• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (c) 2013-2015, Mellanox Technologies. All rights reserved.
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the
8  * OpenIB.org BSD license below:
9  *
10  *     Redistribution and use in source and binary forms, with or
11  *     without modification, are permitted provided that the following
12  *     conditions are met:
13  *
14  *      - Redistributions of source code must retain the above
15  *        copyright notice, this list of conditions and the following
16  *        disclaimer.
17  *
18  *      - Redistributions in binary form must reproduce the above
19  *        copyright notice, this list of conditions and the following
20  *        disclaimer in the documentation and/or other materials
21  *        provided with the distribution.
22  *
23  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30  * SOFTWARE.
31  */
32 
33 
34 #include <linux/kref.h>
35 #include <linux/random.h>
36 #include <linux/debugfs.h>
37 #include <linux/export.h>
38 #include <linux/delay.h>
39 #include <rdma/ib_umem.h>
40 #include <rdma/ib_umem_odp.h>
41 #include <rdma/ib_verbs.h>
42 #include "mlx5_ib.h"
43 
44 enum {
45 	MAX_PENDING_REG_MR = 8,
46 };
47 
48 #define MLX5_UMR_ALIGN 2048
49 
50 static void
51 create_mkey_callback(int status, struct mlx5_async_work *context);
52 
set_mkc_access_pd_addr_fields(void * mkc,int acc,u64 start_addr,struct ib_pd * pd)53 static void set_mkc_access_pd_addr_fields(void *mkc, int acc, u64 start_addr,
54 					  struct ib_pd *pd)
55 {
56 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
57 
58 	MLX5_SET(mkc, mkc, a, !!(acc & IB_ACCESS_REMOTE_ATOMIC));
59 	MLX5_SET(mkc, mkc, rw, !!(acc & IB_ACCESS_REMOTE_WRITE));
60 	MLX5_SET(mkc, mkc, rr, !!(acc & IB_ACCESS_REMOTE_READ));
61 	MLX5_SET(mkc, mkc, lw, !!(acc & IB_ACCESS_LOCAL_WRITE));
62 	MLX5_SET(mkc, mkc, lr, 1);
63 
64 	if (MLX5_CAP_GEN(dev->mdev, relaxed_ordering_write))
65 		MLX5_SET(mkc, mkc, relaxed_ordering_write,
66 			 !!(acc & IB_ACCESS_RELAXED_ORDERING));
67 	if (MLX5_CAP_GEN(dev->mdev, relaxed_ordering_read))
68 		MLX5_SET(mkc, mkc, relaxed_ordering_read,
69 			 !!(acc & IB_ACCESS_RELAXED_ORDERING));
70 
71 	MLX5_SET(mkc, mkc, pd, to_mpd(pd)->pdn);
72 	MLX5_SET(mkc, mkc, qpn, 0xffffff);
73 	MLX5_SET64(mkc, mkc, start_addr, start_addr);
74 }
75 
76 static void
assign_mkey_variant(struct mlx5_ib_dev * dev,struct mlx5_core_mkey * mkey,u32 * in)77 assign_mkey_variant(struct mlx5_ib_dev *dev, struct mlx5_core_mkey *mkey,
78 		    u32 *in)
79 {
80 	u8 key = atomic_inc_return(&dev->mkey_var);
81 	void *mkc;
82 
83 	mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
84 	MLX5_SET(mkc, mkc, mkey_7_0, key);
85 	mkey->key = key;
86 }
87 
88 static int
mlx5_ib_create_mkey(struct mlx5_ib_dev * dev,struct mlx5_core_mkey * mkey,u32 * in,int inlen)89 mlx5_ib_create_mkey(struct mlx5_ib_dev *dev, struct mlx5_core_mkey *mkey,
90 		    u32 *in, int inlen)
91 {
92 	assign_mkey_variant(dev, mkey, in);
93 	return mlx5_core_create_mkey(dev->mdev, mkey, in, inlen);
94 }
95 
96 static int
mlx5_ib_create_mkey_cb(struct mlx5_ib_dev * dev,struct mlx5_core_mkey * mkey,struct mlx5_async_ctx * async_ctx,u32 * in,int inlen,u32 * out,int outlen,struct mlx5_async_work * context)97 mlx5_ib_create_mkey_cb(struct mlx5_ib_dev *dev,
98 		       struct mlx5_core_mkey *mkey,
99 		       struct mlx5_async_ctx *async_ctx,
100 		       u32 *in, int inlen, u32 *out, int outlen,
101 		       struct mlx5_async_work *context)
102 {
103 	MLX5_SET(create_mkey_in, in, opcode, MLX5_CMD_OP_CREATE_MKEY);
104 	assign_mkey_variant(dev, mkey, in);
105 	return mlx5_cmd_exec_cb(async_ctx, in, inlen, out, outlen,
106 				create_mkey_callback, context);
107 }
108 
109 static void clean_mr(struct mlx5_ib_dev *dev, struct mlx5_ib_mr *mr);
110 static void dereg_mr(struct mlx5_ib_dev *dev, struct mlx5_ib_mr *mr);
111 static int mr_cache_max_order(struct mlx5_ib_dev *dev);
112 static void queue_adjust_cache_locked(struct mlx5_cache_ent *ent);
113 
umr_can_use_indirect_mkey(struct mlx5_ib_dev * dev)114 static bool umr_can_use_indirect_mkey(struct mlx5_ib_dev *dev)
115 {
116 	return !MLX5_CAP_GEN(dev->mdev, umr_indirect_mkey_disabled);
117 }
118 
destroy_mkey(struct mlx5_ib_dev * dev,struct mlx5_ib_mr * mr)119 static int destroy_mkey(struct mlx5_ib_dev *dev, struct mlx5_ib_mr *mr)
120 {
121 	WARN_ON(xa_load(&dev->odp_mkeys, mlx5_base_mkey(mr->mmkey.key)));
122 
123 	return mlx5_core_destroy_mkey(dev->mdev, &mr->mmkey);
124 }
125 
mlx5_ib_pas_fits_in_mr(struct mlx5_ib_mr * mr,u64 start,u64 length)126 static inline bool mlx5_ib_pas_fits_in_mr(struct mlx5_ib_mr *mr, u64 start,
127 					  u64 length)
128 {
129 	return ((u64)1 << mr->order) * MLX5_ADAPTER_PAGE_SIZE >=
130 		length + (start & (MLX5_ADAPTER_PAGE_SIZE - 1));
131 }
132 
create_mkey_callback(int status,struct mlx5_async_work * context)133 static void create_mkey_callback(int status, struct mlx5_async_work *context)
134 {
135 	struct mlx5_ib_mr *mr =
136 		container_of(context, struct mlx5_ib_mr, cb_work);
137 	struct mlx5_ib_dev *dev = mr->dev;
138 	struct mlx5_cache_ent *ent = mr->cache_ent;
139 	unsigned long flags;
140 
141 	if (status) {
142 		mlx5_ib_warn(dev, "async reg mr failed. status %d\n", status);
143 		kfree(mr);
144 		spin_lock_irqsave(&ent->lock, flags);
145 		ent->pending--;
146 		WRITE_ONCE(dev->fill_delay, 1);
147 		spin_unlock_irqrestore(&ent->lock, flags);
148 		mod_timer(&dev->delay_timer, jiffies + HZ);
149 		return;
150 	}
151 
152 	mr->mmkey.type = MLX5_MKEY_MR;
153 	mr->mmkey.key |= mlx5_idx_to_mkey(
154 		MLX5_GET(create_mkey_out, mr->out, mkey_index));
155 
156 	WRITE_ONCE(dev->cache.last_add, jiffies);
157 
158 	spin_lock_irqsave(&ent->lock, flags);
159 	list_add_tail(&mr->list, &ent->head);
160 	ent->available_mrs++;
161 	ent->total_mrs++;
162 	/* If we are doing fill_to_high_water then keep going. */
163 	queue_adjust_cache_locked(ent);
164 	ent->pending--;
165 	spin_unlock_irqrestore(&ent->lock, flags);
166 }
167 
alloc_cache_mr(struct mlx5_cache_ent * ent,void * mkc)168 static struct mlx5_ib_mr *alloc_cache_mr(struct mlx5_cache_ent *ent, void *mkc)
169 {
170 	struct mlx5_ib_mr *mr;
171 
172 	mr = kzalloc(sizeof(*mr), GFP_KERNEL);
173 	if (!mr)
174 		return NULL;
175 	mr->order = ent->order;
176 	mr->cache_ent = ent;
177 	mr->dev = ent->dev;
178 
179 	set_mkc_access_pd_addr_fields(mkc, 0, 0, ent->dev->umrc.pd);
180 	MLX5_SET(mkc, mkc, free, 1);
181 	MLX5_SET(mkc, mkc, umr_en, 1);
182 	MLX5_SET(mkc, mkc, access_mode_1_0, ent->access_mode & 0x3);
183 	MLX5_SET(mkc, mkc, access_mode_4_2, (ent->access_mode >> 2) & 0x7);
184 
185 	MLX5_SET(mkc, mkc, translations_octword_size, ent->xlt);
186 	MLX5_SET(mkc, mkc, log_page_size, ent->page);
187 	return mr;
188 }
189 
190 /* Asynchronously schedule new MRs to be populated in the cache. */
add_keys(struct mlx5_cache_ent * ent,unsigned int num)191 static int add_keys(struct mlx5_cache_ent *ent, unsigned int num)
192 {
193 	size_t inlen = MLX5_ST_SZ_BYTES(create_mkey_in);
194 	struct mlx5_ib_mr *mr;
195 	void *mkc;
196 	u32 *in;
197 	int err = 0;
198 	int i;
199 
200 	in = kzalloc(inlen, GFP_KERNEL);
201 	if (!in)
202 		return -ENOMEM;
203 
204 	mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
205 	for (i = 0; i < num; i++) {
206 		mr = alloc_cache_mr(ent, mkc);
207 		if (!mr) {
208 			err = -ENOMEM;
209 			break;
210 		}
211 		spin_lock_irq(&ent->lock);
212 		if (ent->pending >= MAX_PENDING_REG_MR) {
213 			err = -EAGAIN;
214 			spin_unlock_irq(&ent->lock);
215 			kfree(mr);
216 			break;
217 		}
218 		ent->pending++;
219 		spin_unlock_irq(&ent->lock);
220 		err = mlx5_ib_create_mkey_cb(ent->dev, &mr->mmkey,
221 					     &ent->dev->async_ctx, in, inlen,
222 					     mr->out, sizeof(mr->out),
223 					     &mr->cb_work);
224 		if (err) {
225 			spin_lock_irq(&ent->lock);
226 			ent->pending--;
227 			spin_unlock_irq(&ent->lock);
228 			mlx5_ib_warn(ent->dev, "create mkey failed %d\n", err);
229 			kfree(mr);
230 			break;
231 		}
232 	}
233 
234 	kfree(in);
235 	return err;
236 }
237 
238 /* Synchronously create a MR in the cache */
create_cache_mr(struct mlx5_cache_ent * ent)239 static struct mlx5_ib_mr *create_cache_mr(struct mlx5_cache_ent *ent)
240 {
241 	size_t inlen = MLX5_ST_SZ_BYTES(create_mkey_in);
242 	struct mlx5_ib_mr *mr;
243 	void *mkc;
244 	u32 *in;
245 	int err;
246 
247 	in = kzalloc(inlen, GFP_KERNEL);
248 	if (!in)
249 		return ERR_PTR(-ENOMEM);
250 	mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
251 
252 	mr = alloc_cache_mr(ent, mkc);
253 	if (!mr) {
254 		err = -ENOMEM;
255 		goto free_in;
256 	}
257 
258 	err = mlx5_core_create_mkey(ent->dev->mdev, &mr->mmkey, in, inlen);
259 	if (err)
260 		goto free_mr;
261 
262 	mr->mmkey.type = MLX5_MKEY_MR;
263 	WRITE_ONCE(ent->dev->cache.last_add, jiffies);
264 	spin_lock_irq(&ent->lock);
265 	ent->total_mrs++;
266 	spin_unlock_irq(&ent->lock);
267 	kfree(in);
268 	return mr;
269 free_mr:
270 	kfree(mr);
271 free_in:
272 	kfree(in);
273 	return ERR_PTR(err);
274 }
275 
remove_cache_mr_locked(struct mlx5_cache_ent * ent)276 static void remove_cache_mr_locked(struct mlx5_cache_ent *ent)
277 {
278 	struct mlx5_ib_mr *mr;
279 
280 	lockdep_assert_held(&ent->lock);
281 	if (list_empty(&ent->head))
282 		return;
283 	mr = list_first_entry(&ent->head, struct mlx5_ib_mr, list);
284 	list_del(&mr->list);
285 	ent->available_mrs--;
286 	ent->total_mrs--;
287 	spin_unlock_irq(&ent->lock);
288 	mlx5_core_destroy_mkey(ent->dev->mdev, &mr->mmkey);
289 	kfree(mr);
290 	spin_lock_irq(&ent->lock);
291 }
292 
resize_available_mrs(struct mlx5_cache_ent * ent,unsigned int target,bool limit_fill)293 static int resize_available_mrs(struct mlx5_cache_ent *ent, unsigned int target,
294 				bool limit_fill)
295 {
296 	int err;
297 
298 	lockdep_assert_held(&ent->lock);
299 
300 	while (true) {
301 		if (limit_fill)
302 			target = ent->limit * 2;
303 		if (target == ent->available_mrs + ent->pending)
304 			return 0;
305 		if (target > ent->available_mrs + ent->pending) {
306 			u32 todo = target - (ent->available_mrs + ent->pending);
307 
308 			spin_unlock_irq(&ent->lock);
309 			err = add_keys(ent, todo);
310 			if (err == -EAGAIN)
311 				usleep_range(3000, 5000);
312 			spin_lock_irq(&ent->lock);
313 			if (err) {
314 				if (err != -EAGAIN)
315 					return err;
316 			} else
317 				return 0;
318 		} else {
319 			remove_cache_mr_locked(ent);
320 		}
321 	}
322 }
323 
size_write(struct file * filp,const char __user * buf,size_t count,loff_t * pos)324 static ssize_t size_write(struct file *filp, const char __user *buf,
325 			  size_t count, loff_t *pos)
326 {
327 	struct mlx5_cache_ent *ent = filp->private_data;
328 	u32 target;
329 	int err;
330 
331 	err = kstrtou32_from_user(buf, count, 0, &target);
332 	if (err)
333 		return err;
334 
335 	/*
336 	 * Target is the new value of total_mrs the user requests, however we
337 	 * cannot free MRs that are in use. Compute the target value for
338 	 * available_mrs.
339 	 */
340 	spin_lock_irq(&ent->lock);
341 	if (target < ent->total_mrs - ent->available_mrs) {
342 		err = -EINVAL;
343 		goto err_unlock;
344 	}
345 	target = target - (ent->total_mrs - ent->available_mrs);
346 	if (target < ent->limit || target > ent->limit*2) {
347 		err = -EINVAL;
348 		goto err_unlock;
349 	}
350 	err = resize_available_mrs(ent, target, false);
351 	if (err)
352 		goto err_unlock;
353 	spin_unlock_irq(&ent->lock);
354 
355 	return count;
356 
357 err_unlock:
358 	spin_unlock_irq(&ent->lock);
359 	return err;
360 }
361 
size_read(struct file * filp,char __user * buf,size_t count,loff_t * pos)362 static ssize_t size_read(struct file *filp, char __user *buf, size_t count,
363 			 loff_t *pos)
364 {
365 	struct mlx5_cache_ent *ent = filp->private_data;
366 	char lbuf[20];
367 	int err;
368 
369 	err = snprintf(lbuf, sizeof(lbuf), "%d\n", ent->total_mrs);
370 	if (err < 0)
371 		return err;
372 
373 	return simple_read_from_buffer(buf, count, pos, lbuf, err);
374 }
375 
376 static const struct file_operations size_fops = {
377 	.owner	= THIS_MODULE,
378 	.open	= simple_open,
379 	.write	= size_write,
380 	.read	= size_read,
381 };
382 
limit_write(struct file * filp,const char __user * buf,size_t count,loff_t * pos)383 static ssize_t limit_write(struct file *filp, const char __user *buf,
384 			   size_t count, loff_t *pos)
385 {
386 	struct mlx5_cache_ent *ent = filp->private_data;
387 	u32 var;
388 	int err;
389 
390 	err = kstrtou32_from_user(buf, count, 0, &var);
391 	if (err)
392 		return err;
393 
394 	/*
395 	 * Upon set we immediately fill the cache to high water mark implied by
396 	 * the limit.
397 	 */
398 	spin_lock_irq(&ent->lock);
399 	ent->limit = var;
400 	err = resize_available_mrs(ent, 0, true);
401 	spin_unlock_irq(&ent->lock);
402 	if (err)
403 		return err;
404 	return count;
405 }
406 
limit_read(struct file * filp,char __user * buf,size_t count,loff_t * pos)407 static ssize_t limit_read(struct file *filp, char __user *buf, size_t count,
408 			  loff_t *pos)
409 {
410 	struct mlx5_cache_ent *ent = filp->private_data;
411 	char lbuf[20];
412 	int err;
413 
414 	err = snprintf(lbuf, sizeof(lbuf), "%d\n", ent->limit);
415 	if (err < 0)
416 		return err;
417 
418 	return simple_read_from_buffer(buf, count, pos, lbuf, err);
419 }
420 
421 static const struct file_operations limit_fops = {
422 	.owner	= THIS_MODULE,
423 	.open	= simple_open,
424 	.write	= limit_write,
425 	.read	= limit_read,
426 };
427 
someone_adding(struct mlx5_mr_cache * cache)428 static bool someone_adding(struct mlx5_mr_cache *cache)
429 {
430 	unsigned int i;
431 
432 	for (i = 0; i < MAX_MR_CACHE_ENTRIES; i++) {
433 		struct mlx5_cache_ent *ent = &cache->ent[i];
434 		bool ret;
435 
436 		spin_lock_irq(&ent->lock);
437 		ret = ent->available_mrs < ent->limit;
438 		spin_unlock_irq(&ent->lock);
439 		if (ret)
440 			return true;
441 	}
442 	return false;
443 }
444 
445 /*
446  * Check if the bucket is outside the high/low water mark and schedule an async
447  * update. The cache refill has hysteresis, once the low water mark is hit it is
448  * refilled up to the high mark.
449  */
queue_adjust_cache_locked(struct mlx5_cache_ent * ent)450 static void queue_adjust_cache_locked(struct mlx5_cache_ent *ent)
451 {
452 	lockdep_assert_held(&ent->lock);
453 
454 	if (ent->disabled || READ_ONCE(ent->dev->fill_delay))
455 		return;
456 	if (ent->available_mrs < ent->limit) {
457 		ent->fill_to_high_water = true;
458 		queue_work(ent->dev->cache.wq, &ent->work);
459 	} else if (ent->fill_to_high_water &&
460 		   ent->available_mrs + ent->pending < 2 * ent->limit) {
461 		/*
462 		 * Once we start populating due to hitting a low water mark
463 		 * continue until we pass the high water mark.
464 		 */
465 		queue_work(ent->dev->cache.wq, &ent->work);
466 	} else if (ent->available_mrs == 2 * ent->limit) {
467 		ent->fill_to_high_water = false;
468 	} else if (ent->available_mrs > 2 * ent->limit) {
469 		/* Queue deletion of excess entries */
470 		ent->fill_to_high_water = false;
471 		if (ent->pending)
472 			queue_delayed_work(ent->dev->cache.wq, &ent->dwork,
473 					   msecs_to_jiffies(1000));
474 		else
475 			queue_work(ent->dev->cache.wq, &ent->work);
476 	}
477 }
478 
__cache_work_func(struct mlx5_cache_ent * ent)479 static void __cache_work_func(struct mlx5_cache_ent *ent)
480 {
481 	struct mlx5_ib_dev *dev = ent->dev;
482 	struct mlx5_mr_cache *cache = &dev->cache;
483 	int err;
484 
485 	spin_lock_irq(&ent->lock);
486 	if (ent->disabled)
487 		goto out;
488 
489 	if (ent->fill_to_high_water &&
490 	    ent->available_mrs + ent->pending < 2 * ent->limit &&
491 	    !READ_ONCE(dev->fill_delay)) {
492 		spin_unlock_irq(&ent->lock);
493 		err = add_keys(ent, 1);
494 		spin_lock_irq(&ent->lock);
495 		if (ent->disabled)
496 			goto out;
497 		if (err) {
498 			/*
499 			 * EAGAIN only happens if pending is positive, so we
500 			 * will be rescheduled from reg_mr_callback(). The only
501 			 * failure path here is ENOMEM.
502 			 */
503 			if (err != -EAGAIN) {
504 				mlx5_ib_warn(
505 					dev,
506 					"command failed order %d, err %d\n",
507 					ent->order, err);
508 				queue_delayed_work(cache->wq, &ent->dwork,
509 						   msecs_to_jiffies(1000));
510 			}
511 		}
512 	} else if (ent->available_mrs > 2 * ent->limit) {
513 		bool need_delay;
514 
515 		/*
516 		 * The remove_cache_mr() logic is performed as garbage
517 		 * collection task. Such task is intended to be run when no
518 		 * other active processes are running.
519 		 *
520 		 * The need_resched() will return TRUE if there are user tasks
521 		 * to be activated in near future.
522 		 *
523 		 * In such case, we don't execute remove_cache_mr() and postpone
524 		 * the garbage collection work to try to run in next cycle, in
525 		 * order to free CPU resources to other tasks.
526 		 */
527 		spin_unlock_irq(&ent->lock);
528 		need_delay = need_resched() || someone_adding(cache) ||
529 			     !time_after(jiffies,
530 					 READ_ONCE(cache->last_add) + 300 * HZ);
531 		spin_lock_irq(&ent->lock);
532 		if (ent->disabled)
533 			goto out;
534 		if (need_delay)
535 			queue_delayed_work(cache->wq, &ent->dwork, 300 * HZ);
536 		remove_cache_mr_locked(ent);
537 		queue_adjust_cache_locked(ent);
538 	}
539 out:
540 	spin_unlock_irq(&ent->lock);
541 }
542 
delayed_cache_work_func(struct work_struct * work)543 static void delayed_cache_work_func(struct work_struct *work)
544 {
545 	struct mlx5_cache_ent *ent;
546 
547 	ent = container_of(work, struct mlx5_cache_ent, dwork.work);
548 	__cache_work_func(ent);
549 }
550 
cache_work_func(struct work_struct * work)551 static void cache_work_func(struct work_struct *work)
552 {
553 	struct mlx5_cache_ent *ent;
554 
555 	ent = container_of(work, struct mlx5_cache_ent, work);
556 	__cache_work_func(ent);
557 }
558 
559 /* Allocate a special entry from the cache */
mlx5_mr_cache_alloc(struct mlx5_ib_dev * dev,unsigned int entry,int access_flags)560 struct mlx5_ib_mr *mlx5_mr_cache_alloc(struct mlx5_ib_dev *dev,
561 				       unsigned int entry, int access_flags)
562 {
563 	struct mlx5_mr_cache *cache = &dev->cache;
564 	struct mlx5_cache_ent *ent;
565 	struct mlx5_ib_mr *mr;
566 
567 	if (WARN_ON(entry <= MR_CACHE_LAST_STD_ENTRY ||
568 		    entry >= ARRAY_SIZE(cache->ent)))
569 		return ERR_PTR(-EINVAL);
570 
571 	/* Matches access in alloc_cache_mr() */
572 	if (!mlx5_ib_can_reconfig_with_umr(dev, 0, access_flags))
573 		return ERR_PTR(-EOPNOTSUPP);
574 
575 	ent = &cache->ent[entry];
576 	spin_lock_irq(&ent->lock);
577 	if (list_empty(&ent->head)) {
578 		spin_unlock_irq(&ent->lock);
579 		mr = create_cache_mr(ent);
580 		if (IS_ERR(mr))
581 			return mr;
582 	} else {
583 		mr = list_first_entry(&ent->head, struct mlx5_ib_mr, list);
584 		list_del(&mr->list);
585 		ent->available_mrs--;
586 		queue_adjust_cache_locked(ent);
587 		spin_unlock_irq(&ent->lock);
588 	}
589 	mr->access_flags = access_flags;
590 	return mr;
591 }
592 
593 /* Return a MR already available in the cache */
get_cache_mr(struct mlx5_cache_ent * req_ent)594 static struct mlx5_ib_mr *get_cache_mr(struct mlx5_cache_ent *req_ent)
595 {
596 	struct mlx5_ib_dev *dev = req_ent->dev;
597 	struct mlx5_ib_mr *mr = NULL;
598 	struct mlx5_cache_ent *ent = req_ent;
599 
600 	/* Try larger MR pools from the cache to satisfy the allocation */
601 	for (; ent != &dev->cache.ent[MR_CACHE_LAST_STD_ENTRY + 1]; ent++) {
602 		mlx5_ib_dbg(dev, "order %u, cache index %zu\n", ent->order,
603 			    ent - dev->cache.ent);
604 
605 		spin_lock_irq(&ent->lock);
606 		if (!list_empty(&ent->head)) {
607 			mr = list_first_entry(&ent->head, struct mlx5_ib_mr,
608 					      list);
609 			list_del(&mr->list);
610 			ent->available_mrs--;
611 			queue_adjust_cache_locked(ent);
612 			spin_unlock_irq(&ent->lock);
613 			break;
614 		}
615 		queue_adjust_cache_locked(ent);
616 		spin_unlock_irq(&ent->lock);
617 	}
618 
619 	if (!mr)
620 		req_ent->miss++;
621 
622 	return mr;
623 }
624 
detach_mr_from_cache(struct mlx5_ib_mr * mr)625 static void detach_mr_from_cache(struct mlx5_ib_mr *mr)
626 {
627 	struct mlx5_cache_ent *ent = mr->cache_ent;
628 
629 	mr->cache_ent = NULL;
630 	spin_lock_irq(&ent->lock);
631 	ent->total_mrs--;
632 	spin_unlock_irq(&ent->lock);
633 }
634 
mlx5_mr_cache_free(struct mlx5_ib_dev * dev,struct mlx5_ib_mr * mr)635 void mlx5_mr_cache_free(struct mlx5_ib_dev *dev, struct mlx5_ib_mr *mr)
636 {
637 	struct mlx5_cache_ent *ent = mr->cache_ent;
638 
639 	if (!ent)
640 		return;
641 
642 	if (mlx5_mr_cache_invalidate(mr)) {
643 		detach_mr_from_cache(mr);
644 		destroy_mkey(dev, mr);
645 		kfree(mr);
646 		return;
647 	}
648 
649 	spin_lock_irq(&ent->lock);
650 	list_add_tail(&mr->list, &ent->head);
651 	ent->available_mrs++;
652 	queue_adjust_cache_locked(ent);
653 	spin_unlock_irq(&ent->lock);
654 }
655 
clean_keys(struct mlx5_ib_dev * dev,int c)656 static void clean_keys(struct mlx5_ib_dev *dev, int c)
657 {
658 	struct mlx5_mr_cache *cache = &dev->cache;
659 	struct mlx5_cache_ent *ent = &cache->ent[c];
660 	struct mlx5_ib_mr *tmp_mr;
661 	struct mlx5_ib_mr *mr;
662 	LIST_HEAD(del_list);
663 
664 	cancel_delayed_work(&ent->dwork);
665 	while (1) {
666 		spin_lock_irq(&ent->lock);
667 		if (list_empty(&ent->head)) {
668 			spin_unlock_irq(&ent->lock);
669 			break;
670 		}
671 		mr = list_first_entry(&ent->head, struct mlx5_ib_mr, list);
672 		list_move(&mr->list, &del_list);
673 		ent->available_mrs--;
674 		ent->total_mrs--;
675 		spin_unlock_irq(&ent->lock);
676 		mlx5_core_destroy_mkey(dev->mdev, &mr->mmkey);
677 	}
678 
679 	list_for_each_entry_safe(mr, tmp_mr, &del_list, list) {
680 		list_del(&mr->list);
681 		kfree(mr);
682 	}
683 }
684 
mlx5_mr_cache_debugfs_cleanup(struct mlx5_ib_dev * dev)685 static void mlx5_mr_cache_debugfs_cleanup(struct mlx5_ib_dev *dev)
686 {
687 	if (!mlx5_debugfs_root || dev->is_rep)
688 		return;
689 
690 	debugfs_remove_recursive(dev->cache.root);
691 	dev->cache.root = NULL;
692 }
693 
mlx5_mr_cache_debugfs_init(struct mlx5_ib_dev * dev)694 static void mlx5_mr_cache_debugfs_init(struct mlx5_ib_dev *dev)
695 {
696 	struct mlx5_mr_cache *cache = &dev->cache;
697 	struct mlx5_cache_ent *ent;
698 	struct dentry *dir;
699 	int i;
700 
701 	if (!mlx5_debugfs_root || dev->is_rep)
702 		return;
703 
704 	cache->root = debugfs_create_dir("mr_cache", dev->mdev->priv.dbg_root);
705 
706 	for (i = 0; i < MAX_MR_CACHE_ENTRIES; i++) {
707 		ent = &cache->ent[i];
708 		sprintf(ent->name, "%d", ent->order);
709 		dir = debugfs_create_dir(ent->name, cache->root);
710 		debugfs_create_file("size", 0600, dir, ent, &size_fops);
711 		debugfs_create_file("limit", 0600, dir, ent, &limit_fops);
712 		debugfs_create_u32("cur", 0400, dir, &ent->available_mrs);
713 		debugfs_create_u32("miss", 0600, dir, &ent->miss);
714 	}
715 }
716 
delay_time_func(struct timer_list * t)717 static void delay_time_func(struct timer_list *t)
718 {
719 	struct mlx5_ib_dev *dev = from_timer(dev, t, delay_timer);
720 
721 	WRITE_ONCE(dev->fill_delay, 0);
722 }
723 
mlx5_mr_cache_init(struct mlx5_ib_dev * dev)724 int mlx5_mr_cache_init(struct mlx5_ib_dev *dev)
725 {
726 	struct mlx5_mr_cache *cache = &dev->cache;
727 	struct mlx5_cache_ent *ent;
728 	int i;
729 
730 	mutex_init(&dev->slow_path_mutex);
731 	cache->wq = alloc_ordered_workqueue("mkey_cache", WQ_MEM_RECLAIM);
732 	if (!cache->wq) {
733 		mlx5_ib_warn(dev, "failed to create work queue\n");
734 		return -ENOMEM;
735 	}
736 
737 	mlx5_cmd_init_async_ctx(dev->mdev, &dev->async_ctx);
738 	timer_setup(&dev->delay_timer, delay_time_func, 0);
739 	for (i = 0; i < MAX_MR_CACHE_ENTRIES; i++) {
740 		ent = &cache->ent[i];
741 		INIT_LIST_HEAD(&ent->head);
742 		spin_lock_init(&ent->lock);
743 		ent->order = i + 2;
744 		ent->dev = dev;
745 		ent->limit = 0;
746 
747 		INIT_WORK(&ent->work, cache_work_func);
748 		INIT_DELAYED_WORK(&ent->dwork, delayed_cache_work_func);
749 
750 		if (i > MR_CACHE_LAST_STD_ENTRY) {
751 			mlx5_odp_init_mr_cache_entry(ent);
752 			continue;
753 		}
754 
755 		if (ent->order > mr_cache_max_order(dev))
756 			continue;
757 
758 		ent->page = PAGE_SHIFT;
759 		ent->xlt = (1 << ent->order) * sizeof(struct mlx5_mtt) /
760 			   MLX5_IB_UMR_OCTOWORD;
761 		ent->access_mode = MLX5_MKC_ACCESS_MODE_MTT;
762 		if ((dev->mdev->profile->mask & MLX5_PROF_MASK_MR_CACHE) &&
763 		    !dev->is_rep && mlx5_core_is_pf(dev->mdev) &&
764 		    mlx5_ib_can_load_pas_with_umr(dev, 0))
765 			ent->limit = dev->mdev->profile->mr_cache[i].limit;
766 		else
767 			ent->limit = 0;
768 		spin_lock_irq(&ent->lock);
769 		queue_adjust_cache_locked(ent);
770 		spin_unlock_irq(&ent->lock);
771 	}
772 
773 	mlx5_mr_cache_debugfs_init(dev);
774 
775 	return 0;
776 }
777 
mlx5_mr_cache_cleanup(struct mlx5_ib_dev * dev)778 int mlx5_mr_cache_cleanup(struct mlx5_ib_dev *dev)
779 {
780 	unsigned int i;
781 
782 	if (!dev->cache.wq)
783 		return 0;
784 
785 	for (i = 0; i < MAX_MR_CACHE_ENTRIES; i++) {
786 		struct mlx5_cache_ent *ent = &dev->cache.ent[i];
787 
788 		spin_lock_irq(&ent->lock);
789 		ent->disabled = true;
790 		spin_unlock_irq(&ent->lock);
791 		cancel_work_sync(&ent->work);
792 		cancel_delayed_work_sync(&ent->dwork);
793 	}
794 
795 	mlx5_mr_cache_debugfs_cleanup(dev);
796 	mlx5_cmd_cleanup_async_ctx(&dev->async_ctx);
797 
798 	for (i = 0; i < MAX_MR_CACHE_ENTRIES; i++)
799 		clean_keys(dev, i);
800 
801 	destroy_workqueue(dev->cache.wq);
802 	del_timer_sync(&dev->delay_timer);
803 
804 	return 0;
805 }
806 
mlx5_ib_get_dma_mr(struct ib_pd * pd,int acc)807 struct ib_mr *mlx5_ib_get_dma_mr(struct ib_pd *pd, int acc)
808 {
809 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
810 	int inlen = MLX5_ST_SZ_BYTES(create_mkey_in);
811 	struct mlx5_ib_mr *mr;
812 	void *mkc;
813 	u32 *in;
814 	int err;
815 
816 	mr = kzalloc(sizeof(*mr), GFP_KERNEL);
817 	if (!mr)
818 		return ERR_PTR(-ENOMEM);
819 
820 	in = kzalloc(inlen, GFP_KERNEL);
821 	if (!in) {
822 		err = -ENOMEM;
823 		goto err_free;
824 	}
825 
826 	mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
827 
828 	MLX5_SET(mkc, mkc, access_mode_1_0, MLX5_MKC_ACCESS_MODE_PA);
829 	MLX5_SET(mkc, mkc, length64, 1);
830 	set_mkc_access_pd_addr_fields(mkc, acc, 0, pd);
831 
832 	err = mlx5_ib_create_mkey(dev, &mr->mmkey, in, inlen);
833 	if (err)
834 		goto err_in;
835 
836 	kfree(in);
837 	mr->mmkey.type = MLX5_MKEY_MR;
838 	mr->ibmr.lkey = mr->mmkey.key;
839 	mr->ibmr.rkey = mr->mmkey.key;
840 	mr->umem = NULL;
841 
842 	return &mr->ibmr;
843 
844 err_in:
845 	kfree(in);
846 
847 err_free:
848 	kfree(mr);
849 
850 	return ERR_PTR(err);
851 }
852 
get_octo_len(u64 addr,u64 len,int page_shift)853 static int get_octo_len(u64 addr, u64 len, int page_shift)
854 {
855 	u64 page_size = 1ULL << page_shift;
856 	u64 offset;
857 	int npages;
858 
859 	offset = addr & (page_size - 1);
860 	npages = ALIGN(len + offset, page_size) >> page_shift;
861 	return (npages + 1) / 2;
862 }
863 
mr_cache_max_order(struct mlx5_ib_dev * dev)864 static int mr_cache_max_order(struct mlx5_ib_dev *dev)
865 {
866 	if (MLX5_CAP_GEN(dev->mdev, umr_extended_translation_offset))
867 		return MR_CACHE_LAST_STD_ENTRY + 2;
868 	return MLX5_MAX_UMR_SHIFT;
869 }
870 
mr_umem_get(struct mlx5_ib_dev * dev,u64 start,u64 length,int access_flags,struct ib_umem ** umem,int * npages,int * page_shift,int * ncont,int * order)871 static int mr_umem_get(struct mlx5_ib_dev *dev, u64 start, u64 length,
872 		       int access_flags, struct ib_umem **umem, int *npages,
873 		       int *page_shift, int *ncont, int *order)
874 {
875 	struct ib_umem *u;
876 
877 	*umem = NULL;
878 
879 	if (access_flags & IB_ACCESS_ON_DEMAND) {
880 		struct ib_umem_odp *odp;
881 
882 		odp = ib_umem_odp_get(&dev->ib_dev, start, length, access_flags,
883 				      &mlx5_mn_ops);
884 		if (IS_ERR(odp)) {
885 			mlx5_ib_dbg(dev, "umem get failed (%ld)\n",
886 				    PTR_ERR(odp));
887 			return PTR_ERR(odp);
888 		}
889 
890 		u = &odp->umem;
891 
892 		*page_shift = odp->page_shift;
893 		*ncont = ib_umem_odp_num_pages(odp);
894 		*npages = *ncont << (*page_shift - PAGE_SHIFT);
895 		if (order)
896 			*order = ilog2(roundup_pow_of_two(*ncont));
897 	} else {
898 		u = ib_umem_get(&dev->ib_dev, start, length, access_flags);
899 		if (IS_ERR(u)) {
900 			mlx5_ib_dbg(dev, "umem get failed (%ld)\n", PTR_ERR(u));
901 			return PTR_ERR(u);
902 		}
903 
904 		mlx5_ib_cont_pages(u, start, MLX5_MKEY_PAGE_SHIFT_MASK, npages,
905 				   page_shift, ncont, order);
906 	}
907 
908 	if (!*npages) {
909 		mlx5_ib_warn(dev, "avoid zero region\n");
910 		ib_umem_release(u);
911 		return -EINVAL;
912 	}
913 
914 	*umem = u;
915 
916 	mlx5_ib_dbg(dev, "npages %d, ncont %d, order %d, page_shift %d\n",
917 		    *npages, *ncont, *order, *page_shift);
918 
919 	return 0;
920 }
921 
mlx5_ib_umr_done(struct ib_cq * cq,struct ib_wc * wc)922 static void mlx5_ib_umr_done(struct ib_cq *cq, struct ib_wc *wc)
923 {
924 	struct mlx5_ib_umr_context *context =
925 		container_of(wc->wr_cqe, struct mlx5_ib_umr_context, cqe);
926 
927 	context->status = wc->status;
928 	complete(&context->done);
929 }
930 
mlx5_ib_init_umr_context(struct mlx5_ib_umr_context * context)931 static inline void mlx5_ib_init_umr_context(struct mlx5_ib_umr_context *context)
932 {
933 	context->cqe.done = mlx5_ib_umr_done;
934 	context->status = -1;
935 	init_completion(&context->done);
936 }
937 
mlx5_ib_post_send_wait(struct mlx5_ib_dev * dev,struct mlx5_umr_wr * umrwr)938 static int mlx5_ib_post_send_wait(struct mlx5_ib_dev *dev,
939 				  struct mlx5_umr_wr *umrwr)
940 {
941 	struct umr_common *umrc = &dev->umrc;
942 	const struct ib_send_wr *bad;
943 	int err;
944 	struct mlx5_ib_umr_context umr_context;
945 
946 	mlx5_ib_init_umr_context(&umr_context);
947 	umrwr->wr.wr_cqe = &umr_context.cqe;
948 
949 	down(&umrc->sem);
950 	err = ib_post_send(umrc->qp, &umrwr->wr, &bad);
951 	if (err) {
952 		mlx5_ib_warn(dev, "UMR post send failed, err %d\n", err);
953 	} else {
954 		wait_for_completion(&umr_context.done);
955 		if (umr_context.status != IB_WC_SUCCESS) {
956 			mlx5_ib_warn(dev, "reg umr failed (%u)\n",
957 				     umr_context.status);
958 			err = -EFAULT;
959 		}
960 	}
961 	up(&umrc->sem);
962 	return err;
963 }
964 
mr_cache_ent_from_order(struct mlx5_ib_dev * dev,unsigned int order)965 static struct mlx5_cache_ent *mr_cache_ent_from_order(struct mlx5_ib_dev *dev,
966 						      unsigned int order)
967 {
968 	struct mlx5_mr_cache *cache = &dev->cache;
969 
970 	if (order < cache->ent[0].order)
971 		return &cache->ent[0];
972 	order = order - cache->ent[0].order;
973 	if (order > MR_CACHE_LAST_STD_ENTRY)
974 		return NULL;
975 	return &cache->ent[order];
976 }
977 
978 static struct mlx5_ib_mr *
alloc_mr_from_cache(struct ib_pd * pd,struct ib_umem * umem,u64 virt_addr,u64 len,int npages,int page_shift,unsigned int order,int access_flags)979 alloc_mr_from_cache(struct ib_pd *pd, struct ib_umem *umem, u64 virt_addr,
980 		    u64 len, int npages, int page_shift, unsigned int order,
981 		    int access_flags)
982 {
983 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
984 	struct mlx5_cache_ent *ent = mr_cache_ent_from_order(dev, order);
985 	struct mlx5_ib_mr *mr;
986 
987 	if (!ent)
988 		return ERR_PTR(-E2BIG);
989 
990 	/* Matches access in alloc_cache_mr() */
991 	if (!mlx5_ib_can_reconfig_with_umr(dev, 0, access_flags))
992 		return ERR_PTR(-EOPNOTSUPP);
993 
994 	mr = get_cache_mr(ent);
995 	if (!mr) {
996 		mr = create_cache_mr(ent);
997 		if (IS_ERR(mr))
998 			return mr;
999 	}
1000 
1001 	mr->ibmr.pd = pd;
1002 	mr->umem = umem;
1003 	mr->access_flags = access_flags;
1004 	mr->desc_size = sizeof(struct mlx5_mtt);
1005 	mr->mmkey.iova = virt_addr;
1006 	mr->mmkey.size = len;
1007 	mr->mmkey.pd = to_mpd(pd)->pdn;
1008 
1009 	return mr;
1010 }
1011 
1012 #define MLX5_MAX_UMR_CHUNK ((1 << (MLX5_MAX_UMR_SHIFT + 4)) - \
1013 			    MLX5_UMR_MTT_ALIGNMENT)
1014 #define MLX5_SPARE_UMR_CHUNK 0x10000
1015 
mlx5_ib_update_xlt(struct mlx5_ib_mr * mr,u64 idx,int npages,int page_shift,int flags)1016 int mlx5_ib_update_xlt(struct mlx5_ib_mr *mr, u64 idx, int npages,
1017 		       int page_shift, int flags)
1018 {
1019 	struct mlx5_ib_dev *dev = mr->dev;
1020 	struct device *ddev = dev->ib_dev.dev.parent;
1021 	int size;
1022 	void *xlt;
1023 	dma_addr_t dma;
1024 	struct mlx5_umr_wr wr;
1025 	struct ib_sge sg;
1026 	int err = 0;
1027 	int desc_size = (flags & MLX5_IB_UPD_XLT_INDIRECT)
1028 			       ? sizeof(struct mlx5_klm)
1029 			       : sizeof(struct mlx5_mtt);
1030 	const int page_align = MLX5_UMR_MTT_ALIGNMENT / desc_size;
1031 	const int page_mask = page_align - 1;
1032 	size_t pages_mapped = 0;
1033 	size_t pages_to_map = 0;
1034 	size_t pages_iter = 0;
1035 	size_t size_to_map = 0;
1036 	gfp_t gfp;
1037 	bool use_emergency_page = false;
1038 
1039 	if ((flags & MLX5_IB_UPD_XLT_INDIRECT) &&
1040 	    !umr_can_use_indirect_mkey(dev))
1041 		return -EPERM;
1042 
1043 	/* UMR copies MTTs in units of MLX5_UMR_MTT_ALIGNMENT bytes,
1044 	 * so we need to align the offset and length accordingly
1045 	 */
1046 	if (idx & page_mask) {
1047 		npages += idx & page_mask;
1048 		idx &= ~page_mask;
1049 	}
1050 
1051 	gfp = flags & MLX5_IB_UPD_XLT_ATOMIC ? GFP_ATOMIC : GFP_KERNEL;
1052 	gfp |= __GFP_ZERO | __GFP_NOWARN;
1053 
1054 	pages_to_map = ALIGN(npages, page_align);
1055 	size = desc_size * pages_to_map;
1056 	size = min_t(int, size, MLX5_MAX_UMR_CHUNK);
1057 
1058 	xlt = (void *)__get_free_pages(gfp, get_order(size));
1059 	if (!xlt && size > MLX5_SPARE_UMR_CHUNK) {
1060 		mlx5_ib_dbg(dev, "Failed to allocate %d bytes of order %d. fallback to spare UMR allocation od %d bytes\n",
1061 			    size, get_order(size), MLX5_SPARE_UMR_CHUNK);
1062 
1063 		size = MLX5_SPARE_UMR_CHUNK;
1064 		xlt = (void *)__get_free_pages(gfp, get_order(size));
1065 	}
1066 
1067 	if (!xlt) {
1068 		mlx5_ib_warn(dev, "Using XLT emergency buffer\n");
1069 		xlt = (void *)mlx5_ib_get_xlt_emergency_page();
1070 		size = PAGE_SIZE;
1071 		memset(xlt, 0, size);
1072 		use_emergency_page = true;
1073 	}
1074 	pages_iter = size / desc_size;
1075 	dma = dma_map_single(ddev, xlt, size, DMA_TO_DEVICE);
1076 	if (dma_mapping_error(ddev, dma)) {
1077 		mlx5_ib_err(dev, "unable to map DMA during XLT update.\n");
1078 		err = -ENOMEM;
1079 		goto free_xlt;
1080 	}
1081 
1082 	if (mr->umem->is_odp) {
1083 		if (!(flags & MLX5_IB_UPD_XLT_INDIRECT)) {
1084 			struct ib_umem_odp *odp = to_ib_umem_odp(mr->umem);
1085 			size_t max_pages = ib_umem_odp_num_pages(odp) - idx;
1086 
1087 			pages_to_map = min_t(size_t, pages_to_map, max_pages);
1088 		}
1089 	}
1090 
1091 	sg.addr = dma;
1092 	sg.lkey = dev->umrc.pd->local_dma_lkey;
1093 
1094 	memset(&wr, 0, sizeof(wr));
1095 	wr.wr.send_flags = MLX5_IB_SEND_UMR_UPDATE_XLT;
1096 	if (!(flags & MLX5_IB_UPD_XLT_ENABLE))
1097 		wr.wr.send_flags |= MLX5_IB_SEND_UMR_FAIL_IF_FREE;
1098 	wr.wr.sg_list = &sg;
1099 	wr.wr.num_sge = 1;
1100 	wr.wr.opcode = MLX5_IB_WR_UMR;
1101 
1102 	wr.pd = mr->ibmr.pd;
1103 	wr.mkey = mr->mmkey.key;
1104 	wr.length = mr->mmkey.size;
1105 	wr.virt_addr = mr->mmkey.iova;
1106 	wr.access_flags = mr->access_flags;
1107 	wr.page_shift = page_shift;
1108 
1109 	for (pages_mapped = 0;
1110 	     pages_mapped < pages_to_map && !err;
1111 	     pages_mapped += pages_iter, idx += pages_iter) {
1112 		npages = min_t(int, pages_iter, pages_to_map - pages_mapped);
1113 		size_to_map = npages * desc_size;
1114 		dma_sync_single_for_cpu(ddev, dma, size, DMA_TO_DEVICE);
1115 		if (mr->umem->is_odp) {
1116 			mlx5_odp_populate_xlt(xlt, idx, npages, mr, flags);
1117 		} else {
1118 			__mlx5_ib_populate_pas(dev, mr->umem, page_shift, idx,
1119 					       npages, xlt,
1120 					       MLX5_IB_MTT_PRESENT);
1121 			/* Clear padding after the pages
1122 			 * brought from the umem.
1123 			 */
1124 			memset(xlt + size_to_map, 0, size - size_to_map);
1125 		}
1126 		dma_sync_single_for_device(ddev, dma, size, DMA_TO_DEVICE);
1127 
1128 		sg.length = ALIGN(size_to_map, MLX5_UMR_MTT_ALIGNMENT);
1129 
1130 		if (pages_mapped + pages_iter >= pages_to_map) {
1131 			if (flags & MLX5_IB_UPD_XLT_ENABLE)
1132 				wr.wr.send_flags |=
1133 					MLX5_IB_SEND_UMR_ENABLE_MR |
1134 					MLX5_IB_SEND_UMR_UPDATE_PD_ACCESS |
1135 					MLX5_IB_SEND_UMR_UPDATE_TRANSLATION;
1136 			if (flags & MLX5_IB_UPD_XLT_PD ||
1137 			    flags & MLX5_IB_UPD_XLT_ACCESS)
1138 				wr.wr.send_flags |=
1139 					MLX5_IB_SEND_UMR_UPDATE_PD_ACCESS;
1140 			if (flags & MLX5_IB_UPD_XLT_ADDR)
1141 				wr.wr.send_flags |=
1142 					MLX5_IB_SEND_UMR_UPDATE_TRANSLATION;
1143 		}
1144 
1145 		wr.offset = idx * desc_size;
1146 		wr.xlt_size = sg.length;
1147 
1148 		err = mlx5_ib_post_send_wait(dev, &wr);
1149 	}
1150 	dma_unmap_single(ddev, dma, size, DMA_TO_DEVICE);
1151 
1152 free_xlt:
1153 	if (use_emergency_page)
1154 		mlx5_ib_put_xlt_emergency_page();
1155 	else
1156 		free_pages((unsigned long)xlt, get_order(size));
1157 
1158 	return err;
1159 }
1160 
1161 /*
1162  * If ibmr is NULL it will be allocated by reg_create.
1163  * Else, the given ibmr will be used.
1164  */
reg_create(struct ib_mr * ibmr,struct ib_pd * pd,u64 virt_addr,u64 length,struct ib_umem * umem,int npages,int page_shift,int access_flags,bool populate)1165 static struct mlx5_ib_mr *reg_create(struct ib_mr *ibmr, struct ib_pd *pd,
1166 				     u64 virt_addr, u64 length,
1167 				     struct ib_umem *umem, int npages,
1168 				     int page_shift, int access_flags,
1169 				     bool populate)
1170 {
1171 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
1172 	struct mlx5_ib_mr *mr;
1173 	__be64 *pas;
1174 	void *mkc;
1175 	int inlen;
1176 	u32 *in;
1177 	int err;
1178 	bool pg_cap = !!(MLX5_CAP_GEN(dev->mdev, pg));
1179 
1180 	mr = ibmr ? to_mmr(ibmr) : kzalloc(sizeof(*mr), GFP_KERNEL);
1181 	if (!mr)
1182 		return ERR_PTR(-ENOMEM);
1183 
1184 	mr->ibmr.pd = pd;
1185 	mr->access_flags = access_flags;
1186 
1187 	inlen = MLX5_ST_SZ_BYTES(create_mkey_in);
1188 	if (populate)
1189 		inlen += sizeof(*pas) * roundup(npages, 2);
1190 	in = kvzalloc(inlen, GFP_KERNEL);
1191 	if (!in) {
1192 		err = -ENOMEM;
1193 		goto err_1;
1194 	}
1195 	pas = (__be64 *)MLX5_ADDR_OF(create_mkey_in, in, klm_pas_mtt);
1196 	if (populate) {
1197 		if (WARN_ON(access_flags & IB_ACCESS_ON_DEMAND)) {
1198 			err = -EINVAL;
1199 			goto err_2;
1200 		}
1201 		mlx5_ib_populate_pas(dev, umem, page_shift, pas,
1202 				     pg_cap ? MLX5_IB_MTT_PRESENT : 0);
1203 	}
1204 
1205 	/* The pg_access bit allows setting the access flags
1206 	 * in the page list submitted with the command. */
1207 	MLX5_SET(create_mkey_in, in, pg_access, !!(pg_cap));
1208 
1209 	mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
1210 	set_mkc_access_pd_addr_fields(mkc, access_flags, virt_addr,
1211 				      populate ? pd : dev->umrc.pd);
1212 	MLX5_SET(mkc, mkc, free, !populate);
1213 	MLX5_SET(mkc, mkc, access_mode_1_0, MLX5_MKC_ACCESS_MODE_MTT);
1214 	MLX5_SET(mkc, mkc, umr_en, 1);
1215 
1216 	MLX5_SET64(mkc, mkc, len, length);
1217 	MLX5_SET(mkc, mkc, bsf_octword_size, 0);
1218 	MLX5_SET(mkc, mkc, translations_octword_size,
1219 		 get_octo_len(virt_addr, length, page_shift));
1220 	MLX5_SET(mkc, mkc, log_page_size, page_shift);
1221 	if (populate) {
1222 		MLX5_SET(create_mkey_in, in, translations_octword_actual_size,
1223 			 get_octo_len(virt_addr, length, page_shift));
1224 	}
1225 
1226 	err = mlx5_ib_create_mkey(dev, &mr->mmkey, in, inlen);
1227 	if (err) {
1228 		mlx5_ib_warn(dev, "create mkey failed\n");
1229 		goto err_2;
1230 	}
1231 	mr->mmkey.type = MLX5_MKEY_MR;
1232 	mr->desc_size = sizeof(struct mlx5_mtt);
1233 	mr->dev = dev;
1234 	kvfree(in);
1235 
1236 	mlx5_ib_dbg(dev, "mkey = 0x%x\n", mr->mmkey.key);
1237 
1238 	return mr;
1239 
1240 err_2:
1241 	kvfree(in);
1242 
1243 err_1:
1244 	if (!ibmr)
1245 		kfree(mr);
1246 
1247 	return ERR_PTR(err);
1248 }
1249 
set_mr_fields(struct mlx5_ib_dev * dev,struct mlx5_ib_mr * mr,u64 length,int access_flags)1250 static void set_mr_fields(struct mlx5_ib_dev *dev, struct mlx5_ib_mr *mr,
1251 			  u64 length, int access_flags)
1252 {
1253 	mr->ibmr.lkey = mr->mmkey.key;
1254 	mr->ibmr.rkey = mr->mmkey.key;
1255 	mr->ibmr.length = length;
1256 	mr->access_flags = access_flags;
1257 }
1258 
mlx5_ib_get_dm_mr(struct ib_pd * pd,u64 start_addr,u64 length,int acc,int mode)1259 static struct ib_mr *mlx5_ib_get_dm_mr(struct ib_pd *pd, u64 start_addr,
1260 				       u64 length, int acc, int mode)
1261 {
1262 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
1263 	int inlen = MLX5_ST_SZ_BYTES(create_mkey_in);
1264 	struct mlx5_ib_mr *mr;
1265 	void *mkc;
1266 	u32 *in;
1267 	int err;
1268 
1269 	mr = kzalloc(sizeof(*mr), GFP_KERNEL);
1270 	if (!mr)
1271 		return ERR_PTR(-ENOMEM);
1272 
1273 	in = kzalloc(inlen, GFP_KERNEL);
1274 	if (!in) {
1275 		err = -ENOMEM;
1276 		goto err_free;
1277 	}
1278 
1279 	mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
1280 
1281 	MLX5_SET(mkc, mkc, access_mode_1_0, mode & 0x3);
1282 	MLX5_SET(mkc, mkc, access_mode_4_2, (mode >> 2) & 0x7);
1283 	MLX5_SET64(mkc, mkc, len, length);
1284 	set_mkc_access_pd_addr_fields(mkc, acc, start_addr, pd);
1285 
1286 	err = mlx5_ib_create_mkey(dev, &mr->mmkey, in, inlen);
1287 	if (err)
1288 		goto err_in;
1289 
1290 	kfree(in);
1291 
1292 	set_mr_fields(dev, mr, length, acc);
1293 
1294 	return &mr->ibmr;
1295 
1296 err_in:
1297 	kfree(in);
1298 
1299 err_free:
1300 	kfree(mr);
1301 
1302 	return ERR_PTR(err);
1303 }
1304 
mlx5_ib_advise_mr(struct ib_pd * pd,enum ib_uverbs_advise_mr_advice advice,u32 flags,struct ib_sge * sg_list,u32 num_sge,struct uverbs_attr_bundle * attrs)1305 int mlx5_ib_advise_mr(struct ib_pd *pd,
1306 		      enum ib_uverbs_advise_mr_advice advice,
1307 		      u32 flags,
1308 		      struct ib_sge *sg_list,
1309 		      u32 num_sge,
1310 		      struct uverbs_attr_bundle *attrs)
1311 {
1312 	if (advice != IB_UVERBS_ADVISE_MR_ADVICE_PREFETCH &&
1313 	    advice != IB_UVERBS_ADVISE_MR_ADVICE_PREFETCH_WRITE &&
1314 	    advice != IB_UVERBS_ADVISE_MR_ADVICE_PREFETCH_NO_FAULT)
1315 		return -EOPNOTSUPP;
1316 
1317 	return mlx5_ib_advise_mr_prefetch(pd, advice, flags,
1318 					 sg_list, num_sge);
1319 }
1320 
mlx5_ib_reg_dm_mr(struct ib_pd * pd,struct ib_dm * dm,struct ib_dm_mr_attr * attr,struct uverbs_attr_bundle * attrs)1321 struct ib_mr *mlx5_ib_reg_dm_mr(struct ib_pd *pd, struct ib_dm *dm,
1322 				struct ib_dm_mr_attr *attr,
1323 				struct uverbs_attr_bundle *attrs)
1324 {
1325 	struct mlx5_ib_dm *mdm = to_mdm(dm);
1326 	struct mlx5_core_dev *dev = to_mdev(dm->device)->mdev;
1327 	u64 start_addr = mdm->dev_addr + attr->offset;
1328 	int mode;
1329 
1330 	switch (mdm->type) {
1331 	case MLX5_IB_UAPI_DM_TYPE_MEMIC:
1332 		if (attr->access_flags & ~MLX5_IB_DM_MEMIC_ALLOWED_ACCESS)
1333 			return ERR_PTR(-EINVAL);
1334 
1335 		mode = MLX5_MKC_ACCESS_MODE_MEMIC;
1336 		start_addr -= pci_resource_start(dev->pdev, 0);
1337 		break;
1338 	case MLX5_IB_UAPI_DM_TYPE_STEERING_SW_ICM:
1339 	case MLX5_IB_UAPI_DM_TYPE_HEADER_MODIFY_SW_ICM:
1340 		if (attr->access_flags & ~MLX5_IB_DM_SW_ICM_ALLOWED_ACCESS)
1341 			return ERR_PTR(-EINVAL);
1342 
1343 		mode = MLX5_MKC_ACCESS_MODE_SW_ICM;
1344 		break;
1345 	default:
1346 		return ERR_PTR(-EINVAL);
1347 	}
1348 
1349 	return mlx5_ib_get_dm_mr(pd, start_addr, attr->length,
1350 				 attr->access_flags, mode);
1351 }
1352 
mlx5_ib_reg_user_mr(struct ib_pd * pd,u64 start,u64 length,u64 virt_addr,int access_flags,struct ib_udata * udata)1353 struct ib_mr *mlx5_ib_reg_user_mr(struct ib_pd *pd, u64 start, u64 length,
1354 				  u64 virt_addr, int access_flags,
1355 				  struct ib_udata *udata)
1356 {
1357 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
1358 	struct mlx5_ib_mr *mr = NULL;
1359 	bool xlt_with_umr;
1360 	struct ib_umem *umem;
1361 	int page_shift;
1362 	int npages;
1363 	int ncont;
1364 	int order;
1365 	int err;
1366 
1367 	if (!IS_ENABLED(CONFIG_INFINIBAND_USER_MEM))
1368 		return ERR_PTR(-EOPNOTSUPP);
1369 
1370 	mlx5_ib_dbg(dev, "start 0x%llx, virt_addr 0x%llx, length 0x%llx, access_flags 0x%x\n",
1371 		    start, virt_addr, length, access_flags);
1372 
1373 	xlt_with_umr = mlx5_ib_can_load_pas_with_umr(dev, length);
1374 	/* ODP requires xlt update via umr to work. */
1375 	if (!xlt_with_umr && (access_flags & IB_ACCESS_ON_DEMAND))
1376 		return ERR_PTR(-EINVAL);
1377 
1378 	if (IS_ENABLED(CONFIG_INFINIBAND_ON_DEMAND_PAGING) && !start &&
1379 	    length == U64_MAX) {
1380 		if (virt_addr != start)
1381 			return ERR_PTR(-EINVAL);
1382 		if (!(access_flags & IB_ACCESS_ON_DEMAND) ||
1383 		    !(dev->odp_caps.general_caps & IB_ODP_SUPPORT_IMPLICIT))
1384 			return ERR_PTR(-EINVAL);
1385 
1386 		mr = mlx5_ib_alloc_implicit_mr(to_mpd(pd), udata, access_flags);
1387 		if (IS_ERR(mr))
1388 			return ERR_CAST(mr);
1389 		return &mr->ibmr;
1390 	}
1391 
1392 	err = mr_umem_get(dev, start, length, access_flags, &umem,
1393 			  &npages, &page_shift, &ncont, &order);
1394 
1395 	if (err < 0)
1396 		return ERR_PTR(err);
1397 
1398 	if (xlt_with_umr) {
1399 		mr = alloc_mr_from_cache(pd, umem, virt_addr, length, ncont,
1400 					 page_shift, order, access_flags);
1401 		if (IS_ERR(mr))
1402 			mr = NULL;
1403 	}
1404 
1405 	if (!mr) {
1406 		mutex_lock(&dev->slow_path_mutex);
1407 		mr = reg_create(NULL, pd, virt_addr, length, umem, ncont,
1408 				page_shift, access_flags, !xlt_with_umr);
1409 		mutex_unlock(&dev->slow_path_mutex);
1410 	}
1411 
1412 	if (IS_ERR(mr)) {
1413 		err = PTR_ERR(mr);
1414 		goto error;
1415 	}
1416 
1417 	mlx5_ib_dbg(dev, "mkey 0x%x\n", mr->mmkey.key);
1418 
1419 	mr->umem = umem;
1420 	mr->npages = npages;
1421 	atomic_add(mr->npages, &dev->mdev->priv.reg_pages);
1422 	set_mr_fields(dev, mr, length, access_flags);
1423 
1424 	if (xlt_with_umr && !(access_flags & IB_ACCESS_ON_DEMAND)) {
1425 		/*
1426 		 * If the MR was created with reg_create then it will be
1427 		 * configured properly but left disabled. It is safe to go ahead
1428 		 * and configure it again via UMR while enabling it.
1429 		 */
1430 		int update_xlt_flags = MLX5_IB_UPD_XLT_ENABLE;
1431 
1432 		err = mlx5_ib_update_xlt(mr, 0, ncont, page_shift,
1433 					 update_xlt_flags);
1434 		if (err) {
1435 			dereg_mr(dev, mr);
1436 			return ERR_PTR(err);
1437 		}
1438 	}
1439 
1440 	if (is_odp_mr(mr)) {
1441 		to_ib_umem_odp(mr->umem)->private = mr;
1442 		init_waitqueue_head(&mr->q_deferred_work);
1443 		atomic_set(&mr->num_deferred_work, 0);
1444 		err = xa_err(xa_store(&dev->odp_mkeys,
1445 				      mlx5_base_mkey(mr->mmkey.key), &mr->mmkey,
1446 				      GFP_KERNEL));
1447 		if (err) {
1448 			dereg_mr(dev, mr);
1449 			return ERR_PTR(err);
1450 		}
1451 
1452 		err = mlx5_ib_init_odp_mr(mr, xlt_with_umr);
1453 		if (err) {
1454 			dereg_mr(dev, mr);
1455 			return ERR_PTR(err);
1456 		}
1457 	}
1458 
1459 	return &mr->ibmr;
1460 error:
1461 	ib_umem_release(umem);
1462 	return ERR_PTR(err);
1463 }
1464 
1465 /**
1466  * mlx5_mr_cache_invalidate - Fence all DMA on the MR
1467  * @mr: The MR to fence
1468  *
1469  * Upon return the NIC will not be doing any DMA to the pages under the MR,
1470  * and any DMA inprogress will be completed. Failure of this function
1471  * indicates the HW has failed catastrophically.
1472  */
mlx5_mr_cache_invalidate(struct mlx5_ib_mr * mr)1473 int mlx5_mr_cache_invalidate(struct mlx5_ib_mr *mr)
1474 {
1475 	struct mlx5_umr_wr umrwr = {};
1476 
1477 	if (mr->dev->mdev->state == MLX5_DEVICE_STATE_INTERNAL_ERROR)
1478 		return 0;
1479 
1480 	umrwr.wr.send_flags = MLX5_IB_SEND_UMR_DISABLE_MR |
1481 			      MLX5_IB_SEND_UMR_UPDATE_PD_ACCESS;
1482 	umrwr.wr.opcode = MLX5_IB_WR_UMR;
1483 	umrwr.pd = mr->dev->umrc.pd;
1484 	umrwr.mkey = mr->mmkey.key;
1485 	umrwr.ignore_free_state = 1;
1486 
1487 	return mlx5_ib_post_send_wait(mr->dev, &umrwr);
1488 }
1489 
rereg_umr(struct ib_pd * pd,struct mlx5_ib_mr * mr,int access_flags,int flags)1490 static int rereg_umr(struct ib_pd *pd, struct mlx5_ib_mr *mr,
1491 		     int access_flags, int flags)
1492 {
1493 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
1494 	struct mlx5_umr_wr umrwr = {};
1495 	int err;
1496 
1497 	umrwr.wr.send_flags = MLX5_IB_SEND_UMR_FAIL_IF_FREE;
1498 
1499 	umrwr.wr.opcode = MLX5_IB_WR_UMR;
1500 	umrwr.mkey = mr->mmkey.key;
1501 
1502 	if (flags & IB_MR_REREG_PD || flags & IB_MR_REREG_ACCESS) {
1503 		umrwr.pd = pd;
1504 		umrwr.access_flags = access_flags;
1505 		umrwr.wr.send_flags |= MLX5_IB_SEND_UMR_UPDATE_PD_ACCESS;
1506 	}
1507 
1508 	err = mlx5_ib_post_send_wait(dev, &umrwr);
1509 
1510 	return err;
1511 }
1512 
mlx5_ib_rereg_user_mr(struct ib_mr * ib_mr,int flags,u64 start,u64 length,u64 virt_addr,int new_access_flags,struct ib_pd * new_pd,struct ib_udata * udata)1513 int mlx5_ib_rereg_user_mr(struct ib_mr *ib_mr, int flags, u64 start,
1514 			  u64 length, u64 virt_addr, int new_access_flags,
1515 			  struct ib_pd *new_pd, struct ib_udata *udata)
1516 {
1517 	struct mlx5_ib_dev *dev = to_mdev(ib_mr->device);
1518 	struct mlx5_ib_mr *mr = to_mmr(ib_mr);
1519 	struct ib_pd *pd = (flags & IB_MR_REREG_PD) ? new_pd : ib_mr->pd;
1520 	int access_flags = flags & IB_MR_REREG_ACCESS ?
1521 			    new_access_flags :
1522 			    mr->access_flags;
1523 	int page_shift = 0;
1524 	int upd_flags = 0;
1525 	int npages = 0;
1526 	int ncont = 0;
1527 	int order = 0;
1528 	u64 addr, len;
1529 	int err;
1530 
1531 	mlx5_ib_dbg(dev, "start 0x%llx, virt_addr 0x%llx, length 0x%llx, access_flags 0x%x\n",
1532 		    start, virt_addr, length, access_flags);
1533 
1534 	if (!mr->umem)
1535 		return -EINVAL;
1536 
1537 	if (is_odp_mr(mr))
1538 		return -EOPNOTSUPP;
1539 
1540 	if (flags & IB_MR_REREG_TRANS) {
1541 		addr = virt_addr;
1542 		len = length;
1543 	} else {
1544 		addr = mr->umem->address;
1545 		len = mr->umem->length;
1546 	}
1547 
1548 	if (flags != IB_MR_REREG_PD) {
1549 		/*
1550 		 * Replace umem. This needs to be done whether or not UMR is
1551 		 * used.
1552 		 */
1553 		flags |= IB_MR_REREG_TRANS;
1554 		atomic_sub(mr->npages, &dev->mdev->priv.reg_pages);
1555 		mr->npages = 0;
1556 		ib_umem_release(mr->umem);
1557 		mr->umem = NULL;
1558 
1559 		err = mr_umem_get(dev, addr, len, access_flags, &mr->umem,
1560 				  &npages, &page_shift, &ncont, &order);
1561 		if (err)
1562 			goto err;
1563 		mr->npages = ncont;
1564 		atomic_add(mr->npages, &dev->mdev->priv.reg_pages);
1565 	}
1566 
1567 	if (!mlx5_ib_can_reconfig_with_umr(dev, mr->access_flags,
1568 					   access_flags) ||
1569 	    !mlx5_ib_can_load_pas_with_umr(dev, len) ||
1570 	    (flags & IB_MR_REREG_TRANS &&
1571 	     !mlx5_ib_pas_fits_in_mr(mr, addr, len))) {
1572 		/*
1573 		 * UMR can't be used - MKey needs to be replaced.
1574 		 */
1575 		if (mr->cache_ent)
1576 			detach_mr_from_cache(mr);
1577 		err = destroy_mkey(dev, mr);
1578 		if (err)
1579 			goto err;
1580 
1581 		mr = reg_create(ib_mr, pd, addr, len, mr->umem, ncont,
1582 				page_shift, access_flags, true);
1583 
1584 		if (IS_ERR(mr)) {
1585 			err = PTR_ERR(mr);
1586 			mr = to_mmr(ib_mr);
1587 			goto err;
1588 		}
1589 	} else {
1590 		/*
1591 		 * Send a UMR WQE
1592 		 */
1593 		mr->ibmr.pd = pd;
1594 		mr->access_flags = access_flags;
1595 		mr->mmkey.iova = addr;
1596 		mr->mmkey.size = len;
1597 		mr->mmkey.pd = to_mpd(pd)->pdn;
1598 
1599 		if (flags & IB_MR_REREG_TRANS) {
1600 			upd_flags = MLX5_IB_UPD_XLT_ADDR;
1601 			if (flags & IB_MR_REREG_PD)
1602 				upd_flags |= MLX5_IB_UPD_XLT_PD;
1603 			if (flags & IB_MR_REREG_ACCESS)
1604 				upd_flags |= MLX5_IB_UPD_XLT_ACCESS;
1605 			err = mlx5_ib_update_xlt(mr, 0, npages, page_shift,
1606 						 upd_flags);
1607 		} else {
1608 			err = rereg_umr(pd, mr, access_flags, flags);
1609 		}
1610 
1611 		if (err)
1612 			goto err;
1613 	}
1614 
1615 	set_mr_fields(dev, mr, len, access_flags);
1616 
1617 	return 0;
1618 
1619 err:
1620 	ib_umem_release(mr->umem);
1621 	mr->umem = NULL;
1622 
1623 	clean_mr(dev, mr);
1624 	return err;
1625 }
1626 
1627 static int
mlx5_alloc_priv_descs(struct ib_device * device,struct mlx5_ib_mr * mr,int ndescs,int desc_size)1628 mlx5_alloc_priv_descs(struct ib_device *device,
1629 		      struct mlx5_ib_mr *mr,
1630 		      int ndescs,
1631 		      int desc_size)
1632 {
1633 	int size = ndescs * desc_size;
1634 	int add_size;
1635 	int ret;
1636 
1637 	add_size = max_t(int, MLX5_UMR_ALIGN - ARCH_KMALLOC_MINALIGN, 0);
1638 
1639 	mr->descs_alloc = kzalloc(size + add_size, GFP_KERNEL);
1640 	if (!mr->descs_alloc)
1641 		return -ENOMEM;
1642 
1643 	mr->descs = PTR_ALIGN(mr->descs_alloc, MLX5_UMR_ALIGN);
1644 
1645 	mr->desc_map = dma_map_single(device->dev.parent, mr->descs,
1646 				      size, DMA_TO_DEVICE);
1647 	if (dma_mapping_error(device->dev.parent, mr->desc_map)) {
1648 		ret = -ENOMEM;
1649 		goto err;
1650 	}
1651 
1652 	return 0;
1653 err:
1654 	kfree(mr->descs_alloc);
1655 
1656 	return ret;
1657 }
1658 
1659 static void
mlx5_free_priv_descs(struct mlx5_ib_mr * mr)1660 mlx5_free_priv_descs(struct mlx5_ib_mr *mr)
1661 {
1662 	if (mr->descs) {
1663 		struct ib_device *device = mr->ibmr.device;
1664 		int size = mr->max_descs * mr->desc_size;
1665 
1666 		dma_unmap_single(device->dev.parent, mr->desc_map,
1667 				 size, DMA_TO_DEVICE);
1668 		kfree(mr->descs_alloc);
1669 		mr->descs = NULL;
1670 	}
1671 }
1672 
clean_mr(struct mlx5_ib_dev * dev,struct mlx5_ib_mr * mr)1673 static void clean_mr(struct mlx5_ib_dev *dev, struct mlx5_ib_mr *mr)
1674 {
1675 	if (mr->sig) {
1676 		if (mlx5_core_destroy_psv(dev->mdev,
1677 					  mr->sig->psv_memory.psv_idx))
1678 			mlx5_ib_warn(dev, "failed to destroy mem psv %d\n",
1679 				     mr->sig->psv_memory.psv_idx);
1680 		if (mlx5_core_destroy_psv(dev->mdev,
1681 					  mr->sig->psv_wire.psv_idx))
1682 			mlx5_ib_warn(dev, "failed to destroy wire psv %d\n",
1683 				     mr->sig->psv_wire.psv_idx);
1684 		xa_erase(&dev->sig_mrs, mlx5_base_mkey(mr->mmkey.key));
1685 		kfree(mr->sig);
1686 		mr->sig = NULL;
1687 	}
1688 
1689 	if (!mr->cache_ent) {
1690 		destroy_mkey(dev, mr);
1691 		mlx5_free_priv_descs(mr);
1692 	}
1693 }
1694 
dereg_mr(struct mlx5_ib_dev * dev,struct mlx5_ib_mr * mr)1695 static void dereg_mr(struct mlx5_ib_dev *dev, struct mlx5_ib_mr *mr)
1696 {
1697 	int npages = mr->npages;
1698 	struct ib_umem *umem = mr->umem;
1699 
1700 	/* Stop all DMA */
1701 	if (is_odp_mr(mr))
1702 		mlx5_ib_fence_odp_mr(mr);
1703 	else
1704 		clean_mr(dev, mr);
1705 
1706 	if (mr->cache_ent)
1707 		mlx5_mr_cache_free(dev, mr);
1708 	else
1709 		kfree(mr);
1710 
1711 	ib_umem_release(umem);
1712 	atomic_sub(npages, &dev->mdev->priv.reg_pages);
1713 
1714 }
1715 
mlx5_ib_dereg_mr(struct ib_mr * ibmr,struct ib_udata * udata)1716 int mlx5_ib_dereg_mr(struct ib_mr *ibmr, struct ib_udata *udata)
1717 {
1718 	struct mlx5_ib_mr *mmr = to_mmr(ibmr);
1719 
1720 	if (ibmr->type == IB_MR_TYPE_INTEGRITY) {
1721 		dereg_mr(to_mdev(mmr->mtt_mr->ibmr.device), mmr->mtt_mr);
1722 		dereg_mr(to_mdev(mmr->klm_mr->ibmr.device), mmr->klm_mr);
1723 	}
1724 
1725 	if (is_odp_mr(mmr) && to_ib_umem_odp(mmr->umem)->is_implicit_odp) {
1726 		mlx5_ib_free_implicit_mr(mmr);
1727 		return 0;
1728 	}
1729 
1730 	dereg_mr(to_mdev(ibmr->device), mmr);
1731 
1732 	return 0;
1733 }
1734 
mlx5_set_umr_free_mkey(struct ib_pd * pd,u32 * in,int ndescs,int access_mode,int page_shift)1735 static void mlx5_set_umr_free_mkey(struct ib_pd *pd, u32 *in, int ndescs,
1736 				   int access_mode, int page_shift)
1737 {
1738 	void *mkc;
1739 
1740 	mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
1741 
1742 	/* This is only used from the kernel, so setting the PD is OK. */
1743 	set_mkc_access_pd_addr_fields(mkc, 0, 0, pd);
1744 	MLX5_SET(mkc, mkc, free, 1);
1745 	MLX5_SET(mkc, mkc, translations_octword_size, ndescs);
1746 	MLX5_SET(mkc, mkc, access_mode_1_0, access_mode & 0x3);
1747 	MLX5_SET(mkc, mkc, access_mode_4_2, (access_mode >> 2) & 0x7);
1748 	MLX5_SET(mkc, mkc, umr_en, 1);
1749 	MLX5_SET(mkc, mkc, log_page_size, page_shift);
1750 }
1751 
_mlx5_alloc_mkey_descs(struct ib_pd * pd,struct mlx5_ib_mr * mr,int ndescs,int desc_size,int page_shift,int access_mode,u32 * in,int inlen)1752 static int _mlx5_alloc_mkey_descs(struct ib_pd *pd, struct mlx5_ib_mr *mr,
1753 				  int ndescs, int desc_size, int page_shift,
1754 				  int access_mode, u32 *in, int inlen)
1755 {
1756 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
1757 	int err;
1758 
1759 	mr->access_mode = access_mode;
1760 	mr->desc_size = desc_size;
1761 	mr->max_descs = ndescs;
1762 
1763 	err = mlx5_alloc_priv_descs(pd->device, mr, ndescs, desc_size);
1764 	if (err)
1765 		return err;
1766 
1767 	mlx5_set_umr_free_mkey(pd, in, ndescs, access_mode, page_shift);
1768 
1769 	err = mlx5_ib_create_mkey(dev, &mr->mmkey, in, inlen);
1770 	if (err)
1771 		goto err_free_descs;
1772 
1773 	mr->mmkey.type = MLX5_MKEY_MR;
1774 	mr->ibmr.lkey = mr->mmkey.key;
1775 	mr->ibmr.rkey = mr->mmkey.key;
1776 
1777 	return 0;
1778 
1779 err_free_descs:
1780 	mlx5_free_priv_descs(mr);
1781 	return err;
1782 }
1783 
mlx5_ib_alloc_pi_mr(struct ib_pd * pd,u32 max_num_sg,u32 max_num_meta_sg,int desc_size,int access_mode)1784 static struct mlx5_ib_mr *mlx5_ib_alloc_pi_mr(struct ib_pd *pd,
1785 				u32 max_num_sg, u32 max_num_meta_sg,
1786 				int desc_size, int access_mode)
1787 {
1788 	int inlen = MLX5_ST_SZ_BYTES(create_mkey_in);
1789 	int ndescs = ALIGN(max_num_sg + max_num_meta_sg, 4);
1790 	int page_shift = 0;
1791 	struct mlx5_ib_mr *mr;
1792 	u32 *in;
1793 	int err;
1794 
1795 	mr = kzalloc(sizeof(*mr), GFP_KERNEL);
1796 	if (!mr)
1797 		return ERR_PTR(-ENOMEM);
1798 
1799 	mr->ibmr.pd = pd;
1800 	mr->ibmr.device = pd->device;
1801 
1802 	in = kzalloc(inlen, GFP_KERNEL);
1803 	if (!in) {
1804 		err = -ENOMEM;
1805 		goto err_free;
1806 	}
1807 
1808 	if (access_mode == MLX5_MKC_ACCESS_MODE_MTT)
1809 		page_shift = PAGE_SHIFT;
1810 
1811 	err = _mlx5_alloc_mkey_descs(pd, mr, ndescs, desc_size, page_shift,
1812 				     access_mode, in, inlen);
1813 	if (err)
1814 		goto err_free_in;
1815 
1816 	mr->umem = NULL;
1817 	kfree(in);
1818 
1819 	return mr;
1820 
1821 err_free_in:
1822 	kfree(in);
1823 err_free:
1824 	kfree(mr);
1825 	return ERR_PTR(err);
1826 }
1827 
mlx5_alloc_mem_reg_descs(struct ib_pd * pd,struct mlx5_ib_mr * mr,int ndescs,u32 * in,int inlen)1828 static int mlx5_alloc_mem_reg_descs(struct ib_pd *pd, struct mlx5_ib_mr *mr,
1829 				    int ndescs, u32 *in, int inlen)
1830 {
1831 	return _mlx5_alloc_mkey_descs(pd, mr, ndescs, sizeof(struct mlx5_mtt),
1832 				      PAGE_SHIFT, MLX5_MKC_ACCESS_MODE_MTT, in,
1833 				      inlen);
1834 }
1835 
mlx5_alloc_sg_gaps_descs(struct ib_pd * pd,struct mlx5_ib_mr * mr,int ndescs,u32 * in,int inlen)1836 static int mlx5_alloc_sg_gaps_descs(struct ib_pd *pd, struct mlx5_ib_mr *mr,
1837 				    int ndescs, u32 *in, int inlen)
1838 {
1839 	return _mlx5_alloc_mkey_descs(pd, mr, ndescs, sizeof(struct mlx5_klm),
1840 				      0, MLX5_MKC_ACCESS_MODE_KLMS, in, inlen);
1841 }
1842 
mlx5_alloc_integrity_descs(struct ib_pd * pd,struct mlx5_ib_mr * mr,int max_num_sg,int max_num_meta_sg,u32 * in,int inlen)1843 static int mlx5_alloc_integrity_descs(struct ib_pd *pd, struct mlx5_ib_mr *mr,
1844 				      int max_num_sg, int max_num_meta_sg,
1845 				      u32 *in, int inlen)
1846 {
1847 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
1848 	u32 psv_index[2];
1849 	void *mkc;
1850 	int err;
1851 
1852 	mr->sig = kzalloc(sizeof(*mr->sig), GFP_KERNEL);
1853 	if (!mr->sig)
1854 		return -ENOMEM;
1855 
1856 	/* create mem & wire PSVs */
1857 	err = mlx5_core_create_psv(dev->mdev, to_mpd(pd)->pdn, 2, psv_index);
1858 	if (err)
1859 		goto err_free_sig;
1860 
1861 	mr->sig->psv_memory.psv_idx = psv_index[0];
1862 	mr->sig->psv_wire.psv_idx = psv_index[1];
1863 
1864 	mr->sig->sig_status_checked = true;
1865 	mr->sig->sig_err_exists = false;
1866 	/* Next UMR, Arm SIGERR */
1867 	++mr->sig->sigerr_count;
1868 	mr->klm_mr = mlx5_ib_alloc_pi_mr(pd, max_num_sg, max_num_meta_sg,
1869 					 sizeof(struct mlx5_klm),
1870 					 MLX5_MKC_ACCESS_MODE_KLMS);
1871 	if (IS_ERR(mr->klm_mr)) {
1872 		err = PTR_ERR(mr->klm_mr);
1873 		goto err_destroy_psv;
1874 	}
1875 	mr->mtt_mr = mlx5_ib_alloc_pi_mr(pd, max_num_sg, max_num_meta_sg,
1876 					 sizeof(struct mlx5_mtt),
1877 					 MLX5_MKC_ACCESS_MODE_MTT);
1878 	if (IS_ERR(mr->mtt_mr)) {
1879 		err = PTR_ERR(mr->mtt_mr);
1880 		goto err_free_klm_mr;
1881 	}
1882 
1883 	/* Set bsf descriptors for mkey */
1884 	mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
1885 	MLX5_SET(mkc, mkc, bsf_en, 1);
1886 	MLX5_SET(mkc, mkc, bsf_octword_size, MLX5_MKEY_BSF_OCTO_SIZE);
1887 
1888 	err = _mlx5_alloc_mkey_descs(pd, mr, 4, sizeof(struct mlx5_klm), 0,
1889 				     MLX5_MKC_ACCESS_MODE_KLMS, in, inlen);
1890 	if (err)
1891 		goto err_free_mtt_mr;
1892 
1893 	err = xa_err(xa_store(&dev->sig_mrs, mlx5_base_mkey(mr->mmkey.key),
1894 			      mr->sig, GFP_KERNEL));
1895 	if (err)
1896 		goto err_free_descs;
1897 	return 0;
1898 
1899 err_free_descs:
1900 	destroy_mkey(dev, mr);
1901 	mlx5_free_priv_descs(mr);
1902 err_free_mtt_mr:
1903 	dereg_mr(to_mdev(mr->mtt_mr->ibmr.device), mr->mtt_mr);
1904 	mr->mtt_mr = NULL;
1905 err_free_klm_mr:
1906 	dereg_mr(to_mdev(mr->klm_mr->ibmr.device), mr->klm_mr);
1907 	mr->klm_mr = NULL;
1908 err_destroy_psv:
1909 	if (mlx5_core_destroy_psv(dev->mdev, mr->sig->psv_memory.psv_idx))
1910 		mlx5_ib_warn(dev, "failed to destroy mem psv %d\n",
1911 			     mr->sig->psv_memory.psv_idx);
1912 	if (mlx5_core_destroy_psv(dev->mdev, mr->sig->psv_wire.psv_idx))
1913 		mlx5_ib_warn(dev, "failed to destroy wire psv %d\n",
1914 			     mr->sig->psv_wire.psv_idx);
1915 err_free_sig:
1916 	kfree(mr->sig);
1917 
1918 	return err;
1919 }
1920 
__mlx5_ib_alloc_mr(struct ib_pd * pd,enum ib_mr_type mr_type,u32 max_num_sg,u32 max_num_meta_sg)1921 static struct ib_mr *__mlx5_ib_alloc_mr(struct ib_pd *pd,
1922 					enum ib_mr_type mr_type, u32 max_num_sg,
1923 					u32 max_num_meta_sg)
1924 {
1925 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
1926 	int inlen = MLX5_ST_SZ_BYTES(create_mkey_in);
1927 	int ndescs = ALIGN(max_num_sg, 4);
1928 	struct mlx5_ib_mr *mr;
1929 	u32 *in;
1930 	int err;
1931 
1932 	mr = kzalloc(sizeof(*mr), GFP_KERNEL);
1933 	if (!mr)
1934 		return ERR_PTR(-ENOMEM);
1935 
1936 	in = kzalloc(inlen, GFP_KERNEL);
1937 	if (!in) {
1938 		err = -ENOMEM;
1939 		goto err_free;
1940 	}
1941 
1942 	mr->ibmr.device = pd->device;
1943 	mr->umem = NULL;
1944 
1945 	switch (mr_type) {
1946 	case IB_MR_TYPE_MEM_REG:
1947 		err = mlx5_alloc_mem_reg_descs(pd, mr, ndescs, in, inlen);
1948 		break;
1949 	case IB_MR_TYPE_SG_GAPS:
1950 		err = mlx5_alloc_sg_gaps_descs(pd, mr, ndescs, in, inlen);
1951 		break;
1952 	case IB_MR_TYPE_INTEGRITY:
1953 		err = mlx5_alloc_integrity_descs(pd, mr, max_num_sg,
1954 						 max_num_meta_sg, in, inlen);
1955 		break;
1956 	default:
1957 		mlx5_ib_warn(dev, "Invalid mr type %d\n", mr_type);
1958 		err = -EINVAL;
1959 	}
1960 
1961 	if (err)
1962 		goto err_free_in;
1963 
1964 	kfree(in);
1965 
1966 	return &mr->ibmr;
1967 
1968 err_free_in:
1969 	kfree(in);
1970 err_free:
1971 	kfree(mr);
1972 	return ERR_PTR(err);
1973 }
1974 
mlx5_ib_alloc_mr(struct ib_pd * pd,enum ib_mr_type mr_type,u32 max_num_sg)1975 struct ib_mr *mlx5_ib_alloc_mr(struct ib_pd *pd, enum ib_mr_type mr_type,
1976 			       u32 max_num_sg)
1977 {
1978 	return __mlx5_ib_alloc_mr(pd, mr_type, max_num_sg, 0);
1979 }
1980 
mlx5_ib_alloc_mr_integrity(struct ib_pd * pd,u32 max_num_sg,u32 max_num_meta_sg)1981 struct ib_mr *mlx5_ib_alloc_mr_integrity(struct ib_pd *pd,
1982 					 u32 max_num_sg, u32 max_num_meta_sg)
1983 {
1984 	return __mlx5_ib_alloc_mr(pd, IB_MR_TYPE_INTEGRITY, max_num_sg,
1985 				  max_num_meta_sg);
1986 }
1987 
mlx5_ib_alloc_mw(struct ib_mw * ibmw,struct ib_udata * udata)1988 int mlx5_ib_alloc_mw(struct ib_mw *ibmw, struct ib_udata *udata)
1989 {
1990 	struct mlx5_ib_dev *dev = to_mdev(ibmw->device);
1991 	int inlen = MLX5_ST_SZ_BYTES(create_mkey_in);
1992 	struct mlx5_ib_mw *mw = to_mmw(ibmw);
1993 	u32 *in = NULL;
1994 	void *mkc;
1995 	int ndescs;
1996 	int err;
1997 	struct mlx5_ib_alloc_mw req = {};
1998 	struct {
1999 		__u32	comp_mask;
2000 		__u32	response_length;
2001 	} resp = {};
2002 
2003 	err = ib_copy_from_udata(&req, udata, min(udata->inlen, sizeof(req)));
2004 	if (err)
2005 		return err;
2006 
2007 	if (req.comp_mask || req.reserved1 || req.reserved2)
2008 		return -EOPNOTSUPP;
2009 
2010 	if (udata->inlen > sizeof(req) &&
2011 	    !ib_is_udata_cleared(udata, sizeof(req),
2012 				 udata->inlen - sizeof(req)))
2013 		return -EOPNOTSUPP;
2014 
2015 	ndescs = req.num_klms ? roundup(req.num_klms, 4) : roundup(1, 4);
2016 
2017 	in = kzalloc(inlen, GFP_KERNEL);
2018 	if (!in) {
2019 		err = -ENOMEM;
2020 		goto free;
2021 	}
2022 
2023 	mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
2024 
2025 	MLX5_SET(mkc, mkc, free, 1);
2026 	MLX5_SET(mkc, mkc, translations_octword_size, ndescs);
2027 	MLX5_SET(mkc, mkc, pd, to_mpd(ibmw->pd)->pdn);
2028 	MLX5_SET(mkc, mkc, umr_en, 1);
2029 	MLX5_SET(mkc, mkc, lr, 1);
2030 	MLX5_SET(mkc, mkc, access_mode_1_0, MLX5_MKC_ACCESS_MODE_KLMS);
2031 	MLX5_SET(mkc, mkc, en_rinval, !!((ibmw->type == IB_MW_TYPE_2)));
2032 	MLX5_SET(mkc, mkc, qpn, 0xffffff);
2033 
2034 	err = mlx5_ib_create_mkey(dev, &mw->mmkey, in, inlen);
2035 	if (err)
2036 		goto free;
2037 
2038 	mw->mmkey.type = MLX5_MKEY_MW;
2039 	ibmw->rkey = mw->mmkey.key;
2040 	mw->ndescs = ndescs;
2041 
2042 	resp.response_length =
2043 		min(offsetofend(typeof(resp), response_length), udata->outlen);
2044 	if (resp.response_length) {
2045 		err = ib_copy_to_udata(udata, &resp, resp.response_length);
2046 		if (err)
2047 			goto free_mkey;
2048 	}
2049 
2050 	if (IS_ENABLED(CONFIG_INFINIBAND_ON_DEMAND_PAGING)) {
2051 		err = xa_err(xa_store(&dev->odp_mkeys,
2052 				      mlx5_base_mkey(mw->mmkey.key), &mw->mmkey,
2053 				      GFP_KERNEL));
2054 		if (err)
2055 			goto free_mkey;
2056 	}
2057 
2058 	kfree(in);
2059 	return 0;
2060 
2061 free_mkey:
2062 	mlx5_core_destroy_mkey(dev->mdev, &mw->mmkey);
2063 free:
2064 	kfree(in);
2065 	return err;
2066 }
2067 
mlx5_ib_dealloc_mw(struct ib_mw * mw)2068 int mlx5_ib_dealloc_mw(struct ib_mw *mw)
2069 {
2070 	struct mlx5_ib_dev *dev = to_mdev(mw->device);
2071 	struct mlx5_ib_mw *mmw = to_mmw(mw);
2072 
2073 	if (IS_ENABLED(CONFIG_INFINIBAND_ON_DEMAND_PAGING)) {
2074 		xa_erase(&dev->odp_mkeys, mlx5_base_mkey(mmw->mmkey.key));
2075 		/*
2076 		 * pagefault_single_data_segment() may be accessing mmw under
2077 		 * SRCU if the user bound an ODP MR to this MW.
2078 		 */
2079 		synchronize_srcu(&dev->odp_srcu);
2080 	}
2081 
2082 	return mlx5_core_destroy_mkey(dev->mdev, &mmw->mmkey);
2083 }
2084 
mlx5_ib_check_mr_status(struct ib_mr * ibmr,u32 check_mask,struct ib_mr_status * mr_status)2085 int mlx5_ib_check_mr_status(struct ib_mr *ibmr, u32 check_mask,
2086 			    struct ib_mr_status *mr_status)
2087 {
2088 	struct mlx5_ib_mr *mmr = to_mmr(ibmr);
2089 	int ret = 0;
2090 
2091 	if (check_mask & ~IB_MR_CHECK_SIG_STATUS) {
2092 		pr_err("Invalid status check mask\n");
2093 		ret = -EINVAL;
2094 		goto done;
2095 	}
2096 
2097 	mr_status->fail_status = 0;
2098 	if (check_mask & IB_MR_CHECK_SIG_STATUS) {
2099 		if (!mmr->sig) {
2100 			ret = -EINVAL;
2101 			pr_err("signature status check requested on a non-signature enabled MR\n");
2102 			goto done;
2103 		}
2104 
2105 		mmr->sig->sig_status_checked = true;
2106 		if (!mmr->sig->sig_err_exists)
2107 			goto done;
2108 
2109 		if (ibmr->lkey == mmr->sig->err_item.key)
2110 			memcpy(&mr_status->sig_err, &mmr->sig->err_item,
2111 			       sizeof(mr_status->sig_err));
2112 		else {
2113 			mr_status->sig_err.err_type = IB_SIG_BAD_GUARD;
2114 			mr_status->sig_err.sig_err_offset = 0;
2115 			mr_status->sig_err.key = mmr->sig->err_item.key;
2116 		}
2117 
2118 		mmr->sig->sig_err_exists = false;
2119 		mr_status->fail_status |= IB_MR_CHECK_SIG_STATUS;
2120 	}
2121 
2122 done:
2123 	return ret;
2124 }
2125 
2126 static int
mlx5_ib_map_pa_mr_sg_pi(struct ib_mr * ibmr,struct scatterlist * data_sg,int data_sg_nents,unsigned int * data_sg_offset,struct scatterlist * meta_sg,int meta_sg_nents,unsigned int * meta_sg_offset)2127 mlx5_ib_map_pa_mr_sg_pi(struct ib_mr *ibmr, struct scatterlist *data_sg,
2128 			int data_sg_nents, unsigned int *data_sg_offset,
2129 			struct scatterlist *meta_sg, int meta_sg_nents,
2130 			unsigned int *meta_sg_offset)
2131 {
2132 	struct mlx5_ib_mr *mr = to_mmr(ibmr);
2133 	unsigned int sg_offset = 0;
2134 	int n = 0;
2135 
2136 	mr->meta_length = 0;
2137 	if (data_sg_nents == 1) {
2138 		n++;
2139 		mr->ndescs = 1;
2140 		if (data_sg_offset)
2141 			sg_offset = *data_sg_offset;
2142 		mr->data_length = sg_dma_len(data_sg) - sg_offset;
2143 		mr->data_iova = sg_dma_address(data_sg) + sg_offset;
2144 		if (meta_sg_nents == 1) {
2145 			n++;
2146 			mr->meta_ndescs = 1;
2147 			if (meta_sg_offset)
2148 				sg_offset = *meta_sg_offset;
2149 			else
2150 				sg_offset = 0;
2151 			mr->meta_length = sg_dma_len(meta_sg) - sg_offset;
2152 			mr->pi_iova = sg_dma_address(meta_sg) + sg_offset;
2153 		}
2154 		ibmr->length = mr->data_length + mr->meta_length;
2155 	}
2156 
2157 	return n;
2158 }
2159 
2160 static int
mlx5_ib_sg_to_klms(struct mlx5_ib_mr * mr,struct scatterlist * sgl,unsigned short sg_nents,unsigned int * sg_offset_p,struct scatterlist * meta_sgl,unsigned short meta_sg_nents,unsigned int * meta_sg_offset_p)2161 mlx5_ib_sg_to_klms(struct mlx5_ib_mr *mr,
2162 		   struct scatterlist *sgl,
2163 		   unsigned short sg_nents,
2164 		   unsigned int *sg_offset_p,
2165 		   struct scatterlist *meta_sgl,
2166 		   unsigned short meta_sg_nents,
2167 		   unsigned int *meta_sg_offset_p)
2168 {
2169 	struct scatterlist *sg = sgl;
2170 	struct mlx5_klm *klms = mr->descs;
2171 	unsigned int sg_offset = sg_offset_p ? *sg_offset_p : 0;
2172 	u32 lkey = mr->ibmr.pd->local_dma_lkey;
2173 	int i, j = 0;
2174 
2175 	mr->ibmr.iova = sg_dma_address(sg) + sg_offset;
2176 	mr->ibmr.length = 0;
2177 
2178 	for_each_sg(sgl, sg, sg_nents, i) {
2179 		if (unlikely(i >= mr->max_descs))
2180 			break;
2181 		klms[i].va = cpu_to_be64(sg_dma_address(sg) + sg_offset);
2182 		klms[i].bcount = cpu_to_be32(sg_dma_len(sg) - sg_offset);
2183 		klms[i].key = cpu_to_be32(lkey);
2184 		mr->ibmr.length += sg_dma_len(sg) - sg_offset;
2185 
2186 		sg_offset = 0;
2187 	}
2188 
2189 	if (sg_offset_p)
2190 		*sg_offset_p = sg_offset;
2191 
2192 	mr->ndescs = i;
2193 	mr->data_length = mr->ibmr.length;
2194 
2195 	if (meta_sg_nents) {
2196 		sg = meta_sgl;
2197 		sg_offset = meta_sg_offset_p ? *meta_sg_offset_p : 0;
2198 		for_each_sg(meta_sgl, sg, meta_sg_nents, j) {
2199 			if (unlikely(i + j >= mr->max_descs))
2200 				break;
2201 			klms[i + j].va = cpu_to_be64(sg_dma_address(sg) +
2202 						     sg_offset);
2203 			klms[i + j].bcount = cpu_to_be32(sg_dma_len(sg) -
2204 							 sg_offset);
2205 			klms[i + j].key = cpu_to_be32(lkey);
2206 			mr->ibmr.length += sg_dma_len(sg) - sg_offset;
2207 
2208 			sg_offset = 0;
2209 		}
2210 		if (meta_sg_offset_p)
2211 			*meta_sg_offset_p = sg_offset;
2212 
2213 		mr->meta_ndescs = j;
2214 		mr->meta_length = mr->ibmr.length - mr->data_length;
2215 	}
2216 
2217 	return i + j;
2218 }
2219 
mlx5_set_page(struct ib_mr * ibmr,u64 addr)2220 static int mlx5_set_page(struct ib_mr *ibmr, u64 addr)
2221 {
2222 	struct mlx5_ib_mr *mr = to_mmr(ibmr);
2223 	__be64 *descs;
2224 
2225 	if (unlikely(mr->ndescs == mr->max_descs))
2226 		return -ENOMEM;
2227 
2228 	descs = mr->descs;
2229 	descs[mr->ndescs++] = cpu_to_be64(addr | MLX5_EN_RD | MLX5_EN_WR);
2230 
2231 	return 0;
2232 }
2233 
mlx5_set_page_pi(struct ib_mr * ibmr,u64 addr)2234 static int mlx5_set_page_pi(struct ib_mr *ibmr, u64 addr)
2235 {
2236 	struct mlx5_ib_mr *mr = to_mmr(ibmr);
2237 	__be64 *descs;
2238 
2239 	if (unlikely(mr->ndescs + mr->meta_ndescs == mr->max_descs))
2240 		return -ENOMEM;
2241 
2242 	descs = mr->descs;
2243 	descs[mr->ndescs + mr->meta_ndescs++] =
2244 		cpu_to_be64(addr | MLX5_EN_RD | MLX5_EN_WR);
2245 
2246 	return 0;
2247 }
2248 
2249 static int
mlx5_ib_map_mtt_mr_sg_pi(struct ib_mr * ibmr,struct scatterlist * data_sg,int data_sg_nents,unsigned int * data_sg_offset,struct scatterlist * meta_sg,int meta_sg_nents,unsigned int * meta_sg_offset)2250 mlx5_ib_map_mtt_mr_sg_pi(struct ib_mr *ibmr, struct scatterlist *data_sg,
2251 			 int data_sg_nents, unsigned int *data_sg_offset,
2252 			 struct scatterlist *meta_sg, int meta_sg_nents,
2253 			 unsigned int *meta_sg_offset)
2254 {
2255 	struct mlx5_ib_mr *mr = to_mmr(ibmr);
2256 	struct mlx5_ib_mr *pi_mr = mr->mtt_mr;
2257 	int n;
2258 
2259 	pi_mr->ndescs = 0;
2260 	pi_mr->meta_ndescs = 0;
2261 	pi_mr->meta_length = 0;
2262 
2263 	ib_dma_sync_single_for_cpu(ibmr->device, pi_mr->desc_map,
2264 				   pi_mr->desc_size * pi_mr->max_descs,
2265 				   DMA_TO_DEVICE);
2266 
2267 	pi_mr->ibmr.page_size = ibmr->page_size;
2268 	n = ib_sg_to_pages(&pi_mr->ibmr, data_sg, data_sg_nents, data_sg_offset,
2269 			   mlx5_set_page);
2270 	if (n != data_sg_nents)
2271 		return n;
2272 
2273 	pi_mr->data_iova = pi_mr->ibmr.iova;
2274 	pi_mr->data_length = pi_mr->ibmr.length;
2275 	pi_mr->ibmr.length = pi_mr->data_length;
2276 	ibmr->length = pi_mr->data_length;
2277 
2278 	if (meta_sg_nents) {
2279 		u64 page_mask = ~((u64)ibmr->page_size - 1);
2280 		u64 iova = pi_mr->data_iova;
2281 
2282 		n += ib_sg_to_pages(&pi_mr->ibmr, meta_sg, meta_sg_nents,
2283 				    meta_sg_offset, mlx5_set_page_pi);
2284 
2285 		pi_mr->meta_length = pi_mr->ibmr.length;
2286 		/*
2287 		 * PI address for the HW is the offset of the metadata address
2288 		 * relative to the first data page address.
2289 		 * It equals to first data page address + size of data pages +
2290 		 * metadata offset at the first metadata page
2291 		 */
2292 		pi_mr->pi_iova = (iova & page_mask) +
2293 				 pi_mr->ndescs * ibmr->page_size +
2294 				 (pi_mr->ibmr.iova & ~page_mask);
2295 		/*
2296 		 * In order to use one MTT MR for data and metadata, we register
2297 		 * also the gaps between the end of the data and the start of
2298 		 * the metadata (the sig MR will verify that the HW will access
2299 		 * to right addresses). This mapping is safe because we use
2300 		 * internal mkey for the registration.
2301 		 */
2302 		pi_mr->ibmr.length = pi_mr->pi_iova + pi_mr->meta_length - iova;
2303 		pi_mr->ibmr.iova = iova;
2304 		ibmr->length += pi_mr->meta_length;
2305 	}
2306 
2307 	ib_dma_sync_single_for_device(ibmr->device, pi_mr->desc_map,
2308 				      pi_mr->desc_size * pi_mr->max_descs,
2309 				      DMA_TO_DEVICE);
2310 
2311 	return n;
2312 }
2313 
2314 static int
mlx5_ib_map_klm_mr_sg_pi(struct ib_mr * ibmr,struct scatterlist * data_sg,int data_sg_nents,unsigned int * data_sg_offset,struct scatterlist * meta_sg,int meta_sg_nents,unsigned int * meta_sg_offset)2315 mlx5_ib_map_klm_mr_sg_pi(struct ib_mr *ibmr, struct scatterlist *data_sg,
2316 			 int data_sg_nents, unsigned int *data_sg_offset,
2317 			 struct scatterlist *meta_sg, int meta_sg_nents,
2318 			 unsigned int *meta_sg_offset)
2319 {
2320 	struct mlx5_ib_mr *mr = to_mmr(ibmr);
2321 	struct mlx5_ib_mr *pi_mr = mr->klm_mr;
2322 	int n;
2323 
2324 	pi_mr->ndescs = 0;
2325 	pi_mr->meta_ndescs = 0;
2326 	pi_mr->meta_length = 0;
2327 
2328 	ib_dma_sync_single_for_cpu(ibmr->device, pi_mr->desc_map,
2329 				   pi_mr->desc_size * pi_mr->max_descs,
2330 				   DMA_TO_DEVICE);
2331 
2332 	n = mlx5_ib_sg_to_klms(pi_mr, data_sg, data_sg_nents, data_sg_offset,
2333 			       meta_sg, meta_sg_nents, meta_sg_offset);
2334 
2335 	ib_dma_sync_single_for_device(ibmr->device, pi_mr->desc_map,
2336 				      pi_mr->desc_size * pi_mr->max_descs,
2337 				      DMA_TO_DEVICE);
2338 
2339 	/* This is zero-based memory region */
2340 	pi_mr->data_iova = 0;
2341 	pi_mr->ibmr.iova = 0;
2342 	pi_mr->pi_iova = pi_mr->data_length;
2343 	ibmr->length = pi_mr->ibmr.length;
2344 
2345 	return n;
2346 }
2347 
mlx5_ib_map_mr_sg_pi(struct ib_mr * ibmr,struct scatterlist * data_sg,int data_sg_nents,unsigned int * data_sg_offset,struct scatterlist * meta_sg,int meta_sg_nents,unsigned int * meta_sg_offset)2348 int mlx5_ib_map_mr_sg_pi(struct ib_mr *ibmr, struct scatterlist *data_sg,
2349 			 int data_sg_nents, unsigned int *data_sg_offset,
2350 			 struct scatterlist *meta_sg, int meta_sg_nents,
2351 			 unsigned int *meta_sg_offset)
2352 {
2353 	struct mlx5_ib_mr *mr = to_mmr(ibmr);
2354 	struct mlx5_ib_mr *pi_mr = NULL;
2355 	int n;
2356 
2357 	WARN_ON(ibmr->type != IB_MR_TYPE_INTEGRITY);
2358 
2359 	mr->ndescs = 0;
2360 	mr->data_length = 0;
2361 	mr->data_iova = 0;
2362 	mr->meta_ndescs = 0;
2363 	mr->pi_iova = 0;
2364 	/*
2365 	 * As a performance optimization, if possible, there is no need to
2366 	 * perform UMR operation to register the data/metadata buffers.
2367 	 * First try to map the sg lists to PA descriptors with local_dma_lkey.
2368 	 * Fallback to UMR only in case of a failure.
2369 	 */
2370 	n = mlx5_ib_map_pa_mr_sg_pi(ibmr, data_sg, data_sg_nents,
2371 				    data_sg_offset, meta_sg, meta_sg_nents,
2372 				    meta_sg_offset);
2373 	if (n == data_sg_nents + meta_sg_nents)
2374 		goto out;
2375 	/*
2376 	 * As a performance optimization, if possible, there is no need to map
2377 	 * the sg lists to KLM descriptors. First try to map the sg lists to MTT
2378 	 * descriptors and fallback to KLM only in case of a failure.
2379 	 * It's more efficient for the HW to work with MTT descriptors
2380 	 * (especially in high load).
2381 	 * Use KLM (indirect access) only if it's mandatory.
2382 	 */
2383 	pi_mr = mr->mtt_mr;
2384 	n = mlx5_ib_map_mtt_mr_sg_pi(ibmr, data_sg, data_sg_nents,
2385 				     data_sg_offset, meta_sg, meta_sg_nents,
2386 				     meta_sg_offset);
2387 	if (n == data_sg_nents + meta_sg_nents)
2388 		goto out;
2389 
2390 	pi_mr = mr->klm_mr;
2391 	n = mlx5_ib_map_klm_mr_sg_pi(ibmr, data_sg, data_sg_nents,
2392 				     data_sg_offset, meta_sg, meta_sg_nents,
2393 				     meta_sg_offset);
2394 	if (unlikely(n != data_sg_nents + meta_sg_nents))
2395 		return -ENOMEM;
2396 
2397 out:
2398 	/* This is zero-based memory region */
2399 	ibmr->iova = 0;
2400 	mr->pi_mr = pi_mr;
2401 	if (pi_mr)
2402 		ibmr->sig_attrs->meta_length = pi_mr->meta_length;
2403 	else
2404 		ibmr->sig_attrs->meta_length = mr->meta_length;
2405 
2406 	return 0;
2407 }
2408 
mlx5_ib_map_mr_sg(struct ib_mr * ibmr,struct scatterlist * sg,int sg_nents,unsigned int * sg_offset)2409 int mlx5_ib_map_mr_sg(struct ib_mr *ibmr, struct scatterlist *sg, int sg_nents,
2410 		      unsigned int *sg_offset)
2411 {
2412 	struct mlx5_ib_mr *mr = to_mmr(ibmr);
2413 	int n;
2414 
2415 	mr->ndescs = 0;
2416 
2417 	ib_dma_sync_single_for_cpu(ibmr->device, mr->desc_map,
2418 				   mr->desc_size * mr->max_descs,
2419 				   DMA_TO_DEVICE);
2420 
2421 	if (mr->access_mode == MLX5_MKC_ACCESS_MODE_KLMS)
2422 		n = mlx5_ib_sg_to_klms(mr, sg, sg_nents, sg_offset, NULL, 0,
2423 				       NULL);
2424 	else
2425 		n = ib_sg_to_pages(ibmr, sg, sg_nents, sg_offset,
2426 				mlx5_set_page);
2427 
2428 	ib_dma_sync_single_for_device(ibmr->device, mr->desc_map,
2429 				      mr->desc_size * mr->max_descs,
2430 				      DMA_TO_DEVICE);
2431 
2432 	return n;
2433 }
2434