• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Core registration and callback routines for MTD
4  * drivers and users.
5  *
6  * Copyright © 1999-2010 David Woodhouse <dwmw2@infradead.org>
7  * Copyright © 2006      Red Hat UK Limited
8  */
9 
10 #include <linux/module.h>
11 #include <linux/kernel.h>
12 #include <linux/ptrace.h>
13 #include <linux/seq_file.h>
14 #include <linux/string.h>
15 #include <linux/timer.h>
16 #include <linux/major.h>
17 #include <linux/fs.h>
18 #include <linux/err.h>
19 #include <linux/ioctl.h>
20 #include <linux/init.h>
21 #include <linux/of.h>
22 #include <linux/proc_fs.h>
23 #include <linux/idr.h>
24 #include <linux/backing-dev.h>
25 #include <linux/gfp.h>
26 #include <linux/slab.h>
27 #include <linux/reboot.h>
28 #include <linux/leds.h>
29 #include <linux/debugfs.h>
30 #include <linux/nvmem-provider.h>
31 
32 #include <linux/mtd/mtd.h>
33 #include <linux/mtd/partitions.h>
34 
35 #include "mtdcore.h"
36 
37 struct backing_dev_info *mtd_bdi;
38 
39 #ifdef CONFIG_PM_SLEEP
40 
mtd_cls_suspend(struct device * dev)41 static int mtd_cls_suspend(struct device *dev)
42 {
43 	struct mtd_info *mtd = dev_get_drvdata(dev);
44 
45 	return mtd ? mtd_suspend(mtd) : 0;
46 }
47 
mtd_cls_resume(struct device * dev)48 static int mtd_cls_resume(struct device *dev)
49 {
50 	struct mtd_info *mtd = dev_get_drvdata(dev);
51 
52 	if (mtd)
53 		mtd_resume(mtd);
54 	return 0;
55 }
56 
57 static SIMPLE_DEV_PM_OPS(mtd_cls_pm_ops, mtd_cls_suspend, mtd_cls_resume);
58 #define MTD_CLS_PM_OPS (&mtd_cls_pm_ops)
59 #else
60 #define MTD_CLS_PM_OPS NULL
61 #endif
62 
63 static struct class mtd_class = {
64 	.name = "mtd",
65 	.owner = THIS_MODULE,
66 	.pm = MTD_CLS_PM_OPS,
67 };
68 
69 static DEFINE_IDR(mtd_idr);
70 
71 /* These are exported solely for the purpose of mtd_blkdevs.c. You
72    should not use them for _anything_ else */
73 static DEFINE_MUTEX(mtd_table_mutex);
74 static int mtd_table_mutex_depth;
75 static struct task_struct *mtd_table_mutex_owner;
76 
__mtd_next_device(int i)77 struct mtd_info *__mtd_next_device(int i)
78 {
79 	return idr_get_next(&mtd_idr, &i);
80 }
81 EXPORT_SYMBOL_GPL(__mtd_next_device);
82 
83 static LIST_HEAD(mtd_notifiers);
84 
85 
86 #define MTD_DEVT(index) MKDEV(MTD_CHAR_MAJOR, (index)*2)
87 
mtd_table_mutex_lock(void)88 void mtd_table_mutex_lock(void)
89 {
90 	if (mtd_table_mutex_owner != current) {
91 		mutex_lock(&mtd_table_mutex);
92 		mtd_table_mutex_owner = current;
93 	}
94 	mtd_table_mutex_depth++;
95 }
96 EXPORT_SYMBOL_GPL(mtd_table_mutex_lock);
97 
98 
mtd_table_mutex_unlock(void)99 void mtd_table_mutex_unlock(void)
100 {
101 	if (mtd_table_mutex_owner != current) {
102 		pr_err("MTD:lock_owner is %s, but current is %s\n",
103 				mtd_table_mutex_owner->comm, current->comm);
104 		BUG();
105 	}
106 	if (--mtd_table_mutex_depth == 0) {
107 		mtd_table_mutex_owner =  NULL;
108 		mutex_unlock(&mtd_table_mutex);
109 	}
110 }
111 EXPORT_SYMBOL_GPL(mtd_table_mutex_unlock);
112 
mtd_table_assert_mutex_locked(void)113 void mtd_table_assert_mutex_locked(void)
114 {
115 	if (mtd_table_mutex_owner != current) {
116 		pr_err("MTD:lock_owner is %s, but current is %s\n",
117 				mtd_table_mutex_owner->comm, current->comm);
118 		BUG();
119 	}
120 }
121 EXPORT_SYMBOL_GPL(mtd_table_assert_mutex_locked);
122 /* REVISIT once MTD uses the driver model better, whoever allocates
123  * the mtd_info will probably want to use the release() hook...
124  */
mtd_release(struct device * dev)125 static void mtd_release(struct device *dev)
126 {
127 	struct mtd_info *mtd = dev_get_drvdata(dev);
128 	dev_t index = MTD_DEVT(mtd->index);
129 
130 	/* remove /dev/mtdXro node */
131 	device_destroy(&mtd_class, index + 1);
132 }
133 
mtd_type_show(struct device * dev,struct device_attribute * attr,char * buf)134 static ssize_t mtd_type_show(struct device *dev,
135 		struct device_attribute *attr, char *buf)
136 {
137 	struct mtd_info *mtd = dev_get_drvdata(dev);
138 	char *type;
139 
140 	switch (mtd->type) {
141 	case MTD_ABSENT:
142 		type = "absent";
143 		break;
144 	case MTD_RAM:
145 		type = "ram";
146 		break;
147 	case MTD_ROM:
148 		type = "rom";
149 		break;
150 	case MTD_NORFLASH:
151 		type = "nor";
152 		break;
153 	case MTD_NANDFLASH:
154 		type = "nand";
155 		break;
156 	case MTD_DATAFLASH:
157 		type = "dataflash";
158 		break;
159 	case MTD_UBIVOLUME:
160 		type = "ubi";
161 		break;
162 	case MTD_MLCNANDFLASH:
163 		type = "mlc-nand";
164 		break;
165 	default:
166 		type = "unknown";
167 	}
168 
169 	return snprintf(buf, PAGE_SIZE, "%s\n", type);
170 }
171 static DEVICE_ATTR(type, S_IRUGO, mtd_type_show, NULL);
172 
mtd_flags_show(struct device * dev,struct device_attribute * attr,char * buf)173 static ssize_t mtd_flags_show(struct device *dev,
174 		struct device_attribute *attr, char *buf)
175 {
176 	struct mtd_info *mtd = dev_get_drvdata(dev);
177 
178 	return snprintf(buf, PAGE_SIZE, "0x%lx\n", (unsigned long)mtd->flags);
179 }
180 static DEVICE_ATTR(flags, S_IRUGO, mtd_flags_show, NULL);
181 
mtd_size_show(struct device * dev,struct device_attribute * attr,char * buf)182 static ssize_t mtd_size_show(struct device *dev,
183 		struct device_attribute *attr, char *buf)
184 {
185 	struct mtd_info *mtd = dev_get_drvdata(dev);
186 
187 	return snprintf(buf, PAGE_SIZE, "%llu\n",
188 		(unsigned long long)mtd->size);
189 }
190 static DEVICE_ATTR(size, S_IRUGO, mtd_size_show, NULL);
191 
mtd_erasesize_show(struct device * dev,struct device_attribute * attr,char * buf)192 static ssize_t mtd_erasesize_show(struct device *dev,
193 		struct device_attribute *attr, char *buf)
194 {
195 	struct mtd_info *mtd = dev_get_drvdata(dev);
196 
197 	return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->erasesize);
198 }
199 static DEVICE_ATTR(erasesize, S_IRUGO, mtd_erasesize_show, NULL);
200 
mtd_writesize_show(struct device * dev,struct device_attribute * attr,char * buf)201 static ssize_t mtd_writesize_show(struct device *dev,
202 		struct device_attribute *attr, char *buf)
203 {
204 	struct mtd_info *mtd = dev_get_drvdata(dev);
205 
206 	return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->writesize);
207 }
208 static DEVICE_ATTR(writesize, S_IRUGO, mtd_writesize_show, NULL);
209 
mtd_subpagesize_show(struct device * dev,struct device_attribute * attr,char * buf)210 static ssize_t mtd_subpagesize_show(struct device *dev,
211 		struct device_attribute *attr, char *buf)
212 {
213 	struct mtd_info *mtd = dev_get_drvdata(dev);
214 	unsigned int subpagesize = mtd->writesize >> mtd->subpage_sft;
215 
216 	return snprintf(buf, PAGE_SIZE, "%u\n", subpagesize);
217 }
218 static DEVICE_ATTR(subpagesize, S_IRUGO, mtd_subpagesize_show, NULL);
219 
mtd_oobsize_show(struct device * dev,struct device_attribute * attr,char * buf)220 static ssize_t mtd_oobsize_show(struct device *dev,
221 		struct device_attribute *attr, char *buf)
222 {
223 	struct mtd_info *mtd = dev_get_drvdata(dev);
224 
225 	return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->oobsize);
226 }
227 static DEVICE_ATTR(oobsize, S_IRUGO, mtd_oobsize_show, NULL);
228 
mtd_oobavail_show(struct device * dev,struct device_attribute * attr,char * buf)229 static ssize_t mtd_oobavail_show(struct device *dev,
230 				 struct device_attribute *attr, char *buf)
231 {
232 	struct mtd_info *mtd = dev_get_drvdata(dev);
233 
234 	return snprintf(buf, PAGE_SIZE, "%u\n", mtd->oobavail);
235 }
236 static DEVICE_ATTR(oobavail, S_IRUGO, mtd_oobavail_show, NULL);
237 
mtd_numeraseregions_show(struct device * dev,struct device_attribute * attr,char * buf)238 static ssize_t mtd_numeraseregions_show(struct device *dev,
239 		struct device_attribute *attr, char *buf)
240 {
241 	struct mtd_info *mtd = dev_get_drvdata(dev);
242 
243 	return snprintf(buf, PAGE_SIZE, "%u\n", mtd->numeraseregions);
244 }
245 static DEVICE_ATTR(numeraseregions, S_IRUGO, mtd_numeraseregions_show,
246 	NULL);
247 
mtd_name_show(struct device * dev,struct device_attribute * attr,char * buf)248 static ssize_t mtd_name_show(struct device *dev,
249 		struct device_attribute *attr, char *buf)
250 {
251 	struct mtd_info *mtd = dev_get_drvdata(dev);
252 
253 	return snprintf(buf, PAGE_SIZE, "%s\n", mtd->name);
254 }
255 static DEVICE_ATTR(name, S_IRUGO, mtd_name_show, NULL);
256 
mtd_ecc_strength_show(struct device * dev,struct device_attribute * attr,char * buf)257 static ssize_t mtd_ecc_strength_show(struct device *dev,
258 				     struct device_attribute *attr, char *buf)
259 {
260 	struct mtd_info *mtd = dev_get_drvdata(dev);
261 
262 	return snprintf(buf, PAGE_SIZE, "%u\n", mtd->ecc_strength);
263 }
264 static DEVICE_ATTR(ecc_strength, S_IRUGO, mtd_ecc_strength_show, NULL);
265 
mtd_bitflip_threshold_show(struct device * dev,struct device_attribute * attr,char * buf)266 static ssize_t mtd_bitflip_threshold_show(struct device *dev,
267 					  struct device_attribute *attr,
268 					  char *buf)
269 {
270 	struct mtd_info *mtd = dev_get_drvdata(dev);
271 
272 	return snprintf(buf, PAGE_SIZE, "%u\n", mtd->bitflip_threshold);
273 }
274 
mtd_bitflip_threshold_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)275 static ssize_t mtd_bitflip_threshold_store(struct device *dev,
276 					   struct device_attribute *attr,
277 					   const char *buf, size_t count)
278 {
279 	struct mtd_info *mtd = dev_get_drvdata(dev);
280 	unsigned int bitflip_threshold;
281 	int retval;
282 
283 	retval = kstrtouint(buf, 0, &bitflip_threshold);
284 	if (retval)
285 		return retval;
286 
287 	mtd->bitflip_threshold = bitflip_threshold;
288 	return count;
289 }
290 static DEVICE_ATTR(bitflip_threshold, S_IRUGO | S_IWUSR,
291 		   mtd_bitflip_threshold_show,
292 		   mtd_bitflip_threshold_store);
293 
mtd_ecc_step_size_show(struct device * dev,struct device_attribute * attr,char * buf)294 static ssize_t mtd_ecc_step_size_show(struct device *dev,
295 		struct device_attribute *attr, char *buf)
296 {
297 	struct mtd_info *mtd = dev_get_drvdata(dev);
298 
299 	return snprintf(buf, PAGE_SIZE, "%u\n", mtd->ecc_step_size);
300 
301 }
302 static DEVICE_ATTR(ecc_step_size, S_IRUGO, mtd_ecc_step_size_show, NULL);
303 
mtd_ecc_stats_corrected_show(struct device * dev,struct device_attribute * attr,char * buf)304 static ssize_t mtd_ecc_stats_corrected_show(struct device *dev,
305 		struct device_attribute *attr, char *buf)
306 {
307 	struct mtd_info *mtd = dev_get_drvdata(dev);
308 	struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
309 
310 	return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->corrected);
311 }
312 static DEVICE_ATTR(corrected_bits, S_IRUGO,
313 		   mtd_ecc_stats_corrected_show, NULL);
314 
mtd_ecc_stats_errors_show(struct device * dev,struct device_attribute * attr,char * buf)315 static ssize_t mtd_ecc_stats_errors_show(struct device *dev,
316 		struct device_attribute *attr, char *buf)
317 {
318 	struct mtd_info *mtd = dev_get_drvdata(dev);
319 	struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
320 
321 	return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->failed);
322 }
323 static DEVICE_ATTR(ecc_failures, S_IRUGO, mtd_ecc_stats_errors_show, NULL);
324 
mtd_badblocks_show(struct device * dev,struct device_attribute * attr,char * buf)325 static ssize_t mtd_badblocks_show(struct device *dev,
326 		struct device_attribute *attr, char *buf)
327 {
328 	struct mtd_info *mtd = dev_get_drvdata(dev);
329 	struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
330 
331 	return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->badblocks);
332 }
333 static DEVICE_ATTR(bad_blocks, S_IRUGO, mtd_badblocks_show, NULL);
334 
mtd_bbtblocks_show(struct device * dev,struct device_attribute * attr,char * buf)335 static ssize_t mtd_bbtblocks_show(struct device *dev,
336 		struct device_attribute *attr, char *buf)
337 {
338 	struct mtd_info *mtd = dev_get_drvdata(dev);
339 	struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
340 
341 	return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->bbtblocks);
342 }
343 static DEVICE_ATTR(bbt_blocks, S_IRUGO, mtd_bbtblocks_show, NULL);
344 
345 static struct attribute *mtd_attrs[] = {
346 	&dev_attr_type.attr,
347 	&dev_attr_flags.attr,
348 	&dev_attr_size.attr,
349 	&dev_attr_erasesize.attr,
350 	&dev_attr_writesize.attr,
351 	&dev_attr_subpagesize.attr,
352 	&dev_attr_oobsize.attr,
353 	&dev_attr_oobavail.attr,
354 	&dev_attr_numeraseregions.attr,
355 	&dev_attr_name.attr,
356 	&dev_attr_ecc_strength.attr,
357 	&dev_attr_ecc_step_size.attr,
358 	&dev_attr_corrected_bits.attr,
359 	&dev_attr_ecc_failures.attr,
360 	&dev_attr_bad_blocks.attr,
361 	&dev_attr_bbt_blocks.attr,
362 	&dev_attr_bitflip_threshold.attr,
363 	NULL,
364 };
365 ATTRIBUTE_GROUPS(mtd);
366 
367 static const struct device_type mtd_devtype = {
368 	.name		= "mtd",
369 	.groups		= mtd_groups,
370 	.release	= mtd_release,
371 };
372 
mtd_partid_debug_show(struct seq_file * s,void * p)373 static int mtd_partid_debug_show(struct seq_file *s, void *p)
374 {
375 	struct mtd_info *mtd = s->private;
376 
377 	seq_printf(s, "%s\n", mtd->dbg.partid);
378 
379 	return 0;
380 }
381 
382 DEFINE_SHOW_ATTRIBUTE(mtd_partid_debug);
383 
mtd_partname_debug_show(struct seq_file * s,void * p)384 static int mtd_partname_debug_show(struct seq_file *s, void *p)
385 {
386 	struct mtd_info *mtd = s->private;
387 
388 	seq_printf(s, "%s\n", mtd->dbg.partname);
389 
390 	return 0;
391 }
392 
393 DEFINE_SHOW_ATTRIBUTE(mtd_partname_debug);
394 
395 static struct dentry *dfs_dir_mtd;
396 
mtd_debugfs_populate(struct mtd_info * mtd)397 static void mtd_debugfs_populate(struct mtd_info *mtd)
398 {
399 	struct device *dev = &mtd->dev;
400 	struct dentry *root;
401 
402 	if (IS_ERR_OR_NULL(dfs_dir_mtd))
403 		return;
404 
405 	root = debugfs_create_dir(dev_name(dev), dfs_dir_mtd);
406 	mtd->dbg.dfs_dir = root;
407 
408 	if (mtd->dbg.partid)
409 		debugfs_create_file("partid", 0400, root, mtd,
410 				    &mtd_partid_debug_fops);
411 
412 	if (mtd->dbg.partname)
413 		debugfs_create_file("partname", 0400, root, mtd,
414 				    &mtd_partname_debug_fops);
415 }
416 
417 #ifndef CONFIG_MMU
mtd_mmap_capabilities(struct mtd_info * mtd)418 unsigned mtd_mmap_capabilities(struct mtd_info *mtd)
419 {
420 	switch (mtd->type) {
421 	case MTD_RAM:
422 		return NOMMU_MAP_COPY | NOMMU_MAP_DIRECT | NOMMU_MAP_EXEC |
423 			NOMMU_MAP_READ | NOMMU_MAP_WRITE;
424 	case MTD_ROM:
425 		return NOMMU_MAP_COPY | NOMMU_MAP_DIRECT | NOMMU_MAP_EXEC |
426 			NOMMU_MAP_READ;
427 	default:
428 		return NOMMU_MAP_COPY;
429 	}
430 }
431 EXPORT_SYMBOL_GPL(mtd_mmap_capabilities);
432 #endif
433 
mtd_reboot_notifier(struct notifier_block * n,unsigned long state,void * cmd)434 static int mtd_reboot_notifier(struct notifier_block *n, unsigned long state,
435 			       void *cmd)
436 {
437 	struct mtd_info *mtd;
438 
439 	mtd = container_of(n, struct mtd_info, reboot_notifier);
440 	mtd->_reboot(mtd);
441 
442 	return NOTIFY_DONE;
443 }
444 
445 /**
446  * mtd_wunit_to_pairing_info - get pairing information of a wunit
447  * @mtd: pointer to new MTD device info structure
448  * @wunit: write unit we are interested in
449  * @info: returned pairing information
450  *
451  * Retrieve pairing information associated to the wunit.
452  * This is mainly useful when dealing with MLC/TLC NANDs where pages can be
453  * paired together, and where programming a page may influence the page it is
454  * paired with.
455  * The notion of page is replaced by the term wunit (write-unit) to stay
456  * consistent with the ->writesize field.
457  *
458  * The @wunit argument can be extracted from an absolute offset using
459  * mtd_offset_to_wunit(). @info is filled with the pairing information attached
460  * to @wunit.
461  *
462  * From the pairing info the MTD user can find all the wunits paired with
463  * @wunit using the following loop:
464  *
465  * for (i = 0; i < mtd_pairing_groups(mtd); i++) {
466  *	info.pair = i;
467  *	mtd_pairing_info_to_wunit(mtd, &info);
468  *	...
469  * }
470  */
mtd_wunit_to_pairing_info(struct mtd_info * mtd,int wunit,struct mtd_pairing_info * info)471 int mtd_wunit_to_pairing_info(struct mtd_info *mtd, int wunit,
472 			      struct mtd_pairing_info *info)
473 {
474 	struct mtd_info *master = mtd_get_master(mtd);
475 	int npairs = mtd_wunit_per_eb(master) / mtd_pairing_groups(master);
476 
477 	if (wunit < 0 || wunit >= npairs)
478 		return -EINVAL;
479 
480 	if (master->pairing && master->pairing->get_info)
481 		return master->pairing->get_info(master, wunit, info);
482 
483 	info->group = 0;
484 	info->pair = wunit;
485 
486 	return 0;
487 }
488 EXPORT_SYMBOL_GPL(mtd_wunit_to_pairing_info);
489 
490 /**
491  * mtd_pairing_info_to_wunit - get wunit from pairing information
492  * @mtd: pointer to new MTD device info structure
493  * @info: pairing information struct
494  *
495  * Returns a positive number representing the wunit associated to the info
496  * struct, or a negative error code.
497  *
498  * This is the reverse of mtd_wunit_to_pairing_info(), and can help one to
499  * iterate over all wunits of a given pair (see mtd_wunit_to_pairing_info()
500  * doc).
501  *
502  * It can also be used to only program the first page of each pair (i.e.
503  * page attached to group 0), which allows one to use an MLC NAND in
504  * software-emulated SLC mode:
505  *
506  * info.group = 0;
507  * npairs = mtd_wunit_per_eb(mtd) / mtd_pairing_groups(mtd);
508  * for (info.pair = 0; info.pair < npairs; info.pair++) {
509  *	wunit = mtd_pairing_info_to_wunit(mtd, &info);
510  *	mtd_write(mtd, mtd_wunit_to_offset(mtd, blkoffs, wunit),
511  *		  mtd->writesize, &retlen, buf + (i * mtd->writesize));
512  * }
513  */
mtd_pairing_info_to_wunit(struct mtd_info * mtd,const struct mtd_pairing_info * info)514 int mtd_pairing_info_to_wunit(struct mtd_info *mtd,
515 			      const struct mtd_pairing_info *info)
516 {
517 	struct mtd_info *master = mtd_get_master(mtd);
518 	int ngroups = mtd_pairing_groups(master);
519 	int npairs = mtd_wunit_per_eb(master) / ngroups;
520 
521 	if (!info || info->pair < 0 || info->pair >= npairs ||
522 	    info->group < 0 || info->group >= ngroups)
523 		return -EINVAL;
524 
525 	if (master->pairing && master->pairing->get_wunit)
526 		return mtd->pairing->get_wunit(master, info);
527 
528 	return info->pair;
529 }
530 EXPORT_SYMBOL_GPL(mtd_pairing_info_to_wunit);
531 
532 /**
533  * mtd_pairing_groups - get the number of pairing groups
534  * @mtd: pointer to new MTD device info structure
535  *
536  * Returns the number of pairing groups.
537  *
538  * This number is usually equal to the number of bits exposed by a single
539  * cell, and can be used in conjunction with mtd_pairing_info_to_wunit()
540  * to iterate over all pages of a given pair.
541  */
mtd_pairing_groups(struct mtd_info * mtd)542 int mtd_pairing_groups(struct mtd_info *mtd)
543 {
544 	struct mtd_info *master = mtd_get_master(mtd);
545 
546 	if (!master->pairing || !master->pairing->ngroups)
547 		return 1;
548 
549 	return master->pairing->ngroups;
550 }
551 EXPORT_SYMBOL_GPL(mtd_pairing_groups);
552 
mtd_nvmem_reg_read(void * priv,unsigned int offset,void * val,size_t bytes)553 static int mtd_nvmem_reg_read(void *priv, unsigned int offset,
554 			      void *val, size_t bytes)
555 {
556 	struct mtd_info *mtd = priv;
557 	size_t retlen;
558 	int err;
559 
560 	err = mtd_read(mtd, offset, bytes, &retlen, val);
561 	if (err && err != -EUCLEAN)
562 		return err;
563 
564 	return retlen == bytes ? 0 : -EIO;
565 }
566 
mtd_nvmem_add(struct mtd_info * mtd)567 static int mtd_nvmem_add(struct mtd_info *mtd)
568 {
569 	struct nvmem_config config = {};
570 
571 	config.id = -1;
572 	config.dev = &mtd->dev;
573 	config.name = dev_name(&mtd->dev);
574 	config.owner = THIS_MODULE;
575 	config.reg_read = mtd_nvmem_reg_read;
576 	config.size = mtd->size;
577 	config.word_size = 1;
578 	config.stride = 1;
579 	config.read_only = true;
580 	config.root_only = true;
581 	config.no_of_node = true;
582 	config.priv = mtd;
583 
584 	mtd->nvmem = nvmem_register(&config);
585 	if (IS_ERR(mtd->nvmem)) {
586 		/* Just ignore if there is no NVMEM support in the kernel */
587 		if (PTR_ERR(mtd->nvmem) == -EOPNOTSUPP) {
588 			mtd->nvmem = NULL;
589 		} else {
590 			dev_err(&mtd->dev, "Failed to register NVMEM device\n");
591 			return PTR_ERR(mtd->nvmem);
592 		}
593 	}
594 
595 	return 0;
596 }
597 
598 /**
599  *	add_mtd_device - register an MTD device
600  *	@mtd: pointer to new MTD device info structure
601  *
602  *	Add a device to the list of MTD devices present in the system, and
603  *	notify each currently active MTD 'user' of its arrival. Returns
604  *	zero on success or non-zero on failure.
605  */
606 
add_mtd_device(struct mtd_info * mtd)607 int add_mtd_device(struct mtd_info *mtd)
608 {
609 	struct mtd_info *master = mtd_get_master(mtd);
610 	struct mtd_notifier *not;
611 	int i, error;
612 
613 	/*
614 	 * May occur, for instance, on buggy drivers which call
615 	 * mtd_device_parse_register() multiple times on the same master MTD,
616 	 * especially with CONFIG_MTD_PARTITIONED_MASTER=y.
617 	 */
618 	if (WARN_ONCE(mtd->dev.type, "MTD already registered\n"))
619 		return -EEXIST;
620 
621 	BUG_ON(mtd->writesize == 0);
622 
623 	/*
624 	 * MTD drivers should implement ->_{write,read}() or
625 	 * ->_{write,read}_oob(), but not both.
626 	 */
627 	if (WARN_ON((mtd->_write && mtd->_write_oob) ||
628 		    (mtd->_read && mtd->_read_oob)))
629 		return -EINVAL;
630 
631 	if (WARN_ON((!mtd->erasesize || !master->_erase) &&
632 		    !(mtd->flags & MTD_NO_ERASE)))
633 		return -EINVAL;
634 
635 	/*
636 	 * MTD_SLC_ON_MLC_EMULATION can only be set on partitions, when the
637 	 * master is an MLC NAND and has a proper pairing scheme defined.
638 	 * We also reject masters that implement ->_writev() for now, because
639 	 * NAND controller drivers don't implement this hook, and adding the
640 	 * SLC -> MLC address/length conversion to this path is useless if we
641 	 * don't have a user.
642 	 */
643 	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION &&
644 	    (!mtd_is_partition(mtd) || master->type != MTD_MLCNANDFLASH ||
645 	     !master->pairing || master->_writev))
646 		return -EINVAL;
647 
648 	mtd_table_mutex_lock();
649 
650 	i = idr_alloc(&mtd_idr, mtd, 0, 0, GFP_KERNEL);
651 	if (i < 0) {
652 		error = i;
653 		goto fail_locked;
654 	}
655 
656 	mtd->index = i;
657 	mtd->usecount = 0;
658 
659 	/* default value if not set by driver */
660 	if (mtd->bitflip_threshold == 0)
661 		mtd->bitflip_threshold = mtd->ecc_strength;
662 
663 	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
664 		int ngroups = mtd_pairing_groups(master);
665 
666 		mtd->erasesize /= ngroups;
667 		mtd->size = (u64)mtd_div_by_eb(mtd->size, master) *
668 			    mtd->erasesize;
669 	}
670 
671 	if (is_power_of_2(mtd->erasesize))
672 		mtd->erasesize_shift = ffs(mtd->erasesize) - 1;
673 	else
674 		mtd->erasesize_shift = 0;
675 
676 	if (is_power_of_2(mtd->writesize))
677 		mtd->writesize_shift = ffs(mtd->writesize) - 1;
678 	else
679 		mtd->writesize_shift = 0;
680 
681 	mtd->erasesize_mask = (1 << mtd->erasesize_shift) - 1;
682 	mtd->writesize_mask = (1 << mtd->writesize_shift) - 1;
683 
684 	/* Some chips always power up locked. Unlock them now */
685 	if ((mtd->flags & MTD_WRITEABLE) && (mtd->flags & MTD_POWERUP_LOCK)) {
686 		error = mtd_unlock(mtd, 0, mtd->size);
687 		if (error && error != -EOPNOTSUPP)
688 			printk(KERN_WARNING
689 			       "%s: unlock failed, writes may not work\n",
690 			       mtd->name);
691 		/* Ignore unlock failures? */
692 		error = 0;
693 	}
694 
695 	/* Caller should have set dev.parent to match the
696 	 * physical device, if appropriate.
697 	 */
698 	mtd->dev.type = &mtd_devtype;
699 	mtd->dev.class = &mtd_class;
700 	mtd->dev.devt = MTD_DEVT(i);
701 	dev_set_name(&mtd->dev, "mtd%d", i);
702 	dev_set_drvdata(&mtd->dev, mtd);
703 	of_node_get(mtd_get_of_node(mtd));
704 	error = device_register(&mtd->dev);
705 	if (error)
706 		goto fail_added;
707 
708 	/* Add the nvmem provider */
709 	error = mtd_nvmem_add(mtd);
710 	if (error)
711 		goto fail_nvmem_add;
712 
713 	mtd_debugfs_populate(mtd);
714 
715 	device_create(&mtd_class, mtd->dev.parent, MTD_DEVT(i) + 1, NULL,
716 		      "mtd%dro", i);
717 
718 	pr_debug("mtd: Giving out device %d to %s\n", i, mtd->name);
719 	/* No need to get a refcount on the module containing
720 	   the notifier, since we hold the mtd_table_mutex */
721 	list_for_each_entry(not, &mtd_notifiers, list)
722 		not->add(mtd);
723 
724 	mtd_table_mutex_unlock();
725 	/* We _know_ we aren't being removed, because
726 	   our caller is still holding us here. So none
727 	   of this try_ nonsense, and no bitching about it
728 	   either. :) */
729 	__module_get(THIS_MODULE);
730 	return 0;
731 
732 fail_nvmem_add:
733 	device_unregister(&mtd->dev);
734 fail_added:
735 	of_node_put(mtd_get_of_node(mtd));
736 	idr_remove(&mtd_idr, i);
737 fail_locked:
738 	mtd_table_mutex_unlock();
739 	return error;
740 }
741 
742 /**
743  *	del_mtd_device - unregister an MTD device
744  *	@mtd: pointer to MTD device info structure
745  *
746  *	Remove a device from the list of MTD devices present in the system,
747  *	and notify each currently active MTD 'user' of its departure.
748  *	Returns zero on success or 1 on failure, which currently will happen
749  *	if the requested device does not appear to be present in the list.
750  */
751 
del_mtd_device(struct mtd_info * mtd)752 int del_mtd_device(struct mtd_info *mtd)
753 {
754 	int ret;
755 	struct mtd_notifier *not;
756 
757 	mtd_table_mutex_lock();
758 
759 	if (idr_find(&mtd_idr, mtd->index) != mtd) {
760 		ret = -ENODEV;
761 		goto out_error;
762 	}
763 
764 	/* No need to get a refcount on the module containing
765 		the notifier, since we hold the mtd_table_mutex */
766 	list_for_each_entry(not, &mtd_notifiers, list)
767 		not->remove(mtd);
768 
769 	if (mtd->usecount) {
770 		printk(KERN_NOTICE "Removing MTD device #%d (%s) with use count %d\n",
771 		       mtd->index, mtd->name, mtd->usecount);
772 		ret = -EBUSY;
773 	} else {
774 		debugfs_remove_recursive(mtd->dbg.dfs_dir);
775 
776 		/* Try to remove the NVMEM provider */
777 		if (mtd->nvmem)
778 			nvmem_unregister(mtd->nvmem);
779 
780 		device_unregister(&mtd->dev);
781 
782 		idr_remove(&mtd_idr, mtd->index);
783 		of_node_put(mtd_get_of_node(mtd));
784 
785 		module_put(THIS_MODULE);
786 		ret = 0;
787 	}
788 
789 out_error:
790 	mtd_table_mutex_unlock();
791 	return ret;
792 }
793 
794 /*
795  * Set a few defaults based on the parent devices, if not provided by the
796  * driver
797  */
mtd_set_dev_defaults(struct mtd_info * mtd)798 static void mtd_set_dev_defaults(struct mtd_info *mtd)
799 {
800 	if (mtd->dev.parent) {
801 		if (!mtd->owner && mtd->dev.parent->driver)
802 			mtd->owner = mtd->dev.parent->driver->owner;
803 		if (!mtd->name)
804 			mtd->name = dev_name(mtd->dev.parent);
805 	} else {
806 		pr_debug("mtd device won't show a device symlink in sysfs\n");
807 	}
808 
809 	INIT_LIST_HEAD(&mtd->partitions);
810 	mutex_init(&mtd->master.partitions_lock);
811 }
812 
813 /**
814  * mtd_device_parse_register - parse partitions and register an MTD device.
815  *
816  * @mtd: the MTD device to register
817  * @types: the list of MTD partition probes to try, see
818  *         'parse_mtd_partitions()' for more information
819  * @parser_data: MTD partition parser-specific data
820  * @parts: fallback partition information to register, if parsing fails;
821  *         only valid if %nr_parts > %0
822  * @nr_parts: the number of partitions in parts, if zero then the full
823  *            MTD device is registered if no partition info is found
824  *
825  * This function aggregates MTD partitions parsing (done by
826  * 'parse_mtd_partitions()') and MTD device and partitions registering. It
827  * basically follows the most common pattern found in many MTD drivers:
828  *
829  * * If the MTD_PARTITIONED_MASTER option is set, then the device as a whole is
830  *   registered first.
831  * * Then It tries to probe partitions on MTD device @mtd using parsers
832  *   specified in @types (if @types is %NULL, then the default list of parsers
833  *   is used, see 'parse_mtd_partitions()' for more information). If none are
834  *   found this functions tries to fallback to information specified in
835  *   @parts/@nr_parts.
836  * * If no partitions were found this function just registers the MTD device
837  *   @mtd and exits.
838  *
839  * Returns zero in case of success and a negative error code in case of failure.
840  */
mtd_device_parse_register(struct mtd_info * mtd,const char * const * types,struct mtd_part_parser_data * parser_data,const struct mtd_partition * parts,int nr_parts)841 int mtd_device_parse_register(struct mtd_info *mtd, const char * const *types,
842 			      struct mtd_part_parser_data *parser_data,
843 			      const struct mtd_partition *parts,
844 			      int nr_parts)
845 {
846 	int ret;
847 
848 	mtd_set_dev_defaults(mtd);
849 
850 	if (IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER)) {
851 		ret = add_mtd_device(mtd);
852 		if (ret)
853 			return ret;
854 	}
855 
856 	/* Prefer parsed partitions over driver-provided fallback */
857 	ret = parse_mtd_partitions(mtd, types, parser_data);
858 	if (ret == -EPROBE_DEFER)
859 		goto out;
860 
861 	if (ret > 0)
862 		ret = 0;
863 	else if (nr_parts)
864 		ret = add_mtd_partitions(mtd, parts, nr_parts);
865 	else if (!device_is_registered(&mtd->dev))
866 		ret = add_mtd_device(mtd);
867 	else
868 		ret = 0;
869 
870 	if (ret)
871 		goto out;
872 
873 	/*
874 	 * FIXME: some drivers unfortunately call this function more than once.
875 	 * So we have to check if we've already assigned the reboot notifier.
876 	 *
877 	 * Generally, we can make multiple calls work for most cases, but it
878 	 * does cause problems with parse_mtd_partitions() above (e.g.,
879 	 * cmdlineparts will register partitions more than once).
880 	 */
881 	WARN_ONCE(mtd->_reboot && mtd->reboot_notifier.notifier_call,
882 		  "MTD already registered\n");
883 	if (mtd->_reboot && !mtd->reboot_notifier.notifier_call) {
884 		mtd->reboot_notifier.notifier_call = mtd_reboot_notifier;
885 		register_reboot_notifier(&mtd->reboot_notifier);
886 	}
887 
888 out:
889 	if (ret && device_is_registered(&mtd->dev))
890 		del_mtd_device(mtd);
891 
892 	return ret;
893 }
894 EXPORT_SYMBOL_GPL(mtd_device_parse_register);
895 
896 /**
897  * mtd_device_unregister - unregister an existing MTD device.
898  *
899  * @master: the MTD device to unregister.  This will unregister both the master
900  *          and any partitions if registered.
901  */
mtd_device_unregister(struct mtd_info * master)902 int mtd_device_unregister(struct mtd_info *master)
903 {
904 	int err;
905 
906 	if (master->_reboot)
907 		unregister_reboot_notifier(&master->reboot_notifier);
908 
909 	err = del_mtd_partitions(master);
910 	if (err)
911 		return err;
912 
913 	if (!device_is_registered(&master->dev))
914 		return 0;
915 
916 	return del_mtd_device(master);
917 }
918 EXPORT_SYMBOL_GPL(mtd_device_unregister);
919 
920 /**
921  *	register_mtd_user - register a 'user' of MTD devices.
922  *	@new: pointer to notifier info structure
923  *
924  *	Registers a pair of callbacks function to be called upon addition
925  *	or removal of MTD devices. Causes the 'add' callback to be immediately
926  *	invoked for each MTD device currently present in the system.
927  */
register_mtd_user(struct mtd_notifier * new)928 void register_mtd_user (struct mtd_notifier *new)
929 {
930 	struct mtd_info *mtd;
931 
932 	mtd_table_mutex_lock();
933 
934 	list_add(&new->list, &mtd_notifiers);
935 
936 	__module_get(THIS_MODULE);
937 
938 	mtd_for_each_device(mtd)
939 		new->add(mtd);
940 
941 	mtd_table_mutex_unlock();
942 }
943 EXPORT_SYMBOL_GPL(register_mtd_user);
944 
945 /**
946  *	unregister_mtd_user - unregister a 'user' of MTD devices.
947  *	@old: pointer to notifier info structure
948  *
949  *	Removes a callback function pair from the list of 'users' to be
950  *	notified upon addition or removal of MTD devices. Causes the
951  *	'remove' callback to be immediately invoked for each MTD device
952  *	currently present in the system.
953  */
unregister_mtd_user(struct mtd_notifier * old)954 int unregister_mtd_user (struct mtd_notifier *old)
955 {
956 	struct mtd_info *mtd;
957 
958 	mtd_table_mutex_lock();
959 
960 	module_put(THIS_MODULE);
961 
962 	mtd_for_each_device(mtd)
963 		old->remove(mtd);
964 
965 	list_del(&old->list);
966 	mtd_table_mutex_unlock();
967 	return 0;
968 }
969 EXPORT_SYMBOL_GPL(unregister_mtd_user);
970 
971 /**
972  *	get_mtd_device - obtain a validated handle for an MTD device
973  *	@mtd: last known address of the required MTD device
974  *	@num: internal device number of the required MTD device
975  *
976  *	Given a number and NULL address, return the num'th entry in the device
977  *	table, if any.	Given an address and num == -1, search the device table
978  *	for a device with that address and return if it's still present. Given
979  *	both, return the num'th driver only if its address matches. Return
980  *	error code if not.
981  */
get_mtd_device(struct mtd_info * mtd,int num)982 struct mtd_info *get_mtd_device(struct mtd_info *mtd, int num)
983 {
984 	struct mtd_info *ret = NULL, *other;
985 	int err = -ENODEV;
986 
987 	mtd_table_mutex_lock();
988 
989 	if (num == -1) {
990 		mtd_for_each_device(other) {
991 			if (other == mtd) {
992 				ret = mtd;
993 				break;
994 			}
995 		}
996 	} else if (num >= 0) {
997 		ret = idr_find(&mtd_idr, num);
998 		if (mtd && mtd != ret)
999 			ret = NULL;
1000 	}
1001 
1002 	if (!ret) {
1003 		ret = ERR_PTR(err);
1004 		goto out;
1005 	}
1006 
1007 	err = __get_mtd_device(ret);
1008 	if (err)
1009 		ret = ERR_PTR(err);
1010 out:
1011 	mtd_table_mutex_unlock();
1012 	return ret;
1013 }
1014 EXPORT_SYMBOL_GPL(get_mtd_device);
1015 
1016 
__get_mtd_device(struct mtd_info * mtd)1017 int __get_mtd_device(struct mtd_info *mtd)
1018 {
1019 	struct mtd_info *master = mtd_get_master(mtd);
1020 	int err;
1021 
1022 	if (!try_module_get(master->owner))
1023 		return -ENODEV;
1024 
1025 	if (master->_get_device) {
1026 		err = master->_get_device(mtd);
1027 
1028 		if (err) {
1029 			module_put(master->owner);
1030 			return err;
1031 		}
1032 	}
1033 
1034 	master->usecount++;
1035 
1036 	while (mtd->parent) {
1037 		mtd->usecount++;
1038 		mtd = mtd->parent;
1039 	}
1040 
1041 	return 0;
1042 }
1043 EXPORT_SYMBOL_GPL(__get_mtd_device);
1044 
1045 /**
1046  *	get_mtd_device_nm - obtain a validated handle for an MTD device by
1047  *	device name
1048  *	@name: MTD device name to open
1049  *
1050  * 	This function returns MTD device description structure in case of
1051  * 	success and an error code in case of failure.
1052  */
get_mtd_device_nm(const char * name)1053 struct mtd_info *get_mtd_device_nm(const char *name)
1054 {
1055 	int err = -ENODEV;
1056 	struct mtd_info *mtd = NULL, *other;
1057 
1058 	mtd_table_mutex_lock();
1059 
1060 	mtd_for_each_device(other) {
1061 		if (!strcmp(name, other->name)) {
1062 			mtd = other;
1063 			break;
1064 		}
1065 	}
1066 
1067 	if (!mtd)
1068 		goto out_unlock;
1069 
1070 	err = __get_mtd_device(mtd);
1071 	if (err)
1072 		goto out_unlock;
1073 
1074 	mtd_table_mutex_unlock();
1075 	return mtd;
1076 
1077 out_unlock:
1078 	mtd_table_mutex_unlock();
1079 	return ERR_PTR(err);
1080 }
1081 EXPORT_SYMBOL_GPL(get_mtd_device_nm);
1082 
put_mtd_device(struct mtd_info * mtd)1083 void put_mtd_device(struct mtd_info *mtd)
1084 {
1085 	mtd_table_mutex_lock();
1086 	__put_mtd_device(mtd);
1087 	mtd_table_mutex_unlock();
1088 
1089 }
1090 EXPORT_SYMBOL_GPL(put_mtd_device);
1091 
__put_mtd_device(struct mtd_info * mtd)1092 void __put_mtd_device(struct mtd_info *mtd)
1093 {
1094 	struct mtd_info *master = mtd_get_master(mtd);
1095 
1096 	while (mtd->parent) {
1097 		--mtd->usecount;
1098 		BUG_ON(mtd->usecount < 0);
1099 		mtd = mtd->parent;
1100 	}
1101 
1102 	master->usecount--;
1103 
1104 	if (master->_put_device)
1105 		master->_put_device(master);
1106 
1107 	module_put(master->owner);
1108 }
1109 EXPORT_SYMBOL_GPL(__put_mtd_device);
1110 
1111 /*
1112  * Erase is an synchronous operation. Device drivers are epected to return a
1113  * negative error code if the operation failed and update instr->fail_addr
1114  * to point the portion that was not properly erased.
1115  */
mtd_erase(struct mtd_info * mtd,struct erase_info * instr)1116 int mtd_erase(struct mtd_info *mtd, struct erase_info *instr)
1117 {
1118 	struct mtd_info *master = mtd_get_master(mtd);
1119 	u64 mst_ofs = mtd_get_master_ofs(mtd, 0);
1120 	struct erase_info adjinstr;
1121 	int ret;
1122 
1123 	instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN;
1124 	adjinstr = *instr;
1125 
1126 	if (!mtd->erasesize || !master->_erase)
1127 		return -ENOTSUPP;
1128 
1129 	if (instr->addr >= mtd->size || instr->len > mtd->size - instr->addr)
1130 		return -EINVAL;
1131 	if (!(mtd->flags & MTD_WRITEABLE))
1132 		return -EROFS;
1133 
1134 	if (!instr->len)
1135 		return 0;
1136 
1137 	ledtrig_mtd_activity();
1138 
1139 	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
1140 		adjinstr.addr = (loff_t)mtd_div_by_eb(instr->addr, mtd) *
1141 				master->erasesize;
1142 		adjinstr.len = ((u64)mtd_div_by_eb(instr->addr + instr->len, mtd) *
1143 				master->erasesize) -
1144 			       adjinstr.addr;
1145 	}
1146 
1147 	adjinstr.addr += mst_ofs;
1148 
1149 	ret = master->_erase(master, &adjinstr);
1150 
1151 	if (adjinstr.fail_addr != MTD_FAIL_ADDR_UNKNOWN) {
1152 		instr->fail_addr = adjinstr.fail_addr - mst_ofs;
1153 		if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
1154 			instr->fail_addr = mtd_div_by_eb(instr->fail_addr,
1155 							 master);
1156 			instr->fail_addr *= mtd->erasesize;
1157 		}
1158 	}
1159 
1160 	return ret;
1161 }
1162 EXPORT_SYMBOL_GPL(mtd_erase);
1163 
1164 /*
1165  * This stuff for eXecute-In-Place. phys is optional and may be set to NULL.
1166  */
mtd_point(struct mtd_info * mtd,loff_t from,size_t len,size_t * retlen,void ** virt,resource_size_t * phys)1167 int mtd_point(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
1168 	      void **virt, resource_size_t *phys)
1169 {
1170 	struct mtd_info *master = mtd_get_master(mtd);
1171 
1172 	*retlen = 0;
1173 	*virt = NULL;
1174 	if (phys)
1175 		*phys = 0;
1176 	if (!master->_point)
1177 		return -EOPNOTSUPP;
1178 	if (from < 0 || from >= mtd->size || len > mtd->size - from)
1179 		return -EINVAL;
1180 	if (!len)
1181 		return 0;
1182 
1183 	from = mtd_get_master_ofs(mtd, from);
1184 	return master->_point(master, from, len, retlen, virt, phys);
1185 }
1186 EXPORT_SYMBOL_GPL(mtd_point);
1187 
1188 /* We probably shouldn't allow XIP if the unpoint isn't a NULL */
mtd_unpoint(struct mtd_info * mtd,loff_t from,size_t len)1189 int mtd_unpoint(struct mtd_info *mtd, loff_t from, size_t len)
1190 {
1191 	struct mtd_info *master = mtd_get_master(mtd);
1192 
1193 	if (!master->_unpoint)
1194 		return -EOPNOTSUPP;
1195 	if (from < 0 || from >= mtd->size || len > mtd->size - from)
1196 		return -EINVAL;
1197 	if (!len)
1198 		return 0;
1199 	return master->_unpoint(master, mtd_get_master_ofs(mtd, from), len);
1200 }
1201 EXPORT_SYMBOL_GPL(mtd_unpoint);
1202 
1203 /*
1204  * Allow NOMMU mmap() to directly map the device (if not NULL)
1205  * - return the address to which the offset maps
1206  * - return -ENOSYS to indicate refusal to do the mapping
1207  */
mtd_get_unmapped_area(struct mtd_info * mtd,unsigned long len,unsigned long offset,unsigned long flags)1208 unsigned long mtd_get_unmapped_area(struct mtd_info *mtd, unsigned long len,
1209 				    unsigned long offset, unsigned long flags)
1210 {
1211 	size_t retlen;
1212 	void *virt;
1213 	int ret;
1214 
1215 	ret = mtd_point(mtd, offset, len, &retlen, &virt, NULL);
1216 	if (ret)
1217 		return ret;
1218 	if (retlen != len) {
1219 		mtd_unpoint(mtd, offset, retlen);
1220 		return -ENOSYS;
1221 	}
1222 	return (unsigned long)virt;
1223 }
1224 EXPORT_SYMBOL_GPL(mtd_get_unmapped_area);
1225 
mtd_update_ecc_stats(struct mtd_info * mtd,struct mtd_info * master,const struct mtd_ecc_stats * old_stats)1226 static void mtd_update_ecc_stats(struct mtd_info *mtd, struct mtd_info *master,
1227 				 const struct mtd_ecc_stats *old_stats)
1228 {
1229 	struct mtd_ecc_stats diff;
1230 
1231 	if (master == mtd)
1232 		return;
1233 
1234 	diff = master->ecc_stats;
1235 	diff.failed -= old_stats->failed;
1236 	diff.corrected -= old_stats->corrected;
1237 
1238 	while (mtd->parent) {
1239 		mtd->ecc_stats.failed += diff.failed;
1240 		mtd->ecc_stats.corrected += diff.corrected;
1241 		mtd = mtd->parent;
1242 	}
1243 }
1244 
mtd_read(struct mtd_info * mtd,loff_t from,size_t len,size_t * retlen,u_char * buf)1245 int mtd_read(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
1246 	     u_char *buf)
1247 {
1248 	struct mtd_oob_ops ops = {
1249 		.len = len,
1250 		.datbuf = buf,
1251 	};
1252 	int ret;
1253 
1254 	ret = mtd_read_oob(mtd, from, &ops);
1255 	*retlen = ops.retlen;
1256 
1257 	return ret;
1258 }
1259 EXPORT_SYMBOL_GPL(mtd_read);
1260 
mtd_write(struct mtd_info * mtd,loff_t to,size_t len,size_t * retlen,const u_char * buf)1261 int mtd_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
1262 	      const u_char *buf)
1263 {
1264 	struct mtd_oob_ops ops = {
1265 		.len = len,
1266 		.datbuf = (u8 *)buf,
1267 	};
1268 	int ret;
1269 
1270 	ret = mtd_write_oob(mtd, to, &ops);
1271 	*retlen = ops.retlen;
1272 
1273 	return ret;
1274 }
1275 EXPORT_SYMBOL_GPL(mtd_write);
1276 
1277 /*
1278  * In blackbox flight recorder like scenarios we want to make successful writes
1279  * in interrupt context. panic_write() is only intended to be called when its
1280  * known the kernel is about to panic and we need the write to succeed. Since
1281  * the kernel is not going to be running for much longer, this function can
1282  * break locks and delay to ensure the write succeeds (but not sleep).
1283  */
mtd_panic_write(struct mtd_info * mtd,loff_t to,size_t len,size_t * retlen,const u_char * buf)1284 int mtd_panic_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
1285 		    const u_char *buf)
1286 {
1287 	struct mtd_info *master = mtd_get_master(mtd);
1288 
1289 	*retlen = 0;
1290 	if (!master->_panic_write)
1291 		return -EOPNOTSUPP;
1292 	if (to < 0 || to >= mtd->size || len > mtd->size - to)
1293 		return -EINVAL;
1294 	if (!(mtd->flags & MTD_WRITEABLE))
1295 		return -EROFS;
1296 	if (!len)
1297 		return 0;
1298 	if (!master->oops_panic_write)
1299 		master->oops_panic_write = true;
1300 
1301 	return master->_panic_write(master, mtd_get_master_ofs(mtd, to), len,
1302 				    retlen, buf);
1303 }
1304 EXPORT_SYMBOL_GPL(mtd_panic_write);
1305 
mtd_check_oob_ops(struct mtd_info * mtd,loff_t offs,struct mtd_oob_ops * ops)1306 static int mtd_check_oob_ops(struct mtd_info *mtd, loff_t offs,
1307 			     struct mtd_oob_ops *ops)
1308 {
1309 	/*
1310 	 * Some users are setting ->datbuf or ->oobbuf to NULL, but are leaving
1311 	 * ->len or ->ooblen uninitialized. Force ->len and ->ooblen to 0 in
1312 	 *  this case.
1313 	 */
1314 	if (!ops->datbuf)
1315 		ops->len = 0;
1316 
1317 	if (!ops->oobbuf)
1318 		ops->ooblen = 0;
1319 
1320 	if (offs < 0 || offs + ops->len > mtd->size)
1321 		return -EINVAL;
1322 
1323 	if (ops->ooblen) {
1324 		size_t maxooblen;
1325 
1326 		if (ops->ooboffs >= mtd_oobavail(mtd, ops))
1327 			return -EINVAL;
1328 
1329 		maxooblen = ((size_t)(mtd_div_by_ws(mtd->size, mtd) -
1330 				      mtd_div_by_ws(offs, mtd)) *
1331 			     mtd_oobavail(mtd, ops)) - ops->ooboffs;
1332 		if (ops->ooblen > maxooblen)
1333 			return -EINVAL;
1334 	}
1335 
1336 	return 0;
1337 }
1338 
mtd_read_oob_std(struct mtd_info * mtd,loff_t from,struct mtd_oob_ops * ops)1339 static int mtd_read_oob_std(struct mtd_info *mtd, loff_t from,
1340 			    struct mtd_oob_ops *ops)
1341 {
1342 	struct mtd_info *master = mtd_get_master(mtd);
1343 	int ret;
1344 
1345 	from = mtd_get_master_ofs(mtd, from);
1346 	if (master->_read_oob)
1347 		ret = master->_read_oob(master, from, ops);
1348 	else
1349 		ret = master->_read(master, from, ops->len, &ops->retlen,
1350 				    ops->datbuf);
1351 
1352 	return ret;
1353 }
1354 
mtd_write_oob_std(struct mtd_info * mtd,loff_t to,struct mtd_oob_ops * ops)1355 static int mtd_write_oob_std(struct mtd_info *mtd, loff_t to,
1356 			     struct mtd_oob_ops *ops)
1357 {
1358 	struct mtd_info *master = mtd_get_master(mtd);
1359 	int ret;
1360 
1361 	to = mtd_get_master_ofs(mtd, to);
1362 	if (master->_write_oob)
1363 		ret = master->_write_oob(master, to, ops);
1364 	else
1365 		ret = master->_write(master, to, ops->len, &ops->retlen,
1366 				     ops->datbuf);
1367 
1368 	return ret;
1369 }
1370 
mtd_io_emulated_slc(struct mtd_info * mtd,loff_t start,bool read,struct mtd_oob_ops * ops)1371 static int mtd_io_emulated_slc(struct mtd_info *mtd, loff_t start, bool read,
1372 			       struct mtd_oob_ops *ops)
1373 {
1374 	struct mtd_info *master = mtd_get_master(mtd);
1375 	int ngroups = mtd_pairing_groups(master);
1376 	int npairs = mtd_wunit_per_eb(master) / ngroups;
1377 	struct mtd_oob_ops adjops = *ops;
1378 	unsigned int wunit, oobavail;
1379 	struct mtd_pairing_info info;
1380 	int max_bitflips = 0;
1381 	u32 ebofs, pageofs;
1382 	loff_t base, pos;
1383 
1384 	ebofs = mtd_mod_by_eb(start, mtd);
1385 	base = (loff_t)mtd_div_by_eb(start, mtd) * master->erasesize;
1386 	info.group = 0;
1387 	info.pair = mtd_div_by_ws(ebofs, mtd);
1388 	pageofs = mtd_mod_by_ws(ebofs, mtd);
1389 	oobavail = mtd_oobavail(mtd, ops);
1390 
1391 	while (ops->retlen < ops->len || ops->oobretlen < ops->ooblen) {
1392 		int ret;
1393 
1394 		if (info.pair >= npairs) {
1395 			info.pair = 0;
1396 			base += master->erasesize;
1397 		}
1398 
1399 		wunit = mtd_pairing_info_to_wunit(master, &info);
1400 		pos = mtd_wunit_to_offset(mtd, base, wunit);
1401 
1402 		adjops.len = ops->len - ops->retlen;
1403 		if (adjops.len > mtd->writesize - pageofs)
1404 			adjops.len = mtd->writesize - pageofs;
1405 
1406 		adjops.ooblen = ops->ooblen - ops->oobretlen;
1407 		if (adjops.ooblen > oobavail - adjops.ooboffs)
1408 			adjops.ooblen = oobavail - adjops.ooboffs;
1409 
1410 		if (read) {
1411 			ret = mtd_read_oob_std(mtd, pos + pageofs, &adjops);
1412 			if (ret > 0)
1413 				max_bitflips = max(max_bitflips, ret);
1414 		} else {
1415 			ret = mtd_write_oob_std(mtd, pos + pageofs, &adjops);
1416 		}
1417 
1418 		if (ret < 0)
1419 			return ret;
1420 
1421 		max_bitflips = max(max_bitflips, ret);
1422 		ops->retlen += adjops.retlen;
1423 		ops->oobretlen += adjops.oobretlen;
1424 		adjops.datbuf += adjops.retlen;
1425 		adjops.oobbuf += adjops.oobretlen;
1426 		adjops.ooboffs = 0;
1427 		pageofs = 0;
1428 		info.pair++;
1429 	}
1430 
1431 	return max_bitflips;
1432 }
1433 
mtd_read_oob(struct mtd_info * mtd,loff_t from,struct mtd_oob_ops * ops)1434 int mtd_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops)
1435 {
1436 	struct mtd_info *master = mtd_get_master(mtd);
1437 	struct mtd_ecc_stats old_stats = master->ecc_stats;
1438 	int ret_code;
1439 
1440 	ops->retlen = ops->oobretlen = 0;
1441 
1442 	ret_code = mtd_check_oob_ops(mtd, from, ops);
1443 	if (ret_code)
1444 		return ret_code;
1445 
1446 	ledtrig_mtd_activity();
1447 
1448 	/* Check the validity of a potential fallback on mtd->_read */
1449 	if (!master->_read_oob && (!master->_read || ops->oobbuf))
1450 		return -EOPNOTSUPP;
1451 
1452 	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION)
1453 		ret_code = mtd_io_emulated_slc(mtd, from, true, ops);
1454 	else
1455 		ret_code = mtd_read_oob_std(mtd, from, ops);
1456 
1457 	mtd_update_ecc_stats(mtd, master, &old_stats);
1458 
1459 	/*
1460 	 * In cases where ops->datbuf != NULL, mtd->_read_oob() has semantics
1461 	 * similar to mtd->_read(), returning a non-negative integer
1462 	 * representing max bitflips. In other cases, mtd->_read_oob() may
1463 	 * return -EUCLEAN. In all cases, perform similar logic to mtd_read().
1464 	 */
1465 	if (unlikely(ret_code < 0))
1466 		return ret_code;
1467 	if (mtd->ecc_strength == 0)
1468 		return 0;	/* device lacks ecc */
1469 	return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0;
1470 }
1471 EXPORT_SYMBOL_GPL(mtd_read_oob);
1472 
mtd_write_oob(struct mtd_info * mtd,loff_t to,struct mtd_oob_ops * ops)1473 int mtd_write_oob(struct mtd_info *mtd, loff_t to,
1474 				struct mtd_oob_ops *ops)
1475 {
1476 	struct mtd_info *master = mtd_get_master(mtd);
1477 	int ret;
1478 
1479 	ops->retlen = ops->oobretlen = 0;
1480 
1481 	if (!(mtd->flags & MTD_WRITEABLE))
1482 		return -EROFS;
1483 
1484 	ret = mtd_check_oob_ops(mtd, to, ops);
1485 	if (ret)
1486 		return ret;
1487 
1488 	ledtrig_mtd_activity();
1489 
1490 	/* Check the validity of a potential fallback on mtd->_write */
1491 	if (!master->_write_oob && (!master->_write || ops->oobbuf))
1492 		return -EOPNOTSUPP;
1493 
1494 	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION)
1495 		return mtd_io_emulated_slc(mtd, to, false, ops);
1496 
1497 	return mtd_write_oob_std(mtd, to, ops);
1498 }
1499 EXPORT_SYMBOL_GPL(mtd_write_oob);
1500 
1501 /**
1502  * mtd_ooblayout_ecc - Get the OOB region definition of a specific ECC section
1503  * @mtd: MTD device structure
1504  * @section: ECC section. Depending on the layout you may have all the ECC
1505  *	     bytes stored in a single contiguous section, or one section
1506  *	     per ECC chunk (and sometime several sections for a single ECC
1507  *	     ECC chunk)
1508  * @oobecc: OOB region struct filled with the appropriate ECC position
1509  *	    information
1510  *
1511  * This function returns ECC section information in the OOB area. If you want
1512  * to get all the ECC bytes information, then you should call
1513  * mtd_ooblayout_ecc(mtd, section++, oobecc) until it returns -ERANGE.
1514  *
1515  * Returns zero on success, a negative error code otherwise.
1516  */
mtd_ooblayout_ecc(struct mtd_info * mtd,int section,struct mtd_oob_region * oobecc)1517 int mtd_ooblayout_ecc(struct mtd_info *mtd, int section,
1518 		      struct mtd_oob_region *oobecc)
1519 {
1520 	struct mtd_info *master = mtd_get_master(mtd);
1521 
1522 	memset(oobecc, 0, sizeof(*oobecc));
1523 
1524 	if (!master || section < 0)
1525 		return -EINVAL;
1526 
1527 	if (!master->ooblayout || !master->ooblayout->ecc)
1528 		return -ENOTSUPP;
1529 
1530 	return master->ooblayout->ecc(master, section, oobecc);
1531 }
1532 EXPORT_SYMBOL_GPL(mtd_ooblayout_ecc);
1533 
1534 /**
1535  * mtd_ooblayout_free - Get the OOB region definition of a specific free
1536  *			section
1537  * @mtd: MTD device structure
1538  * @section: Free section you are interested in. Depending on the layout
1539  *	     you may have all the free bytes stored in a single contiguous
1540  *	     section, or one section per ECC chunk plus an extra section
1541  *	     for the remaining bytes (or other funky layout).
1542  * @oobfree: OOB region struct filled with the appropriate free position
1543  *	     information
1544  *
1545  * This function returns free bytes position in the OOB area. If you want
1546  * to get all the free bytes information, then you should call
1547  * mtd_ooblayout_free(mtd, section++, oobfree) until it returns -ERANGE.
1548  *
1549  * Returns zero on success, a negative error code otherwise.
1550  */
mtd_ooblayout_free(struct mtd_info * mtd,int section,struct mtd_oob_region * oobfree)1551 int mtd_ooblayout_free(struct mtd_info *mtd, int section,
1552 		       struct mtd_oob_region *oobfree)
1553 {
1554 	struct mtd_info *master = mtd_get_master(mtd);
1555 
1556 	memset(oobfree, 0, sizeof(*oobfree));
1557 
1558 	if (!master || section < 0)
1559 		return -EINVAL;
1560 
1561 	if (!master->ooblayout || !master->ooblayout->free)
1562 		return -ENOTSUPP;
1563 
1564 	return master->ooblayout->free(master, section, oobfree);
1565 }
1566 EXPORT_SYMBOL_GPL(mtd_ooblayout_free);
1567 
1568 /**
1569  * mtd_ooblayout_find_region - Find the region attached to a specific byte
1570  * @mtd: mtd info structure
1571  * @byte: the byte we are searching for
1572  * @sectionp: pointer where the section id will be stored
1573  * @oobregion: used to retrieve the ECC position
1574  * @iter: iterator function. Should be either mtd_ooblayout_free or
1575  *	  mtd_ooblayout_ecc depending on the region type you're searching for
1576  *
1577  * This function returns the section id and oobregion information of a
1578  * specific byte. For example, say you want to know where the 4th ECC byte is
1579  * stored, you'll use:
1580  *
1581  * mtd_ooblayout_find_region(mtd, 3, &section, &oobregion, mtd_ooblayout_ecc);
1582  *
1583  * Returns zero on success, a negative error code otherwise.
1584  */
mtd_ooblayout_find_region(struct mtd_info * mtd,int byte,int * sectionp,struct mtd_oob_region * oobregion,int (* iter)(struct mtd_info *,int section,struct mtd_oob_region * oobregion))1585 static int mtd_ooblayout_find_region(struct mtd_info *mtd, int byte,
1586 				int *sectionp, struct mtd_oob_region *oobregion,
1587 				int (*iter)(struct mtd_info *,
1588 					    int section,
1589 					    struct mtd_oob_region *oobregion))
1590 {
1591 	int pos = 0, ret, section = 0;
1592 
1593 	memset(oobregion, 0, sizeof(*oobregion));
1594 
1595 	while (1) {
1596 		ret = iter(mtd, section, oobregion);
1597 		if (ret)
1598 			return ret;
1599 
1600 		if (pos + oobregion->length > byte)
1601 			break;
1602 
1603 		pos += oobregion->length;
1604 		section++;
1605 	}
1606 
1607 	/*
1608 	 * Adjust region info to make it start at the beginning at the
1609 	 * 'start' ECC byte.
1610 	 */
1611 	oobregion->offset += byte - pos;
1612 	oobregion->length -= byte - pos;
1613 	*sectionp = section;
1614 
1615 	return 0;
1616 }
1617 
1618 /**
1619  * mtd_ooblayout_find_eccregion - Find the ECC region attached to a specific
1620  *				  ECC byte
1621  * @mtd: mtd info structure
1622  * @eccbyte: the byte we are searching for
1623  * @sectionp: pointer where the section id will be stored
1624  * @oobregion: OOB region information
1625  *
1626  * Works like mtd_ooblayout_find_region() except it searches for a specific ECC
1627  * byte.
1628  *
1629  * Returns zero on success, a negative error code otherwise.
1630  */
mtd_ooblayout_find_eccregion(struct mtd_info * mtd,int eccbyte,int * section,struct mtd_oob_region * oobregion)1631 int mtd_ooblayout_find_eccregion(struct mtd_info *mtd, int eccbyte,
1632 				 int *section,
1633 				 struct mtd_oob_region *oobregion)
1634 {
1635 	return mtd_ooblayout_find_region(mtd, eccbyte, section, oobregion,
1636 					 mtd_ooblayout_ecc);
1637 }
1638 EXPORT_SYMBOL_GPL(mtd_ooblayout_find_eccregion);
1639 
1640 /**
1641  * mtd_ooblayout_get_bytes - Extract OOB bytes from the oob buffer
1642  * @mtd: mtd info structure
1643  * @buf: destination buffer to store OOB bytes
1644  * @oobbuf: OOB buffer
1645  * @start: first byte to retrieve
1646  * @nbytes: number of bytes to retrieve
1647  * @iter: section iterator
1648  *
1649  * Extract bytes attached to a specific category (ECC or free)
1650  * from the OOB buffer and copy them into buf.
1651  *
1652  * Returns zero on success, a negative error code otherwise.
1653  */
mtd_ooblayout_get_bytes(struct mtd_info * mtd,u8 * buf,const u8 * oobbuf,int start,int nbytes,int (* iter)(struct mtd_info *,int section,struct mtd_oob_region * oobregion))1654 static int mtd_ooblayout_get_bytes(struct mtd_info *mtd, u8 *buf,
1655 				const u8 *oobbuf, int start, int nbytes,
1656 				int (*iter)(struct mtd_info *,
1657 					    int section,
1658 					    struct mtd_oob_region *oobregion))
1659 {
1660 	struct mtd_oob_region oobregion;
1661 	int section, ret;
1662 
1663 	ret = mtd_ooblayout_find_region(mtd, start, &section,
1664 					&oobregion, iter);
1665 
1666 	while (!ret) {
1667 		int cnt;
1668 
1669 		cnt = min_t(int, nbytes, oobregion.length);
1670 		memcpy(buf, oobbuf + oobregion.offset, cnt);
1671 		buf += cnt;
1672 		nbytes -= cnt;
1673 
1674 		if (!nbytes)
1675 			break;
1676 
1677 		ret = iter(mtd, ++section, &oobregion);
1678 	}
1679 
1680 	return ret;
1681 }
1682 
1683 /**
1684  * mtd_ooblayout_set_bytes - put OOB bytes into the oob buffer
1685  * @mtd: mtd info structure
1686  * @buf: source buffer to get OOB bytes from
1687  * @oobbuf: OOB buffer
1688  * @start: first OOB byte to set
1689  * @nbytes: number of OOB bytes to set
1690  * @iter: section iterator
1691  *
1692  * Fill the OOB buffer with data provided in buf. The category (ECC or free)
1693  * is selected by passing the appropriate iterator.
1694  *
1695  * Returns zero on success, a negative error code otherwise.
1696  */
mtd_ooblayout_set_bytes(struct mtd_info * mtd,const u8 * buf,u8 * oobbuf,int start,int nbytes,int (* iter)(struct mtd_info *,int section,struct mtd_oob_region * oobregion))1697 static int mtd_ooblayout_set_bytes(struct mtd_info *mtd, const u8 *buf,
1698 				u8 *oobbuf, int start, int nbytes,
1699 				int (*iter)(struct mtd_info *,
1700 					    int section,
1701 					    struct mtd_oob_region *oobregion))
1702 {
1703 	struct mtd_oob_region oobregion;
1704 	int section, ret;
1705 
1706 	ret = mtd_ooblayout_find_region(mtd, start, &section,
1707 					&oobregion, iter);
1708 
1709 	while (!ret) {
1710 		int cnt;
1711 
1712 		cnt = min_t(int, nbytes, oobregion.length);
1713 		memcpy(oobbuf + oobregion.offset, buf, cnt);
1714 		buf += cnt;
1715 		nbytes -= cnt;
1716 
1717 		if (!nbytes)
1718 			break;
1719 
1720 		ret = iter(mtd, ++section, &oobregion);
1721 	}
1722 
1723 	return ret;
1724 }
1725 
1726 /**
1727  * mtd_ooblayout_count_bytes - count the number of bytes in a OOB category
1728  * @mtd: mtd info structure
1729  * @iter: category iterator
1730  *
1731  * Count the number of bytes in a given category.
1732  *
1733  * Returns a positive value on success, a negative error code otherwise.
1734  */
mtd_ooblayout_count_bytes(struct mtd_info * mtd,int (* iter)(struct mtd_info *,int section,struct mtd_oob_region * oobregion))1735 static int mtd_ooblayout_count_bytes(struct mtd_info *mtd,
1736 				int (*iter)(struct mtd_info *,
1737 					    int section,
1738 					    struct mtd_oob_region *oobregion))
1739 {
1740 	struct mtd_oob_region oobregion;
1741 	int section = 0, ret, nbytes = 0;
1742 
1743 	while (1) {
1744 		ret = iter(mtd, section++, &oobregion);
1745 		if (ret) {
1746 			if (ret == -ERANGE)
1747 				ret = nbytes;
1748 			break;
1749 		}
1750 
1751 		nbytes += oobregion.length;
1752 	}
1753 
1754 	return ret;
1755 }
1756 
1757 /**
1758  * mtd_ooblayout_get_eccbytes - extract ECC bytes from the oob buffer
1759  * @mtd: mtd info structure
1760  * @eccbuf: destination buffer to store ECC bytes
1761  * @oobbuf: OOB buffer
1762  * @start: first ECC byte to retrieve
1763  * @nbytes: number of ECC bytes to retrieve
1764  *
1765  * Works like mtd_ooblayout_get_bytes(), except it acts on ECC bytes.
1766  *
1767  * Returns zero on success, a negative error code otherwise.
1768  */
mtd_ooblayout_get_eccbytes(struct mtd_info * mtd,u8 * eccbuf,const u8 * oobbuf,int start,int nbytes)1769 int mtd_ooblayout_get_eccbytes(struct mtd_info *mtd, u8 *eccbuf,
1770 			       const u8 *oobbuf, int start, int nbytes)
1771 {
1772 	return mtd_ooblayout_get_bytes(mtd, eccbuf, oobbuf, start, nbytes,
1773 				       mtd_ooblayout_ecc);
1774 }
1775 EXPORT_SYMBOL_GPL(mtd_ooblayout_get_eccbytes);
1776 
1777 /**
1778  * mtd_ooblayout_set_eccbytes - set ECC bytes into the oob buffer
1779  * @mtd: mtd info structure
1780  * @eccbuf: source buffer to get ECC bytes from
1781  * @oobbuf: OOB buffer
1782  * @start: first ECC byte to set
1783  * @nbytes: number of ECC bytes to set
1784  *
1785  * Works like mtd_ooblayout_set_bytes(), except it acts on ECC bytes.
1786  *
1787  * Returns zero on success, a negative error code otherwise.
1788  */
mtd_ooblayout_set_eccbytes(struct mtd_info * mtd,const u8 * eccbuf,u8 * oobbuf,int start,int nbytes)1789 int mtd_ooblayout_set_eccbytes(struct mtd_info *mtd, const u8 *eccbuf,
1790 			       u8 *oobbuf, int start, int nbytes)
1791 {
1792 	return mtd_ooblayout_set_bytes(mtd, eccbuf, oobbuf, start, nbytes,
1793 				       mtd_ooblayout_ecc);
1794 }
1795 EXPORT_SYMBOL_GPL(mtd_ooblayout_set_eccbytes);
1796 
1797 /**
1798  * mtd_ooblayout_get_databytes - extract data bytes from the oob buffer
1799  * @mtd: mtd info structure
1800  * @databuf: destination buffer to store ECC bytes
1801  * @oobbuf: OOB buffer
1802  * @start: first ECC byte to retrieve
1803  * @nbytes: number of ECC bytes to retrieve
1804  *
1805  * Works like mtd_ooblayout_get_bytes(), except it acts on free bytes.
1806  *
1807  * Returns zero on success, a negative error code otherwise.
1808  */
mtd_ooblayout_get_databytes(struct mtd_info * mtd,u8 * databuf,const u8 * oobbuf,int start,int nbytes)1809 int mtd_ooblayout_get_databytes(struct mtd_info *mtd, u8 *databuf,
1810 				const u8 *oobbuf, int start, int nbytes)
1811 {
1812 	return mtd_ooblayout_get_bytes(mtd, databuf, oobbuf, start, nbytes,
1813 				       mtd_ooblayout_free);
1814 }
1815 EXPORT_SYMBOL_GPL(mtd_ooblayout_get_databytes);
1816 
1817 /**
1818  * mtd_ooblayout_set_databytes - set data bytes into the oob buffer
1819  * @mtd: mtd info structure
1820  * @databuf: source buffer to get data bytes from
1821  * @oobbuf: OOB buffer
1822  * @start: first ECC byte to set
1823  * @nbytes: number of ECC bytes to set
1824  *
1825  * Works like mtd_ooblayout_set_bytes(), except it acts on free bytes.
1826  *
1827  * Returns zero on success, a negative error code otherwise.
1828  */
mtd_ooblayout_set_databytes(struct mtd_info * mtd,const u8 * databuf,u8 * oobbuf,int start,int nbytes)1829 int mtd_ooblayout_set_databytes(struct mtd_info *mtd, const u8 *databuf,
1830 				u8 *oobbuf, int start, int nbytes)
1831 {
1832 	return mtd_ooblayout_set_bytes(mtd, databuf, oobbuf, start, nbytes,
1833 				       mtd_ooblayout_free);
1834 }
1835 EXPORT_SYMBOL_GPL(mtd_ooblayout_set_databytes);
1836 
1837 /**
1838  * mtd_ooblayout_count_freebytes - count the number of free bytes in OOB
1839  * @mtd: mtd info structure
1840  *
1841  * Works like mtd_ooblayout_count_bytes(), except it count free bytes.
1842  *
1843  * Returns zero on success, a negative error code otherwise.
1844  */
mtd_ooblayout_count_freebytes(struct mtd_info * mtd)1845 int mtd_ooblayout_count_freebytes(struct mtd_info *mtd)
1846 {
1847 	return mtd_ooblayout_count_bytes(mtd, mtd_ooblayout_free);
1848 }
1849 EXPORT_SYMBOL_GPL(mtd_ooblayout_count_freebytes);
1850 
1851 /**
1852  * mtd_ooblayout_count_eccbytes - count the number of ECC bytes in OOB
1853  * @mtd: mtd info structure
1854  *
1855  * Works like mtd_ooblayout_count_bytes(), except it count ECC bytes.
1856  *
1857  * Returns zero on success, a negative error code otherwise.
1858  */
mtd_ooblayout_count_eccbytes(struct mtd_info * mtd)1859 int mtd_ooblayout_count_eccbytes(struct mtd_info *mtd)
1860 {
1861 	return mtd_ooblayout_count_bytes(mtd, mtd_ooblayout_ecc);
1862 }
1863 EXPORT_SYMBOL_GPL(mtd_ooblayout_count_eccbytes);
1864 
1865 /*
1866  * Method to access the protection register area, present in some flash
1867  * devices. The user data is one time programmable but the factory data is read
1868  * only.
1869  */
mtd_get_fact_prot_info(struct mtd_info * mtd,size_t len,size_t * retlen,struct otp_info * buf)1870 int mtd_get_fact_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen,
1871 			   struct otp_info *buf)
1872 {
1873 	struct mtd_info *master = mtd_get_master(mtd);
1874 
1875 	if (!master->_get_fact_prot_info)
1876 		return -EOPNOTSUPP;
1877 	if (!len)
1878 		return 0;
1879 	return master->_get_fact_prot_info(master, len, retlen, buf);
1880 }
1881 EXPORT_SYMBOL_GPL(mtd_get_fact_prot_info);
1882 
mtd_read_fact_prot_reg(struct mtd_info * mtd,loff_t from,size_t len,size_t * retlen,u_char * buf)1883 int mtd_read_fact_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
1884 			   size_t *retlen, u_char *buf)
1885 {
1886 	struct mtd_info *master = mtd_get_master(mtd);
1887 
1888 	*retlen = 0;
1889 	if (!master->_read_fact_prot_reg)
1890 		return -EOPNOTSUPP;
1891 	if (!len)
1892 		return 0;
1893 	return master->_read_fact_prot_reg(master, from, len, retlen, buf);
1894 }
1895 EXPORT_SYMBOL_GPL(mtd_read_fact_prot_reg);
1896 
mtd_get_user_prot_info(struct mtd_info * mtd,size_t len,size_t * retlen,struct otp_info * buf)1897 int mtd_get_user_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen,
1898 			   struct otp_info *buf)
1899 {
1900 	struct mtd_info *master = mtd_get_master(mtd);
1901 
1902 	if (!master->_get_user_prot_info)
1903 		return -EOPNOTSUPP;
1904 	if (!len)
1905 		return 0;
1906 	return master->_get_user_prot_info(master, len, retlen, buf);
1907 }
1908 EXPORT_SYMBOL_GPL(mtd_get_user_prot_info);
1909 
mtd_read_user_prot_reg(struct mtd_info * mtd,loff_t from,size_t len,size_t * retlen,u_char * buf)1910 int mtd_read_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
1911 			   size_t *retlen, u_char *buf)
1912 {
1913 	struct mtd_info *master = mtd_get_master(mtd);
1914 
1915 	*retlen = 0;
1916 	if (!master->_read_user_prot_reg)
1917 		return -EOPNOTSUPP;
1918 	if (!len)
1919 		return 0;
1920 	return master->_read_user_prot_reg(master, from, len, retlen, buf);
1921 }
1922 EXPORT_SYMBOL_GPL(mtd_read_user_prot_reg);
1923 
mtd_write_user_prot_reg(struct mtd_info * mtd,loff_t to,size_t len,size_t * retlen,u_char * buf)1924 int mtd_write_user_prot_reg(struct mtd_info *mtd, loff_t to, size_t len,
1925 			    size_t *retlen, u_char *buf)
1926 {
1927 	struct mtd_info *master = mtd_get_master(mtd);
1928 	int ret;
1929 
1930 	*retlen = 0;
1931 	if (!master->_write_user_prot_reg)
1932 		return -EOPNOTSUPP;
1933 	if (!len)
1934 		return 0;
1935 	ret = master->_write_user_prot_reg(master, to, len, retlen, buf);
1936 	if (ret)
1937 		return ret;
1938 
1939 	/*
1940 	 * If no data could be written at all, we are out of memory and
1941 	 * must return -ENOSPC.
1942 	 */
1943 	return (*retlen) ? 0 : -ENOSPC;
1944 }
1945 EXPORT_SYMBOL_GPL(mtd_write_user_prot_reg);
1946 
mtd_lock_user_prot_reg(struct mtd_info * mtd,loff_t from,size_t len)1947 int mtd_lock_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len)
1948 {
1949 	struct mtd_info *master = mtd_get_master(mtd);
1950 
1951 	if (!master->_lock_user_prot_reg)
1952 		return -EOPNOTSUPP;
1953 	if (!len)
1954 		return 0;
1955 	return master->_lock_user_prot_reg(master, from, len);
1956 }
1957 EXPORT_SYMBOL_GPL(mtd_lock_user_prot_reg);
1958 
1959 /* Chip-supported device locking */
mtd_lock(struct mtd_info * mtd,loff_t ofs,uint64_t len)1960 int mtd_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1961 {
1962 	struct mtd_info *master = mtd_get_master(mtd);
1963 
1964 	if (!master->_lock)
1965 		return -EOPNOTSUPP;
1966 	if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
1967 		return -EINVAL;
1968 	if (!len)
1969 		return 0;
1970 
1971 	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
1972 		ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
1973 		len = (u64)mtd_div_by_eb(len, mtd) * master->erasesize;
1974 	}
1975 
1976 	return master->_lock(master, mtd_get_master_ofs(mtd, ofs), len);
1977 }
1978 EXPORT_SYMBOL_GPL(mtd_lock);
1979 
mtd_unlock(struct mtd_info * mtd,loff_t ofs,uint64_t len)1980 int mtd_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1981 {
1982 	struct mtd_info *master = mtd_get_master(mtd);
1983 
1984 	if (!master->_unlock)
1985 		return -EOPNOTSUPP;
1986 	if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
1987 		return -EINVAL;
1988 	if (!len)
1989 		return 0;
1990 
1991 	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
1992 		ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
1993 		len = (u64)mtd_div_by_eb(len, mtd) * master->erasesize;
1994 	}
1995 
1996 	return master->_unlock(master, mtd_get_master_ofs(mtd, ofs), len);
1997 }
1998 EXPORT_SYMBOL_GPL(mtd_unlock);
1999 
mtd_is_locked(struct mtd_info * mtd,loff_t ofs,uint64_t len)2000 int mtd_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len)
2001 {
2002 	struct mtd_info *master = mtd_get_master(mtd);
2003 
2004 	if (!master->_is_locked)
2005 		return -EOPNOTSUPP;
2006 	if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
2007 		return -EINVAL;
2008 	if (!len)
2009 		return 0;
2010 
2011 	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
2012 		ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
2013 		len = (u64)mtd_div_by_eb(len, mtd) * master->erasesize;
2014 	}
2015 
2016 	return master->_is_locked(master, mtd_get_master_ofs(mtd, ofs), len);
2017 }
2018 EXPORT_SYMBOL_GPL(mtd_is_locked);
2019 
mtd_block_isreserved(struct mtd_info * mtd,loff_t ofs)2020 int mtd_block_isreserved(struct mtd_info *mtd, loff_t ofs)
2021 {
2022 	struct mtd_info *master = mtd_get_master(mtd);
2023 
2024 	if (ofs < 0 || ofs >= mtd->size)
2025 		return -EINVAL;
2026 	if (!master->_block_isreserved)
2027 		return 0;
2028 
2029 	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION)
2030 		ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
2031 
2032 	return master->_block_isreserved(master, mtd_get_master_ofs(mtd, ofs));
2033 }
2034 EXPORT_SYMBOL_GPL(mtd_block_isreserved);
2035 
mtd_block_isbad(struct mtd_info * mtd,loff_t ofs)2036 int mtd_block_isbad(struct mtd_info *mtd, loff_t ofs)
2037 {
2038 	struct mtd_info *master = mtd_get_master(mtd);
2039 
2040 	if (ofs < 0 || ofs >= mtd->size)
2041 		return -EINVAL;
2042 	if (!master->_block_isbad)
2043 		return 0;
2044 
2045 	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION)
2046 		ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
2047 
2048 	return master->_block_isbad(master, mtd_get_master_ofs(mtd, ofs));
2049 }
2050 EXPORT_SYMBOL_GPL(mtd_block_isbad);
2051 
mtd_block_markbad(struct mtd_info * mtd,loff_t ofs)2052 int mtd_block_markbad(struct mtd_info *mtd, loff_t ofs)
2053 {
2054 	struct mtd_info *master = mtd_get_master(mtd);
2055 	int ret;
2056 
2057 	if (!master->_block_markbad)
2058 		return -EOPNOTSUPP;
2059 	if (ofs < 0 || ofs >= mtd->size)
2060 		return -EINVAL;
2061 	if (!(mtd->flags & MTD_WRITEABLE))
2062 		return -EROFS;
2063 
2064 	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION)
2065 		ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
2066 
2067 	ret = master->_block_markbad(master, mtd_get_master_ofs(mtd, ofs));
2068 	if (ret)
2069 		return ret;
2070 
2071 	while (mtd->parent) {
2072 		mtd->ecc_stats.badblocks++;
2073 		mtd = mtd->parent;
2074 	}
2075 
2076 	return 0;
2077 }
2078 EXPORT_SYMBOL_GPL(mtd_block_markbad);
2079 
2080 /*
2081  * default_mtd_writev - the default writev method
2082  * @mtd: mtd device description object pointer
2083  * @vecs: the vectors to write
2084  * @count: count of vectors in @vecs
2085  * @to: the MTD device offset to write to
2086  * @retlen: on exit contains the count of bytes written to the MTD device.
2087  *
2088  * This function returns zero in case of success and a negative error code in
2089  * case of failure.
2090  */
default_mtd_writev(struct mtd_info * mtd,const struct kvec * vecs,unsigned long count,loff_t to,size_t * retlen)2091 static int default_mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
2092 			      unsigned long count, loff_t to, size_t *retlen)
2093 {
2094 	unsigned long i;
2095 	size_t totlen = 0, thislen;
2096 	int ret = 0;
2097 
2098 	for (i = 0; i < count; i++) {
2099 		if (!vecs[i].iov_len)
2100 			continue;
2101 		ret = mtd_write(mtd, to, vecs[i].iov_len, &thislen,
2102 				vecs[i].iov_base);
2103 		totlen += thislen;
2104 		if (ret || thislen != vecs[i].iov_len)
2105 			break;
2106 		to += vecs[i].iov_len;
2107 	}
2108 	*retlen = totlen;
2109 	return ret;
2110 }
2111 
2112 /*
2113  * mtd_writev - the vector-based MTD write method
2114  * @mtd: mtd device description object pointer
2115  * @vecs: the vectors to write
2116  * @count: count of vectors in @vecs
2117  * @to: the MTD device offset to write to
2118  * @retlen: on exit contains the count of bytes written to the MTD device.
2119  *
2120  * This function returns zero in case of success and a negative error code in
2121  * case of failure.
2122  */
mtd_writev(struct mtd_info * mtd,const struct kvec * vecs,unsigned long count,loff_t to,size_t * retlen)2123 int mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
2124 	       unsigned long count, loff_t to, size_t *retlen)
2125 {
2126 	struct mtd_info *master = mtd_get_master(mtd);
2127 
2128 	*retlen = 0;
2129 	if (!(mtd->flags & MTD_WRITEABLE))
2130 		return -EROFS;
2131 
2132 	if (!master->_writev)
2133 		return default_mtd_writev(mtd, vecs, count, to, retlen);
2134 
2135 	return master->_writev(master, vecs, count,
2136 			       mtd_get_master_ofs(mtd, to), retlen);
2137 }
2138 EXPORT_SYMBOL_GPL(mtd_writev);
2139 
2140 /**
2141  * mtd_kmalloc_up_to - allocate a contiguous buffer up to the specified size
2142  * @mtd: mtd device description object pointer
2143  * @size: a pointer to the ideal or maximum size of the allocation, points
2144  *        to the actual allocation size on success.
2145  *
2146  * This routine attempts to allocate a contiguous kernel buffer up to
2147  * the specified size, backing off the size of the request exponentially
2148  * until the request succeeds or until the allocation size falls below
2149  * the system page size. This attempts to make sure it does not adversely
2150  * impact system performance, so when allocating more than one page, we
2151  * ask the memory allocator to avoid re-trying, swapping, writing back
2152  * or performing I/O.
2153  *
2154  * Note, this function also makes sure that the allocated buffer is aligned to
2155  * the MTD device's min. I/O unit, i.e. the "mtd->writesize" value.
2156  *
2157  * This is called, for example by mtd_{read,write} and jffs2_scan_medium,
2158  * to handle smaller (i.e. degraded) buffer allocations under low- or
2159  * fragmented-memory situations where such reduced allocations, from a
2160  * requested ideal, are allowed.
2161  *
2162  * Returns a pointer to the allocated buffer on success; otherwise, NULL.
2163  */
mtd_kmalloc_up_to(const struct mtd_info * mtd,size_t * size)2164 void *mtd_kmalloc_up_to(const struct mtd_info *mtd, size_t *size)
2165 {
2166 	gfp_t flags = __GFP_NOWARN | __GFP_DIRECT_RECLAIM | __GFP_NORETRY;
2167 	size_t min_alloc = max_t(size_t, mtd->writesize, PAGE_SIZE);
2168 	void *kbuf;
2169 
2170 	*size = min_t(size_t, *size, KMALLOC_MAX_SIZE);
2171 
2172 	while (*size > min_alloc) {
2173 		kbuf = kmalloc(*size, flags);
2174 		if (kbuf)
2175 			return kbuf;
2176 
2177 		*size >>= 1;
2178 		*size = ALIGN(*size, mtd->writesize);
2179 	}
2180 
2181 	/*
2182 	 * For the last resort allocation allow 'kmalloc()' to do all sorts of
2183 	 * things (write-back, dropping caches, etc) by using GFP_KERNEL.
2184 	 */
2185 	return kmalloc(*size, GFP_KERNEL);
2186 }
2187 EXPORT_SYMBOL_GPL(mtd_kmalloc_up_to);
2188 
2189 #ifdef CONFIG_PROC_FS
2190 
2191 /*====================================================================*/
2192 /* Support for /proc/mtd */
2193 
mtd_proc_show(struct seq_file * m,void * v)2194 static int mtd_proc_show(struct seq_file *m, void *v)
2195 {
2196 	struct mtd_info *mtd;
2197 
2198 	seq_puts(m, "dev:    size   erasesize  name\n");
2199 	mtd_table_mutex_lock();
2200 	mtd_for_each_device(mtd) {
2201 		seq_printf(m, "mtd%d: %8.8llx %8.8x \"%s\"\n",
2202 			   mtd->index, (unsigned long long)mtd->size,
2203 			   mtd->erasesize, mtd->name);
2204 	}
2205 	mtd_table_mutex_unlock();
2206 	return 0;
2207 }
2208 #endif /* CONFIG_PROC_FS */
2209 
2210 /*====================================================================*/
2211 /* Init code */
2212 
mtd_bdi_init(char * name)2213 static struct backing_dev_info * __init mtd_bdi_init(char *name)
2214 {
2215 	struct backing_dev_info *bdi;
2216 	int ret;
2217 
2218 	bdi = bdi_alloc(NUMA_NO_NODE);
2219 	if (!bdi)
2220 		return ERR_PTR(-ENOMEM);
2221 	bdi->ra_pages = 0;
2222 	bdi->io_pages = 0;
2223 
2224 	/*
2225 	 * We put '-0' suffix to the name to get the same name format as we
2226 	 * used to get. Since this is called only once, we get a unique name.
2227 	 */
2228 	ret = bdi_register(bdi, "%.28s-0", name);
2229 	if (ret)
2230 		bdi_put(bdi);
2231 
2232 	return ret ? ERR_PTR(ret) : bdi;
2233 }
2234 
2235 static struct proc_dir_entry *proc_mtd;
2236 
init_mtd(void)2237 static int __init init_mtd(void)
2238 {
2239 	int ret;
2240 
2241 	ret = class_register(&mtd_class);
2242 	if (ret)
2243 		goto err_reg;
2244 
2245 	mtd_bdi = mtd_bdi_init("mtd");
2246 	if (IS_ERR(mtd_bdi)) {
2247 		ret = PTR_ERR(mtd_bdi);
2248 		goto err_bdi;
2249 	}
2250 
2251 	proc_mtd = proc_create_single("mtd", 0, NULL, mtd_proc_show);
2252 
2253 	ret = init_mtdchar();
2254 	if (ret)
2255 		goto out_procfs;
2256 
2257 	dfs_dir_mtd = debugfs_create_dir("mtd", NULL);
2258 
2259 	return 0;
2260 
2261 out_procfs:
2262 	if (proc_mtd)
2263 		remove_proc_entry("mtd", NULL);
2264 	bdi_put(mtd_bdi);
2265 err_bdi:
2266 	class_unregister(&mtd_class);
2267 err_reg:
2268 	pr_err("Error registering mtd class or bdi: %d\n", ret);
2269 	return ret;
2270 }
2271 
cleanup_mtd(void)2272 static void __exit cleanup_mtd(void)
2273 {
2274 	debugfs_remove_recursive(dfs_dir_mtd);
2275 	cleanup_mtdchar();
2276 	if (proc_mtd)
2277 		remove_proc_entry("mtd", NULL);
2278 	class_unregister(&mtd_class);
2279 	bdi_put(mtd_bdi);
2280 	idr_destroy(&mtd_idr);
2281 }
2282 
2283 module_init(init_mtd);
2284 module_exit(cleanup_mtd);
2285 
2286 MODULE_LICENSE("GPL");
2287 MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>");
2288 MODULE_DESCRIPTION("Core MTD registration and access routines");
2289