1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/drivers/mmc/core/core.c
4 *
5 * Copyright (C) 2003-2004 Russell King, All Rights Reserved.
6 * SD support Copyright (C) 2004 Ian Molton, All Rights Reserved.
7 * Copyright (C) 2005-2008 Pierre Ossman, All Rights Reserved.
8 * MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved.
9 */
10 #include <linux/module.h>
11 #include <linux/init.h>
12 #include <linux/interrupt.h>
13 #include <linux/completion.h>
14 #include <linux/device.h>
15 #include <linux/delay.h>
16 #include <linux/pagemap.h>
17 #include <linux/err.h>
18 #include <linux/leds.h>
19 #include <linux/scatterlist.h>
20 #include <linux/log2.h>
21 #include <linux/pm_runtime.h>
22 #include <linux/pm_wakeup.h>
23 #include <linux/suspend.h>
24 #include <linux/fault-inject.h>
25 #include <linux/random.h>
26 #include <linux/slab.h>
27 #include <linux/of.h>
28
29 #include <linux/mmc/card.h>
30 #include <linux/mmc/host.h>
31 #include <linux/mmc/mmc.h>
32 #include <linux/mmc/sd.h>
33 #include <linux/mmc/slot-gpio.h>
34
35 #define CREATE_TRACE_POINTS
36 #include <trace/events/mmc.h>
37
38 #include "core.h"
39 #include "card.h"
40 #include "bus.h"
41 #include "host.h"
42 #include "sdio_bus.h"
43 #include "pwrseq.h"
44
45 #include "mmc_ops.h"
46 #include "sd_ops.h"
47 #include "sdio_ops.h"
48
49 /* The max erase timeout, used when host->max_busy_timeout isn't specified */
50 #define MMC_ERASE_TIMEOUT_MS (60 * 1000) /* 60 s */
51 #define SD_DISCARD_TIMEOUT_MS (250)
52
53 static const unsigned freqs[] = { 400000, 300000, 200000, 100000 };
54
55 /*
56 * Enabling software CRCs on the data blocks can be a significant (30%)
57 * performance cost, and for other reasons may not always be desired.
58 * So we allow it it to be disabled.
59 */
60 bool use_spi_crc = 1;
61 module_param(use_spi_crc, bool, 0);
62
mmc_schedule_delayed_work(struct delayed_work * work,unsigned long delay)63 static int mmc_schedule_delayed_work(struct delayed_work *work,
64 unsigned long delay)
65 {
66 /*
67 * We use the system_freezable_wq, because of two reasons.
68 * First, it allows several works (not the same work item) to be
69 * executed simultaneously. Second, the queue becomes frozen when
70 * userspace becomes frozen during system PM.
71 */
72 return queue_delayed_work(system_freezable_wq, work, delay);
73 }
74
75 #ifdef CONFIG_FAIL_MMC_REQUEST
76
77 /*
78 * Internal function. Inject random data errors.
79 * If mmc_data is NULL no errors are injected.
80 */
mmc_should_fail_request(struct mmc_host * host,struct mmc_request * mrq)81 static void mmc_should_fail_request(struct mmc_host *host,
82 struct mmc_request *mrq)
83 {
84 struct mmc_command *cmd = mrq->cmd;
85 struct mmc_data *data = mrq->data;
86 static const int data_errors[] = {
87 -ETIMEDOUT,
88 -EILSEQ,
89 -EIO,
90 };
91
92 if (!data)
93 return;
94
95 if ((cmd && cmd->error) || data->error ||
96 !should_fail(&host->fail_mmc_request, data->blksz * data->blocks))
97 return;
98
99 data->error = data_errors[prandom_u32() % ARRAY_SIZE(data_errors)];
100 data->bytes_xfered = (prandom_u32() % (data->bytes_xfered >> 9)) << 9;
101 }
102
103 #else /* CONFIG_FAIL_MMC_REQUEST */
104
mmc_should_fail_request(struct mmc_host * host,struct mmc_request * mrq)105 static inline void mmc_should_fail_request(struct mmc_host *host,
106 struct mmc_request *mrq)
107 {
108 }
109
110 #endif /* CONFIG_FAIL_MMC_REQUEST */
111
mmc_complete_cmd(struct mmc_request * mrq)112 static inline void mmc_complete_cmd(struct mmc_request *mrq)
113 {
114 if (mrq->cap_cmd_during_tfr && !completion_done(&mrq->cmd_completion))
115 complete_all(&mrq->cmd_completion);
116 }
117
mmc_command_done(struct mmc_host * host,struct mmc_request * mrq)118 void mmc_command_done(struct mmc_host *host, struct mmc_request *mrq)
119 {
120 if (!mrq->cap_cmd_during_tfr)
121 return;
122
123 mmc_complete_cmd(mrq);
124
125 pr_debug("%s: cmd done, tfr ongoing (CMD%u)\n",
126 mmc_hostname(host), mrq->cmd->opcode);
127 }
128 EXPORT_SYMBOL(mmc_command_done);
129
130 /**
131 * mmc_request_done - finish processing an MMC request
132 * @host: MMC host which completed request
133 * @mrq: MMC request which request
134 *
135 * MMC drivers should call this function when they have completed
136 * their processing of a request.
137 */
mmc_request_done(struct mmc_host * host,struct mmc_request * mrq)138 void mmc_request_done(struct mmc_host *host, struct mmc_request *mrq)
139 {
140 struct mmc_command *cmd = mrq->cmd;
141 int err = cmd->error;
142
143 /* Flag re-tuning needed on CRC errors */
144 if (cmd->opcode != MMC_SEND_TUNING_BLOCK &&
145 cmd->opcode != MMC_SEND_TUNING_BLOCK_HS200 &&
146 !host->retune_crc_disable &&
147 (err == -EILSEQ || (mrq->sbc && mrq->sbc->error == -EILSEQ) ||
148 (mrq->data && mrq->data->error == -EILSEQ) ||
149 (mrq->stop && mrq->stop->error == -EILSEQ)))
150 mmc_retune_needed(host);
151
152 if (err && cmd->retries && mmc_host_is_spi(host)) {
153 if (cmd->resp[0] & R1_SPI_ILLEGAL_COMMAND)
154 cmd->retries = 0;
155 }
156
157 if (host->ongoing_mrq == mrq)
158 host->ongoing_mrq = NULL;
159
160 mmc_complete_cmd(mrq);
161
162 trace_mmc_request_done(host, mrq);
163
164 /*
165 * We list various conditions for the command to be considered
166 * properly done:
167 *
168 * - There was no error, OK fine then
169 * - We are not doing some kind of retry
170 * - The card was removed (...so just complete everything no matter
171 * if there are errors or retries)
172 */
173 if (!err || !cmd->retries || mmc_card_removed(host->card)) {
174 mmc_should_fail_request(host, mrq);
175
176 if (!host->ongoing_mrq)
177 led_trigger_event(host->led, LED_OFF);
178
179 if (mrq->sbc) {
180 pr_debug("%s: req done <CMD%u>: %d: %08x %08x %08x %08x\n",
181 mmc_hostname(host), mrq->sbc->opcode,
182 mrq->sbc->error,
183 mrq->sbc->resp[0], mrq->sbc->resp[1],
184 mrq->sbc->resp[2], mrq->sbc->resp[3]);
185 }
186
187 pr_debug("%s: req done (CMD%u): %d: %08x %08x %08x %08x\n",
188 mmc_hostname(host), cmd->opcode, err,
189 cmd->resp[0], cmd->resp[1],
190 cmd->resp[2], cmd->resp[3]);
191
192 if (mrq->data) {
193 pr_debug("%s: %d bytes transferred: %d\n",
194 mmc_hostname(host),
195 mrq->data->bytes_xfered, mrq->data->error);
196 }
197
198 if (mrq->stop) {
199 pr_debug("%s: (CMD%u): %d: %08x %08x %08x %08x\n",
200 mmc_hostname(host), mrq->stop->opcode,
201 mrq->stop->error,
202 mrq->stop->resp[0], mrq->stop->resp[1],
203 mrq->stop->resp[2], mrq->stop->resp[3]);
204 }
205 }
206 /*
207 * Request starter must handle retries - see
208 * mmc_wait_for_req_done().
209 */
210 if (mrq->done)
211 mrq->done(mrq);
212 }
213
214 EXPORT_SYMBOL(mmc_request_done);
215
__mmc_start_request(struct mmc_host * host,struct mmc_request * mrq)216 static void __mmc_start_request(struct mmc_host *host, struct mmc_request *mrq)
217 {
218 int err;
219
220 /* Assumes host controller has been runtime resumed by mmc_claim_host */
221 err = mmc_retune(host);
222 if (err) {
223 mrq->cmd->error = err;
224 mmc_request_done(host, mrq);
225 return;
226 }
227
228 /*
229 * For sdio rw commands we must wait for card busy otherwise some
230 * sdio devices won't work properly.
231 * And bypass I/O abort, reset and bus suspend operations.
232 */
233 if (sdio_is_io_busy(mrq->cmd->opcode, mrq->cmd->arg) &&
234 host->ops->card_busy) {
235 int tries = 500; /* Wait aprox 500ms at maximum */
236
237 while (host->ops->card_busy(host) && --tries)
238 mmc_delay(1);
239
240 if (tries == 0) {
241 mrq->cmd->error = -EBUSY;
242 mmc_request_done(host, mrq);
243 return;
244 }
245 }
246
247 if (mrq->cap_cmd_during_tfr) {
248 host->ongoing_mrq = mrq;
249 /*
250 * Retry path could come through here without having waiting on
251 * cmd_completion, so ensure it is reinitialised.
252 */
253 reinit_completion(&mrq->cmd_completion);
254 }
255
256 trace_mmc_request_start(host, mrq);
257
258 if (host->cqe_on)
259 host->cqe_ops->cqe_off(host);
260
261 host->ops->request(host, mrq);
262 }
263
mmc_mrq_pr_debug(struct mmc_host * host,struct mmc_request * mrq,bool cqe)264 static void mmc_mrq_pr_debug(struct mmc_host *host, struct mmc_request *mrq,
265 bool cqe)
266 {
267 if (mrq->sbc) {
268 pr_debug("<%s: starting CMD%u arg %08x flags %08x>\n",
269 mmc_hostname(host), mrq->sbc->opcode,
270 mrq->sbc->arg, mrq->sbc->flags);
271 }
272
273 if (mrq->cmd) {
274 pr_debug("%s: starting %sCMD%u arg %08x flags %08x\n",
275 mmc_hostname(host), cqe ? "CQE direct " : "",
276 mrq->cmd->opcode, mrq->cmd->arg, mrq->cmd->flags);
277 } else if (cqe) {
278 pr_debug("%s: starting CQE transfer for tag %d blkaddr %u\n",
279 mmc_hostname(host), mrq->tag, mrq->data->blk_addr);
280 }
281
282 if (mrq->data) {
283 pr_debug("%s: blksz %d blocks %d flags %08x "
284 "tsac %d ms nsac %d\n",
285 mmc_hostname(host), mrq->data->blksz,
286 mrq->data->blocks, mrq->data->flags,
287 mrq->data->timeout_ns / 1000000,
288 mrq->data->timeout_clks);
289 }
290
291 if (mrq->stop) {
292 pr_debug("%s: CMD%u arg %08x flags %08x\n",
293 mmc_hostname(host), mrq->stop->opcode,
294 mrq->stop->arg, mrq->stop->flags);
295 }
296 }
297
mmc_mrq_prep(struct mmc_host * host,struct mmc_request * mrq)298 static int mmc_mrq_prep(struct mmc_host *host, struct mmc_request *mrq)
299 {
300 unsigned int i, sz = 0;
301 struct scatterlist *sg;
302
303 if (mrq->cmd) {
304 mrq->cmd->error = 0;
305 mrq->cmd->mrq = mrq;
306 mrq->cmd->data = mrq->data;
307 }
308 if (mrq->sbc) {
309 mrq->sbc->error = 0;
310 mrq->sbc->mrq = mrq;
311 }
312 if (mrq->data) {
313 if (mrq->data->blksz > host->max_blk_size ||
314 mrq->data->blocks > host->max_blk_count ||
315 mrq->data->blocks * mrq->data->blksz > host->max_req_size)
316 return -EINVAL;
317
318 for_each_sg(mrq->data->sg, sg, mrq->data->sg_len, i)
319 sz += sg->length;
320 if (sz != mrq->data->blocks * mrq->data->blksz)
321 return -EINVAL;
322
323 mrq->data->error = 0;
324 mrq->data->mrq = mrq;
325 if (mrq->stop) {
326 mrq->data->stop = mrq->stop;
327 mrq->stop->error = 0;
328 mrq->stop->mrq = mrq;
329 }
330 }
331
332 return 0;
333 }
334
mmc_start_request(struct mmc_host * host,struct mmc_request * mrq)335 int mmc_start_request(struct mmc_host *host, struct mmc_request *mrq)
336 {
337 int err;
338
339 init_completion(&mrq->cmd_completion);
340
341 mmc_retune_hold(host);
342
343 if (mmc_card_removed(host->card))
344 return -ENOMEDIUM;
345
346 mmc_mrq_pr_debug(host, mrq, false);
347
348 WARN_ON(!host->claimed);
349
350 err = mmc_mrq_prep(host, mrq);
351 if (err)
352 return err;
353
354 led_trigger_event(host->led, LED_FULL);
355 __mmc_start_request(host, mrq);
356
357 return 0;
358 }
359 EXPORT_SYMBOL(mmc_start_request);
360
mmc_wait_done(struct mmc_request * mrq)361 static void mmc_wait_done(struct mmc_request *mrq)
362 {
363 complete(&mrq->completion);
364 }
365
mmc_wait_ongoing_tfr_cmd(struct mmc_host * host)366 static inline void mmc_wait_ongoing_tfr_cmd(struct mmc_host *host)
367 {
368 struct mmc_request *ongoing_mrq = READ_ONCE(host->ongoing_mrq);
369
370 /*
371 * If there is an ongoing transfer, wait for the command line to become
372 * available.
373 */
374 if (ongoing_mrq && !completion_done(&ongoing_mrq->cmd_completion))
375 wait_for_completion(&ongoing_mrq->cmd_completion);
376 }
377
__mmc_start_req(struct mmc_host * host,struct mmc_request * mrq)378 static int __mmc_start_req(struct mmc_host *host, struct mmc_request *mrq)
379 {
380 int err;
381
382 mmc_wait_ongoing_tfr_cmd(host);
383
384 init_completion(&mrq->completion);
385 mrq->done = mmc_wait_done;
386
387 err = mmc_start_request(host, mrq);
388 if (err) {
389 mrq->cmd->error = err;
390 mmc_complete_cmd(mrq);
391 complete(&mrq->completion);
392 }
393
394 return err;
395 }
396
mmc_wait_for_req_done(struct mmc_host * host,struct mmc_request * mrq)397 void mmc_wait_for_req_done(struct mmc_host *host, struct mmc_request *mrq)
398 {
399 struct mmc_command *cmd;
400
401 while (1) {
402 wait_for_completion(&mrq->completion);
403
404 cmd = mrq->cmd;
405
406 if (!cmd->error || !cmd->retries ||
407 mmc_card_removed(host->card))
408 break;
409
410 mmc_retune_recheck(host);
411
412 pr_debug("%s: req failed (CMD%u): %d, retrying...\n",
413 mmc_hostname(host), cmd->opcode, cmd->error);
414 cmd->retries--;
415 cmd->error = 0;
416 __mmc_start_request(host, mrq);
417 }
418
419 mmc_retune_release(host);
420 }
421 EXPORT_SYMBOL(mmc_wait_for_req_done);
422
423 /*
424 * mmc_cqe_start_req - Start a CQE request.
425 * @host: MMC host to start the request
426 * @mrq: request to start
427 *
428 * Start the request, re-tuning if needed and it is possible. Returns an error
429 * code if the request fails to start or -EBUSY if CQE is busy.
430 */
mmc_cqe_start_req(struct mmc_host * host,struct mmc_request * mrq)431 int mmc_cqe_start_req(struct mmc_host *host, struct mmc_request *mrq)
432 {
433 int err;
434
435 /*
436 * CQE cannot process re-tuning commands. Caller must hold retuning
437 * while CQE is in use. Re-tuning can happen here only when CQE has no
438 * active requests i.e. this is the first. Note, re-tuning will call
439 * ->cqe_off().
440 */
441 err = mmc_retune(host);
442 if (err)
443 goto out_err;
444
445 mrq->host = host;
446
447 mmc_mrq_pr_debug(host, mrq, true);
448
449 err = mmc_mrq_prep(host, mrq);
450 if (err)
451 goto out_err;
452
453 err = host->cqe_ops->cqe_request(host, mrq);
454 if (err)
455 goto out_err;
456
457 trace_mmc_request_start(host, mrq);
458
459 return 0;
460
461 out_err:
462 if (mrq->cmd) {
463 pr_debug("%s: failed to start CQE direct CMD%u, error %d\n",
464 mmc_hostname(host), mrq->cmd->opcode, err);
465 } else {
466 pr_debug("%s: failed to start CQE transfer for tag %d, error %d\n",
467 mmc_hostname(host), mrq->tag, err);
468 }
469 return err;
470 }
471 EXPORT_SYMBOL(mmc_cqe_start_req);
472
473 /**
474 * mmc_cqe_request_done - CQE has finished processing an MMC request
475 * @host: MMC host which completed request
476 * @mrq: MMC request which completed
477 *
478 * CQE drivers should call this function when they have completed
479 * their processing of a request.
480 */
mmc_cqe_request_done(struct mmc_host * host,struct mmc_request * mrq)481 void mmc_cqe_request_done(struct mmc_host *host, struct mmc_request *mrq)
482 {
483 mmc_should_fail_request(host, mrq);
484
485 /* Flag re-tuning needed on CRC errors */
486 if ((mrq->cmd && mrq->cmd->error == -EILSEQ) ||
487 (mrq->data && mrq->data->error == -EILSEQ))
488 mmc_retune_needed(host);
489
490 trace_mmc_request_done(host, mrq);
491
492 if (mrq->cmd) {
493 pr_debug("%s: CQE req done (direct CMD%u): %d\n",
494 mmc_hostname(host), mrq->cmd->opcode, mrq->cmd->error);
495 } else {
496 pr_debug("%s: CQE transfer done tag %d\n",
497 mmc_hostname(host), mrq->tag);
498 }
499
500 if (mrq->data) {
501 pr_debug("%s: %d bytes transferred: %d\n",
502 mmc_hostname(host),
503 mrq->data->bytes_xfered, mrq->data->error);
504 }
505
506 mrq->done(mrq);
507 }
508 EXPORT_SYMBOL(mmc_cqe_request_done);
509
510 /**
511 * mmc_cqe_post_req - CQE post process of a completed MMC request
512 * @host: MMC host
513 * @mrq: MMC request to be processed
514 */
mmc_cqe_post_req(struct mmc_host * host,struct mmc_request * mrq)515 void mmc_cqe_post_req(struct mmc_host *host, struct mmc_request *mrq)
516 {
517 if (host->cqe_ops->cqe_post_req)
518 host->cqe_ops->cqe_post_req(host, mrq);
519 }
520 EXPORT_SYMBOL(mmc_cqe_post_req);
521
522 /* Arbitrary 1 second timeout */
523 #define MMC_CQE_RECOVERY_TIMEOUT 1000
524
525 /*
526 * mmc_cqe_recovery - Recover from CQE errors.
527 * @host: MMC host to recover
528 *
529 * Recovery consists of stopping CQE, stopping eMMC, discarding the queue in
530 * in eMMC, and discarding the queue in CQE. CQE must call
531 * mmc_cqe_request_done() on all requests. An error is returned if the eMMC
532 * fails to discard its queue.
533 */
mmc_cqe_recovery(struct mmc_host * host)534 int mmc_cqe_recovery(struct mmc_host *host)
535 {
536 struct mmc_command cmd;
537 int err;
538
539 mmc_retune_hold_now(host);
540
541 /*
542 * Recovery is expected seldom, if at all, but it reduces performance,
543 * so make sure it is not completely silent.
544 */
545 pr_warn("%s: running CQE recovery\n", mmc_hostname(host));
546
547 host->cqe_ops->cqe_recovery_start(host);
548
549 memset(&cmd, 0, sizeof(cmd));
550 cmd.opcode = MMC_STOP_TRANSMISSION,
551 cmd.flags = MMC_RSP_R1B | MMC_CMD_AC,
552 cmd.flags &= ~MMC_RSP_CRC; /* Ignore CRC */
553 cmd.busy_timeout = MMC_CQE_RECOVERY_TIMEOUT,
554 mmc_wait_for_cmd(host, &cmd, 0);
555
556 memset(&cmd, 0, sizeof(cmd));
557 cmd.opcode = MMC_CMDQ_TASK_MGMT;
558 cmd.arg = 1; /* Discard entire queue */
559 cmd.flags = MMC_RSP_R1B | MMC_CMD_AC;
560 cmd.flags &= ~MMC_RSP_CRC; /* Ignore CRC */
561 cmd.busy_timeout = MMC_CQE_RECOVERY_TIMEOUT,
562 err = mmc_wait_for_cmd(host, &cmd, 0);
563
564 host->cqe_ops->cqe_recovery_finish(host);
565
566 mmc_retune_release(host);
567
568 return err;
569 }
570 EXPORT_SYMBOL(mmc_cqe_recovery);
571
572 /**
573 * mmc_is_req_done - Determine if a 'cap_cmd_during_tfr' request is done
574 * @host: MMC host
575 * @mrq: MMC request
576 *
577 * mmc_is_req_done() is used with requests that have
578 * mrq->cap_cmd_during_tfr = true. mmc_is_req_done() must be called after
579 * starting a request and before waiting for it to complete. That is,
580 * either in between calls to mmc_start_req(), or after mmc_wait_for_req()
581 * and before mmc_wait_for_req_done(). If it is called at other times the
582 * result is not meaningful.
583 */
mmc_is_req_done(struct mmc_host * host,struct mmc_request * mrq)584 bool mmc_is_req_done(struct mmc_host *host, struct mmc_request *mrq)
585 {
586 return completion_done(&mrq->completion);
587 }
588 EXPORT_SYMBOL(mmc_is_req_done);
589
590 /**
591 * mmc_wait_for_req - start a request and wait for completion
592 * @host: MMC host to start command
593 * @mrq: MMC request to start
594 *
595 * Start a new MMC custom command request for a host, and wait
596 * for the command to complete. In the case of 'cap_cmd_during_tfr'
597 * requests, the transfer is ongoing and the caller can issue further
598 * commands that do not use the data lines, and then wait by calling
599 * mmc_wait_for_req_done().
600 * Does not attempt to parse the response.
601 */
mmc_wait_for_req(struct mmc_host * host,struct mmc_request * mrq)602 void mmc_wait_for_req(struct mmc_host *host, struct mmc_request *mrq)
603 {
604 __mmc_start_req(host, mrq);
605
606 if (!mrq->cap_cmd_during_tfr)
607 mmc_wait_for_req_done(host, mrq);
608 }
609 EXPORT_SYMBOL(mmc_wait_for_req);
610
611 /**
612 * mmc_wait_for_cmd - start a command and wait for completion
613 * @host: MMC host to start command
614 * @cmd: MMC command to start
615 * @retries: maximum number of retries
616 *
617 * Start a new MMC command for a host, and wait for the command
618 * to complete. Return any error that occurred while the command
619 * was executing. Do not attempt to parse the response.
620 */
mmc_wait_for_cmd(struct mmc_host * host,struct mmc_command * cmd,int retries)621 int mmc_wait_for_cmd(struct mmc_host *host, struct mmc_command *cmd, int retries)
622 {
623 struct mmc_request mrq = {};
624
625 WARN_ON(!host->claimed);
626
627 memset(cmd->resp, 0, sizeof(cmd->resp));
628 cmd->retries = retries;
629
630 mrq.cmd = cmd;
631 cmd->data = NULL;
632
633 mmc_wait_for_req(host, &mrq);
634
635 return cmd->error;
636 }
637
638 EXPORT_SYMBOL(mmc_wait_for_cmd);
639
640 /**
641 * mmc_set_data_timeout - set the timeout for a data command
642 * @data: data phase for command
643 * @card: the MMC card associated with the data transfer
644 *
645 * Computes the data timeout parameters according to the
646 * correct algorithm given the card type.
647 */
mmc_set_data_timeout(struct mmc_data * data,const struct mmc_card * card)648 void mmc_set_data_timeout(struct mmc_data *data, const struct mmc_card *card)
649 {
650 unsigned int mult;
651
652 /*
653 * SDIO cards only define an upper 1 s limit on access.
654 */
655 if (mmc_card_sdio(card)) {
656 data->timeout_ns = 1000000000;
657 data->timeout_clks = 0;
658 return;
659 }
660
661 /*
662 * SD cards use a 100 multiplier rather than 10
663 */
664 mult = mmc_card_sd(card) ? 100 : 10;
665
666 /*
667 * Scale up the multiplier (and therefore the timeout) by
668 * the r2w factor for writes.
669 */
670 if (data->flags & MMC_DATA_WRITE)
671 mult <<= card->csd.r2w_factor;
672
673 data->timeout_ns = card->csd.taac_ns * mult;
674 data->timeout_clks = card->csd.taac_clks * mult;
675
676 /*
677 * SD cards also have an upper limit on the timeout.
678 */
679 if (mmc_card_sd(card)) {
680 unsigned int timeout_us, limit_us;
681
682 timeout_us = data->timeout_ns / 1000;
683 if (card->host->ios.clock)
684 timeout_us += data->timeout_clks * 1000 /
685 (card->host->ios.clock / 1000);
686
687 if (data->flags & MMC_DATA_WRITE)
688 /*
689 * The MMC spec "It is strongly recommended
690 * for hosts to implement more than 500ms
691 * timeout value even if the card indicates
692 * the 250ms maximum busy length." Even the
693 * previous value of 300ms is known to be
694 * insufficient for some cards.
695 */
696 limit_us = 3000000;
697 else
698 limit_us = 100000;
699
700 /*
701 * SDHC cards always use these fixed values.
702 */
703 if (timeout_us > limit_us) {
704 data->timeout_ns = limit_us * 1000;
705 data->timeout_clks = 0;
706 }
707
708 /* assign limit value if invalid */
709 if (timeout_us == 0)
710 data->timeout_ns = limit_us * 1000;
711 }
712
713 /*
714 * Some cards require longer data read timeout than indicated in CSD.
715 * Address this by setting the read timeout to a "reasonably high"
716 * value. For the cards tested, 600ms has proven enough. If necessary,
717 * this value can be increased if other problematic cards require this.
718 */
719 if (mmc_card_long_read_time(card) && data->flags & MMC_DATA_READ) {
720 data->timeout_ns = 600000000;
721 data->timeout_clks = 0;
722 }
723
724 /*
725 * Some cards need very high timeouts if driven in SPI mode.
726 * The worst observed timeout was 900ms after writing a
727 * continuous stream of data until the internal logic
728 * overflowed.
729 */
730 if (mmc_host_is_spi(card->host)) {
731 if (data->flags & MMC_DATA_WRITE) {
732 if (data->timeout_ns < 1000000000)
733 data->timeout_ns = 1000000000; /* 1s */
734 } else {
735 if (data->timeout_ns < 100000000)
736 data->timeout_ns = 100000000; /* 100ms */
737 }
738 }
739 }
740 EXPORT_SYMBOL(mmc_set_data_timeout);
741
742 /*
743 * Allow claiming an already claimed host if the context is the same or there is
744 * no context but the task is the same.
745 */
mmc_ctx_matches(struct mmc_host * host,struct mmc_ctx * ctx,struct task_struct * task)746 static inline bool mmc_ctx_matches(struct mmc_host *host, struct mmc_ctx *ctx,
747 struct task_struct *task)
748 {
749 return host->claimer == ctx ||
750 (!ctx && task && host->claimer->task == task);
751 }
752
mmc_ctx_set_claimer(struct mmc_host * host,struct mmc_ctx * ctx,struct task_struct * task)753 static inline void mmc_ctx_set_claimer(struct mmc_host *host,
754 struct mmc_ctx *ctx,
755 struct task_struct *task)
756 {
757 if (!host->claimer) {
758 if (ctx)
759 host->claimer = ctx;
760 else
761 host->claimer = &host->default_ctx;
762 }
763 if (task)
764 host->claimer->task = task;
765 }
766
767 /**
768 * __mmc_claim_host - exclusively claim a host
769 * @host: mmc host to claim
770 * @ctx: context that claims the host or NULL in which case the default
771 * context will be used
772 * @abort: whether or not the operation should be aborted
773 *
774 * Claim a host for a set of operations. If @abort is non null and
775 * dereference a non-zero value then this will return prematurely with
776 * that non-zero value without acquiring the lock. Returns zero
777 * with the lock held otherwise.
778 */
__mmc_claim_host(struct mmc_host * host,struct mmc_ctx * ctx,atomic_t * abort)779 int __mmc_claim_host(struct mmc_host *host, struct mmc_ctx *ctx,
780 atomic_t *abort)
781 {
782 struct task_struct *task = ctx ? NULL : current;
783 DECLARE_WAITQUEUE(wait, current);
784 unsigned long flags;
785 int stop;
786 bool pm = false;
787
788 might_sleep();
789
790 add_wait_queue(&host->wq, &wait);
791 spin_lock_irqsave(&host->lock, flags);
792 while (1) {
793 set_current_state(TASK_UNINTERRUPTIBLE);
794 stop = abort ? atomic_read(abort) : 0;
795 if (stop || !host->claimed || mmc_ctx_matches(host, ctx, task))
796 break;
797 spin_unlock_irqrestore(&host->lock, flags);
798 schedule();
799 spin_lock_irqsave(&host->lock, flags);
800 }
801 set_current_state(TASK_RUNNING);
802 if (!stop) {
803 host->claimed = 1;
804 mmc_ctx_set_claimer(host, ctx, task);
805 host->claim_cnt += 1;
806 if (host->claim_cnt == 1)
807 pm = true;
808 } else
809 wake_up(&host->wq);
810 spin_unlock_irqrestore(&host->lock, flags);
811 remove_wait_queue(&host->wq, &wait);
812
813 if (pm)
814 pm_runtime_get_sync(mmc_dev(host));
815
816 return stop;
817 }
818 EXPORT_SYMBOL(__mmc_claim_host);
819
820 /**
821 * mmc_release_host - release a host
822 * @host: mmc host to release
823 *
824 * Release a MMC host, allowing others to claim the host
825 * for their operations.
826 */
mmc_release_host(struct mmc_host * host)827 void mmc_release_host(struct mmc_host *host)
828 {
829 unsigned long flags;
830
831 WARN_ON(!host->claimed);
832
833 spin_lock_irqsave(&host->lock, flags);
834 if (--host->claim_cnt) {
835 /* Release for nested claim */
836 spin_unlock_irqrestore(&host->lock, flags);
837 } else {
838 host->claimed = 0;
839 host->claimer->task = NULL;
840 host->claimer = NULL;
841 spin_unlock_irqrestore(&host->lock, flags);
842 wake_up(&host->wq);
843 pm_runtime_mark_last_busy(mmc_dev(host));
844 if (host->caps & MMC_CAP_SYNC_RUNTIME_PM)
845 pm_runtime_put_sync_suspend(mmc_dev(host));
846 else
847 pm_runtime_put_autosuspend(mmc_dev(host));
848 }
849 }
850 EXPORT_SYMBOL(mmc_release_host);
851
852 /*
853 * This is a helper function, which fetches a runtime pm reference for the
854 * card device and also claims the host.
855 */
mmc_get_card(struct mmc_card * card,struct mmc_ctx * ctx)856 void mmc_get_card(struct mmc_card *card, struct mmc_ctx *ctx)
857 {
858 pm_runtime_get_sync(&card->dev);
859 __mmc_claim_host(card->host, ctx, NULL);
860 }
861 EXPORT_SYMBOL(mmc_get_card);
862
863 /*
864 * This is a helper function, which releases the host and drops the runtime
865 * pm reference for the card device.
866 */
mmc_put_card(struct mmc_card * card,struct mmc_ctx * ctx)867 void mmc_put_card(struct mmc_card *card, struct mmc_ctx *ctx)
868 {
869 struct mmc_host *host = card->host;
870
871 WARN_ON(ctx && host->claimer != ctx);
872
873 mmc_release_host(host);
874 pm_runtime_mark_last_busy(&card->dev);
875 pm_runtime_put_autosuspend(&card->dev);
876 }
877 EXPORT_SYMBOL(mmc_put_card);
878
879 /*
880 * Internal function that does the actual ios call to the host driver,
881 * optionally printing some debug output.
882 */
mmc_set_ios(struct mmc_host * host)883 static inline void mmc_set_ios(struct mmc_host *host)
884 {
885 struct mmc_ios *ios = &host->ios;
886
887 pr_debug("%s: clock %uHz busmode %u powermode %u cs %u Vdd %u "
888 "width %u timing %u\n",
889 mmc_hostname(host), ios->clock, ios->bus_mode,
890 ios->power_mode, ios->chip_select, ios->vdd,
891 1 << ios->bus_width, ios->timing);
892
893 host->ops->set_ios(host, ios);
894 }
895
896 /*
897 * Control chip select pin on a host.
898 */
mmc_set_chip_select(struct mmc_host * host,int mode)899 void mmc_set_chip_select(struct mmc_host *host, int mode)
900 {
901 host->ios.chip_select = mode;
902 mmc_set_ios(host);
903 }
904
905 /*
906 * Sets the host clock to the highest possible frequency that
907 * is below "hz".
908 */
mmc_set_clock(struct mmc_host * host,unsigned int hz)909 void mmc_set_clock(struct mmc_host *host, unsigned int hz)
910 {
911 WARN_ON(hz && hz < host->f_min);
912
913 if (hz > host->f_max)
914 hz = host->f_max;
915
916 host->ios.clock = hz;
917 mmc_set_ios(host);
918 }
919
mmc_execute_tuning(struct mmc_card * card)920 int mmc_execute_tuning(struct mmc_card *card)
921 {
922 struct mmc_host *host = card->host;
923 u32 opcode;
924 int err;
925
926 if (!host->ops->execute_tuning)
927 return 0;
928
929 if (host->cqe_on)
930 host->cqe_ops->cqe_off(host);
931
932 if (mmc_card_mmc(card))
933 opcode = MMC_SEND_TUNING_BLOCK_HS200;
934 else
935 opcode = MMC_SEND_TUNING_BLOCK;
936
937 err = host->ops->execute_tuning(host, opcode);
938
939 if (err) {
940 pr_err("%s: tuning execution failed: %d\n",
941 mmc_hostname(host), err);
942 } else {
943 host->retune_now = 0;
944 host->need_retune = 0;
945 mmc_retune_enable(host);
946 }
947
948 return err;
949 }
950
951 /*
952 * Change the bus mode (open drain/push-pull) of a host.
953 */
mmc_set_bus_mode(struct mmc_host * host,unsigned int mode)954 void mmc_set_bus_mode(struct mmc_host *host, unsigned int mode)
955 {
956 host->ios.bus_mode = mode;
957 mmc_set_ios(host);
958 }
959
960 /*
961 * Change data bus width of a host.
962 */
mmc_set_bus_width(struct mmc_host * host,unsigned int width)963 void mmc_set_bus_width(struct mmc_host *host, unsigned int width)
964 {
965 host->ios.bus_width = width;
966 mmc_set_ios(host);
967 }
968
969 /*
970 * Set initial state after a power cycle or a hw_reset.
971 */
mmc_set_initial_state(struct mmc_host * host)972 void mmc_set_initial_state(struct mmc_host *host)
973 {
974 if (host->cqe_on)
975 host->cqe_ops->cqe_off(host);
976
977 mmc_retune_disable(host);
978
979 if (mmc_host_is_spi(host))
980 host->ios.chip_select = MMC_CS_HIGH;
981 else
982 host->ios.chip_select = MMC_CS_DONTCARE;
983 host->ios.bus_mode = MMC_BUSMODE_PUSHPULL;
984 host->ios.bus_width = MMC_BUS_WIDTH_1;
985 host->ios.timing = MMC_TIMING_LEGACY;
986 host->ios.drv_type = 0;
987 host->ios.enhanced_strobe = false;
988
989 /*
990 * Make sure we are in non-enhanced strobe mode before we
991 * actually enable it in ext_csd.
992 */
993 if ((host->caps2 & MMC_CAP2_HS400_ES) &&
994 host->ops->hs400_enhanced_strobe)
995 host->ops->hs400_enhanced_strobe(host, &host->ios);
996
997 mmc_set_ios(host);
998 }
999
1000 /**
1001 * mmc_vdd_to_ocrbitnum - Convert a voltage to the OCR bit number
1002 * @vdd: voltage (mV)
1003 * @low_bits: prefer low bits in boundary cases
1004 *
1005 * This function returns the OCR bit number according to the provided @vdd
1006 * value. If conversion is not possible a negative errno value returned.
1007 *
1008 * Depending on the @low_bits flag the function prefers low or high OCR bits
1009 * on boundary voltages. For example,
1010 * with @low_bits = true, 3300 mV translates to ilog2(MMC_VDD_32_33);
1011 * with @low_bits = false, 3300 mV translates to ilog2(MMC_VDD_33_34);
1012 *
1013 * Any value in the [1951:1999] range translates to the ilog2(MMC_VDD_20_21).
1014 */
mmc_vdd_to_ocrbitnum(int vdd,bool low_bits)1015 static int mmc_vdd_to_ocrbitnum(int vdd, bool low_bits)
1016 {
1017 const int max_bit = ilog2(MMC_VDD_35_36);
1018 int bit;
1019
1020 if (vdd < 1650 || vdd > 3600)
1021 return -EINVAL;
1022
1023 if (vdd >= 1650 && vdd <= 1950)
1024 return ilog2(MMC_VDD_165_195);
1025
1026 if (low_bits)
1027 vdd -= 1;
1028
1029 /* Base 2000 mV, step 100 mV, bit's base 8. */
1030 bit = (vdd - 2000) / 100 + 8;
1031 if (bit > max_bit)
1032 return max_bit;
1033 return bit;
1034 }
1035
1036 /**
1037 * mmc_vddrange_to_ocrmask - Convert a voltage range to the OCR mask
1038 * @vdd_min: minimum voltage value (mV)
1039 * @vdd_max: maximum voltage value (mV)
1040 *
1041 * This function returns the OCR mask bits according to the provided @vdd_min
1042 * and @vdd_max values. If conversion is not possible the function returns 0.
1043 *
1044 * Notes wrt boundary cases:
1045 * This function sets the OCR bits for all boundary voltages, for example
1046 * [3300:3400] range is translated to MMC_VDD_32_33 | MMC_VDD_33_34 |
1047 * MMC_VDD_34_35 mask.
1048 */
mmc_vddrange_to_ocrmask(int vdd_min,int vdd_max)1049 u32 mmc_vddrange_to_ocrmask(int vdd_min, int vdd_max)
1050 {
1051 u32 mask = 0;
1052
1053 if (vdd_max < vdd_min)
1054 return 0;
1055
1056 /* Prefer high bits for the boundary vdd_max values. */
1057 vdd_max = mmc_vdd_to_ocrbitnum(vdd_max, false);
1058 if (vdd_max < 0)
1059 return 0;
1060
1061 /* Prefer low bits for the boundary vdd_min values. */
1062 vdd_min = mmc_vdd_to_ocrbitnum(vdd_min, true);
1063 if (vdd_min < 0)
1064 return 0;
1065
1066 /* Fill the mask, from max bit to min bit. */
1067 while (vdd_max >= vdd_min)
1068 mask |= 1 << vdd_max--;
1069
1070 return mask;
1071 }
1072
mmc_of_get_func_num(struct device_node * node)1073 static int mmc_of_get_func_num(struct device_node *node)
1074 {
1075 u32 reg;
1076 int ret;
1077
1078 ret = of_property_read_u32(node, "reg", ®);
1079 if (ret < 0)
1080 return ret;
1081
1082 return reg;
1083 }
1084
mmc_of_find_child_device(struct mmc_host * host,unsigned func_num)1085 struct device_node *mmc_of_find_child_device(struct mmc_host *host,
1086 unsigned func_num)
1087 {
1088 struct device_node *node;
1089
1090 if (!host->parent || !host->parent->of_node)
1091 return NULL;
1092
1093 for_each_child_of_node(host->parent->of_node, node) {
1094 if (mmc_of_get_func_num(node) == func_num)
1095 return node;
1096 }
1097
1098 return NULL;
1099 }
1100
1101 /*
1102 * Mask off any voltages we don't support and select
1103 * the lowest voltage
1104 */
mmc_select_voltage(struct mmc_host * host,u32 ocr)1105 u32 mmc_select_voltage(struct mmc_host *host, u32 ocr)
1106 {
1107 int bit;
1108
1109 /*
1110 * Sanity check the voltages that the card claims to
1111 * support.
1112 */
1113 if (ocr & 0x7F) {
1114 dev_warn(mmc_dev(host),
1115 "card claims to support voltages below defined range\n");
1116 ocr &= ~0x7F;
1117 }
1118
1119 ocr &= host->ocr_avail;
1120 if (!ocr) {
1121 dev_warn(mmc_dev(host), "no support for card's volts\n");
1122 return 0;
1123 }
1124
1125 if (host->caps2 & MMC_CAP2_FULL_PWR_CYCLE) {
1126 bit = ffs(ocr) - 1;
1127 ocr &= 3 << bit;
1128 mmc_power_cycle(host, ocr);
1129 } else {
1130 bit = fls(ocr) - 1;
1131 ocr &= 3 << bit;
1132 if (bit != host->ios.vdd)
1133 dev_warn(mmc_dev(host), "exceeding card's volts\n");
1134 }
1135
1136 return ocr;
1137 }
1138
mmc_set_signal_voltage(struct mmc_host * host,int signal_voltage)1139 int mmc_set_signal_voltage(struct mmc_host *host, int signal_voltage)
1140 {
1141 int err = 0;
1142 int old_signal_voltage = host->ios.signal_voltage;
1143
1144 host->ios.signal_voltage = signal_voltage;
1145 if (host->ops->start_signal_voltage_switch)
1146 err = host->ops->start_signal_voltage_switch(host, &host->ios);
1147
1148 if (err)
1149 host->ios.signal_voltage = old_signal_voltage;
1150
1151 return err;
1152
1153 }
1154
mmc_set_initial_signal_voltage(struct mmc_host * host)1155 void mmc_set_initial_signal_voltage(struct mmc_host *host)
1156 {
1157 /* Try to set signal voltage to 3.3V but fall back to 1.8v or 1.2v */
1158 if (!mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_330))
1159 dev_dbg(mmc_dev(host), "Initial signal voltage of 3.3v\n");
1160 else if (!mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180))
1161 dev_dbg(mmc_dev(host), "Initial signal voltage of 1.8v\n");
1162 else if (!mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120))
1163 dev_dbg(mmc_dev(host), "Initial signal voltage of 1.2v\n");
1164 }
1165
mmc_host_set_uhs_voltage(struct mmc_host * host)1166 int mmc_host_set_uhs_voltage(struct mmc_host *host)
1167 {
1168 u32 clock;
1169
1170 /*
1171 * During a signal voltage level switch, the clock must be gated
1172 * for 5 ms according to the SD spec
1173 */
1174 clock = host->ios.clock;
1175 host->ios.clock = 0;
1176 mmc_set_ios(host);
1177
1178 if (mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180))
1179 return -EAGAIN;
1180
1181 /* Keep clock gated for at least 10 ms, though spec only says 5 ms */
1182 mmc_delay(10);
1183 host->ios.clock = clock;
1184 mmc_set_ios(host);
1185
1186 return 0;
1187 }
1188
mmc_set_uhs_voltage(struct mmc_host * host,u32 ocr)1189 int mmc_set_uhs_voltage(struct mmc_host *host, u32 ocr)
1190 {
1191 struct mmc_command cmd = {};
1192 int err = 0;
1193
1194 /*
1195 * If we cannot switch voltages, return failure so the caller
1196 * can continue without UHS mode
1197 */
1198 if (!host->ops->start_signal_voltage_switch)
1199 return -EPERM;
1200 if (!host->ops->card_busy)
1201 pr_warn("%s: cannot verify signal voltage switch\n",
1202 mmc_hostname(host));
1203
1204 cmd.opcode = SD_SWITCH_VOLTAGE;
1205 cmd.arg = 0;
1206 cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
1207
1208 err = mmc_wait_for_cmd(host, &cmd, 0);
1209 if (err)
1210 goto power_cycle;
1211
1212 if (!mmc_host_is_spi(host) && (cmd.resp[0] & R1_ERROR))
1213 return -EIO;
1214
1215 /*
1216 * The card should drive cmd and dat[0:3] low immediately
1217 * after the response of cmd11, but wait 1 ms to be sure
1218 */
1219 mmc_delay(1);
1220 if (host->ops->card_busy && !host->ops->card_busy(host)) {
1221 err = -EAGAIN;
1222 goto power_cycle;
1223 }
1224
1225 if (mmc_host_set_uhs_voltage(host)) {
1226 /*
1227 * Voltages may not have been switched, but we've already
1228 * sent CMD11, so a power cycle is required anyway
1229 */
1230 err = -EAGAIN;
1231 goto power_cycle;
1232 }
1233
1234 /* Wait for at least 1 ms according to spec */
1235 mmc_delay(1);
1236
1237 /*
1238 * Failure to switch is indicated by the card holding
1239 * dat[0:3] low
1240 */
1241 if (host->ops->card_busy && host->ops->card_busy(host))
1242 err = -EAGAIN;
1243
1244 power_cycle:
1245 if (err) {
1246 pr_debug("%s: Signal voltage switch failed, "
1247 "power cycling card\n", mmc_hostname(host));
1248 mmc_power_cycle(host, ocr);
1249 }
1250
1251 return err;
1252 }
1253
1254 /*
1255 * Select timing parameters for host.
1256 */
mmc_set_timing(struct mmc_host * host,unsigned int timing)1257 void mmc_set_timing(struct mmc_host *host, unsigned int timing)
1258 {
1259 host->ios.timing = timing;
1260 mmc_set_ios(host);
1261 }
1262
1263 /*
1264 * Select appropriate driver type for host.
1265 */
mmc_set_driver_type(struct mmc_host * host,unsigned int drv_type)1266 void mmc_set_driver_type(struct mmc_host *host, unsigned int drv_type)
1267 {
1268 host->ios.drv_type = drv_type;
1269 mmc_set_ios(host);
1270 }
1271
mmc_select_drive_strength(struct mmc_card * card,unsigned int max_dtr,int card_drv_type,int * drv_type)1272 int mmc_select_drive_strength(struct mmc_card *card, unsigned int max_dtr,
1273 int card_drv_type, int *drv_type)
1274 {
1275 struct mmc_host *host = card->host;
1276 int host_drv_type = SD_DRIVER_TYPE_B;
1277
1278 *drv_type = 0;
1279
1280 if (!host->ops->select_drive_strength)
1281 return 0;
1282
1283 /* Use SD definition of driver strength for hosts */
1284 if (host->caps & MMC_CAP_DRIVER_TYPE_A)
1285 host_drv_type |= SD_DRIVER_TYPE_A;
1286
1287 if (host->caps & MMC_CAP_DRIVER_TYPE_C)
1288 host_drv_type |= SD_DRIVER_TYPE_C;
1289
1290 if (host->caps & MMC_CAP_DRIVER_TYPE_D)
1291 host_drv_type |= SD_DRIVER_TYPE_D;
1292
1293 /*
1294 * The drive strength that the hardware can support
1295 * depends on the board design. Pass the appropriate
1296 * information and let the hardware specific code
1297 * return what is possible given the options
1298 */
1299 return host->ops->select_drive_strength(card, max_dtr,
1300 host_drv_type,
1301 card_drv_type,
1302 drv_type);
1303 }
1304
1305 /*
1306 * Apply power to the MMC stack. This is a two-stage process.
1307 * First, we enable power to the card without the clock running.
1308 * We then wait a bit for the power to stabilise. Finally,
1309 * enable the bus drivers and clock to the card.
1310 *
1311 * We must _NOT_ enable the clock prior to power stablising.
1312 *
1313 * If a host does all the power sequencing itself, ignore the
1314 * initial MMC_POWER_UP stage.
1315 */
mmc_power_up(struct mmc_host * host,u32 ocr)1316 void mmc_power_up(struct mmc_host *host, u32 ocr)
1317 {
1318 if (host->ios.power_mode == MMC_POWER_ON)
1319 return;
1320
1321 mmc_pwrseq_pre_power_on(host);
1322
1323 host->ios.vdd = fls(ocr) - 1;
1324 host->ios.power_mode = MMC_POWER_UP;
1325 /* Set initial state and call mmc_set_ios */
1326 mmc_set_initial_state(host);
1327
1328 mmc_set_initial_signal_voltage(host);
1329
1330 /*
1331 * This delay should be sufficient to allow the power supply
1332 * to reach the minimum voltage.
1333 */
1334 mmc_delay(host->ios.power_delay_ms);
1335
1336 mmc_pwrseq_post_power_on(host);
1337
1338 host->ios.clock = host->f_init;
1339
1340 host->ios.power_mode = MMC_POWER_ON;
1341 mmc_set_ios(host);
1342
1343 /*
1344 * This delay must be at least 74 clock sizes, or 1 ms, or the
1345 * time required to reach a stable voltage.
1346 */
1347 mmc_delay(host->ios.power_delay_ms);
1348 }
1349
mmc_power_off(struct mmc_host * host)1350 void mmc_power_off(struct mmc_host *host)
1351 {
1352 if (host->ios.power_mode == MMC_POWER_OFF)
1353 return;
1354
1355 mmc_pwrseq_power_off(host);
1356
1357 host->ios.clock = 0;
1358 host->ios.vdd = 0;
1359
1360 host->ios.power_mode = MMC_POWER_OFF;
1361 /* Set initial state and call mmc_set_ios */
1362 mmc_set_initial_state(host);
1363
1364 /*
1365 * Some configurations, such as the 802.11 SDIO card in the OLPC
1366 * XO-1.5, require a short delay after poweroff before the card
1367 * can be successfully turned on again.
1368 */
1369 mmc_delay(1);
1370 }
1371
mmc_power_cycle(struct mmc_host * host,u32 ocr)1372 void mmc_power_cycle(struct mmc_host *host, u32 ocr)
1373 {
1374 mmc_power_off(host);
1375 /* Wait at least 1 ms according to SD spec */
1376 mmc_delay(1);
1377 mmc_power_up(host, ocr);
1378 }
1379
1380 /*
1381 * Cleanup when the last reference to the bus operator is dropped.
1382 */
__mmc_release_bus(struct mmc_host * host)1383 static void __mmc_release_bus(struct mmc_host *host)
1384 {
1385 WARN_ON(!host->bus_dead);
1386
1387 host->bus_ops = NULL;
1388 }
1389
1390 /*
1391 * Increase reference count of bus operator
1392 */
mmc_bus_get(struct mmc_host * host)1393 static inline void mmc_bus_get(struct mmc_host *host)
1394 {
1395 unsigned long flags;
1396
1397 spin_lock_irqsave(&host->lock, flags);
1398 host->bus_refs++;
1399 spin_unlock_irqrestore(&host->lock, flags);
1400 }
1401
1402 /*
1403 * Decrease reference count of bus operator and free it if
1404 * it is the last reference.
1405 */
mmc_bus_put(struct mmc_host * host)1406 static inline void mmc_bus_put(struct mmc_host *host)
1407 {
1408 unsigned long flags;
1409
1410 spin_lock_irqsave(&host->lock, flags);
1411 host->bus_refs--;
1412 if ((host->bus_refs == 0) && host->bus_ops)
1413 __mmc_release_bus(host);
1414 spin_unlock_irqrestore(&host->lock, flags);
1415 }
1416
1417 /*
1418 * Assign a mmc bus handler to a host. Only one bus handler may control a
1419 * host at any given time.
1420 */
mmc_attach_bus(struct mmc_host * host,const struct mmc_bus_ops * ops)1421 void mmc_attach_bus(struct mmc_host *host, const struct mmc_bus_ops *ops)
1422 {
1423 unsigned long flags;
1424
1425 WARN_ON(!host->claimed);
1426
1427 spin_lock_irqsave(&host->lock, flags);
1428
1429 WARN_ON(host->bus_ops);
1430 WARN_ON(host->bus_refs);
1431
1432 host->bus_ops = ops;
1433 host->bus_refs = 1;
1434 host->bus_dead = 0;
1435
1436 spin_unlock_irqrestore(&host->lock, flags);
1437 }
1438
1439 /*
1440 * Remove the current bus handler from a host.
1441 */
mmc_detach_bus(struct mmc_host * host)1442 void mmc_detach_bus(struct mmc_host *host)
1443 {
1444 unsigned long flags;
1445
1446 WARN_ON(!host->claimed);
1447 WARN_ON(!host->bus_ops);
1448
1449 spin_lock_irqsave(&host->lock, flags);
1450
1451 host->bus_dead = 1;
1452
1453 spin_unlock_irqrestore(&host->lock, flags);
1454
1455 mmc_bus_put(host);
1456 }
1457
_mmc_detect_change(struct mmc_host * host,unsigned long delay,bool cd_irq)1458 void _mmc_detect_change(struct mmc_host *host, unsigned long delay, bool cd_irq)
1459 {
1460 /*
1461 * Prevent system sleep for 5s to allow user space to consume the
1462 * corresponding uevent. This is especially useful, when CD irq is used
1463 * as a system wakeup, but doesn't hurt in other cases.
1464 */
1465 if (cd_irq && !(host->caps & MMC_CAP_NEEDS_POLL))
1466 __pm_wakeup_event(host->ws, 5000);
1467
1468 host->detect_change = 1;
1469 mmc_schedule_delayed_work(&host->detect, delay);
1470 }
1471
1472 /**
1473 * mmc_detect_change - process change of state on a MMC socket
1474 * @host: host which changed state.
1475 * @delay: optional delay to wait before detection (jiffies)
1476 *
1477 * MMC drivers should call this when they detect a card has been
1478 * inserted or removed. The MMC layer will confirm that any
1479 * present card is still functional, and initialize any newly
1480 * inserted.
1481 */
mmc_detect_change(struct mmc_host * host,unsigned long delay)1482 void mmc_detect_change(struct mmc_host *host, unsigned long delay)
1483 {
1484 _mmc_detect_change(host, delay, true);
1485 }
1486 EXPORT_SYMBOL(mmc_detect_change);
1487
mmc_init_erase(struct mmc_card * card)1488 void mmc_init_erase(struct mmc_card *card)
1489 {
1490 unsigned int sz;
1491
1492 if (is_power_of_2(card->erase_size))
1493 card->erase_shift = ffs(card->erase_size) - 1;
1494 else
1495 card->erase_shift = 0;
1496
1497 /*
1498 * It is possible to erase an arbitrarily large area of an SD or MMC
1499 * card. That is not desirable because it can take a long time
1500 * (minutes) potentially delaying more important I/O, and also the
1501 * timeout calculations become increasingly hugely over-estimated.
1502 * Consequently, 'pref_erase' is defined as a guide to limit erases
1503 * to that size and alignment.
1504 *
1505 * For SD cards that define Allocation Unit size, limit erases to one
1506 * Allocation Unit at a time.
1507 * For MMC, have a stab at ai good value and for modern cards it will
1508 * end up being 4MiB. Note that if the value is too small, it can end
1509 * up taking longer to erase. Also note, erase_size is already set to
1510 * High Capacity Erase Size if available when this function is called.
1511 */
1512 if (mmc_card_sd(card) && card->ssr.au) {
1513 card->pref_erase = card->ssr.au;
1514 card->erase_shift = ffs(card->ssr.au) - 1;
1515 } else if (card->erase_size) {
1516 sz = (card->csd.capacity << (card->csd.read_blkbits - 9)) >> 11;
1517 if (sz < 128)
1518 card->pref_erase = 512 * 1024 / 512;
1519 else if (sz < 512)
1520 card->pref_erase = 1024 * 1024 / 512;
1521 else if (sz < 1024)
1522 card->pref_erase = 2 * 1024 * 1024 / 512;
1523 else
1524 card->pref_erase = 4 * 1024 * 1024 / 512;
1525 if (card->pref_erase < card->erase_size)
1526 card->pref_erase = card->erase_size;
1527 else {
1528 sz = card->pref_erase % card->erase_size;
1529 if (sz)
1530 card->pref_erase += card->erase_size - sz;
1531 }
1532 } else
1533 card->pref_erase = 0;
1534 }
1535
mmc_mmc_erase_timeout(struct mmc_card * card,unsigned int arg,unsigned int qty)1536 static unsigned int mmc_mmc_erase_timeout(struct mmc_card *card,
1537 unsigned int arg, unsigned int qty)
1538 {
1539 unsigned int erase_timeout;
1540
1541 if (arg == MMC_DISCARD_ARG ||
1542 (arg == MMC_TRIM_ARG && card->ext_csd.rev >= 6)) {
1543 erase_timeout = card->ext_csd.trim_timeout;
1544 } else if (card->ext_csd.erase_group_def & 1) {
1545 /* High Capacity Erase Group Size uses HC timeouts */
1546 if (arg == MMC_TRIM_ARG)
1547 erase_timeout = card->ext_csd.trim_timeout;
1548 else
1549 erase_timeout = card->ext_csd.hc_erase_timeout;
1550 } else {
1551 /* CSD Erase Group Size uses write timeout */
1552 unsigned int mult = (10 << card->csd.r2w_factor);
1553 unsigned int timeout_clks = card->csd.taac_clks * mult;
1554 unsigned int timeout_us;
1555
1556 /* Avoid overflow: e.g. taac_ns=80000000 mult=1280 */
1557 if (card->csd.taac_ns < 1000000)
1558 timeout_us = (card->csd.taac_ns * mult) / 1000;
1559 else
1560 timeout_us = (card->csd.taac_ns / 1000) * mult;
1561
1562 /*
1563 * ios.clock is only a target. The real clock rate might be
1564 * less but not that much less, so fudge it by multiplying by 2.
1565 */
1566 timeout_clks <<= 1;
1567 timeout_us += (timeout_clks * 1000) /
1568 (card->host->ios.clock / 1000);
1569
1570 erase_timeout = timeout_us / 1000;
1571
1572 /*
1573 * Theoretically, the calculation could underflow so round up
1574 * to 1ms in that case.
1575 */
1576 if (!erase_timeout)
1577 erase_timeout = 1;
1578 }
1579
1580 /* Multiplier for secure operations */
1581 if (arg & MMC_SECURE_ARGS) {
1582 if (arg == MMC_SECURE_ERASE_ARG)
1583 erase_timeout *= card->ext_csd.sec_erase_mult;
1584 else
1585 erase_timeout *= card->ext_csd.sec_trim_mult;
1586 }
1587
1588 erase_timeout *= qty;
1589
1590 /*
1591 * Ensure at least a 1 second timeout for SPI as per
1592 * 'mmc_set_data_timeout()'
1593 */
1594 if (mmc_host_is_spi(card->host) && erase_timeout < 1000)
1595 erase_timeout = 1000;
1596
1597 return erase_timeout;
1598 }
1599
mmc_sd_erase_timeout(struct mmc_card * card,unsigned int arg,unsigned int qty)1600 static unsigned int mmc_sd_erase_timeout(struct mmc_card *card,
1601 unsigned int arg,
1602 unsigned int qty)
1603 {
1604 unsigned int erase_timeout;
1605
1606 /* for DISCARD none of the below calculation applies.
1607 * the busy timeout is 250msec per discard command.
1608 */
1609 if (arg == SD_DISCARD_ARG)
1610 return SD_DISCARD_TIMEOUT_MS;
1611
1612 if (card->ssr.erase_timeout) {
1613 /* Erase timeout specified in SD Status Register (SSR) */
1614 erase_timeout = card->ssr.erase_timeout * qty +
1615 card->ssr.erase_offset;
1616 } else {
1617 /*
1618 * Erase timeout not specified in SD Status Register (SSR) so
1619 * use 250ms per write block.
1620 */
1621 erase_timeout = 250 * qty;
1622 }
1623
1624 /* Must not be less than 1 second */
1625 if (erase_timeout < 1000)
1626 erase_timeout = 1000;
1627
1628 return erase_timeout;
1629 }
1630
mmc_erase_timeout(struct mmc_card * card,unsigned int arg,unsigned int qty)1631 static unsigned int mmc_erase_timeout(struct mmc_card *card,
1632 unsigned int arg,
1633 unsigned int qty)
1634 {
1635 if (mmc_card_sd(card))
1636 return mmc_sd_erase_timeout(card, arg, qty);
1637 else
1638 return mmc_mmc_erase_timeout(card, arg, qty);
1639 }
1640
mmc_do_erase(struct mmc_card * card,unsigned int from,unsigned int to,unsigned int arg)1641 static int mmc_do_erase(struct mmc_card *card, unsigned int from,
1642 unsigned int to, unsigned int arg)
1643 {
1644 struct mmc_command cmd = {};
1645 unsigned int qty = 0, busy_timeout = 0;
1646 bool use_r1b_resp = false;
1647 int err;
1648
1649 mmc_retune_hold(card->host);
1650
1651 /*
1652 * qty is used to calculate the erase timeout which depends on how many
1653 * erase groups (or allocation units in SD terminology) are affected.
1654 * We count erasing part of an erase group as one erase group.
1655 * For SD, the allocation units are always a power of 2. For MMC, the
1656 * erase group size is almost certainly also power of 2, but it does not
1657 * seem to insist on that in the JEDEC standard, so we fall back to
1658 * division in that case. SD may not specify an allocation unit size,
1659 * in which case the timeout is based on the number of write blocks.
1660 *
1661 * Note that the timeout for secure trim 2 will only be correct if the
1662 * number of erase groups specified is the same as the total of all
1663 * preceding secure trim 1 commands. Since the power may have been
1664 * lost since the secure trim 1 commands occurred, it is generally
1665 * impossible to calculate the secure trim 2 timeout correctly.
1666 */
1667 if (card->erase_shift)
1668 qty += ((to >> card->erase_shift) -
1669 (from >> card->erase_shift)) + 1;
1670 else if (mmc_card_sd(card))
1671 qty += to - from + 1;
1672 else
1673 qty += ((to / card->erase_size) -
1674 (from / card->erase_size)) + 1;
1675
1676 if (!mmc_card_blockaddr(card)) {
1677 from <<= 9;
1678 to <<= 9;
1679 }
1680
1681 if (mmc_card_sd(card))
1682 cmd.opcode = SD_ERASE_WR_BLK_START;
1683 else
1684 cmd.opcode = MMC_ERASE_GROUP_START;
1685 cmd.arg = from;
1686 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1687 err = mmc_wait_for_cmd(card->host, &cmd, 0);
1688 if (err) {
1689 pr_err("mmc_erase: group start error %d, "
1690 "status %#x\n", err, cmd.resp[0]);
1691 err = -EIO;
1692 goto out;
1693 }
1694
1695 memset(&cmd, 0, sizeof(struct mmc_command));
1696 if (mmc_card_sd(card))
1697 cmd.opcode = SD_ERASE_WR_BLK_END;
1698 else
1699 cmd.opcode = MMC_ERASE_GROUP_END;
1700 cmd.arg = to;
1701 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1702 err = mmc_wait_for_cmd(card->host, &cmd, 0);
1703 if (err) {
1704 pr_err("mmc_erase: group end error %d, status %#x\n",
1705 err, cmd.resp[0]);
1706 err = -EIO;
1707 goto out;
1708 }
1709
1710 memset(&cmd, 0, sizeof(struct mmc_command));
1711 cmd.opcode = MMC_ERASE;
1712 cmd.arg = arg;
1713 busy_timeout = mmc_erase_timeout(card, arg, qty);
1714 /*
1715 * If the host controller supports busy signalling and the timeout for
1716 * the erase operation does not exceed the max_busy_timeout, we should
1717 * use R1B response. Or we need to prevent the host from doing hw busy
1718 * detection, which is done by converting to a R1 response instead.
1719 * Note, some hosts requires R1B, which also means they are on their own
1720 * when it comes to deal with the busy timeout.
1721 */
1722 if (!(card->host->caps & MMC_CAP_NEED_RSP_BUSY) &&
1723 card->host->max_busy_timeout &&
1724 busy_timeout > card->host->max_busy_timeout) {
1725 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1726 } else {
1727 cmd.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
1728 cmd.busy_timeout = busy_timeout;
1729 use_r1b_resp = true;
1730 }
1731
1732 err = mmc_wait_for_cmd(card->host, &cmd, 0);
1733 if (err) {
1734 pr_err("mmc_erase: erase error %d, status %#x\n",
1735 err, cmd.resp[0]);
1736 err = -EIO;
1737 goto out;
1738 }
1739
1740 if (mmc_host_is_spi(card->host))
1741 goto out;
1742
1743 /*
1744 * In case of when R1B + MMC_CAP_WAIT_WHILE_BUSY is used, the polling
1745 * shall be avoided.
1746 */
1747 if ((card->host->caps & MMC_CAP_WAIT_WHILE_BUSY) && use_r1b_resp)
1748 goto out;
1749
1750 /* Let's poll to find out when the erase operation completes. */
1751 err = mmc_poll_for_busy(card, busy_timeout, MMC_BUSY_ERASE);
1752
1753 out:
1754 mmc_retune_release(card->host);
1755 return err;
1756 }
1757
mmc_align_erase_size(struct mmc_card * card,unsigned int * from,unsigned int * to,unsigned int nr)1758 static unsigned int mmc_align_erase_size(struct mmc_card *card,
1759 unsigned int *from,
1760 unsigned int *to,
1761 unsigned int nr)
1762 {
1763 unsigned int from_new = *from, nr_new = nr, rem;
1764
1765 /*
1766 * When the 'card->erase_size' is power of 2, we can use round_up/down()
1767 * to align the erase size efficiently.
1768 */
1769 if (is_power_of_2(card->erase_size)) {
1770 unsigned int temp = from_new;
1771
1772 from_new = round_up(temp, card->erase_size);
1773 rem = from_new - temp;
1774
1775 if (nr_new > rem)
1776 nr_new -= rem;
1777 else
1778 return 0;
1779
1780 nr_new = round_down(nr_new, card->erase_size);
1781 } else {
1782 rem = from_new % card->erase_size;
1783 if (rem) {
1784 rem = card->erase_size - rem;
1785 from_new += rem;
1786 if (nr_new > rem)
1787 nr_new -= rem;
1788 else
1789 return 0;
1790 }
1791
1792 rem = nr_new % card->erase_size;
1793 if (rem)
1794 nr_new -= rem;
1795 }
1796
1797 if (nr_new == 0)
1798 return 0;
1799
1800 *to = from_new + nr_new;
1801 *from = from_new;
1802
1803 return nr_new;
1804 }
1805
1806 /**
1807 * mmc_erase - erase sectors.
1808 * @card: card to erase
1809 * @from: first sector to erase
1810 * @nr: number of sectors to erase
1811 * @arg: erase command argument
1812 *
1813 * Caller must claim host before calling this function.
1814 */
mmc_erase(struct mmc_card * card,unsigned int from,unsigned int nr,unsigned int arg)1815 int mmc_erase(struct mmc_card *card, unsigned int from, unsigned int nr,
1816 unsigned int arg)
1817 {
1818 unsigned int rem, to = from + nr;
1819 int err;
1820
1821 if (!(card->csd.cmdclass & CCC_ERASE))
1822 return -EOPNOTSUPP;
1823
1824 if (!card->erase_size)
1825 return -EOPNOTSUPP;
1826
1827 if (mmc_card_sd(card) && arg != SD_ERASE_ARG && arg != SD_DISCARD_ARG)
1828 return -EOPNOTSUPP;
1829
1830 if (mmc_card_mmc(card) && (arg & MMC_SECURE_ARGS) &&
1831 !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN))
1832 return -EOPNOTSUPP;
1833
1834 if (mmc_card_mmc(card) && (arg & MMC_TRIM_ARGS) &&
1835 !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN))
1836 return -EOPNOTSUPP;
1837
1838 if (arg == MMC_SECURE_ERASE_ARG) {
1839 if (from % card->erase_size || nr % card->erase_size)
1840 return -EINVAL;
1841 }
1842
1843 if (arg == MMC_ERASE_ARG)
1844 nr = mmc_align_erase_size(card, &from, &to, nr);
1845
1846 if (nr == 0)
1847 return 0;
1848
1849 if (to <= from)
1850 return -EINVAL;
1851
1852 /* 'from' and 'to' are inclusive */
1853 to -= 1;
1854
1855 /*
1856 * Special case where only one erase-group fits in the timeout budget:
1857 * If the region crosses an erase-group boundary on this particular
1858 * case, we will be trimming more than one erase-group which, does not
1859 * fit in the timeout budget of the controller, so we need to split it
1860 * and call mmc_do_erase() twice if necessary. This special case is
1861 * identified by the card->eg_boundary flag.
1862 */
1863 rem = card->erase_size - (from % card->erase_size);
1864 if ((arg & MMC_TRIM_ARGS) && (card->eg_boundary) && (nr > rem)) {
1865 err = mmc_do_erase(card, from, from + rem - 1, arg);
1866 from += rem;
1867 if ((err) || (to <= from))
1868 return err;
1869 }
1870
1871 return mmc_do_erase(card, from, to, arg);
1872 }
1873 EXPORT_SYMBOL(mmc_erase);
1874
mmc_can_erase(struct mmc_card * card)1875 int mmc_can_erase(struct mmc_card *card)
1876 {
1877 if (card->csd.cmdclass & CCC_ERASE && card->erase_size)
1878 return 1;
1879 return 0;
1880 }
1881 EXPORT_SYMBOL(mmc_can_erase);
1882
mmc_can_trim(struct mmc_card * card)1883 int mmc_can_trim(struct mmc_card *card)
1884 {
1885 if ((card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN) &&
1886 (!(card->quirks & MMC_QUIRK_TRIM_BROKEN)))
1887 return 1;
1888 return 0;
1889 }
1890 EXPORT_SYMBOL(mmc_can_trim);
1891
mmc_can_discard(struct mmc_card * card)1892 int mmc_can_discard(struct mmc_card *card)
1893 {
1894 /*
1895 * As there's no way to detect the discard support bit at v4.5
1896 * use the s/w feature support filed.
1897 */
1898 if (card->ext_csd.feature_support & MMC_DISCARD_FEATURE)
1899 return 1;
1900 return 0;
1901 }
1902 EXPORT_SYMBOL(mmc_can_discard);
1903
mmc_can_sanitize(struct mmc_card * card)1904 int mmc_can_sanitize(struct mmc_card *card)
1905 {
1906 if (!mmc_can_trim(card) && !mmc_can_erase(card))
1907 return 0;
1908 if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_SANITIZE)
1909 return 1;
1910 return 0;
1911 }
1912
mmc_can_secure_erase_trim(struct mmc_card * card)1913 int mmc_can_secure_erase_trim(struct mmc_card *card)
1914 {
1915 if ((card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN) &&
1916 !(card->quirks & MMC_QUIRK_SEC_ERASE_TRIM_BROKEN))
1917 return 1;
1918 return 0;
1919 }
1920 EXPORT_SYMBOL(mmc_can_secure_erase_trim);
1921
mmc_erase_group_aligned(struct mmc_card * card,unsigned int from,unsigned int nr)1922 int mmc_erase_group_aligned(struct mmc_card *card, unsigned int from,
1923 unsigned int nr)
1924 {
1925 if (!card->erase_size)
1926 return 0;
1927 if (from % card->erase_size || nr % card->erase_size)
1928 return 0;
1929 return 1;
1930 }
1931 EXPORT_SYMBOL(mmc_erase_group_aligned);
1932
mmc_do_calc_max_discard(struct mmc_card * card,unsigned int arg)1933 static unsigned int mmc_do_calc_max_discard(struct mmc_card *card,
1934 unsigned int arg)
1935 {
1936 struct mmc_host *host = card->host;
1937 unsigned int max_discard, x, y, qty = 0, max_qty, min_qty, timeout;
1938 unsigned int last_timeout = 0;
1939 unsigned int max_busy_timeout = host->max_busy_timeout ?
1940 host->max_busy_timeout : MMC_ERASE_TIMEOUT_MS;
1941
1942 if (card->erase_shift) {
1943 max_qty = UINT_MAX >> card->erase_shift;
1944 min_qty = card->pref_erase >> card->erase_shift;
1945 } else if (mmc_card_sd(card)) {
1946 max_qty = UINT_MAX;
1947 min_qty = card->pref_erase;
1948 } else {
1949 max_qty = UINT_MAX / card->erase_size;
1950 min_qty = card->pref_erase / card->erase_size;
1951 }
1952
1953 /*
1954 * We should not only use 'host->max_busy_timeout' as the limitation
1955 * when deciding the max discard sectors. We should set a balance value
1956 * to improve the erase speed, and it can not get too long timeout at
1957 * the same time.
1958 *
1959 * Here we set 'card->pref_erase' as the minimal discard sectors no
1960 * matter what size of 'host->max_busy_timeout', but if the
1961 * 'host->max_busy_timeout' is large enough for more discard sectors,
1962 * then we can continue to increase the max discard sectors until we
1963 * get a balance value. In cases when the 'host->max_busy_timeout'
1964 * isn't specified, use the default max erase timeout.
1965 */
1966 do {
1967 y = 0;
1968 for (x = 1; x && x <= max_qty && max_qty - x >= qty; x <<= 1) {
1969 timeout = mmc_erase_timeout(card, arg, qty + x);
1970
1971 if (qty + x > min_qty && timeout > max_busy_timeout)
1972 break;
1973
1974 if (timeout < last_timeout)
1975 break;
1976 last_timeout = timeout;
1977 y = x;
1978 }
1979 qty += y;
1980 } while (y);
1981
1982 if (!qty)
1983 return 0;
1984
1985 /*
1986 * When specifying a sector range to trim, chances are we might cross
1987 * an erase-group boundary even if the amount of sectors is less than
1988 * one erase-group.
1989 * If we can only fit one erase-group in the controller timeout budget,
1990 * we have to care that erase-group boundaries are not crossed by a
1991 * single trim operation. We flag that special case with "eg_boundary".
1992 * In all other cases we can just decrement qty and pretend that we
1993 * always touch (qty + 1) erase-groups as a simple optimization.
1994 */
1995 if (qty == 1)
1996 card->eg_boundary = 1;
1997 else
1998 qty--;
1999
2000 /* Convert qty to sectors */
2001 if (card->erase_shift)
2002 max_discard = qty << card->erase_shift;
2003 else if (mmc_card_sd(card))
2004 max_discard = qty + 1;
2005 else
2006 max_discard = qty * card->erase_size;
2007
2008 return max_discard;
2009 }
2010
mmc_calc_max_discard(struct mmc_card * card)2011 unsigned int mmc_calc_max_discard(struct mmc_card *card)
2012 {
2013 struct mmc_host *host = card->host;
2014 unsigned int max_discard, max_trim;
2015
2016 /*
2017 * Without erase_group_def set, MMC erase timeout depends on clock
2018 * frequence which can change. In that case, the best choice is
2019 * just the preferred erase size.
2020 */
2021 if (mmc_card_mmc(card) && !(card->ext_csd.erase_group_def & 1))
2022 return card->pref_erase;
2023
2024 max_discard = mmc_do_calc_max_discard(card, MMC_ERASE_ARG);
2025 if (mmc_can_trim(card)) {
2026 max_trim = mmc_do_calc_max_discard(card, MMC_TRIM_ARG);
2027 if (max_trim < max_discard || max_discard == 0)
2028 max_discard = max_trim;
2029 } else if (max_discard < card->erase_size) {
2030 max_discard = 0;
2031 }
2032 pr_debug("%s: calculated max. discard sectors %u for timeout %u ms\n",
2033 mmc_hostname(host), max_discard, host->max_busy_timeout ?
2034 host->max_busy_timeout : MMC_ERASE_TIMEOUT_MS);
2035 return max_discard;
2036 }
2037 EXPORT_SYMBOL(mmc_calc_max_discard);
2038
mmc_card_is_blockaddr(struct mmc_card * card)2039 bool mmc_card_is_blockaddr(struct mmc_card *card)
2040 {
2041 return card ? mmc_card_blockaddr(card) : false;
2042 }
2043 EXPORT_SYMBOL(mmc_card_is_blockaddr);
2044
mmc_set_blocklen(struct mmc_card * card,unsigned int blocklen)2045 int mmc_set_blocklen(struct mmc_card *card, unsigned int blocklen)
2046 {
2047 struct mmc_command cmd = {};
2048
2049 if (mmc_card_blockaddr(card) || mmc_card_ddr52(card) ||
2050 mmc_card_hs400(card) || mmc_card_hs400es(card))
2051 return 0;
2052
2053 cmd.opcode = MMC_SET_BLOCKLEN;
2054 cmd.arg = blocklen;
2055 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2056 return mmc_wait_for_cmd(card->host, &cmd, 5);
2057 }
2058 EXPORT_SYMBOL(mmc_set_blocklen);
2059
mmc_hw_reset_for_init(struct mmc_host * host)2060 static void mmc_hw_reset_for_init(struct mmc_host *host)
2061 {
2062 mmc_pwrseq_reset(host);
2063
2064 if (!(host->caps & MMC_CAP_HW_RESET) || !host->ops->hw_reset)
2065 return;
2066 host->ops->hw_reset(host);
2067 }
2068
2069 /**
2070 * mmc_hw_reset - reset the card in hardware
2071 * @host: MMC host to which the card is attached
2072 *
2073 * Hard reset the card. This function is only for upper layers, like the
2074 * block layer or card drivers. You cannot use it in host drivers (struct
2075 * mmc_card might be gone then).
2076 *
2077 * Return: 0 on success, -errno on failure
2078 */
mmc_hw_reset(struct mmc_host * host)2079 int mmc_hw_reset(struct mmc_host *host)
2080 {
2081 int ret;
2082
2083 if (!host->card)
2084 return -EINVAL;
2085
2086 mmc_bus_get(host);
2087 if (!host->bus_ops || host->bus_dead || !host->bus_ops->hw_reset) {
2088 mmc_bus_put(host);
2089 return -EOPNOTSUPP;
2090 }
2091
2092 ret = host->bus_ops->hw_reset(host);
2093 mmc_bus_put(host);
2094
2095 if (ret < 0)
2096 pr_warn("%s: tried to HW reset card, got error %d\n",
2097 mmc_hostname(host), ret);
2098
2099 return ret;
2100 }
2101 EXPORT_SYMBOL(mmc_hw_reset);
2102
mmc_sw_reset(struct mmc_host * host)2103 int mmc_sw_reset(struct mmc_host *host)
2104 {
2105 int ret;
2106
2107 if (!host->card)
2108 return -EINVAL;
2109
2110 mmc_bus_get(host);
2111 if (!host->bus_ops || host->bus_dead || !host->bus_ops->sw_reset) {
2112 mmc_bus_put(host);
2113 return -EOPNOTSUPP;
2114 }
2115
2116 ret = host->bus_ops->sw_reset(host);
2117 mmc_bus_put(host);
2118
2119 if (ret)
2120 pr_warn("%s: tried to SW reset card, got error %d\n",
2121 mmc_hostname(host), ret);
2122
2123 return ret;
2124 }
2125 EXPORT_SYMBOL(mmc_sw_reset);
2126
mmc_rescan_try_freq(struct mmc_host * host,unsigned freq)2127 static int mmc_rescan_try_freq(struct mmc_host *host, unsigned freq)
2128 {
2129 host->f_init = freq;
2130
2131 pr_debug("%s: %s: trying to init card at %u Hz\n",
2132 mmc_hostname(host), __func__, host->f_init);
2133
2134 mmc_power_up(host, host->ocr_avail);
2135
2136 /*
2137 * Some eMMCs (with VCCQ always on) may not be reset after power up, so
2138 * do a hardware reset if possible.
2139 */
2140 mmc_hw_reset_for_init(host);
2141
2142 /*
2143 * sdio_reset sends CMD52 to reset card. Since we do not know
2144 * if the card is being re-initialized, just send it. CMD52
2145 * should be ignored by SD/eMMC cards.
2146 * Skip it if we already know that we do not support SDIO commands
2147 */
2148 if (!(host->caps2 & MMC_CAP2_NO_SDIO))
2149 sdio_reset(host);
2150
2151 mmc_go_idle(host);
2152
2153 if (!(host->caps2 & MMC_CAP2_NO_SD))
2154 mmc_send_if_cond(host, host->ocr_avail);
2155
2156 /* Order's important: probe SDIO, then SD, then MMC */
2157 if (!(host->caps2 & MMC_CAP2_NO_SDIO))
2158 if (!mmc_attach_sdio(host))
2159 return 0;
2160
2161 if (!(host->caps2 & MMC_CAP2_NO_SD))
2162 if (!mmc_attach_sd(host))
2163 return 0;
2164
2165 if (!(host->caps2 & MMC_CAP2_NO_MMC))
2166 if (!mmc_attach_mmc(host))
2167 return 0;
2168
2169 mmc_power_off(host);
2170 return -EIO;
2171 }
2172
_mmc_detect_card_removed(struct mmc_host * host)2173 int _mmc_detect_card_removed(struct mmc_host *host)
2174 {
2175 int ret;
2176
2177 if (!host->card || mmc_card_removed(host->card))
2178 return 1;
2179
2180 ret = host->bus_ops->alive(host);
2181
2182 /*
2183 * Card detect status and alive check may be out of sync if card is
2184 * removed slowly, when card detect switch changes while card/slot
2185 * pads are still contacted in hardware (refer to "SD Card Mechanical
2186 * Addendum, Appendix C: Card Detection Switch"). So reschedule a
2187 * detect work 200ms later for this case.
2188 */
2189 if (!ret && host->ops->get_cd && !host->ops->get_cd(host)) {
2190 mmc_detect_change(host, msecs_to_jiffies(200));
2191 pr_debug("%s: card removed too slowly\n", mmc_hostname(host));
2192 }
2193
2194 if (ret) {
2195 mmc_card_set_removed(host->card);
2196 pr_debug("%s: card remove detected\n", mmc_hostname(host));
2197 }
2198
2199 return ret;
2200 }
2201
mmc_detect_card_removed(struct mmc_host * host)2202 int mmc_detect_card_removed(struct mmc_host *host)
2203 {
2204 struct mmc_card *card = host->card;
2205 int ret;
2206
2207 WARN_ON(!host->claimed);
2208
2209 if (!card)
2210 return 1;
2211
2212 if (!mmc_card_is_removable(host))
2213 return 0;
2214
2215 ret = mmc_card_removed(card);
2216 /*
2217 * The card will be considered unchanged unless we have been asked to
2218 * detect a change or host requires polling to provide card detection.
2219 */
2220 if (!host->detect_change && !(host->caps & MMC_CAP_NEEDS_POLL))
2221 return ret;
2222
2223 host->detect_change = 0;
2224 if (!ret) {
2225 ret = _mmc_detect_card_removed(host);
2226 if (ret && (host->caps & MMC_CAP_NEEDS_POLL)) {
2227 /*
2228 * Schedule a detect work as soon as possible to let a
2229 * rescan handle the card removal.
2230 */
2231 cancel_delayed_work(&host->detect);
2232 _mmc_detect_change(host, 0, false);
2233 }
2234 }
2235
2236 return ret;
2237 }
2238 EXPORT_SYMBOL(mmc_detect_card_removed);
2239
mmc_rescan(struct work_struct * work)2240 void mmc_rescan(struct work_struct *work)
2241 {
2242 struct mmc_host *host =
2243 container_of(work, struct mmc_host, detect.work);
2244 int i;
2245
2246 if (host->rescan_disable)
2247 return;
2248
2249 /* If there is a non-removable card registered, only scan once */
2250 if (!mmc_card_is_removable(host) && host->rescan_entered)
2251 return;
2252 host->rescan_entered = 1;
2253
2254 if (host->trigger_card_event && host->ops->card_event) {
2255 mmc_claim_host(host);
2256 host->ops->card_event(host);
2257 mmc_release_host(host);
2258 host->trigger_card_event = false;
2259 }
2260
2261 mmc_bus_get(host);
2262
2263 /* Verify a registered card to be functional, else remove it. */
2264 if (host->bus_ops && !host->bus_dead)
2265 host->bus_ops->detect(host);
2266
2267 host->detect_change = 0;
2268
2269 /*
2270 * Let mmc_bus_put() free the bus/bus_ops if we've found that
2271 * the card is no longer present.
2272 */
2273 mmc_bus_put(host);
2274 mmc_bus_get(host);
2275
2276 /* if there still is a card present, stop here */
2277 if (host->bus_ops != NULL) {
2278 mmc_bus_put(host);
2279 goto out;
2280 }
2281
2282 /*
2283 * Only we can add a new handler, so it's safe to
2284 * release the lock here.
2285 */
2286 mmc_bus_put(host);
2287
2288 mmc_claim_host(host);
2289 if (mmc_card_is_removable(host) && host->ops->get_cd &&
2290 host->ops->get_cd(host) == 0) {
2291 mmc_power_off(host);
2292 mmc_release_host(host);
2293 goto out;
2294 }
2295
2296 for (i = 0; i < ARRAY_SIZE(freqs); i++) {
2297 unsigned int freq = freqs[i];
2298 if (freq > host->f_max) {
2299 if (i + 1 < ARRAY_SIZE(freqs))
2300 continue;
2301 freq = host->f_max;
2302 }
2303 if (!mmc_rescan_try_freq(host, max(freq, host->f_min)))
2304 break;
2305 if (freqs[i] <= host->f_min)
2306 break;
2307 }
2308 mmc_release_host(host);
2309
2310 out:
2311 if (host->caps & MMC_CAP_NEEDS_POLL)
2312 mmc_schedule_delayed_work(&host->detect, HZ);
2313 }
2314
mmc_start_host(struct mmc_host * host)2315 void mmc_start_host(struct mmc_host *host)
2316 {
2317 host->f_init = max(min(freqs[0], host->f_max), host->f_min);
2318 host->rescan_disable = 0;
2319
2320 if (!(host->caps2 & MMC_CAP2_NO_PRESCAN_POWERUP)) {
2321 mmc_claim_host(host);
2322 mmc_power_up(host, host->ocr_avail);
2323 mmc_release_host(host);
2324 }
2325
2326 mmc_gpiod_request_cd_irq(host);
2327 _mmc_detect_change(host, 0, false);
2328 }
2329
__mmc_stop_host(struct mmc_host * host)2330 void __mmc_stop_host(struct mmc_host *host)
2331 {
2332 if (host->slot.cd_irq >= 0) {
2333 mmc_gpio_set_cd_wake(host, false);
2334 disable_irq(host->slot.cd_irq);
2335 }
2336
2337 host->rescan_disable = 1;
2338 cancel_delayed_work_sync(&host->detect);
2339 }
2340
mmc_stop_host(struct mmc_host * host)2341 void mmc_stop_host(struct mmc_host *host)
2342 {
2343 __mmc_stop_host(host);
2344
2345 /* clear pm flags now and let card drivers set them as needed */
2346 host->pm_flags = 0;
2347
2348 mmc_bus_get(host);
2349 if (host->bus_ops && !host->bus_dead) {
2350 /* Calling bus_ops->remove() with a claimed host can deadlock */
2351 host->bus_ops->remove(host);
2352 mmc_claim_host(host);
2353 mmc_detach_bus(host);
2354 mmc_power_off(host);
2355 mmc_release_host(host);
2356 mmc_bus_put(host);
2357 return;
2358 }
2359 mmc_bus_put(host);
2360
2361 mmc_claim_host(host);
2362 mmc_power_off(host);
2363 mmc_release_host(host);
2364 }
2365
mmc_init(void)2366 static int __init mmc_init(void)
2367 {
2368 int ret;
2369
2370 ret = mmc_register_bus();
2371 if (ret)
2372 return ret;
2373
2374 ret = mmc_register_host_class();
2375 if (ret)
2376 goto unregister_bus;
2377
2378 ret = sdio_register_bus();
2379 if (ret)
2380 goto unregister_host_class;
2381
2382 return 0;
2383
2384 unregister_host_class:
2385 mmc_unregister_host_class();
2386 unregister_bus:
2387 mmc_unregister_bus();
2388 return ret;
2389 }
2390
mmc_exit(void)2391 static void __exit mmc_exit(void)
2392 {
2393 sdio_unregister_bus();
2394 mmc_unregister_host_class();
2395 mmc_unregister_bus();
2396 }
2397
2398 subsys_initcall(mmc_init);
2399 module_exit(mmc_exit);
2400
2401 MODULE_LICENSE("GPL");
2402