 1);
561 	return ret;
562 }
563 
thp_get_unmapped_area(struct file * filp,unsigned long addr,unsigned long len,unsigned long pgoff,unsigned long flags)564 unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr,
565 		unsigned long len, unsigned long pgoff, unsigned long flags)
566 {
567 	unsigned long ret;
568 	loff_t off = (loff_t)pgoff << PAGE_SHIFT;
569 
570 	if (!IS_DAX(filp->f_mapping->host) || !IS_ENABLED(CONFIG_FS_DAX_PMD))
571 		goto out;
572 
573 	ret = __thp_get_unmapped_area(filp, addr, len, off, flags, PMD_SIZE);
574 	if (ret)
575 		return ret;
576 out:
577 	return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags);
578 }
579 EXPORT_SYMBOL_GPL(thp_get_unmapped_area);
580 
__do_huge_pmd_anonymous_page(struct vm_fault * vmf,struct page * page,gfp_t gfp)581 static vm_fault_t __do_huge_pmd_anonymous_page(struct vm_fault *vmf,
582 			struct page *page, gfp_t gfp)
583 {
584 	struct vm_area_struct *vma = vmf->vma;
585 	pgtable_t pgtable;
586 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
587 	vm_fault_t ret = 0;
588 
589 	VM_BUG_ON_PAGE(!PageCompound(page), page);
590 
591 	if (mem_cgroup_charge(page, vma->vm_mm, gfp)) {
592 		put_page(page);
593 		count_vm_event(THP_FAULT_FALLBACK);
594 		count_vm_event(THP_FAULT_FALLBACK_CHARGE);
595 		return VM_FAULT_FALLBACK;
596 	}
597 	cgroup_throttle_swaprate(page, gfp);
598 
599 	pgtable = pte_alloc_one(vma->vm_mm);
600 	if (unlikely(!pgtable)) {
601 		ret = VM_FAULT_OOM;
602 		goto release;
603 	}
604 
605 	clear_huge_page(page, vmf->address, HPAGE_PMD_NR);
606 	/*
607 	 * The memory barrier inside __SetPageUptodate makes sure that
608 	 * clear_huge_page writes become visible before the set_pmd_at()
609 	 * write.
610 	 */
611 	__SetPageUptodate(page);
612 
613 	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
614 	if (unlikely(!pmd_none(*vmf->pmd))) {
615 		goto unlock_release;
616 	} else {
617 		pmd_t entry;
618 
619 		ret = check_stable_address_space(vma->vm_mm);
620 		if (ret)
621 			goto unlock_release;
622 
623 		/* Deliver the page fault to userland */
624 		if (userfaultfd_missing(vma)) {
625 			vm_fault_t ret2;
626 
627 			spin_unlock(vmf->ptl);
628 			put_page(page);
629 			pte_free(vma->vm_mm, pgtable);
630 			ret2 = handle_userfault(vmf, VM_UFFD_MISSING);
631 			VM_BUG_ON(ret2 & VM_FAULT_FALLBACK);
632 			return ret2;
633 		}
634 
635 		entry = mk_huge_pmd(page, vma->vm_page_prot);
636 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
637 		page_add_new_anon_rmap(page, vma, haddr, true);
638 		lru_cache_add_inactive_or_unevictable(page, vma);
639 		pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
640 		set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
641 		add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
642 		mm_inc_nr_ptes(vma->vm_mm);
643 		spin_unlock(vmf->ptl);
644 		count_vm_event(THP_FAULT_ALLOC);
645 		count_memcg_event_mm(vma->vm_mm, THP_FAULT_ALLOC);
646 	}
647 
648 	return 0;
649 unlock_release:
650 	spin_unlock(vmf->ptl);
651 release:
652 	if (pgtable)
653 		pte_free(vma->vm_mm, pgtable);
654 	put_page(page);
655 	return ret;
656 
657 }
658 
659 /*
660  * always: directly stall for all thp allocations
661  * defer: wake kswapd and fail if not immediately available
662  * defer+madvise: wake kswapd and directly stall for MADV_HUGEPAGE, otherwise
663  *		  fail if not immediately available
664  * madvise: directly stall for MADV_HUGEPAGE, otherwise fail if not immediately
665  *	    available
666  * never: never stall for any thp allocation
667  */
alloc_hugepage_direct_gfpmask(struct vm_area_struct * vma)668 static inline gfp_t alloc_hugepage_direct_gfpmask(struct vm_area_struct *vma)
669 {
670 	const bool vma_madvised = !!(vma->vm_flags & VM_HUGEPAGE);
671 
672 	/* Always do synchronous compaction */
673 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
674 		return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY);
675 
676 	/* Kick kcompactd and fail quickly */
677 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
678 		return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM;
679 
680 	/* Synchronous compaction if madvised, otherwise kick kcompactd */
681 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
682 		return GFP_TRANSHUGE_LIGHT |
683 			(vma_madvised ? __GFP_DIRECT_RECLAIM :
684 					__GFP_KSWAPD_RECLAIM);
685 
686 	/* Only do synchronous compaction if madvised */
687 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
688 		return GFP_TRANSHUGE_LIGHT |
689 		       (vma_madvised ? __GFP_DIRECT_RECLAIM : 0);
690 
691 	return GFP_TRANSHUGE_LIGHT;
692 }
693 
694 /* Caller must hold page table lock. */
set_huge_zero_page(pgtable_t pgtable,struct mm_struct * mm,struct vm_area_struct * vma,unsigned long haddr,pmd_t * pmd,struct page * zero_page)695 static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
696 		struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
697 		struct page *zero_page)
698 {
699 	pmd_t entry;
700 	if (!pmd_none(*pmd))
701 		return false;
702 	entry = mk_pmd(zero_page, vma->vm_page_prot);
703 	entry = pmd_mkhuge(entry);
704 	if (pgtable)
705 		pgtable_trans_huge_deposit(mm, pmd, pgtable);
706 	set_pmd_at(mm, haddr, pmd, entry);
707 	mm_inc_nr_ptes(mm);
708 	return true;
709 }
710 
do_huge_pmd_anonymous_page(struct vm_fault * vmf)711 vm_fault_t do_huge_pmd_anonymous_page(struct vm_fault *vmf)
712 {
713 	struct vm_area_struct *vma = vmf->vma;
714 	gfp_t gfp;
715 	struct page *page;
716 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
717 
718 	if (!transhuge_vma_suitable(vma, haddr))
719 		return VM_FAULT_FALLBACK;
720 	if (unlikely(anon_vma_prepare(vma)))
721 		return VM_FAULT_OOM;
722 	if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
723 		return VM_FAULT_OOM;
724 	if (!(vmf->flags & FAULT_FLAG_WRITE) &&
725 			!mm_forbids_zeropage(vma->vm_mm) &&
726 			transparent_hugepage_use_zero_page()) {
727 		pgtable_t pgtable;
728 		struct page *zero_page;
729 		vm_fault_t ret;
730 		pgtable = pte_alloc_one(vma->vm_mm);
731 		if (unlikely(!pgtable))
732 			return VM_FAULT_OOM;
733 		zero_page = mm_get_huge_zero_page(vma->vm_mm);
734 		if (unlikely(!zero_page)) {
735 			pte_free(vma->vm_mm, pgtable);
736 			count_vm_event(THP_FAULT_FALLBACK);
737 			return VM_FAULT_FALLBACK;
738 		}
739 		vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
740 		ret = 0;
741 		if (pmd_none(*vmf->pmd)) {
742 			ret = check_stable_address_space(vma->vm_mm);
743 			if (ret) {
744 				spin_unlock(vmf->ptl);
745 				pte_free(vma->vm_mm, pgtable);
746 			} else if (userfaultfd_missing(vma)) {
747 				spin_unlock(vmf->ptl);
748 				pte_free(vma->vm_mm, pgtable);
749 				ret = handle_userfault(vmf, VM_UFFD_MISSING);
750 				VM_BUG_ON(ret & VM_FAULT_FALLBACK);
751 			} else {
752 				set_huge_zero_page(pgtable, vma->vm_mm, vma,
753 						   haddr, vmf->pmd, zero_page);
754 				spin_unlock(vmf->ptl);
755 			}
756 		} else {
757 			spin_unlock(vmf->ptl);
758 			pte_free(vma->vm_mm, pgtable);
759 		}
760 		return ret;
761 	}
762 	gfp = alloc_hugepage_direct_gfpmask(vma);
763 	page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER);
764 	if (unlikely(!page)) {
765 		count_vm_event(THP_FAULT_FALLBACK);
766 		return VM_FAULT_FALLBACK;
767 	}
768 	prep_transhuge_page(page);
769 	return __do_huge_pmd_anonymous_page(vmf, page, gfp);
770 }
771 
insert_pfn_pmd(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmd,pfn_t pfn,pgprot_t prot,bool write,pgtable_t pgtable)772 static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
773 		pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write,
774 		pgtable_t pgtable)
775 {
776 	struct mm_struct *mm = vma->vm_mm;
777 	pmd_t entry;
778 	spinlock_t *ptl;
779 
780 	ptl = pmd_lock(mm, pmd);
781 	if (!pmd_none(*pmd)) {
782 		if (write) {
783 			if (pmd_pfn(*pmd) != pfn_t_to_pfn(pfn)) {
784 				WARN_ON_ONCE(!is_huge_zero_pmd(*pmd));
785 				goto out_unlock;
786 			}
787 			entry = pmd_mkyoung(*pmd);
788 			entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
789 			if (pmdp_set_access_flags(vma, addr, pmd, entry, 1))
790 				update_mmu_cache_pmd(vma, addr, pmd);
791 		}
792 
793 		goto out_unlock;
794 	}
795 
796 	entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
797 	if (pfn_t_devmap(pfn))
798 		entry = pmd_mkdevmap(entry);
799 	if (write) {
800 		entry = pmd_mkyoung(pmd_mkdirty(entry));
801 		entry = maybe_pmd_mkwrite(entry, vma);
802 	}
803 
804 	if (pgtable) {
805 		pgtable_trans_huge_deposit(mm, pmd, pgtable);
806 		mm_inc_nr_ptes(mm);
807 		pgtable = NULL;
808 	}
809 
810 	set_pmd_at(mm, addr, pmd, entry);
811 	update_mmu_cache_pmd(vma, addr, pmd);
812 
813 out_unlock:
814 	spin_unlock(ptl);
815 	if (pgtable)
816 		pte_free(mm, pgtable);
817 }
818 
819 /**
820  * vmf_insert_pfn_pmd_prot - insert a pmd size pfn
821  * @vmf: Structure describing the fault
822  * @pfn: pfn to insert
823  * @pgprot: page protection to use
824  * @write: whether it's a write fault
825  *
826  * Insert a pmd size pfn. See vmf_insert_pfn() for additional info and
827  * also consult the vmf_insert_mixed_prot() documentation when
828  * @pgprot != @vmf->vma->vm_page_prot.
829  *
830  * Return: vm_fault_t value.
831  */
vmf_insert_pfn_pmd_prot(struct vm_fault * vmf,pfn_t pfn,pgprot_t pgprot,bool write)832 vm_fault_t vmf_insert_pfn_pmd_prot(struct vm_fault *vmf, pfn_t pfn,
833 				   pgprot_t pgprot, bool write)
834 {
835 	unsigned long addr = vmf->address & PMD_MASK;
836 	struct vm_area_struct *vma = vmf->vma;
837 	pgtable_t pgtable = NULL;
838 
839 	/*
840 	 * If we had pmd_special, we could avoid all these restrictions,
841 	 * but we need to be consistent with PTEs and architectures that
842 	 * can't support a 'special' bit.
843 	 */
844 	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
845 			!pfn_t_devmap(pfn));
846 	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
847 						(VM_PFNMAP|VM_MIXEDMAP));
848 	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
849 
850 	if (addr < vma->vm_start || addr >= vma->vm_end)
851 		return VM_FAULT_SIGBUS;
852 
853 	if (arch_needs_pgtable_deposit()) {
854 		pgtable = pte_alloc_one(vma->vm_mm);
855 		if (!pgtable)
856 			return VM_FAULT_OOM;
857 	}
858 
859 	track_pfn_insert(vma, &pgprot, pfn);
860 
861 	insert_pfn_pmd(vma, addr, vmf->pmd, pfn, pgprot, write, pgtable);
862 	return VM_FAULT_NOPAGE;
863 }
864 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd_prot);
865 
866 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
maybe_pud_mkwrite(pud_t pud,struct vm_area_struct * vma)867 static pud_t maybe_pud_mkwrite(pud_t pud, struct vm_area_struct *vma)
868 {
869 	if (likely(vma->vm_flags & VM_WRITE))
870 		pud = pud_mkwrite(pud);
871 	return pud;
872 }
873 
insert_pfn_pud(struct vm_area_struct * vma,unsigned long addr,pud_t * pud,pfn_t pfn,pgprot_t prot,bool write)874 static void insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
875 		pud_t *pud, pfn_t pfn, pgprot_t prot, bool write)
876 {
877 	struct mm_struct *mm = vma->vm_mm;
878 	pud_t entry;
879 	spinlock_t *ptl;
880 
881 	ptl = pud_lock(mm, pud);
882 	if (!pud_none(*pud)) {
883 		if (write) {
884 			if (pud_pfn(*pud) != pfn_t_to_pfn(pfn)) {
885 				WARN_ON_ONCE(!is_huge_zero_pud(*pud));
886 				goto out_unlock;
887 			}
888 			entry = pud_mkyoung(*pud);
889 			entry = maybe_pud_mkwrite(pud_mkdirty(entry), vma);
890 			if (pudp_set_access_flags(vma, addr, pud, entry, 1))
891 				update_mmu_cache_pud(vma, addr, pud);
892 		}
893 		goto out_unlock;
894 	}
895 
896 	entry = pud_mkhuge(pfn_t_pud(pfn, prot));
897 	if (pfn_t_devmap(pfn))
898 		entry = pud_mkdevmap(entry);
899 	if (write) {
900 		entry = pud_mkyoung(pud_mkdirty(entry));
901 		entry = maybe_pud_mkwrite(entry, vma);
902 	}
903 	set_pud_at(mm, addr, pud, entry);
904 	update_mmu_cache_pud(vma, addr, pud);
905 
906 out_unlock:
907 	spin_unlock(ptl);
908 }
909 
910 /**
911  * vmf_insert_pfn_pud_prot - insert a pud size pfn
912  * @vmf: Structure describing the fault
913  * @pfn: pfn to insert
914  * @pgprot: page protection to use
915  * @write: whether it's a write fault
916  *
917  * Insert a pud size pfn. See vmf_insert_pfn() for additional info and
918  * also consult the vmf_insert_mixed_prot() documentation when
919  * @pgprot != @vmf->vma->vm_page_prot.
920  *
921  * Return: vm_fault_t value.
922  */
vmf_insert_pfn_pud_prot(struct vm_fault * vmf,pfn_t pfn,pgprot_t pgprot,bool write)923 vm_fault_t vmf_insert_pfn_pud_prot(struct vm_fault *vmf, pfn_t pfn,
924 				   pgprot_t pgprot, bool write)
925 {
926 	unsigned long addr = vmf->address & PUD_MASK;
927 	struct vm_area_struct *vma = vmf->vma;
928 
929 	/*
930 	 * If we had pud_special, we could avoid all these restrictions,
931 	 * but we need to be consistent with PTEs and architectures that
932 	 * can't support a 'special' bit.
933 	 */
934 	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
935 			!pfn_t_devmap(pfn));
936 	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
937 						(VM_PFNMAP|VM_MIXEDMAP));
938 	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
939 
940 	if (addr < vma->vm_start || addr >= vma->vm_end)
941 		return VM_FAULT_SIGBUS;
942 
943 	track_pfn_insert(vma, &pgprot, pfn);
944 
945 	insert_pfn_pud(vma, addr, vmf->pud, pfn, pgprot, write);
946 	return VM_FAULT_NOPAGE;
947 }
948 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pud_prot);
949 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
950 
touch_pmd(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmd,int flags)951 static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
952 		pmd_t *pmd, int flags)
953 {
954 	pmd_t _pmd;
955 
956 	_pmd = pmd_mkyoung(*pmd);
957 	if (flags & FOLL_WRITE)
958 		_pmd = pmd_mkdirty(_pmd);
959 	if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
960 				pmd, _pmd, flags & FOLL_WRITE))
961 		update_mmu_cache_pmd(vma, addr, pmd);
962 }
963 
follow_devmap_pmd(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmd,int flags,struct dev_pagemap ** pgmap)964 struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
965 		pmd_t *pmd, int flags, struct dev_pagemap **pgmap)
966 {
967 	unsigned long pfn = pmd_pfn(*pmd);
968 	struct mm_struct *mm = vma->vm_mm;
969 	struct page *page;
970 
971 	assert_spin_locked(pmd_lockptr(mm, pmd));
972 
973 	/*
974 	 * When we COW a devmap PMD entry, we split it into PTEs, so we should
975 	 * not be in this function with `flags & FOLL_COW` set.
976 	 */
977 	WARN_ONCE(flags & FOLL_COW, "mm: In follow_devmap_pmd with FOLL_COW set");
978 
979 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
980 	if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
981 			 (FOLL_PIN | FOLL_GET)))
982 		return NULL;
983 
984 	if (flags & FOLL_WRITE && !pmd_write(*pmd))
985 		return NULL;
986 
987 	if (pmd_present(*pmd) && pmd_devmap(*pmd))
988 		/* pass */;
989 	else
990 		return NULL;
991 
992 	if (flags & FOLL_TOUCH)
993 		touch_pmd(vma, addr, pmd, flags);
994 
995 	/*
996 	 * device mapped pages can only be returned if the
997 	 * caller will manage the page reference count.
998 	 */
999 	if (!(flags & (FOLL_GET | FOLL_PIN)))
1000 		return ERR_PTR(-EEXIST);
1001 
1002 	pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
1003 	*pgmap = get_dev_pagemap(pfn, *pgmap);
1004 	if (!*pgmap)
1005 		return ERR_PTR(-EFAULT);
1006 	page = pfn_to_page(pfn);
1007 	if (!try_grab_page(page, flags))
1008 		page = ERR_PTR(-ENOMEM);
1009 
1010 	return page;
1011 }
1012 
copy_huge_pmd(struct mm_struct * dst_mm,struct mm_struct * src_mm,pmd_t * dst_pmd,pmd_t * src_pmd,unsigned long addr,struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma)1013 int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1014 		  pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
1015 		  struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1016 {
1017 	spinlock_t *dst_ptl, *src_ptl;
1018 	struct page *src_page;
1019 	pmd_t pmd;
1020 	pgtable_t pgtable = NULL;
1021 	int ret = -ENOMEM;
1022 
1023 	/* Skip if can be re-fill on fault */
1024 	if (!vma_is_anonymous(dst_vma))
1025 		return 0;
1026 
1027 	pgtable = pte_alloc_one(dst_mm);
1028 	if (unlikely(!pgtable))
1029 		goto out;
1030 
1031 	dst_ptl = pmd_lock(dst_mm, dst_pmd);
1032 	src_ptl = pmd_lockptr(src_mm, src_pmd);
1033 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1034 
1035 	ret = -EAGAIN;
1036 	pmd = *src_pmd;
1037 
1038 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1039 	if (unlikely(is_swap_pmd(pmd))) {
1040 		swp_entry_t entry = pmd_to_swp_entry(pmd);
1041 
1042 		VM_BUG_ON(!is_pmd_migration_entry(pmd));
1043 		if (is_write_migration_entry(entry)) {
1044 			make_migration_entry_read(&entry);
1045 			pmd = swp_entry_to_pmd(entry);
1046 			if (pmd_swp_soft_dirty(*src_pmd))
1047 				pmd = pmd_swp_mksoft_dirty(pmd);
1048 			if (pmd_swp_uffd_wp(*src_pmd))
1049 				pmd = pmd_swp_mkuffd_wp(pmd);
1050 			set_pmd_at(src_mm, addr, src_pmd, pmd);
1051 		}
1052 		add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1053 		mm_inc_nr_ptes(dst_mm);
1054 		pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1055 		if (!userfaultfd_wp(dst_vma))
1056 			pmd = pmd_swp_clear_uffd_wp(pmd);
1057 		set_pmd_at(dst_mm, addr, dst_pmd, pmd);
1058 		ret = 0;
1059 		goto out_unlock;
1060 	}
1061 #endif
1062 
1063 	if (unlikely(!pmd_trans_huge(pmd))) {
1064 		pte_free(dst_mm, pgtable);
1065 		goto out_unlock;
1066 	}
1067 	/*
1068 	 * When page table lock is held, the huge zero pmd should not be
1069 	 * under splitting since we don't split the page itself, only pmd to
1070 	 * a page table.
1071 	 */
1072 	if (is_huge_zero_pmd(pmd)) {
1073 		/*
1074 		 * get_huge_zero_page() will never allocate a new page here,
1075 		 * since we already have a zero page to copy. It just takes a
1076 		 * reference.
1077 		 */
1078 		mm_get_huge_zero_page(dst_mm);
1079 		goto out_zero_page;
1080 	}
1081 
1082 	src_page = pmd_page(pmd);
1083 	VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
1084 
1085 	/*
1086 	 * If this page is a potentially pinned page, split and retry the fault
1087 	 * with smaller page size.  Normally this should not happen because the
1088 	 * userspace should use MADV_DONTFORK upon pinned regions.  This is a
1089 	 * best effort that the pinned pages won't be replaced by another
1090 	 * random page during the coming copy-on-write.
1091 	 */
1092 	if (unlikely(is_cow_mapping(src_vma->vm_flags) &&
1093 		     atomic_read(&src_mm->has_pinned) &&
1094 		     page_maybe_dma_pinned(src_page))) {
1095 		pte_free(dst_mm, pgtable);
1096 		spin_unlock(src_ptl);
1097 		spin_unlock(dst_ptl);
1098 		__split_huge_pmd(src_vma, src_pmd, addr, false, NULL);
1099 		return -EAGAIN;
1100 	}
1101 
1102 	get_page(src_page);
1103 	page_dup_rmap(src_page, true);
1104 	add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1105 out_zero_page:
1106 	mm_inc_nr_ptes(dst_mm);
1107 	pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1108 	pmdp_set_wrprotect(src_mm, addr, src_pmd);
1109 	if (!userfaultfd_wp(dst_vma))
1110 		pmd = pmd_clear_uffd_wp(pmd);
1111 	pmd = pmd_mkold(pmd_wrprotect(pmd));
1112 	set_pmd_at(dst_mm, addr, dst_pmd, pmd);
1113 
1114 	ret = 0;
1115 out_unlock:
1116 	spin_unlock(src_ptl);
1117 	spin_unlock(dst_ptl);
1118 out:
1119 	return ret;
1120 }
1121 
1122 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
touch_pud(struct vm_area_struct * vma,unsigned long addr,pud_t * pud,int flags)1123 static void touch_pud(struct vm_area_struct *vma, unsigned long addr,
1124 		pud_t *pud, int flags)
1125 {
1126 	pud_t _pud;
1127 
1128 	_pud = pud_mkyoung(*pud);
1129 	if (flags & FOLL_WRITE)
1130 		_pud = pud_mkdirty(_pud);
1131 	if (pudp_set_access_flags(vma, addr & HPAGE_PUD_MASK,
1132 				pud, _pud, flags & FOLL_WRITE))
1133 		update_mmu_cache_pud(vma, addr, pud);
1134 }
1135 
follow_devmap_pud(struct vm_area_struct * vma,unsigned long addr,pud_t * pud,int flags,struct dev_pagemap ** pgmap)1136 struct page *follow_devmap_pud(struct vm_area_struct *vma, unsigned long addr,
1137 		pud_t *pud, int flags, struct dev_pagemap **pgmap)
1138 {
1139 	unsigned long pfn = pud_pfn(*pud);
1140 	struct mm_struct *mm = vma->vm_mm;
1141 	struct page *page;
1142 
1143 	assert_spin_locked(pud_lockptr(mm, pud));
1144 
1145 	if (flags & FOLL_WRITE && !pud_write(*pud))
1146 		return NULL;
1147 
1148 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
1149 	if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
1150 			 (FOLL_PIN | FOLL_GET)))
1151 		return NULL;
1152 
1153 	if (pud_present(*pud) && pud_devmap(*pud))
1154 		/* pass */;
1155 	else
1156 		return NULL;
1157 
1158 	if (flags & FOLL_TOUCH)
1159 		touch_pud(vma, addr, pud, flags);
1160 
1161 	/*
1162 	 * device mapped pages can only be returned if the
1163 	 * caller will manage the page reference count.
1164 	 *
1165 	 * At least one of FOLL_GET | FOLL_PIN must be set, so assert that here:
1166 	 */
1167 	if (!(flags & (FOLL_GET | FOLL_PIN)))
1168 		return ERR_PTR(-EEXIST);
1169 
1170 	pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT;
1171 	*pgmap = get_dev_pagemap(pfn, *pgmap);
1172 	if (!*pgmap)
1173 		return ERR_PTR(-EFAULT);
1174 	page = pfn_to_page(pfn);
1175 	if (!try_grab_page(page, flags))
1176 		page = ERR_PTR(-ENOMEM);
1177 
1178 	return page;
1179 }
1180 
copy_huge_pud(struct mm_struct * dst_mm,struct mm_struct * src_mm,pud_t * dst_pud,pud_t * src_pud,unsigned long addr,struct vm_area_struct * vma)1181 int copy_huge_pud(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1182 		  pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1183 		  struct vm_area_struct *vma)
1184 {
1185 	spinlock_t *dst_ptl, *src_ptl;
1186 	pud_t pud;
1187 	int ret;
1188 
1189 	dst_ptl = pud_lock(dst_mm, dst_pud);
1190 	src_ptl = pud_lockptr(src_mm, src_pud);
1191 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1192 
1193 	ret = -EAGAIN;
1194 	pud = *src_pud;
1195 	if (unlikely(!pud_trans_huge(pud) && !pud_devmap(pud)))
1196 		goto out_unlock;
1197 
1198 	/*
1199 	 * When page table lock is held, the huge zero pud should not be
1200 	 * under splitting since we don't split the page itself, only pud to
1201 	 * a page table.
1202 	 */
1203 	if (is_huge_zero_pud(pud)) {
1204 		/* No huge zero pud yet */
1205 	}
1206 
1207 	/* Please refer to comments in copy_huge_pmd() */
1208 	if (unlikely(is_cow_mapping(vma->vm_flags) &&
1209 		     atomic_read(&src_mm->has_pinned) &&
1210 		     page_maybe_dma_pinned(pud_page(pud)))) {
1211 		spin_unlock(src_ptl);
1212 		spin_unlock(dst_ptl);
1213 		__split_huge_pud(vma, src_pud, addr);
1214 		return -EAGAIN;
1215 	}
1216 
1217 	pudp_set_wrprotect(src_mm, addr, src_pud);
1218 	pud = pud_mkold(pud_wrprotect(pud));
1219 	set_pud_at(dst_mm, addr, dst_pud, pud);
1220 
1221 	ret = 0;
1222 out_unlock:
1223 	spin_unlock(src_ptl);
1224 	spin_unlock(dst_ptl);
1225 	return ret;
1226 }
1227 
huge_pud_set_accessed(struct vm_fault * vmf,pud_t orig_pud)1228 void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud)
1229 {
1230 	pud_t entry;
1231 	unsigned long haddr;
1232 	bool write = vmf->flags & FAULT_FLAG_WRITE;
1233 
1234 	vmf->ptl = pud_lock(vmf->vma->vm_mm, vmf->pud);
1235 	if (unlikely(!pud_same(*vmf->pud, orig_pud)))
1236 		goto unlock;
1237 
1238 	entry = pud_mkyoung(orig_pud);
1239 	if (write)
1240 		entry = pud_mkdirty(entry);
1241 	haddr = vmf->address & HPAGE_PUD_MASK;
1242 	if (pudp_set_access_flags(vmf->vma, haddr, vmf->pud, entry, write))
1243 		update_mmu_cache_pud(vmf->vma, vmf->address, vmf->pud);
1244 
1245 unlock:
1246 	spin_unlock(vmf->ptl);
1247 }
1248 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1249 
huge_pmd_set_accessed(struct vm_fault * vmf,pmd_t orig_pmd)1250 void huge_pmd_set_accessed(struct vm_fault *vmf, pmd_t orig_pmd)
1251 {
1252 	pmd_t entry;
1253 	unsigned long haddr;
1254 	bool write = vmf->flags & FAULT_FLAG_WRITE;
1255 
1256 	vmf->ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1257 	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1258 		goto unlock;
1259 
1260 	entry = pmd_mkyoung(orig_pmd);
1261 	if (write)
1262 		entry = pmd_mkdirty(entry);
1263 	haddr = vmf->address & HPAGE_PMD_MASK;
1264 	if (pmdp_set_access_flags(vmf->vma, haddr, vmf->pmd, entry, write))
1265 		update_mmu_cache_pmd(vmf->vma, vmf->address, vmf->pmd);
1266 
1267 unlock:
1268 	spin_unlock(vmf->ptl);
1269 }
1270 
do_huge_pmd_wp_page(struct vm_fault * vmf,pmd_t orig_pmd)1271 vm_fault_t do_huge_pmd_wp_page(struct vm_fault *vmf, pmd_t orig_pmd)
1272 {
1273 	struct vm_area_struct *vma = vmf->vma;
1274 	struct page *page;
1275 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1276 
1277 	vmf->ptl = pmd_lockptr(vma->vm_mm, vmf->pmd);
1278 	VM_BUG_ON_VMA(!vma->anon_vma, vma);
1279 
1280 	if (is_huge_zero_pmd(orig_pmd))
1281 		goto fallback;
1282 
1283 	spin_lock(vmf->ptl);
1284 
1285 	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1286 		spin_unlock(vmf->ptl);
1287 		return 0;
1288 	}
1289 
1290 	page = pmd_page(orig_pmd);
1291 	VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page);
1292 
1293 	/* Lock page for reuse_swap_page() */
1294 	if (!trylock_page(page)) {
1295 		get_page(page);
1296 		spin_unlock(vmf->ptl);
1297 		lock_page(page);
1298 		spin_lock(vmf->ptl);
1299 		if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1300 			spin_unlock(vmf->ptl);
1301 			unlock_page(page);
1302 			put_page(page);
1303 			return 0;
1304 		}
1305 		put_page(page);
1306 	}
1307 
1308 	/*
1309 	 * We can only reuse the page if nobody else maps the huge page or it's
1310 	 * part.
1311 	 */
1312 	if (reuse_swap_page(page, NULL)) {
1313 		pmd_t entry;
1314 		entry = pmd_mkyoung(orig_pmd);
1315 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1316 		if (pmdp_set_access_flags(vma, haddr, vmf->pmd, entry, 1))
1317 			update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1318 		unlock_page(page);
1319 		spin_unlock(vmf->ptl);
1320 		return VM_FAULT_WRITE;
1321 	}
1322 
1323 	unlock_page(page);
1324 	spin_unlock(vmf->ptl);
1325 fallback:
1326 	__split_huge_pmd(vma, vmf->pmd, vmf->address, false, NULL);
1327 	return VM_FAULT_FALLBACK;
1328 }
1329 
1330 /*
1331  * FOLL_FORCE can write to even unwritable pmd's, but only
1332  * after we've gone through a COW cycle and they are dirty.
1333  */
can_follow_write_pmd(pmd_t pmd,unsigned int flags)1334 static inline bool can_follow_write_pmd(pmd_t pmd, unsigned int flags)
1335 {
1336 	return pmd_write(pmd) ||
1337 	       ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pmd_dirty(pmd));
1338 }
1339 
follow_trans_huge_pmd(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmd,unsigned int flags)1340 struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
1341 				   unsigned long addr,
1342 				   pmd_t *pmd,
1343 				   unsigned int flags)
1344 {
1345 	struct mm_struct *mm = vma->vm_mm;
1346 	struct page *page = NULL;
1347 
1348 	assert_spin_locked(pmd_lockptr(mm, pmd));
1349 
1350 	if (flags & FOLL_WRITE && !can_follow_write_pmd(*pmd, flags))
1351 		goto out;
1352 
1353 	/* Avoid dumping huge zero page */
1354 	if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1355 		return ERR_PTR(-EFAULT);
1356 
1357 	/* Full NUMA hinting faults to serialise migration in fault paths */
1358 	if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
1359 		goto out;
1360 
1361 	page = pmd_page(*pmd);
1362 	VM_BUG_ON_PAGE(!PageHead(page) && !is_zone_device_page(page), page);
1363 
1364 	if (!try_grab_page(page, flags))
1365 		return ERR_PTR(-ENOMEM);
1366 
1367 	if (flags & FOLL_TOUCH)
1368 		touch_pmd(vma, addr, pmd, flags);
1369 
1370 	if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1371 		/*
1372 		 * We don't mlock() pte-mapped THPs. This way we can avoid
1373 		 * leaking mlocked pages into non-VM_LOCKED VMAs.
1374 		 *
1375 		 * For anon THP:
1376 		 *
1377 		 * In most cases the pmd is the only mapping of the page as we
1378 		 * break COW for the mlock() -- see gup_flags |= FOLL_WRITE for
1379 		 * writable private mappings in populate_vma_page_range().
1380 		 *
1381 		 * The only scenario when we have the page shared here is if we
1382 		 * mlocking read-only mapping shared over fork(). We skip
1383 		 * mlocking such pages.
1384 		 *
1385 		 * For file THP:
1386 		 *
1387 		 * We can expect PageDoubleMap() to be stable under page lock:
1388 		 * for file pages we set it in page_add_file_rmap(), which
1389 		 * requires page to be locked.
1390 		 */
1391 
1392 		if (PageAnon(page) && compound_mapcount(page) != 1)
1393 			goto skip_mlock;
1394 		if (PageDoubleMap(page) || !page->mapping)
1395 			goto skip_mlock;
1396 		if (!trylock_page(page))
1397 			goto skip_mlock;
1398 		if (page->mapping && !PageDoubleMap(page))
1399 			mlock_vma_page(page);
1400 		unlock_page(page);
1401 	}
1402 skip_mlock:
1403 	page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1404 	VM_BUG_ON_PAGE(!PageCompound(page) && !is_zone_device_page(page), page);
1405 
1406 out:
1407 	return page;
1408 }
1409 
1410 /* NUMA hinting page fault entry point for trans huge pmds */
do_huge_pmd_numa_page(struct vm_fault * vmf,pmd_t pmd)1411 vm_fault_t do_huge_pmd_numa_page(struct vm_fault *vmf, pmd_t pmd)
1412 {
1413 	struct vm_area_struct *vma = vmf->vma;
1414 	struct anon_vma *anon_vma = NULL;
1415 	struct page *page;
1416 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1417 	int page_nid = NUMA_NO_NODE, this_nid = numa_node_id();
1418 	int target_nid, last_cpupid = -1;
1419 	bool page_locked;
1420 	bool migrated = false;
1421 	bool was_writable;
1422 	int flags = 0;
1423 
1424 	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1425 	if (unlikely(!pmd_same(pmd, *vmf->pmd)))
1426 		goto out_unlock;
1427 
1428 	/*
1429 	 * If there are potential migrations, wait for completion and retry
1430 	 * without disrupting NUMA hinting information. Do not relock and
1431 	 * check_same as the page may no longer be mapped.
1432 	 */
1433 	if (unlikely(pmd_trans_migrating(*vmf->pmd))) {
1434 		page = pmd_page(*vmf->pmd);
1435 		if (!get_page_unless_zero(page))
1436 			goto out_unlock;
1437 		spin_unlock(vmf->ptl);
1438 		put_and_wait_on_page_locked(page);
1439 		goto out;
1440 	}
1441 
1442 	page = pmd_page(pmd);
1443 	BUG_ON(is_huge_zero_page(page));
1444 	page_nid = page_to_nid(page);
1445 	last_cpupid = page_cpupid_last(page);
1446 	count_vm_numa_event(NUMA_HINT_FAULTS);
1447 	if (page_nid == this_nid) {
1448 		count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
1449 		flags |= TNF_FAULT_LOCAL;
1450 	}
1451 
1452 	/* See similar comment in do_numa_page for explanation */
1453 	if (!pmd_savedwrite(pmd))
1454 		flags |= TNF_NO_GROUP;
1455 
1456 	/*
1457 	 * Acquire the page lock to serialise THP migrations but avoid dropping
1458 	 * page_table_lock if at all possible
1459 	 */
1460 	page_locked = trylock_page(page);
1461 	target_nid = mpol_misplaced(page, vma, haddr);
1462 	if (target_nid == NUMA_NO_NODE) {
1463 		/* If the page was locked, there are no parallel migrations */
1464 		if (page_locked)
1465 			goto clear_pmdnuma;
1466 	}
1467 
1468 	/* Migration could have started since the pmd_trans_migrating check */
1469 	if (!page_locked) {
1470 		page_nid = NUMA_NO_NODE;
1471 		if (!get_page_unless_zero(page))
1472 			goto out_unlock;
1473 		spin_unlock(vmf->ptl);
1474 		put_and_wait_on_page_locked(page);
1475 		goto out;
1476 	}
1477 
1478 	/*
1479 	 * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
1480 	 * to serialises splits
1481 	 */
1482 	get_page(page);
1483 	spin_unlock(vmf->ptl);
1484 	anon_vma = page_lock_anon_vma_read(page);
1485 
1486 	/* Confirm the PMD did not change while page_table_lock was released */
1487 	spin_lock(vmf->ptl);
1488 	if (unlikely(!pmd_same(pmd, *vmf->pmd))) {
1489 		unlock_page(page);
1490 		put_page(page);
1491 		page_nid = NUMA_NO_NODE;
1492 		goto out_unlock;
1493 	}
1494 
1495 	/* Bail if we fail to protect against THP splits for any reason */
1496 	if (unlikely(!anon_vma)) {
1497 		put_page(page);
1498 		page_nid = NUMA_NO_NODE;
1499 		goto clear_pmdnuma;
1500 	}
1501 
1502 	/*
1503 	 * Since we took the NUMA fault, we must have observed the !accessible
1504 	 * bit. Make sure all other CPUs agree with that, to avoid them
1505 	 * modifying the page we're about to migrate.
1506 	 *
1507 	 * Must be done under PTL such that we'll observe the relevant
1508 	 * inc_tlb_flush_pending().
1509 	 *
1510 	 * We are not sure a pending tlb flush here is for a huge page
1511 	 * mapping or not. Hence use the tlb range variant
1512 	 */
1513 	if (mm_tlb_flush_pending(vma->vm_mm)) {
1514 		flush_tlb_range(vma, haddr, haddr + HPAGE_PMD_SIZE);
1515 		/*
1516 		 * change_huge_pmd() released the pmd lock before
1517 		 * invalidating the secondary MMUs sharing the primary
1518 		 * MMU pagetables (with ->invalidate_range()). The
1519 		 * mmu_notifier_invalidate_range_end() (which
1520 		 * internally calls ->invalidate_range()) in
1521 		 * change_pmd_range() will run after us, so we can't
1522 		 * rely on it here and we need an explicit invalidate.
1523 		 */
1524 		mmu_notifier_invalidate_range(vma->vm_mm, haddr,
1525 					      haddr + HPAGE_PMD_SIZE);
1526 	}
1527 
1528 	/*
1529 	 * Migrate the THP to the requested node, returns with page unlocked
1530 	 * and access rights restored.
1531 	 */
1532 	spin_unlock(vmf->ptl);
1533 
1534 	migrated = migrate_misplaced_transhuge_page(vma->vm_mm, vma,
1535 				vmf->pmd, pmd, vmf->address, page, target_nid);
1536 	if (migrated) {
1537 		flags |= TNF_MIGRATED;
1538 		page_nid = target_nid;
1539 	} else
1540 		flags |= TNF_MIGRATE_FAIL;
1541 
1542 	goto out;
1543 clear_pmdnuma:
1544 	BUG_ON(!PageLocked(page));
1545 	was_writable = pmd_savedwrite(pmd);
1546 	pmd = pmd_modify(pmd, vma->vm_page_prot);
1547 	pmd = pmd_mkyoung(pmd);
1548 	if (was_writable)
1549 		pmd = pmd_mkwrite(pmd);
1550 	set_pmd_at(vma->vm_mm, haddr, vmf->pmd, pmd);
1551 	update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1552 	unlock_page(page);
1553 out_unlock:
1554 	spin_unlock(vmf->ptl);
1555 
1556 out:
1557 	if (anon_vma)
1558 		page_unlock_anon_vma_read(anon_vma);
1559 
1560 	if (page_nid != NUMA_NO_NODE)
1561 		task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR,
1562 				flags);
1563 
1564 	return 0;
1565 }
1566 
1567 /*
1568  * Return true if we do MADV_FREE successfully on entire pmd page.
1569  * Otherwise, return false.
1570  */
madvise_free_huge_pmd(struct mmu_gather * tlb,struct vm_area_struct * vma,pmd_t * pmd,unsigned long addr,unsigned long next)1571 bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1572 		pmd_t *pmd, unsigned long addr, unsigned long next)
1573 {
1574 	spinlock_t *ptl;
1575 	pmd_t orig_pmd;
1576 	struct page *page;
1577 	struct mm_struct *mm = tlb->mm;
1578 	bool ret = false;
1579 
1580 	tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
1581 
1582 	ptl = pmd_trans_huge_lock(pmd, vma);
1583 	if (!ptl)
1584 		goto out_unlocked;
1585 
1586 	orig_pmd = *pmd;
1587 	if (is_huge_zero_pmd(orig_pmd))
1588 		goto out;
1589 
1590 	if (unlikely(!pmd_present(orig_pmd))) {
1591 		VM_BUG_ON(thp_migration_supported() &&
1592 				  !is_pmd_migration_entry(orig_pmd));
1593 		goto out;
1594 	}
1595 
1596 	page = pmd_page(orig_pmd);
1597 	/*
1598 	 * If other processes are mapping this page, we couldn't discard
1599 	 * the page unless they all do MADV_FREE so let's skip the page.
1600 	 */
1601 	if (total_mapcount(page) != 1)
1602 		goto out;
1603 
1604 	if (!trylock_page(page))
1605 		goto out;
1606 
1607 	/*
1608 	 * If user want to discard part-pages of THP, split it so MADV_FREE
1609 	 * will deactivate only them.
1610 	 */
1611 	if (next - addr != HPAGE_PMD_SIZE) {
1612 		get_page(page);
1613 		spin_unlock(ptl);
1614 		split_huge_page(page);
1615 		unlock_page(page);
1616 		put_page(page);
1617 		goto out_unlocked;
1618 	}
1619 
1620 	if (PageDirty(page))
1621 		ClearPageDirty(page);
1622 	unlock_page(page);
1623 
1624 	if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
1625 		pmdp_invalidate(vma, addr, pmd);
1626 		orig_pmd = pmd_mkold(orig_pmd);
1627 		orig_pmd = pmd_mkclean(orig_pmd);
1628 
1629 		set_pmd_at(mm, addr, pmd, orig_pmd);
1630 		tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1631 	}
1632 
1633 	mark_page_lazyfree(page);
1634 	ret = true;
1635 out:
1636 	spin_unlock(ptl);
1637 out_unlocked:
1638 	return ret;
1639 }
1640 
zap_deposited_table(struct mm_struct * mm,pmd_t * pmd)1641 static inline void zap_deposited_table(struct mm_struct *mm, pmd_t *pmd)
1642 {
1643 	pgtable_t pgtable;
1644 
1645 	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1646 	pte_free(mm, pgtable);
1647 	mm_dec_nr_ptes(mm);
1648 }
1649 
zap_huge_pmd(struct mmu_gather * tlb,struct vm_area_struct * vma,pmd_t * pmd,unsigned long addr)1650 int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1651 		 pmd_t *pmd, unsigned long addr)
1652 {
1653 	pmd_t orig_pmd;
1654 	spinlock_t *ptl;
1655 
1656 	tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
1657 
1658 	ptl = __pmd_trans_huge_lock(pmd, vma);
1659 	if (!ptl)
1660 		return 0;
1661 	/*
1662 	 * For architectures like ppc64 we look at deposited pgtable
1663 	 * when calling pmdp_huge_get_and_clear. So do the
1664 	 * pgtable_trans_huge_withdraw after finishing pmdp related
1665 	 * operations.
1666 	 */
1667 	orig_pmd = pmdp_huge_get_and_clear_full(vma, addr, pmd,
1668 						tlb->fullmm);
1669 	tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1670 	if (vma_is_special_huge(vma)) {
1671 		if (arch_needs_pgtable_deposit())
1672 			zap_deposited_table(tlb->mm, pmd);
1673 		spin_unlock(ptl);
1674 		if (is_huge_zero_pmd(orig_pmd))
1675 			tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
1676 	} else if (is_huge_zero_pmd(orig_pmd)) {
1677 		zap_deposited_table(tlb->mm, pmd);
1678 		spin_unlock(ptl);
1679 		tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
1680 	} else {
1681 		struct page *page = NULL;
1682 		int flush_needed = 1;
1683 
1684 		if (pmd_present(orig_pmd)) {
1685 			page = pmd_page(orig_pmd);
1686 			page_remove_rmap(page, true);
1687 			VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
1688 			VM_BUG_ON_PAGE(!PageHead(page), page);
1689 		} else if (thp_migration_supported()) {
1690 			swp_entry_t entry;
1691 
1692 			VM_BUG_ON(!is_pmd_migration_entry(orig_pmd));
1693 			entry = pmd_to_swp_entry(orig_pmd);
1694 			page = pfn_to_page(swp_offset(entry));
1695 			flush_needed = 0;
1696 		} else
1697 			WARN_ONCE(1, "Non present huge pmd without pmd migration enabled!");
1698 
1699 		if (PageAnon(page)) {
1700 			zap_deposited_table(tlb->mm, pmd);
1701 			add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1702 		} else {
1703 			if (arch_needs_pgtable_deposit())
1704 				zap_deposited_table(tlb->mm, pmd);
1705 			add_mm_counter(tlb->mm, mm_counter_file(page), -HPAGE_PMD_NR);
1706 		}
1707 
1708 		spin_unlock(ptl);
1709 		if (flush_needed)
1710 			tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE);
1711 	}
1712 	return 1;
1713 }
1714 
1715 #ifndef pmd_move_must_withdraw
pmd_move_must_withdraw(spinlock_t * new_pmd_ptl,spinlock_t * old_pmd_ptl,struct vm_area_struct * vma)1716 static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl,
1717 					 spinlock_t *old_pmd_ptl,
1718 					 struct vm_area_struct *vma)
1719 {
1720 	/*
1721 	 * With split pmd lock we also need to move preallocated
1722 	 * PTE page table if new_pmd is on different PMD page table.
1723 	 *
1724 	 * We also don't deposit and withdraw tables for file pages.
1725 	 */
1726 	return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma);
1727 }
1728 #endif
1729 
move_soft_dirty_pmd(pmd_t pmd)1730 static pmd_t move_soft_dirty_pmd(pmd_t pmd)
1731 {
1732 #ifdef CONFIG_MEM_SOFT_DIRTY
1733 	if (unlikely(is_pmd_migration_entry(pmd)))
1734 		pmd = pmd_swp_mksoft_dirty(pmd);
1735 	else if (pmd_present(pmd))
1736 		pmd = pmd_mksoft_dirty(pmd);
1737 #endif
1738 	return pmd;
1739 }
1740 
move_huge_pmd(struct vm_area_struct * vma,unsigned long old_addr,unsigned long new_addr,pmd_t * old_pmd,pmd_t * new_pmd)1741 bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
1742 		  unsigned long new_addr, pmd_t *old_pmd, pmd_t *new_pmd)
1743 {
1744 	spinlock_t *old_ptl, *new_ptl;
1745 	pmd_t pmd;
1746 	struct mm_struct *mm = vma->vm_mm;
1747 	bool force_flush = false;
1748 
1749 	/*
1750 	 * The destination pmd shouldn't be established, free_pgtables()
1751 	 * should have release it.
1752 	 */
1753 	if (WARN_ON(!pmd_none(*new_pmd))) {
1754 		VM_BUG_ON(pmd_trans_huge(*new_pmd));
1755 		return false;
1756 	}
1757 
1758 	/*
1759 	 * We don't have to worry about the ordering of src and dst
1760 	 * ptlocks because exclusive mmap_lock prevents deadlock.
1761 	 */
1762 	old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
1763 	if (old_ptl) {
1764 		new_ptl = pmd_lockptr(mm, new_pmd);
1765 		if (new_ptl != old_ptl)
1766 			spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
1767 		pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
1768 		if (pmd_present(pmd))
1769 			force_flush = true;
1770 		VM_BUG_ON(!pmd_none(*new_pmd));
1771 
1772 		if (pmd_move_must_withdraw(new_ptl, old_ptl, vma)) {
1773 			pgtable_t pgtable;
1774 			pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
1775 			pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
1776 		}
1777 		pmd = move_soft_dirty_pmd(pmd);
1778 		set_pmd_at(mm, new_addr, new_pmd, pmd);
1779 		if (force_flush)
1780 			flush_tlb_range(vma, old_addr, old_addr + PMD_SIZE);
1781 		if (new_ptl != old_ptl)
1782 			spin_unlock(new_ptl);
1783 		spin_unlock(old_ptl);
1784 		return true;
1785 	}
1786 	return false;
1787 }
1788 
1789 /*
1790  * Returns
1791  *  - 0 if PMD could not be locked
1792  *  - 1 if PMD was locked but protections unchange and TLB flush unnecessary
1793  *  - HPAGE_PMD_NR is protections changed and TLB flush necessary
1794  */
change_huge_pmd(struct vm_area_struct * vma,pmd_t * pmd,unsigned long addr,pgprot_t newprot,unsigned long cp_flags)1795 int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1796 		unsigned long addr, pgprot_t newprot, unsigned long cp_flags)
1797 {
1798 	struct mm_struct *mm = vma->vm_mm;
1799 	spinlock_t *ptl;
1800 	pmd_t entry;
1801 	bool preserve_write;
1802 	int ret;
1803 	bool prot_numa = cp_flags & MM_CP_PROT_NUMA;
1804 	bool uffd_wp = cp_flags & MM_CP_UFFD_WP;
1805 	bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE;
1806 
1807 	ptl = __pmd_trans_huge_lock(pmd, vma);
1808 	if (!ptl)
1809 		return 0;
1810 
1811 	preserve_write = prot_numa && pmd_write(*pmd);
1812 	ret = 1;
1813 
1814 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1815 	if (is_swap_pmd(*pmd)) {
1816 		swp_entry_t entry = pmd_to_swp_entry(*pmd);
1817 
1818 		VM_BUG_ON(!is_pmd_migration_entry(*pmd));
1819 		if (is_write_migration_entry(entry)) {
1820 			pmd_t newpmd;
1821 			/*
1822 			 * A protection check is difficult so
1823 			 * just be safe and disable write
1824 			 */
1825 			make_migration_entry_read(&entry);
1826 			newpmd = swp_entry_to_pmd(entry);
1827 			if (pmd_swp_soft_dirty(*pmd))
1828 				newpmd = pmd_swp_mksoft_dirty(newpmd);
1829 			if (pmd_swp_uffd_wp(*pmd))
1830 				newpmd = pmd_swp_mkuffd_wp(newpmd);
1831 			set_pmd_at(mm, addr, pmd, newpmd);
1832 		}
1833 		goto unlock;
1834 	}
1835 #endif
1836 
1837 	/*
1838 	 * Avoid trapping faults against the zero page. The read-only
1839 	 * data is likely to be read-cached on the local CPU and
1840 	 * local/remote hits to the zero page are not interesting.
1841 	 */
1842 	if (prot_numa && is_huge_zero_pmd(*pmd))
1843 		goto unlock;
1844 
1845 	if (prot_numa && pmd_protnone(*pmd))
1846 		goto unlock;
1847 
1848 	/*
1849 	 * In case prot_numa, we are under mmap_read_lock(mm). It's critical
1850 	 * to not clear pmd intermittently to avoid race with MADV_DONTNEED
1851 	 * which is also under mmap_read_lock(mm):
1852 	 *
1853 	 *	CPU0:				CPU1:
1854 	 *				change_huge_pmd(prot_numa=1)
1855 	 *				 pmdp_huge_get_and_clear_notify()
1856 	 * madvise_dontneed()
1857 	 *  zap_pmd_range()
1858 	 *   pmd_trans_huge(*pmd) == 0 (without ptl)
1859 	 *   // skip the pmd
1860 	 *				 set_pmd_at();
1861 	 *				 // pmd is re-established
1862 	 *
1863 	 * The race makes MADV_DONTNEED miss the huge pmd and don't clear it
1864 	 * which may break userspace.
1865 	 *
1866 	 * pmdp_invalidate() is required to make sure we don't miss
1867 	 * dirty/young flags set by hardware.
1868 	 */
1869 	entry = pmdp_invalidate(vma, addr, pmd);
1870 
1871 	entry = pmd_modify(entry, newprot);
1872 	if (preserve_write)
1873 		entry = pmd_mk_savedwrite(entry);
1874 	if (uffd_wp) {
1875 		entry = pmd_wrprotect(entry);
1876 		entry = pmd_mkuffd_wp(entry);
1877 	} else if (uffd_wp_resolve) {
1878 		/*
1879 		 * Leave the write bit to be handled by PF interrupt
1880 		 * handler, then things like COW could be properly
1881 		 * handled.
1882 		 */
1883 		entry = pmd_clear_uffd_wp(entry);
1884 	}
1885 	ret = HPAGE_PMD_NR;
1886 	set_pmd_at(mm, addr, pmd, entry);
1887 	BUG_ON(vma_is_anonymous(vma) && !preserve_write && pmd_write(entry));
1888 unlock:
1889 	spin_unlock(ptl);
1890 	return ret;
1891 }
1892 
1893 /*
1894  * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise.
1895  *
1896  * Note that if it returns page table lock pointer, this routine returns without
1897  * unlocking page table lock. So callers must unlock it.
1898  */
__pmd_trans_huge_lock(pmd_t * pmd,struct vm_area_struct * vma)1899 spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
1900 {
1901 	spinlock_t *ptl;
1902 	ptl = pmd_lock(vma->vm_mm, pmd);
1903 	if (likely(is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) ||
1904 			pmd_devmap(*pmd)))
1905 		return ptl;
1906 	spin_unlock(ptl);
1907 	return NULL;
1908 }
1909 
1910 /*
1911  * Returns true if a given pud maps a thp, false otherwise.
1912  *
1913  * Note that if it returns true, this routine returns without unlocking page
1914  * table lock. So callers must unlock it.
1915  */
__pud_trans_huge_lock(pud_t * pud,struct vm_area_struct * vma)1916 spinlock_t *__pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma)
1917 {
1918 	spinlock_t *ptl;
1919 
1920 	ptl = pud_lock(vma->vm_mm, pud);
1921 	if (likely(pud_trans_huge(*pud) || pud_devmap(*pud)))
1922 		return ptl;
1923 	spin_unlock(ptl);
1924 	return NULL;
1925 }
1926 
1927 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
zap_huge_pud(struct mmu_gather * tlb,struct vm_area_struct * vma,pud_t * pud,unsigned long addr)1928 int zap_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma,
1929 		 pud_t *pud, unsigned long addr)
1930 {
1931 	spinlock_t *ptl;
1932 
1933 	ptl = __pud_trans_huge_lock(pud, vma);
1934 	if (!ptl)
1935 		return 0;
1936 	/*
1937 	 * For architectures like ppc64 we look at deposited pgtable
1938 	 * when calling pudp_huge_get_and_clear. So do the
1939 	 * pgtable_trans_huge_withdraw after finishing pudp related
1940 	 * operations.
1941 	 */
1942 	pudp_huge_get_and_clear_full(tlb->mm, addr, pud, tlb->fullmm);
1943 	tlb_remove_pud_tlb_entry(tlb, pud, addr);
1944 	if (vma_is_special_huge(vma)) {
1945 		spin_unlock(ptl);
1946 		/* No zero page support yet */
1947 	} else {
1948 		/* No support for anonymous PUD pages yet */
1949 		BUG();
1950 	}
1951 	return 1;
1952 }
1953 
__split_huge_pud_locked(struct vm_area_struct * vma,pud_t * pud,unsigned long haddr)1954 static void __split_huge_pud_locked(struct vm_area_struct *vma, pud_t *pud,
1955 		unsigned long haddr)
1956 {
1957 	VM_BUG_ON(haddr & ~HPAGE_PUD_MASK);
1958 	VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
1959 	VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PUD_SIZE, vma);
1960 	VM_BUG_ON(!pud_trans_huge(*pud) && !pud_devmap(*pud));
1961 
1962 	count_vm_event(THP_SPLIT_PUD);
1963 
1964 	pudp_huge_clear_flush_notify(vma, haddr, pud);
1965 }
1966 
__split_huge_pud(struct vm_area_struct * vma,pud_t * pud,unsigned long address)1967 void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud,
1968 		unsigned long address)
1969 {
1970 	spinlock_t *ptl;
1971 	struct mmu_notifier_range range;
1972 
1973 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1974 				address & HPAGE_PUD_MASK,
1975 				(address & HPAGE_PUD_MASK) + HPAGE_PUD_SIZE);
1976 	mmu_notifier_invalidate_range_start(&range);
1977 	ptl = pud_lock(vma->vm_mm, pud);
1978 	if (unlikely(!pud_trans_huge(*pud) && !pud_devmap(*pud)))
1979 		goto out;
1980 	__split_huge_pud_locked(vma, pud, range.start);
1981 
1982 out:
1983 	spin_unlock(ptl);
1984 	/*
1985 	 * No need to double call mmu_notifier->invalidate_range() callback as
1986 	 * the above pudp_huge_clear_flush_notify() did already call it.
1987 	 */
1988 	mmu_notifier_invalidate_range_only_end(&range);
1989 }
1990 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1991 
__split_huge_zero_page_pmd(struct vm_area_struct * vma,unsigned long haddr,pmd_t * pmd)1992 static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
1993 		unsigned long haddr, pmd_t *pmd)
1994 {
1995 	struct mm_struct *mm = vma->vm_mm;
1996 	pgtable_t pgtable;
1997 	pmd_t _pmd;
1998 	int i;
1999 
2000 	/*
2001 	 * Leave pmd empty until pte is filled note that it is fine to delay
2002 	 * notification until mmu_notifier_invalidate_range_end() as we are
2003 	 * replacing a zero pmd write protected page with a zero pte write
2004 	 * protected page.
2005 	 *
2006 	 * See Documentation/vm/mmu_notifier.rst
2007 	 */
2008 	pmdp_huge_clear_flush(vma, haddr, pmd);
2009 
2010 	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2011 	pmd_populate(mm, &_pmd, pgtable);
2012 
2013 	for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
2014 		pte_t *pte, entry;
2015 		entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
2016 		entry = pte_mkspecial(entry);
2017 		pte = pte_offset_map(&_pmd, haddr);
2018 		VM_BUG_ON(!pte_none(*pte));
2019 		set_pte_at(mm, haddr, pte, entry);
2020 		pte_unmap(pte);
2021 	}
2022 	smp_wmb(); /* make pte visible before pmd */
2023 	pmd_populate(mm, pmd, pgtable);
2024 }
2025 
__split_huge_pmd_locked(struct vm_area_struct * vma,pmd_t * pmd,unsigned long haddr,bool freeze)2026 static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
2027 		unsigned long haddr, bool freeze)
2028 {
2029 	struct mm_struct *mm = vma->vm_mm;
2030 	struct page *page;
2031 	pgtable_t pgtable;
2032 	pmd_t old_pmd, _pmd;
2033 	bool young, write, soft_dirty, pmd_migration = false, uffd_wp = false;
2034 	unsigned long addr;
2035 	int i;
2036 
2037 	VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
2038 	VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2039 	VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
2040 	VM_BUG_ON(!is_pmd_migration_entry(*pmd) && !pmd_trans_huge(*pmd)
2041 				&& !pmd_devmap(*pmd));
2042 
2043 	count_vm_event(THP_SPLIT_PMD);
2044 
2045 	if (!vma_is_anonymous(vma)) {
2046 		old_pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
2047 		/*
2048 		 * We are going to unmap this huge page. So
2049 		 * just go ahead and zap it
2050 		 */
2051 		if (arch_needs_pgtable_deposit())
2052 			zap_deposited_table(mm, pmd);
2053 		if (vma_is_special_huge(vma))
2054 			return;
2055 		if (unlikely(is_pmd_migration_entry(old_pmd))) {
2056 			swp_entry_t entry;
2057 
2058 			entry = pmd_to_swp_entry(old_pmd);
2059 			page = migration_entry_to_page(entry);
2060 		} else {
2061 			page = pmd_page(old_pmd);
2062 			if (!PageDirty(page) && pmd_dirty(old_pmd))
2063 				set_page_dirty(page);
2064 			if (!PageReferenced(page) && pmd_young(old_pmd))
2065 				SetPageReferenced(page);
2066 			page_remove_rmap(page, true);
2067 			put_page(page);
2068 		}
2069 		add_mm_counter(mm, mm_counter_file(page), -HPAGE_PMD_NR);
2070 		return;
2071 	}
2072 
2073 	if (is_huge_zero_pmd(*pmd)) {
2074 		/*
2075 		 * FIXME: Do we want to invalidate secondary mmu by calling
2076 		 * mmu_notifier_invalidate_range() see comments below inside
2077 		 * __split_huge_pmd() ?
2078 		 *
2079 		 * We are going from a zero huge page write protected to zero
2080 		 * small page also write protected so it does not seems useful
2081 		 * to invalidate secondary mmu at this time.
2082 		 */
2083 		return __split_huge_zero_page_pmd(vma, haddr, pmd);
2084 	}
2085 
2086 	/*
2087 	 * Up to this point the pmd is present and huge and userland has the
2088 	 * whole access to the hugepage during the split (which happens in
2089 	 * place). If we overwrite the pmd with the not-huge version pointing
2090 	 * to the pte here (which of course we could if all CPUs were bug
2091 	 * free), userland could trigger a small page size TLB miss on the
2092 	 * small sized TLB while the hugepage TLB entry is still established in
2093 	 * the huge TLB. Some CPU doesn't like that.
2094 	 * See http://support.amd.com/TechDocs/41322_10h_Rev_Gd.pdf, Erratum
2095 	 * 383 on page 105. Intel should be safe but is also warns that it's
2096 	 * only safe if the permission and cache attributes of the two entries
2097 	 * loaded in the two TLB is identical (which should be the case here).
2098 	 * But it is generally safer to never allow small and huge TLB entries
2099 	 * for the same virtual address to be loaded simultaneously. So instead
2100 	 * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
2101 	 * current pmd notpresent (atomically because here the pmd_trans_huge
2102 	 * must remain set at all times on the pmd until the split is complete
2103 	 * for this pmd), then we flush the SMP TLB and finally we write the
2104 	 * non-huge version of the pmd entry with pmd_populate.
2105 	 */
2106 	old_pmd = pmdp_invalidate(vma, haddr, pmd);
2107 
2108 	pmd_migration = is_pmd_migration_entry(old_pmd);
2109 	if (unlikely(pmd_migration)) {
2110 		swp_entry_t entry;
2111 
2112 		entry = pmd_to_swp_entry(old_pmd);
2113 		page = pfn_to_page(swp_offset(entry));
2114 		write = is_write_migration_entry(entry);
2115 		young = false;
2116 		soft_dirty = pmd_swp_soft_dirty(old_pmd);
2117 		uffd_wp = pmd_swp_uffd_wp(old_pmd);
2118 	} else {
2119 		page = pmd_page(old_pmd);
2120 		if (pmd_dirty(old_pmd))
2121 			SetPageDirty(page);
2122 		write = pmd_write(old_pmd);
2123 		young = pmd_young(old_pmd);
2124 		soft_dirty = pmd_soft_dirty(old_pmd);
2125 		uffd_wp = pmd_uffd_wp(old_pmd);
2126 	}
2127 	VM_BUG_ON_PAGE(!page_count(page), page);
2128 	page_ref_add(page, HPAGE_PMD_NR - 1);
2129 
2130 	/*
2131 	 * Withdraw the table only after we mark the pmd entry invalid.
2132 	 * This's critical for some architectures (Power).
2133 	 */
2134 	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2135 	pmd_populate(mm, &_pmd, pgtable);
2136 
2137 	for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
2138 		pte_t entry, *pte;
2139 		/*
2140 		 * Note that NUMA hinting access restrictions are not
2141 		 * transferred to avoid any possibility of altering
2142 		 * permissions across VMAs.
2143 		 */
2144 		if (freeze || pmd_migration) {
2145 			swp_entry_t swp_entry;
2146 			swp_entry = make_migration_entry(page + i, write);
2147 			entry = swp_entry_to_pte(swp_entry);
2148 			if (soft_dirty)
2149 				entry = pte_swp_mksoft_dirty(entry);
2150 			if (uffd_wp)
2151 				entry = pte_swp_mkuffd_wp(entry);
2152 		} else {
2153 			entry = mk_pte(page + i, READ_ONCE(vma->vm_page_prot));
2154 			entry = maybe_mkwrite(entry, vma);
2155 			if (!write)
2156 				entry = pte_wrprotect(entry);
2157 			if (!young)
2158 				entry = pte_mkold(entry);
2159 			if (soft_dirty)
2160 				entry = pte_mksoft_dirty(entry);
2161 			if (uffd_wp)
2162 				entry = pte_mkuffd_wp(entry);
2163 		}
2164 		pte = pte_offset_map(&_pmd, addr);
2165 		BUG_ON(!pte_none(*pte));
2166 		set_pte_at(mm, addr, pte, entry);
2167 		if (!pmd_migration)
2168 			atomic_inc(&page[i]._mapcount);
2169 		pte_unmap(pte);
2170 	}
2171 
2172 	if (!pmd_migration) {
2173 		/*
2174 		 * Set PG_double_map before dropping compound_mapcount to avoid
2175 		 * false-negative page_mapped().
2176 		 */
2177 		if (compound_mapcount(page) > 1 &&
2178 		    !TestSetPageDoubleMap(page)) {
2179 			for (i = 0; i < HPAGE_PMD_NR; i++)
2180 				atomic_inc(&page[i]._mapcount);
2181 		}
2182 
2183 		lock_page_memcg(page);
2184 		if (atomic_add_negative(-1, compound_mapcount_ptr(page))) {
2185 			/* Last compound_mapcount is gone. */
2186 			__dec_lruvec_page_state(page, NR_ANON_THPS);
2187 			if (TestClearPageDoubleMap(page)) {
2188 				/* No need in mapcount reference anymore */
2189 				for (i = 0; i < HPAGE_PMD_NR; i++)
2190 					atomic_dec(&page[i]._mapcount);
2191 			}
2192 		}
2193 		unlock_page_memcg(page);
2194 	}
2195 
2196 	smp_wmb(); /* make pte visible before pmd */
2197 	pmd_populate(mm, pmd, pgtable);
2198 
2199 	if (freeze) {
2200 		for (i = 0; i < HPAGE_PMD_NR; i++) {
2201 			page_remove_rmap(page + i, false);
2202 			put_page(page + i);
2203 		}
2204 	}
2205 }
2206 
__split_huge_pmd(struct vm_area_struct * vma,pmd_t * pmd,unsigned long address,bool freeze,struct page * page)2207 void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
2208 		unsigned long address, bool freeze, struct page *page)
2209 {
2210 	spinlock_t *ptl;
2211 	struct mmu_notifier_range range;
2212 	bool do_unlock_page = false;
2213 	pmd_t _pmd;
2214 
2215 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
2216 				address & HPAGE_PMD_MASK,
2217 				(address & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE);
2218 	mmu_notifier_invalidate_range_start(&range);
2219 	ptl = pmd_lock(vma->vm_mm, pmd);
2220 
2221 	/*
2222 	 * If caller asks to setup a migration entries, we need a page to check
2223 	 * pmd against. Otherwise we can end up replacing wrong page.
2224 	 */
2225 	VM_BUG_ON(freeze && !page);
2226 	if (page) {
2227 		VM_WARN_ON_ONCE(!PageLocked(page));
2228 		if (page != pmd_page(*pmd))
2229 			goto out;
2230 	}
2231 
2232 repeat:
2233 	if (pmd_trans_huge(*pmd)) {
2234 		if (!page) {
2235 			page = pmd_page(*pmd);
2236 			/*
2237 			 * An anonymous page must be locked, to ensure that a
2238 			 * concurrent reuse_swap_page() sees stable mapcount;
2239 			 * but reuse_swap_page() is not used on shmem or file,
2240 			 * and page lock must not be taken when zap_pmd_range()
2241 			 * calls __split_huge_pmd() while i_mmap_lock is held.
2242 			 */
2243 			if (PageAnon(page)) {
2244 				if (unlikely(!trylock_page(page))) {
2245 					get_page(page);
2246 					_pmd = *pmd;
2247 					spin_unlock(ptl);
2248 					lock_page(page);
2249 					spin_lock(ptl);
2250 					if (unlikely(!pmd_same(*pmd, _pmd))) {
2251 						unlock_page(page);
2252 						put_page(page);
2253 						page = NULL;
2254 						goto repeat;
2255 					}
2256 					put_page(page);
2257 				}
2258 				do_unlock_page = true;
2259 			}
2260 		}
2261 		if (PageMlocked(page))
2262 			clear_page_mlock(page);
2263 	} else if (!(pmd_devmap(*pmd) || is_pmd_migration_entry(*pmd)))
2264 		goto out;
2265 	__split_huge_pmd_locked(vma, pmd, range.start, freeze);
2266 out:
2267 	spin_unlock(ptl);
2268 	if (do_unlock_page)
2269 		unlock_page(page);
2270 	/*
2271 	 * No need to double call mmu_notifier->invalidate_range() callback.
2272 	 * They are 3 cases to consider inside __split_huge_pmd_locked():
2273 	 *  1) pmdp_huge_clear_flush_notify() call invalidate_range() obvious
2274 	 *  2) __split_huge_zero_page_pmd() read only zero page and any write
2275 	 *    fault will trigger a flush_notify before pointing to a new page
2276 	 *    (it is fine if the secondary mmu keeps pointing to the old zero
2277 	 *    page in the meantime)
2278 	 *  3) Split a huge pmd into pte pointing to the same page. No need
2279 	 *     to invalidate secondary tlb entry they are all still valid.
2280 	 *     any further changes to individual pte will notify. So no need
2281 	 *     to call mmu_notifier->invalidate_range()
2282 	 */
2283 	mmu_notifier_invalidate_range_only_end(&range);
2284 }
2285 
split_huge_pmd_address(struct vm_area_struct * vma,unsigned long address,bool freeze,struct page * page)2286 void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
2287 		bool freeze, struct page *page)
2288 {
2289 	pgd_t *pgd;
2290 	p4d_t *p4d;
2291 	pud_t *pud;
2292 	pmd_t *pmd;
2293 
2294 	pgd = pgd_offset(vma->vm_mm, address);
2295 	if (!pgd_present(*pgd))
2296 		return;
2297 
2298 	p4d = p4d_offset(pgd, address);
2299 	if (!p4d_present(*p4d))
2300 		return;
2301 
2302 	pud = pud_offset(p4d, address);
2303 	if (!pud_present(*pud))
2304 		return;
2305 
2306 	pmd = pmd_offset(pud, address);
2307 
2308 	__split_huge_pmd(vma, pmd, address, freeze, page);
2309 }
2310 
vma_adjust_trans_huge(struct vm_area_struct * vma,unsigned long start,unsigned long end,long adjust_next)2311 void vma_adjust_trans_huge(struct vm_area_struct *vma,
2312 			     unsigned long start,
2313 			     unsigned long end,
2314 			     long adjust_next)
2315 {
2316 	/*
2317 	 * If the new start address isn't hpage aligned and it could
2318 	 * previously contain an hugepage: check if we need to split
2319 	 * an huge pmd.
2320 	 */
2321 	if (start & ~HPAGE_PMD_MASK &&
2322 	    (start & HPAGE_PMD_MASK) >= vma->vm_start &&
2323 	    (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2324 		split_huge_pmd_address(vma, start, false, NULL);
2325 
2326 	/*
2327 	 * If the new end address isn't hpage aligned and it could
2328 	 * previously contain an hugepage: check if we need to split
2329 	 * an huge pmd.
2330 	 */
2331 	if (end & ~HPAGE_PMD_MASK &&
2332 	    (end & HPAGE_PMD_MASK) >= vma->vm_start &&
2333 	    (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2334 		split_huge_pmd_address(vma, end, false, NULL);
2335 
2336 	/*
2337 	 * If we're also updating the vma->vm_next->vm_start, if the new
2338 	 * vm_next->vm_start isn't hpage aligned and it could previously
2339 	 * contain an hugepage: check if we need to split an huge pmd.
2340 	 */
2341 	if (adjust_next > 0) {
2342 		struct vm_area_struct *next = vma->vm_next;
2343 		unsigned long nstart = next->vm_start;
2344 		nstart += adjust_next;
2345 		if (nstart & ~HPAGE_PMD_MASK &&
2346 		    (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
2347 		    (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
2348 			split_huge_pmd_address(next, nstart, false, NULL);
2349 	}
2350 }
2351 
unmap_page(struct page * page)2352 static void unmap_page(struct page *page)
2353 {
2354 	enum ttu_flags ttu_flags = TTU_IGNORE_MLOCK | TTU_SYNC |
2355 		TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD;
2356 
2357 	VM_BUG_ON_PAGE(!PageHead(page), page);
2358 
2359 	if (PageAnon(page))
2360 		ttu_flags |= TTU_SPLIT_FREEZE;
2361 
2362 	try_to_unmap(page, ttu_flags);
2363 
2364 	VM_WARN_ON_ONCE_PAGE(page_mapped(page), page);
2365 }
2366 
remap_page(struct page * page,unsigned int nr)2367 static void remap_page(struct page *page, unsigned int nr)
2368 {
2369 	int i;
2370 	if (PageTransHuge(page)) {
2371 		remove_migration_ptes(page, page, true);
2372 	} else {
2373 		for (i = 0; i < nr; i++)
2374 			remove_migration_ptes(page + i, page + i, true);
2375 	}
2376 }
2377 
__split_huge_page_tail(struct page * head,int tail,struct lruvec * lruvec,struct list_head * list)2378 static void __split_huge_page_tail(struct page *head, int tail,
2379 		struct lruvec *lruvec, struct list_head *list)
2380 {
2381 	struct page *page_tail = head + tail;
2382 
2383 	VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
2384 
2385 	/*
2386 	 * Clone page flags before unfreezing refcount.
2387 	 *
2388 	 * After successful get_page_unless_zero() might follow flags change,
2389 	 * for exmaple lock_page() which set PG_waiters.
2390 	 */
2391 	page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
2392 	page_tail->flags |= (head->flags &
2393 			((1L << PG_referenced) |
2394 			 (1L << PG_swapbacked) |
2395 			 (1L << PG_swapcache) |
2396 			 (1L << PG_mlocked) |
2397 			 (1L << PG_uptodate) |
2398 			 (1L << PG_active) |
2399 			 (1L << PG_workingset) |
2400 			 (1L << PG_locked) |
2401 			 (1L << PG_unevictable) |
2402 #ifdef CONFIG_64BIT
2403 			 (1L << PG_arch_2) |
2404 #endif
2405 			 (1L << PG_dirty)));
2406 
2407 	/* ->mapping in first tail page is compound_mapcount */
2408 	VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
2409 			page_tail);
2410 	page_tail->mapping = head->mapping;
2411 	page_tail->index = head->index + tail;
2412 
2413 	/* Page flags must be visible before we make the page non-compound. */
2414 	smp_wmb();
2415 
2416 	/*
2417 	 * Clear PageTail before unfreezing page refcount.
2418 	 *
2419 	 * After successful get_page_unless_zero() might follow put_page()
2420 	 * which needs correct compound_head().
2421 	 */
2422 	clear_compound_head(page_tail);
2423 
2424 	/* Finally unfreeze refcount. Additional reference from page cache. */
2425 	page_ref_unfreeze(page_tail, 1 + (!PageAnon(head) ||
2426 					  PageSwapCache(head)));
2427 
2428 	if (page_is_young(head))
2429 		set_page_young(page_tail);
2430 	if (page_is_idle(head))
2431 		set_page_idle(page_tail);
2432 
2433 	page_cpupid_xchg_last(page_tail, page_cpupid_last(head));
2434 
2435 	/*
2436 	 * always add to the tail because some iterators expect new
2437 	 * pages to show after the currently processed elements - e.g.
2438 	 * migrate_pages
2439 	 */
2440 	lru_add_page_tail(head, page_tail, lruvec, list);
2441 }
2442 
__split_huge_page(struct page * page,struct list_head * list,pgoff_t end,unsigned long flags)2443 static void __split_huge_page(struct page *page, struct list_head *list,
2444 		pgoff_t end, unsigned long flags)
2445 {
2446 	struct page *head = compound_head(page);
2447 	pg_data_t *pgdat = page_pgdat(head);
2448 	struct lruvec *lruvec;
2449 	struct address_space *swap_cache = NULL;
2450 	unsigned long offset = 0;
2451 	unsigned int nr = thp_nr_pages(head);
2452 	int i;
2453 
2454 	lruvec = mem_cgroup_page_lruvec(head, pgdat);
2455 
2456 	/* complete memcg works before add pages to LRU */
2457 	split_page_memcg(head, nr);
2458 
2459 	if (PageAnon(head) && PageSwapCache(head)) {
2460 		swp_entry_t entry = { .val = page_private(head) };
2461 
2462 		offset = swp_offset(entry);
2463 		swap_cache = swap_address_space(entry);
2464 		xa_lock(&swap_cache->i_pages);
2465 	}
2466 
2467 	for (i = nr - 1; i >= 1; i--) {
2468 		__split_huge_page_tail(head, i, lruvec, list);
2469 		/* Some pages can be beyond i_size: drop them from page cache */
2470 		if (head[i].index >= end) {
2471 			ClearPageDirty(head + i);
2472 			__delete_from_page_cache(head + i, NULL);
2473 			if (IS_ENABLED(CONFIG_SHMEM) && PageSwapBacked(head))
2474 				shmem_uncharge(head->mapping->host, 1);
2475 			put_page(head + i);
2476 		} else if (!PageAnon(page)) {
2477 			__xa_store(&head->mapping->i_pages, head[i].index,
2478 					head + i, 0);
2479 		} else if (swap_cache) {
2480 			__xa_store(&swap_cache->i_pages, offset + i,
2481 					head + i, 0);
2482 		}
2483 	}
2484 
2485 	ClearPageCompound(head);
2486 
2487 	split_page_owner(head, nr);
2488 
2489 	/* See comment in __split_huge_page_tail() */
2490 	if (PageAnon(head)) {
2491 		/* Additional pin to swap cache */
2492 		if (PageSwapCache(head)) {
2493 			page_ref_add(head, 2);
2494 			xa_unlock(&swap_cache->i_pages);
2495 		} else {
2496 			page_ref_inc(head);
2497 		}
2498 	} else {
2499 		/* Additional pin to page cache */
2500 		page_ref_add(head, 2);
2501 		xa_unlock(&head->mapping->i_pages);
2502 	}
2503 
2504 	spin_unlock_irqrestore(&pgdat->lru_lock, flags);
2505 
2506 	remap_page(head, nr);
2507 
2508 	if (PageSwapCache(head)) {
2509 		swp_entry_t entry = { .val = page_private(head) };
2510 
2511 		split_swap_cluster(entry);
2512 	}
2513 
2514 	for (i = 0; i < nr; i++) {
2515 		struct page *subpage = head + i;
2516 		if (subpage == page)
2517 			continue;
2518 		unlock_page(subpage);
2519 
2520 		/*
2521 		 * Subpages may be freed if there wasn't any mapping
2522 		 * like if add_to_swap() is running on a lru page that
2523 		 * had its mapping zapped. And freeing these pages
2524 		 * requires taking the lru_lock so we do the put_page
2525 		 * of the tail pages after the split is complete.
2526 		 */
2527 		put_page(subpage);
2528 	}
2529 }
2530 
total_mapcount(struct page * page)2531 int total_mapcount(struct page *page)
2532 {
2533 	int i, compound, nr, ret;
2534 
2535 	VM_BUG_ON_PAGE(PageTail(page), page);
2536 
2537 	if (likely(!PageCompound(page)))
2538 		return atomic_read(&page->_mapcount) + 1;
2539 
2540 	compound = compound_mapcount(page);
2541 	nr = compound_nr(page);
2542 	if (PageHuge(page))
2543 		return compound;
2544 	ret = compound;
2545 	for (i = 0; i < nr; i++)
2546 		ret += atomic_read(&page[i]._mapcount) + 1;
2547 	/* File pages has compound_mapcount included in _mapcount */
2548 	if (!PageAnon(page))
2549 		return ret - compound * nr;
2550 	if (PageDoubleMap(page))
2551 		ret -= nr;
2552 	return ret;
2553 }
2554 
2555 /*
2556  * This calculates accurately how many mappings a transparent hugepage
2557  * has (unlike page_mapcount() which isn't fully accurate). This full
2558  * accuracy is primarily needed to know if copy-on-write faults can
2559  * reuse the page and change the mapping to read-write instead of
2560  * copying them. At the same time this returns the total_mapcount too.
2561  *
2562  * The function returns the highest mapcount any one of the subpages
2563  * has. If the return value is one, even if different processes are
2564  * mapping different subpages of the transparent hugepage, they can
2565  * all reuse it, because each process is reusing a different subpage.
2566  *
2567  * The total_mapcount is instead counting all virtual mappings of the
2568  * subpages. If the total_mapcount is equal to "one", it tells the
2569  * caller all mappings belong to the same "mm" and in turn the
2570  * anon_vma of the transparent hugepage can become the vma->anon_vma
2571  * local one as no other process may be mapping any of the subpages.
2572  *
2573  * It would be more accurate to replace page_mapcount() with
2574  * page_trans_huge_mapcount(), however we only use
2575  * page_trans_huge_mapcount() in the copy-on-write faults where we
2576  * need full accuracy to avoid breaking page pinning, because
2577  * page_trans_huge_mapcount() is slower than page_mapcount().
2578  */
page_trans_huge_mapcount(struct page * page,int * total_mapcount)2579 int page_trans_huge_mapcount(struct page *page, int *total_mapcount)
2580 {
2581 	int i, ret, _total_mapcount, mapcount;
2582 
2583 	/* hugetlbfs shouldn't call it */
2584 	VM_BUG_ON_PAGE(PageHuge(page), page);
2585 
2586 	if (likely(!PageTransCompound(page))) {
2587 		mapcount = atomic_read(&page->_mapcount) + 1;
2588 		if (total_mapcount)
2589 			*total_mapcount = mapcount;
2590 		return mapcount;
2591 	}
2592 
2593 	page = compound_head(page);
2594 
2595 	_total_mapcount = ret = 0;
2596 	for (i = 0; i < thp_nr_pages(page); i++) {
2597 		mapcount = atomic_read(&page[i]._mapcount) + 1;
2598 		ret = max(ret, mapcount);
2599 		_total_mapcount += mapcount;
2600 	}
2601 	if (PageDoubleMap(page)) {
2602 		ret -= 1;
2603 		_total_mapcount -= thp_nr_pages(page);
2604 	}
2605 	mapcount = compound_mapcount(page);
2606 	ret += mapcount;
2607 	_total_mapcount += mapcount;
2608 	if (total_mapcount)
2609 		*total_mapcount = _total_mapcount;
2610 	return ret;
2611 }
2612 
2613 /* Racy check whether the huge page can be split */
can_split_huge_page(struct page * page,int * pextra_pins)2614 bool can_split_huge_page(struct page *page, int *pextra_pins)
2615 {
2616 	int extra_pins;
2617 
2618 	/* Additional pins from page cache */
2619 	if (PageAnon(page))
2620 		extra_pins = PageSwapCache(page) ? thp_nr_pages(page) : 0;
2621 	else
2622 		extra_pins = thp_nr_pages(page);
2623 	if (pextra_pins)
2624 		*pextra_pins = extra_pins;
2625 	return total_mapcount(page) == page_count(page) - extra_pins - 1;
2626 }
2627 
2628 /*
2629  * This function splits huge page into normal pages. @page can point to any
2630  * subpage of huge page to split. Split doesn't change the position of @page.
2631  *
2632  * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
2633  * The huge page must be locked.
2634  *
2635  * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
2636  *
2637  * Both head page and tail pages will inherit mapping, flags, and so on from
2638  * the hugepage.
2639  *
2640  * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
2641  * they are not mapped.
2642  *
2643  * Returns 0 if the hugepage is split successfully.
2644  * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
2645  * us.
2646  */
split_huge_page_to_list(struct page * page,struct list_head * list)2647 int split_huge_page_to_list(struct page *page, struct list_head *list)
2648 {
2649 	struct page *head = compound_head(page);
2650 	struct pglist_data *pgdata = NODE_DATA(page_to_nid(head));
2651 	struct deferred_split *ds_queue = get_deferred_split_queue(head);
2652 	struct anon_vma *anon_vma = NULL;
2653 	struct address_space *mapping = NULL;
2654 	int extra_pins, ret;
2655 	unsigned long flags;
2656 	pgoff_t end;
2657 
2658 	VM_BUG_ON_PAGE(is_huge_zero_page(head), head);
2659 	VM_BUG_ON_PAGE(!PageLocked(head), head);
2660 	VM_BUG_ON_PAGE(!PageCompound(head), head);
2661 
2662 	if (PageWriteback(head))
2663 		return -EBUSY;
2664 
2665 	if (PageAnon(head)) {
2666 		/*
2667 		 * The caller does not necessarily hold an mmap_lock that would
2668 		 * prevent the anon_vma disappearing so we first we take a
2669 		 * reference to it and then lock the anon_vma for write. This
2670 		 * is similar to page_lock_anon_vma_read except the write lock
2671 		 * is taken to serialise against parallel split or collapse
2672 		 * operations.
2673 		 */
2674 		anon_vma = page_get_anon_vma(head);
2675 		if (!anon_vma) {
2676 			ret = -EBUSY;
2677 			goto out;
2678 		}
2679 		end = -1;
2680 		mapping = NULL;
2681 		anon_vma_lock_write(anon_vma);
2682 	} else {
2683 		mapping = head->mapping;
2684 
2685 		/* Truncated ? */
2686 		if (!mapping) {
2687 			ret = -EBUSY;
2688 			goto out;
2689 		}
2690 
2691 		anon_vma = NULL;
2692 		i_mmap_lock_read(mapping);
2693 
2694 		/*
2695 		 *__split_huge_page() may need to trim off pages beyond EOF:
2696 		 * but on 32-bit, i_size_read() takes an irq-unsafe seqlock,
2697 		 * which cannot be nested inside the page tree lock. So note
2698 		 * end now: i_size itself may be changed at any moment, but
2699 		 * head page lock is good enough to serialize the trimming.
2700 		 */
2701 		end = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
2702 	}
2703 
2704 	/*
2705 	 * Racy check if we can split the page, before unmap_page() will
2706 	 * split PMDs
2707 	 */
2708 	if (!can_split_huge_page(head, &extra_pins)) {
2709 		ret = -EBUSY;
2710 		goto out_unlock;
2711 	}
2712 
2713 	unmap_page(head);
2714 
2715 	/* prevent PageLRU to go away from under us, and freeze lru stats */
2716 	spin_lock_irqsave(&pgdata->lru_lock, flags);
2717 
2718 	if (mapping) {
2719 		XA_STATE(xas, &mapping->i_pages, page_index(head));
2720 
2721 		/*
2722 		 * Check if the head page is present in page cache.
2723 		 * We assume all tail are present too, if head is there.
2724 		 */
2725 		xa_lock(&mapping->i_pages);
2726 		if (xas_load(&xas) != head)
2727 			goto fail;
2728 	}
2729 
2730 	/* Prevent deferred_split_scan() touching ->_refcount */
2731 	spin_lock(&ds_queue->split_queue_lock);
2732 	if (page_ref_freeze(head, 1 + extra_pins)) {
2733 		if (!list_empty(page_deferred_list(head))) {
2734 			ds_queue->split_queue_len--;
2735 			list_del(page_deferred_list(head));
2736 		}
2737 		spin_unlock(&ds_queue->split_queue_lock);
2738 		if (mapping) {
2739 			if (PageSwapBacked(head))
2740 				__dec_node_page_state(head, NR_SHMEM_THPS);
2741 			else
2742 				__dec_node_page_state(head, NR_FILE_THPS);
2743 		}
2744 
2745 		__split_huge_page(page, list, end, flags);
2746 		ret = 0;
2747 	} else {
2748 		spin_unlock(&ds_queue->split_queue_lock);
2749 fail:
2750 		if (mapping)
2751 			xa_unlock(&mapping->i_pages);
2752 		spin_unlock_irqrestore(&pgdata->lru_lock, flags);
2753 		remap_page(head, thp_nr_pages(head));
2754 		ret = -EBUSY;
2755 	}
2756 
2757 out_unlock:
2758 	if (anon_vma) {
2759 		anon_vma_unlock_write(anon_vma);
2760 		put_anon_vma(anon_vma);
2761 	}
2762 	if (mapping)
2763 		i_mmap_unlock_read(mapping);
2764 out:
2765 	count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
2766 	return ret;
2767 }
2768 
free_transhuge_page(struct page * page)2769 void free_transhuge_page(struct page *page)
2770 {
2771 	struct deferred_split *ds_queue = get_deferred_split_queue(page);
2772 	unsigned long flags;
2773 
2774 	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2775 	if (!list_empty(page_deferred_list(page))) {
2776 		ds_queue->split_queue_len--;
2777 		list_del(page_deferred_list(page));
2778 	}
2779 	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2780 	free_compound_page(page);
2781 }
2782 
deferred_split_huge_page(struct page * page)2783 void deferred_split_huge_page(struct page *page)
2784 {
2785 	struct deferred_split *ds_queue = get_deferred_split_queue(page);
2786 #ifdef CONFIG_MEMCG
2787 	struct mem_cgroup *memcg = compound_head(page)->mem_cgroup;
2788 #endif
2789 	unsigned long flags;
2790 
2791 	VM_BUG_ON_PAGE(!PageTransHuge(page), page);
2792 
2793 	/*
2794 	 * The try_to_unmap() in page reclaim path might reach here too,
2795 	 * this may cause a race condition to corrupt deferred split queue.
2796 	 * And, if page reclaim is already handling the same page, it is
2797 	 * unnecessary to handle it again in shrinker.
2798 	 *
2799 	 * Check PageSwapCache to determine if the page is being
2800 	 * handled by page reclaim since THP swap would add the page into
2801 	 * swap cache before calling try_to_unmap().
2802 	 */
2803 	if (PageSwapCache(page))
2804 		return;
2805 
2806 	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2807 	if (list_empty(page_deferred_list(page))) {
2808 		count_vm_event(THP_DEFERRED_SPLIT_PAGE);
2809 		list_add_tail(page_deferred_list(page), &ds_queue->split_queue);
2810 		ds_queue->split_queue_len++;
2811 #ifdef CONFIG_MEMCG
2812 		if (memcg)
2813 			memcg_set_shrinker_bit(memcg, page_to_nid(page),
2814 					       deferred_split_shrinker.id);
2815 #endif
2816 	}
2817 	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2818 }
2819 
deferred_split_count(struct shrinker * shrink,struct shrink_control * sc)2820 static unsigned long deferred_split_count(struct shrinker *shrink,
2821 		struct shrink_control *sc)
2822 {
2823 	struct pglist_data *pgdata = NODE_DATA(sc->nid);
2824 	struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
2825 
2826 #ifdef CONFIG_MEMCG
2827 	if (sc->memcg)
2828 		ds_queue = &sc->memcg->deferred_split_queue;
2829 #endif
2830 	return READ_ONCE(ds_queue->split_queue_len);
2831 }
2832 
deferred_split_scan(struct shrinker * shrink,struct shrink_control * sc)2833 static unsigned long deferred_split_scan(struct shrinker *shrink,
2834 		struct shrink_control *sc)
2835 {
2836 	struct pglist_data *pgdata = NODE_DATA(sc->nid);
2837 	struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
2838 	unsigned long flags;
2839 	LIST_HEAD(list), *pos, *next;
2840 	struct page *page;
2841 	int split = 0;
2842 
2843 #ifdef CONFIG_MEMCG
2844 	if (sc->memcg)
2845 		ds_queue = &sc->memcg->deferred_split_queue;
2846 #endif
2847 
2848 	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2849 	/* Take pin on all head pages to avoid freeing them under us */
2850 	list_for_each_safe(pos, next, &ds_queue->split_queue) {
2851 		page = list_entry((void *)pos, struct page, mapping);
2852 		page = compound_head(page);
2853 		if (get_page_unless_zero(page)) {
2854 			list_move(page_deferred_list(page), &list);
2855 		} else {
2856 			/* We lost race with put_compound_page() */
2857 			list_del_init(page_deferred_list(page));
2858 			ds_queue->split_queue_len--;
2859 		}
2860 		if (!--sc->nr_to_scan)
2861 			break;
2862 	}
2863 	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2864 
2865 	list_for_each_safe(pos, next, &list) {
2866 		page = list_entry((void *)pos, struct page, mapping);
2867 		if (!trylock_page(page))
2868 			goto next;
2869 		/* split_huge_page() removes page from list on success */
2870 		if (!split_huge_page(page))
2871 			split++;
2872 		unlock_page(page);
2873 next:
2874 		put_page(page);
2875 	}
2876 
2877 	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2878 	list_splice_tail(&list, &ds_queue->split_queue);
2879 	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2880 
2881 	/*
2882 	 * Stop shrinker if we didn't split any page, but the queue is empty.
2883 	 * This can happen if pages were freed under us.
2884 	 */
2885 	if (!split && list_empty(&ds_queue->split_queue))
2886 		return SHRINK_STOP;
2887 	return split;
2888 }
2889 
2890 static struct shrinker deferred_split_shrinker = {
2891 	.count_objects = deferred_split_count,
2892 	.scan_objects = deferred_split_scan,
2893 	.seeks = DEFAULT_SEEKS,
2894 	.flags = SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE |
2895 		 SHRINKER_NONSLAB,
2896 };
2897 
2898 #ifdef CONFIG_DEBUG_FS
split_huge_pages_set(void * data,u64 val)2899 static int split_huge_pages_set(void *data, u64 val)
2900 {
2901 	struct zone *zone;
2902 	struct page *page;
2903 	unsigned long pfn, max_zone_pfn;
2904 	unsigned long total = 0, split = 0;
2905 
2906 	if (val != 1)
2907 		return -EINVAL;
2908 
2909 	for_each_populated_zone(zone) {
2910 		max_zone_pfn = zone_end_pfn(zone);
2911 		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
2912 			if (!pfn_valid(pfn))
2913 				continue;
2914 
2915 			page = pfn_to_page(pfn);
2916 			if (!get_page_unless_zero(page))
2917 				continue;
2918 
2919 			if (zone != page_zone(page))
2920 				goto next;
2921 
2922 			if (!PageHead(page) || PageHuge(page) || !PageLRU(page))
2923 				goto next;
2924 
2925 			total++;
2926 			lock_page(page);
2927 			if (!split_huge_page(page))
2928 				split++;
2929 			unlock_page(page);
2930 next:
2931 			put_page(page);
2932 		}
2933 	}
2934 
2935 	pr_info("%lu of %lu THP split\n", split, total);
2936 
2937 	return 0;
2938 }
2939 DEFINE_DEBUGFS_ATTRIBUTE(split_huge_pages_fops, NULL, split_huge_pages_set,
2940 		"%llu\n");
2941 
split_huge_pages_debugfs(void)2942 static int __init split_huge_pages_debugfs(void)
2943 {
2944 	debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
2945 			    &split_huge_pages_fops);
2946 	return 0;
2947 }
2948 late_initcall(split_huge_pages_debugfs);
2949 #endif
2950 
2951 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
set_pmd_migration_entry(struct page_vma_mapped_walk * pvmw,struct page * page)2952 void set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw,
2953 		struct page *page)
2954 {
2955 	struct vm_area_struct *vma = pvmw->vma;
2956 	struct mm_struct *mm = vma->vm_mm;
2957 	unsigned long address = pvmw->address;
2958 	pmd_t pmdval;
2959 	swp_entry_t entry;
2960 	pmd_t pmdswp;
2961 
2962 	if (!(pvmw->pmd && !pvmw->pte))
2963 		return;
2964 
2965 	flush_cache_range(vma, address, address + HPAGE_PMD_SIZE);
2966 	pmdval = pmdp_invalidate(vma, address, pvmw->pmd);
2967 	if (pmd_dirty(pmdval))
2968 		set_page_dirty(page);
2969 	entry = make_migration_entry(page, pmd_write(pmdval));
2970 	pmdswp = swp_entry_to_pmd(entry);
2971 	if (pmd_soft_dirty(pmdval))
2972 		pmdswp = pmd_swp_mksoft_dirty(pmdswp);
2973 	set_pmd_at(mm, address, pvmw->pmd, pmdswp);
2974 	page_remove_rmap(page, true);
2975 	put_page(page);
2976 }
2977 
remove_migration_pmd(struct page_vma_mapped_walk * pvmw,struct page * new)2978 void remove_migration_pmd(struct page_vma_mapped_walk *pvmw, struct page *new)
2979 {
2980 	struct vm_area_struct *vma = pvmw->vma;
2981 	struct mm_struct *mm = vma->vm_mm;
2982 	unsigned long address = pvmw->address;
2983 	unsigned long mmun_start = address & HPAGE_PMD_MASK;
2984 	pmd_t pmde;
2985 	swp_entry_t entry;
2986 
2987 	if (!(pvmw->pmd && !pvmw->pte))
2988 		return;
2989 
2990 	entry = pmd_to_swp_entry(*pvmw->pmd);
2991 	get_page(new);
2992 	pmde = pmd_mkold(mk_huge_pmd(new, vma->vm_page_prot));
2993 	if (pmd_swp_soft_dirty(*pvmw->pmd))
2994 		pmde = pmd_mksoft_dirty(pmde);
2995 	if (is_write_migration_entry(entry))
2996 		pmde = maybe_pmd_mkwrite(pmde, vma);
2997 	if (pmd_swp_uffd_wp(*pvmw->pmd))
2998 		pmde = pmd_wrprotect(pmd_mkuffd_wp(pmde));
2999 
3000 	flush_cache_range(vma, mmun_start, mmun_start + HPAGE_PMD_SIZE);
3001 	if (PageAnon(new))
3002 		page_add_anon_rmap(new, vma, mmun_start, true);
3003 	else
3004 		page_add_file_rmap(new, true);
3005 	set_pmd_at(mm, mmun_start, pvmw->pmd, pmde);
3006 	if ((vma->vm_flags & VM_LOCKED) && !PageDoubleMap(new))
3007 		mlock_vma_page(new);
3008 	update_mmu_cache_pmd(vma, address, pvmw->pmd);
3009 }
3010 #endif
3011