1 /* SPDX-License-Identifier: GPL-2.0-only */
2 #ifndef __KVM_HOST_H
3 #define __KVM_HOST_H
4
5
6 #include <linux/types.h>
7 #include <linux/hardirq.h>
8 #include <linux/list.h>
9 #include <linux/mutex.h>
10 #include <linux/spinlock.h>
11 #include <linux/signal.h>
12 #include <linux/sched.h>
13 #include <linux/bug.h>
14 #include <linux/mm.h>
15 #include <linux/mmu_notifier.h>
16 #include <linux/preempt.h>
17 #include <linux/msi.h>
18 #include <linux/slab.h>
19 #include <linux/vmalloc.h>
20 #include <linux/rcupdate.h>
21 #include <linux/ratelimit.h>
22 #include <linux/err.h>
23 #include <linux/irqflags.h>
24 #include <linux/context_tracking.h>
25 #include <linux/irqbypass.h>
26 #include <linux/rcuwait.h>
27 #include <linux/refcount.h>
28 #include <linux/nospec.h>
29 #include <asm/signal.h>
30
31 #include <linux/kvm.h>
32 #include <linux/kvm_para.h>
33
34 #include <linux/kvm_types.h>
35
36 #include <asm/kvm_host.h>
37
38 #ifndef KVM_MAX_VCPU_ID
39 #define KVM_MAX_VCPU_ID KVM_MAX_VCPUS
40 #endif
41
42 /*
43 * The bit 16 ~ bit 31 of kvm_memory_region::flags are internally used
44 * in kvm, other bits are visible for userspace which are defined in
45 * include/linux/kvm_h.
46 */
47 #define KVM_MEMSLOT_INVALID (1UL << 16)
48
49 /*
50 * Bit 63 of the memslot generation number is an "update in-progress flag",
51 * e.g. is temporarily set for the duration of install_new_memslots().
52 * This flag effectively creates a unique generation number that is used to
53 * mark cached memslot data, e.g. MMIO accesses, as potentially being stale,
54 * i.e. may (or may not) have come from the previous memslots generation.
55 *
56 * This is necessary because the actual memslots update is not atomic with
57 * respect to the generation number update. Updating the generation number
58 * first would allow a vCPU to cache a spte from the old memslots using the
59 * new generation number, and updating the generation number after switching
60 * to the new memslots would allow cache hits using the old generation number
61 * to reference the defunct memslots.
62 *
63 * This mechanism is used to prevent getting hits in KVM's caches while a
64 * memslot update is in-progress, and to prevent cache hits *after* updating
65 * the actual generation number against accesses that were inserted into the
66 * cache *before* the memslots were updated.
67 */
68 #define KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS BIT_ULL(63)
69
70 /* Two fragments for cross MMIO pages. */
71 #define KVM_MAX_MMIO_FRAGMENTS 2
72
73 #ifndef KVM_ADDRESS_SPACE_NUM
74 #define KVM_ADDRESS_SPACE_NUM 1
75 #endif
76
77 /*
78 * For the normal pfn, the highest 12 bits should be zero,
79 * so we can mask bit 62 ~ bit 52 to indicate the error pfn,
80 * mask bit 63 to indicate the noslot pfn.
81 */
82 #define KVM_PFN_ERR_MASK (0x7ffULL << 52)
83 #define KVM_PFN_ERR_NOSLOT_MASK (0xfffULL << 52)
84 #define KVM_PFN_NOSLOT (0x1ULL << 63)
85
86 #define KVM_PFN_ERR_FAULT (KVM_PFN_ERR_MASK)
87 #define KVM_PFN_ERR_HWPOISON (KVM_PFN_ERR_MASK + 1)
88 #define KVM_PFN_ERR_RO_FAULT (KVM_PFN_ERR_MASK + 2)
89
90 /*
91 * error pfns indicate that the gfn is in slot but faild to
92 * translate it to pfn on host.
93 */
is_error_pfn(kvm_pfn_t pfn)94 static inline bool is_error_pfn(kvm_pfn_t pfn)
95 {
96 return !!(pfn & KVM_PFN_ERR_MASK);
97 }
98
99 /*
100 * error_noslot pfns indicate that the gfn can not be
101 * translated to pfn - it is not in slot or failed to
102 * translate it to pfn.
103 */
is_error_noslot_pfn(kvm_pfn_t pfn)104 static inline bool is_error_noslot_pfn(kvm_pfn_t pfn)
105 {
106 return !!(pfn & KVM_PFN_ERR_NOSLOT_MASK);
107 }
108
109 /* noslot pfn indicates that the gfn is not in slot. */
is_noslot_pfn(kvm_pfn_t pfn)110 static inline bool is_noslot_pfn(kvm_pfn_t pfn)
111 {
112 return pfn == KVM_PFN_NOSLOT;
113 }
114
115 /*
116 * architectures with KVM_HVA_ERR_BAD other than PAGE_OFFSET (e.g. s390)
117 * provide own defines and kvm_is_error_hva
118 */
119 #ifndef KVM_HVA_ERR_BAD
120
121 #define KVM_HVA_ERR_BAD (PAGE_OFFSET)
122 #define KVM_HVA_ERR_RO_BAD (PAGE_OFFSET + PAGE_SIZE)
123
kvm_is_error_hva(unsigned long addr)124 static inline bool kvm_is_error_hva(unsigned long addr)
125 {
126 return addr >= PAGE_OFFSET;
127 }
128
129 #endif
130
131 #define KVM_ERR_PTR_BAD_PAGE (ERR_PTR(-ENOENT))
132
is_error_page(struct page * page)133 static inline bool is_error_page(struct page *page)
134 {
135 return IS_ERR(page);
136 }
137
138 #define KVM_REQUEST_MASK GENMASK(7,0)
139 #define KVM_REQUEST_NO_WAKEUP BIT(8)
140 #define KVM_REQUEST_WAIT BIT(9)
141 /*
142 * Architecture-independent vcpu->requests bit members
143 * Bits 4-7 are reserved for more arch-independent bits.
144 */
145 #define KVM_REQ_TLB_FLUSH (0 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
146 #define KVM_REQ_MMU_RELOAD (1 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
147 #define KVM_REQ_PENDING_TIMER 2
148 #define KVM_REQ_UNHALT 3
149 #define KVM_REQUEST_ARCH_BASE 8
150
151 #define KVM_ARCH_REQ_FLAGS(nr, flags) ({ \
152 BUILD_BUG_ON((unsigned)(nr) >= (sizeof_field(struct kvm_vcpu, requests) * 8) - KVM_REQUEST_ARCH_BASE); \
153 (unsigned)(((nr) + KVM_REQUEST_ARCH_BASE) | (flags)); \
154 })
155 #define KVM_ARCH_REQ(nr) KVM_ARCH_REQ_FLAGS(nr, 0)
156
157 #define KVM_USERSPACE_IRQ_SOURCE_ID 0
158 #define KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID 1
159
160 extern struct mutex kvm_lock;
161 extern struct list_head vm_list;
162
163 struct kvm_io_range {
164 gpa_t addr;
165 int len;
166 struct kvm_io_device *dev;
167 };
168
169 #define NR_IOBUS_DEVS 1000
170
171 struct kvm_io_bus {
172 int dev_count;
173 int ioeventfd_count;
174 struct kvm_io_range range[];
175 };
176
177 enum kvm_bus {
178 KVM_MMIO_BUS,
179 KVM_PIO_BUS,
180 KVM_VIRTIO_CCW_NOTIFY_BUS,
181 KVM_FAST_MMIO_BUS,
182 KVM_NR_BUSES
183 };
184
185 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
186 int len, const void *val);
187 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
188 gpa_t addr, int len, const void *val, long cookie);
189 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
190 int len, void *val);
191 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
192 int len, struct kvm_io_device *dev);
193 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
194 struct kvm_io_device *dev);
195 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
196 gpa_t addr);
197
198 #ifdef CONFIG_KVM_ASYNC_PF
199 struct kvm_async_pf {
200 struct work_struct work;
201 struct list_head link;
202 struct list_head queue;
203 struct kvm_vcpu *vcpu;
204 struct mm_struct *mm;
205 gpa_t cr2_or_gpa;
206 unsigned long addr;
207 struct kvm_arch_async_pf arch;
208 bool wakeup_all;
209 bool notpresent_injected;
210 };
211
212 void kvm_clear_async_pf_completion_queue(struct kvm_vcpu *vcpu);
213 void kvm_check_async_pf_completion(struct kvm_vcpu *vcpu);
214 bool kvm_setup_async_pf(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
215 unsigned long hva, struct kvm_arch_async_pf *arch);
216 int kvm_async_pf_wakeup_all(struct kvm_vcpu *vcpu);
217 #endif
218
219 enum {
220 OUTSIDE_GUEST_MODE,
221 IN_GUEST_MODE,
222 EXITING_GUEST_MODE,
223 READING_SHADOW_PAGE_TABLES,
224 };
225
226 #define KVM_UNMAPPED_PAGE ((void *) 0x500 + POISON_POINTER_DELTA)
227
228 struct kvm_host_map {
229 /*
230 * Only valid if the 'pfn' is managed by the host kernel (i.e. There is
231 * a 'struct page' for it. When using mem= kernel parameter some memory
232 * can be used as guest memory but they are not managed by host
233 * kernel).
234 * If 'pfn' is not managed by the host kernel, this field is
235 * initialized to KVM_UNMAPPED_PAGE.
236 */
237 struct page *page;
238 void *hva;
239 kvm_pfn_t pfn;
240 kvm_pfn_t gfn;
241 };
242
243 /*
244 * Used to check if the mapping is valid or not. Never use 'kvm_host_map'
245 * directly to check for that.
246 */
kvm_vcpu_mapped(struct kvm_host_map * map)247 static inline bool kvm_vcpu_mapped(struct kvm_host_map *map)
248 {
249 return !!map->hva;
250 }
251
252 /*
253 * Sometimes a large or cross-page mmio needs to be broken up into separate
254 * exits for userspace servicing.
255 */
256 struct kvm_mmio_fragment {
257 gpa_t gpa;
258 void *data;
259 unsigned len;
260 };
261
262 struct kvm_vcpu {
263 struct kvm *kvm;
264 #ifdef CONFIG_PREEMPT_NOTIFIERS
265 struct preempt_notifier preempt_notifier;
266 #endif
267 int cpu;
268 int vcpu_id; /* id given by userspace at creation */
269 int vcpu_idx; /* index in kvm->vcpus array */
270 int srcu_idx;
271 int mode;
272 u64 requests;
273 unsigned long guest_debug;
274
275 int pre_pcpu;
276 struct list_head blocked_vcpu_list;
277
278 struct mutex mutex;
279 struct kvm_run *run;
280
281 struct rcuwait wait;
282 struct pid __rcu *pid;
283 int sigset_active;
284 sigset_t sigset;
285 struct kvm_vcpu_stat stat;
286 unsigned int halt_poll_ns;
287 bool valid_wakeup;
288
289 #ifdef CONFIG_HAS_IOMEM
290 int mmio_needed;
291 int mmio_read_completed;
292 int mmio_is_write;
293 int mmio_cur_fragment;
294 int mmio_nr_fragments;
295 struct kvm_mmio_fragment mmio_fragments[KVM_MAX_MMIO_FRAGMENTS];
296 #endif
297
298 #ifdef CONFIG_KVM_ASYNC_PF
299 struct {
300 u32 queued;
301 struct list_head queue;
302 struct list_head done;
303 spinlock_t lock;
304 } async_pf;
305 #endif
306
307 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
308 /*
309 * Cpu relax intercept or pause loop exit optimization
310 * in_spin_loop: set when a vcpu does a pause loop exit
311 * or cpu relax intercepted.
312 * dy_eligible: indicates whether vcpu is eligible for directed yield.
313 */
314 struct {
315 bool in_spin_loop;
316 bool dy_eligible;
317 } spin_loop;
318 #endif
319 bool preempted;
320 bool ready;
321 struct kvm_vcpu_arch arch;
322 };
323
kvm_vcpu_exiting_guest_mode(struct kvm_vcpu * vcpu)324 static inline int kvm_vcpu_exiting_guest_mode(struct kvm_vcpu *vcpu)
325 {
326 /*
327 * The memory barrier ensures a previous write to vcpu->requests cannot
328 * be reordered with the read of vcpu->mode. It pairs with the general
329 * memory barrier following the write of vcpu->mode in VCPU RUN.
330 */
331 smp_mb__before_atomic();
332 return cmpxchg(&vcpu->mode, IN_GUEST_MODE, EXITING_GUEST_MODE);
333 }
334
335 /*
336 * Some of the bitops functions do not support too long bitmaps.
337 * This number must be determined not to exceed such limits.
338 */
339 #define KVM_MEM_MAX_NR_PAGES ((1UL << 31) - 1)
340
341 struct kvm_memory_slot {
342 gfn_t base_gfn;
343 unsigned long npages;
344 unsigned long *dirty_bitmap;
345 struct kvm_arch_memory_slot arch;
346 unsigned long userspace_addr;
347 u32 flags;
348 short id;
349 u16 as_id;
350 };
351
kvm_dirty_bitmap_bytes(struct kvm_memory_slot * memslot)352 static inline unsigned long kvm_dirty_bitmap_bytes(struct kvm_memory_slot *memslot)
353 {
354 return ALIGN(memslot->npages, BITS_PER_LONG) / 8;
355 }
356
kvm_second_dirty_bitmap(struct kvm_memory_slot * memslot)357 static inline unsigned long *kvm_second_dirty_bitmap(struct kvm_memory_slot *memslot)
358 {
359 unsigned long len = kvm_dirty_bitmap_bytes(memslot);
360
361 return memslot->dirty_bitmap + len / sizeof(*memslot->dirty_bitmap);
362 }
363
364 #ifndef KVM_DIRTY_LOG_MANUAL_CAPS
365 #define KVM_DIRTY_LOG_MANUAL_CAPS KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE
366 #endif
367
368 struct kvm_s390_adapter_int {
369 u64 ind_addr;
370 u64 summary_addr;
371 u64 ind_offset;
372 u32 summary_offset;
373 u32 adapter_id;
374 };
375
376 struct kvm_hv_sint {
377 u32 vcpu;
378 u32 sint;
379 };
380
381 struct kvm_kernel_irq_routing_entry {
382 u32 gsi;
383 u32 type;
384 int (*set)(struct kvm_kernel_irq_routing_entry *e,
385 struct kvm *kvm, int irq_source_id, int level,
386 bool line_status);
387 union {
388 struct {
389 unsigned irqchip;
390 unsigned pin;
391 } irqchip;
392 struct {
393 u32 address_lo;
394 u32 address_hi;
395 u32 data;
396 u32 flags;
397 u32 devid;
398 } msi;
399 struct kvm_s390_adapter_int adapter;
400 struct kvm_hv_sint hv_sint;
401 };
402 struct hlist_node link;
403 };
404
405 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
406 struct kvm_irq_routing_table {
407 int chip[KVM_NR_IRQCHIPS][KVM_IRQCHIP_NUM_PINS];
408 u32 nr_rt_entries;
409 /*
410 * Array indexed by gsi. Each entry contains list of irq chips
411 * the gsi is connected to.
412 */
413 struct hlist_head map[];
414 };
415 #endif
416
417 #ifndef KVM_PRIVATE_MEM_SLOTS
418 #define KVM_PRIVATE_MEM_SLOTS 0
419 #endif
420
421 #ifndef KVM_MEM_SLOTS_NUM
422 #define KVM_MEM_SLOTS_NUM (KVM_USER_MEM_SLOTS + KVM_PRIVATE_MEM_SLOTS)
423 #endif
424
425 #ifndef __KVM_VCPU_MULTIPLE_ADDRESS_SPACE
kvm_arch_vcpu_memslots_id(struct kvm_vcpu * vcpu)426 static inline int kvm_arch_vcpu_memslots_id(struct kvm_vcpu *vcpu)
427 {
428 return 0;
429 }
430 #endif
431
432 /*
433 * Note:
434 * memslots are not sorted by id anymore, please use id_to_memslot()
435 * to get the memslot by its id.
436 */
437 struct kvm_memslots {
438 u64 generation;
439 /* The mapping table from slot id to the index in memslots[]. */
440 short id_to_index[KVM_MEM_SLOTS_NUM];
441 atomic_t lru_slot;
442 int used_slots;
443 struct kvm_memory_slot memslots[];
444 };
445
446 struct kvm {
447 spinlock_t mmu_lock;
448 struct mutex slots_lock;
449 struct mm_struct *mm; /* userspace tied to this vm */
450 struct kvm_memslots __rcu *memslots[KVM_ADDRESS_SPACE_NUM];
451 struct kvm_vcpu *vcpus[KVM_MAX_VCPUS];
452
453 /*
454 * created_vcpus is protected by kvm->lock, and is incremented
455 * at the beginning of KVM_CREATE_VCPU. online_vcpus is only
456 * incremented after storing the kvm_vcpu pointer in vcpus,
457 * and is accessed atomically.
458 */
459 atomic_t online_vcpus;
460 int created_vcpus;
461 int last_boosted_vcpu;
462 struct list_head vm_list;
463 struct mutex lock;
464 struct kvm_io_bus __rcu *buses[KVM_NR_BUSES];
465 #ifdef CONFIG_HAVE_KVM_EVENTFD
466 struct {
467 spinlock_t lock;
468 struct list_head items;
469 struct list_head resampler_list;
470 struct mutex resampler_lock;
471 } irqfds;
472 struct list_head ioeventfds;
473 #endif
474 struct kvm_vm_stat stat;
475 struct kvm_arch arch;
476 refcount_t users_count;
477 #ifdef CONFIG_KVM_MMIO
478 struct kvm_coalesced_mmio_ring *coalesced_mmio_ring;
479 spinlock_t ring_lock;
480 struct list_head coalesced_zones;
481 #endif
482
483 struct mutex irq_lock;
484 #ifdef CONFIG_HAVE_KVM_IRQCHIP
485 /*
486 * Update side is protected by irq_lock.
487 */
488 struct kvm_irq_routing_table __rcu *irq_routing;
489 #endif
490 #ifdef CONFIG_HAVE_KVM_IRQFD
491 struct hlist_head irq_ack_notifier_list;
492 #endif
493
494 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
495 struct mmu_notifier mmu_notifier;
496 unsigned long mmu_notifier_seq;
497 long mmu_notifier_count;
498 #endif
499 long tlbs_dirty;
500 struct list_head devices;
501 u64 manual_dirty_log_protect;
502 struct dentry *debugfs_dentry;
503 struct kvm_stat_data **debugfs_stat_data;
504 struct srcu_struct srcu;
505 struct srcu_struct irq_srcu;
506 pid_t userspace_pid;
507 unsigned int max_halt_poll_ns;
508 };
509
510 #define kvm_err(fmt, ...) \
511 pr_err("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__)
512 #define kvm_info(fmt, ...) \
513 pr_info("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__)
514 #define kvm_debug(fmt, ...) \
515 pr_debug("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__)
516 #define kvm_debug_ratelimited(fmt, ...) \
517 pr_debug_ratelimited("kvm [%i]: " fmt, task_pid_nr(current), \
518 ## __VA_ARGS__)
519 #define kvm_pr_unimpl(fmt, ...) \
520 pr_err_ratelimited("kvm [%i]: " fmt, \
521 task_tgid_nr(current), ## __VA_ARGS__)
522
523 /* The guest did something we don't support. */
524 #define vcpu_unimpl(vcpu, fmt, ...) \
525 kvm_pr_unimpl("vcpu%i, guest rIP: 0x%lx " fmt, \
526 (vcpu)->vcpu_id, kvm_rip_read(vcpu), ## __VA_ARGS__)
527
528 #define vcpu_debug(vcpu, fmt, ...) \
529 kvm_debug("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__)
530 #define vcpu_debug_ratelimited(vcpu, fmt, ...) \
531 kvm_debug_ratelimited("vcpu%i " fmt, (vcpu)->vcpu_id, \
532 ## __VA_ARGS__)
533 #define vcpu_err(vcpu, fmt, ...) \
534 kvm_err("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__)
535
kvm_dirty_log_manual_protect_and_init_set(struct kvm * kvm)536 static inline bool kvm_dirty_log_manual_protect_and_init_set(struct kvm *kvm)
537 {
538 return !!(kvm->manual_dirty_log_protect & KVM_DIRTY_LOG_INITIALLY_SET);
539 }
540
kvm_get_bus(struct kvm * kvm,enum kvm_bus idx)541 static inline struct kvm_io_bus *kvm_get_bus(struct kvm *kvm, enum kvm_bus idx)
542 {
543 return srcu_dereference_check(kvm->buses[idx], &kvm->srcu,
544 lockdep_is_held(&kvm->slots_lock) ||
545 !refcount_read(&kvm->users_count));
546 }
547
kvm_get_vcpu(struct kvm * kvm,int i)548 static inline struct kvm_vcpu *kvm_get_vcpu(struct kvm *kvm, int i)
549 {
550 int num_vcpus = atomic_read(&kvm->online_vcpus);
551 i = array_index_nospec(i, num_vcpus);
552
553 /* Pairs with smp_wmb() in kvm_vm_ioctl_create_vcpu. */
554 smp_rmb();
555 return kvm->vcpus[i];
556 }
557
558 #define kvm_for_each_vcpu(idx, vcpup, kvm) \
559 for (idx = 0; \
560 idx < atomic_read(&kvm->online_vcpus) && \
561 (vcpup = kvm_get_vcpu(kvm, idx)) != NULL; \
562 idx++)
563
kvm_get_vcpu_by_id(struct kvm * kvm,int id)564 static inline struct kvm_vcpu *kvm_get_vcpu_by_id(struct kvm *kvm, int id)
565 {
566 struct kvm_vcpu *vcpu = NULL;
567 int i;
568
569 if (id < 0)
570 return NULL;
571 if (id < KVM_MAX_VCPUS)
572 vcpu = kvm_get_vcpu(kvm, id);
573 if (vcpu && vcpu->vcpu_id == id)
574 return vcpu;
575 kvm_for_each_vcpu(i, vcpu, kvm)
576 if (vcpu->vcpu_id == id)
577 return vcpu;
578 return NULL;
579 }
580
kvm_vcpu_get_idx(struct kvm_vcpu * vcpu)581 static inline int kvm_vcpu_get_idx(struct kvm_vcpu *vcpu)
582 {
583 return vcpu->vcpu_idx;
584 }
585
586 #define kvm_for_each_memslot(memslot, slots) \
587 for (memslot = &slots->memslots[0]; \
588 memslot < slots->memslots + slots->used_slots; memslot++) \
589 if (WARN_ON_ONCE(!memslot->npages)) { \
590 } else
591
592 void kvm_vcpu_destroy(struct kvm_vcpu *vcpu);
593
594 void vcpu_load(struct kvm_vcpu *vcpu);
595 void vcpu_put(struct kvm_vcpu *vcpu);
596
597 #ifdef __KVM_HAVE_IOAPIC
598 void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm);
599 void kvm_arch_post_irq_routing_update(struct kvm *kvm);
600 #else
kvm_arch_post_irq_ack_notifier_list_update(struct kvm * kvm)601 static inline void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm)
602 {
603 }
kvm_arch_post_irq_routing_update(struct kvm * kvm)604 static inline void kvm_arch_post_irq_routing_update(struct kvm *kvm)
605 {
606 }
607 #endif
608
609 #ifdef CONFIG_HAVE_KVM_IRQFD
610 int kvm_irqfd_init(void);
611 void kvm_irqfd_exit(void);
612 #else
kvm_irqfd_init(void)613 static inline int kvm_irqfd_init(void)
614 {
615 return 0;
616 }
617
kvm_irqfd_exit(void)618 static inline void kvm_irqfd_exit(void)
619 {
620 }
621 #endif
622 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
623 struct module *module);
624 void kvm_exit(void);
625
626 void kvm_get_kvm(struct kvm *kvm);
627 void kvm_put_kvm(struct kvm *kvm);
628 void kvm_put_kvm_no_destroy(struct kvm *kvm);
629
__kvm_memslots(struct kvm * kvm,int as_id)630 static inline struct kvm_memslots *__kvm_memslots(struct kvm *kvm, int as_id)
631 {
632 as_id = array_index_nospec(as_id, KVM_ADDRESS_SPACE_NUM);
633 return srcu_dereference_check(kvm->memslots[as_id], &kvm->srcu,
634 lockdep_is_held(&kvm->slots_lock) ||
635 !refcount_read(&kvm->users_count));
636 }
637
kvm_memslots(struct kvm * kvm)638 static inline struct kvm_memslots *kvm_memslots(struct kvm *kvm)
639 {
640 return __kvm_memslots(kvm, 0);
641 }
642
kvm_vcpu_memslots(struct kvm_vcpu * vcpu)643 static inline struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu)
644 {
645 int as_id = kvm_arch_vcpu_memslots_id(vcpu);
646
647 return __kvm_memslots(vcpu->kvm, as_id);
648 }
649
650 static inline
id_to_memslot(struct kvm_memslots * slots,int id)651 struct kvm_memory_slot *id_to_memslot(struct kvm_memslots *slots, int id)
652 {
653 int index = slots->id_to_index[id];
654 struct kvm_memory_slot *slot;
655
656 if (index < 0)
657 return NULL;
658
659 slot = &slots->memslots[index];
660
661 WARN_ON(slot->id != id);
662 return slot;
663 }
664
665 /*
666 * KVM_SET_USER_MEMORY_REGION ioctl allows the following operations:
667 * - create a new memory slot
668 * - delete an existing memory slot
669 * - modify an existing memory slot
670 * -- move it in the guest physical memory space
671 * -- just change its flags
672 *
673 * Since flags can be changed by some of these operations, the following
674 * differentiation is the best we can do for __kvm_set_memory_region():
675 */
676 enum kvm_mr_change {
677 KVM_MR_CREATE,
678 KVM_MR_DELETE,
679 KVM_MR_MOVE,
680 KVM_MR_FLAGS_ONLY,
681 };
682
683 int kvm_set_memory_region(struct kvm *kvm,
684 const struct kvm_userspace_memory_region *mem);
685 int __kvm_set_memory_region(struct kvm *kvm,
686 const struct kvm_userspace_memory_region *mem);
687 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot);
688 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen);
689 int kvm_arch_prepare_memory_region(struct kvm *kvm,
690 struct kvm_memory_slot *memslot,
691 const struct kvm_userspace_memory_region *mem,
692 enum kvm_mr_change change);
693 void kvm_arch_commit_memory_region(struct kvm *kvm,
694 const struct kvm_userspace_memory_region *mem,
695 struct kvm_memory_slot *old,
696 const struct kvm_memory_slot *new,
697 enum kvm_mr_change change);
698 /* flush all memory translations */
699 void kvm_arch_flush_shadow_all(struct kvm *kvm);
700 /* flush memory translations pointing to 'slot' */
701 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
702 struct kvm_memory_slot *slot);
703
704 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
705 struct page **pages, int nr_pages);
706
707 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn);
708 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn);
709 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable);
710 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot, gfn_t gfn);
711 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot, gfn_t gfn,
712 bool *writable);
713 void kvm_release_page_clean(struct page *page);
714 void kvm_release_page_dirty(struct page *page);
715 void kvm_set_page_accessed(struct page *page);
716
717 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn);
718 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
719 bool *writable);
720 kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn);
721 kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn);
722 kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn,
723 bool atomic, bool *async, bool write_fault,
724 bool *writable);
725
726 void kvm_release_pfn_clean(kvm_pfn_t pfn);
727 void kvm_release_pfn_dirty(kvm_pfn_t pfn);
728 void kvm_set_pfn_dirty(kvm_pfn_t pfn);
729 void kvm_set_pfn_accessed(kvm_pfn_t pfn);
730 void kvm_get_pfn(kvm_pfn_t pfn);
731
732 void kvm_release_pfn(kvm_pfn_t pfn, bool dirty, struct gfn_to_pfn_cache *cache);
733 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
734 int len);
735 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len);
736 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
737 void *data, unsigned long len);
738 int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
739 void *data, unsigned int offset,
740 unsigned long len);
741 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
742 int offset, int len);
743 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
744 unsigned long len);
745 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
746 void *data, unsigned long len);
747 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
748 void *data, unsigned int offset,
749 unsigned long len);
750 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
751 gpa_t gpa, unsigned long len);
752
753 #define __kvm_get_guest(kvm, gfn, offset, v) \
754 ({ \
755 unsigned long __addr = gfn_to_hva(kvm, gfn); \
756 typeof(v) __user *__uaddr = (typeof(__uaddr))(__addr + offset); \
757 int __ret = -EFAULT; \
758 \
759 if (!kvm_is_error_hva(__addr)) \
760 __ret = get_user(v, __uaddr); \
761 __ret; \
762 })
763
764 #define kvm_get_guest(kvm, gpa, v) \
765 ({ \
766 gpa_t __gpa = gpa; \
767 struct kvm *__kvm = kvm; \
768 \
769 __kvm_get_guest(__kvm, __gpa >> PAGE_SHIFT, \
770 offset_in_page(__gpa), v); \
771 })
772
773 #define __kvm_put_guest(kvm, gfn, offset, v) \
774 ({ \
775 unsigned long __addr = gfn_to_hva(kvm, gfn); \
776 typeof(v) __user *__uaddr = (typeof(__uaddr))(__addr + offset); \
777 int __ret = -EFAULT; \
778 \
779 if (!kvm_is_error_hva(__addr)) \
780 __ret = put_user(v, __uaddr); \
781 if (!__ret) \
782 mark_page_dirty(kvm, gfn); \
783 __ret; \
784 })
785
786 #define kvm_put_guest(kvm, gpa, v) \
787 ({ \
788 gpa_t __gpa = gpa; \
789 struct kvm *__kvm = kvm; \
790 \
791 __kvm_put_guest(__kvm, __gpa >> PAGE_SHIFT, \
792 offset_in_page(__gpa), v); \
793 })
794
795 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len);
796 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len);
797 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn);
798 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn);
799 bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn);
800 unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn);
801 void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, gfn_t gfn);
802 void mark_page_dirty(struct kvm *kvm, gfn_t gfn);
803
804 struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu);
805 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn);
806 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn);
807 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn);
808 int kvm_vcpu_map(struct kvm_vcpu *vcpu, gpa_t gpa, struct kvm_host_map *map);
809 int kvm_map_gfn(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map,
810 struct gfn_to_pfn_cache *cache, bool atomic);
811 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn);
812 void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty);
813 int kvm_unmap_gfn(struct kvm_vcpu *vcpu, struct kvm_host_map *map,
814 struct gfn_to_pfn_cache *cache, bool dirty, bool atomic);
815 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn);
816 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable);
817 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data, int offset,
818 int len);
819 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa, void *data,
820 unsigned long len);
821 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data,
822 unsigned long len);
823 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, const void *data,
824 int offset, int len);
825 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
826 unsigned long len);
827 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn);
828
829 void kvm_sigset_activate(struct kvm_vcpu *vcpu);
830 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu);
831
832 void kvm_vcpu_block(struct kvm_vcpu *vcpu);
833 void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu);
834 void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu);
835 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu);
836 void kvm_vcpu_kick(struct kvm_vcpu *vcpu);
837 int kvm_vcpu_yield_to(struct kvm_vcpu *target);
838 void kvm_vcpu_on_spin(struct kvm_vcpu *vcpu, bool usermode_vcpu_not_eligible);
839
840 void kvm_flush_remote_tlbs(struct kvm *kvm);
841 void kvm_reload_remote_mmus(struct kvm *kvm);
842
843 #ifdef KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE
844 int kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int min);
845 int kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache *mc);
846 void kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc);
847 void *kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc);
848 #endif
849
850 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
851 struct kvm_vcpu *except,
852 unsigned long *vcpu_bitmap, cpumask_var_t tmp);
853 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req);
854 bool kvm_make_all_cpus_request_except(struct kvm *kvm, unsigned int req,
855 struct kvm_vcpu *except);
856 bool kvm_make_cpus_request_mask(struct kvm *kvm, unsigned int req,
857 unsigned long *vcpu_bitmap);
858
859 long kvm_arch_dev_ioctl(struct file *filp,
860 unsigned int ioctl, unsigned long arg);
861 long kvm_arch_vcpu_ioctl(struct file *filp,
862 unsigned int ioctl, unsigned long arg);
863 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf);
864
865 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext);
866
867 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
868 struct kvm_memory_slot *slot,
869 gfn_t gfn_offset,
870 unsigned long mask);
871 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot);
872
873 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
874 void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm,
875 struct kvm_memory_slot *memslot);
876 #else /* !CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
877 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log);
878 int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log,
879 int *is_dirty, struct kvm_memory_slot **memslot);
880 #endif
881
882 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
883 bool line_status);
884 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
885 struct kvm_enable_cap *cap);
886 long kvm_arch_vm_ioctl(struct file *filp,
887 unsigned int ioctl, unsigned long arg);
888
889 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu);
890 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu);
891
892 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
893 struct kvm_translation *tr);
894
895 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs);
896 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs);
897 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
898 struct kvm_sregs *sregs);
899 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
900 struct kvm_sregs *sregs);
901 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
902 struct kvm_mp_state *mp_state);
903 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
904 struct kvm_mp_state *mp_state);
905 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
906 struct kvm_guest_debug *dbg);
907 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu);
908
909 int kvm_arch_init(void *opaque);
910 void kvm_arch_exit(void);
911
912 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu);
913
914 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu);
915 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu);
916 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id);
917 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu);
918 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu);
919 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu);
920
921 #ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS
922 void kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu, struct dentry *debugfs_dentry);
923 #endif
924
925 int kvm_arch_hardware_enable(void);
926 void kvm_arch_hardware_disable(void);
927 int kvm_arch_hardware_setup(void *opaque);
928 void kvm_arch_hardware_unsetup(void);
929 int kvm_arch_check_processor_compat(void *opaque);
930 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu);
931 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu);
932 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu);
933 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu);
934 int kvm_arch_post_init_vm(struct kvm *kvm);
935 void kvm_arch_pre_destroy_vm(struct kvm *kvm);
936
937 #ifndef __KVM_HAVE_ARCH_VM_ALLOC
938 /*
939 * All architectures that want to use vzalloc currently also
940 * need their own kvm_arch_alloc_vm implementation.
941 */
kvm_arch_alloc_vm(void)942 static inline struct kvm *kvm_arch_alloc_vm(void)
943 {
944 return kzalloc(sizeof(struct kvm), GFP_KERNEL);
945 }
946
kvm_arch_free_vm(struct kvm * kvm)947 static inline void kvm_arch_free_vm(struct kvm *kvm)
948 {
949 kfree(kvm);
950 }
951 #endif
952
953 #ifndef __KVM_HAVE_ARCH_FLUSH_REMOTE_TLB
kvm_arch_flush_remote_tlb(struct kvm * kvm)954 static inline int kvm_arch_flush_remote_tlb(struct kvm *kvm)
955 {
956 return -ENOTSUPP;
957 }
958 #endif
959
960 #ifdef __KVM_HAVE_ARCH_NONCOHERENT_DMA
961 void kvm_arch_register_noncoherent_dma(struct kvm *kvm);
962 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm);
963 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm);
964 #else
kvm_arch_register_noncoherent_dma(struct kvm * kvm)965 static inline void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
966 {
967 }
968
kvm_arch_unregister_noncoherent_dma(struct kvm * kvm)969 static inline void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
970 {
971 }
972
kvm_arch_has_noncoherent_dma(struct kvm * kvm)973 static inline bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
974 {
975 return false;
976 }
977 #endif
978 #ifdef __KVM_HAVE_ARCH_ASSIGNED_DEVICE
979 void kvm_arch_start_assignment(struct kvm *kvm);
980 void kvm_arch_end_assignment(struct kvm *kvm);
981 bool kvm_arch_has_assigned_device(struct kvm *kvm);
982 #else
kvm_arch_start_assignment(struct kvm * kvm)983 static inline void kvm_arch_start_assignment(struct kvm *kvm)
984 {
985 }
986
kvm_arch_end_assignment(struct kvm * kvm)987 static inline void kvm_arch_end_assignment(struct kvm *kvm)
988 {
989 }
990
kvm_arch_has_assigned_device(struct kvm * kvm)991 static __always_inline bool kvm_arch_has_assigned_device(struct kvm *kvm)
992 {
993 return false;
994 }
995 #endif
996
kvm_arch_vcpu_get_wait(struct kvm_vcpu * vcpu)997 static inline struct rcuwait *kvm_arch_vcpu_get_wait(struct kvm_vcpu *vcpu)
998 {
999 #ifdef __KVM_HAVE_ARCH_WQP
1000 return vcpu->arch.waitp;
1001 #else
1002 return &vcpu->wait;
1003 #endif
1004 }
1005
1006 #ifdef __KVM_HAVE_ARCH_INTC_INITIALIZED
1007 /*
1008 * returns true if the virtual interrupt controller is initialized and
1009 * ready to accept virtual IRQ. On some architectures the virtual interrupt
1010 * controller is dynamically instantiated and this is not always true.
1011 */
1012 bool kvm_arch_intc_initialized(struct kvm *kvm);
1013 #else
kvm_arch_intc_initialized(struct kvm * kvm)1014 static inline bool kvm_arch_intc_initialized(struct kvm *kvm)
1015 {
1016 return true;
1017 }
1018 #endif
1019
1020 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type);
1021 void kvm_arch_destroy_vm(struct kvm *kvm);
1022 void kvm_arch_sync_events(struct kvm *kvm);
1023
1024 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu);
1025
1026 bool kvm_is_reserved_pfn(kvm_pfn_t pfn);
1027 bool kvm_is_zone_device_pfn(kvm_pfn_t pfn);
1028 bool kvm_is_transparent_hugepage(kvm_pfn_t pfn);
1029
1030 struct kvm_irq_ack_notifier {
1031 struct hlist_node link;
1032 unsigned gsi;
1033 void (*irq_acked)(struct kvm_irq_ack_notifier *kian);
1034 };
1035
1036 int kvm_irq_map_gsi(struct kvm *kvm,
1037 struct kvm_kernel_irq_routing_entry *entries, int gsi);
1038 int kvm_irq_map_chip_pin(struct kvm *kvm, unsigned irqchip, unsigned pin);
1039
1040 int kvm_set_irq(struct kvm *kvm, int irq_source_id, u32 irq, int level,
1041 bool line_status);
1042 int kvm_set_msi(struct kvm_kernel_irq_routing_entry *irq_entry, struct kvm *kvm,
1043 int irq_source_id, int level, bool line_status);
1044 int kvm_arch_set_irq_inatomic(struct kvm_kernel_irq_routing_entry *e,
1045 struct kvm *kvm, int irq_source_id,
1046 int level, bool line_status);
1047 bool kvm_irq_has_notifier(struct kvm *kvm, unsigned irqchip, unsigned pin);
1048 void kvm_notify_acked_gsi(struct kvm *kvm, int gsi);
1049 void kvm_notify_acked_irq(struct kvm *kvm, unsigned irqchip, unsigned pin);
1050 void kvm_register_irq_ack_notifier(struct kvm *kvm,
1051 struct kvm_irq_ack_notifier *kian);
1052 void kvm_unregister_irq_ack_notifier(struct kvm *kvm,
1053 struct kvm_irq_ack_notifier *kian);
1054 int kvm_request_irq_source_id(struct kvm *kvm);
1055 void kvm_free_irq_source_id(struct kvm *kvm, int irq_source_id);
1056 bool kvm_arch_irqfd_allowed(struct kvm *kvm, struct kvm_irqfd *args);
1057
1058 /*
1059 * search_memslots() and __gfn_to_memslot() are here because they are
1060 * used in non-modular code in arch/powerpc/kvm/book3s_hv_rm_mmu.c.
1061 * gfn_to_memslot() itself isn't here as an inline because that would
1062 * bloat other code too much.
1063 *
1064 * IMPORTANT: Slots are sorted from highest GFN to lowest GFN!
1065 */
1066 static inline struct kvm_memory_slot *
search_memslots(struct kvm_memslots * slots,gfn_t gfn)1067 search_memslots(struct kvm_memslots *slots, gfn_t gfn)
1068 {
1069 int start = 0, end = slots->used_slots;
1070 int slot = atomic_read(&slots->lru_slot);
1071 struct kvm_memory_slot *memslots = slots->memslots;
1072
1073 if (unlikely(!slots->used_slots))
1074 return NULL;
1075
1076 if (gfn >= memslots[slot].base_gfn &&
1077 gfn < memslots[slot].base_gfn + memslots[slot].npages)
1078 return &memslots[slot];
1079
1080 while (start < end) {
1081 slot = start + (end - start) / 2;
1082
1083 if (gfn >= memslots[slot].base_gfn)
1084 end = slot;
1085 else
1086 start = slot + 1;
1087 }
1088
1089 if (start < slots->used_slots && gfn >= memslots[start].base_gfn &&
1090 gfn < memslots[start].base_gfn + memslots[start].npages) {
1091 atomic_set(&slots->lru_slot, start);
1092 return &memslots[start];
1093 }
1094
1095 return NULL;
1096 }
1097
1098 static inline struct kvm_memory_slot *
__gfn_to_memslot(struct kvm_memslots * slots,gfn_t gfn)1099 __gfn_to_memslot(struct kvm_memslots *slots, gfn_t gfn)
1100 {
1101 return search_memslots(slots, gfn);
1102 }
1103
1104 static inline unsigned long
__gfn_to_hva_memslot(struct kvm_memory_slot * slot,gfn_t gfn)1105 __gfn_to_hva_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1106 {
1107 /*
1108 * The index was checked originally in search_memslots. To avoid
1109 * that a malicious guest builds a Spectre gadget out of e.g. page
1110 * table walks, do not let the processor speculate loads outside
1111 * the guest's registered memslots.
1112 */
1113 unsigned long offset = gfn - slot->base_gfn;
1114 offset = array_index_nospec(offset, slot->npages);
1115 return slot->userspace_addr + offset * PAGE_SIZE;
1116 }
1117
memslot_id(struct kvm * kvm,gfn_t gfn)1118 static inline int memslot_id(struct kvm *kvm, gfn_t gfn)
1119 {
1120 return gfn_to_memslot(kvm, gfn)->id;
1121 }
1122
1123 static inline gfn_t
hva_to_gfn_memslot(unsigned long hva,struct kvm_memory_slot * slot)1124 hva_to_gfn_memslot(unsigned long hva, struct kvm_memory_slot *slot)
1125 {
1126 gfn_t gfn_offset = (hva - slot->userspace_addr) >> PAGE_SHIFT;
1127
1128 return slot->base_gfn + gfn_offset;
1129 }
1130
gfn_to_gpa(gfn_t gfn)1131 static inline gpa_t gfn_to_gpa(gfn_t gfn)
1132 {
1133 return (gpa_t)gfn << PAGE_SHIFT;
1134 }
1135
gpa_to_gfn(gpa_t gpa)1136 static inline gfn_t gpa_to_gfn(gpa_t gpa)
1137 {
1138 return (gfn_t)(gpa >> PAGE_SHIFT);
1139 }
1140
pfn_to_hpa(kvm_pfn_t pfn)1141 static inline hpa_t pfn_to_hpa(kvm_pfn_t pfn)
1142 {
1143 return (hpa_t)pfn << PAGE_SHIFT;
1144 }
1145
kvm_vcpu_gpa_to_page(struct kvm_vcpu * vcpu,gpa_t gpa)1146 static inline struct page *kvm_vcpu_gpa_to_page(struct kvm_vcpu *vcpu,
1147 gpa_t gpa)
1148 {
1149 return kvm_vcpu_gfn_to_page(vcpu, gpa_to_gfn(gpa));
1150 }
1151
kvm_is_error_gpa(struct kvm * kvm,gpa_t gpa)1152 static inline bool kvm_is_error_gpa(struct kvm *kvm, gpa_t gpa)
1153 {
1154 unsigned long hva = gfn_to_hva(kvm, gpa_to_gfn(gpa));
1155
1156 return kvm_is_error_hva(hva);
1157 }
1158
1159 enum kvm_stat_kind {
1160 KVM_STAT_VM,
1161 KVM_STAT_VCPU,
1162 };
1163
1164 struct kvm_stat_data {
1165 struct kvm *kvm;
1166 struct kvm_stats_debugfs_item *dbgfs_item;
1167 };
1168
1169 struct kvm_stats_debugfs_item {
1170 const char *name;
1171 int offset;
1172 enum kvm_stat_kind kind;
1173 int mode;
1174 };
1175
1176 #define KVM_DBGFS_GET_MODE(dbgfs_item) \
1177 ((dbgfs_item)->mode ? (dbgfs_item)->mode : 0644)
1178
1179 #define VM_STAT(n, x, ...) \
1180 { n, offsetof(struct kvm, stat.x), KVM_STAT_VM, ## __VA_ARGS__ }
1181 #define VCPU_STAT(n, x, ...) \
1182 { n, offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU, ## __VA_ARGS__ }
1183
1184 extern struct kvm_stats_debugfs_item debugfs_entries[];
1185 extern struct dentry *kvm_debugfs_dir;
1186
1187 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
mmu_notifier_retry(struct kvm * kvm,unsigned long mmu_seq)1188 static inline int mmu_notifier_retry(struct kvm *kvm, unsigned long mmu_seq)
1189 {
1190 if (unlikely(kvm->mmu_notifier_count))
1191 return 1;
1192 /*
1193 * Ensure the read of mmu_notifier_count happens before the read
1194 * of mmu_notifier_seq. This interacts with the smp_wmb() in
1195 * mmu_notifier_invalidate_range_end to make sure that the caller
1196 * either sees the old (non-zero) value of mmu_notifier_count or
1197 * the new (incremented) value of mmu_notifier_seq.
1198 * PowerPC Book3s HV KVM calls this under a per-page lock
1199 * rather than under kvm->mmu_lock, for scalability, so
1200 * can't rely on kvm->mmu_lock to keep things ordered.
1201 */
1202 smp_rmb();
1203 if (kvm->mmu_notifier_seq != mmu_seq)
1204 return 1;
1205 return 0;
1206 }
1207 #endif
1208
1209 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
1210
1211 #define KVM_MAX_IRQ_ROUTES 4096 /* might need extension/rework in the future */
1212
1213 bool kvm_arch_can_set_irq_routing(struct kvm *kvm);
1214 int kvm_set_irq_routing(struct kvm *kvm,
1215 const struct kvm_irq_routing_entry *entries,
1216 unsigned nr,
1217 unsigned flags);
1218 int kvm_set_routing_entry(struct kvm *kvm,
1219 struct kvm_kernel_irq_routing_entry *e,
1220 const struct kvm_irq_routing_entry *ue);
1221 void kvm_free_irq_routing(struct kvm *kvm);
1222
1223 #else
1224
kvm_free_irq_routing(struct kvm * kvm)1225 static inline void kvm_free_irq_routing(struct kvm *kvm) {}
1226
1227 #endif
1228
1229 int kvm_send_userspace_msi(struct kvm *kvm, struct kvm_msi *msi);
1230
1231 #ifdef CONFIG_HAVE_KVM_EVENTFD
1232
1233 void kvm_eventfd_init(struct kvm *kvm);
1234 int kvm_ioeventfd(struct kvm *kvm, struct kvm_ioeventfd *args);
1235
1236 #ifdef CONFIG_HAVE_KVM_IRQFD
1237 int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args);
1238 void kvm_irqfd_release(struct kvm *kvm);
1239 void kvm_irq_routing_update(struct kvm *);
1240 #else
kvm_irqfd(struct kvm * kvm,struct kvm_irqfd * args)1241 static inline int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args)
1242 {
1243 return -EINVAL;
1244 }
1245
kvm_irqfd_release(struct kvm * kvm)1246 static inline void kvm_irqfd_release(struct kvm *kvm) {}
1247 #endif
1248
1249 #else
1250
kvm_eventfd_init(struct kvm * kvm)1251 static inline void kvm_eventfd_init(struct kvm *kvm) {}
1252
kvm_irqfd(struct kvm * kvm,struct kvm_irqfd * args)1253 static inline int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args)
1254 {
1255 return -EINVAL;
1256 }
1257
kvm_irqfd_release(struct kvm * kvm)1258 static inline void kvm_irqfd_release(struct kvm *kvm) {}
1259
1260 #ifdef CONFIG_HAVE_KVM_IRQCHIP
kvm_irq_routing_update(struct kvm * kvm)1261 static inline void kvm_irq_routing_update(struct kvm *kvm)
1262 {
1263 }
1264 #endif
1265
kvm_ioeventfd(struct kvm * kvm,struct kvm_ioeventfd * args)1266 static inline int kvm_ioeventfd(struct kvm *kvm, struct kvm_ioeventfd *args)
1267 {
1268 return -ENOSYS;
1269 }
1270
1271 #endif /* CONFIG_HAVE_KVM_EVENTFD */
1272
1273 void kvm_arch_irq_routing_update(struct kvm *kvm);
1274
kvm_make_request(int req,struct kvm_vcpu * vcpu)1275 static inline void kvm_make_request(int req, struct kvm_vcpu *vcpu)
1276 {
1277 /*
1278 * Ensure the rest of the request is published to kvm_check_request's
1279 * caller. Paired with the smp_mb__after_atomic in kvm_check_request.
1280 */
1281 smp_wmb();
1282 set_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests);
1283 }
1284
kvm_request_pending(struct kvm_vcpu * vcpu)1285 static inline bool kvm_request_pending(struct kvm_vcpu *vcpu)
1286 {
1287 return READ_ONCE(vcpu->requests);
1288 }
1289
kvm_test_request(int req,struct kvm_vcpu * vcpu)1290 static inline bool kvm_test_request(int req, struct kvm_vcpu *vcpu)
1291 {
1292 return test_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests);
1293 }
1294
kvm_clear_request(int req,struct kvm_vcpu * vcpu)1295 static inline void kvm_clear_request(int req, struct kvm_vcpu *vcpu)
1296 {
1297 clear_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests);
1298 }
1299
kvm_check_request(int req,struct kvm_vcpu * vcpu)1300 static inline bool kvm_check_request(int req, struct kvm_vcpu *vcpu)
1301 {
1302 if (kvm_test_request(req, vcpu)) {
1303 kvm_clear_request(req, vcpu);
1304
1305 /*
1306 * Ensure the rest of the request is visible to kvm_check_request's
1307 * caller. Paired with the smp_wmb in kvm_make_request.
1308 */
1309 smp_mb__after_atomic();
1310 return true;
1311 } else {
1312 return false;
1313 }
1314 }
1315
1316 extern bool kvm_rebooting;
1317
1318 extern unsigned int halt_poll_ns;
1319 extern unsigned int halt_poll_ns_grow;
1320 extern unsigned int halt_poll_ns_grow_start;
1321 extern unsigned int halt_poll_ns_shrink;
1322
1323 struct kvm_device {
1324 const struct kvm_device_ops *ops;
1325 struct kvm *kvm;
1326 void *private;
1327 struct list_head vm_node;
1328 };
1329
1330 /* create, destroy, and name are mandatory */
1331 struct kvm_device_ops {
1332 const char *name;
1333
1334 /*
1335 * create is called holding kvm->lock and any operations not suitable
1336 * to do while holding the lock should be deferred to init (see
1337 * below).
1338 */
1339 int (*create)(struct kvm_device *dev, u32 type);
1340
1341 /*
1342 * init is called after create if create is successful and is called
1343 * outside of holding kvm->lock.
1344 */
1345 void (*init)(struct kvm_device *dev);
1346
1347 /*
1348 * Destroy is responsible for freeing dev.
1349 *
1350 * Destroy may be called before or after destructors are called
1351 * on emulated I/O regions, depending on whether a reference is
1352 * held by a vcpu or other kvm component that gets destroyed
1353 * after the emulated I/O.
1354 */
1355 void (*destroy)(struct kvm_device *dev);
1356
1357 /*
1358 * Release is an alternative method to free the device. It is
1359 * called when the device file descriptor is closed. Once
1360 * release is called, the destroy method will not be called
1361 * anymore as the device is removed from the device list of
1362 * the VM. kvm->lock is held.
1363 */
1364 void (*release)(struct kvm_device *dev);
1365
1366 int (*set_attr)(struct kvm_device *dev, struct kvm_device_attr *attr);
1367 int (*get_attr)(struct kvm_device *dev, struct kvm_device_attr *attr);
1368 int (*has_attr)(struct kvm_device *dev, struct kvm_device_attr *attr);
1369 long (*ioctl)(struct kvm_device *dev, unsigned int ioctl,
1370 unsigned long arg);
1371 int (*mmap)(struct kvm_device *dev, struct vm_area_struct *vma);
1372 };
1373
1374 void kvm_device_get(struct kvm_device *dev);
1375 void kvm_device_put(struct kvm_device *dev);
1376 struct kvm_device *kvm_device_from_filp(struct file *filp);
1377 int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type);
1378 void kvm_unregister_device_ops(u32 type);
1379
1380 extern struct kvm_device_ops kvm_mpic_ops;
1381 extern struct kvm_device_ops kvm_arm_vgic_v2_ops;
1382 extern struct kvm_device_ops kvm_arm_vgic_v3_ops;
1383
1384 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
1385
kvm_vcpu_set_in_spin_loop(struct kvm_vcpu * vcpu,bool val)1386 static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val)
1387 {
1388 vcpu->spin_loop.in_spin_loop = val;
1389 }
kvm_vcpu_set_dy_eligible(struct kvm_vcpu * vcpu,bool val)1390 static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val)
1391 {
1392 vcpu->spin_loop.dy_eligible = val;
1393 }
1394
1395 #else /* !CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */
1396
kvm_vcpu_set_in_spin_loop(struct kvm_vcpu * vcpu,bool val)1397 static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val)
1398 {
1399 }
1400
kvm_vcpu_set_dy_eligible(struct kvm_vcpu * vcpu,bool val)1401 static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val)
1402 {
1403 }
1404 #endif /* CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */
1405
kvm_is_visible_memslot(struct kvm_memory_slot * memslot)1406 static inline bool kvm_is_visible_memslot(struct kvm_memory_slot *memslot)
1407 {
1408 return (memslot && memslot->id < KVM_USER_MEM_SLOTS &&
1409 !(memslot->flags & KVM_MEMSLOT_INVALID));
1410 }
1411
1412 struct kvm_vcpu *kvm_get_running_vcpu(void);
1413 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void);
1414
1415 #ifdef CONFIG_HAVE_KVM_IRQ_BYPASS
1416 bool kvm_arch_has_irq_bypass(void);
1417 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *,
1418 struct irq_bypass_producer *);
1419 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *,
1420 struct irq_bypass_producer *);
1421 void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *);
1422 void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *);
1423 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
1424 uint32_t guest_irq, bool set);
1425 #endif /* CONFIG_HAVE_KVM_IRQ_BYPASS */
1426
1427 #ifdef CONFIG_HAVE_KVM_INVALID_WAKEUPS
1428 /* If we wakeup during the poll time, was it a sucessful poll? */
vcpu_valid_wakeup(struct kvm_vcpu * vcpu)1429 static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu)
1430 {
1431 return vcpu->valid_wakeup;
1432 }
1433
1434 #else
vcpu_valid_wakeup(struct kvm_vcpu * vcpu)1435 static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu)
1436 {
1437 return true;
1438 }
1439 #endif /* CONFIG_HAVE_KVM_INVALID_WAKEUPS */
1440
1441 #ifdef CONFIG_HAVE_KVM_NO_POLL
1442 /* Callback that tells if we must not poll */
1443 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu);
1444 #else
kvm_arch_no_poll(struct kvm_vcpu * vcpu)1445 static inline bool kvm_arch_no_poll(struct kvm_vcpu *vcpu)
1446 {
1447 return false;
1448 }
1449 #endif /* CONFIG_HAVE_KVM_NO_POLL */
1450
1451 #ifdef CONFIG_HAVE_KVM_VCPU_ASYNC_IOCTL
1452 long kvm_arch_vcpu_async_ioctl(struct file *filp,
1453 unsigned int ioctl, unsigned long arg);
1454 #else
kvm_arch_vcpu_async_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)1455 static inline long kvm_arch_vcpu_async_ioctl(struct file *filp,
1456 unsigned int ioctl,
1457 unsigned long arg)
1458 {
1459 return -ENOIOCTLCMD;
1460 }
1461 #endif /* CONFIG_HAVE_KVM_VCPU_ASYNC_IOCTL */
1462
1463 void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
1464 unsigned long start, unsigned long end);
1465
1466 #ifdef CONFIG_HAVE_KVM_VCPU_RUN_PID_CHANGE
1467 int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu);
1468 #else
kvm_arch_vcpu_run_pid_change(struct kvm_vcpu * vcpu)1469 static inline int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu)
1470 {
1471 return 0;
1472 }
1473 #endif /* CONFIG_HAVE_KVM_VCPU_RUN_PID_CHANGE */
1474
1475 typedef int (*kvm_vm_thread_fn_t)(struct kvm *kvm, uintptr_t data);
1476
1477 int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn,
1478 uintptr_t data, const char *name,
1479 struct task_struct **thread_ptr);
1480
1481 #ifdef CONFIG_KVM_XFER_TO_GUEST_WORK
kvm_handle_signal_exit(struct kvm_vcpu * vcpu)1482 static inline void kvm_handle_signal_exit(struct kvm_vcpu *vcpu)
1483 {
1484 vcpu->run->exit_reason = KVM_EXIT_INTR;
1485 vcpu->stat.signal_exits++;
1486 }
1487 #endif /* CONFIG_KVM_XFER_TO_GUEST_WORK */
1488
1489 #endif
1490