1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * The USB Monitor, inspired by Dave Harding's USBMon.
4 *
5 * This is a binary format reader.
6 *
7 * Copyright (C) 2006 Paolo Abeni (paolo.abeni@email.it)
8 * Copyright (C) 2006,2007 Pete Zaitcev (zaitcev@redhat.com)
9 */
10
11 #include <linux/kernel.h>
12 #include <linux/sched/signal.h>
13 #include <linux/types.h>
14 #include <linux/fs.h>
15 #include <linux/cdev.h>
16 #include <linux/export.h>
17 #include <linux/usb.h>
18 #include <linux/poll.h>
19 #include <linux/compat.h>
20 #include <linux/mm.h>
21 #include <linux/scatterlist.h>
22 #include <linux/slab.h>
23 #include <linux/time64.h>
24
25 #include <linux/uaccess.h>
26
27 #include "usb_mon.h"
28
29 /*
30 * Defined by USB 2.0 clause 9.3, table 9.2.
31 */
32 #define SETUP_LEN 8
33
34 /* ioctl macros */
35 #define MON_IOC_MAGIC 0x92
36
37 #define MON_IOCQ_URB_LEN _IO(MON_IOC_MAGIC, 1)
38 /* #2 used to be MON_IOCX_URB, removed before it got into Linus tree */
39 #define MON_IOCG_STATS _IOR(MON_IOC_MAGIC, 3, struct mon_bin_stats)
40 #define MON_IOCT_RING_SIZE _IO(MON_IOC_MAGIC, 4)
41 #define MON_IOCQ_RING_SIZE _IO(MON_IOC_MAGIC, 5)
42 #define MON_IOCX_GET _IOW(MON_IOC_MAGIC, 6, struct mon_bin_get)
43 #define MON_IOCX_MFETCH _IOWR(MON_IOC_MAGIC, 7, struct mon_bin_mfetch)
44 #define MON_IOCH_MFLUSH _IO(MON_IOC_MAGIC, 8)
45 /* #9 was MON_IOCT_SETAPI */
46 #define MON_IOCX_GETX _IOW(MON_IOC_MAGIC, 10, struct mon_bin_get)
47
48 #ifdef CONFIG_COMPAT
49 #define MON_IOCX_GET32 _IOW(MON_IOC_MAGIC, 6, struct mon_bin_get32)
50 #define MON_IOCX_MFETCH32 _IOWR(MON_IOC_MAGIC, 7, struct mon_bin_mfetch32)
51 #define MON_IOCX_GETX32 _IOW(MON_IOC_MAGIC, 10, struct mon_bin_get32)
52 #endif
53
54 /*
55 * Some architectures have enormous basic pages (16KB for ia64, 64KB for ppc).
56 * But it's all right. Just use a simple way to make sure the chunk is never
57 * smaller than a page.
58 *
59 * N.B. An application does not know our chunk size.
60 *
61 * Woops, get_zeroed_page() returns a single page. I guess we're stuck with
62 * page-sized chunks for the time being.
63 */
64 #define CHUNK_SIZE PAGE_SIZE
65 #define CHUNK_ALIGN(x) (((x)+CHUNK_SIZE-1) & ~(CHUNK_SIZE-1))
66
67 /*
68 * The magic limit was calculated so that it allows the monitoring
69 * application to pick data once in two ticks. This way, another application,
70 * which presumably drives the bus, gets to hog CPU, yet we collect our data.
71 * If HZ is 100, a 480 mbit/s bus drives 614 KB every jiffy. USB has an
72 * enormous overhead built into the bus protocol, so we need about 1000 KB.
73 *
74 * This is still too much for most cases, where we just snoop a few
75 * descriptor fetches for enumeration. So, the default is a "reasonable"
76 * amount for systems with HZ=250 and incomplete bus saturation.
77 *
78 * XXX What about multi-megabyte URBs which take minutes to transfer?
79 */
80 #define BUFF_MAX CHUNK_ALIGN(1200*1024)
81 #define BUFF_DFL CHUNK_ALIGN(300*1024)
82 #define BUFF_MIN CHUNK_ALIGN(8*1024)
83
84 /*
85 * The per-event API header (2 per URB).
86 *
87 * This structure is seen in userland as defined by the documentation.
88 */
89 struct mon_bin_hdr {
90 u64 id; /* URB ID - from submission to callback */
91 unsigned char type; /* Same as in text API; extensible. */
92 unsigned char xfer_type; /* ISO, Intr, Control, Bulk */
93 unsigned char epnum; /* Endpoint number and transfer direction */
94 unsigned char devnum; /* Device address */
95 unsigned short busnum; /* Bus number */
96 char flag_setup;
97 char flag_data;
98 s64 ts_sec; /* ktime_get_real_ts64 */
99 s32 ts_usec; /* ktime_get_real_ts64 */
100 int status;
101 unsigned int len_urb; /* Length of data (submitted or actual) */
102 unsigned int len_cap; /* Delivered length */
103 union {
104 unsigned char setup[SETUP_LEN]; /* Only for Control S-type */
105 struct iso_rec {
106 int error_count;
107 int numdesc;
108 } iso;
109 } s;
110 int interval;
111 int start_frame;
112 unsigned int xfer_flags;
113 unsigned int ndesc; /* Actual number of ISO descriptors */
114 };
115
116 /*
117 * ISO vector, packed into the head of data stream.
118 * This has to take 16 bytes to make sure that the end of buffer
119 * wrap is not happening in the middle of a descriptor.
120 */
121 struct mon_bin_isodesc {
122 int iso_status;
123 unsigned int iso_off;
124 unsigned int iso_len;
125 u32 _pad;
126 };
127
128 /* per file statistic */
129 struct mon_bin_stats {
130 u32 queued;
131 u32 dropped;
132 };
133
134 struct mon_bin_get {
135 struct mon_bin_hdr __user *hdr; /* Can be 48 bytes or 64. */
136 void __user *data;
137 size_t alloc; /* Length of data (can be zero) */
138 };
139
140 struct mon_bin_mfetch {
141 u32 __user *offvec; /* Vector of events fetched */
142 u32 nfetch; /* Number of events to fetch (out: fetched) */
143 u32 nflush; /* Number of events to flush */
144 };
145
146 #ifdef CONFIG_COMPAT
147 struct mon_bin_get32 {
148 u32 hdr32;
149 u32 data32;
150 u32 alloc32;
151 };
152
153 struct mon_bin_mfetch32 {
154 u32 offvec32;
155 u32 nfetch32;
156 u32 nflush32;
157 };
158 #endif
159
160 /* Having these two values same prevents wrapping of the mon_bin_hdr */
161 #define PKT_ALIGN 64
162 #define PKT_SIZE 64
163
164 #define PKT_SZ_API0 48 /* API 0 (2.6.20) size */
165 #define PKT_SZ_API1 64 /* API 1 size: extra fields */
166
167 #define ISODESC_MAX 128 /* Same number as usbfs allows, 2048 bytes. */
168
169 /* max number of USB bus supported */
170 #define MON_BIN_MAX_MINOR 128
171
172 /*
173 * The buffer: map of used pages.
174 */
175 struct mon_pgmap {
176 struct page *pg;
177 unsigned char *ptr; /* XXX just use page_to_virt everywhere? */
178 };
179
180 /*
181 * This gets associated with an open file struct.
182 */
183 struct mon_reader_bin {
184 /* The buffer: one per open. */
185 spinlock_t b_lock; /* Protect b_cnt, b_in */
186 unsigned int b_size; /* Current size of the buffer - bytes */
187 unsigned int b_cnt; /* Bytes used */
188 unsigned int b_in, b_out; /* Offsets into buffer - bytes */
189 unsigned int b_read; /* Amount of read data in curr. pkt. */
190 struct mon_pgmap *b_vec; /* The map array */
191 wait_queue_head_t b_wait; /* Wait for data here */
192
193 struct mutex fetch_lock; /* Protect b_read, b_out */
194 int mmap_active;
195
196 /* A list of these is needed for "bus 0". Some time later. */
197 struct mon_reader r;
198
199 /* Stats */
200 unsigned int cnt_lost;
201 };
202
MON_OFF2HDR(const struct mon_reader_bin * rp,unsigned int offset)203 static inline struct mon_bin_hdr *MON_OFF2HDR(const struct mon_reader_bin *rp,
204 unsigned int offset)
205 {
206 return (struct mon_bin_hdr *)
207 (rp->b_vec[offset / CHUNK_SIZE].ptr + offset % CHUNK_SIZE);
208 }
209
210 #define MON_RING_EMPTY(rp) ((rp)->b_cnt == 0)
211
212 static unsigned char xfer_to_pipe[4] = {
213 PIPE_CONTROL, PIPE_ISOCHRONOUS, PIPE_BULK, PIPE_INTERRUPT
214 };
215
216 static struct class *mon_bin_class;
217 static dev_t mon_bin_dev0;
218 static struct cdev mon_bin_cdev;
219
220 static void mon_buff_area_fill(const struct mon_reader_bin *rp,
221 unsigned int offset, unsigned int size);
222 static int mon_bin_wait_event(struct file *file, struct mon_reader_bin *rp);
223 static int mon_alloc_buff(struct mon_pgmap *map, int npages);
224 static void mon_free_buff(struct mon_pgmap *map, int npages);
225
226 /*
227 * This is a "chunked memcpy". It does not manipulate any counters.
228 */
mon_copy_to_buff(const struct mon_reader_bin * this,unsigned int off,const unsigned char * from,unsigned int length)229 static unsigned int mon_copy_to_buff(const struct mon_reader_bin *this,
230 unsigned int off, const unsigned char *from, unsigned int length)
231 {
232 unsigned int step_len;
233 unsigned char *buf;
234 unsigned int in_page;
235
236 while (length) {
237 /*
238 * Determine step_len.
239 */
240 step_len = length;
241 in_page = CHUNK_SIZE - (off & (CHUNK_SIZE-1));
242 if (in_page < step_len)
243 step_len = in_page;
244
245 /*
246 * Copy data and advance pointers.
247 */
248 buf = this->b_vec[off / CHUNK_SIZE].ptr + off % CHUNK_SIZE;
249 memcpy(buf, from, step_len);
250 if ((off += step_len) >= this->b_size) off = 0;
251 from += step_len;
252 length -= step_len;
253 }
254 return off;
255 }
256
257 /*
258 * This is a little worse than the above because it's "chunked copy_to_user".
259 * The return value is an error code, not an offset.
260 */
copy_from_buf(const struct mon_reader_bin * this,unsigned int off,char __user * to,int length)261 static int copy_from_buf(const struct mon_reader_bin *this, unsigned int off,
262 char __user *to, int length)
263 {
264 unsigned int step_len;
265 unsigned char *buf;
266 unsigned int in_page;
267
268 while (length) {
269 /*
270 * Determine step_len.
271 */
272 step_len = length;
273 in_page = CHUNK_SIZE - (off & (CHUNK_SIZE-1));
274 if (in_page < step_len)
275 step_len = in_page;
276
277 /*
278 * Copy data and advance pointers.
279 */
280 buf = this->b_vec[off / CHUNK_SIZE].ptr + off % CHUNK_SIZE;
281 if (copy_to_user(to, buf, step_len))
282 return -EINVAL;
283 if ((off += step_len) >= this->b_size) off = 0;
284 to += step_len;
285 length -= step_len;
286 }
287 return 0;
288 }
289
290 /*
291 * Allocate an (aligned) area in the buffer.
292 * This is called under b_lock.
293 * Returns ~0 on failure.
294 */
mon_buff_area_alloc(struct mon_reader_bin * rp,unsigned int size)295 static unsigned int mon_buff_area_alloc(struct mon_reader_bin *rp,
296 unsigned int size)
297 {
298 unsigned int offset;
299
300 size = (size + PKT_ALIGN-1) & ~(PKT_ALIGN-1);
301 if (rp->b_cnt + size > rp->b_size)
302 return ~0;
303 offset = rp->b_in;
304 rp->b_cnt += size;
305 if ((rp->b_in += size) >= rp->b_size)
306 rp->b_in -= rp->b_size;
307 return offset;
308 }
309
310 /*
311 * This is the same thing as mon_buff_area_alloc, only it does not allow
312 * buffers to wrap. This is needed by applications which pass references
313 * into mmap-ed buffers up their stacks (libpcap can do that).
314 *
315 * Currently, we always have the header stuck with the data, although
316 * it is not strictly speaking necessary.
317 *
318 * When a buffer would wrap, we place a filler packet to mark the space.
319 */
mon_buff_area_alloc_contiguous(struct mon_reader_bin * rp,unsigned int size)320 static unsigned int mon_buff_area_alloc_contiguous(struct mon_reader_bin *rp,
321 unsigned int size)
322 {
323 unsigned int offset;
324 unsigned int fill_size;
325
326 size = (size + PKT_ALIGN-1) & ~(PKT_ALIGN-1);
327 if (rp->b_cnt + size > rp->b_size)
328 return ~0;
329 if (rp->b_in + size > rp->b_size) {
330 /*
331 * This would wrap. Find if we still have space after
332 * skipping to the end of the buffer. If we do, place
333 * a filler packet and allocate a new packet.
334 */
335 fill_size = rp->b_size - rp->b_in;
336 if (rp->b_cnt + size + fill_size > rp->b_size)
337 return ~0;
338 mon_buff_area_fill(rp, rp->b_in, fill_size);
339
340 offset = 0;
341 rp->b_in = size;
342 rp->b_cnt += size + fill_size;
343 } else if (rp->b_in + size == rp->b_size) {
344 offset = rp->b_in;
345 rp->b_in = 0;
346 rp->b_cnt += size;
347 } else {
348 offset = rp->b_in;
349 rp->b_in += size;
350 rp->b_cnt += size;
351 }
352 return offset;
353 }
354
355 /*
356 * Return a few (kilo-)bytes to the head of the buffer.
357 * This is used if a data fetch fails.
358 */
mon_buff_area_shrink(struct mon_reader_bin * rp,unsigned int size)359 static void mon_buff_area_shrink(struct mon_reader_bin *rp, unsigned int size)
360 {
361
362 /* size &= ~(PKT_ALIGN-1); -- we're called with aligned size */
363 rp->b_cnt -= size;
364 if (rp->b_in < size)
365 rp->b_in += rp->b_size;
366 rp->b_in -= size;
367 }
368
369 /*
370 * This has to be called under both b_lock and fetch_lock, because
371 * it accesses both b_cnt and b_out.
372 */
mon_buff_area_free(struct mon_reader_bin * rp,unsigned int size)373 static void mon_buff_area_free(struct mon_reader_bin *rp, unsigned int size)
374 {
375
376 size = (size + PKT_ALIGN-1) & ~(PKT_ALIGN-1);
377 rp->b_cnt -= size;
378 if ((rp->b_out += size) >= rp->b_size)
379 rp->b_out -= rp->b_size;
380 }
381
mon_buff_area_fill(const struct mon_reader_bin * rp,unsigned int offset,unsigned int size)382 static void mon_buff_area_fill(const struct mon_reader_bin *rp,
383 unsigned int offset, unsigned int size)
384 {
385 struct mon_bin_hdr *ep;
386
387 ep = MON_OFF2HDR(rp, offset);
388 memset(ep, 0, PKT_SIZE);
389 ep->type = '@';
390 ep->len_cap = size - PKT_SIZE;
391 }
392
mon_bin_get_setup(unsigned char * setupb,const struct urb * urb,char ev_type)393 static inline char mon_bin_get_setup(unsigned char *setupb,
394 const struct urb *urb, char ev_type)
395 {
396
397 if (urb->setup_packet == NULL)
398 return 'Z';
399 memcpy(setupb, urb->setup_packet, SETUP_LEN);
400 return 0;
401 }
402
mon_bin_get_data(const struct mon_reader_bin * rp,unsigned int offset,struct urb * urb,unsigned int length,char * flag)403 static unsigned int mon_bin_get_data(const struct mon_reader_bin *rp,
404 unsigned int offset, struct urb *urb, unsigned int length,
405 char *flag)
406 {
407 int i;
408 struct scatterlist *sg;
409 unsigned int this_len;
410
411 *flag = 0;
412 if (urb->num_sgs == 0) {
413 if (urb->transfer_buffer == NULL) {
414 *flag = 'Z';
415 return length;
416 }
417 mon_copy_to_buff(rp, offset, urb->transfer_buffer, length);
418 length = 0;
419
420 } else {
421 /* If IOMMU coalescing occurred, we cannot trust sg_page */
422 if (urb->transfer_flags & URB_DMA_SG_COMBINED) {
423 *flag = 'D';
424 return length;
425 }
426
427 /* Copy up to the first non-addressable segment */
428 for_each_sg(urb->sg, sg, urb->num_sgs, i) {
429 if (length == 0 || PageHighMem(sg_page(sg)))
430 break;
431 this_len = min_t(unsigned int, sg->length, length);
432 offset = mon_copy_to_buff(rp, offset, sg_virt(sg),
433 this_len);
434 length -= this_len;
435 }
436 if (i == 0)
437 *flag = 'D';
438 }
439
440 return length;
441 }
442
443 /*
444 * This is the look-ahead pass in case of 'C Zi', when actual_length cannot
445 * be used to determine the length of the whole contiguous buffer.
446 */
mon_bin_collate_isodesc(const struct mon_reader_bin * rp,struct urb * urb,unsigned int ndesc)447 static unsigned int mon_bin_collate_isodesc(const struct mon_reader_bin *rp,
448 struct urb *urb, unsigned int ndesc)
449 {
450 struct usb_iso_packet_descriptor *fp;
451 unsigned int length;
452
453 length = 0;
454 fp = urb->iso_frame_desc;
455 while (ndesc-- != 0) {
456 if (fp->actual_length != 0) {
457 if (fp->offset + fp->actual_length > length)
458 length = fp->offset + fp->actual_length;
459 }
460 fp++;
461 }
462 return length;
463 }
464
mon_bin_get_isodesc(const struct mon_reader_bin * rp,unsigned int offset,struct urb * urb,char ev_type,unsigned int ndesc)465 static void mon_bin_get_isodesc(const struct mon_reader_bin *rp,
466 unsigned int offset, struct urb *urb, char ev_type, unsigned int ndesc)
467 {
468 struct mon_bin_isodesc *dp;
469 struct usb_iso_packet_descriptor *fp;
470
471 fp = urb->iso_frame_desc;
472 while (ndesc-- != 0) {
473 dp = (struct mon_bin_isodesc *)
474 (rp->b_vec[offset / CHUNK_SIZE].ptr + offset % CHUNK_SIZE);
475 dp->iso_status = fp->status;
476 dp->iso_off = fp->offset;
477 dp->iso_len = (ev_type == 'S') ? fp->length : fp->actual_length;
478 dp->_pad = 0;
479 if ((offset += sizeof(struct mon_bin_isodesc)) >= rp->b_size)
480 offset = 0;
481 fp++;
482 }
483 }
484
mon_bin_event(struct mon_reader_bin * rp,struct urb * urb,char ev_type,int status)485 static void mon_bin_event(struct mon_reader_bin *rp, struct urb *urb,
486 char ev_type, int status)
487 {
488 const struct usb_endpoint_descriptor *epd = &urb->ep->desc;
489 struct timespec64 ts;
490 unsigned long flags;
491 unsigned int urb_length;
492 unsigned int offset;
493 unsigned int length;
494 unsigned int delta;
495 unsigned int ndesc, lendesc;
496 unsigned char dir;
497 struct mon_bin_hdr *ep;
498 char data_tag = 0;
499
500 ktime_get_real_ts64(&ts);
501
502 spin_lock_irqsave(&rp->b_lock, flags);
503
504 /*
505 * Find the maximum allowable length, then allocate space.
506 */
507 urb_length = (ev_type == 'S') ?
508 urb->transfer_buffer_length : urb->actual_length;
509 length = urb_length;
510
511 if (usb_endpoint_xfer_isoc(epd)) {
512 if (urb->number_of_packets < 0) {
513 ndesc = 0;
514 } else if (urb->number_of_packets >= ISODESC_MAX) {
515 ndesc = ISODESC_MAX;
516 } else {
517 ndesc = urb->number_of_packets;
518 }
519 if (ev_type == 'C' && usb_urb_dir_in(urb))
520 length = mon_bin_collate_isodesc(rp, urb, ndesc);
521 } else {
522 ndesc = 0;
523 }
524 lendesc = ndesc*sizeof(struct mon_bin_isodesc);
525
526 /* not an issue unless there's a subtle bug in a HCD somewhere */
527 if (length >= urb->transfer_buffer_length)
528 length = urb->transfer_buffer_length;
529
530 if (length >= rp->b_size/5)
531 length = rp->b_size/5;
532
533 if (usb_urb_dir_in(urb)) {
534 if (ev_type == 'S') {
535 length = 0;
536 data_tag = '<';
537 }
538 /* Cannot rely on endpoint number in case of control ep.0 */
539 dir = USB_DIR_IN;
540 } else {
541 if (ev_type == 'C') {
542 length = 0;
543 data_tag = '>';
544 }
545 dir = 0;
546 }
547
548 if (rp->mmap_active) {
549 offset = mon_buff_area_alloc_contiguous(rp,
550 length + PKT_SIZE + lendesc);
551 } else {
552 offset = mon_buff_area_alloc(rp, length + PKT_SIZE + lendesc);
553 }
554 if (offset == ~0) {
555 rp->cnt_lost++;
556 spin_unlock_irqrestore(&rp->b_lock, flags);
557 return;
558 }
559
560 ep = MON_OFF2HDR(rp, offset);
561 if ((offset += PKT_SIZE) >= rp->b_size) offset = 0;
562
563 /*
564 * Fill the allocated area.
565 */
566 memset(ep, 0, PKT_SIZE);
567 ep->type = ev_type;
568 ep->xfer_type = xfer_to_pipe[usb_endpoint_type(epd)];
569 ep->epnum = dir | usb_endpoint_num(epd);
570 ep->devnum = urb->dev->devnum;
571 ep->busnum = urb->dev->bus->busnum;
572 ep->id = (unsigned long) urb;
573 ep->ts_sec = ts.tv_sec;
574 ep->ts_usec = ts.tv_nsec / NSEC_PER_USEC;
575 ep->status = status;
576 ep->len_urb = urb_length;
577 ep->len_cap = length + lendesc;
578 ep->xfer_flags = urb->transfer_flags;
579
580 if (usb_endpoint_xfer_int(epd)) {
581 ep->interval = urb->interval;
582 } else if (usb_endpoint_xfer_isoc(epd)) {
583 ep->interval = urb->interval;
584 ep->start_frame = urb->start_frame;
585 ep->s.iso.error_count = urb->error_count;
586 ep->s.iso.numdesc = urb->number_of_packets;
587 }
588
589 if (usb_endpoint_xfer_control(epd) && ev_type == 'S') {
590 ep->flag_setup = mon_bin_get_setup(ep->s.setup, urb, ev_type);
591 } else {
592 ep->flag_setup = '-';
593 }
594
595 if (ndesc != 0) {
596 ep->ndesc = ndesc;
597 mon_bin_get_isodesc(rp, offset, urb, ev_type, ndesc);
598 if ((offset += lendesc) >= rp->b_size)
599 offset -= rp->b_size;
600 }
601
602 if (length != 0) {
603 length = mon_bin_get_data(rp, offset, urb, length,
604 &ep->flag_data);
605 if (length > 0) {
606 delta = (ep->len_cap + PKT_ALIGN-1) & ~(PKT_ALIGN-1);
607 ep->len_cap -= length;
608 delta -= (ep->len_cap + PKT_ALIGN-1) & ~(PKT_ALIGN-1);
609 mon_buff_area_shrink(rp, delta);
610 }
611 } else {
612 ep->flag_data = data_tag;
613 }
614
615 spin_unlock_irqrestore(&rp->b_lock, flags);
616
617 wake_up(&rp->b_wait);
618 }
619
mon_bin_submit(void * data,struct urb * urb)620 static void mon_bin_submit(void *data, struct urb *urb)
621 {
622 struct mon_reader_bin *rp = data;
623 mon_bin_event(rp, urb, 'S', -EINPROGRESS);
624 }
625
mon_bin_complete(void * data,struct urb * urb,int status)626 static void mon_bin_complete(void *data, struct urb *urb, int status)
627 {
628 struct mon_reader_bin *rp = data;
629 mon_bin_event(rp, urb, 'C', status);
630 }
631
mon_bin_error(void * data,struct urb * urb,int error)632 static void mon_bin_error(void *data, struct urb *urb, int error)
633 {
634 struct mon_reader_bin *rp = data;
635 struct timespec64 ts;
636 unsigned long flags;
637 unsigned int offset;
638 struct mon_bin_hdr *ep;
639
640 ktime_get_real_ts64(&ts);
641
642 spin_lock_irqsave(&rp->b_lock, flags);
643
644 offset = mon_buff_area_alloc(rp, PKT_SIZE);
645 if (offset == ~0) {
646 /* Not incrementing cnt_lost. Just because. */
647 spin_unlock_irqrestore(&rp->b_lock, flags);
648 return;
649 }
650
651 ep = MON_OFF2HDR(rp, offset);
652
653 memset(ep, 0, PKT_SIZE);
654 ep->type = 'E';
655 ep->xfer_type = xfer_to_pipe[usb_endpoint_type(&urb->ep->desc)];
656 ep->epnum = usb_urb_dir_in(urb) ? USB_DIR_IN : 0;
657 ep->epnum |= usb_endpoint_num(&urb->ep->desc);
658 ep->devnum = urb->dev->devnum;
659 ep->busnum = urb->dev->bus->busnum;
660 ep->id = (unsigned long) urb;
661 ep->ts_sec = ts.tv_sec;
662 ep->ts_usec = ts.tv_nsec / NSEC_PER_USEC;
663 ep->status = error;
664
665 ep->flag_setup = '-';
666 ep->flag_data = 'E';
667
668 spin_unlock_irqrestore(&rp->b_lock, flags);
669
670 wake_up(&rp->b_wait);
671 }
672
mon_bin_open(struct inode * inode,struct file * file)673 static int mon_bin_open(struct inode *inode, struct file *file)
674 {
675 struct mon_bus *mbus;
676 struct mon_reader_bin *rp;
677 size_t size;
678 int rc;
679
680 mutex_lock(&mon_lock);
681 mbus = mon_bus_lookup(iminor(inode));
682 if (mbus == NULL) {
683 mutex_unlock(&mon_lock);
684 return -ENODEV;
685 }
686 if (mbus != &mon_bus0 && mbus->u_bus == NULL) {
687 printk(KERN_ERR TAG ": consistency error on open\n");
688 mutex_unlock(&mon_lock);
689 return -ENODEV;
690 }
691
692 rp = kzalloc(sizeof(struct mon_reader_bin), GFP_KERNEL);
693 if (rp == NULL) {
694 rc = -ENOMEM;
695 goto err_alloc;
696 }
697 spin_lock_init(&rp->b_lock);
698 init_waitqueue_head(&rp->b_wait);
699 mutex_init(&rp->fetch_lock);
700 rp->b_size = BUFF_DFL;
701
702 size = sizeof(struct mon_pgmap) * (rp->b_size/CHUNK_SIZE);
703 if ((rp->b_vec = kzalloc(size, GFP_KERNEL)) == NULL) {
704 rc = -ENOMEM;
705 goto err_allocvec;
706 }
707
708 if ((rc = mon_alloc_buff(rp->b_vec, rp->b_size/CHUNK_SIZE)) < 0)
709 goto err_allocbuff;
710
711 rp->r.m_bus = mbus;
712 rp->r.r_data = rp;
713 rp->r.rnf_submit = mon_bin_submit;
714 rp->r.rnf_error = mon_bin_error;
715 rp->r.rnf_complete = mon_bin_complete;
716
717 mon_reader_add(mbus, &rp->r);
718
719 file->private_data = rp;
720 mutex_unlock(&mon_lock);
721 return 0;
722
723 err_allocbuff:
724 kfree(rp->b_vec);
725 err_allocvec:
726 kfree(rp);
727 err_alloc:
728 mutex_unlock(&mon_lock);
729 return rc;
730 }
731
732 /*
733 * Extract an event from buffer and copy it to user space.
734 * Wait if there is no event ready.
735 * Returns zero or error.
736 */
mon_bin_get_event(struct file * file,struct mon_reader_bin * rp,struct mon_bin_hdr __user * hdr,unsigned int hdrbytes,void __user * data,unsigned int nbytes)737 static int mon_bin_get_event(struct file *file, struct mon_reader_bin *rp,
738 struct mon_bin_hdr __user *hdr, unsigned int hdrbytes,
739 void __user *data, unsigned int nbytes)
740 {
741 unsigned long flags;
742 struct mon_bin_hdr *ep;
743 size_t step_len;
744 unsigned int offset;
745 int rc;
746
747 mutex_lock(&rp->fetch_lock);
748
749 if ((rc = mon_bin_wait_event(file, rp)) < 0) {
750 mutex_unlock(&rp->fetch_lock);
751 return rc;
752 }
753
754 ep = MON_OFF2HDR(rp, rp->b_out);
755
756 if (copy_to_user(hdr, ep, hdrbytes)) {
757 mutex_unlock(&rp->fetch_lock);
758 return -EFAULT;
759 }
760
761 step_len = min(ep->len_cap, nbytes);
762 if ((offset = rp->b_out + PKT_SIZE) >= rp->b_size) offset = 0;
763
764 if (copy_from_buf(rp, offset, data, step_len)) {
765 mutex_unlock(&rp->fetch_lock);
766 return -EFAULT;
767 }
768
769 spin_lock_irqsave(&rp->b_lock, flags);
770 mon_buff_area_free(rp, PKT_SIZE + ep->len_cap);
771 spin_unlock_irqrestore(&rp->b_lock, flags);
772 rp->b_read = 0;
773
774 mutex_unlock(&rp->fetch_lock);
775 return 0;
776 }
777
mon_bin_release(struct inode * inode,struct file * file)778 static int mon_bin_release(struct inode *inode, struct file *file)
779 {
780 struct mon_reader_bin *rp = file->private_data;
781 struct mon_bus* mbus = rp->r.m_bus;
782
783 mutex_lock(&mon_lock);
784
785 if (mbus->nreaders <= 0) {
786 printk(KERN_ERR TAG ": consistency error on close\n");
787 mutex_unlock(&mon_lock);
788 return 0;
789 }
790 mon_reader_del(mbus, &rp->r);
791
792 mon_free_buff(rp->b_vec, rp->b_size/CHUNK_SIZE);
793 kfree(rp->b_vec);
794 kfree(rp);
795
796 mutex_unlock(&mon_lock);
797 return 0;
798 }
799
mon_bin_read(struct file * file,char __user * buf,size_t nbytes,loff_t * ppos)800 static ssize_t mon_bin_read(struct file *file, char __user *buf,
801 size_t nbytes, loff_t *ppos)
802 {
803 struct mon_reader_bin *rp = file->private_data;
804 unsigned int hdrbytes = PKT_SZ_API0;
805 unsigned long flags;
806 struct mon_bin_hdr *ep;
807 unsigned int offset;
808 size_t step_len;
809 char *ptr;
810 ssize_t done = 0;
811 int rc;
812
813 mutex_lock(&rp->fetch_lock);
814
815 if ((rc = mon_bin_wait_event(file, rp)) < 0) {
816 mutex_unlock(&rp->fetch_lock);
817 return rc;
818 }
819
820 ep = MON_OFF2HDR(rp, rp->b_out);
821
822 if (rp->b_read < hdrbytes) {
823 step_len = min(nbytes, (size_t)(hdrbytes - rp->b_read));
824 ptr = ((char *)ep) + rp->b_read;
825 if (step_len && copy_to_user(buf, ptr, step_len)) {
826 mutex_unlock(&rp->fetch_lock);
827 return -EFAULT;
828 }
829 nbytes -= step_len;
830 buf += step_len;
831 rp->b_read += step_len;
832 done += step_len;
833 }
834
835 if (rp->b_read >= hdrbytes) {
836 step_len = ep->len_cap;
837 step_len -= rp->b_read - hdrbytes;
838 if (step_len > nbytes)
839 step_len = nbytes;
840 offset = rp->b_out + PKT_SIZE;
841 offset += rp->b_read - hdrbytes;
842 if (offset >= rp->b_size)
843 offset -= rp->b_size;
844 if (copy_from_buf(rp, offset, buf, step_len)) {
845 mutex_unlock(&rp->fetch_lock);
846 return -EFAULT;
847 }
848 nbytes -= step_len;
849 buf += step_len;
850 rp->b_read += step_len;
851 done += step_len;
852 }
853
854 /*
855 * Check if whole packet was read, and if so, jump to the next one.
856 */
857 if (rp->b_read >= hdrbytes + ep->len_cap) {
858 spin_lock_irqsave(&rp->b_lock, flags);
859 mon_buff_area_free(rp, PKT_SIZE + ep->len_cap);
860 spin_unlock_irqrestore(&rp->b_lock, flags);
861 rp->b_read = 0;
862 }
863
864 mutex_unlock(&rp->fetch_lock);
865 return done;
866 }
867
868 /*
869 * Remove at most nevents from chunked buffer.
870 * Returns the number of removed events.
871 */
mon_bin_flush(struct mon_reader_bin * rp,unsigned nevents)872 static int mon_bin_flush(struct mon_reader_bin *rp, unsigned nevents)
873 {
874 unsigned long flags;
875 struct mon_bin_hdr *ep;
876 int i;
877
878 mutex_lock(&rp->fetch_lock);
879 spin_lock_irqsave(&rp->b_lock, flags);
880 for (i = 0; i < nevents; ++i) {
881 if (MON_RING_EMPTY(rp))
882 break;
883
884 ep = MON_OFF2HDR(rp, rp->b_out);
885 mon_buff_area_free(rp, PKT_SIZE + ep->len_cap);
886 }
887 spin_unlock_irqrestore(&rp->b_lock, flags);
888 rp->b_read = 0;
889 mutex_unlock(&rp->fetch_lock);
890 return i;
891 }
892
893 /*
894 * Fetch at most max event offsets into the buffer and put them into vec.
895 * The events are usually freed later with mon_bin_flush.
896 * Return the effective number of events fetched.
897 */
mon_bin_fetch(struct file * file,struct mon_reader_bin * rp,u32 __user * vec,unsigned int max)898 static int mon_bin_fetch(struct file *file, struct mon_reader_bin *rp,
899 u32 __user *vec, unsigned int max)
900 {
901 unsigned int cur_out;
902 unsigned int bytes, avail;
903 unsigned int size;
904 unsigned int nevents;
905 struct mon_bin_hdr *ep;
906 unsigned long flags;
907 int rc;
908
909 mutex_lock(&rp->fetch_lock);
910
911 if ((rc = mon_bin_wait_event(file, rp)) < 0) {
912 mutex_unlock(&rp->fetch_lock);
913 return rc;
914 }
915
916 spin_lock_irqsave(&rp->b_lock, flags);
917 avail = rp->b_cnt;
918 spin_unlock_irqrestore(&rp->b_lock, flags);
919
920 cur_out = rp->b_out;
921 nevents = 0;
922 bytes = 0;
923 while (bytes < avail) {
924 if (nevents >= max)
925 break;
926
927 ep = MON_OFF2HDR(rp, cur_out);
928 if (put_user(cur_out, &vec[nevents])) {
929 mutex_unlock(&rp->fetch_lock);
930 return -EFAULT;
931 }
932
933 nevents++;
934 size = ep->len_cap + PKT_SIZE;
935 size = (size + PKT_ALIGN-1) & ~(PKT_ALIGN-1);
936 if ((cur_out += size) >= rp->b_size)
937 cur_out -= rp->b_size;
938 bytes += size;
939 }
940
941 mutex_unlock(&rp->fetch_lock);
942 return nevents;
943 }
944
945 /*
946 * Count events. This is almost the same as the above mon_bin_fetch,
947 * only we do not store offsets into user vector, and we have no limit.
948 */
mon_bin_queued(struct mon_reader_bin * rp)949 static int mon_bin_queued(struct mon_reader_bin *rp)
950 {
951 unsigned int cur_out;
952 unsigned int bytes, avail;
953 unsigned int size;
954 unsigned int nevents;
955 struct mon_bin_hdr *ep;
956 unsigned long flags;
957
958 mutex_lock(&rp->fetch_lock);
959
960 spin_lock_irqsave(&rp->b_lock, flags);
961 avail = rp->b_cnt;
962 spin_unlock_irqrestore(&rp->b_lock, flags);
963
964 cur_out = rp->b_out;
965 nevents = 0;
966 bytes = 0;
967 while (bytes < avail) {
968 ep = MON_OFF2HDR(rp, cur_out);
969
970 nevents++;
971 size = ep->len_cap + PKT_SIZE;
972 size = (size + PKT_ALIGN-1) & ~(PKT_ALIGN-1);
973 if ((cur_out += size) >= rp->b_size)
974 cur_out -= rp->b_size;
975 bytes += size;
976 }
977
978 mutex_unlock(&rp->fetch_lock);
979 return nevents;
980 }
981
982 /*
983 */
mon_bin_ioctl(struct file * file,unsigned int cmd,unsigned long arg)984 static long mon_bin_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
985 {
986 struct mon_reader_bin *rp = file->private_data;
987 // struct mon_bus* mbus = rp->r.m_bus;
988 int ret = 0;
989 struct mon_bin_hdr *ep;
990 unsigned long flags;
991
992 switch (cmd) {
993
994 case MON_IOCQ_URB_LEN:
995 /*
996 * N.B. This only returns the size of data, without the header.
997 */
998 spin_lock_irqsave(&rp->b_lock, flags);
999 if (!MON_RING_EMPTY(rp)) {
1000 ep = MON_OFF2HDR(rp, rp->b_out);
1001 ret = ep->len_cap;
1002 }
1003 spin_unlock_irqrestore(&rp->b_lock, flags);
1004 break;
1005
1006 case MON_IOCQ_RING_SIZE:
1007 mutex_lock(&rp->fetch_lock);
1008 ret = rp->b_size;
1009 mutex_unlock(&rp->fetch_lock);
1010 break;
1011
1012 case MON_IOCT_RING_SIZE:
1013 /*
1014 * Changing the buffer size will flush it's contents; the new
1015 * buffer is allocated before releasing the old one to be sure
1016 * the device will stay functional also in case of memory
1017 * pressure.
1018 */
1019 {
1020 int size;
1021 struct mon_pgmap *vec;
1022
1023 if (arg < BUFF_MIN || arg > BUFF_MAX)
1024 return -EINVAL;
1025
1026 size = CHUNK_ALIGN(arg);
1027 vec = kcalloc(size / CHUNK_SIZE, sizeof(struct mon_pgmap),
1028 GFP_KERNEL);
1029 if (vec == NULL) {
1030 ret = -ENOMEM;
1031 break;
1032 }
1033
1034 ret = mon_alloc_buff(vec, size/CHUNK_SIZE);
1035 if (ret < 0) {
1036 kfree(vec);
1037 break;
1038 }
1039
1040 mutex_lock(&rp->fetch_lock);
1041 spin_lock_irqsave(&rp->b_lock, flags);
1042 if (rp->mmap_active) {
1043 mon_free_buff(vec, size/CHUNK_SIZE);
1044 kfree(vec);
1045 ret = -EBUSY;
1046 } else {
1047 mon_free_buff(rp->b_vec, rp->b_size/CHUNK_SIZE);
1048 kfree(rp->b_vec);
1049 rp->b_vec = vec;
1050 rp->b_size = size;
1051 rp->b_read = rp->b_in = rp->b_out = rp->b_cnt = 0;
1052 rp->cnt_lost = 0;
1053 }
1054 spin_unlock_irqrestore(&rp->b_lock, flags);
1055 mutex_unlock(&rp->fetch_lock);
1056 }
1057 break;
1058
1059 case MON_IOCH_MFLUSH:
1060 ret = mon_bin_flush(rp, arg);
1061 break;
1062
1063 case MON_IOCX_GET:
1064 case MON_IOCX_GETX:
1065 {
1066 struct mon_bin_get getb;
1067
1068 if (copy_from_user(&getb, (void __user *)arg,
1069 sizeof(struct mon_bin_get)))
1070 return -EFAULT;
1071
1072 if (getb.alloc > 0x10000000) /* Want to cast to u32 */
1073 return -EINVAL;
1074 ret = mon_bin_get_event(file, rp, getb.hdr,
1075 (cmd == MON_IOCX_GET)? PKT_SZ_API0: PKT_SZ_API1,
1076 getb.data, (unsigned int)getb.alloc);
1077 }
1078 break;
1079
1080 case MON_IOCX_MFETCH:
1081 {
1082 struct mon_bin_mfetch mfetch;
1083 struct mon_bin_mfetch __user *uptr;
1084
1085 uptr = (struct mon_bin_mfetch __user *)arg;
1086
1087 if (copy_from_user(&mfetch, uptr, sizeof(mfetch)))
1088 return -EFAULT;
1089
1090 if (mfetch.nflush) {
1091 ret = mon_bin_flush(rp, mfetch.nflush);
1092 if (ret < 0)
1093 return ret;
1094 if (put_user(ret, &uptr->nflush))
1095 return -EFAULT;
1096 }
1097 ret = mon_bin_fetch(file, rp, mfetch.offvec, mfetch.nfetch);
1098 if (ret < 0)
1099 return ret;
1100 if (put_user(ret, &uptr->nfetch))
1101 return -EFAULT;
1102 ret = 0;
1103 }
1104 break;
1105
1106 case MON_IOCG_STATS: {
1107 struct mon_bin_stats __user *sp;
1108 unsigned int nevents;
1109 unsigned int ndropped;
1110
1111 spin_lock_irqsave(&rp->b_lock, flags);
1112 ndropped = rp->cnt_lost;
1113 rp->cnt_lost = 0;
1114 spin_unlock_irqrestore(&rp->b_lock, flags);
1115 nevents = mon_bin_queued(rp);
1116
1117 sp = (struct mon_bin_stats __user *)arg;
1118 if (put_user(ndropped, &sp->dropped))
1119 return -EFAULT;
1120 if (put_user(nevents, &sp->queued))
1121 return -EFAULT;
1122
1123 }
1124 break;
1125
1126 default:
1127 return -ENOTTY;
1128 }
1129
1130 return ret;
1131 }
1132
1133 #ifdef CONFIG_COMPAT
mon_bin_compat_ioctl(struct file * file,unsigned int cmd,unsigned long arg)1134 static long mon_bin_compat_ioctl(struct file *file,
1135 unsigned int cmd, unsigned long arg)
1136 {
1137 struct mon_reader_bin *rp = file->private_data;
1138 int ret;
1139
1140 switch (cmd) {
1141
1142 case MON_IOCX_GET32:
1143 case MON_IOCX_GETX32:
1144 {
1145 struct mon_bin_get32 getb;
1146
1147 if (copy_from_user(&getb, (void __user *)arg,
1148 sizeof(struct mon_bin_get32)))
1149 return -EFAULT;
1150
1151 ret = mon_bin_get_event(file, rp, compat_ptr(getb.hdr32),
1152 (cmd == MON_IOCX_GET32)? PKT_SZ_API0: PKT_SZ_API1,
1153 compat_ptr(getb.data32), getb.alloc32);
1154 if (ret < 0)
1155 return ret;
1156 }
1157 return 0;
1158
1159 case MON_IOCX_MFETCH32:
1160 {
1161 struct mon_bin_mfetch32 mfetch;
1162 struct mon_bin_mfetch32 __user *uptr;
1163
1164 uptr = (struct mon_bin_mfetch32 __user *) compat_ptr(arg);
1165
1166 if (copy_from_user(&mfetch, uptr, sizeof(mfetch)))
1167 return -EFAULT;
1168
1169 if (mfetch.nflush32) {
1170 ret = mon_bin_flush(rp, mfetch.nflush32);
1171 if (ret < 0)
1172 return ret;
1173 if (put_user(ret, &uptr->nflush32))
1174 return -EFAULT;
1175 }
1176 ret = mon_bin_fetch(file, rp, compat_ptr(mfetch.offvec32),
1177 mfetch.nfetch32);
1178 if (ret < 0)
1179 return ret;
1180 if (put_user(ret, &uptr->nfetch32))
1181 return -EFAULT;
1182 }
1183 return 0;
1184
1185 case MON_IOCG_STATS:
1186 return mon_bin_ioctl(file, cmd, (unsigned long) compat_ptr(arg));
1187
1188 case MON_IOCQ_URB_LEN:
1189 case MON_IOCQ_RING_SIZE:
1190 case MON_IOCT_RING_SIZE:
1191 case MON_IOCH_MFLUSH:
1192 return mon_bin_ioctl(file, cmd, arg);
1193
1194 default:
1195 ;
1196 }
1197 return -ENOTTY;
1198 }
1199 #endif /* CONFIG_COMPAT */
1200
1201 static __poll_t
mon_bin_poll(struct file * file,struct poll_table_struct * wait)1202 mon_bin_poll(struct file *file, struct poll_table_struct *wait)
1203 {
1204 struct mon_reader_bin *rp = file->private_data;
1205 __poll_t mask = 0;
1206 unsigned long flags;
1207
1208 if (file->f_mode & FMODE_READ)
1209 poll_wait(file, &rp->b_wait, wait);
1210
1211 spin_lock_irqsave(&rp->b_lock, flags);
1212 if (!MON_RING_EMPTY(rp))
1213 mask |= EPOLLIN | EPOLLRDNORM; /* readable */
1214 spin_unlock_irqrestore(&rp->b_lock, flags);
1215 return mask;
1216 }
1217
1218 /*
1219 * open and close: just keep track of how many times the device is
1220 * mapped, to use the proper memory allocation function.
1221 */
mon_bin_vma_open(struct vm_area_struct * vma)1222 static void mon_bin_vma_open(struct vm_area_struct *vma)
1223 {
1224 struct mon_reader_bin *rp = vma->vm_private_data;
1225 unsigned long flags;
1226
1227 spin_lock_irqsave(&rp->b_lock, flags);
1228 rp->mmap_active++;
1229 spin_unlock_irqrestore(&rp->b_lock, flags);
1230 }
1231
mon_bin_vma_close(struct vm_area_struct * vma)1232 static void mon_bin_vma_close(struct vm_area_struct *vma)
1233 {
1234 unsigned long flags;
1235
1236 struct mon_reader_bin *rp = vma->vm_private_data;
1237 spin_lock_irqsave(&rp->b_lock, flags);
1238 rp->mmap_active--;
1239 spin_unlock_irqrestore(&rp->b_lock, flags);
1240 }
1241
1242 /*
1243 * Map ring pages to user space.
1244 */
mon_bin_vma_fault(struct vm_fault * vmf)1245 static vm_fault_t mon_bin_vma_fault(struct vm_fault *vmf)
1246 {
1247 struct mon_reader_bin *rp = vmf->vma->vm_private_data;
1248 unsigned long offset, chunk_idx;
1249 struct page *pageptr;
1250
1251 offset = vmf->pgoff << PAGE_SHIFT;
1252 if (offset >= rp->b_size)
1253 return VM_FAULT_SIGBUS;
1254 chunk_idx = offset / CHUNK_SIZE;
1255 pageptr = rp->b_vec[chunk_idx].pg;
1256 get_page(pageptr);
1257 vmf->page = pageptr;
1258 return 0;
1259 }
1260
1261 static const struct vm_operations_struct mon_bin_vm_ops = {
1262 .open = mon_bin_vma_open,
1263 .close = mon_bin_vma_close,
1264 .fault = mon_bin_vma_fault,
1265 };
1266
mon_bin_mmap(struct file * filp,struct vm_area_struct * vma)1267 static int mon_bin_mmap(struct file *filp, struct vm_area_struct *vma)
1268 {
1269 /* don't do anything here: "fault" will set up page table entries */
1270 vma->vm_ops = &mon_bin_vm_ops;
1271
1272 if (vma->vm_flags & VM_WRITE)
1273 return -EPERM;
1274
1275 vma->vm_flags &= ~VM_MAYWRITE;
1276 vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP;
1277 vma->vm_private_data = filp->private_data;
1278 mon_bin_vma_open(vma);
1279 return 0;
1280 }
1281
1282 static const struct file_operations mon_fops_binary = {
1283 .owner = THIS_MODULE,
1284 .open = mon_bin_open,
1285 .llseek = no_llseek,
1286 .read = mon_bin_read,
1287 /* .write = mon_text_write, */
1288 .poll = mon_bin_poll,
1289 .unlocked_ioctl = mon_bin_ioctl,
1290 #ifdef CONFIG_COMPAT
1291 .compat_ioctl = mon_bin_compat_ioctl,
1292 #endif
1293 .release = mon_bin_release,
1294 .mmap = mon_bin_mmap,
1295 };
1296
mon_bin_wait_event(struct file * file,struct mon_reader_bin * rp)1297 static int mon_bin_wait_event(struct file *file, struct mon_reader_bin *rp)
1298 {
1299 DECLARE_WAITQUEUE(waita, current);
1300 unsigned long flags;
1301
1302 add_wait_queue(&rp->b_wait, &waita);
1303 set_current_state(TASK_INTERRUPTIBLE);
1304
1305 spin_lock_irqsave(&rp->b_lock, flags);
1306 while (MON_RING_EMPTY(rp)) {
1307 spin_unlock_irqrestore(&rp->b_lock, flags);
1308
1309 if (file->f_flags & O_NONBLOCK) {
1310 set_current_state(TASK_RUNNING);
1311 remove_wait_queue(&rp->b_wait, &waita);
1312 return -EWOULDBLOCK; /* Same as EAGAIN in Linux */
1313 }
1314 schedule();
1315 if (signal_pending(current)) {
1316 remove_wait_queue(&rp->b_wait, &waita);
1317 return -EINTR;
1318 }
1319 set_current_state(TASK_INTERRUPTIBLE);
1320
1321 spin_lock_irqsave(&rp->b_lock, flags);
1322 }
1323 spin_unlock_irqrestore(&rp->b_lock, flags);
1324
1325 set_current_state(TASK_RUNNING);
1326 remove_wait_queue(&rp->b_wait, &waita);
1327 return 0;
1328 }
1329
mon_alloc_buff(struct mon_pgmap * map,int npages)1330 static int mon_alloc_buff(struct mon_pgmap *map, int npages)
1331 {
1332 int n;
1333 unsigned long vaddr;
1334
1335 for (n = 0; n < npages; n++) {
1336 vaddr = get_zeroed_page(GFP_KERNEL);
1337 if (vaddr == 0) {
1338 while (n-- != 0)
1339 free_page((unsigned long) map[n].ptr);
1340 return -ENOMEM;
1341 }
1342 map[n].ptr = (unsigned char *) vaddr;
1343 map[n].pg = virt_to_page((void *) vaddr);
1344 }
1345 return 0;
1346 }
1347
mon_free_buff(struct mon_pgmap * map,int npages)1348 static void mon_free_buff(struct mon_pgmap *map, int npages)
1349 {
1350 int n;
1351
1352 for (n = 0; n < npages; n++)
1353 free_page((unsigned long) map[n].ptr);
1354 }
1355
mon_bin_add(struct mon_bus * mbus,const struct usb_bus * ubus)1356 int mon_bin_add(struct mon_bus *mbus, const struct usb_bus *ubus)
1357 {
1358 struct device *dev;
1359 unsigned minor = ubus? ubus->busnum: 0;
1360
1361 if (minor >= MON_BIN_MAX_MINOR)
1362 return 0;
1363
1364 dev = device_create(mon_bin_class, ubus ? ubus->controller : NULL,
1365 MKDEV(MAJOR(mon_bin_dev0), minor), NULL,
1366 "usbmon%d", minor);
1367 if (IS_ERR(dev))
1368 return 0;
1369
1370 mbus->classdev = dev;
1371 return 1;
1372 }
1373
mon_bin_del(struct mon_bus * mbus)1374 void mon_bin_del(struct mon_bus *mbus)
1375 {
1376 device_destroy(mon_bin_class, mbus->classdev->devt);
1377 }
1378
mon_bin_init(void)1379 int __init mon_bin_init(void)
1380 {
1381 int rc;
1382
1383 mon_bin_class = class_create(THIS_MODULE, "usbmon");
1384 if (IS_ERR(mon_bin_class)) {
1385 rc = PTR_ERR(mon_bin_class);
1386 goto err_class;
1387 }
1388
1389 rc = alloc_chrdev_region(&mon_bin_dev0, 0, MON_BIN_MAX_MINOR, "usbmon");
1390 if (rc < 0)
1391 goto err_dev;
1392
1393 cdev_init(&mon_bin_cdev, &mon_fops_binary);
1394 mon_bin_cdev.owner = THIS_MODULE;
1395
1396 rc = cdev_add(&mon_bin_cdev, mon_bin_dev0, MON_BIN_MAX_MINOR);
1397 if (rc < 0)
1398 goto err_add;
1399
1400 return 0;
1401
1402 err_add:
1403 unregister_chrdev_region(mon_bin_dev0, MON_BIN_MAX_MINOR);
1404 err_dev:
1405 class_destroy(mon_bin_class);
1406 err_class:
1407 return rc;
1408 }
1409
mon_bin_exit(void)1410 void mon_bin_exit(void)
1411 {
1412 cdev_del(&mon_bin_cdev);
1413 unregister_chrdev_region(mon_bin_dev0, MON_BIN_MAX_MINOR);
1414 class_destroy(mon_bin_class);
1415 }
1416