1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2009 Red Hat, Inc.
4 */
5
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7
8 #include <linux/mm.h>
9 #include <linux/sched.h>
10 #include <linux/sched/coredump.h>
11 #include <linux/sched/numa_balancing.h>
12 #include <linux/highmem.h>
13 #include <linux/hugetlb.h>
14 #include <linux/mmu_notifier.h>
15 #include <linux/rmap.h>
16 #include <linux/swap.h>
17 #include <linux/shrinker.h>
18 #include <linux/mm_inline.h>
19 #include <linux/swapops.h>
20 #include <linux/dax.h>
21 #include <linux/khugepaged.h>
22 #include <linux/freezer.h>
23 #include <linux/pfn_t.h>
24 #include <linux/mman.h>
25 #include <linux/memremap.h>
26 #include <linux/pagemap.h>
27 #include <linux/debugfs.h>
28 #include <linux/migrate.h>
29 #include <linux/hashtable.h>
30 #include <linux/userfaultfd_k.h>
31 #include <linux/page_idle.h>
32 #include <linux/shmem_fs.h>
33 #include <linux/oom.h>
34 #include <linux/numa.h>
35 #include <linux/page_owner.h>
36
37 #include <asm/tlb.h>
38 #include <asm/pgalloc.h>
39 #include "internal.h"
40
41 /*
42 * By default, transparent hugepage support is disabled in order to avoid
43 * risking an increased memory footprint for applications that are not
44 * guaranteed to benefit from it. When transparent hugepage support is
45 * enabled, it is for all mappings, and khugepaged scans all mappings.
46 * Defrag is invoked by khugepaged hugepage allocations and by page faults
47 * for all hugepage allocations.
48 */
49 unsigned long transparent_hugepage_flags __read_mostly =
50 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
51 (1<<TRANSPARENT_HUGEPAGE_FLAG)|
52 #endif
53 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
54 (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
55 #endif
56 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
57 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
58 (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
59
60 static struct shrinker deferred_split_shrinker;
61
62 static atomic_t huge_zero_refcount;
63 struct page *huge_zero_page __read_mostly;
64 unsigned long huge_zero_pfn __read_mostly = ~0UL;
65
file_thp_enabled(struct vm_area_struct * vma)66 static inline bool file_thp_enabled(struct vm_area_struct *vma)
67 {
68 return transhuge_vma_enabled(vma, vma->vm_flags) && vma->vm_file &&
69 !inode_is_open_for_write(vma->vm_file->f_inode) &&
70 (vma->vm_flags & VM_EXEC);
71 }
72
transparent_hugepage_active(struct vm_area_struct * vma)73 bool transparent_hugepage_active(struct vm_area_struct *vma)
74 {
75 /* The addr is used to check if the vma size fits */
76 unsigned long addr = (vma->vm_end & HPAGE_PMD_MASK) - HPAGE_PMD_SIZE;
77
78 if (!transhuge_vma_suitable(vma, addr))
79 return false;
80 if (vma_is_anonymous(vma))
81 return __transparent_hugepage_enabled(vma);
82 if (vma_is_shmem(vma))
83 return shmem_huge_enabled(vma);
84 if (IS_ENABLED(CONFIG_READ_ONLY_THP_FOR_FS))
85 return file_thp_enabled(vma);
86
87 return false;
88 }
89
get_huge_zero_page(void)90 static struct page *get_huge_zero_page(void)
91 {
92 struct page *zero_page;
93 retry:
94 if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
95 return READ_ONCE(huge_zero_page);
96
97 zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
98 HPAGE_PMD_ORDER);
99 if (!zero_page) {
100 count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
101 return NULL;
102 }
103 count_vm_event(THP_ZERO_PAGE_ALLOC);
104 preempt_disable();
105 if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
106 preempt_enable();
107 __free_pages(zero_page, compound_order(zero_page));
108 goto retry;
109 }
110 WRITE_ONCE(huge_zero_pfn, page_to_pfn(zero_page));
111
112 /* We take additional reference here. It will be put back by shrinker */
113 atomic_set(&huge_zero_refcount, 2);
114 preempt_enable();
115 return READ_ONCE(huge_zero_page);
116 }
117
put_huge_zero_page(void)118 static void put_huge_zero_page(void)
119 {
120 /*
121 * Counter should never go to zero here. Only shrinker can put
122 * last reference.
123 */
124 BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
125 }
126
mm_get_huge_zero_page(struct mm_struct * mm)127 struct page *mm_get_huge_zero_page(struct mm_struct *mm)
128 {
129 if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
130 return READ_ONCE(huge_zero_page);
131
132 if (!get_huge_zero_page())
133 return NULL;
134
135 if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
136 put_huge_zero_page();
137
138 return READ_ONCE(huge_zero_page);
139 }
140
mm_put_huge_zero_page(struct mm_struct * mm)141 void mm_put_huge_zero_page(struct mm_struct *mm)
142 {
143 if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
144 put_huge_zero_page();
145 }
146
shrink_huge_zero_page_count(struct shrinker * shrink,struct shrink_control * sc)147 static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
148 struct shrink_control *sc)
149 {
150 /* we can free zero page only if last reference remains */
151 return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
152 }
153
shrink_huge_zero_page_scan(struct shrinker * shrink,struct shrink_control * sc)154 static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
155 struct shrink_control *sc)
156 {
157 if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
158 struct page *zero_page = xchg(&huge_zero_page, NULL);
159 BUG_ON(zero_page == NULL);
160 WRITE_ONCE(huge_zero_pfn, ~0UL);
161 __free_pages(zero_page, compound_order(zero_page));
162 return HPAGE_PMD_NR;
163 }
164
165 return 0;
166 }
167
168 static struct shrinker huge_zero_page_shrinker = {
169 .count_objects = shrink_huge_zero_page_count,
170 .scan_objects = shrink_huge_zero_page_scan,
171 .seeks = DEFAULT_SEEKS,
172 };
173
174 #ifdef CONFIG_SYSFS
enabled_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)175 static ssize_t enabled_show(struct kobject *kobj,
176 struct kobj_attribute *attr, char *buf)
177 {
178 if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
179 return sprintf(buf, "[always] madvise never\n");
180 else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags))
181 return sprintf(buf, "always [madvise] never\n");
182 else
183 return sprintf(buf, "always madvise [never]\n");
184 }
185
enabled_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)186 static ssize_t enabled_store(struct kobject *kobj,
187 struct kobj_attribute *attr,
188 const char *buf, size_t count)
189 {
190 ssize_t ret = count;
191
192 if (sysfs_streq(buf, "always")) {
193 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
194 set_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
195 } else if (sysfs_streq(buf, "madvise")) {
196 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
197 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
198 } else if (sysfs_streq(buf, "never")) {
199 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
200 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
201 } else
202 ret = -EINVAL;
203
204 if (ret > 0) {
205 int err = start_stop_khugepaged();
206 if (err)
207 ret = err;
208 }
209 return ret;
210 }
211 static struct kobj_attribute enabled_attr =
212 __ATTR(enabled, 0644, enabled_show, enabled_store);
213
single_hugepage_flag_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf,enum transparent_hugepage_flag flag)214 ssize_t single_hugepage_flag_show(struct kobject *kobj,
215 struct kobj_attribute *attr, char *buf,
216 enum transparent_hugepage_flag flag)
217 {
218 return sprintf(buf, "%d\n",
219 !!test_bit(flag, &transparent_hugepage_flags));
220 }
221
single_hugepage_flag_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count,enum transparent_hugepage_flag flag)222 ssize_t single_hugepage_flag_store(struct kobject *kobj,
223 struct kobj_attribute *attr,
224 const char *buf, size_t count,
225 enum transparent_hugepage_flag flag)
226 {
227 unsigned long value;
228 int ret;
229
230 ret = kstrtoul(buf, 10, &value);
231 if (ret < 0)
232 return ret;
233 if (value > 1)
234 return -EINVAL;
235
236 if (value)
237 set_bit(flag, &transparent_hugepage_flags);
238 else
239 clear_bit(flag, &transparent_hugepage_flags);
240
241 return count;
242 }
243
defrag_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)244 static ssize_t defrag_show(struct kobject *kobj,
245 struct kobj_attribute *attr, char *buf)
246 {
247 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
248 return sprintf(buf, "[always] defer defer+madvise madvise never\n");
249 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
250 return sprintf(buf, "always [defer] defer+madvise madvise never\n");
251 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
252 return sprintf(buf, "always defer [defer+madvise] madvise never\n");
253 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
254 return sprintf(buf, "always defer defer+madvise [madvise] never\n");
255 return sprintf(buf, "always defer defer+madvise madvise [never]\n");
256 }
257
defrag_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)258 static ssize_t defrag_store(struct kobject *kobj,
259 struct kobj_attribute *attr,
260 const char *buf, size_t count)
261 {
262 if (sysfs_streq(buf, "always")) {
263 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
264 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
265 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
266 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
267 } else if (sysfs_streq(buf, "defer+madvise")) {
268 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
269 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
270 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
271 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
272 } else if (sysfs_streq(buf, "defer")) {
273 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
274 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
275 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
276 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
277 } else if (sysfs_streq(buf, "madvise")) {
278 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
279 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
280 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
281 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
282 } else if (sysfs_streq(buf, "never")) {
283 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
284 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
285 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
286 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
287 } else
288 return -EINVAL;
289
290 return count;
291 }
292 static struct kobj_attribute defrag_attr =
293 __ATTR(defrag, 0644, defrag_show, defrag_store);
294
use_zero_page_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)295 static ssize_t use_zero_page_show(struct kobject *kobj,
296 struct kobj_attribute *attr, char *buf)
297 {
298 return single_hugepage_flag_show(kobj, attr, buf,
299 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
300 }
use_zero_page_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)301 static ssize_t use_zero_page_store(struct kobject *kobj,
302 struct kobj_attribute *attr, const char *buf, size_t count)
303 {
304 return single_hugepage_flag_store(kobj, attr, buf, count,
305 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
306 }
307 static struct kobj_attribute use_zero_page_attr =
308 __ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
309
hpage_pmd_size_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)310 static ssize_t hpage_pmd_size_show(struct kobject *kobj,
311 struct kobj_attribute *attr, char *buf)
312 {
313 return sprintf(buf, "%lu\n", HPAGE_PMD_SIZE);
314 }
315 static struct kobj_attribute hpage_pmd_size_attr =
316 __ATTR_RO(hpage_pmd_size);
317
318 static struct attribute *hugepage_attr[] = {
319 &enabled_attr.attr,
320 &defrag_attr.attr,
321 &use_zero_page_attr.attr,
322 &hpage_pmd_size_attr.attr,
323 #ifdef CONFIG_SHMEM
324 &shmem_enabled_attr.attr,
325 #endif
326 NULL,
327 };
328
329 static const struct attribute_group hugepage_attr_group = {
330 .attrs = hugepage_attr,
331 };
332
hugepage_init_sysfs(struct kobject ** hugepage_kobj)333 static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
334 {
335 int err;
336
337 *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
338 if (unlikely(!*hugepage_kobj)) {
339 pr_err("failed to create transparent hugepage kobject\n");
340 return -ENOMEM;
341 }
342
343 err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
344 if (err) {
345 pr_err("failed to register transparent hugepage group\n");
346 goto delete_obj;
347 }
348
349 err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
350 if (err) {
351 pr_err("failed to register transparent hugepage group\n");
352 goto remove_hp_group;
353 }
354
355 return 0;
356
357 remove_hp_group:
358 sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
359 delete_obj:
360 kobject_put(*hugepage_kobj);
361 return err;
362 }
363
hugepage_exit_sysfs(struct kobject * hugepage_kobj)364 static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
365 {
366 sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
367 sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
368 kobject_put(hugepage_kobj);
369 }
370 #else
hugepage_init_sysfs(struct kobject ** hugepage_kobj)371 static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
372 {
373 return 0;
374 }
375
hugepage_exit_sysfs(struct kobject * hugepage_kobj)376 static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
377 {
378 }
379 #endif /* CONFIG_SYSFS */
380
hugepage_init(void)381 static int __init hugepage_init(void)
382 {
383 int err;
384 struct kobject *hugepage_kobj;
385
386 if (!has_transparent_hugepage()) {
387 /*
388 * Hardware doesn't support hugepages, hence disable
389 * DAX PMD support.
390 */
391 transparent_hugepage_flags = 1 << TRANSPARENT_HUGEPAGE_NEVER_DAX;
392 return -EINVAL;
393 }
394
395 /*
396 * hugepages can't be allocated by the buddy allocator
397 */
398 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER >= MAX_ORDER);
399 /*
400 * we use page->mapping and page->index in second tail page
401 * as list_head: assuming THP order >= 2
402 */
403 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);
404
405 err = hugepage_init_sysfs(&hugepage_kobj);
406 if (err)
407 goto err_sysfs;
408
409 err = khugepaged_init();
410 if (err)
411 goto err_slab;
412
413 err = register_shrinker(&huge_zero_page_shrinker);
414 if (err)
415 goto err_hzp_shrinker;
416 err = register_shrinker(&deferred_split_shrinker);
417 if (err)
418 goto err_split_shrinker;
419
420 /*
421 * By default disable transparent hugepages on smaller systems,
422 * where the extra memory used could hurt more than TLB overhead
423 * is likely to save. The admin can still enable it through /sys.
424 */
425 if (totalram_pages() < (512 << (20 - PAGE_SHIFT))) {
426 transparent_hugepage_flags = 0;
427 return 0;
428 }
429
430 err = start_stop_khugepaged();
431 if (err)
432 goto err_khugepaged;
433
434 return 0;
435 err_khugepaged:
436 unregister_shrinker(&deferred_split_shrinker);
437 err_split_shrinker:
438 unregister_shrinker(&huge_zero_page_shrinker);
439 err_hzp_shrinker:
440 khugepaged_destroy();
441 err_slab:
442 hugepage_exit_sysfs(hugepage_kobj);
443 err_sysfs:
444 return err;
445 }
446 subsys_initcall(hugepage_init);
447
setup_transparent_hugepage(char * str)448 static int __init setup_transparent_hugepage(char *str)
449 {
450 int ret = 0;
451 if (!str)
452 goto out;
453 if (!strcmp(str, "always")) {
454 set_bit(TRANSPARENT_HUGEPAGE_FLAG,
455 &transparent_hugepage_flags);
456 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
457 &transparent_hugepage_flags);
458 ret = 1;
459 } else if (!strcmp(str, "madvise")) {
460 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
461 &transparent_hugepage_flags);
462 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
463 &transparent_hugepage_flags);
464 ret = 1;
465 } else if (!strcmp(str, "never")) {
466 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
467 &transparent_hugepage_flags);
468 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
469 &transparent_hugepage_flags);
470 ret = 1;
471 }
472 out:
473 if (!ret)
474 pr_warn("transparent_hugepage= cannot parse, ignored\n");
475 return ret;
476 }
477 __setup("transparent_hugepage=", setup_transparent_hugepage);
478
maybe_pmd_mkwrite(pmd_t pmd,struct vm_area_struct * vma)479 pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
480 {
481 if (likely(vma->vm_flags & VM_WRITE))
482 pmd = pmd_mkwrite(pmd);
483 return pmd;
484 }
485
486 #ifdef CONFIG_MEMCG
get_deferred_split_queue(struct page * page)487 static inline struct deferred_split *get_deferred_split_queue(struct page *page)
488 {
489 struct mem_cgroup *memcg = compound_head(page)->mem_cgroup;
490 struct pglist_data *pgdat = NODE_DATA(page_to_nid(page));
491
492 if (memcg)
493 return &memcg->deferred_split_queue;
494 else
495 return &pgdat->deferred_split_queue;
496 }
497 #else
get_deferred_split_queue(struct page * page)498 static inline struct deferred_split *get_deferred_split_queue(struct page *page)
499 {
500 struct pglist_data *pgdat = NODE_DATA(page_to_nid(page));
501
502 return &pgdat->deferred_split_queue;
503 }
504 #endif
505
prep_transhuge_page(struct page * page)506 void prep_transhuge_page(struct page *page)
507 {
508 /*
509 * we use page->mapping and page->indexlru in second tail page
510 * as list_head: assuming THP order >= 2
511 */
512
513 INIT_LIST_HEAD(page_deferred_list(page));
514 set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR);
515 }
516
is_transparent_hugepage(struct page * page)517 bool is_transparent_hugepage(struct page *page)
518 {
519 if (!PageCompound(page))
520 return false;
521
522 page = compound_head(page);
523 return is_huge_zero_page(page) ||
524 page[1].compound_dtor == TRANSHUGE_PAGE_DTOR;
525 }
526 EXPORT_SYMBOL_GPL(is_transparent_hugepage);
527
__thp_get_unmapped_area(struct file * filp,unsigned long addr,unsigned long len,loff_t off,unsigned long flags,unsigned long size)528 static unsigned long __thp_get_unmapped_area(struct file *filp,
529 unsigned long addr, unsigned long len,
530 loff_t off, unsigned long flags, unsigned long size)
531 {
532 loff_t off_end = off + len;
533 loff_t off_align = round_up(off, size);
534 unsigned long len_pad, ret;
535
536 if (off_end <= off_align || (off_end - off_align) < size)
537 return 0;
538
539 len_pad = len + size;
540 if (len_pad < len || (off + len_pad) < off)
541 return 0;
542
543 ret = current->mm->get_unmapped_area(filp, addr, len_pad,
544 off >> PAGE_SHIFT, flags);
545
546 /*
547 * The failure might be due to length padding. The caller will retry
548 * without the padding.
549 */
550 if (IS_ERR_VALUE(ret))
551 return 0;
552
553 /*
554 * Do not try to align to THP boundary if allocation at the address
555 * hint succeeds.
556 */
557 if (ret == addr)
558 return addr;
559
560 ret += (off - ret) & (size - 1);
561 return ret;
562 }
563
thp_get_unmapped_area(struct file * filp,unsigned long addr,unsigned long len,unsigned long pgoff,unsigned long flags)564 unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr,
565 unsigned long len, unsigned long pgoff, unsigned long flags)
566 {
567 unsigned long ret;
568 loff_t off = (loff_t)pgoff << PAGE_SHIFT;
569
570 if (!IS_DAX(filp->f_mapping->host) || !IS_ENABLED(CONFIG_FS_DAX_PMD))
571 goto out;
572
573 ret = __thp_get_unmapped_area(filp, addr, len, off, flags, PMD_SIZE);
574 if (ret)
575 return ret;
576 out:
577 return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags);
578 }
579 EXPORT_SYMBOL_GPL(thp_get_unmapped_area);
580
__do_huge_pmd_anonymous_page(struct vm_fault * vmf,struct page * page,gfp_t gfp)581 static vm_fault_t __do_huge_pmd_anonymous_page(struct vm_fault *vmf,
582 struct page *page, gfp_t gfp)
583 {
584 struct vm_area_struct *vma = vmf->vma;
585 pgtable_t pgtable;
586 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
587 vm_fault_t ret = 0;
588
589 VM_BUG_ON_PAGE(!PageCompound(page), page);
590
591 if (mem_cgroup_charge(page, vma->vm_mm, gfp)) {
592 put_page(page);
593 count_vm_event(THP_FAULT_FALLBACK);
594 count_vm_event(THP_FAULT_FALLBACK_CHARGE);
595 return VM_FAULT_FALLBACK;
596 }
597 cgroup_throttle_swaprate(page, gfp);
598
599 pgtable = pte_alloc_one(vma->vm_mm);
600 if (unlikely(!pgtable)) {
601 ret = VM_FAULT_OOM;
602 goto release;
603 }
604
605 clear_huge_page(page, vmf->address, HPAGE_PMD_NR);
606 /*
607 * The memory barrier inside __SetPageUptodate makes sure that
608 * clear_huge_page writes become visible before the set_pmd_at()
609 * write.
610 */
611 __SetPageUptodate(page);
612
613 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
614 if (unlikely(!pmd_none(*vmf->pmd))) {
615 goto unlock_release;
616 } else {
617 pmd_t entry;
618
619 ret = check_stable_address_space(vma->vm_mm);
620 if (ret)
621 goto unlock_release;
622
623 /* Deliver the page fault to userland */
624 if (userfaultfd_missing(vma)) {
625 vm_fault_t ret2;
626
627 spin_unlock(vmf->ptl);
628 put_page(page);
629 pte_free(vma->vm_mm, pgtable);
630 ret2 = handle_userfault(vmf, VM_UFFD_MISSING);
631 VM_BUG_ON(ret2 & VM_FAULT_FALLBACK);
632 return ret2;
633 }
634
635 entry = mk_huge_pmd(page, vma->vm_page_prot);
636 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
637 page_add_new_anon_rmap(page, vma, haddr, true);
638 lru_cache_add_inactive_or_unevictable(page, vma);
639 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
640 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
641 add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
642 mm_inc_nr_ptes(vma->vm_mm);
643 spin_unlock(vmf->ptl);
644 count_vm_event(THP_FAULT_ALLOC);
645 count_memcg_event_mm(vma->vm_mm, THP_FAULT_ALLOC);
646 }
647
648 return 0;
649 unlock_release:
650 spin_unlock(vmf->ptl);
651 release:
652 if (pgtable)
653 pte_free(vma->vm_mm, pgtable);
654 put_page(page);
655 return ret;
656
657 }
658
659 /*
660 * always: directly stall for all thp allocations
661 * defer: wake kswapd and fail if not immediately available
662 * defer+madvise: wake kswapd and directly stall for MADV_HUGEPAGE, otherwise
663 * fail if not immediately available
664 * madvise: directly stall for MADV_HUGEPAGE, otherwise fail if not immediately
665 * available
666 * never: never stall for any thp allocation
667 */
alloc_hugepage_direct_gfpmask(struct vm_area_struct * vma)668 static inline gfp_t alloc_hugepage_direct_gfpmask(struct vm_area_struct *vma)
669 {
670 const bool vma_madvised = !!(vma->vm_flags & VM_HUGEPAGE);
671
672 /* Always do synchronous compaction */
673 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
674 return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY);
675
676 /* Kick kcompactd and fail quickly */
677 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
678 return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM;
679
680 /* Synchronous compaction if madvised, otherwise kick kcompactd */
681 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
682 return GFP_TRANSHUGE_LIGHT |
683 (vma_madvised ? __GFP_DIRECT_RECLAIM :
684 __GFP_KSWAPD_RECLAIM);
685
686 /* Only do synchronous compaction if madvised */
687 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
688 return GFP_TRANSHUGE_LIGHT |
689 (vma_madvised ? __GFP_DIRECT_RECLAIM : 0);
690
691 return GFP_TRANSHUGE_LIGHT;
692 }
693
694 /* Caller must hold page table lock. */
set_huge_zero_page(pgtable_t pgtable,struct mm_struct * mm,struct vm_area_struct * vma,unsigned long haddr,pmd_t * pmd,struct page * zero_page)695 static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
696 struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
697 struct page *zero_page)
698 {
699 pmd_t entry;
700 if (!pmd_none(*pmd))
701 return false;
702 entry = mk_pmd(zero_page, vma->vm_page_prot);
703 entry = pmd_mkhuge(entry);
704 if (pgtable)
705 pgtable_trans_huge_deposit(mm, pmd, pgtable);
706 set_pmd_at(mm, haddr, pmd, entry);
707 mm_inc_nr_ptes(mm);
708 return true;
709 }
710
do_huge_pmd_anonymous_page(struct vm_fault * vmf)711 vm_fault_t do_huge_pmd_anonymous_page(struct vm_fault *vmf)
712 {
713 struct vm_area_struct *vma = vmf->vma;
714 gfp_t gfp;
715 struct page *page;
716 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
717
718 if (!transhuge_vma_suitable(vma, haddr))
719 return VM_FAULT_FALLBACK;
720 if (unlikely(anon_vma_prepare(vma)))
721 return VM_FAULT_OOM;
722 if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
723 return VM_FAULT_OOM;
724 if (!(vmf->flags & FAULT_FLAG_WRITE) &&
725 !mm_forbids_zeropage(vma->vm_mm) &&
726 transparent_hugepage_use_zero_page()) {
727 pgtable_t pgtable;
728 struct page *zero_page;
729 vm_fault_t ret;
730 pgtable = pte_alloc_one(vma->vm_mm);
731 if (unlikely(!pgtable))
732 return VM_FAULT_OOM;
733 zero_page = mm_get_huge_zero_page(vma->vm_mm);
734 if (unlikely(!zero_page)) {
735 pte_free(vma->vm_mm, pgtable);
736 count_vm_event(THP_FAULT_FALLBACK);
737 return VM_FAULT_FALLBACK;
738 }
739 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
740 ret = 0;
741 if (pmd_none(*vmf->pmd)) {
742 ret = check_stable_address_space(vma->vm_mm);
743 if (ret) {
744 spin_unlock(vmf->ptl);
745 pte_free(vma->vm_mm, pgtable);
746 } else if (userfaultfd_missing(vma)) {
747 spin_unlock(vmf->ptl);
748 pte_free(vma->vm_mm, pgtable);
749 ret = handle_userfault(vmf, VM_UFFD_MISSING);
750 VM_BUG_ON(ret & VM_FAULT_FALLBACK);
751 } else {
752 set_huge_zero_page(pgtable, vma->vm_mm, vma,
753 haddr, vmf->pmd, zero_page);
754 spin_unlock(vmf->ptl);
755 }
756 } else {
757 spin_unlock(vmf->ptl);
758 pte_free(vma->vm_mm, pgtable);
759 }
760 return ret;
761 }
762 gfp = alloc_hugepage_direct_gfpmask(vma);
763 page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER);
764 if (unlikely(!page)) {
765 count_vm_event(THP_FAULT_FALLBACK);
766 return VM_FAULT_FALLBACK;
767 }
768 prep_transhuge_page(page);
769 return __do_huge_pmd_anonymous_page(vmf, page, gfp);
770 }
771
insert_pfn_pmd(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmd,pfn_t pfn,pgprot_t prot,bool write,pgtable_t pgtable)772 static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
773 pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write,
774 pgtable_t pgtable)
775 {
776 struct mm_struct *mm = vma->vm_mm;
777 pmd_t entry;
778 spinlock_t *ptl;
779
780 ptl = pmd_lock(mm, pmd);
781 if (!pmd_none(*pmd)) {
782 if (write) {
783 if (pmd_pfn(*pmd) != pfn_t_to_pfn(pfn)) {
784 WARN_ON_ONCE(!is_huge_zero_pmd(*pmd));
785 goto out_unlock;
786 }
787 entry = pmd_mkyoung(*pmd);
788 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
789 if (pmdp_set_access_flags(vma, addr, pmd, entry, 1))
790 update_mmu_cache_pmd(vma, addr, pmd);
791 }
792
793 goto out_unlock;
794 }
795
796 entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
797 if (pfn_t_devmap(pfn))
798 entry = pmd_mkdevmap(entry);
799 if (write) {
800 entry = pmd_mkyoung(pmd_mkdirty(entry));
801 entry = maybe_pmd_mkwrite(entry, vma);
802 }
803
804 if (pgtable) {
805 pgtable_trans_huge_deposit(mm, pmd, pgtable);
806 mm_inc_nr_ptes(mm);
807 pgtable = NULL;
808 }
809
810 set_pmd_at(mm, addr, pmd, entry);
811 update_mmu_cache_pmd(vma, addr, pmd);
812
813 out_unlock:
814 spin_unlock(ptl);
815 if (pgtable)
816 pte_free(mm, pgtable);
817 }
818
819 /**
820 * vmf_insert_pfn_pmd_prot - insert a pmd size pfn
821 * @vmf: Structure describing the fault
822 * @pfn: pfn to insert
823 * @pgprot: page protection to use
824 * @write: whether it's a write fault
825 *
826 * Insert a pmd size pfn. See vmf_insert_pfn() for additional info and
827 * also consult the vmf_insert_mixed_prot() documentation when
828 * @pgprot != @vmf->vma->vm_page_prot.
829 *
830 * Return: vm_fault_t value.
831 */
vmf_insert_pfn_pmd_prot(struct vm_fault * vmf,pfn_t pfn,pgprot_t pgprot,bool write)832 vm_fault_t vmf_insert_pfn_pmd_prot(struct vm_fault *vmf, pfn_t pfn,
833 pgprot_t pgprot, bool write)
834 {
835 unsigned long addr = vmf->address & PMD_MASK;
836 struct vm_area_struct *vma = vmf->vma;
837 pgtable_t pgtable = NULL;
838
839 /*
840 * If we had pmd_special, we could avoid all these restrictions,
841 * but we need to be consistent with PTEs and architectures that
842 * can't support a 'special' bit.
843 */
844 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
845 !pfn_t_devmap(pfn));
846 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
847 (VM_PFNMAP|VM_MIXEDMAP));
848 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
849
850 if (addr < vma->vm_start || addr >= vma->vm_end)
851 return VM_FAULT_SIGBUS;
852
853 if (arch_needs_pgtable_deposit()) {
854 pgtable = pte_alloc_one(vma->vm_mm);
855 if (!pgtable)
856 return VM_FAULT_OOM;
857 }
858
859 track_pfn_insert(vma, &pgprot, pfn);
860
861 insert_pfn_pmd(vma, addr, vmf->pmd, pfn, pgprot, write, pgtable);
862 return VM_FAULT_NOPAGE;
863 }
864 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd_prot);
865
866 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
maybe_pud_mkwrite(pud_t pud,struct vm_area_struct * vma)867 static pud_t maybe_pud_mkwrite(pud_t pud, struct vm_area_struct *vma)
868 {
869 if (likely(vma->vm_flags & VM_WRITE))
870 pud = pud_mkwrite(pud);
871 return pud;
872 }
873
insert_pfn_pud(struct vm_area_struct * vma,unsigned long addr,pud_t * pud,pfn_t pfn,pgprot_t prot,bool write)874 static void insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
875 pud_t *pud, pfn_t pfn, pgprot_t prot, bool write)
876 {
877 struct mm_struct *mm = vma->vm_mm;
878 pud_t entry;
879 spinlock_t *ptl;
880
881 ptl = pud_lock(mm, pud);
882 if (!pud_none(*pud)) {
883 if (write) {
884 if (pud_pfn(*pud) != pfn_t_to_pfn(pfn)) {
885 WARN_ON_ONCE(!is_huge_zero_pud(*pud));
886 goto out_unlock;
887 }
888 entry = pud_mkyoung(*pud);
889 entry = maybe_pud_mkwrite(pud_mkdirty(entry), vma);
890 if (pudp_set_access_flags(vma, addr, pud, entry, 1))
891 update_mmu_cache_pud(vma, addr, pud);
892 }
893 goto out_unlock;
894 }
895
896 entry = pud_mkhuge(pfn_t_pud(pfn, prot));
897 if (pfn_t_devmap(pfn))
898 entry = pud_mkdevmap(entry);
899 if (write) {
900 entry = pud_mkyoung(pud_mkdirty(entry));
901 entry = maybe_pud_mkwrite(entry, vma);
902 }
903 set_pud_at(mm, addr, pud, entry);
904 update_mmu_cache_pud(vma, addr, pud);
905
906 out_unlock:
907 spin_unlock(ptl);
908 }
909
910 /**
911 * vmf_insert_pfn_pud_prot - insert a pud size pfn
912 * @vmf: Structure describing the fault
913 * @pfn: pfn to insert
914 * @pgprot: page protection to use
915 * @write: whether it's a write fault
916 *
917 * Insert a pud size pfn. See vmf_insert_pfn() for additional info and
918 * also consult the vmf_insert_mixed_prot() documentation when
919 * @pgprot != @vmf->vma->vm_page_prot.
920 *
921 * Return: vm_fault_t value.
922 */
vmf_insert_pfn_pud_prot(struct vm_fault * vmf,pfn_t pfn,pgprot_t pgprot,bool write)923 vm_fault_t vmf_insert_pfn_pud_prot(struct vm_fault *vmf, pfn_t pfn,
924 pgprot_t pgprot, bool write)
925 {
926 unsigned long addr = vmf->address & PUD_MASK;
927 struct vm_area_struct *vma = vmf->vma;
928
929 /*
930 * If we had pud_special, we could avoid all these restrictions,
931 * but we need to be consistent with PTEs and architectures that
932 * can't support a 'special' bit.
933 */
934 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
935 !pfn_t_devmap(pfn));
936 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
937 (VM_PFNMAP|VM_MIXEDMAP));
938 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
939
940 if (addr < vma->vm_start || addr >= vma->vm_end)
941 return VM_FAULT_SIGBUS;
942
943 track_pfn_insert(vma, &pgprot, pfn);
944
945 insert_pfn_pud(vma, addr, vmf->pud, pfn, pgprot, write);
946 return VM_FAULT_NOPAGE;
947 }
948 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pud_prot);
949 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
950
touch_pmd(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmd,int flags)951 static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
952 pmd_t *pmd, int flags)
953 {
954 pmd_t _pmd;
955
956 _pmd = pmd_mkyoung(*pmd);
957 if (flags & FOLL_WRITE)
958 _pmd = pmd_mkdirty(_pmd);
959 if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
960 pmd, _pmd, flags & FOLL_WRITE))
961 update_mmu_cache_pmd(vma, addr, pmd);
962 }
963
follow_devmap_pmd(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmd,int flags,struct dev_pagemap ** pgmap)964 struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
965 pmd_t *pmd, int flags, struct dev_pagemap **pgmap)
966 {
967 unsigned long pfn = pmd_pfn(*pmd);
968 struct mm_struct *mm = vma->vm_mm;
969 struct page *page;
970
971 assert_spin_locked(pmd_lockptr(mm, pmd));
972
973 /*
974 * When we COW a devmap PMD entry, we split it into PTEs, so we should
975 * not be in this function with `flags & FOLL_COW` set.
976 */
977 WARN_ONCE(flags & FOLL_COW, "mm: In follow_devmap_pmd with FOLL_COW set");
978
979 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
980 if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
981 (FOLL_PIN | FOLL_GET)))
982 return NULL;
983
984 if (flags & FOLL_WRITE && !pmd_write(*pmd))
985 return NULL;
986
987 if (pmd_present(*pmd) && pmd_devmap(*pmd))
988 /* pass */;
989 else
990 return NULL;
991
992 if (flags & FOLL_TOUCH)
993 touch_pmd(vma, addr, pmd, flags);
994
995 /*
996 * device mapped pages can only be returned if the
997 * caller will manage the page reference count.
998 */
999 if (!(flags & (FOLL_GET | FOLL_PIN)))
1000 return ERR_PTR(-EEXIST);
1001
1002 pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
1003 *pgmap = get_dev_pagemap(pfn, *pgmap);
1004 if (!*pgmap)
1005 return ERR_PTR(-EFAULT);
1006 page = pfn_to_page(pfn);
1007 if (!try_grab_page(page, flags))
1008 page = ERR_PTR(-ENOMEM);
1009
1010 return page;
1011 }
1012
copy_huge_pmd(struct mm_struct * dst_mm,struct mm_struct * src_mm,pmd_t * dst_pmd,pmd_t * src_pmd,unsigned long addr,struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma)1013 int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1014 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
1015 struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1016 {
1017 spinlock_t *dst_ptl, *src_ptl;
1018 struct page *src_page;
1019 pmd_t pmd;
1020 pgtable_t pgtable = NULL;
1021 int ret = -ENOMEM;
1022
1023 /* Skip if can be re-fill on fault */
1024 if (!vma_is_anonymous(dst_vma))
1025 return 0;
1026
1027 pgtable = pte_alloc_one(dst_mm);
1028 if (unlikely(!pgtable))
1029 goto out;
1030
1031 dst_ptl = pmd_lock(dst_mm, dst_pmd);
1032 src_ptl = pmd_lockptr(src_mm, src_pmd);
1033 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1034
1035 ret = -EAGAIN;
1036 pmd = *src_pmd;
1037
1038 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1039 if (unlikely(is_swap_pmd(pmd))) {
1040 swp_entry_t entry = pmd_to_swp_entry(pmd);
1041
1042 VM_BUG_ON(!is_pmd_migration_entry(pmd));
1043 if (is_write_migration_entry(entry)) {
1044 make_migration_entry_read(&entry);
1045 pmd = swp_entry_to_pmd(entry);
1046 if (pmd_swp_soft_dirty(*src_pmd))
1047 pmd = pmd_swp_mksoft_dirty(pmd);
1048 if (pmd_swp_uffd_wp(*src_pmd))
1049 pmd = pmd_swp_mkuffd_wp(pmd);
1050 set_pmd_at(src_mm, addr, src_pmd, pmd);
1051 }
1052 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1053 mm_inc_nr_ptes(dst_mm);
1054 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1055 if (!userfaultfd_wp(dst_vma))
1056 pmd = pmd_swp_clear_uffd_wp(pmd);
1057 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
1058 ret = 0;
1059 goto out_unlock;
1060 }
1061 #endif
1062
1063 if (unlikely(!pmd_trans_huge(pmd))) {
1064 pte_free(dst_mm, pgtable);
1065 goto out_unlock;
1066 }
1067 /*
1068 * When page table lock is held, the huge zero pmd should not be
1069 * under splitting since we don't split the page itself, only pmd to
1070 * a page table.
1071 */
1072 if (is_huge_zero_pmd(pmd)) {
1073 /*
1074 * get_huge_zero_page() will never allocate a new page here,
1075 * since we already have a zero page to copy. It just takes a
1076 * reference.
1077 */
1078 mm_get_huge_zero_page(dst_mm);
1079 goto out_zero_page;
1080 }
1081
1082 src_page = pmd_page(pmd);
1083 VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
1084
1085 /*
1086 * If this page is a potentially pinned page, split and retry the fault
1087 * with smaller page size. Normally this should not happen because the
1088 * userspace should use MADV_DONTFORK upon pinned regions. This is a
1089 * best effort that the pinned pages won't be replaced by another
1090 * random page during the coming copy-on-write.
1091 */
1092 if (unlikely(is_cow_mapping(src_vma->vm_flags) &&
1093 atomic_read(&src_mm->has_pinned) &&
1094 page_maybe_dma_pinned(src_page))) {
1095 pte_free(dst_mm, pgtable);
1096 spin_unlock(src_ptl);
1097 spin_unlock(dst_ptl);
1098 __split_huge_pmd(src_vma, src_pmd, addr, false, NULL);
1099 return -EAGAIN;
1100 }
1101
1102 get_page(src_page);
1103 page_dup_rmap(src_page, true);
1104 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1105 out_zero_page:
1106 mm_inc_nr_ptes(dst_mm);
1107 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1108 pmdp_set_wrprotect(src_mm, addr, src_pmd);
1109 if (!userfaultfd_wp(dst_vma))
1110 pmd = pmd_clear_uffd_wp(pmd);
1111 pmd = pmd_mkold(pmd_wrprotect(pmd));
1112 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
1113
1114 ret = 0;
1115 out_unlock:
1116 spin_unlock(src_ptl);
1117 spin_unlock(dst_ptl);
1118 out:
1119 return ret;
1120 }
1121
1122 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
touch_pud(struct vm_area_struct * vma,unsigned long addr,pud_t * pud,int flags)1123 static void touch_pud(struct vm_area_struct *vma, unsigned long addr,
1124 pud_t *pud, int flags)
1125 {
1126 pud_t _pud;
1127
1128 _pud = pud_mkyoung(*pud);
1129 if (flags & FOLL_WRITE)
1130 _pud = pud_mkdirty(_pud);
1131 if (pudp_set_access_flags(vma, addr & HPAGE_PUD_MASK,
1132 pud, _pud, flags & FOLL_WRITE))
1133 update_mmu_cache_pud(vma, addr, pud);
1134 }
1135
follow_devmap_pud(struct vm_area_struct * vma,unsigned long addr,pud_t * pud,int flags,struct dev_pagemap ** pgmap)1136 struct page *follow_devmap_pud(struct vm_area_struct *vma, unsigned long addr,
1137 pud_t *pud, int flags, struct dev_pagemap **pgmap)
1138 {
1139 unsigned long pfn = pud_pfn(*pud);
1140 struct mm_struct *mm = vma->vm_mm;
1141 struct page *page;
1142
1143 assert_spin_locked(pud_lockptr(mm, pud));
1144
1145 if (flags & FOLL_WRITE && !pud_write(*pud))
1146 return NULL;
1147
1148 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
1149 if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
1150 (FOLL_PIN | FOLL_GET)))
1151 return NULL;
1152
1153 if (pud_present(*pud) && pud_devmap(*pud))
1154 /* pass */;
1155 else
1156 return NULL;
1157
1158 if (flags & FOLL_TOUCH)
1159 touch_pud(vma, addr, pud, flags);
1160
1161 /*
1162 * device mapped pages can only be returned if the
1163 * caller will manage the page reference count.
1164 *
1165 * At least one of FOLL_GET | FOLL_PIN must be set, so assert that here:
1166 */
1167 if (!(flags & (FOLL_GET | FOLL_PIN)))
1168 return ERR_PTR(-EEXIST);
1169
1170 pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT;
1171 *pgmap = get_dev_pagemap(pfn, *pgmap);
1172 if (!*pgmap)
1173 return ERR_PTR(-EFAULT);
1174 page = pfn_to_page(pfn);
1175 if (!try_grab_page(page, flags))
1176 page = ERR_PTR(-ENOMEM);
1177
1178 return page;
1179 }
1180
copy_huge_pud(struct mm_struct * dst_mm,struct mm_struct * src_mm,pud_t * dst_pud,pud_t * src_pud,unsigned long addr,struct vm_area_struct * vma)1181 int copy_huge_pud(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1182 pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1183 struct vm_area_struct *vma)
1184 {
1185 spinlock_t *dst_ptl, *src_ptl;
1186 pud_t pud;
1187 int ret;
1188
1189 dst_ptl = pud_lock(dst_mm, dst_pud);
1190 src_ptl = pud_lockptr(src_mm, src_pud);
1191 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1192
1193 ret = -EAGAIN;
1194 pud = *src_pud;
1195 if (unlikely(!pud_trans_huge(pud) && !pud_devmap(pud)))
1196 goto out_unlock;
1197
1198 /*
1199 * When page table lock is held, the huge zero pud should not be
1200 * under splitting since we don't split the page itself, only pud to
1201 * a page table.
1202 */
1203 if (is_huge_zero_pud(pud)) {
1204 /* No huge zero pud yet */
1205 }
1206
1207 /* Please refer to comments in copy_huge_pmd() */
1208 if (unlikely(is_cow_mapping(vma->vm_flags) &&
1209 atomic_read(&src_mm->has_pinned) &&
1210 page_maybe_dma_pinned(pud_page(pud)))) {
1211 spin_unlock(src_ptl);
1212 spin_unlock(dst_ptl);
1213 __split_huge_pud(vma, src_pud, addr);
1214 return -EAGAIN;
1215 }
1216
1217 pudp_set_wrprotect(src_mm, addr, src_pud);
1218 pud = pud_mkold(pud_wrprotect(pud));
1219 set_pud_at(dst_mm, addr, dst_pud, pud);
1220
1221 ret = 0;
1222 out_unlock:
1223 spin_unlock(src_ptl);
1224 spin_unlock(dst_ptl);
1225 return ret;
1226 }
1227
huge_pud_set_accessed(struct vm_fault * vmf,pud_t orig_pud)1228 void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud)
1229 {
1230 pud_t entry;
1231 unsigned long haddr;
1232 bool write = vmf->flags & FAULT_FLAG_WRITE;
1233
1234 vmf->ptl = pud_lock(vmf->vma->vm_mm, vmf->pud);
1235 if (unlikely(!pud_same(*vmf->pud, orig_pud)))
1236 goto unlock;
1237
1238 entry = pud_mkyoung(orig_pud);
1239 if (write)
1240 entry = pud_mkdirty(entry);
1241 haddr = vmf->address & HPAGE_PUD_MASK;
1242 if (pudp_set_access_flags(vmf->vma, haddr, vmf->pud, entry, write))
1243 update_mmu_cache_pud(vmf->vma, vmf->address, vmf->pud);
1244
1245 unlock:
1246 spin_unlock(vmf->ptl);
1247 }
1248 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1249
huge_pmd_set_accessed(struct vm_fault * vmf,pmd_t orig_pmd)1250 void huge_pmd_set_accessed(struct vm_fault *vmf, pmd_t orig_pmd)
1251 {
1252 pmd_t entry;
1253 unsigned long haddr;
1254 bool write = vmf->flags & FAULT_FLAG_WRITE;
1255
1256 vmf->ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1257 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1258 goto unlock;
1259
1260 entry = pmd_mkyoung(orig_pmd);
1261 if (write)
1262 entry = pmd_mkdirty(entry);
1263 haddr = vmf->address & HPAGE_PMD_MASK;
1264 if (pmdp_set_access_flags(vmf->vma, haddr, vmf->pmd, entry, write))
1265 update_mmu_cache_pmd(vmf->vma, vmf->address, vmf->pmd);
1266
1267 unlock:
1268 spin_unlock(vmf->ptl);
1269 }
1270
do_huge_pmd_wp_page(struct vm_fault * vmf,pmd_t orig_pmd)1271 vm_fault_t do_huge_pmd_wp_page(struct vm_fault *vmf, pmd_t orig_pmd)
1272 {
1273 struct vm_area_struct *vma = vmf->vma;
1274 struct page *page;
1275 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1276
1277 vmf->ptl = pmd_lockptr(vma->vm_mm, vmf->pmd);
1278 VM_BUG_ON_VMA(!vma->anon_vma, vma);
1279
1280 if (is_huge_zero_pmd(orig_pmd))
1281 goto fallback;
1282
1283 spin_lock(vmf->ptl);
1284
1285 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1286 spin_unlock(vmf->ptl);
1287 return 0;
1288 }
1289
1290 page = pmd_page(orig_pmd);
1291 VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page);
1292
1293 /* Lock page for reuse_swap_page() */
1294 if (!trylock_page(page)) {
1295 get_page(page);
1296 spin_unlock(vmf->ptl);
1297 lock_page(page);
1298 spin_lock(vmf->ptl);
1299 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1300 spin_unlock(vmf->ptl);
1301 unlock_page(page);
1302 put_page(page);
1303 return 0;
1304 }
1305 put_page(page);
1306 }
1307
1308 /*
1309 * We can only reuse the page if nobody else maps the huge page or it's
1310 * part.
1311 */
1312 if (reuse_swap_page(page, NULL)) {
1313 pmd_t entry;
1314 entry = pmd_mkyoung(orig_pmd);
1315 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1316 if (pmdp_set_access_flags(vma, haddr, vmf->pmd, entry, 1))
1317 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1318 unlock_page(page);
1319 spin_unlock(vmf->ptl);
1320 return VM_FAULT_WRITE;
1321 }
1322
1323 unlock_page(page);
1324 spin_unlock(vmf->ptl);
1325 fallback:
1326 __split_huge_pmd(vma, vmf->pmd, vmf->address, false, NULL);
1327 return VM_FAULT_FALLBACK;
1328 }
1329
1330 /*
1331 * FOLL_FORCE can write to even unwritable pmd's, but only
1332 * after we've gone through a COW cycle and they are dirty.
1333 */
can_follow_write_pmd(pmd_t pmd,unsigned int flags)1334 static inline bool can_follow_write_pmd(pmd_t pmd, unsigned int flags)
1335 {
1336 return pmd_write(pmd) ||
1337 ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pmd_dirty(pmd));
1338 }
1339
follow_trans_huge_pmd(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmd,unsigned int flags)1340 struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
1341 unsigned long addr,
1342 pmd_t *pmd,
1343 unsigned int flags)
1344 {
1345 struct mm_struct *mm = vma->vm_mm;
1346 struct page *page = NULL;
1347
1348 assert_spin_locked(pmd_lockptr(mm, pmd));
1349
1350 if (flags & FOLL_WRITE && !can_follow_write_pmd(*pmd, flags))
1351 goto out;
1352
1353 /* Avoid dumping huge zero page */
1354 if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1355 return ERR_PTR(-EFAULT);
1356
1357 /* Full NUMA hinting faults to serialise migration in fault paths */
1358 if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
1359 goto out;
1360
1361 page = pmd_page(*pmd);
1362 VM_BUG_ON_PAGE(!PageHead(page) && !is_zone_device_page(page), page);
1363
1364 if (!try_grab_page(page, flags))
1365 return ERR_PTR(-ENOMEM);
1366
1367 if (flags & FOLL_TOUCH)
1368 touch_pmd(vma, addr, pmd, flags);
1369
1370 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1371 /*
1372 * We don't mlock() pte-mapped THPs. This way we can avoid
1373 * leaking mlocked pages into non-VM_LOCKED VMAs.
1374 *
1375 * For anon THP:
1376 *
1377 * In most cases the pmd is the only mapping of the page as we
1378 * break COW for the mlock() -- see gup_flags |= FOLL_WRITE for
1379 * writable private mappings in populate_vma_page_range().
1380 *
1381 * The only scenario when we have the page shared here is if we
1382 * mlocking read-only mapping shared over fork(). We skip
1383 * mlocking such pages.
1384 *
1385 * For file THP:
1386 *
1387 * We can expect PageDoubleMap() to be stable under page lock:
1388 * for file pages we set it in page_add_file_rmap(), which
1389 * requires page to be locked.
1390 */
1391
1392 if (PageAnon(page) && compound_mapcount(page) != 1)
1393 goto skip_mlock;
1394 if (PageDoubleMap(page) || !page->mapping)
1395 goto skip_mlock;
1396 if (!trylock_page(page))
1397 goto skip_mlock;
1398 if (page->mapping && !PageDoubleMap(page))
1399 mlock_vma_page(page);
1400 unlock_page(page);
1401 }
1402 skip_mlock:
1403 page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1404 VM_BUG_ON_PAGE(!PageCompound(page) && !is_zone_device_page(page), page);
1405
1406 out:
1407 return page;
1408 }
1409
1410 /* NUMA hinting page fault entry point for trans huge pmds */
do_huge_pmd_numa_page(struct vm_fault * vmf,pmd_t pmd)1411 vm_fault_t do_huge_pmd_numa_page(struct vm_fault *vmf, pmd_t pmd)
1412 {
1413 struct vm_area_struct *vma = vmf->vma;
1414 struct anon_vma *anon_vma = NULL;
1415 struct page *page;
1416 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1417 int page_nid = NUMA_NO_NODE, this_nid = numa_node_id();
1418 int target_nid, last_cpupid = -1;
1419 bool page_locked;
1420 bool migrated = false;
1421 bool was_writable;
1422 int flags = 0;
1423
1424 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1425 if (unlikely(!pmd_same(pmd, *vmf->pmd)))
1426 goto out_unlock;
1427
1428 /*
1429 * If there are potential migrations, wait for completion and retry
1430 * without disrupting NUMA hinting information. Do not relock and
1431 * check_same as the page may no longer be mapped.
1432 */
1433 if (unlikely(pmd_trans_migrating(*vmf->pmd))) {
1434 page = pmd_page(*vmf->pmd);
1435 if (!get_page_unless_zero(page))
1436 goto out_unlock;
1437 spin_unlock(vmf->ptl);
1438 put_and_wait_on_page_locked(page);
1439 goto out;
1440 }
1441
1442 page = pmd_page(pmd);
1443 BUG_ON(is_huge_zero_page(page));
1444 page_nid = page_to_nid(page);
1445 last_cpupid = page_cpupid_last(page);
1446 count_vm_numa_event(NUMA_HINT_FAULTS);
1447 if (page_nid == this_nid) {
1448 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
1449 flags |= TNF_FAULT_LOCAL;
1450 }
1451
1452 /* See similar comment in do_numa_page for explanation */
1453 if (!pmd_savedwrite(pmd))
1454 flags |= TNF_NO_GROUP;
1455
1456 /*
1457 * Acquire the page lock to serialise THP migrations but avoid dropping
1458 * page_table_lock if at all possible
1459 */
1460 page_locked = trylock_page(page);
1461 target_nid = mpol_misplaced(page, vma, haddr);
1462 if (target_nid == NUMA_NO_NODE) {
1463 /* If the page was locked, there are no parallel migrations */
1464 if (page_locked)
1465 goto clear_pmdnuma;
1466 }
1467
1468 /* Migration could have started since the pmd_trans_migrating check */
1469 if (!page_locked) {
1470 page_nid = NUMA_NO_NODE;
1471 if (!get_page_unless_zero(page))
1472 goto out_unlock;
1473 spin_unlock(vmf->ptl);
1474 put_and_wait_on_page_locked(page);
1475 goto out;
1476 }
1477
1478 /*
1479 * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
1480 * to serialises splits
1481 */
1482 get_page(page);
1483 spin_unlock(vmf->ptl);
1484 anon_vma = page_lock_anon_vma_read(page);
1485
1486 /* Confirm the PMD did not change while page_table_lock was released */
1487 spin_lock(vmf->ptl);
1488 if (unlikely(!pmd_same(pmd, *vmf->pmd))) {
1489 unlock_page(page);
1490 put_page(page);
1491 page_nid = NUMA_NO_NODE;
1492 goto out_unlock;
1493 }
1494
1495 /* Bail if we fail to protect against THP splits for any reason */
1496 if (unlikely(!anon_vma)) {
1497 put_page(page);
1498 page_nid = NUMA_NO_NODE;
1499 goto clear_pmdnuma;
1500 }
1501
1502 /*
1503 * Since we took the NUMA fault, we must have observed the !accessible
1504 * bit. Make sure all other CPUs agree with that, to avoid them
1505 * modifying the page we're about to migrate.
1506 *
1507 * Must be done under PTL such that we'll observe the relevant
1508 * inc_tlb_flush_pending().
1509 *
1510 * We are not sure a pending tlb flush here is for a huge page
1511 * mapping or not. Hence use the tlb range variant
1512 */
1513 if (mm_tlb_flush_pending(vma->vm_mm)) {
1514 flush_tlb_range(vma, haddr, haddr + HPAGE_PMD_SIZE);
1515 /*
1516 * change_huge_pmd() released the pmd lock before
1517 * invalidating the secondary MMUs sharing the primary
1518 * MMU pagetables (with ->invalidate_range()). The
1519 * mmu_notifier_invalidate_range_end() (which
1520 * internally calls ->invalidate_range()) in
1521 * change_pmd_range() will run after us, so we can't
1522 * rely on it here and we need an explicit invalidate.
1523 */
1524 mmu_notifier_invalidate_range(vma->vm_mm, haddr,
1525 haddr + HPAGE_PMD_SIZE);
1526 }
1527
1528 /*
1529 * Migrate the THP to the requested node, returns with page unlocked
1530 * and access rights restored.
1531 */
1532 spin_unlock(vmf->ptl);
1533
1534 migrated = migrate_misplaced_transhuge_page(vma->vm_mm, vma,
1535 vmf->pmd, pmd, vmf->address, page, target_nid);
1536 if (migrated) {
1537 flags |= TNF_MIGRATED;
1538 page_nid = target_nid;
1539 } else
1540 flags |= TNF_MIGRATE_FAIL;
1541
1542 goto out;
1543 clear_pmdnuma:
1544 BUG_ON(!PageLocked(page));
1545 was_writable = pmd_savedwrite(pmd);
1546 pmd = pmd_modify(pmd, vma->vm_page_prot);
1547 pmd = pmd_mkyoung(pmd);
1548 if (was_writable)
1549 pmd = pmd_mkwrite(pmd);
1550 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, pmd);
1551 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1552 unlock_page(page);
1553 out_unlock:
1554 spin_unlock(vmf->ptl);
1555
1556 out:
1557 if (anon_vma)
1558 page_unlock_anon_vma_read(anon_vma);
1559
1560 if (page_nid != NUMA_NO_NODE)
1561 task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR,
1562 flags);
1563
1564 return 0;
1565 }
1566
1567 /*
1568 * Return true if we do MADV_FREE successfully on entire pmd page.
1569 * Otherwise, return false.
1570 */
madvise_free_huge_pmd(struct mmu_gather * tlb,struct vm_area_struct * vma,pmd_t * pmd,unsigned long addr,unsigned long next)1571 bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1572 pmd_t *pmd, unsigned long addr, unsigned long next)
1573 {
1574 spinlock_t *ptl;
1575 pmd_t orig_pmd;
1576 struct page *page;
1577 struct mm_struct *mm = tlb->mm;
1578 bool ret = false;
1579
1580 tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
1581
1582 ptl = pmd_trans_huge_lock(pmd, vma);
1583 if (!ptl)
1584 goto out_unlocked;
1585
1586 orig_pmd = *pmd;
1587 if (is_huge_zero_pmd(orig_pmd))
1588 goto out;
1589
1590 if (unlikely(!pmd_present(orig_pmd))) {
1591 VM_BUG_ON(thp_migration_supported() &&
1592 !is_pmd_migration_entry(orig_pmd));
1593 goto out;
1594 }
1595
1596 page = pmd_page(orig_pmd);
1597 /*
1598 * If other processes are mapping this page, we couldn't discard
1599 * the page unless they all do MADV_FREE so let's skip the page.
1600 */
1601 if (total_mapcount(page) != 1)
1602 goto out;
1603
1604 if (!trylock_page(page))
1605 goto out;
1606
1607 /*
1608 * If user want to discard part-pages of THP, split it so MADV_FREE
1609 * will deactivate only them.
1610 */
1611 if (next - addr != HPAGE_PMD_SIZE) {
1612 get_page(page);
1613 spin_unlock(ptl);
1614 split_huge_page(page);
1615 unlock_page(page);
1616 put_page(page);
1617 goto out_unlocked;
1618 }
1619
1620 if (PageDirty(page))
1621 ClearPageDirty(page);
1622 unlock_page(page);
1623
1624 if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
1625 pmdp_invalidate(vma, addr, pmd);
1626 orig_pmd = pmd_mkold(orig_pmd);
1627 orig_pmd = pmd_mkclean(orig_pmd);
1628
1629 set_pmd_at(mm, addr, pmd, orig_pmd);
1630 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1631 }
1632
1633 mark_page_lazyfree(page);
1634 ret = true;
1635 out:
1636 spin_unlock(ptl);
1637 out_unlocked:
1638 return ret;
1639 }
1640
zap_deposited_table(struct mm_struct * mm,pmd_t * pmd)1641 static inline void zap_deposited_table(struct mm_struct *mm, pmd_t *pmd)
1642 {
1643 pgtable_t pgtable;
1644
1645 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1646 pte_free(mm, pgtable);
1647 mm_dec_nr_ptes(mm);
1648 }
1649
zap_huge_pmd(struct mmu_gather * tlb,struct vm_area_struct * vma,pmd_t * pmd,unsigned long addr)1650 int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1651 pmd_t *pmd, unsigned long addr)
1652 {
1653 pmd_t orig_pmd;
1654 spinlock_t *ptl;
1655
1656 tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
1657
1658 ptl = __pmd_trans_huge_lock(pmd, vma);
1659 if (!ptl)
1660 return 0;
1661 /*
1662 * For architectures like ppc64 we look at deposited pgtable
1663 * when calling pmdp_huge_get_and_clear. So do the
1664 * pgtable_trans_huge_withdraw after finishing pmdp related
1665 * operations.
1666 */
1667 orig_pmd = pmdp_huge_get_and_clear_full(vma, addr, pmd,
1668 tlb->fullmm);
1669 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1670 if (vma_is_special_huge(vma)) {
1671 if (arch_needs_pgtable_deposit())
1672 zap_deposited_table(tlb->mm, pmd);
1673 spin_unlock(ptl);
1674 if (is_huge_zero_pmd(orig_pmd))
1675 tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
1676 } else if (is_huge_zero_pmd(orig_pmd)) {
1677 zap_deposited_table(tlb->mm, pmd);
1678 spin_unlock(ptl);
1679 tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
1680 } else {
1681 struct page *page = NULL;
1682 int flush_needed = 1;
1683
1684 if (pmd_present(orig_pmd)) {
1685 page = pmd_page(orig_pmd);
1686 page_remove_rmap(page, true);
1687 VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
1688 VM_BUG_ON_PAGE(!PageHead(page), page);
1689 } else if (thp_migration_supported()) {
1690 swp_entry_t entry;
1691
1692 VM_BUG_ON(!is_pmd_migration_entry(orig_pmd));
1693 entry = pmd_to_swp_entry(orig_pmd);
1694 page = pfn_to_page(swp_offset(entry));
1695 flush_needed = 0;
1696 } else
1697 WARN_ONCE(1, "Non present huge pmd without pmd migration enabled!");
1698
1699 if (PageAnon(page)) {
1700 zap_deposited_table(tlb->mm, pmd);
1701 add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1702 } else {
1703 if (arch_needs_pgtable_deposit())
1704 zap_deposited_table(tlb->mm, pmd);
1705 add_mm_counter(tlb->mm, mm_counter_file(page), -HPAGE_PMD_NR);
1706 }
1707
1708 spin_unlock(ptl);
1709 if (flush_needed)
1710 tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE);
1711 }
1712 return 1;
1713 }
1714
1715 #ifndef pmd_move_must_withdraw
pmd_move_must_withdraw(spinlock_t * new_pmd_ptl,spinlock_t * old_pmd_ptl,struct vm_area_struct * vma)1716 static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl,
1717 spinlock_t *old_pmd_ptl,
1718 struct vm_area_struct *vma)
1719 {
1720 /*
1721 * With split pmd lock we also need to move preallocated
1722 * PTE page table if new_pmd is on different PMD page table.
1723 *
1724 * We also don't deposit and withdraw tables for file pages.
1725 */
1726 return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma);
1727 }
1728 #endif
1729
move_soft_dirty_pmd(pmd_t pmd)1730 static pmd_t move_soft_dirty_pmd(pmd_t pmd)
1731 {
1732 #ifdef CONFIG_MEM_SOFT_DIRTY
1733 if (unlikely(is_pmd_migration_entry(pmd)))
1734 pmd = pmd_swp_mksoft_dirty(pmd);
1735 else if (pmd_present(pmd))
1736 pmd = pmd_mksoft_dirty(pmd);
1737 #endif
1738 return pmd;
1739 }
1740
move_huge_pmd(struct vm_area_struct * vma,unsigned long old_addr,unsigned long new_addr,pmd_t * old_pmd,pmd_t * new_pmd)1741 bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
1742 unsigned long new_addr, pmd_t *old_pmd, pmd_t *new_pmd)
1743 {
1744 spinlock_t *old_ptl, *new_ptl;
1745 pmd_t pmd;
1746 struct mm_struct *mm = vma->vm_mm;
1747 bool force_flush = false;
1748
1749 /*
1750 * The destination pmd shouldn't be established, free_pgtables()
1751 * should have release it.
1752 */
1753 if (WARN_ON(!pmd_none(*new_pmd))) {
1754 VM_BUG_ON(pmd_trans_huge(*new_pmd));
1755 return false;
1756 }
1757
1758 /*
1759 * We don't have to worry about the ordering of src and dst
1760 * ptlocks because exclusive mmap_lock prevents deadlock.
1761 */
1762 old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
1763 if (old_ptl) {
1764 new_ptl = pmd_lockptr(mm, new_pmd);
1765 if (new_ptl != old_ptl)
1766 spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
1767 pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
1768 if (pmd_present(pmd))
1769 force_flush = true;
1770 VM_BUG_ON(!pmd_none(*new_pmd));
1771
1772 if (pmd_move_must_withdraw(new_ptl, old_ptl, vma)) {
1773 pgtable_t pgtable;
1774 pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
1775 pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
1776 }
1777 pmd = move_soft_dirty_pmd(pmd);
1778 set_pmd_at(mm, new_addr, new_pmd, pmd);
1779 if (force_flush)
1780 flush_tlb_range(vma, old_addr, old_addr + PMD_SIZE);
1781 if (new_ptl != old_ptl)
1782 spin_unlock(new_ptl);
1783 spin_unlock(old_ptl);
1784 return true;
1785 }
1786 return false;
1787 }
1788
1789 /*
1790 * Returns
1791 * - 0 if PMD could not be locked
1792 * - 1 if PMD was locked but protections unchange and TLB flush unnecessary
1793 * - HPAGE_PMD_NR is protections changed and TLB flush necessary
1794 */
change_huge_pmd(struct vm_area_struct * vma,pmd_t * pmd,unsigned long addr,pgprot_t newprot,unsigned long cp_flags)1795 int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1796 unsigned long addr, pgprot_t newprot, unsigned long cp_flags)
1797 {
1798 struct mm_struct *mm = vma->vm_mm;
1799 spinlock_t *ptl;
1800 pmd_t entry;
1801 bool preserve_write;
1802 int ret;
1803 bool prot_numa = cp_flags & MM_CP_PROT_NUMA;
1804 bool uffd_wp = cp_flags & MM_CP_UFFD_WP;
1805 bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE;
1806
1807 ptl = __pmd_trans_huge_lock(pmd, vma);
1808 if (!ptl)
1809 return 0;
1810
1811 preserve_write = prot_numa && pmd_write(*pmd);
1812 ret = 1;
1813
1814 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1815 if (is_swap_pmd(*pmd)) {
1816 swp_entry_t entry = pmd_to_swp_entry(*pmd);
1817
1818 VM_BUG_ON(!is_pmd_migration_entry(*pmd));
1819 if (is_write_migration_entry(entry)) {
1820 pmd_t newpmd;
1821 /*
1822 * A protection check is difficult so
1823 * just be safe and disable write
1824 */
1825 make_migration_entry_read(&entry);
1826 newpmd = swp_entry_to_pmd(entry);
1827 if (pmd_swp_soft_dirty(*pmd))
1828 newpmd = pmd_swp_mksoft_dirty(newpmd);
1829 if (pmd_swp_uffd_wp(*pmd))
1830 newpmd = pmd_swp_mkuffd_wp(newpmd);
1831 set_pmd_at(mm, addr, pmd, newpmd);
1832 }
1833 goto unlock;
1834 }
1835 #endif
1836
1837 /*
1838 * Avoid trapping faults against the zero page. The read-only
1839 * data is likely to be read-cached on the local CPU and
1840 * local/remote hits to the zero page are not interesting.
1841 */
1842 if (prot_numa && is_huge_zero_pmd(*pmd))
1843 goto unlock;
1844
1845 if (prot_numa && pmd_protnone(*pmd))
1846 goto unlock;
1847
1848 /*
1849 * In case prot_numa, we are under mmap_read_lock(mm). It's critical
1850 * to not clear pmd intermittently to avoid race with MADV_DONTNEED
1851 * which is also under mmap_read_lock(mm):
1852 *
1853 * CPU0: CPU1:
1854 * change_huge_pmd(prot_numa=1)
1855 * pmdp_huge_get_and_clear_notify()
1856 * madvise_dontneed()
1857 * zap_pmd_range()
1858 * pmd_trans_huge(*pmd) == 0 (without ptl)
1859 * // skip the pmd
1860 * set_pmd_at();
1861 * // pmd is re-established
1862 *
1863 * The race makes MADV_DONTNEED miss the huge pmd and don't clear it
1864 * which may break userspace.
1865 *
1866 * pmdp_invalidate() is required to make sure we don't miss
1867 * dirty/young flags set by hardware.
1868 */
1869 entry = pmdp_invalidate(vma, addr, pmd);
1870
1871 entry = pmd_modify(entry, newprot);
1872 if (preserve_write)
1873 entry = pmd_mk_savedwrite(entry);
1874 if (uffd_wp) {
1875 entry = pmd_wrprotect(entry);
1876 entry = pmd_mkuffd_wp(entry);
1877 } else if (uffd_wp_resolve) {
1878 /*
1879 * Leave the write bit to be handled by PF interrupt
1880 * handler, then things like COW could be properly
1881 * handled.
1882 */
1883 entry = pmd_clear_uffd_wp(entry);
1884 }
1885 ret = HPAGE_PMD_NR;
1886 set_pmd_at(mm, addr, pmd, entry);
1887 BUG_ON(vma_is_anonymous(vma) && !preserve_write && pmd_write(entry));
1888 unlock:
1889 spin_unlock(ptl);
1890 return ret;
1891 }
1892
1893 /*
1894 * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise.
1895 *
1896 * Note that if it returns page table lock pointer, this routine returns without
1897 * unlocking page table lock. So callers must unlock it.
1898 */
__pmd_trans_huge_lock(pmd_t * pmd,struct vm_area_struct * vma)1899 spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
1900 {
1901 spinlock_t *ptl;
1902 ptl = pmd_lock(vma->vm_mm, pmd);
1903 if (likely(is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) ||
1904 pmd_devmap(*pmd)))
1905 return ptl;
1906 spin_unlock(ptl);
1907 return NULL;
1908 }
1909
1910 /*
1911 * Returns true if a given pud maps a thp, false otherwise.
1912 *
1913 * Note that if it returns true, this routine returns without unlocking page
1914 * table lock. So callers must unlock it.
1915 */
__pud_trans_huge_lock(pud_t * pud,struct vm_area_struct * vma)1916 spinlock_t *__pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma)
1917 {
1918 spinlock_t *ptl;
1919
1920 ptl = pud_lock(vma->vm_mm, pud);
1921 if (likely(pud_trans_huge(*pud) || pud_devmap(*pud)))
1922 return ptl;
1923 spin_unlock(ptl);
1924 return NULL;
1925 }
1926
1927 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
zap_huge_pud(struct mmu_gather * tlb,struct vm_area_struct * vma,pud_t * pud,unsigned long addr)1928 int zap_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma,
1929 pud_t *pud, unsigned long addr)
1930 {
1931 spinlock_t *ptl;
1932
1933 ptl = __pud_trans_huge_lock(pud, vma);
1934 if (!ptl)
1935 return 0;
1936 /*
1937 * For architectures like ppc64 we look at deposited pgtable
1938 * when calling pudp_huge_get_and_clear. So do the
1939 * pgtable_trans_huge_withdraw after finishing pudp related
1940 * operations.
1941 */
1942 pudp_huge_get_and_clear_full(tlb->mm, addr, pud, tlb->fullmm);
1943 tlb_remove_pud_tlb_entry(tlb, pud, addr);
1944 if (vma_is_special_huge(vma)) {
1945 spin_unlock(ptl);
1946 /* No zero page support yet */
1947 } else {
1948 /* No support for anonymous PUD pages yet */
1949 BUG();
1950 }
1951 return 1;
1952 }
1953
__split_huge_pud_locked(struct vm_area_struct * vma,pud_t * pud,unsigned long haddr)1954 static void __split_huge_pud_locked(struct vm_area_struct *vma, pud_t *pud,
1955 unsigned long haddr)
1956 {
1957 VM_BUG_ON(haddr & ~HPAGE_PUD_MASK);
1958 VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
1959 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PUD_SIZE, vma);
1960 VM_BUG_ON(!pud_trans_huge(*pud) && !pud_devmap(*pud));
1961
1962 count_vm_event(THP_SPLIT_PUD);
1963
1964 pudp_huge_clear_flush_notify(vma, haddr, pud);
1965 }
1966
__split_huge_pud(struct vm_area_struct * vma,pud_t * pud,unsigned long address)1967 void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud,
1968 unsigned long address)
1969 {
1970 spinlock_t *ptl;
1971 struct mmu_notifier_range range;
1972
1973 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1974 address & HPAGE_PUD_MASK,
1975 (address & HPAGE_PUD_MASK) + HPAGE_PUD_SIZE);
1976 mmu_notifier_invalidate_range_start(&range);
1977 ptl = pud_lock(vma->vm_mm, pud);
1978 if (unlikely(!pud_trans_huge(*pud) && !pud_devmap(*pud)))
1979 goto out;
1980 __split_huge_pud_locked(vma, pud, range.start);
1981
1982 out:
1983 spin_unlock(ptl);
1984 /*
1985 * No need to double call mmu_notifier->invalidate_range() callback as
1986 * the above pudp_huge_clear_flush_notify() did already call it.
1987 */
1988 mmu_notifier_invalidate_range_only_end(&range);
1989 }
1990 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1991
__split_huge_zero_page_pmd(struct vm_area_struct * vma,unsigned long haddr,pmd_t * pmd)1992 static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
1993 unsigned long haddr, pmd_t *pmd)
1994 {
1995 struct mm_struct *mm = vma->vm_mm;
1996 pgtable_t pgtable;
1997 pmd_t _pmd;
1998 int i;
1999
2000 /*
2001 * Leave pmd empty until pte is filled note that it is fine to delay
2002 * notification until mmu_notifier_invalidate_range_end() as we are
2003 * replacing a zero pmd write protected page with a zero pte write
2004 * protected page.
2005 *
2006 * See Documentation/vm/mmu_notifier.rst
2007 */
2008 pmdp_huge_clear_flush(vma, haddr, pmd);
2009
2010 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2011 pmd_populate(mm, &_pmd, pgtable);
2012
2013 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
2014 pte_t *pte, entry;
2015 entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
2016 entry = pte_mkspecial(entry);
2017 pte = pte_offset_map(&_pmd, haddr);
2018 VM_BUG_ON(!pte_none(*pte));
2019 set_pte_at(mm, haddr, pte, entry);
2020 pte_unmap(pte);
2021 }
2022 smp_wmb(); /* make pte visible before pmd */
2023 pmd_populate(mm, pmd, pgtable);
2024 }
2025
__split_huge_pmd_locked(struct vm_area_struct * vma,pmd_t * pmd,unsigned long haddr,bool freeze)2026 static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
2027 unsigned long haddr, bool freeze)
2028 {
2029 struct mm_struct *mm = vma->vm_mm;
2030 struct page *page;
2031 pgtable_t pgtable;
2032 pmd_t old_pmd, _pmd;
2033 bool young, write, soft_dirty, pmd_migration = false, uffd_wp = false;
2034 unsigned long addr;
2035 int i;
2036
2037 VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
2038 VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2039 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
2040 VM_BUG_ON(!is_pmd_migration_entry(*pmd) && !pmd_trans_huge(*pmd)
2041 && !pmd_devmap(*pmd));
2042
2043 count_vm_event(THP_SPLIT_PMD);
2044
2045 if (!vma_is_anonymous(vma)) {
2046 old_pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
2047 /*
2048 * We are going to unmap this huge page. So
2049 * just go ahead and zap it
2050 */
2051 if (arch_needs_pgtable_deposit())
2052 zap_deposited_table(mm, pmd);
2053 if (vma_is_special_huge(vma))
2054 return;
2055 if (unlikely(is_pmd_migration_entry(old_pmd))) {
2056 swp_entry_t entry;
2057
2058 entry = pmd_to_swp_entry(old_pmd);
2059 page = migration_entry_to_page(entry);
2060 } else {
2061 page = pmd_page(old_pmd);
2062 if (!PageDirty(page) && pmd_dirty(old_pmd))
2063 set_page_dirty(page);
2064 if (!PageReferenced(page) && pmd_young(old_pmd))
2065 SetPageReferenced(page);
2066 page_remove_rmap(page, true);
2067 put_page(page);
2068 }
2069 add_mm_counter(mm, mm_counter_file(page), -HPAGE_PMD_NR);
2070 return;
2071 }
2072
2073 if (is_huge_zero_pmd(*pmd)) {
2074 /*
2075 * FIXME: Do we want to invalidate secondary mmu by calling
2076 * mmu_notifier_invalidate_range() see comments below inside
2077 * __split_huge_pmd() ?
2078 *
2079 * We are going from a zero huge page write protected to zero
2080 * small page also write protected so it does not seems useful
2081 * to invalidate secondary mmu at this time.
2082 */
2083 return __split_huge_zero_page_pmd(vma, haddr, pmd);
2084 }
2085
2086 /*
2087 * Up to this point the pmd is present and huge and userland has the
2088 * whole access to the hugepage during the split (which happens in
2089 * place). If we overwrite the pmd with the not-huge version pointing
2090 * to the pte here (which of course we could if all CPUs were bug
2091 * free), userland could trigger a small page size TLB miss on the
2092 * small sized TLB while the hugepage TLB entry is still established in
2093 * the huge TLB. Some CPU doesn't like that.
2094 * See http://support.amd.com/TechDocs/41322_10h_Rev_Gd.pdf, Erratum
2095 * 383 on page 105. Intel should be safe but is also warns that it's
2096 * only safe if the permission and cache attributes of the two entries
2097 * loaded in the two TLB is identical (which should be the case here).
2098 * But it is generally safer to never allow small and huge TLB entries
2099 * for the same virtual address to be loaded simultaneously. So instead
2100 * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
2101 * current pmd notpresent (atomically because here the pmd_trans_huge
2102 * must remain set at all times on the pmd until the split is complete
2103 * for this pmd), then we flush the SMP TLB and finally we write the
2104 * non-huge version of the pmd entry with pmd_populate.
2105 */
2106 old_pmd = pmdp_invalidate(vma, haddr, pmd);
2107
2108 pmd_migration = is_pmd_migration_entry(old_pmd);
2109 if (unlikely(pmd_migration)) {
2110 swp_entry_t entry;
2111
2112 entry = pmd_to_swp_entry(old_pmd);
2113 page = pfn_to_page(swp_offset(entry));
2114 write = is_write_migration_entry(entry);
2115 young = false;
2116 soft_dirty = pmd_swp_soft_dirty(old_pmd);
2117 uffd_wp = pmd_swp_uffd_wp(old_pmd);
2118 } else {
2119 page = pmd_page(old_pmd);
2120 if (pmd_dirty(old_pmd))
2121 SetPageDirty(page);
2122 write = pmd_write(old_pmd);
2123 young = pmd_young(old_pmd);
2124 soft_dirty = pmd_soft_dirty(old_pmd);
2125 uffd_wp = pmd_uffd_wp(old_pmd);
2126 }
2127 VM_BUG_ON_PAGE(!page_count(page), page);
2128 page_ref_add(page, HPAGE_PMD_NR - 1);
2129
2130 /*
2131 * Withdraw the table only after we mark the pmd entry invalid.
2132 * This's critical for some architectures (Power).
2133 */
2134 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2135 pmd_populate(mm, &_pmd, pgtable);
2136
2137 for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
2138 pte_t entry, *pte;
2139 /*
2140 * Note that NUMA hinting access restrictions are not
2141 * transferred to avoid any possibility of altering
2142 * permissions across VMAs.
2143 */
2144 if (freeze || pmd_migration) {
2145 swp_entry_t swp_entry;
2146 swp_entry = make_migration_entry(page + i, write);
2147 entry = swp_entry_to_pte(swp_entry);
2148 if (soft_dirty)
2149 entry = pte_swp_mksoft_dirty(entry);
2150 if (uffd_wp)
2151 entry = pte_swp_mkuffd_wp(entry);
2152 } else {
2153 entry = mk_pte(page + i, READ_ONCE(vma->vm_page_prot));
2154 entry = maybe_mkwrite(entry, vma);
2155 if (!write)
2156 entry = pte_wrprotect(entry);
2157 if (!young)
2158 entry = pte_mkold(entry);
2159 if (soft_dirty)
2160 entry = pte_mksoft_dirty(entry);
2161 if (uffd_wp)
2162 entry = pte_mkuffd_wp(entry);
2163 }
2164 pte = pte_offset_map(&_pmd, addr);
2165 BUG_ON(!pte_none(*pte));
2166 set_pte_at(mm, addr, pte, entry);
2167 if (!pmd_migration)
2168 atomic_inc(&page[i]._mapcount);
2169 pte_unmap(pte);
2170 }
2171
2172 if (!pmd_migration) {
2173 /*
2174 * Set PG_double_map before dropping compound_mapcount to avoid
2175 * false-negative page_mapped().
2176 */
2177 if (compound_mapcount(page) > 1 &&
2178 !TestSetPageDoubleMap(page)) {
2179 for (i = 0; i < HPAGE_PMD_NR; i++)
2180 atomic_inc(&page[i]._mapcount);
2181 }
2182
2183 lock_page_memcg(page);
2184 if (atomic_add_negative(-1, compound_mapcount_ptr(page))) {
2185 /* Last compound_mapcount is gone. */
2186 __dec_lruvec_page_state(page, NR_ANON_THPS);
2187 if (TestClearPageDoubleMap(page)) {
2188 /* No need in mapcount reference anymore */
2189 for (i = 0; i < HPAGE_PMD_NR; i++)
2190 atomic_dec(&page[i]._mapcount);
2191 }
2192 }
2193 unlock_page_memcg(page);
2194 }
2195
2196 smp_wmb(); /* make pte visible before pmd */
2197 pmd_populate(mm, pmd, pgtable);
2198
2199 if (freeze) {
2200 for (i = 0; i < HPAGE_PMD_NR; i++) {
2201 page_remove_rmap(page + i, false);
2202 put_page(page + i);
2203 }
2204 }
2205 }
2206
__split_huge_pmd(struct vm_area_struct * vma,pmd_t * pmd,unsigned long address,bool freeze,struct page * page)2207 void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
2208 unsigned long address, bool freeze, struct page *page)
2209 {
2210 spinlock_t *ptl;
2211 struct mmu_notifier_range range;
2212 bool do_unlock_page = false;
2213 pmd_t _pmd;
2214
2215 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
2216 address & HPAGE_PMD_MASK,
2217 (address & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE);
2218 mmu_notifier_invalidate_range_start(&range);
2219 ptl = pmd_lock(vma->vm_mm, pmd);
2220
2221 /*
2222 * If caller asks to setup a migration entries, we need a page to check
2223 * pmd against. Otherwise we can end up replacing wrong page.
2224 */
2225 VM_BUG_ON(freeze && !page);
2226 if (page) {
2227 VM_WARN_ON_ONCE(!PageLocked(page));
2228 if (page != pmd_page(*pmd))
2229 goto out;
2230 }
2231
2232 repeat:
2233 if (pmd_trans_huge(*pmd)) {
2234 if (!page) {
2235 page = pmd_page(*pmd);
2236 /*
2237 * An anonymous page must be locked, to ensure that a
2238 * concurrent reuse_swap_page() sees stable mapcount;
2239 * but reuse_swap_page() is not used on shmem or file,
2240 * and page lock must not be taken when zap_pmd_range()
2241 * calls __split_huge_pmd() while i_mmap_lock is held.
2242 */
2243 if (PageAnon(page)) {
2244 if (unlikely(!trylock_page(page))) {
2245 get_page(page);
2246 _pmd = *pmd;
2247 spin_unlock(ptl);
2248 lock_page(page);
2249 spin_lock(ptl);
2250 if (unlikely(!pmd_same(*pmd, _pmd))) {
2251 unlock_page(page);
2252 put_page(page);
2253 page = NULL;
2254 goto repeat;
2255 }
2256 put_page(page);
2257 }
2258 do_unlock_page = true;
2259 }
2260 }
2261 if (PageMlocked(page))
2262 clear_page_mlock(page);
2263 } else if (!(pmd_devmap(*pmd) || is_pmd_migration_entry(*pmd)))
2264 goto out;
2265 __split_huge_pmd_locked(vma, pmd, range.start, freeze);
2266 out:
2267 spin_unlock(ptl);
2268 if (do_unlock_page)
2269 unlock_page(page);
2270 /*
2271 * No need to double call mmu_notifier->invalidate_range() callback.
2272 * They are 3 cases to consider inside __split_huge_pmd_locked():
2273 * 1) pmdp_huge_clear_flush_notify() call invalidate_range() obvious
2274 * 2) __split_huge_zero_page_pmd() read only zero page and any write
2275 * fault will trigger a flush_notify before pointing to a new page
2276 * (it is fine if the secondary mmu keeps pointing to the old zero
2277 * page in the meantime)
2278 * 3) Split a huge pmd into pte pointing to the same page. No need
2279 * to invalidate secondary tlb entry they are all still valid.
2280 * any further changes to individual pte will notify. So no need
2281 * to call mmu_notifier->invalidate_range()
2282 */
2283 mmu_notifier_invalidate_range_only_end(&range);
2284 }
2285
split_huge_pmd_address(struct vm_area_struct * vma,unsigned long address,bool freeze,struct page * page)2286 void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
2287 bool freeze, struct page *page)
2288 {
2289 pgd_t *pgd;
2290 p4d_t *p4d;
2291 pud_t *pud;
2292 pmd_t *pmd;
2293
2294 pgd = pgd_offset(vma->vm_mm, address);
2295 if (!pgd_present(*pgd))
2296 return;
2297
2298 p4d = p4d_offset(pgd, address);
2299 if (!p4d_present(*p4d))
2300 return;
2301
2302 pud = pud_offset(p4d, address);
2303 if (!pud_present(*pud))
2304 return;
2305
2306 pmd = pmd_offset(pud, address);
2307
2308 __split_huge_pmd(vma, pmd, address, freeze, page);
2309 }
2310
vma_adjust_trans_huge(struct vm_area_struct * vma,unsigned long start,unsigned long end,long adjust_next)2311 void vma_adjust_trans_huge(struct vm_area_struct *vma,
2312 unsigned long start,
2313 unsigned long end,
2314 long adjust_next)
2315 {
2316 /*
2317 * If the new start address isn't hpage aligned and it could
2318 * previously contain an hugepage: check if we need to split
2319 * an huge pmd.
2320 */
2321 if (start & ~HPAGE_PMD_MASK &&
2322 (start & HPAGE_PMD_MASK) >= vma->vm_start &&
2323 (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2324 split_huge_pmd_address(vma, start, false, NULL);
2325
2326 /*
2327 * If the new end address isn't hpage aligned and it could
2328 * previously contain an hugepage: check if we need to split
2329 * an huge pmd.
2330 */
2331 if (end & ~HPAGE_PMD_MASK &&
2332 (end & HPAGE_PMD_MASK) >= vma->vm_start &&
2333 (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2334 split_huge_pmd_address(vma, end, false, NULL);
2335
2336 /*
2337 * If we're also updating the vma->vm_next->vm_start, if the new
2338 * vm_next->vm_start isn't hpage aligned and it could previously
2339 * contain an hugepage: check if we need to split an huge pmd.
2340 */
2341 if (adjust_next > 0) {
2342 struct vm_area_struct *next = vma->vm_next;
2343 unsigned long nstart = next->vm_start;
2344 nstart += adjust_next;
2345 if (nstart & ~HPAGE_PMD_MASK &&
2346 (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
2347 (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
2348 split_huge_pmd_address(next, nstart, false, NULL);
2349 }
2350 }
2351
unmap_page(struct page * page)2352 static void unmap_page(struct page *page)
2353 {
2354 enum ttu_flags ttu_flags = TTU_IGNORE_MLOCK | TTU_SYNC |
2355 TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD;
2356
2357 VM_BUG_ON_PAGE(!PageHead(page), page);
2358
2359 if (PageAnon(page))
2360 ttu_flags |= TTU_SPLIT_FREEZE;
2361
2362 try_to_unmap(page, ttu_flags);
2363
2364 VM_WARN_ON_ONCE_PAGE(page_mapped(page), page);
2365 }
2366
remap_page(struct page * page,unsigned int nr)2367 static void remap_page(struct page *page, unsigned int nr)
2368 {
2369 int i;
2370 if (PageTransHuge(page)) {
2371 remove_migration_ptes(page, page, true);
2372 } else {
2373 for (i = 0; i < nr; i++)
2374 remove_migration_ptes(page + i, page + i, true);
2375 }
2376 }
2377
__split_huge_page_tail(struct page * head,int tail,struct lruvec * lruvec,struct list_head * list)2378 static void __split_huge_page_tail(struct page *head, int tail,
2379 struct lruvec *lruvec, struct list_head *list)
2380 {
2381 struct page *page_tail = head + tail;
2382
2383 VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
2384
2385 /*
2386 * Clone page flags before unfreezing refcount.
2387 *
2388 * After successful get_page_unless_zero() might follow flags change,
2389 * for exmaple lock_page() which set PG_waiters.
2390 */
2391 page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
2392 page_tail->flags |= (head->flags &
2393 ((1L << PG_referenced) |
2394 (1L << PG_swapbacked) |
2395 (1L << PG_swapcache) |
2396 (1L << PG_mlocked) |
2397 (1L << PG_uptodate) |
2398 (1L << PG_active) |
2399 (1L << PG_workingset) |
2400 (1L << PG_locked) |
2401 (1L << PG_unevictable) |
2402 #ifdef CONFIG_64BIT
2403 (1L << PG_arch_2) |
2404 #endif
2405 (1L << PG_dirty)));
2406
2407 /* ->mapping in first tail page is compound_mapcount */
2408 VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
2409 page_tail);
2410 page_tail->mapping = head->mapping;
2411 page_tail->index = head->index + tail;
2412
2413 /* Page flags must be visible before we make the page non-compound. */
2414 smp_wmb();
2415
2416 /*
2417 * Clear PageTail before unfreezing page refcount.
2418 *
2419 * After successful get_page_unless_zero() might follow put_page()
2420 * which needs correct compound_head().
2421 */
2422 clear_compound_head(page_tail);
2423
2424 /* Finally unfreeze refcount. Additional reference from page cache. */
2425 page_ref_unfreeze(page_tail, 1 + (!PageAnon(head) ||
2426 PageSwapCache(head)));
2427
2428 if (page_is_young(head))
2429 set_page_young(page_tail);
2430 if (page_is_idle(head))
2431 set_page_idle(page_tail);
2432
2433 page_cpupid_xchg_last(page_tail, page_cpupid_last(head));
2434
2435 /*
2436 * always add to the tail because some iterators expect new
2437 * pages to show after the currently processed elements - e.g.
2438 * migrate_pages
2439 */
2440 lru_add_page_tail(head, page_tail, lruvec, list);
2441 }
2442
__split_huge_page(struct page * page,struct list_head * list,pgoff_t end,unsigned long flags)2443 static void __split_huge_page(struct page *page, struct list_head *list,
2444 pgoff_t end, unsigned long flags)
2445 {
2446 struct page *head = compound_head(page);
2447 pg_data_t *pgdat = page_pgdat(head);
2448 struct lruvec *lruvec;
2449 struct address_space *swap_cache = NULL;
2450 unsigned long offset = 0;
2451 unsigned int nr = thp_nr_pages(head);
2452 int i;
2453
2454 lruvec = mem_cgroup_page_lruvec(head, pgdat);
2455
2456 /* complete memcg works before add pages to LRU */
2457 split_page_memcg(head, nr);
2458
2459 if (PageAnon(head) && PageSwapCache(head)) {
2460 swp_entry_t entry = { .val = page_private(head) };
2461
2462 offset = swp_offset(entry);
2463 swap_cache = swap_address_space(entry);
2464 xa_lock(&swap_cache->i_pages);
2465 }
2466
2467 for (i = nr - 1; i >= 1; i--) {
2468 __split_huge_page_tail(head, i, lruvec, list);
2469 /* Some pages can be beyond i_size: drop them from page cache */
2470 if (head[i].index >= end) {
2471 ClearPageDirty(head + i);
2472 __delete_from_page_cache(head + i, NULL);
2473 if (IS_ENABLED(CONFIG_SHMEM) && PageSwapBacked(head))
2474 shmem_uncharge(head->mapping->host, 1);
2475 put_page(head + i);
2476 } else if (!PageAnon(page)) {
2477 __xa_store(&head->mapping->i_pages, head[i].index,
2478 head + i, 0);
2479 } else if (swap_cache) {
2480 __xa_store(&swap_cache->i_pages, offset + i,
2481 head + i, 0);
2482 }
2483 }
2484
2485 ClearPageCompound(head);
2486
2487 split_page_owner(head, nr);
2488
2489 /* See comment in __split_huge_page_tail() */
2490 if (PageAnon(head)) {
2491 /* Additional pin to swap cache */
2492 if (PageSwapCache(head)) {
2493 page_ref_add(head, 2);
2494 xa_unlock(&swap_cache->i_pages);
2495 } else {
2496 page_ref_inc(head);
2497 }
2498 } else {
2499 /* Additional pin to page cache */
2500 page_ref_add(head, 2);
2501 xa_unlock(&head->mapping->i_pages);
2502 }
2503
2504 spin_unlock_irqrestore(&pgdat->lru_lock, flags);
2505
2506 remap_page(head, nr);
2507
2508 if (PageSwapCache(head)) {
2509 swp_entry_t entry = { .val = page_private(head) };
2510
2511 split_swap_cluster(entry);
2512 }
2513
2514 for (i = 0; i < nr; i++) {
2515 struct page *subpage = head + i;
2516 if (subpage == page)
2517 continue;
2518 unlock_page(subpage);
2519
2520 /*
2521 * Subpages may be freed if there wasn't any mapping
2522 * like if add_to_swap() is running on a lru page that
2523 * had its mapping zapped. And freeing these pages
2524 * requires taking the lru_lock so we do the put_page
2525 * of the tail pages after the split is complete.
2526 */
2527 put_page(subpage);
2528 }
2529 }
2530
total_mapcount(struct page * page)2531 int total_mapcount(struct page *page)
2532 {
2533 int i, compound, nr, ret;
2534
2535 VM_BUG_ON_PAGE(PageTail(page), page);
2536
2537 if (likely(!PageCompound(page)))
2538 return atomic_read(&page->_mapcount) + 1;
2539
2540 compound = compound_mapcount(page);
2541 nr = compound_nr(page);
2542 if (PageHuge(page))
2543 return compound;
2544 ret = compound;
2545 for (i = 0; i < nr; i++)
2546 ret += atomic_read(&page[i]._mapcount) + 1;
2547 /* File pages has compound_mapcount included in _mapcount */
2548 if (!PageAnon(page))
2549 return ret - compound * nr;
2550 if (PageDoubleMap(page))
2551 ret -= nr;
2552 return ret;
2553 }
2554
2555 /*
2556 * This calculates accurately how many mappings a transparent hugepage
2557 * has (unlike page_mapcount() which isn't fully accurate). This full
2558 * accuracy is primarily needed to know if copy-on-write faults can
2559 * reuse the page and change the mapping to read-write instead of
2560 * copying them. At the same time this returns the total_mapcount too.
2561 *
2562 * The function returns the highest mapcount any one of the subpages
2563 * has. If the return value is one, even if different processes are
2564 * mapping different subpages of the transparent hugepage, they can
2565 * all reuse it, because each process is reusing a different subpage.
2566 *
2567 * The total_mapcount is instead counting all virtual mappings of the
2568 * subpages. If the total_mapcount is equal to "one", it tells the
2569 * caller all mappings belong to the same "mm" and in turn the
2570 * anon_vma of the transparent hugepage can become the vma->anon_vma
2571 * local one as no other process may be mapping any of the subpages.
2572 *
2573 * It would be more accurate to replace page_mapcount() with
2574 * page_trans_huge_mapcount(), however we only use
2575 * page_trans_huge_mapcount() in the copy-on-write faults where we
2576 * need full accuracy to avoid breaking page pinning, because
2577 * page_trans_huge_mapcount() is slower than page_mapcount().
2578 */
page_trans_huge_mapcount(struct page * page,int * total_mapcount)2579 int page_trans_huge_mapcount(struct page *page, int *total_mapcount)
2580 {
2581 int i, ret, _total_mapcount, mapcount;
2582
2583 /* hugetlbfs shouldn't call it */
2584 VM_BUG_ON_PAGE(PageHuge(page), page);
2585
2586 if (likely(!PageTransCompound(page))) {
2587 mapcount = atomic_read(&page->_mapcount) + 1;
2588 if (total_mapcount)
2589 *total_mapcount = mapcount;
2590 return mapcount;
2591 }
2592
2593 page = compound_head(page);
2594
2595 _total_mapcount = ret = 0;
2596 for (i = 0; i < thp_nr_pages(page); i++) {
2597 mapcount = atomic_read(&page[i]._mapcount) + 1;
2598 ret = max(ret, mapcount);
2599 _total_mapcount += mapcount;
2600 }
2601 if (PageDoubleMap(page)) {
2602 ret -= 1;
2603 _total_mapcount -= thp_nr_pages(page);
2604 }
2605 mapcount = compound_mapcount(page);
2606 ret += mapcount;
2607 _total_mapcount += mapcount;
2608 if (total_mapcount)
2609 *total_mapcount = _total_mapcount;
2610 return ret;
2611 }
2612
2613 /* Racy check whether the huge page can be split */
can_split_huge_page(struct page * page,int * pextra_pins)2614 bool can_split_huge_page(struct page *page, int *pextra_pins)
2615 {
2616 int extra_pins;
2617
2618 /* Additional pins from page cache */
2619 if (PageAnon(page))
2620 extra_pins = PageSwapCache(page) ? thp_nr_pages(page) : 0;
2621 else
2622 extra_pins = thp_nr_pages(page);
2623 if (pextra_pins)
2624 *pextra_pins = extra_pins;
2625 return total_mapcount(page) == page_count(page) - extra_pins - 1;
2626 }
2627
2628 /*
2629 * This function splits huge page into normal pages. @page can point to any
2630 * subpage of huge page to split. Split doesn't change the position of @page.
2631 *
2632 * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
2633 * The huge page must be locked.
2634 *
2635 * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
2636 *
2637 * Both head page and tail pages will inherit mapping, flags, and so on from
2638 * the hugepage.
2639 *
2640 * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
2641 * they are not mapped.
2642 *
2643 * Returns 0 if the hugepage is split successfully.
2644 * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
2645 * us.
2646 */
split_huge_page_to_list(struct page * page,struct list_head * list)2647 int split_huge_page_to_list(struct page *page, struct list_head *list)
2648 {
2649 struct page *head = compound_head(page);
2650 struct pglist_data *pgdata = NODE_DATA(page_to_nid(head));
2651 struct deferred_split *ds_queue = get_deferred_split_queue(head);
2652 struct anon_vma *anon_vma = NULL;
2653 struct address_space *mapping = NULL;
2654 int extra_pins, ret;
2655 unsigned long flags;
2656 pgoff_t end;
2657
2658 VM_BUG_ON_PAGE(is_huge_zero_page(head), head);
2659 VM_BUG_ON_PAGE(!PageLocked(head), head);
2660 VM_BUG_ON_PAGE(!PageCompound(head), head);
2661
2662 if (PageWriteback(head))
2663 return -EBUSY;
2664
2665 if (PageAnon(head)) {
2666 /*
2667 * The caller does not necessarily hold an mmap_lock that would
2668 * prevent the anon_vma disappearing so we first we take a
2669 * reference to it and then lock the anon_vma for write. This
2670 * is similar to page_lock_anon_vma_read except the write lock
2671 * is taken to serialise against parallel split or collapse
2672 * operations.
2673 */
2674 anon_vma = page_get_anon_vma(head);
2675 if (!anon_vma) {
2676 ret = -EBUSY;
2677 goto out;
2678 }
2679 end = -1;
2680 mapping = NULL;
2681 anon_vma_lock_write(anon_vma);
2682 } else {
2683 mapping = head->mapping;
2684
2685 /* Truncated ? */
2686 if (!mapping) {
2687 ret = -EBUSY;
2688 goto out;
2689 }
2690
2691 anon_vma = NULL;
2692 i_mmap_lock_read(mapping);
2693
2694 /*
2695 *__split_huge_page() may need to trim off pages beyond EOF:
2696 * but on 32-bit, i_size_read() takes an irq-unsafe seqlock,
2697 * which cannot be nested inside the page tree lock. So note
2698 * end now: i_size itself may be changed at any moment, but
2699 * head page lock is good enough to serialize the trimming.
2700 */
2701 end = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
2702 }
2703
2704 /*
2705 * Racy check if we can split the page, before unmap_page() will
2706 * split PMDs
2707 */
2708 if (!can_split_huge_page(head, &extra_pins)) {
2709 ret = -EBUSY;
2710 goto out_unlock;
2711 }
2712
2713 unmap_page(head);
2714
2715 /* prevent PageLRU to go away from under us, and freeze lru stats */
2716 spin_lock_irqsave(&pgdata->lru_lock, flags);
2717
2718 if (mapping) {
2719 XA_STATE(xas, &mapping->i_pages, page_index(head));
2720
2721 /*
2722 * Check if the head page is present in page cache.
2723 * We assume all tail are present too, if head is there.
2724 */
2725 xa_lock(&mapping->i_pages);
2726 if (xas_load(&xas) != head)
2727 goto fail;
2728 }
2729
2730 /* Prevent deferred_split_scan() touching ->_refcount */
2731 spin_lock(&ds_queue->split_queue_lock);
2732 if (page_ref_freeze(head, 1 + extra_pins)) {
2733 if (!list_empty(page_deferred_list(head))) {
2734 ds_queue->split_queue_len--;
2735 list_del(page_deferred_list(head));
2736 }
2737 spin_unlock(&ds_queue->split_queue_lock);
2738 if (mapping) {
2739 if (PageSwapBacked(head))
2740 __dec_node_page_state(head, NR_SHMEM_THPS);
2741 else
2742 __dec_node_page_state(head, NR_FILE_THPS);
2743 }
2744
2745 __split_huge_page(page, list, end, flags);
2746 ret = 0;
2747 } else {
2748 spin_unlock(&ds_queue->split_queue_lock);
2749 fail:
2750 if (mapping)
2751 xa_unlock(&mapping->i_pages);
2752 spin_unlock_irqrestore(&pgdata->lru_lock, flags);
2753 remap_page(head, thp_nr_pages(head));
2754 ret = -EBUSY;
2755 }
2756
2757 out_unlock:
2758 if (anon_vma) {
2759 anon_vma_unlock_write(anon_vma);
2760 put_anon_vma(anon_vma);
2761 }
2762 if (mapping)
2763 i_mmap_unlock_read(mapping);
2764 out:
2765 count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
2766 return ret;
2767 }
2768
free_transhuge_page(struct page * page)2769 void free_transhuge_page(struct page *page)
2770 {
2771 struct deferred_split *ds_queue = get_deferred_split_queue(page);
2772 unsigned long flags;
2773
2774 spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2775 if (!list_empty(page_deferred_list(page))) {
2776 ds_queue->split_queue_len--;
2777 list_del(page_deferred_list(page));
2778 }
2779 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2780 free_compound_page(page);
2781 }
2782
deferred_split_huge_page(struct page * page)2783 void deferred_split_huge_page(struct page *page)
2784 {
2785 struct deferred_split *ds_queue = get_deferred_split_queue(page);
2786 #ifdef CONFIG_MEMCG
2787 struct mem_cgroup *memcg = compound_head(page)->mem_cgroup;
2788 #endif
2789 unsigned long flags;
2790
2791 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
2792
2793 /*
2794 * The try_to_unmap() in page reclaim path might reach here too,
2795 * this may cause a race condition to corrupt deferred split queue.
2796 * And, if page reclaim is already handling the same page, it is
2797 * unnecessary to handle it again in shrinker.
2798 *
2799 * Check PageSwapCache to determine if the page is being
2800 * handled by page reclaim since THP swap would add the page into
2801 * swap cache before calling try_to_unmap().
2802 */
2803 if (PageSwapCache(page))
2804 return;
2805
2806 spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2807 if (list_empty(page_deferred_list(page))) {
2808 count_vm_event(THP_DEFERRED_SPLIT_PAGE);
2809 list_add_tail(page_deferred_list(page), &ds_queue->split_queue);
2810 ds_queue->split_queue_len++;
2811 #ifdef CONFIG_MEMCG
2812 if (memcg)
2813 memcg_set_shrinker_bit(memcg, page_to_nid(page),
2814 deferred_split_shrinker.id);
2815 #endif
2816 }
2817 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2818 }
2819
deferred_split_count(struct shrinker * shrink,struct shrink_control * sc)2820 static unsigned long deferred_split_count(struct shrinker *shrink,
2821 struct shrink_control *sc)
2822 {
2823 struct pglist_data *pgdata = NODE_DATA(sc->nid);
2824 struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
2825
2826 #ifdef CONFIG_MEMCG
2827 if (sc->memcg)
2828 ds_queue = &sc->memcg->deferred_split_queue;
2829 #endif
2830 return READ_ONCE(ds_queue->split_queue_len);
2831 }
2832
deferred_split_scan(struct shrinker * shrink,struct shrink_control * sc)2833 static unsigned long deferred_split_scan(struct shrinker *shrink,
2834 struct shrink_control *sc)
2835 {
2836 struct pglist_data *pgdata = NODE_DATA(sc->nid);
2837 struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
2838 unsigned long flags;
2839 LIST_HEAD(list), *pos, *next;
2840 struct page *page;
2841 int split = 0;
2842
2843 #ifdef CONFIG_MEMCG
2844 if (sc->memcg)
2845 ds_queue = &sc->memcg->deferred_split_queue;
2846 #endif
2847
2848 spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2849 /* Take pin on all head pages to avoid freeing them under us */
2850 list_for_each_safe(pos, next, &ds_queue->split_queue) {
2851 page = list_entry((void *)pos, struct page, mapping);
2852 page = compound_head(page);
2853 if (get_page_unless_zero(page)) {
2854 list_move(page_deferred_list(page), &list);
2855 } else {
2856 /* We lost race with put_compound_page() */
2857 list_del_init(page_deferred_list(page));
2858 ds_queue->split_queue_len--;
2859 }
2860 if (!--sc->nr_to_scan)
2861 break;
2862 }
2863 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2864
2865 list_for_each_safe(pos, next, &list) {
2866 page = list_entry((void *)pos, struct page, mapping);
2867 if (!trylock_page(page))
2868 goto next;
2869 /* split_huge_page() removes page from list on success */
2870 if (!split_huge_page(page))
2871 split++;
2872 unlock_page(page);
2873 next:
2874 put_page(page);
2875 }
2876
2877 spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2878 list_splice_tail(&list, &ds_queue->split_queue);
2879 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2880
2881 /*
2882 * Stop shrinker if we didn't split any page, but the queue is empty.
2883 * This can happen if pages were freed under us.
2884 */
2885 if (!split && list_empty(&ds_queue->split_queue))
2886 return SHRINK_STOP;
2887 return split;
2888 }
2889
2890 static struct shrinker deferred_split_shrinker = {
2891 .count_objects = deferred_split_count,
2892 .scan_objects = deferred_split_scan,
2893 .seeks = DEFAULT_SEEKS,
2894 .flags = SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE |
2895 SHRINKER_NONSLAB,
2896 };
2897
2898 #ifdef CONFIG_DEBUG_FS
split_huge_pages_set(void * data,u64 val)2899 static int split_huge_pages_set(void *data, u64 val)
2900 {
2901 struct zone *zone;
2902 struct page *page;
2903 unsigned long pfn, max_zone_pfn;
2904 unsigned long total = 0, split = 0;
2905
2906 if (val != 1)
2907 return -EINVAL;
2908
2909 for_each_populated_zone(zone) {
2910 max_zone_pfn = zone_end_pfn(zone);
2911 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
2912 if (!pfn_valid(pfn))
2913 continue;
2914
2915 page = pfn_to_page(pfn);
2916 if (!get_page_unless_zero(page))
2917 continue;
2918
2919 if (zone != page_zone(page))
2920 goto next;
2921
2922 if (!PageHead(page) || PageHuge(page) || !PageLRU(page))
2923 goto next;
2924
2925 total++;
2926 lock_page(page);
2927 if (!split_huge_page(page))
2928 split++;
2929 unlock_page(page);
2930 next:
2931 put_page(page);
2932 }
2933 }
2934
2935 pr_info("%lu of %lu THP split\n", split, total);
2936
2937 return 0;
2938 }
2939 DEFINE_DEBUGFS_ATTRIBUTE(split_huge_pages_fops, NULL, split_huge_pages_set,
2940 "%llu\n");
2941
split_huge_pages_debugfs(void)2942 static int __init split_huge_pages_debugfs(void)
2943 {
2944 debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
2945 &split_huge_pages_fops);
2946 return 0;
2947 }
2948 late_initcall(split_huge_pages_debugfs);
2949 #endif
2950
2951 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
set_pmd_migration_entry(struct page_vma_mapped_walk * pvmw,struct page * page)2952 void set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw,
2953 struct page *page)
2954 {
2955 struct vm_area_struct *vma = pvmw->vma;
2956 struct mm_struct *mm = vma->vm_mm;
2957 unsigned long address = pvmw->address;
2958 pmd_t pmdval;
2959 swp_entry_t entry;
2960 pmd_t pmdswp;
2961
2962 if (!(pvmw->pmd && !pvmw->pte))
2963 return;
2964
2965 flush_cache_range(vma, address, address + HPAGE_PMD_SIZE);
2966 pmdval = pmdp_invalidate(vma, address, pvmw->pmd);
2967 if (pmd_dirty(pmdval))
2968 set_page_dirty(page);
2969 entry = make_migration_entry(page, pmd_write(pmdval));
2970 pmdswp = swp_entry_to_pmd(entry);
2971 if (pmd_soft_dirty(pmdval))
2972 pmdswp = pmd_swp_mksoft_dirty(pmdswp);
2973 set_pmd_at(mm, address, pvmw->pmd, pmdswp);
2974 page_remove_rmap(page, true);
2975 put_page(page);
2976 }
2977
remove_migration_pmd(struct page_vma_mapped_walk * pvmw,struct page * new)2978 void remove_migration_pmd(struct page_vma_mapped_walk *pvmw, struct page *new)
2979 {
2980 struct vm_area_struct *vma = pvmw->vma;
2981 struct mm_struct *mm = vma->vm_mm;
2982 unsigned long address = pvmw->address;
2983 unsigned long mmun_start = address & HPAGE_PMD_MASK;
2984 pmd_t pmde;
2985 swp_entry_t entry;
2986
2987 if (!(pvmw->pmd && !pvmw->pte))
2988 return;
2989
2990 entry = pmd_to_swp_entry(*pvmw->pmd);
2991 get_page(new);
2992 pmde = pmd_mkold(mk_huge_pmd(new, vma->vm_page_prot));
2993 if (pmd_swp_soft_dirty(*pvmw->pmd))
2994 pmde = pmd_mksoft_dirty(pmde);
2995 if (is_write_migration_entry(entry))
2996 pmde = maybe_pmd_mkwrite(pmde, vma);
2997 if (pmd_swp_uffd_wp(*pvmw->pmd))
2998 pmde = pmd_wrprotect(pmd_mkuffd_wp(pmde));
2999
3000 flush_cache_range(vma, mmun_start, mmun_start + HPAGE_PMD_SIZE);
3001 if (PageAnon(new))
3002 page_add_anon_rmap(new, vma, mmun_start, true);
3003 else
3004 page_add_file_rmap(new, true);
3005 set_pmd_at(mm, mmun_start, pvmw->pmd, pmde);
3006 if ((vma->vm_flags & VM_LOCKED) && !PageDoubleMap(new))
3007 mlock_vma_page(new);
3008 update_mmu_cache_pmd(vma, address, pvmw->pmd);
3009 }
3010 #endif
3011