1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Procedures for maintaining information about logical memory blocks.
4 *
5 * Peter Bergner, IBM Corp. June 2001.
6 * Copyright (C) 2001 Peter Bergner.
7 */
8
9 #include <linux/kernel.h>
10 #include <linux/slab.h>
11 #include <linux/init.h>
12 #include <linux/bitops.h>
13 #include <linux/poison.h>
14 #include <linux/pfn.h>
15 #include <linux/debugfs.h>
16 #include <linux/kmemleak.h>
17 #include <linux/seq_file.h>
18 #include <linux/memblock.h>
19
20 #include <asm/sections.h>
21 #include <linux/io.h>
22
23 #include "internal.h"
24
25 #define INIT_MEMBLOCK_REGIONS 128
26 #define INIT_PHYSMEM_REGIONS 4
27
28 #ifndef INIT_MEMBLOCK_RESERVED_REGIONS
29 # define INIT_MEMBLOCK_RESERVED_REGIONS INIT_MEMBLOCK_REGIONS
30 #endif
31
32 /**
33 * DOC: memblock overview
34 *
35 * Memblock is a method of managing memory regions during the early
36 * boot period when the usual kernel memory allocators are not up and
37 * running.
38 *
39 * Memblock views the system memory as collections of contiguous
40 * regions. There are several types of these collections:
41 *
42 * * ``memory`` - describes the physical memory available to the
43 * kernel; this may differ from the actual physical memory installed
44 * in the system, for instance when the memory is restricted with
45 * ``mem=`` command line parameter
46 * * ``reserved`` - describes the regions that were allocated
47 * * ``physmem`` - describes the actual physical memory available during
48 * boot regardless of the possible restrictions and memory hot(un)plug;
49 * the ``physmem`` type is only available on some architectures.
50 *
51 * Each region is represented by struct memblock_region that
52 * defines the region extents, its attributes and NUMA node id on NUMA
53 * systems. Every memory type is described by the struct memblock_type
54 * which contains an array of memory regions along with
55 * the allocator metadata. The "memory" and "reserved" types are nicely
56 * wrapped with struct memblock. This structure is statically
57 * initialized at build time. The region arrays are initially sized to
58 * %INIT_MEMBLOCK_REGIONS for "memory" and %INIT_MEMBLOCK_RESERVED_REGIONS
59 * for "reserved". The region array for "physmem" is initially sized to
60 * %INIT_PHYSMEM_REGIONS.
61 * The memblock_allow_resize() enables automatic resizing of the region
62 * arrays during addition of new regions. This feature should be used
63 * with care so that memory allocated for the region array will not
64 * overlap with areas that should be reserved, for example initrd.
65 *
66 * The early architecture setup should tell memblock what the physical
67 * memory layout is by using memblock_add() or memblock_add_node()
68 * functions. The first function does not assign the region to a NUMA
69 * node and it is appropriate for UMA systems. Yet, it is possible to
70 * use it on NUMA systems as well and assign the region to a NUMA node
71 * later in the setup process using memblock_set_node(). The
72 * memblock_add_node() performs such an assignment directly.
73 *
74 * Once memblock is setup the memory can be allocated using one of the
75 * API variants:
76 *
77 * * memblock_phys_alloc*() - these functions return the **physical**
78 * address of the allocated memory
79 * * memblock_alloc*() - these functions return the **virtual** address
80 * of the allocated memory.
81 *
82 * Note, that both API variants use implicit assumptions about allowed
83 * memory ranges and the fallback methods. Consult the documentation
84 * of memblock_alloc_internal() and memblock_alloc_range_nid()
85 * functions for more elaborate description.
86 *
87 * As the system boot progresses, the architecture specific mem_init()
88 * function frees all the memory to the buddy page allocator.
89 *
90 * Unless an architecture enables %CONFIG_ARCH_KEEP_MEMBLOCK, the
91 * memblock data structures (except "physmem") will be discarded after the
92 * system initialization completes.
93 */
94
95 #ifndef CONFIG_NEED_MULTIPLE_NODES
96 struct pglist_data __refdata contig_page_data;
97 EXPORT_SYMBOL(contig_page_data);
98 #endif
99
100 unsigned long max_low_pfn;
101 unsigned long min_low_pfn;
102 unsigned long max_pfn;
103 unsigned long long max_possible_pfn;
104
105 static struct memblock_region memblock_memory_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock;
106 static struct memblock_region memblock_reserved_init_regions[INIT_MEMBLOCK_RESERVED_REGIONS] __initdata_memblock;
107 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
108 static struct memblock_region memblock_physmem_init_regions[INIT_PHYSMEM_REGIONS];
109 #endif
110
111 struct memblock memblock __initdata_memblock = {
112 .memory.regions = memblock_memory_init_regions,
113 .memory.cnt = 1, /* empty dummy entry */
114 .memory.max = INIT_MEMBLOCK_REGIONS,
115 .memory.name = "memory",
116
117 .reserved.regions = memblock_reserved_init_regions,
118 .reserved.cnt = 1, /* empty dummy entry */
119 .reserved.max = INIT_MEMBLOCK_RESERVED_REGIONS,
120 .reserved.name = "reserved",
121
122 .bottom_up = false,
123 .current_limit = MEMBLOCK_ALLOC_ANYWHERE,
124 };
125
126 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
127 struct memblock_type physmem = {
128 .regions = memblock_physmem_init_regions,
129 .cnt = 1, /* empty dummy entry */
130 .max = INIT_PHYSMEM_REGIONS,
131 .name = "physmem",
132 };
133 #endif
134
135 /*
136 * keep a pointer to &memblock.memory in the text section to use it in
137 * __next_mem_range() and its helpers.
138 * For architectures that do not keep memblock data after init, this
139 * pointer will be reset to NULL at memblock_discard()
140 */
141 static __refdata struct memblock_type *memblock_memory = &memblock.memory;
142
143 #define for_each_memblock_type(i, memblock_type, rgn) \
144 for (i = 0, rgn = &memblock_type->regions[0]; \
145 i < memblock_type->cnt; \
146 i++, rgn = &memblock_type->regions[i])
147
148 #define memblock_dbg(fmt, ...) \
149 do { \
150 if (memblock_debug) \
151 pr_info(fmt, ##__VA_ARGS__); \
152 } while (0)
153
154 static int memblock_debug __initdata_memblock;
155 static bool system_has_some_mirror __initdata_memblock = false;
156 static int memblock_can_resize __initdata_memblock;
157 static int memblock_memory_in_slab __initdata_memblock = 0;
158 static int memblock_reserved_in_slab __initdata_memblock = 0;
159
choose_memblock_flags(void)160 static enum memblock_flags __init_memblock choose_memblock_flags(void)
161 {
162 return system_has_some_mirror ? MEMBLOCK_MIRROR : MEMBLOCK_NONE;
163 }
164
165 /* adjust *@size so that (@base + *@size) doesn't overflow, return new size */
memblock_cap_size(phys_addr_t base,phys_addr_t * size)166 static inline phys_addr_t memblock_cap_size(phys_addr_t base, phys_addr_t *size)
167 {
168 return *size = min(*size, PHYS_ADDR_MAX - base);
169 }
170
171 /*
172 * Address comparison utilities
173 */
memblock_addrs_overlap(phys_addr_t base1,phys_addr_t size1,phys_addr_t base2,phys_addr_t size2)174 static unsigned long __init_memblock memblock_addrs_overlap(phys_addr_t base1, phys_addr_t size1,
175 phys_addr_t base2, phys_addr_t size2)
176 {
177 return ((base1 < (base2 + size2)) && (base2 < (base1 + size1)));
178 }
179
memblock_overlaps_region(struct memblock_type * type,phys_addr_t base,phys_addr_t size)180 bool __init_memblock memblock_overlaps_region(struct memblock_type *type,
181 phys_addr_t base, phys_addr_t size)
182 {
183 unsigned long i;
184
185 memblock_cap_size(base, &size);
186
187 for (i = 0; i < type->cnt; i++)
188 if (memblock_addrs_overlap(base, size, type->regions[i].base,
189 type->regions[i].size))
190 break;
191 return i < type->cnt;
192 }
193
194 /**
195 * __memblock_find_range_bottom_up - find free area utility in bottom-up
196 * @start: start of candidate range
197 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
198 * %MEMBLOCK_ALLOC_ACCESSIBLE
199 * @size: size of free area to find
200 * @align: alignment of free area to find
201 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
202 * @flags: pick from blocks based on memory attributes
203 *
204 * Utility called from memblock_find_in_range_node(), find free area bottom-up.
205 *
206 * Return:
207 * Found address on success, 0 on failure.
208 */
209 static phys_addr_t __init_memblock
__memblock_find_range_bottom_up(phys_addr_t start,phys_addr_t end,phys_addr_t size,phys_addr_t align,int nid,enum memblock_flags flags)210 __memblock_find_range_bottom_up(phys_addr_t start, phys_addr_t end,
211 phys_addr_t size, phys_addr_t align, int nid,
212 enum memblock_flags flags)
213 {
214 phys_addr_t this_start, this_end, cand;
215 u64 i;
216
217 for_each_free_mem_range(i, nid, flags, &this_start, &this_end, NULL) {
218 this_start = clamp(this_start, start, end);
219 this_end = clamp(this_end, start, end);
220
221 cand = round_up(this_start, align);
222 if (cand < this_end && this_end - cand >= size)
223 return cand;
224 }
225
226 return 0;
227 }
228
229 /**
230 * __memblock_find_range_top_down - find free area utility, in top-down
231 * @start: start of candidate range
232 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
233 * %MEMBLOCK_ALLOC_ACCESSIBLE
234 * @size: size of free area to find
235 * @align: alignment of free area to find
236 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
237 * @flags: pick from blocks based on memory attributes
238 *
239 * Utility called from memblock_find_in_range_node(), find free area top-down.
240 *
241 * Return:
242 * Found address on success, 0 on failure.
243 */
244 static phys_addr_t __init_memblock
__memblock_find_range_top_down(phys_addr_t start,phys_addr_t end,phys_addr_t size,phys_addr_t align,int nid,enum memblock_flags flags)245 __memblock_find_range_top_down(phys_addr_t start, phys_addr_t end,
246 phys_addr_t size, phys_addr_t align, int nid,
247 enum memblock_flags flags)
248 {
249 phys_addr_t this_start, this_end, cand;
250 u64 i;
251
252 for_each_free_mem_range_reverse(i, nid, flags, &this_start, &this_end,
253 NULL) {
254 this_start = clamp(this_start, start, end);
255 this_end = clamp(this_end, start, end);
256
257 if (this_end < size)
258 continue;
259
260 cand = round_down(this_end - size, align);
261 if (cand >= this_start)
262 return cand;
263 }
264
265 return 0;
266 }
267
268 /**
269 * memblock_find_in_range_node - find free area in given range and node
270 * @size: size of free area to find
271 * @align: alignment of free area to find
272 * @start: start of candidate range
273 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
274 * %MEMBLOCK_ALLOC_ACCESSIBLE
275 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
276 * @flags: pick from blocks based on memory attributes
277 *
278 * Find @size free area aligned to @align in the specified range and node.
279 *
280 * Return:
281 * Found address on success, 0 on failure.
282 */
memblock_find_in_range_node(phys_addr_t size,phys_addr_t align,phys_addr_t start,phys_addr_t end,int nid,enum memblock_flags flags)283 static phys_addr_t __init_memblock memblock_find_in_range_node(phys_addr_t size,
284 phys_addr_t align, phys_addr_t start,
285 phys_addr_t end, int nid,
286 enum memblock_flags flags)
287 {
288 /* pump up @end */
289 if (end == MEMBLOCK_ALLOC_ACCESSIBLE ||
290 end == MEMBLOCK_ALLOC_KASAN)
291 end = memblock.current_limit;
292
293 /* avoid allocating the first page */
294 start = max_t(phys_addr_t, start, PAGE_SIZE);
295 end = max(start, end);
296
297 if (memblock_bottom_up())
298 return __memblock_find_range_bottom_up(start, end, size, align,
299 nid, flags);
300 else
301 return __memblock_find_range_top_down(start, end, size, align,
302 nid, flags);
303 }
304
305 /**
306 * memblock_find_in_range - find free area in given range
307 * @start: start of candidate range
308 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
309 * %MEMBLOCK_ALLOC_ACCESSIBLE
310 * @size: size of free area to find
311 * @align: alignment of free area to find
312 *
313 * Find @size free area aligned to @align in the specified range.
314 *
315 * Return:
316 * Found address on success, 0 on failure.
317 */
memblock_find_in_range(phys_addr_t start,phys_addr_t end,phys_addr_t size,phys_addr_t align)318 phys_addr_t __init_memblock memblock_find_in_range(phys_addr_t start,
319 phys_addr_t end, phys_addr_t size,
320 phys_addr_t align)
321 {
322 phys_addr_t ret;
323 enum memblock_flags flags = choose_memblock_flags();
324
325 again:
326 ret = memblock_find_in_range_node(size, align, start, end,
327 NUMA_NO_NODE, flags);
328
329 if (!ret && (flags & MEMBLOCK_MIRROR)) {
330 pr_warn("Could not allocate %pap bytes of mirrored memory\n",
331 &size);
332 flags &= ~MEMBLOCK_MIRROR;
333 goto again;
334 }
335
336 return ret;
337 }
338
memblock_remove_region(struct memblock_type * type,unsigned long r)339 static void __init_memblock memblock_remove_region(struct memblock_type *type, unsigned long r)
340 {
341 type->total_size -= type->regions[r].size;
342 memmove(&type->regions[r], &type->regions[r + 1],
343 (type->cnt - (r + 1)) * sizeof(type->regions[r]));
344 type->cnt--;
345
346 /* Special case for empty arrays */
347 if (type->cnt == 0) {
348 WARN_ON(type->total_size != 0);
349 type->cnt = 1;
350 type->regions[0].base = 0;
351 type->regions[0].size = 0;
352 type->regions[0].flags = 0;
353 memblock_set_region_node(&type->regions[0], MAX_NUMNODES);
354 }
355 }
356
357 #ifndef CONFIG_ARCH_KEEP_MEMBLOCK
358 /**
359 * memblock_discard - discard memory and reserved arrays if they were allocated
360 */
memblock_discard(void)361 void __init memblock_discard(void)
362 {
363 phys_addr_t addr, size;
364
365 if (memblock.reserved.regions != memblock_reserved_init_regions) {
366 addr = __pa(memblock.reserved.regions);
367 size = PAGE_ALIGN(sizeof(struct memblock_region) *
368 memblock.reserved.max);
369 __memblock_free_late(addr, size);
370 }
371
372 if (memblock.memory.regions != memblock_memory_init_regions) {
373 addr = __pa(memblock.memory.regions);
374 size = PAGE_ALIGN(sizeof(struct memblock_region) *
375 memblock.memory.max);
376 __memblock_free_late(addr, size);
377 }
378
379 memblock_memory = NULL;
380 }
381 #endif
382
383 /**
384 * memblock_double_array - double the size of the memblock regions array
385 * @type: memblock type of the regions array being doubled
386 * @new_area_start: starting address of memory range to avoid overlap with
387 * @new_area_size: size of memory range to avoid overlap with
388 *
389 * Double the size of the @type regions array. If memblock is being used to
390 * allocate memory for a new reserved regions array and there is a previously
391 * allocated memory range [@new_area_start, @new_area_start + @new_area_size]
392 * waiting to be reserved, ensure the memory used by the new array does
393 * not overlap.
394 *
395 * Return:
396 * 0 on success, -1 on failure.
397 */
memblock_double_array(struct memblock_type * type,phys_addr_t new_area_start,phys_addr_t new_area_size)398 static int __init_memblock memblock_double_array(struct memblock_type *type,
399 phys_addr_t new_area_start,
400 phys_addr_t new_area_size)
401 {
402 struct memblock_region *new_array, *old_array;
403 phys_addr_t old_alloc_size, new_alloc_size;
404 phys_addr_t old_size, new_size, addr, new_end;
405 int use_slab = slab_is_available();
406 int *in_slab;
407
408 /* We don't allow resizing until we know about the reserved regions
409 * of memory that aren't suitable for allocation
410 */
411 if (!memblock_can_resize)
412 return -1;
413
414 /* Calculate new doubled size */
415 old_size = type->max * sizeof(struct memblock_region);
416 new_size = old_size << 1;
417 /*
418 * We need to allocated new one align to PAGE_SIZE,
419 * so we can free them completely later.
420 */
421 old_alloc_size = PAGE_ALIGN(old_size);
422 new_alloc_size = PAGE_ALIGN(new_size);
423
424 /* Retrieve the slab flag */
425 if (type == &memblock.memory)
426 in_slab = &memblock_memory_in_slab;
427 else
428 in_slab = &memblock_reserved_in_slab;
429
430 /* Try to find some space for it */
431 if (use_slab) {
432 new_array = kmalloc(new_size, GFP_KERNEL);
433 addr = new_array ? __pa(new_array) : 0;
434 } else {
435 /* only exclude range when trying to double reserved.regions */
436 if (type != &memblock.reserved)
437 new_area_start = new_area_size = 0;
438
439 addr = memblock_find_in_range(new_area_start + new_area_size,
440 memblock.current_limit,
441 new_alloc_size, PAGE_SIZE);
442 if (!addr && new_area_size)
443 addr = memblock_find_in_range(0,
444 min(new_area_start, memblock.current_limit),
445 new_alloc_size, PAGE_SIZE);
446
447 new_array = addr ? __va(addr) : NULL;
448 }
449 if (!addr) {
450 pr_err("memblock: Failed to double %s array from %ld to %ld entries !\n",
451 type->name, type->max, type->max * 2);
452 return -1;
453 }
454
455 new_end = addr + new_size - 1;
456 memblock_dbg("memblock: %s is doubled to %ld at [%pa-%pa]",
457 type->name, type->max * 2, &addr, &new_end);
458
459 /*
460 * Found space, we now need to move the array over before we add the
461 * reserved region since it may be our reserved array itself that is
462 * full.
463 */
464 memcpy(new_array, type->regions, old_size);
465 memset(new_array + type->max, 0, old_size);
466 old_array = type->regions;
467 type->regions = new_array;
468 type->max <<= 1;
469
470 /* Free old array. We needn't free it if the array is the static one */
471 if (*in_slab)
472 kfree(old_array);
473 else if (old_array != memblock_memory_init_regions &&
474 old_array != memblock_reserved_init_regions)
475 memblock_free(__pa(old_array), old_alloc_size);
476
477 /*
478 * Reserve the new array if that comes from the memblock. Otherwise, we
479 * needn't do it
480 */
481 if (!use_slab)
482 BUG_ON(memblock_reserve(addr, new_alloc_size));
483
484 /* Update slab flag */
485 *in_slab = use_slab;
486
487 return 0;
488 }
489
490 /**
491 * memblock_merge_regions - merge neighboring compatible regions
492 * @type: memblock type to scan
493 *
494 * Scan @type and merge neighboring compatible regions.
495 */
memblock_merge_regions(struct memblock_type * type)496 static void __init_memblock memblock_merge_regions(struct memblock_type *type)
497 {
498 int i = 0;
499
500 /* cnt never goes below 1 */
501 while (i < type->cnt - 1) {
502 struct memblock_region *this = &type->regions[i];
503 struct memblock_region *next = &type->regions[i + 1];
504
505 if (this->base + this->size != next->base ||
506 memblock_get_region_node(this) !=
507 memblock_get_region_node(next) ||
508 this->flags != next->flags) {
509 BUG_ON(this->base + this->size > next->base);
510 i++;
511 continue;
512 }
513
514 this->size += next->size;
515 /* move forward from next + 1, index of which is i + 2 */
516 memmove(next, next + 1, (type->cnt - (i + 2)) * sizeof(*next));
517 type->cnt--;
518 }
519 }
520
521 /**
522 * memblock_insert_region - insert new memblock region
523 * @type: memblock type to insert into
524 * @idx: index for the insertion point
525 * @base: base address of the new region
526 * @size: size of the new region
527 * @nid: node id of the new region
528 * @flags: flags of the new region
529 *
530 * Insert new memblock region [@base, @base + @size) into @type at @idx.
531 * @type must already have extra room to accommodate the new region.
532 */
memblock_insert_region(struct memblock_type * type,int idx,phys_addr_t base,phys_addr_t size,int nid,enum memblock_flags flags)533 static void __init_memblock memblock_insert_region(struct memblock_type *type,
534 int idx, phys_addr_t base,
535 phys_addr_t size,
536 int nid,
537 enum memblock_flags flags)
538 {
539 struct memblock_region *rgn = &type->regions[idx];
540
541 BUG_ON(type->cnt >= type->max);
542 memmove(rgn + 1, rgn, (type->cnt - idx) * sizeof(*rgn));
543 rgn->base = base;
544 rgn->size = size;
545 rgn->flags = flags;
546 memblock_set_region_node(rgn, nid);
547 type->cnt++;
548 type->total_size += size;
549 }
550
551 /**
552 * memblock_add_range - add new memblock region
553 * @type: memblock type to add new region into
554 * @base: base address of the new region
555 * @size: size of the new region
556 * @nid: nid of the new region
557 * @flags: flags of the new region
558 *
559 * Add new memblock region [@base, @base + @size) into @type. The new region
560 * is allowed to overlap with existing ones - overlaps don't affect already
561 * existing regions. @type is guaranteed to be minimal (all neighbouring
562 * compatible regions are merged) after the addition.
563 *
564 * Return:
565 * 0 on success, -errno on failure.
566 */
memblock_add_range(struct memblock_type * type,phys_addr_t base,phys_addr_t size,int nid,enum memblock_flags flags)567 static int __init_memblock memblock_add_range(struct memblock_type *type,
568 phys_addr_t base, phys_addr_t size,
569 int nid, enum memblock_flags flags)
570 {
571 bool insert = false;
572 phys_addr_t obase = base;
573 phys_addr_t end = base + memblock_cap_size(base, &size);
574 int idx, nr_new;
575 struct memblock_region *rgn;
576
577 if (!size)
578 return 0;
579
580 /* special case for empty array */
581 if (type->regions[0].size == 0) {
582 WARN_ON(type->cnt != 1 || type->total_size);
583 type->regions[0].base = base;
584 type->regions[0].size = size;
585 type->regions[0].flags = flags;
586 memblock_set_region_node(&type->regions[0], nid);
587 type->total_size = size;
588 return 0;
589 }
590 repeat:
591 /*
592 * The following is executed twice. Once with %false @insert and
593 * then with %true. The first counts the number of regions needed
594 * to accommodate the new area. The second actually inserts them.
595 */
596 base = obase;
597 nr_new = 0;
598
599 for_each_memblock_type(idx, type, rgn) {
600 phys_addr_t rbase = rgn->base;
601 phys_addr_t rend = rbase + rgn->size;
602
603 if (rbase >= end)
604 break;
605 if (rend <= base)
606 continue;
607 /*
608 * @rgn overlaps. If it separates the lower part of new
609 * area, insert that portion.
610 */
611 if (rbase > base) {
612 #ifdef CONFIG_NEED_MULTIPLE_NODES
613 WARN_ON(nid != memblock_get_region_node(rgn));
614 #endif
615 WARN_ON(flags != rgn->flags);
616 nr_new++;
617 if (insert)
618 memblock_insert_region(type, idx++, base,
619 rbase - base, nid,
620 flags);
621 }
622 /* area below @rend is dealt with, forget about it */
623 base = min(rend, end);
624 }
625
626 /* insert the remaining portion */
627 if (base < end) {
628 nr_new++;
629 if (insert)
630 memblock_insert_region(type, idx, base, end - base,
631 nid, flags);
632 }
633
634 if (!nr_new)
635 return 0;
636
637 /*
638 * If this was the first round, resize array and repeat for actual
639 * insertions; otherwise, merge and return.
640 */
641 if (!insert) {
642 while (type->cnt + nr_new > type->max)
643 if (memblock_double_array(type, obase, size) < 0)
644 return -ENOMEM;
645 insert = true;
646 goto repeat;
647 } else {
648 memblock_merge_regions(type);
649 return 0;
650 }
651 }
652
653 /**
654 * memblock_add_node - add new memblock region within a NUMA node
655 * @base: base address of the new region
656 * @size: size of the new region
657 * @nid: nid of the new region
658 *
659 * Add new memblock region [@base, @base + @size) to the "memory"
660 * type. See memblock_add_range() description for mode details
661 *
662 * Return:
663 * 0 on success, -errno on failure.
664 */
memblock_add_node(phys_addr_t base,phys_addr_t size,int nid)665 int __init_memblock memblock_add_node(phys_addr_t base, phys_addr_t size,
666 int nid)
667 {
668 return memblock_add_range(&memblock.memory, base, size, nid, 0);
669 }
670
671 /**
672 * memblock_add - add new memblock region
673 * @base: base address of the new region
674 * @size: size of the new region
675 *
676 * Add new memblock region [@base, @base + @size) to the "memory"
677 * type. See memblock_add_range() description for mode details
678 *
679 * Return:
680 * 0 on success, -errno on failure.
681 */
memblock_add(phys_addr_t base,phys_addr_t size)682 int __init_memblock memblock_add(phys_addr_t base, phys_addr_t size)
683 {
684 phys_addr_t end = base + size - 1;
685
686 memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
687 &base, &end, (void *)_RET_IP_);
688
689 return memblock_add_range(&memblock.memory, base, size, MAX_NUMNODES, 0);
690 }
691
692 /**
693 * memblock_isolate_range - isolate given range into disjoint memblocks
694 * @type: memblock type to isolate range for
695 * @base: base of range to isolate
696 * @size: size of range to isolate
697 * @start_rgn: out parameter for the start of isolated region
698 * @end_rgn: out parameter for the end of isolated region
699 *
700 * Walk @type and ensure that regions don't cross the boundaries defined by
701 * [@base, @base + @size). Crossing regions are split at the boundaries,
702 * which may create at most two more regions. The index of the first
703 * region inside the range is returned in *@start_rgn and end in *@end_rgn.
704 *
705 * Return:
706 * 0 on success, -errno on failure.
707 */
memblock_isolate_range(struct memblock_type * type,phys_addr_t base,phys_addr_t size,int * start_rgn,int * end_rgn)708 static int __init_memblock memblock_isolate_range(struct memblock_type *type,
709 phys_addr_t base, phys_addr_t size,
710 int *start_rgn, int *end_rgn)
711 {
712 phys_addr_t end = base + memblock_cap_size(base, &size);
713 int idx;
714 struct memblock_region *rgn;
715
716 *start_rgn = *end_rgn = 0;
717
718 if (!size)
719 return 0;
720
721 /* we'll create at most two more regions */
722 while (type->cnt + 2 > type->max)
723 if (memblock_double_array(type, base, size) < 0)
724 return -ENOMEM;
725
726 for_each_memblock_type(idx, type, rgn) {
727 phys_addr_t rbase = rgn->base;
728 phys_addr_t rend = rbase + rgn->size;
729
730 if (rbase >= end)
731 break;
732 if (rend <= base)
733 continue;
734
735 if (rbase < base) {
736 /*
737 * @rgn intersects from below. Split and continue
738 * to process the next region - the new top half.
739 */
740 rgn->base = base;
741 rgn->size -= base - rbase;
742 type->total_size -= base - rbase;
743 memblock_insert_region(type, idx, rbase, base - rbase,
744 memblock_get_region_node(rgn),
745 rgn->flags);
746 } else if (rend > end) {
747 /*
748 * @rgn intersects from above. Split and redo the
749 * current region - the new bottom half.
750 */
751 rgn->base = end;
752 rgn->size -= end - rbase;
753 type->total_size -= end - rbase;
754 memblock_insert_region(type, idx--, rbase, end - rbase,
755 memblock_get_region_node(rgn),
756 rgn->flags);
757 } else {
758 /* @rgn is fully contained, record it */
759 if (!*end_rgn)
760 *start_rgn = idx;
761 *end_rgn = idx + 1;
762 }
763 }
764
765 return 0;
766 }
767
memblock_remove_range(struct memblock_type * type,phys_addr_t base,phys_addr_t size)768 static int __init_memblock memblock_remove_range(struct memblock_type *type,
769 phys_addr_t base, phys_addr_t size)
770 {
771 int start_rgn, end_rgn;
772 int i, ret;
773
774 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
775 if (ret)
776 return ret;
777
778 for (i = end_rgn - 1; i >= start_rgn; i--)
779 memblock_remove_region(type, i);
780 return 0;
781 }
782
memblock_remove(phys_addr_t base,phys_addr_t size)783 int __init_memblock memblock_remove(phys_addr_t base, phys_addr_t size)
784 {
785 phys_addr_t end = base + size - 1;
786
787 memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
788 &base, &end, (void *)_RET_IP_);
789
790 return memblock_remove_range(&memblock.memory, base, size);
791 }
792
793 /**
794 * memblock_free - free boot memory block
795 * @base: phys starting address of the boot memory block
796 * @size: size of the boot memory block in bytes
797 *
798 * Free boot memory block previously allocated by memblock_alloc_xx() API.
799 * The freeing memory will not be released to the buddy allocator.
800 */
memblock_free(phys_addr_t base,phys_addr_t size)801 int __init_memblock memblock_free(phys_addr_t base, phys_addr_t size)
802 {
803 phys_addr_t end = base + size - 1;
804
805 memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
806 &base, &end, (void *)_RET_IP_);
807
808 kmemleak_free_part_phys(base, size);
809 return memblock_remove_range(&memblock.reserved, base, size);
810 }
811
memblock_reserve(phys_addr_t base,phys_addr_t size)812 int __init_memblock memblock_reserve(phys_addr_t base, phys_addr_t size)
813 {
814 phys_addr_t end = base + size - 1;
815
816 memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
817 &base, &end, (void *)_RET_IP_);
818
819 return memblock_add_range(&memblock.reserved, base, size, MAX_NUMNODES, 0);
820 }
821
822 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
memblock_physmem_add(phys_addr_t base,phys_addr_t size)823 int __init_memblock memblock_physmem_add(phys_addr_t base, phys_addr_t size)
824 {
825 phys_addr_t end = base + size - 1;
826
827 memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
828 &base, &end, (void *)_RET_IP_);
829
830 return memblock_add_range(&physmem, base, size, MAX_NUMNODES, 0);
831 }
832 #endif
833
834 /**
835 * memblock_setclr_flag - set or clear flag for a memory region
836 * @base: base address of the region
837 * @size: size of the region
838 * @set: set or clear the flag
839 * @flag: the flag to udpate
840 *
841 * This function isolates region [@base, @base + @size), and sets/clears flag
842 *
843 * Return: 0 on success, -errno on failure.
844 */
memblock_setclr_flag(phys_addr_t base,phys_addr_t size,int set,int flag)845 static int __init_memblock memblock_setclr_flag(phys_addr_t base,
846 phys_addr_t size, int set, int flag)
847 {
848 struct memblock_type *type = &memblock.memory;
849 int i, ret, start_rgn, end_rgn;
850
851 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
852 if (ret)
853 return ret;
854
855 for (i = start_rgn; i < end_rgn; i++) {
856 struct memblock_region *r = &type->regions[i];
857
858 if (set)
859 r->flags |= flag;
860 else
861 r->flags &= ~flag;
862 }
863
864 memblock_merge_regions(type);
865 return 0;
866 }
867
868 /**
869 * memblock_mark_hotplug - Mark hotpluggable memory with flag MEMBLOCK_HOTPLUG.
870 * @base: the base phys addr of the region
871 * @size: the size of the region
872 *
873 * Return: 0 on success, -errno on failure.
874 */
memblock_mark_hotplug(phys_addr_t base,phys_addr_t size)875 int __init_memblock memblock_mark_hotplug(phys_addr_t base, phys_addr_t size)
876 {
877 return memblock_setclr_flag(base, size, 1, MEMBLOCK_HOTPLUG);
878 }
879
880 /**
881 * memblock_clear_hotplug - Clear flag MEMBLOCK_HOTPLUG for a specified region.
882 * @base: the base phys addr of the region
883 * @size: the size of the region
884 *
885 * Return: 0 on success, -errno on failure.
886 */
memblock_clear_hotplug(phys_addr_t base,phys_addr_t size)887 int __init_memblock memblock_clear_hotplug(phys_addr_t base, phys_addr_t size)
888 {
889 return memblock_setclr_flag(base, size, 0, MEMBLOCK_HOTPLUG);
890 }
891
892 /**
893 * memblock_mark_mirror - Mark mirrored memory with flag MEMBLOCK_MIRROR.
894 * @base: the base phys addr of the region
895 * @size: the size of the region
896 *
897 * Return: 0 on success, -errno on failure.
898 */
memblock_mark_mirror(phys_addr_t base,phys_addr_t size)899 int __init_memblock memblock_mark_mirror(phys_addr_t base, phys_addr_t size)
900 {
901 system_has_some_mirror = true;
902
903 return memblock_setclr_flag(base, size, 1, MEMBLOCK_MIRROR);
904 }
905
906 /**
907 * memblock_mark_nomap - Mark a memory region with flag MEMBLOCK_NOMAP.
908 * @base: the base phys addr of the region
909 * @size: the size of the region
910 *
911 * Return: 0 on success, -errno on failure.
912 */
memblock_mark_nomap(phys_addr_t base,phys_addr_t size)913 int __init_memblock memblock_mark_nomap(phys_addr_t base, phys_addr_t size)
914 {
915 return memblock_setclr_flag(base, size, 1, MEMBLOCK_NOMAP);
916 }
917
918 /**
919 * memblock_clear_nomap - Clear flag MEMBLOCK_NOMAP for a specified region.
920 * @base: the base phys addr of the region
921 * @size: the size of the region
922 *
923 * Return: 0 on success, -errno on failure.
924 */
memblock_clear_nomap(phys_addr_t base,phys_addr_t size)925 int __init_memblock memblock_clear_nomap(phys_addr_t base, phys_addr_t size)
926 {
927 return memblock_setclr_flag(base, size, 0, MEMBLOCK_NOMAP);
928 }
929
should_skip_region(struct memblock_type * type,struct memblock_region * m,int nid,int flags)930 static bool should_skip_region(struct memblock_type *type,
931 struct memblock_region *m,
932 int nid, int flags)
933 {
934 int m_nid = memblock_get_region_node(m);
935
936 /* we never skip regions when iterating memblock.reserved or physmem */
937 if (type != memblock_memory)
938 return false;
939
940 /* only memory regions are associated with nodes, check it */
941 if (nid != NUMA_NO_NODE && nid != m_nid)
942 return true;
943
944 /* skip hotpluggable memory regions if needed */
945 if (movable_node_is_enabled() && memblock_is_hotpluggable(m) &&
946 !(flags & MEMBLOCK_HOTPLUG))
947 return true;
948
949 /* if we want mirror memory skip non-mirror memory regions */
950 if ((flags & MEMBLOCK_MIRROR) && !memblock_is_mirror(m))
951 return true;
952
953 /* skip nomap memory unless we were asked for it explicitly */
954 if (!(flags & MEMBLOCK_NOMAP) && memblock_is_nomap(m))
955 return true;
956
957 return false;
958 }
959
960 /**
961 * __next_mem_range - next function for for_each_free_mem_range() etc.
962 * @idx: pointer to u64 loop variable
963 * @nid: node selector, %NUMA_NO_NODE for all nodes
964 * @flags: pick from blocks based on memory attributes
965 * @type_a: pointer to memblock_type from where the range is taken
966 * @type_b: pointer to memblock_type which excludes memory from being taken
967 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
968 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
969 * @out_nid: ptr to int for nid of the range, can be %NULL
970 *
971 * Find the first area from *@idx which matches @nid, fill the out
972 * parameters, and update *@idx for the next iteration. The lower 32bit of
973 * *@idx contains index into type_a and the upper 32bit indexes the
974 * areas before each region in type_b. For example, if type_b regions
975 * look like the following,
976 *
977 * 0:[0-16), 1:[32-48), 2:[128-130)
978 *
979 * The upper 32bit indexes the following regions.
980 *
981 * 0:[0-0), 1:[16-32), 2:[48-128), 3:[130-MAX)
982 *
983 * As both region arrays are sorted, the function advances the two indices
984 * in lockstep and returns each intersection.
985 */
__next_mem_range(u64 * idx,int nid,enum memblock_flags flags,struct memblock_type * type_a,struct memblock_type * type_b,phys_addr_t * out_start,phys_addr_t * out_end,int * out_nid)986 void __next_mem_range(u64 *idx, int nid, enum memblock_flags flags,
987 struct memblock_type *type_a,
988 struct memblock_type *type_b, phys_addr_t *out_start,
989 phys_addr_t *out_end, int *out_nid)
990 {
991 int idx_a = *idx & 0xffffffff;
992 int idx_b = *idx >> 32;
993
994 if (WARN_ONCE(nid == MAX_NUMNODES,
995 "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
996 nid = NUMA_NO_NODE;
997
998 for (; idx_a < type_a->cnt; idx_a++) {
999 struct memblock_region *m = &type_a->regions[idx_a];
1000
1001 phys_addr_t m_start = m->base;
1002 phys_addr_t m_end = m->base + m->size;
1003 int m_nid = memblock_get_region_node(m);
1004
1005 if (should_skip_region(type_a, m, nid, flags))
1006 continue;
1007
1008 if (!type_b) {
1009 if (out_start)
1010 *out_start = m_start;
1011 if (out_end)
1012 *out_end = m_end;
1013 if (out_nid)
1014 *out_nid = m_nid;
1015 idx_a++;
1016 *idx = (u32)idx_a | (u64)idx_b << 32;
1017 return;
1018 }
1019
1020 /* scan areas before each reservation */
1021 for (; idx_b < type_b->cnt + 1; idx_b++) {
1022 struct memblock_region *r;
1023 phys_addr_t r_start;
1024 phys_addr_t r_end;
1025
1026 r = &type_b->regions[idx_b];
1027 r_start = idx_b ? r[-1].base + r[-1].size : 0;
1028 r_end = idx_b < type_b->cnt ?
1029 r->base : PHYS_ADDR_MAX;
1030
1031 /*
1032 * if idx_b advanced past idx_a,
1033 * break out to advance idx_a
1034 */
1035 if (r_start >= m_end)
1036 break;
1037 /* if the two regions intersect, we're done */
1038 if (m_start < r_end) {
1039 if (out_start)
1040 *out_start =
1041 max(m_start, r_start);
1042 if (out_end)
1043 *out_end = min(m_end, r_end);
1044 if (out_nid)
1045 *out_nid = m_nid;
1046 /*
1047 * The region which ends first is
1048 * advanced for the next iteration.
1049 */
1050 if (m_end <= r_end)
1051 idx_a++;
1052 else
1053 idx_b++;
1054 *idx = (u32)idx_a | (u64)idx_b << 32;
1055 return;
1056 }
1057 }
1058 }
1059
1060 /* signal end of iteration */
1061 *idx = ULLONG_MAX;
1062 }
1063
1064 /**
1065 * __next_mem_range_rev - generic next function for for_each_*_range_rev()
1066 *
1067 * @idx: pointer to u64 loop variable
1068 * @nid: node selector, %NUMA_NO_NODE for all nodes
1069 * @flags: pick from blocks based on memory attributes
1070 * @type_a: pointer to memblock_type from where the range is taken
1071 * @type_b: pointer to memblock_type which excludes memory from being taken
1072 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
1073 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
1074 * @out_nid: ptr to int for nid of the range, can be %NULL
1075 *
1076 * Finds the next range from type_a which is not marked as unsuitable
1077 * in type_b.
1078 *
1079 * Reverse of __next_mem_range().
1080 */
__next_mem_range_rev(u64 * idx,int nid,enum memblock_flags flags,struct memblock_type * type_a,struct memblock_type * type_b,phys_addr_t * out_start,phys_addr_t * out_end,int * out_nid)1081 void __init_memblock __next_mem_range_rev(u64 *idx, int nid,
1082 enum memblock_flags flags,
1083 struct memblock_type *type_a,
1084 struct memblock_type *type_b,
1085 phys_addr_t *out_start,
1086 phys_addr_t *out_end, int *out_nid)
1087 {
1088 int idx_a = *idx & 0xffffffff;
1089 int idx_b = *idx >> 32;
1090
1091 if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
1092 nid = NUMA_NO_NODE;
1093
1094 if (*idx == (u64)ULLONG_MAX) {
1095 idx_a = type_a->cnt - 1;
1096 if (type_b != NULL)
1097 idx_b = type_b->cnt;
1098 else
1099 idx_b = 0;
1100 }
1101
1102 for (; idx_a >= 0; idx_a--) {
1103 struct memblock_region *m = &type_a->regions[idx_a];
1104
1105 phys_addr_t m_start = m->base;
1106 phys_addr_t m_end = m->base + m->size;
1107 int m_nid = memblock_get_region_node(m);
1108
1109 if (should_skip_region(type_a, m, nid, flags))
1110 continue;
1111
1112 if (!type_b) {
1113 if (out_start)
1114 *out_start = m_start;
1115 if (out_end)
1116 *out_end = m_end;
1117 if (out_nid)
1118 *out_nid = m_nid;
1119 idx_a--;
1120 *idx = (u32)idx_a | (u64)idx_b << 32;
1121 return;
1122 }
1123
1124 /* scan areas before each reservation */
1125 for (; idx_b >= 0; idx_b--) {
1126 struct memblock_region *r;
1127 phys_addr_t r_start;
1128 phys_addr_t r_end;
1129
1130 r = &type_b->regions[idx_b];
1131 r_start = idx_b ? r[-1].base + r[-1].size : 0;
1132 r_end = idx_b < type_b->cnt ?
1133 r->base : PHYS_ADDR_MAX;
1134 /*
1135 * if idx_b advanced past idx_a,
1136 * break out to advance idx_a
1137 */
1138
1139 if (r_end <= m_start)
1140 break;
1141 /* if the two regions intersect, we're done */
1142 if (m_end > r_start) {
1143 if (out_start)
1144 *out_start = max(m_start, r_start);
1145 if (out_end)
1146 *out_end = min(m_end, r_end);
1147 if (out_nid)
1148 *out_nid = m_nid;
1149 if (m_start >= r_start)
1150 idx_a--;
1151 else
1152 idx_b--;
1153 *idx = (u32)idx_a | (u64)idx_b << 32;
1154 return;
1155 }
1156 }
1157 }
1158 /* signal end of iteration */
1159 *idx = ULLONG_MAX;
1160 }
1161
1162 /*
1163 * Common iterator interface used to define for_each_mem_pfn_range().
1164 */
__next_mem_pfn_range(int * idx,int nid,unsigned long * out_start_pfn,unsigned long * out_end_pfn,int * out_nid)1165 void __init_memblock __next_mem_pfn_range(int *idx, int nid,
1166 unsigned long *out_start_pfn,
1167 unsigned long *out_end_pfn, int *out_nid)
1168 {
1169 struct memblock_type *type = &memblock.memory;
1170 struct memblock_region *r;
1171 int r_nid;
1172
1173 while (++*idx < type->cnt) {
1174 r = &type->regions[*idx];
1175 r_nid = memblock_get_region_node(r);
1176
1177 if (PFN_UP(r->base) >= PFN_DOWN(r->base + r->size))
1178 continue;
1179 if (nid == MAX_NUMNODES || nid == r_nid)
1180 break;
1181 }
1182 if (*idx >= type->cnt) {
1183 *idx = -1;
1184 return;
1185 }
1186
1187 if (out_start_pfn)
1188 *out_start_pfn = PFN_UP(r->base);
1189 if (out_end_pfn)
1190 *out_end_pfn = PFN_DOWN(r->base + r->size);
1191 if (out_nid)
1192 *out_nid = r_nid;
1193 }
1194
1195 /**
1196 * memblock_set_node - set node ID on memblock regions
1197 * @base: base of area to set node ID for
1198 * @size: size of area to set node ID for
1199 * @type: memblock type to set node ID for
1200 * @nid: node ID to set
1201 *
1202 * Set the nid of memblock @type regions in [@base, @base + @size) to @nid.
1203 * Regions which cross the area boundaries are split as necessary.
1204 *
1205 * Return:
1206 * 0 on success, -errno on failure.
1207 */
memblock_set_node(phys_addr_t base,phys_addr_t size,struct memblock_type * type,int nid)1208 int __init_memblock memblock_set_node(phys_addr_t base, phys_addr_t size,
1209 struct memblock_type *type, int nid)
1210 {
1211 #ifdef CONFIG_NEED_MULTIPLE_NODES
1212 int start_rgn, end_rgn;
1213 int i, ret;
1214
1215 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
1216 if (ret)
1217 return ret;
1218
1219 for (i = start_rgn; i < end_rgn; i++)
1220 memblock_set_region_node(&type->regions[i], nid);
1221
1222 memblock_merge_regions(type);
1223 #endif
1224 return 0;
1225 }
1226
1227 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1228 /**
1229 * __next_mem_pfn_range_in_zone - iterator for for_each_*_range_in_zone()
1230 *
1231 * @idx: pointer to u64 loop variable
1232 * @zone: zone in which all of the memory blocks reside
1233 * @out_spfn: ptr to ulong for start pfn of the range, can be %NULL
1234 * @out_epfn: ptr to ulong for end pfn of the range, can be %NULL
1235 *
1236 * This function is meant to be a zone/pfn specific wrapper for the
1237 * for_each_mem_range type iterators. Specifically they are used in the
1238 * deferred memory init routines and as such we were duplicating much of
1239 * this logic throughout the code. So instead of having it in multiple
1240 * locations it seemed like it would make more sense to centralize this to
1241 * one new iterator that does everything they need.
1242 */
1243 void __init_memblock
__next_mem_pfn_range_in_zone(u64 * idx,struct zone * zone,unsigned long * out_spfn,unsigned long * out_epfn)1244 __next_mem_pfn_range_in_zone(u64 *idx, struct zone *zone,
1245 unsigned long *out_spfn, unsigned long *out_epfn)
1246 {
1247 int zone_nid = zone_to_nid(zone);
1248 phys_addr_t spa, epa;
1249 int nid;
1250
1251 __next_mem_range(idx, zone_nid, MEMBLOCK_NONE,
1252 &memblock.memory, &memblock.reserved,
1253 &spa, &epa, &nid);
1254
1255 while (*idx != U64_MAX) {
1256 unsigned long epfn = PFN_DOWN(epa);
1257 unsigned long spfn = PFN_UP(spa);
1258
1259 /*
1260 * Verify the end is at least past the start of the zone and
1261 * that we have at least one PFN to initialize.
1262 */
1263 if (zone->zone_start_pfn < epfn && spfn < epfn) {
1264 /* if we went too far just stop searching */
1265 if (zone_end_pfn(zone) <= spfn) {
1266 *idx = U64_MAX;
1267 break;
1268 }
1269
1270 if (out_spfn)
1271 *out_spfn = max(zone->zone_start_pfn, spfn);
1272 if (out_epfn)
1273 *out_epfn = min(zone_end_pfn(zone), epfn);
1274
1275 return;
1276 }
1277
1278 __next_mem_range(idx, zone_nid, MEMBLOCK_NONE,
1279 &memblock.memory, &memblock.reserved,
1280 &spa, &epa, &nid);
1281 }
1282
1283 /* signal end of iteration */
1284 if (out_spfn)
1285 *out_spfn = ULONG_MAX;
1286 if (out_epfn)
1287 *out_epfn = 0;
1288 }
1289
1290 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1291
1292 /**
1293 * memblock_alloc_range_nid - allocate boot memory block
1294 * @size: size of memory block to be allocated in bytes
1295 * @align: alignment of the region and block's size
1296 * @start: the lower bound of the memory region to allocate (phys address)
1297 * @end: the upper bound of the memory region to allocate (phys address)
1298 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1299 * @exact_nid: control the allocation fall back to other nodes
1300 *
1301 * The allocation is performed from memory region limited by
1302 * memblock.current_limit if @end == %MEMBLOCK_ALLOC_ACCESSIBLE.
1303 *
1304 * If the specified node can not hold the requested memory and @exact_nid
1305 * is false, the allocation falls back to any node in the system.
1306 *
1307 * For systems with memory mirroring, the allocation is attempted first
1308 * from the regions with mirroring enabled and then retried from any
1309 * memory region.
1310 *
1311 * In addition, function sets the min_count to 0 using kmemleak_alloc_phys for
1312 * allocated boot memory block, so that it is never reported as leaks.
1313 *
1314 * Return:
1315 * Physical address of allocated memory block on success, %0 on failure.
1316 */
memblock_alloc_range_nid(phys_addr_t size,phys_addr_t align,phys_addr_t start,phys_addr_t end,int nid,bool exact_nid)1317 phys_addr_t __init memblock_alloc_range_nid(phys_addr_t size,
1318 phys_addr_t align, phys_addr_t start,
1319 phys_addr_t end, int nid,
1320 bool exact_nid)
1321 {
1322 enum memblock_flags flags = choose_memblock_flags();
1323 phys_addr_t found;
1324
1325 if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
1326 nid = NUMA_NO_NODE;
1327
1328 if (!align) {
1329 /* Can't use WARNs this early in boot on powerpc */
1330 dump_stack();
1331 align = SMP_CACHE_BYTES;
1332 }
1333
1334 again:
1335 found = memblock_find_in_range_node(size, align, start, end, nid,
1336 flags);
1337 if (found && !memblock_reserve(found, size))
1338 goto done;
1339
1340 if (nid != NUMA_NO_NODE && !exact_nid) {
1341 found = memblock_find_in_range_node(size, align, start,
1342 end, NUMA_NO_NODE,
1343 flags);
1344 if (found && !memblock_reserve(found, size))
1345 goto done;
1346 }
1347
1348 if (flags & MEMBLOCK_MIRROR) {
1349 flags &= ~MEMBLOCK_MIRROR;
1350 pr_warn("Could not allocate %pap bytes of mirrored memory\n",
1351 &size);
1352 goto again;
1353 }
1354
1355 return 0;
1356
1357 done:
1358 /* Skip kmemleak for kasan_init() due to high volume. */
1359 if (end != MEMBLOCK_ALLOC_KASAN)
1360 /*
1361 * The min_count is set to 0 so that memblock allocated
1362 * blocks are never reported as leaks. This is because many
1363 * of these blocks are only referred via the physical
1364 * address which is not looked up by kmemleak.
1365 */
1366 kmemleak_alloc_phys(found, size, 0, 0);
1367
1368 return found;
1369 }
1370
1371 /**
1372 * memblock_phys_alloc_range - allocate a memory block inside specified range
1373 * @size: size of memory block to be allocated in bytes
1374 * @align: alignment of the region and block's size
1375 * @start: the lower bound of the memory region to allocate (physical address)
1376 * @end: the upper bound of the memory region to allocate (physical address)
1377 *
1378 * Allocate @size bytes in the between @start and @end.
1379 *
1380 * Return: physical address of the allocated memory block on success,
1381 * %0 on failure.
1382 */
memblock_phys_alloc_range(phys_addr_t size,phys_addr_t align,phys_addr_t start,phys_addr_t end)1383 phys_addr_t __init memblock_phys_alloc_range(phys_addr_t size,
1384 phys_addr_t align,
1385 phys_addr_t start,
1386 phys_addr_t end)
1387 {
1388 return memblock_alloc_range_nid(size, align, start, end, NUMA_NO_NODE,
1389 false);
1390 }
1391
1392 /**
1393 * memblock_phys_alloc_try_nid - allocate a memory block from specified MUMA node
1394 * @size: size of memory block to be allocated in bytes
1395 * @align: alignment of the region and block's size
1396 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1397 *
1398 * Allocates memory block from the specified NUMA node. If the node
1399 * has no available memory, attempts to allocated from any node in the
1400 * system.
1401 *
1402 * Return: physical address of the allocated memory block on success,
1403 * %0 on failure.
1404 */
memblock_phys_alloc_try_nid(phys_addr_t size,phys_addr_t align,int nid)1405 phys_addr_t __init memblock_phys_alloc_try_nid(phys_addr_t size, phys_addr_t align, int nid)
1406 {
1407 return memblock_alloc_range_nid(size, align, 0,
1408 MEMBLOCK_ALLOC_ACCESSIBLE, nid, false);
1409 }
1410
1411 /**
1412 * memblock_alloc_internal - allocate boot memory block
1413 * @size: size of memory block to be allocated in bytes
1414 * @align: alignment of the region and block's size
1415 * @min_addr: the lower bound of the memory region to allocate (phys address)
1416 * @max_addr: the upper bound of the memory region to allocate (phys address)
1417 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1418 * @exact_nid: control the allocation fall back to other nodes
1419 *
1420 * Allocates memory block using memblock_alloc_range_nid() and
1421 * converts the returned physical address to virtual.
1422 *
1423 * The @min_addr limit is dropped if it can not be satisfied and the allocation
1424 * will fall back to memory below @min_addr. Other constraints, such
1425 * as node and mirrored memory will be handled again in
1426 * memblock_alloc_range_nid().
1427 *
1428 * Return:
1429 * Virtual address of allocated memory block on success, NULL on failure.
1430 */
memblock_alloc_internal(phys_addr_t size,phys_addr_t align,phys_addr_t min_addr,phys_addr_t max_addr,int nid,bool exact_nid)1431 static void * __init memblock_alloc_internal(
1432 phys_addr_t size, phys_addr_t align,
1433 phys_addr_t min_addr, phys_addr_t max_addr,
1434 int nid, bool exact_nid)
1435 {
1436 phys_addr_t alloc;
1437
1438 /*
1439 * Detect any accidental use of these APIs after slab is ready, as at
1440 * this moment memblock may be deinitialized already and its
1441 * internal data may be destroyed (after execution of memblock_free_all)
1442 */
1443 if (WARN_ON_ONCE(slab_is_available()))
1444 return kzalloc_node(size, GFP_NOWAIT, nid);
1445
1446 if (max_addr > memblock.current_limit)
1447 max_addr = memblock.current_limit;
1448
1449 alloc = memblock_alloc_range_nid(size, align, min_addr, max_addr, nid,
1450 exact_nid);
1451
1452 /* retry allocation without lower limit */
1453 if (!alloc && min_addr)
1454 alloc = memblock_alloc_range_nid(size, align, 0, max_addr, nid,
1455 exact_nid);
1456
1457 if (!alloc)
1458 return NULL;
1459
1460 return phys_to_virt(alloc);
1461 }
1462
1463 /**
1464 * memblock_alloc_exact_nid_raw - allocate boot memory block on the exact node
1465 * without zeroing memory
1466 * @size: size of memory block to be allocated in bytes
1467 * @align: alignment of the region and block's size
1468 * @min_addr: the lower bound of the memory region from where the allocation
1469 * is preferred (phys address)
1470 * @max_addr: the upper bound of the memory region from where the allocation
1471 * is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
1472 * allocate only from memory limited by memblock.current_limit value
1473 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1474 *
1475 * Public function, provides additional debug information (including caller
1476 * info), if enabled. Does not zero allocated memory.
1477 *
1478 * Return:
1479 * Virtual address of allocated memory block on success, NULL on failure.
1480 */
memblock_alloc_exact_nid_raw(phys_addr_t size,phys_addr_t align,phys_addr_t min_addr,phys_addr_t max_addr,int nid)1481 void * __init memblock_alloc_exact_nid_raw(
1482 phys_addr_t size, phys_addr_t align,
1483 phys_addr_t min_addr, phys_addr_t max_addr,
1484 int nid)
1485 {
1486 void *ptr;
1487
1488 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n",
1489 __func__, (u64)size, (u64)align, nid, &min_addr,
1490 &max_addr, (void *)_RET_IP_);
1491
1492 ptr = memblock_alloc_internal(size, align,
1493 min_addr, max_addr, nid, true);
1494 if (ptr && size > 0)
1495 page_init_poison(ptr, size);
1496
1497 return ptr;
1498 }
1499
1500 /**
1501 * memblock_alloc_try_nid_raw - allocate boot memory block without zeroing
1502 * memory and without panicking
1503 * @size: size of memory block to be allocated in bytes
1504 * @align: alignment of the region and block's size
1505 * @min_addr: the lower bound of the memory region from where the allocation
1506 * is preferred (phys address)
1507 * @max_addr: the upper bound of the memory region from where the allocation
1508 * is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
1509 * allocate only from memory limited by memblock.current_limit value
1510 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1511 *
1512 * Public function, provides additional debug information (including caller
1513 * info), if enabled. Does not zero allocated memory, does not panic if request
1514 * cannot be satisfied.
1515 *
1516 * Return:
1517 * Virtual address of allocated memory block on success, NULL on failure.
1518 */
memblock_alloc_try_nid_raw(phys_addr_t size,phys_addr_t align,phys_addr_t min_addr,phys_addr_t max_addr,int nid)1519 void * __init memblock_alloc_try_nid_raw(
1520 phys_addr_t size, phys_addr_t align,
1521 phys_addr_t min_addr, phys_addr_t max_addr,
1522 int nid)
1523 {
1524 void *ptr;
1525
1526 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n",
1527 __func__, (u64)size, (u64)align, nid, &min_addr,
1528 &max_addr, (void *)_RET_IP_);
1529
1530 ptr = memblock_alloc_internal(size, align,
1531 min_addr, max_addr, nid, false);
1532 if (ptr && size > 0)
1533 page_init_poison(ptr, size);
1534
1535 return ptr;
1536 }
1537
1538 /**
1539 * memblock_alloc_try_nid - allocate boot memory block
1540 * @size: size of memory block to be allocated in bytes
1541 * @align: alignment of the region and block's size
1542 * @min_addr: the lower bound of the memory region from where the allocation
1543 * is preferred (phys address)
1544 * @max_addr: the upper bound of the memory region from where the allocation
1545 * is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
1546 * allocate only from memory limited by memblock.current_limit value
1547 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1548 *
1549 * Public function, provides additional debug information (including caller
1550 * info), if enabled. This function zeroes the allocated memory.
1551 *
1552 * Return:
1553 * Virtual address of allocated memory block on success, NULL on failure.
1554 */
memblock_alloc_try_nid(phys_addr_t size,phys_addr_t align,phys_addr_t min_addr,phys_addr_t max_addr,int nid)1555 void * __init memblock_alloc_try_nid(
1556 phys_addr_t size, phys_addr_t align,
1557 phys_addr_t min_addr, phys_addr_t max_addr,
1558 int nid)
1559 {
1560 void *ptr;
1561
1562 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n",
1563 __func__, (u64)size, (u64)align, nid, &min_addr,
1564 &max_addr, (void *)_RET_IP_);
1565 ptr = memblock_alloc_internal(size, align,
1566 min_addr, max_addr, nid, false);
1567 if (ptr)
1568 memset(ptr, 0, size);
1569
1570 return ptr;
1571 }
1572
1573 /**
1574 * __memblock_free_late - free pages directly to buddy allocator
1575 * @base: phys starting address of the boot memory block
1576 * @size: size of the boot memory block in bytes
1577 *
1578 * This is only useful when the memblock allocator has already been torn
1579 * down, but we are still initializing the system. Pages are released directly
1580 * to the buddy allocator.
1581 */
__memblock_free_late(phys_addr_t base,phys_addr_t size)1582 void __init __memblock_free_late(phys_addr_t base, phys_addr_t size)
1583 {
1584 phys_addr_t cursor, end;
1585
1586 end = base + size - 1;
1587 memblock_dbg("%s: [%pa-%pa] %pS\n",
1588 __func__, &base, &end, (void *)_RET_IP_);
1589 kmemleak_free_part_phys(base, size);
1590 cursor = PFN_UP(base);
1591 end = PFN_DOWN(base + size);
1592
1593 for (; cursor < end; cursor++) {
1594 memblock_free_pages(pfn_to_page(cursor), cursor, 0);
1595 totalram_pages_inc();
1596 }
1597 }
1598
1599 /*
1600 * Remaining API functions
1601 */
1602
memblock_phys_mem_size(void)1603 phys_addr_t __init_memblock memblock_phys_mem_size(void)
1604 {
1605 return memblock.memory.total_size;
1606 }
1607
memblock_reserved_size(void)1608 phys_addr_t __init_memblock memblock_reserved_size(void)
1609 {
1610 return memblock.reserved.total_size;
1611 }
1612
1613 /* lowest address */
memblock_start_of_DRAM(void)1614 phys_addr_t __init_memblock memblock_start_of_DRAM(void)
1615 {
1616 return memblock.memory.regions[0].base;
1617 }
1618
memblock_end_of_DRAM(void)1619 phys_addr_t __init_memblock memblock_end_of_DRAM(void)
1620 {
1621 int idx = memblock.memory.cnt - 1;
1622
1623 return (memblock.memory.regions[idx].base + memblock.memory.regions[idx].size);
1624 }
1625
__find_max_addr(phys_addr_t limit)1626 static phys_addr_t __init_memblock __find_max_addr(phys_addr_t limit)
1627 {
1628 phys_addr_t max_addr = PHYS_ADDR_MAX;
1629 struct memblock_region *r;
1630
1631 /*
1632 * translate the memory @limit size into the max address within one of
1633 * the memory memblock regions, if the @limit exceeds the total size
1634 * of those regions, max_addr will keep original value PHYS_ADDR_MAX
1635 */
1636 for_each_mem_region(r) {
1637 if (limit <= r->size) {
1638 max_addr = r->base + limit;
1639 break;
1640 }
1641 limit -= r->size;
1642 }
1643
1644 return max_addr;
1645 }
1646
memblock_enforce_memory_limit(phys_addr_t limit)1647 void __init memblock_enforce_memory_limit(phys_addr_t limit)
1648 {
1649 phys_addr_t max_addr;
1650
1651 if (!limit)
1652 return;
1653
1654 max_addr = __find_max_addr(limit);
1655
1656 /* @limit exceeds the total size of the memory, do nothing */
1657 if (max_addr == PHYS_ADDR_MAX)
1658 return;
1659
1660 /* truncate both memory and reserved regions */
1661 memblock_remove_range(&memblock.memory, max_addr,
1662 PHYS_ADDR_MAX);
1663 memblock_remove_range(&memblock.reserved, max_addr,
1664 PHYS_ADDR_MAX);
1665 }
1666
memblock_cap_memory_range(phys_addr_t base,phys_addr_t size)1667 void __init memblock_cap_memory_range(phys_addr_t base, phys_addr_t size)
1668 {
1669 int start_rgn, end_rgn;
1670 int i, ret;
1671
1672 if (!size)
1673 return;
1674
1675 ret = memblock_isolate_range(&memblock.memory, base, size,
1676 &start_rgn, &end_rgn);
1677 if (ret)
1678 return;
1679
1680 /* remove all the MAP regions */
1681 for (i = memblock.memory.cnt - 1; i >= end_rgn; i--)
1682 if (!memblock_is_nomap(&memblock.memory.regions[i]))
1683 memblock_remove_region(&memblock.memory, i);
1684
1685 for (i = start_rgn - 1; i >= 0; i--)
1686 if (!memblock_is_nomap(&memblock.memory.regions[i]))
1687 memblock_remove_region(&memblock.memory, i);
1688
1689 /* truncate the reserved regions */
1690 memblock_remove_range(&memblock.reserved, 0, base);
1691 memblock_remove_range(&memblock.reserved,
1692 base + size, PHYS_ADDR_MAX);
1693 }
1694
memblock_mem_limit_remove_map(phys_addr_t limit)1695 void __init memblock_mem_limit_remove_map(phys_addr_t limit)
1696 {
1697 phys_addr_t max_addr;
1698
1699 if (!limit)
1700 return;
1701
1702 max_addr = __find_max_addr(limit);
1703
1704 /* @limit exceeds the total size of the memory, do nothing */
1705 if (max_addr == PHYS_ADDR_MAX)
1706 return;
1707
1708 memblock_cap_memory_range(0, max_addr);
1709 }
1710
memblock_search(struct memblock_type * type,phys_addr_t addr)1711 static int __init_memblock memblock_search(struct memblock_type *type, phys_addr_t addr)
1712 {
1713 unsigned int left = 0, right = type->cnt;
1714
1715 do {
1716 unsigned int mid = (right + left) / 2;
1717
1718 if (addr < type->regions[mid].base)
1719 right = mid;
1720 else if (addr >= (type->regions[mid].base +
1721 type->regions[mid].size))
1722 left = mid + 1;
1723 else
1724 return mid;
1725 } while (left < right);
1726 return -1;
1727 }
1728
memblock_is_reserved(phys_addr_t addr)1729 bool __init_memblock memblock_is_reserved(phys_addr_t addr)
1730 {
1731 return memblock_search(&memblock.reserved, addr) != -1;
1732 }
1733
memblock_is_memory(phys_addr_t addr)1734 bool __init_memblock memblock_is_memory(phys_addr_t addr)
1735 {
1736 return memblock_search(&memblock.memory, addr) != -1;
1737 }
1738
memblock_is_map_memory(phys_addr_t addr)1739 bool __init_memblock memblock_is_map_memory(phys_addr_t addr)
1740 {
1741 int i = memblock_search(&memblock.memory, addr);
1742
1743 if (i == -1)
1744 return false;
1745 return !memblock_is_nomap(&memblock.memory.regions[i]);
1746 }
1747
memblock_search_pfn_nid(unsigned long pfn,unsigned long * start_pfn,unsigned long * end_pfn)1748 int __init_memblock memblock_search_pfn_nid(unsigned long pfn,
1749 unsigned long *start_pfn, unsigned long *end_pfn)
1750 {
1751 struct memblock_type *type = &memblock.memory;
1752 int mid = memblock_search(type, PFN_PHYS(pfn));
1753
1754 if (mid == -1)
1755 return -1;
1756
1757 *start_pfn = PFN_DOWN(type->regions[mid].base);
1758 *end_pfn = PFN_DOWN(type->regions[mid].base + type->regions[mid].size);
1759
1760 return memblock_get_region_node(&type->regions[mid]);
1761 }
1762
1763 /**
1764 * memblock_is_region_memory - check if a region is a subset of memory
1765 * @base: base of region to check
1766 * @size: size of region to check
1767 *
1768 * Check if the region [@base, @base + @size) is a subset of a memory block.
1769 *
1770 * Return:
1771 * 0 if false, non-zero if true
1772 */
memblock_is_region_memory(phys_addr_t base,phys_addr_t size)1773 bool __init_memblock memblock_is_region_memory(phys_addr_t base, phys_addr_t size)
1774 {
1775 int idx = memblock_search(&memblock.memory, base);
1776 phys_addr_t end = base + memblock_cap_size(base, &size);
1777
1778 if (idx == -1)
1779 return false;
1780 return (memblock.memory.regions[idx].base +
1781 memblock.memory.regions[idx].size) >= end;
1782 }
1783
1784 /**
1785 * memblock_is_region_reserved - check if a region intersects reserved memory
1786 * @base: base of region to check
1787 * @size: size of region to check
1788 *
1789 * Check if the region [@base, @base + @size) intersects a reserved
1790 * memory block.
1791 *
1792 * Return:
1793 * True if they intersect, false if not.
1794 */
memblock_is_region_reserved(phys_addr_t base,phys_addr_t size)1795 bool __init_memblock memblock_is_region_reserved(phys_addr_t base, phys_addr_t size)
1796 {
1797 return memblock_overlaps_region(&memblock.reserved, base, size);
1798 }
1799
memblock_trim_memory(phys_addr_t align)1800 void __init_memblock memblock_trim_memory(phys_addr_t align)
1801 {
1802 phys_addr_t start, end, orig_start, orig_end;
1803 struct memblock_region *r;
1804
1805 for_each_mem_region(r) {
1806 orig_start = r->base;
1807 orig_end = r->base + r->size;
1808 start = round_up(orig_start, align);
1809 end = round_down(orig_end, align);
1810
1811 if (start == orig_start && end == orig_end)
1812 continue;
1813
1814 if (start < end) {
1815 r->base = start;
1816 r->size = end - start;
1817 } else {
1818 memblock_remove_region(&memblock.memory,
1819 r - memblock.memory.regions);
1820 r--;
1821 }
1822 }
1823 }
1824
memblock_set_current_limit(phys_addr_t limit)1825 void __init_memblock memblock_set_current_limit(phys_addr_t limit)
1826 {
1827 memblock.current_limit = limit;
1828 }
1829
memblock_get_current_limit(void)1830 phys_addr_t __init_memblock memblock_get_current_limit(void)
1831 {
1832 return memblock.current_limit;
1833 }
1834
memblock_dump(struct memblock_type * type)1835 static void __init_memblock memblock_dump(struct memblock_type *type)
1836 {
1837 phys_addr_t base, end, size;
1838 enum memblock_flags flags;
1839 int idx;
1840 struct memblock_region *rgn;
1841
1842 pr_info(" %s.cnt = 0x%lx\n", type->name, type->cnt);
1843
1844 for_each_memblock_type(idx, type, rgn) {
1845 char nid_buf[32] = "";
1846
1847 base = rgn->base;
1848 size = rgn->size;
1849 end = base + size - 1;
1850 flags = rgn->flags;
1851 #ifdef CONFIG_NEED_MULTIPLE_NODES
1852 if (memblock_get_region_node(rgn) != MAX_NUMNODES)
1853 snprintf(nid_buf, sizeof(nid_buf), " on node %d",
1854 memblock_get_region_node(rgn));
1855 #endif
1856 pr_info(" %s[%#x]\t[%pa-%pa], %pa bytes%s flags: %#x\n",
1857 type->name, idx, &base, &end, &size, nid_buf, flags);
1858 }
1859 }
1860
__memblock_dump_all(void)1861 static void __init_memblock __memblock_dump_all(void)
1862 {
1863 pr_info("MEMBLOCK configuration:\n");
1864 pr_info(" memory size = %pa reserved size = %pa\n",
1865 &memblock.memory.total_size,
1866 &memblock.reserved.total_size);
1867
1868 memblock_dump(&memblock.memory);
1869 memblock_dump(&memblock.reserved);
1870 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
1871 memblock_dump(&physmem);
1872 #endif
1873 }
1874
memblock_dump_all(void)1875 void __init_memblock memblock_dump_all(void)
1876 {
1877 if (memblock_debug)
1878 __memblock_dump_all();
1879 }
1880
memblock_allow_resize(void)1881 void __init memblock_allow_resize(void)
1882 {
1883 memblock_can_resize = 1;
1884 }
1885
early_memblock(char * p)1886 static int __init early_memblock(char *p)
1887 {
1888 if (p && strstr(p, "debug"))
1889 memblock_debug = 1;
1890 return 0;
1891 }
1892 early_param("memblock", early_memblock);
1893
__free_pages_memory(unsigned long start,unsigned long end)1894 static void __init __free_pages_memory(unsigned long start, unsigned long end)
1895 {
1896 int order;
1897
1898 while (start < end) {
1899 order = min(MAX_ORDER - 1UL, __ffs(start));
1900
1901 while (start + (1UL << order) > end)
1902 order--;
1903
1904 memblock_free_pages(pfn_to_page(start), start, order);
1905
1906 start += (1UL << order);
1907 }
1908 }
1909
__free_memory_core(phys_addr_t start,phys_addr_t end)1910 static unsigned long __init __free_memory_core(phys_addr_t start,
1911 phys_addr_t end)
1912 {
1913 unsigned long start_pfn = PFN_UP(start);
1914 unsigned long end_pfn = min_t(unsigned long,
1915 PFN_DOWN(end), max_low_pfn);
1916
1917 if (start_pfn >= end_pfn)
1918 return 0;
1919
1920 __free_pages_memory(start_pfn, end_pfn);
1921
1922 return end_pfn - start_pfn;
1923 }
1924
free_low_memory_core_early(void)1925 static unsigned long __init free_low_memory_core_early(void)
1926 {
1927 unsigned long count = 0;
1928 phys_addr_t start, end;
1929 u64 i;
1930
1931 memblock_clear_hotplug(0, -1);
1932
1933 for_each_reserved_mem_range(i, &start, &end)
1934 reserve_bootmem_region(start, end);
1935
1936 /*
1937 * We need to use NUMA_NO_NODE instead of NODE_DATA(0)->node_id
1938 * because in some case like Node0 doesn't have RAM installed
1939 * low ram will be on Node1
1940 */
1941 for_each_free_mem_range(i, NUMA_NO_NODE, MEMBLOCK_NONE, &start, &end,
1942 NULL)
1943 count += __free_memory_core(start, end);
1944
1945 return count;
1946 }
1947
1948 static int reset_managed_pages_done __initdata;
1949
reset_node_managed_pages(pg_data_t * pgdat)1950 void reset_node_managed_pages(pg_data_t *pgdat)
1951 {
1952 struct zone *z;
1953
1954 for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++)
1955 atomic_long_set(&z->managed_pages, 0);
1956 }
1957
reset_all_zones_managed_pages(void)1958 void __init reset_all_zones_managed_pages(void)
1959 {
1960 struct pglist_data *pgdat;
1961
1962 if (reset_managed_pages_done)
1963 return;
1964
1965 for_each_online_pgdat(pgdat)
1966 reset_node_managed_pages(pgdat);
1967
1968 reset_managed_pages_done = 1;
1969 }
1970
1971 /**
1972 * memblock_free_all - release free pages to the buddy allocator
1973 *
1974 * Return: the number of pages actually released.
1975 */
memblock_free_all(void)1976 unsigned long __init memblock_free_all(void)
1977 {
1978 unsigned long pages;
1979
1980 reset_all_zones_managed_pages();
1981
1982 pages = free_low_memory_core_early();
1983 totalram_pages_add(pages);
1984
1985 return pages;
1986 }
1987
1988 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_ARCH_KEEP_MEMBLOCK)
1989
memblock_debug_show(struct seq_file * m,void * private)1990 static int memblock_debug_show(struct seq_file *m, void *private)
1991 {
1992 struct memblock_type *type = m->private;
1993 struct memblock_region *reg;
1994 int i;
1995 phys_addr_t end;
1996
1997 for (i = 0; i < type->cnt; i++) {
1998 reg = &type->regions[i];
1999 end = reg->base + reg->size - 1;
2000
2001 seq_printf(m, "%4d: ", i);
2002 seq_printf(m, "%pa..%pa\n", ®->base, &end);
2003 }
2004 return 0;
2005 }
2006 DEFINE_SHOW_ATTRIBUTE(memblock_debug);
2007
memblock_init_debugfs(void)2008 static int __init memblock_init_debugfs(void)
2009 {
2010 struct dentry *root = debugfs_create_dir("memblock", NULL);
2011
2012 debugfs_create_file("memory", 0444, root,
2013 &memblock.memory, &memblock_debug_fops);
2014 debugfs_create_file("reserved", 0444, root,
2015 &memblock.reserved, &memblock_debug_fops);
2016 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
2017 debugfs_create_file("physmem", 0444, root, &physmem,
2018 &memblock_debug_fops);
2019 #endif
2020
2021 return 0;
2022 }
2023 __initcall(memblock_init_debugfs);
2024
2025 #endif /* CONFIG_DEBUG_FS */
2026