1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/fs/nfs/dir.c
4 *
5 * Copyright (C) 1992 Rick Sladkey
6 *
7 * nfs directory handling functions
8 *
9 * 10 Apr 1996 Added silly rename for unlink --okir
10 * 28 Sep 1996 Improved directory cache --okir
11 * 23 Aug 1997 Claus Heine claus@momo.math.rwth-aachen.de
12 * Re-implemented silly rename for unlink, newly implemented
13 * silly rename for nfs_rename() following the suggestions
14 * of Olaf Kirch (okir) found in this file.
15 * Following Linus comments on my original hack, this version
16 * depends only on the dcache stuff and doesn't touch the inode
17 * layer (iput() and friends).
18 * 6 Jun 1999 Cache readdir lookups in the page cache. -DaveM
19 */
20
21 #include <linux/module.h>
22 #include <linux/time.h>
23 #include <linux/errno.h>
24 #include <linux/stat.h>
25 #include <linux/fcntl.h>
26 #include <linux/string.h>
27 #include <linux/kernel.h>
28 #include <linux/slab.h>
29 #include <linux/mm.h>
30 #include <linux/sunrpc/clnt.h>
31 #include <linux/nfs_fs.h>
32 #include <linux/nfs_mount.h>
33 #include <linux/pagemap.h>
34 #include <linux/pagevec.h>
35 #include <linux/namei.h>
36 #include <linux/mount.h>
37 #include <linux/swap.h>
38 #include <linux/sched.h>
39 #include <linux/kmemleak.h>
40 #include <linux/xattr.h>
41
42 #include "delegation.h"
43 #include "iostat.h"
44 #include "internal.h"
45 #include "fscache.h"
46
47 #include "nfstrace.h"
48
49 /* #define NFS_DEBUG_VERBOSE 1 */
50
51 static int nfs_opendir(struct inode *, struct file *);
52 static int nfs_closedir(struct inode *, struct file *);
53 static int nfs_readdir(struct file *, struct dir_context *);
54 static int nfs_fsync_dir(struct file *, loff_t, loff_t, int);
55 static loff_t nfs_llseek_dir(struct file *, loff_t, int);
56 static void nfs_readdir_clear_array(struct page*);
57
58 const struct file_operations nfs_dir_operations = {
59 .llseek = nfs_llseek_dir,
60 .read = generic_read_dir,
61 .iterate_shared = nfs_readdir,
62 .open = nfs_opendir,
63 .release = nfs_closedir,
64 .fsync = nfs_fsync_dir,
65 };
66
67 const struct address_space_operations nfs_dir_aops = {
68 .freepage = nfs_readdir_clear_array,
69 };
70
alloc_nfs_open_dir_context(struct inode * dir,const struct cred * cred)71 static struct nfs_open_dir_context *alloc_nfs_open_dir_context(struct inode *dir, const struct cred *cred)
72 {
73 struct nfs_inode *nfsi = NFS_I(dir);
74 struct nfs_open_dir_context *ctx;
75 ctx = kmalloc(sizeof(*ctx), GFP_KERNEL);
76 if (ctx != NULL) {
77 ctx->duped = 0;
78 ctx->attr_gencount = nfsi->attr_gencount;
79 ctx->dir_cookie = 0;
80 ctx->dup_cookie = 0;
81 ctx->cred = get_cred(cred);
82 spin_lock(&dir->i_lock);
83 if (list_empty(&nfsi->open_files) &&
84 (nfsi->cache_validity & NFS_INO_DATA_INVAL_DEFER))
85 nfsi->cache_validity |= NFS_INO_INVALID_DATA |
86 NFS_INO_REVAL_FORCED;
87 list_add(&ctx->list, &nfsi->open_files);
88 spin_unlock(&dir->i_lock);
89 return ctx;
90 }
91 return ERR_PTR(-ENOMEM);
92 }
93
put_nfs_open_dir_context(struct inode * dir,struct nfs_open_dir_context * ctx)94 static void put_nfs_open_dir_context(struct inode *dir, struct nfs_open_dir_context *ctx)
95 {
96 spin_lock(&dir->i_lock);
97 list_del(&ctx->list);
98 spin_unlock(&dir->i_lock);
99 put_cred(ctx->cred);
100 kfree(ctx);
101 }
102
103 /*
104 * Open file
105 */
106 static int
nfs_opendir(struct inode * inode,struct file * filp)107 nfs_opendir(struct inode *inode, struct file *filp)
108 {
109 int res = 0;
110 struct nfs_open_dir_context *ctx;
111
112 dfprintk(FILE, "NFS: open dir(%pD2)\n", filp);
113
114 nfs_inc_stats(inode, NFSIOS_VFSOPEN);
115
116 ctx = alloc_nfs_open_dir_context(inode, current_cred());
117 if (IS_ERR(ctx)) {
118 res = PTR_ERR(ctx);
119 goto out;
120 }
121 filp->private_data = ctx;
122 out:
123 return res;
124 }
125
126 static int
nfs_closedir(struct inode * inode,struct file * filp)127 nfs_closedir(struct inode *inode, struct file *filp)
128 {
129 put_nfs_open_dir_context(file_inode(filp), filp->private_data);
130 return 0;
131 }
132
133 struct nfs_cache_array_entry {
134 u64 cookie;
135 u64 ino;
136 struct qstr string;
137 unsigned char d_type;
138 };
139
140 struct nfs_cache_array {
141 int size;
142 int eof_index;
143 u64 last_cookie;
144 struct nfs_cache_array_entry array[];
145 };
146
147 typedef struct {
148 struct file *file;
149 struct page *page;
150 struct dir_context *ctx;
151 unsigned long page_index;
152 u64 *dir_cookie;
153 u64 last_cookie;
154 loff_t current_index;
155 loff_t prev_index;
156
157 unsigned long dir_verifier;
158 unsigned long timestamp;
159 unsigned long gencount;
160 unsigned int cache_entry_index;
161 bool plus;
162 bool eof;
163 } nfs_readdir_descriptor_t;
164
165 static
nfs_readdir_init_array(struct page * page)166 void nfs_readdir_init_array(struct page *page)
167 {
168 struct nfs_cache_array *array;
169
170 array = kmap_atomic(page);
171 memset(array, 0, sizeof(struct nfs_cache_array));
172 array->eof_index = -1;
173 kunmap_atomic(array);
174 }
175
176 /*
177 * we are freeing strings created by nfs_add_to_readdir_array()
178 */
179 static
nfs_readdir_clear_array(struct page * page)180 void nfs_readdir_clear_array(struct page *page)
181 {
182 struct nfs_cache_array *array;
183 int i;
184
185 array = kmap_atomic(page);
186 for (i = 0; i < array->size; i++)
187 kfree(array->array[i].string.name);
188 array->size = 0;
189 kunmap_atomic(array);
190 }
191
192 /*
193 * the caller is responsible for freeing qstr.name
194 * when called by nfs_readdir_add_to_array, the strings will be freed in
195 * nfs_clear_readdir_array()
196 */
197 static
nfs_readdir_make_qstr(struct qstr * string,const char * name,unsigned int len)198 int nfs_readdir_make_qstr(struct qstr *string, const char *name, unsigned int len)
199 {
200 string->len = len;
201 string->name = kmemdup_nul(name, len, GFP_KERNEL);
202 if (string->name == NULL)
203 return -ENOMEM;
204 /*
205 * Avoid a kmemleak false positive. The pointer to the name is stored
206 * in a page cache page which kmemleak does not scan.
207 */
208 kmemleak_not_leak(string->name);
209 string->hash = full_name_hash(NULL, name, len);
210 return 0;
211 }
212
213 static
nfs_readdir_add_to_array(struct nfs_entry * entry,struct page * page)214 int nfs_readdir_add_to_array(struct nfs_entry *entry, struct page *page)
215 {
216 struct nfs_cache_array *array = kmap(page);
217 struct nfs_cache_array_entry *cache_entry;
218 int ret;
219
220 cache_entry = &array->array[array->size];
221
222 /* Check that this entry lies within the page bounds */
223 ret = -ENOSPC;
224 if ((char *)&cache_entry[1] - (char *)page_address(page) > PAGE_SIZE)
225 goto out;
226
227 cache_entry->cookie = entry->prev_cookie;
228 cache_entry->ino = entry->ino;
229 cache_entry->d_type = entry->d_type;
230 ret = nfs_readdir_make_qstr(&cache_entry->string, entry->name, entry->len);
231 if (ret)
232 goto out;
233 array->last_cookie = entry->cookie;
234 array->size++;
235 if (entry->eof != 0)
236 array->eof_index = array->size;
237 out:
238 kunmap(page);
239 return ret;
240 }
241
242 static inline
is_32bit_api(void)243 int is_32bit_api(void)
244 {
245 #ifdef CONFIG_COMPAT
246 return in_compat_syscall();
247 #else
248 return (BITS_PER_LONG == 32);
249 #endif
250 }
251
252 static
nfs_readdir_use_cookie(const struct file * filp)253 bool nfs_readdir_use_cookie(const struct file *filp)
254 {
255 if ((filp->f_mode & FMODE_32BITHASH) ||
256 (!(filp->f_mode & FMODE_64BITHASH) && is_32bit_api()))
257 return false;
258 return true;
259 }
260
261 static
nfs_readdir_search_for_pos(struct nfs_cache_array * array,nfs_readdir_descriptor_t * desc)262 int nfs_readdir_search_for_pos(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc)
263 {
264 loff_t diff = desc->ctx->pos - desc->current_index;
265 unsigned int index;
266
267 if (diff < 0)
268 goto out_eof;
269 if (diff >= array->size) {
270 if (array->eof_index >= 0)
271 goto out_eof;
272 return -EAGAIN;
273 }
274
275 index = (unsigned int)diff;
276 *desc->dir_cookie = array->array[index].cookie;
277 desc->cache_entry_index = index;
278 return 0;
279 out_eof:
280 desc->eof = true;
281 return -EBADCOOKIE;
282 }
283
284 static bool
nfs_readdir_inode_mapping_valid(struct nfs_inode * nfsi)285 nfs_readdir_inode_mapping_valid(struct nfs_inode *nfsi)
286 {
287 if (nfsi->cache_validity & (NFS_INO_INVALID_ATTR|NFS_INO_INVALID_DATA))
288 return false;
289 smp_rmb();
290 return !test_bit(NFS_INO_INVALIDATING, &nfsi->flags);
291 }
292
293 static
nfs_readdir_search_for_cookie(struct nfs_cache_array * array,nfs_readdir_descriptor_t * desc)294 int nfs_readdir_search_for_cookie(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc)
295 {
296 int i;
297 loff_t new_pos;
298 int status = -EAGAIN;
299
300 for (i = 0; i < array->size; i++) {
301 if (array->array[i].cookie == *desc->dir_cookie) {
302 struct nfs_inode *nfsi = NFS_I(file_inode(desc->file));
303 struct nfs_open_dir_context *ctx = desc->file->private_data;
304
305 new_pos = desc->current_index + i;
306 if (ctx->attr_gencount != nfsi->attr_gencount ||
307 !nfs_readdir_inode_mapping_valid(nfsi)) {
308 ctx->duped = 0;
309 ctx->attr_gencount = nfsi->attr_gencount;
310 } else if (new_pos < desc->prev_index) {
311 if (ctx->duped > 0
312 && ctx->dup_cookie == *desc->dir_cookie) {
313 if (printk_ratelimit()) {
314 pr_notice("NFS: directory %pD2 contains a readdir loop."
315 "Please contact your server vendor. "
316 "The file: %.*s has duplicate cookie %llu\n",
317 desc->file, array->array[i].string.len,
318 array->array[i].string.name, *desc->dir_cookie);
319 }
320 status = -ELOOP;
321 goto out;
322 }
323 ctx->dup_cookie = *desc->dir_cookie;
324 ctx->duped = -1;
325 }
326 if (nfs_readdir_use_cookie(desc->file))
327 desc->ctx->pos = *desc->dir_cookie;
328 else
329 desc->ctx->pos = new_pos;
330 desc->prev_index = new_pos;
331 desc->cache_entry_index = i;
332 return 0;
333 }
334 }
335 if (array->eof_index >= 0) {
336 status = -EBADCOOKIE;
337 if (*desc->dir_cookie == array->last_cookie)
338 desc->eof = true;
339 }
340 out:
341 return status;
342 }
343
344 static
nfs_readdir_search_array(nfs_readdir_descriptor_t * desc)345 int nfs_readdir_search_array(nfs_readdir_descriptor_t *desc)
346 {
347 struct nfs_cache_array *array;
348 int status;
349
350 array = kmap(desc->page);
351
352 if (*desc->dir_cookie == 0)
353 status = nfs_readdir_search_for_pos(array, desc);
354 else
355 status = nfs_readdir_search_for_cookie(array, desc);
356
357 if (status == -EAGAIN) {
358 desc->last_cookie = array->last_cookie;
359 desc->current_index += array->size;
360 desc->page_index++;
361 }
362 kunmap(desc->page);
363 return status;
364 }
365
366 /* Fill a page with xdr information before transferring to the cache page */
367 static
nfs_readdir_xdr_filler(struct page ** pages,nfs_readdir_descriptor_t * desc,struct nfs_entry * entry,struct file * file,struct inode * inode)368 int nfs_readdir_xdr_filler(struct page **pages, nfs_readdir_descriptor_t *desc,
369 struct nfs_entry *entry, struct file *file, struct inode *inode)
370 {
371 struct nfs_open_dir_context *ctx = file->private_data;
372 const struct cred *cred = ctx->cred;
373 unsigned long timestamp, gencount;
374 int error;
375
376 again:
377 timestamp = jiffies;
378 gencount = nfs_inc_attr_generation_counter();
379 desc->dir_verifier = nfs_save_change_attribute(inode);
380 error = NFS_PROTO(inode)->readdir(file_dentry(file), cred, entry->cookie, pages,
381 NFS_SERVER(inode)->dtsize, desc->plus);
382 if (error < 0) {
383 /* We requested READDIRPLUS, but the server doesn't grok it */
384 if (error == -ENOTSUPP && desc->plus) {
385 NFS_SERVER(inode)->caps &= ~NFS_CAP_READDIRPLUS;
386 clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
387 desc->plus = false;
388 goto again;
389 }
390 goto error;
391 }
392 desc->timestamp = timestamp;
393 desc->gencount = gencount;
394 error:
395 return error;
396 }
397
xdr_decode(nfs_readdir_descriptor_t * desc,struct nfs_entry * entry,struct xdr_stream * xdr)398 static int xdr_decode(nfs_readdir_descriptor_t *desc,
399 struct nfs_entry *entry, struct xdr_stream *xdr)
400 {
401 struct inode *inode = file_inode(desc->file);
402 int error;
403
404 error = NFS_PROTO(inode)->decode_dirent(xdr, entry, desc->plus);
405 if (error)
406 return error;
407 entry->fattr->time_start = desc->timestamp;
408 entry->fattr->gencount = desc->gencount;
409 return 0;
410 }
411
412 /* Match file and dirent using either filehandle or fileid
413 * Note: caller is responsible for checking the fsid
414 */
415 static
nfs_same_file(struct dentry * dentry,struct nfs_entry * entry)416 int nfs_same_file(struct dentry *dentry, struct nfs_entry *entry)
417 {
418 struct inode *inode;
419 struct nfs_inode *nfsi;
420
421 if (d_really_is_negative(dentry))
422 return 0;
423
424 inode = d_inode(dentry);
425 if (is_bad_inode(inode) || NFS_STALE(inode))
426 return 0;
427
428 nfsi = NFS_I(inode);
429 if (entry->fattr->fileid != nfsi->fileid)
430 return 0;
431 if (entry->fh->size && nfs_compare_fh(entry->fh, &nfsi->fh) != 0)
432 return 0;
433 return 1;
434 }
435
436 static
nfs_use_readdirplus(struct inode * dir,struct dir_context * ctx)437 bool nfs_use_readdirplus(struct inode *dir, struct dir_context *ctx)
438 {
439 if (!nfs_server_capable(dir, NFS_CAP_READDIRPLUS))
440 return false;
441 if (test_and_clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(dir)->flags))
442 return true;
443 if (ctx->pos == 0)
444 return true;
445 return false;
446 }
447
448 /*
449 * This function is called by the lookup and getattr code to request the
450 * use of readdirplus to accelerate any future lookups in the same
451 * directory.
452 */
nfs_advise_use_readdirplus(struct inode * dir)453 void nfs_advise_use_readdirplus(struct inode *dir)
454 {
455 struct nfs_inode *nfsi = NFS_I(dir);
456
457 if (nfs_server_capable(dir, NFS_CAP_READDIRPLUS) &&
458 !list_empty(&nfsi->open_files))
459 set_bit(NFS_INO_ADVISE_RDPLUS, &nfsi->flags);
460 }
461
462 /*
463 * This function is mainly for use by nfs_getattr().
464 *
465 * If this is an 'ls -l', we want to force use of readdirplus.
466 * Do this by checking if there is an active file descriptor
467 * and calling nfs_advise_use_readdirplus, then forcing a
468 * cache flush.
469 */
nfs_force_use_readdirplus(struct inode * dir)470 void nfs_force_use_readdirplus(struct inode *dir)
471 {
472 struct nfs_inode *nfsi = NFS_I(dir);
473
474 if (nfs_server_capable(dir, NFS_CAP_READDIRPLUS) &&
475 !list_empty(&nfsi->open_files)) {
476 set_bit(NFS_INO_ADVISE_RDPLUS, &nfsi->flags);
477 invalidate_mapping_pages(dir->i_mapping,
478 nfsi->page_index + 1, -1);
479 }
480 }
481
482 static
nfs_prime_dcache(struct dentry * parent,struct nfs_entry * entry,unsigned long dir_verifier)483 void nfs_prime_dcache(struct dentry *parent, struct nfs_entry *entry,
484 unsigned long dir_verifier)
485 {
486 struct qstr filename = QSTR_INIT(entry->name, entry->len);
487 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
488 struct dentry *dentry;
489 struct dentry *alias;
490 struct inode *inode;
491 int status;
492
493 if (!(entry->fattr->valid & NFS_ATTR_FATTR_FILEID))
494 return;
495 if (!(entry->fattr->valid & NFS_ATTR_FATTR_FSID))
496 return;
497 if (filename.len == 0)
498 return;
499 /* Validate that the name doesn't contain any illegal '\0' */
500 if (strnlen(filename.name, filename.len) != filename.len)
501 return;
502 /* ...or '/' */
503 if (strnchr(filename.name, filename.len, '/'))
504 return;
505 if (filename.name[0] == '.') {
506 if (filename.len == 1)
507 return;
508 if (filename.len == 2 && filename.name[1] == '.')
509 return;
510 }
511 filename.hash = full_name_hash(parent, filename.name, filename.len);
512
513 dentry = d_lookup(parent, &filename);
514 again:
515 if (!dentry) {
516 dentry = d_alloc_parallel(parent, &filename, &wq);
517 if (IS_ERR(dentry))
518 return;
519 }
520 if (!d_in_lookup(dentry)) {
521 /* Is there a mountpoint here? If so, just exit */
522 if (!nfs_fsid_equal(&NFS_SB(dentry->d_sb)->fsid,
523 &entry->fattr->fsid))
524 goto out;
525 if (nfs_same_file(dentry, entry)) {
526 if (!entry->fh->size)
527 goto out;
528 nfs_set_verifier(dentry, dir_verifier);
529 status = nfs_refresh_inode(d_inode(dentry), entry->fattr);
530 if (!status)
531 nfs_setsecurity(d_inode(dentry), entry->fattr, entry->label);
532 goto out;
533 } else {
534 d_invalidate(dentry);
535 dput(dentry);
536 dentry = NULL;
537 goto again;
538 }
539 }
540 if (!entry->fh->size) {
541 d_lookup_done(dentry);
542 goto out;
543 }
544
545 inode = nfs_fhget(dentry->d_sb, entry->fh, entry->fattr, entry->label);
546 alias = d_splice_alias(inode, dentry);
547 d_lookup_done(dentry);
548 if (alias) {
549 if (IS_ERR(alias))
550 goto out;
551 dput(dentry);
552 dentry = alias;
553 }
554 nfs_set_verifier(dentry, dir_verifier);
555 out:
556 dput(dentry);
557 }
558
559 /* Perform conversion from xdr to cache array */
560 static
nfs_readdir_page_filler(nfs_readdir_descriptor_t * desc,struct nfs_entry * entry,struct page ** xdr_pages,struct page * page,unsigned int buflen)561 int nfs_readdir_page_filler(nfs_readdir_descriptor_t *desc, struct nfs_entry *entry,
562 struct page **xdr_pages, struct page *page, unsigned int buflen)
563 {
564 struct xdr_stream stream;
565 struct xdr_buf buf;
566 struct page *scratch;
567 struct nfs_cache_array *array;
568 unsigned int count = 0;
569 int status;
570
571 scratch = alloc_page(GFP_KERNEL);
572 if (scratch == NULL)
573 return -ENOMEM;
574
575 if (buflen == 0)
576 goto out_nopages;
577
578 xdr_init_decode_pages(&stream, &buf, xdr_pages, buflen);
579 xdr_set_scratch_buffer(&stream, page_address(scratch), PAGE_SIZE);
580
581 do {
582 if (entry->label)
583 entry->label->len = NFS4_MAXLABELLEN;
584
585 status = xdr_decode(desc, entry, &stream);
586 if (status != 0) {
587 if (status == -EAGAIN)
588 status = 0;
589 break;
590 }
591
592 count++;
593
594 if (desc->plus)
595 nfs_prime_dcache(file_dentry(desc->file), entry,
596 desc->dir_verifier);
597
598 status = nfs_readdir_add_to_array(entry, page);
599 if (status != 0)
600 break;
601 } while (!entry->eof);
602
603 out_nopages:
604 if (count == 0 || (status == -EBADCOOKIE && entry->eof != 0)) {
605 array = kmap(page);
606 array->eof_index = array->size;
607 status = 0;
608 kunmap(page);
609 }
610
611 put_page(scratch);
612 return status;
613 }
614
615 static
nfs_readdir_free_pages(struct page ** pages,unsigned int npages)616 void nfs_readdir_free_pages(struct page **pages, unsigned int npages)
617 {
618 unsigned int i;
619 for (i = 0; i < npages; i++)
620 put_page(pages[i]);
621 }
622
623 /*
624 * nfs_readdir_alloc_pages() will allocate pages that must be freed with a call
625 * to nfs_readdir_free_pages()
626 */
627 static
nfs_readdir_alloc_pages(struct page ** pages,unsigned int npages)628 int nfs_readdir_alloc_pages(struct page **pages, unsigned int npages)
629 {
630 unsigned int i;
631
632 for (i = 0; i < npages; i++) {
633 struct page *page = alloc_page(GFP_KERNEL);
634 if (page == NULL)
635 goto out_freepages;
636 pages[i] = page;
637 }
638 return 0;
639
640 out_freepages:
641 nfs_readdir_free_pages(pages, i);
642 return -ENOMEM;
643 }
644
645 static
nfs_readdir_xdr_to_array(nfs_readdir_descriptor_t * desc,struct page * page,struct inode * inode)646 int nfs_readdir_xdr_to_array(nfs_readdir_descriptor_t *desc, struct page *page, struct inode *inode)
647 {
648 struct page *pages[NFS_MAX_READDIR_PAGES];
649 struct nfs_entry entry;
650 struct file *file = desc->file;
651 struct nfs_cache_array *array;
652 int status = -ENOMEM;
653 unsigned int array_size = ARRAY_SIZE(pages);
654
655 nfs_readdir_init_array(page);
656
657 entry.prev_cookie = 0;
658 entry.cookie = desc->last_cookie;
659 entry.eof = 0;
660 entry.fh = nfs_alloc_fhandle();
661 entry.fattr = nfs_alloc_fattr();
662 entry.server = NFS_SERVER(inode);
663 if (entry.fh == NULL || entry.fattr == NULL)
664 goto out;
665
666 entry.label = nfs4_label_alloc(NFS_SERVER(inode), GFP_NOWAIT);
667 if (IS_ERR(entry.label)) {
668 status = PTR_ERR(entry.label);
669 goto out;
670 }
671
672 array = kmap(page);
673
674 status = nfs_readdir_alloc_pages(pages, array_size);
675 if (status < 0)
676 goto out_release_array;
677 do {
678 unsigned int pglen;
679 status = nfs_readdir_xdr_filler(pages, desc, &entry, file, inode);
680
681 if (status < 0)
682 break;
683 pglen = status;
684 status = nfs_readdir_page_filler(desc, &entry, pages, page, pglen);
685 if (status < 0) {
686 if (status == -ENOSPC)
687 status = 0;
688 break;
689 }
690 } while (array->eof_index < 0);
691
692 nfs_readdir_free_pages(pages, array_size);
693 out_release_array:
694 kunmap(page);
695 nfs4_label_free(entry.label);
696 out:
697 nfs_free_fattr(entry.fattr);
698 nfs_free_fhandle(entry.fh);
699 return status;
700 }
701
702 /*
703 * Now we cache directories properly, by converting xdr information
704 * to an array that can be used for lookups later. This results in
705 * fewer cache pages, since we can store more information on each page.
706 * We only need to convert from xdr once so future lookups are much simpler
707 */
708 static
nfs_readdir_filler(void * data,struct page * page)709 int nfs_readdir_filler(void *data, struct page* page)
710 {
711 nfs_readdir_descriptor_t *desc = data;
712 struct inode *inode = file_inode(desc->file);
713 int ret;
714
715 ret = nfs_readdir_xdr_to_array(desc, page, inode);
716 if (ret < 0)
717 goto error;
718 SetPageUptodate(page);
719
720 if (invalidate_inode_pages2_range(inode->i_mapping, page->index + 1, -1) < 0) {
721 /* Should never happen */
722 nfs_zap_mapping(inode, inode->i_mapping);
723 }
724 unlock_page(page);
725 return 0;
726 error:
727 nfs_readdir_clear_array(page);
728 unlock_page(page);
729 return ret;
730 }
731
732 static
cache_page_release(nfs_readdir_descriptor_t * desc)733 void cache_page_release(nfs_readdir_descriptor_t *desc)
734 {
735 put_page(desc->page);
736 desc->page = NULL;
737 }
738
739 static
get_cache_page(nfs_readdir_descriptor_t * desc)740 struct page *get_cache_page(nfs_readdir_descriptor_t *desc)
741 {
742 return read_cache_page(desc->file->f_mapping, desc->page_index,
743 nfs_readdir_filler, desc);
744 }
745
746 /*
747 * Returns 0 if desc->dir_cookie was found on page desc->page_index
748 * and locks the page to prevent removal from the page cache.
749 */
750 static
find_and_lock_cache_page(nfs_readdir_descriptor_t * desc)751 int find_and_lock_cache_page(nfs_readdir_descriptor_t *desc)
752 {
753 struct inode *inode = file_inode(desc->file);
754 struct nfs_inode *nfsi = NFS_I(inode);
755 int res;
756
757 desc->page = get_cache_page(desc);
758 if (IS_ERR(desc->page))
759 return PTR_ERR(desc->page);
760 res = lock_page_killable(desc->page);
761 if (res != 0)
762 goto error;
763 res = -EAGAIN;
764 if (desc->page->mapping != NULL) {
765 res = nfs_readdir_search_array(desc);
766 if (res == 0) {
767 nfsi->page_index = desc->page_index;
768 return 0;
769 }
770 }
771 unlock_page(desc->page);
772 error:
773 cache_page_release(desc);
774 return res;
775 }
776
777 /* Search for desc->dir_cookie from the beginning of the page cache */
778 static inline
readdir_search_pagecache(nfs_readdir_descriptor_t * desc)779 int readdir_search_pagecache(nfs_readdir_descriptor_t *desc)
780 {
781 int res;
782
783 if (desc->page_index == 0) {
784 desc->current_index = 0;
785 desc->prev_index = 0;
786 desc->last_cookie = 0;
787 }
788 do {
789 res = find_and_lock_cache_page(desc);
790 } while (res == -EAGAIN);
791 return res;
792 }
793
794 /*
795 * Once we've found the start of the dirent within a page: fill 'er up...
796 */
797 static
nfs_do_filldir(nfs_readdir_descriptor_t * desc)798 int nfs_do_filldir(nfs_readdir_descriptor_t *desc)
799 {
800 struct file *file = desc->file;
801 int i = 0;
802 int res = 0;
803 struct nfs_cache_array *array = NULL;
804 struct nfs_open_dir_context *ctx = file->private_data;
805
806 array = kmap(desc->page);
807 for (i = desc->cache_entry_index; i < array->size; i++) {
808 struct nfs_cache_array_entry *ent;
809
810 ent = &array->array[i];
811 if (!dir_emit(desc->ctx, ent->string.name, ent->string.len,
812 nfs_compat_user_ino64(ent->ino), ent->d_type)) {
813 desc->eof = true;
814 break;
815 }
816 if (i < (array->size-1))
817 *desc->dir_cookie = array->array[i+1].cookie;
818 else
819 *desc->dir_cookie = array->last_cookie;
820 if (nfs_readdir_use_cookie(file))
821 desc->ctx->pos = *desc->dir_cookie;
822 else
823 desc->ctx->pos++;
824 if (ctx->duped != 0)
825 ctx->duped = 1;
826 }
827 if (array->eof_index >= 0)
828 desc->eof = true;
829
830 kunmap(desc->page);
831 dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling ended @ cookie %Lu; returning = %d\n",
832 (unsigned long long)*desc->dir_cookie, res);
833 return res;
834 }
835
836 /*
837 * If we cannot find a cookie in our cache, we suspect that this is
838 * because it points to a deleted file, so we ask the server to return
839 * whatever it thinks is the next entry. We then feed this to filldir.
840 * If all goes well, we should then be able to find our way round the
841 * cache on the next call to readdir_search_pagecache();
842 *
843 * NOTE: we cannot add the anonymous page to the pagecache because
844 * the data it contains might not be page aligned. Besides,
845 * we should already have a complete representation of the
846 * directory in the page cache by the time we get here.
847 */
848 static inline
uncached_readdir(nfs_readdir_descriptor_t * desc)849 int uncached_readdir(nfs_readdir_descriptor_t *desc)
850 {
851 struct page *page = NULL;
852 int status;
853 struct inode *inode = file_inode(desc->file);
854 struct nfs_open_dir_context *ctx = desc->file->private_data;
855
856 dfprintk(DIRCACHE, "NFS: uncached_readdir() searching for cookie %Lu\n",
857 (unsigned long long)*desc->dir_cookie);
858
859 page = alloc_page(GFP_HIGHUSER);
860 if (!page) {
861 status = -ENOMEM;
862 goto out;
863 }
864
865 desc->page_index = 0;
866 desc->last_cookie = *desc->dir_cookie;
867 desc->page = page;
868 ctx->duped = 0;
869
870 status = nfs_readdir_xdr_to_array(desc, page, inode);
871 if (status < 0)
872 goto out_release;
873
874 status = nfs_do_filldir(desc);
875
876 out_release:
877 nfs_readdir_clear_array(desc->page);
878 cache_page_release(desc);
879 out:
880 dfprintk(DIRCACHE, "NFS: %s: returns %d\n",
881 __func__, status);
882 return status;
883 }
884
885 /* The file offset position represents the dirent entry number. A
886 last cookie cache takes care of the common case of reading the
887 whole directory.
888 */
nfs_readdir(struct file * file,struct dir_context * ctx)889 static int nfs_readdir(struct file *file, struct dir_context *ctx)
890 {
891 struct dentry *dentry = file_dentry(file);
892 struct inode *inode = d_inode(dentry);
893 struct nfs_open_dir_context *dir_ctx = file->private_data;
894 nfs_readdir_descriptor_t my_desc = {
895 .file = file,
896 .ctx = ctx,
897 .dir_cookie = &dir_ctx->dir_cookie,
898 .plus = nfs_use_readdirplus(inode, ctx),
899 },
900 *desc = &my_desc;
901 int res = 0;
902
903 dfprintk(FILE, "NFS: readdir(%pD2) starting at cookie %llu\n",
904 file, (long long)ctx->pos);
905 nfs_inc_stats(inode, NFSIOS_VFSGETDENTS);
906
907 /*
908 * ctx->pos points to the dirent entry number.
909 * *desc->dir_cookie has the cookie for the next entry. We have
910 * to either find the entry with the appropriate number or
911 * revalidate the cookie.
912 */
913 if (ctx->pos == 0 || nfs_attribute_cache_expired(inode))
914 res = nfs_revalidate_mapping(inode, file->f_mapping);
915 if (res < 0)
916 goto out;
917
918 do {
919 res = readdir_search_pagecache(desc);
920
921 if (res == -EBADCOOKIE) {
922 res = 0;
923 /* This means either end of directory */
924 if (*desc->dir_cookie && !desc->eof) {
925 /* Or that the server has 'lost' a cookie */
926 res = uncached_readdir(desc);
927 if (res == 0)
928 continue;
929 }
930 break;
931 }
932 if (res == -ETOOSMALL && desc->plus) {
933 clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
934 nfs_zap_caches(inode);
935 desc->page_index = 0;
936 desc->plus = false;
937 desc->eof = false;
938 continue;
939 }
940 if (res < 0)
941 break;
942
943 res = nfs_do_filldir(desc);
944 unlock_page(desc->page);
945 cache_page_release(desc);
946 if (res < 0)
947 break;
948 } while (!desc->eof);
949 out:
950 if (res > 0)
951 res = 0;
952 dfprintk(FILE, "NFS: readdir(%pD2) returns %d\n", file, res);
953 return res;
954 }
955
nfs_llseek_dir(struct file * filp,loff_t offset,int whence)956 static loff_t nfs_llseek_dir(struct file *filp, loff_t offset, int whence)
957 {
958 struct nfs_open_dir_context *dir_ctx = filp->private_data;
959
960 dfprintk(FILE, "NFS: llseek dir(%pD2, %lld, %d)\n",
961 filp, offset, whence);
962
963 switch (whence) {
964 default:
965 return -EINVAL;
966 case SEEK_SET:
967 if (offset < 0)
968 return -EINVAL;
969 spin_lock(&filp->f_lock);
970 break;
971 case SEEK_CUR:
972 if (offset == 0)
973 return filp->f_pos;
974 spin_lock(&filp->f_lock);
975 offset += filp->f_pos;
976 if (offset < 0) {
977 spin_unlock(&filp->f_lock);
978 return -EINVAL;
979 }
980 }
981 if (offset != filp->f_pos) {
982 filp->f_pos = offset;
983 if (nfs_readdir_use_cookie(filp))
984 dir_ctx->dir_cookie = offset;
985 else
986 dir_ctx->dir_cookie = 0;
987 dir_ctx->duped = 0;
988 }
989 spin_unlock(&filp->f_lock);
990 return offset;
991 }
992
993 /*
994 * All directory operations under NFS are synchronous, so fsync()
995 * is a dummy operation.
996 */
nfs_fsync_dir(struct file * filp,loff_t start,loff_t end,int datasync)997 static int nfs_fsync_dir(struct file *filp, loff_t start, loff_t end,
998 int datasync)
999 {
1000 dfprintk(FILE, "NFS: fsync dir(%pD2) datasync %d\n", filp, datasync);
1001
1002 nfs_inc_stats(file_inode(filp), NFSIOS_VFSFSYNC);
1003 return 0;
1004 }
1005
1006 /**
1007 * nfs_force_lookup_revalidate - Mark the directory as having changed
1008 * @dir: pointer to directory inode
1009 *
1010 * This forces the revalidation code in nfs_lookup_revalidate() to do a
1011 * full lookup on all child dentries of 'dir' whenever a change occurs
1012 * on the server that might have invalidated our dcache.
1013 *
1014 * Note that we reserve bit '0' as a tag to let us know when a dentry
1015 * was revalidated while holding a delegation on its inode.
1016 *
1017 * The caller should be holding dir->i_lock
1018 */
nfs_force_lookup_revalidate(struct inode * dir)1019 void nfs_force_lookup_revalidate(struct inode *dir)
1020 {
1021 NFS_I(dir)->cache_change_attribute += 2;
1022 }
1023 EXPORT_SYMBOL_GPL(nfs_force_lookup_revalidate);
1024
1025 /**
1026 * nfs_verify_change_attribute - Detects NFS remote directory changes
1027 * @dir: pointer to parent directory inode
1028 * @verf: previously saved change attribute
1029 *
1030 * Return "false" if the verifiers doesn't match the change attribute.
1031 * This would usually indicate that the directory contents have changed on
1032 * the server, and that any dentries need revalidating.
1033 */
nfs_verify_change_attribute(struct inode * dir,unsigned long verf)1034 static bool nfs_verify_change_attribute(struct inode *dir, unsigned long verf)
1035 {
1036 return (verf & ~1UL) == nfs_save_change_attribute(dir);
1037 }
1038
nfs_set_verifier_delegated(unsigned long * verf)1039 static void nfs_set_verifier_delegated(unsigned long *verf)
1040 {
1041 *verf |= 1UL;
1042 }
1043
1044 #if IS_ENABLED(CONFIG_NFS_V4)
nfs_unset_verifier_delegated(unsigned long * verf)1045 static void nfs_unset_verifier_delegated(unsigned long *verf)
1046 {
1047 *verf &= ~1UL;
1048 }
1049 #endif /* IS_ENABLED(CONFIG_NFS_V4) */
1050
nfs_test_verifier_delegated(unsigned long verf)1051 static bool nfs_test_verifier_delegated(unsigned long verf)
1052 {
1053 return verf & 1;
1054 }
1055
nfs_verifier_is_delegated(struct dentry * dentry)1056 static bool nfs_verifier_is_delegated(struct dentry *dentry)
1057 {
1058 return nfs_test_verifier_delegated(dentry->d_time);
1059 }
1060
nfs_set_verifier_locked(struct dentry * dentry,unsigned long verf)1061 static void nfs_set_verifier_locked(struct dentry *dentry, unsigned long verf)
1062 {
1063 struct inode *inode = d_inode(dentry);
1064 struct inode *dir = d_inode(dentry->d_parent);
1065
1066 if (!nfs_verify_change_attribute(dir, verf))
1067 return;
1068 if (inode && NFS_PROTO(inode)->have_delegation(inode, FMODE_READ))
1069 nfs_set_verifier_delegated(&verf);
1070 dentry->d_time = verf;
1071 }
1072
1073 /**
1074 * nfs_set_verifier - save a parent directory verifier in the dentry
1075 * @dentry: pointer to dentry
1076 * @verf: verifier to save
1077 *
1078 * Saves the parent directory verifier in @dentry. If the inode has
1079 * a delegation, we also tag the dentry as having been revalidated
1080 * while holding a delegation so that we know we don't have to
1081 * look it up again after a directory change.
1082 */
nfs_set_verifier(struct dentry * dentry,unsigned long verf)1083 void nfs_set_verifier(struct dentry *dentry, unsigned long verf)
1084 {
1085
1086 spin_lock(&dentry->d_lock);
1087 nfs_set_verifier_locked(dentry, verf);
1088 spin_unlock(&dentry->d_lock);
1089 }
1090 EXPORT_SYMBOL_GPL(nfs_set_verifier);
1091
1092 #if IS_ENABLED(CONFIG_NFS_V4)
1093 /**
1094 * nfs_clear_verifier_delegated - clear the dir verifier delegation tag
1095 * @inode: pointer to inode
1096 *
1097 * Iterates through the dentries in the inode alias list and clears
1098 * the tag used to indicate that the dentry has been revalidated
1099 * while holding a delegation.
1100 * This function is intended for use when the delegation is being
1101 * returned or revoked.
1102 */
nfs_clear_verifier_delegated(struct inode * inode)1103 void nfs_clear_verifier_delegated(struct inode *inode)
1104 {
1105 struct dentry *alias;
1106
1107 if (!inode)
1108 return;
1109 spin_lock(&inode->i_lock);
1110 hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
1111 spin_lock(&alias->d_lock);
1112 nfs_unset_verifier_delegated(&alias->d_time);
1113 spin_unlock(&alias->d_lock);
1114 }
1115 spin_unlock(&inode->i_lock);
1116 }
1117 EXPORT_SYMBOL_GPL(nfs_clear_verifier_delegated);
1118 #endif /* IS_ENABLED(CONFIG_NFS_V4) */
1119
1120 /*
1121 * A check for whether or not the parent directory has changed.
1122 * In the case it has, we assume that the dentries are untrustworthy
1123 * and may need to be looked up again.
1124 * If rcu_walk prevents us from performing a full check, return 0.
1125 */
nfs_check_verifier(struct inode * dir,struct dentry * dentry,int rcu_walk)1126 static int nfs_check_verifier(struct inode *dir, struct dentry *dentry,
1127 int rcu_walk)
1128 {
1129 if (IS_ROOT(dentry))
1130 return 1;
1131 if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONE)
1132 return 0;
1133 if (!nfs_verify_change_attribute(dir, dentry->d_time))
1134 return 0;
1135 /* Revalidate nfsi->cache_change_attribute before we declare a match */
1136 if (nfs_mapping_need_revalidate_inode(dir)) {
1137 if (rcu_walk)
1138 return 0;
1139 if (__nfs_revalidate_inode(NFS_SERVER(dir), dir) < 0)
1140 return 0;
1141 }
1142 if (!nfs_verify_change_attribute(dir, dentry->d_time))
1143 return 0;
1144 return 1;
1145 }
1146
1147 /*
1148 * Use intent information to check whether or not we're going to do
1149 * an O_EXCL create using this path component.
1150 */
nfs_is_exclusive_create(struct inode * dir,unsigned int flags)1151 static int nfs_is_exclusive_create(struct inode *dir, unsigned int flags)
1152 {
1153 if (NFS_PROTO(dir)->version == 2)
1154 return 0;
1155 return flags & LOOKUP_EXCL;
1156 }
1157
1158 /*
1159 * Inode and filehandle revalidation for lookups.
1160 *
1161 * We force revalidation in the cases where the VFS sets LOOKUP_REVAL,
1162 * or if the intent information indicates that we're about to open this
1163 * particular file and the "nocto" mount flag is not set.
1164 *
1165 */
1166 static
nfs_lookup_verify_inode(struct inode * inode,unsigned int flags)1167 int nfs_lookup_verify_inode(struct inode *inode, unsigned int flags)
1168 {
1169 struct nfs_server *server = NFS_SERVER(inode);
1170 int ret;
1171
1172 if (IS_AUTOMOUNT(inode))
1173 return 0;
1174
1175 if (flags & LOOKUP_OPEN) {
1176 switch (inode->i_mode & S_IFMT) {
1177 case S_IFREG:
1178 /* A NFSv4 OPEN will revalidate later */
1179 if (server->caps & NFS_CAP_ATOMIC_OPEN)
1180 goto out;
1181 fallthrough;
1182 case S_IFDIR:
1183 if (server->flags & NFS_MOUNT_NOCTO)
1184 break;
1185 /* NFS close-to-open cache consistency validation */
1186 goto out_force;
1187 }
1188 }
1189
1190 /* VFS wants an on-the-wire revalidation */
1191 if (flags & LOOKUP_REVAL)
1192 goto out_force;
1193 out:
1194 return (inode->i_nlink == 0) ? -ESTALE : 0;
1195 out_force:
1196 if (flags & LOOKUP_RCU)
1197 return -ECHILD;
1198 ret = __nfs_revalidate_inode(server, inode);
1199 if (ret != 0)
1200 return ret;
1201 goto out;
1202 }
1203
nfs_mark_dir_for_revalidate(struct inode * inode)1204 static void nfs_mark_dir_for_revalidate(struct inode *inode)
1205 {
1206 struct nfs_inode *nfsi = NFS_I(inode);
1207
1208 spin_lock(&inode->i_lock);
1209 nfsi->cache_validity |= NFS_INO_REVAL_PAGECACHE;
1210 spin_unlock(&inode->i_lock);
1211 }
1212
1213 /*
1214 * We judge how long we want to trust negative
1215 * dentries by looking at the parent inode mtime.
1216 *
1217 * If parent mtime has changed, we revalidate, else we wait for a
1218 * period corresponding to the parent's attribute cache timeout value.
1219 *
1220 * If LOOKUP_RCU prevents us from performing a full check, return 1
1221 * suggesting a reval is needed.
1222 *
1223 * Note that when creating a new file, or looking up a rename target,
1224 * then it shouldn't be necessary to revalidate a negative dentry.
1225 */
1226 static inline
nfs_neg_need_reval(struct inode * dir,struct dentry * dentry,unsigned int flags)1227 int nfs_neg_need_reval(struct inode *dir, struct dentry *dentry,
1228 unsigned int flags)
1229 {
1230 if (flags & (LOOKUP_CREATE | LOOKUP_RENAME_TARGET))
1231 return 0;
1232 if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONEG)
1233 return 1;
1234 return !nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU);
1235 }
1236
1237 static int
nfs_lookup_revalidate_done(struct inode * dir,struct dentry * dentry,struct inode * inode,int error)1238 nfs_lookup_revalidate_done(struct inode *dir, struct dentry *dentry,
1239 struct inode *inode, int error)
1240 {
1241 switch (error) {
1242 case 1:
1243 dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) is valid\n",
1244 __func__, dentry);
1245 return 1;
1246 case 0:
1247 /*
1248 * We can't d_drop the root of a disconnected tree:
1249 * its d_hash is on the s_anon list and d_drop() would hide
1250 * it from shrink_dcache_for_unmount(), leading to busy
1251 * inodes on unmount and further oopses.
1252 */
1253 if (inode && IS_ROOT(dentry))
1254 return 1;
1255 dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) is invalid\n",
1256 __func__, dentry);
1257 return 0;
1258 }
1259 dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) lookup returned error %d\n",
1260 __func__, dentry, error);
1261 return error;
1262 }
1263
1264 static int
nfs_lookup_revalidate_negative(struct inode * dir,struct dentry * dentry,unsigned int flags)1265 nfs_lookup_revalidate_negative(struct inode *dir, struct dentry *dentry,
1266 unsigned int flags)
1267 {
1268 int ret = 1;
1269 if (nfs_neg_need_reval(dir, dentry, flags)) {
1270 if (flags & LOOKUP_RCU)
1271 return -ECHILD;
1272 ret = 0;
1273 }
1274 return nfs_lookup_revalidate_done(dir, dentry, NULL, ret);
1275 }
1276
1277 static int
nfs_lookup_revalidate_delegated(struct inode * dir,struct dentry * dentry,struct inode * inode)1278 nfs_lookup_revalidate_delegated(struct inode *dir, struct dentry *dentry,
1279 struct inode *inode)
1280 {
1281 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1282 return nfs_lookup_revalidate_done(dir, dentry, inode, 1);
1283 }
1284
1285 static int
nfs_lookup_revalidate_dentry(struct inode * dir,struct dentry * dentry,struct inode * inode)1286 nfs_lookup_revalidate_dentry(struct inode *dir, struct dentry *dentry,
1287 struct inode *inode)
1288 {
1289 struct nfs_fh *fhandle;
1290 struct nfs_fattr *fattr;
1291 struct nfs4_label *label;
1292 unsigned long dir_verifier;
1293 int ret;
1294
1295 ret = -ENOMEM;
1296 fhandle = nfs_alloc_fhandle();
1297 fattr = nfs_alloc_fattr();
1298 label = nfs4_label_alloc(NFS_SERVER(inode), GFP_KERNEL);
1299 if (fhandle == NULL || fattr == NULL || IS_ERR(label))
1300 goto out;
1301
1302 dir_verifier = nfs_save_change_attribute(dir);
1303 ret = NFS_PROTO(dir)->lookup(dir, dentry, fhandle, fattr, label);
1304 if (ret < 0) {
1305 switch (ret) {
1306 case -ESTALE:
1307 case -ENOENT:
1308 ret = 0;
1309 break;
1310 case -ETIMEDOUT:
1311 if (NFS_SERVER(inode)->flags & NFS_MOUNT_SOFTREVAL)
1312 ret = 1;
1313 }
1314 goto out;
1315 }
1316 ret = 0;
1317 if (nfs_compare_fh(NFS_FH(inode), fhandle))
1318 goto out;
1319 if (nfs_refresh_inode(inode, fattr) < 0)
1320 goto out;
1321
1322 nfs_setsecurity(inode, fattr, label);
1323 nfs_set_verifier(dentry, dir_verifier);
1324
1325 /* set a readdirplus hint that we had a cache miss */
1326 nfs_force_use_readdirplus(dir);
1327 ret = 1;
1328 out:
1329 nfs_free_fattr(fattr);
1330 nfs_free_fhandle(fhandle);
1331 nfs4_label_free(label);
1332
1333 /*
1334 * If the lookup failed despite the dentry change attribute being
1335 * a match, then we should revalidate the directory cache.
1336 */
1337 if (!ret && nfs_verify_change_attribute(dir, dentry->d_time))
1338 nfs_mark_dir_for_revalidate(dir);
1339 return nfs_lookup_revalidate_done(dir, dentry, inode, ret);
1340 }
1341
1342 /*
1343 * This is called every time the dcache has a lookup hit,
1344 * and we should check whether we can really trust that
1345 * lookup.
1346 *
1347 * NOTE! The hit can be a negative hit too, don't assume
1348 * we have an inode!
1349 *
1350 * If the parent directory is seen to have changed, we throw out the
1351 * cached dentry and do a new lookup.
1352 */
1353 static int
nfs_do_lookup_revalidate(struct inode * dir,struct dentry * dentry,unsigned int flags)1354 nfs_do_lookup_revalidate(struct inode *dir, struct dentry *dentry,
1355 unsigned int flags)
1356 {
1357 struct inode *inode;
1358 int error;
1359
1360 nfs_inc_stats(dir, NFSIOS_DENTRYREVALIDATE);
1361 inode = d_inode(dentry);
1362
1363 if (!inode)
1364 return nfs_lookup_revalidate_negative(dir, dentry, flags);
1365
1366 if (is_bad_inode(inode)) {
1367 dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n",
1368 __func__, dentry);
1369 goto out_bad;
1370 }
1371
1372 if (nfs_verifier_is_delegated(dentry))
1373 return nfs_lookup_revalidate_delegated(dir, dentry, inode);
1374
1375 /* Force a full look up iff the parent directory has changed */
1376 if (!(flags & (LOOKUP_EXCL | LOOKUP_REVAL)) &&
1377 nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU)) {
1378 error = nfs_lookup_verify_inode(inode, flags);
1379 if (error) {
1380 if (error == -ESTALE)
1381 nfs_mark_dir_for_revalidate(dir);
1382 goto out_bad;
1383 }
1384 nfs_advise_use_readdirplus(dir);
1385 goto out_valid;
1386 }
1387
1388 if (flags & LOOKUP_RCU)
1389 return -ECHILD;
1390
1391 if (NFS_STALE(inode))
1392 goto out_bad;
1393
1394 trace_nfs_lookup_revalidate_enter(dir, dentry, flags);
1395 error = nfs_lookup_revalidate_dentry(dir, dentry, inode);
1396 trace_nfs_lookup_revalidate_exit(dir, dentry, flags, error);
1397 return error;
1398 out_valid:
1399 return nfs_lookup_revalidate_done(dir, dentry, inode, 1);
1400 out_bad:
1401 if (flags & LOOKUP_RCU)
1402 return -ECHILD;
1403 return nfs_lookup_revalidate_done(dir, dentry, inode, 0);
1404 }
1405
1406 static int
__nfs_lookup_revalidate(struct dentry * dentry,unsigned int flags,int (* reval)(struct inode *,struct dentry *,unsigned int))1407 __nfs_lookup_revalidate(struct dentry *dentry, unsigned int flags,
1408 int (*reval)(struct inode *, struct dentry *, unsigned int))
1409 {
1410 struct dentry *parent;
1411 struct inode *dir;
1412 int ret;
1413
1414 if (flags & LOOKUP_RCU) {
1415 parent = READ_ONCE(dentry->d_parent);
1416 dir = d_inode_rcu(parent);
1417 if (!dir)
1418 return -ECHILD;
1419 ret = reval(dir, dentry, flags);
1420 if (parent != READ_ONCE(dentry->d_parent))
1421 return -ECHILD;
1422 } else {
1423 parent = dget_parent(dentry);
1424 ret = reval(d_inode(parent), dentry, flags);
1425 dput(parent);
1426 }
1427 return ret;
1428 }
1429
nfs_lookup_revalidate(struct dentry * dentry,unsigned int flags)1430 static int nfs_lookup_revalidate(struct dentry *dentry, unsigned int flags)
1431 {
1432 return __nfs_lookup_revalidate(dentry, flags, nfs_do_lookup_revalidate);
1433 }
1434
1435 /*
1436 * A weaker form of d_revalidate for revalidating just the d_inode(dentry)
1437 * when we don't really care about the dentry name. This is called when a
1438 * pathwalk ends on a dentry that was not found via a normal lookup in the
1439 * parent dir (e.g.: ".", "..", procfs symlinks or mountpoint traversals).
1440 *
1441 * In this situation, we just want to verify that the inode itself is OK
1442 * since the dentry might have changed on the server.
1443 */
nfs_weak_revalidate(struct dentry * dentry,unsigned int flags)1444 static int nfs_weak_revalidate(struct dentry *dentry, unsigned int flags)
1445 {
1446 struct inode *inode = d_inode(dentry);
1447 int error = 0;
1448
1449 /*
1450 * I believe we can only get a negative dentry here in the case of a
1451 * procfs-style symlink. Just assume it's correct for now, but we may
1452 * eventually need to do something more here.
1453 */
1454 if (!inode) {
1455 dfprintk(LOOKUPCACHE, "%s: %pd2 has negative inode\n",
1456 __func__, dentry);
1457 return 1;
1458 }
1459
1460 if (is_bad_inode(inode)) {
1461 dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n",
1462 __func__, dentry);
1463 return 0;
1464 }
1465
1466 error = nfs_lookup_verify_inode(inode, flags);
1467 dfprintk(LOOKUPCACHE, "NFS: %s: inode %lu is %s\n",
1468 __func__, inode->i_ino, error ? "invalid" : "valid");
1469 return !error;
1470 }
1471
1472 /*
1473 * This is called from dput() when d_count is going to 0.
1474 */
nfs_dentry_delete(const struct dentry * dentry)1475 static int nfs_dentry_delete(const struct dentry *dentry)
1476 {
1477 dfprintk(VFS, "NFS: dentry_delete(%pd2, %x)\n",
1478 dentry, dentry->d_flags);
1479
1480 /* Unhash any dentry with a stale inode */
1481 if (d_really_is_positive(dentry) && NFS_STALE(d_inode(dentry)))
1482 return 1;
1483
1484 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1485 /* Unhash it, so that ->d_iput() would be called */
1486 return 1;
1487 }
1488 if (!(dentry->d_sb->s_flags & SB_ACTIVE)) {
1489 /* Unhash it, so that ancestors of killed async unlink
1490 * files will be cleaned up during umount */
1491 return 1;
1492 }
1493 return 0;
1494
1495 }
1496
1497 /* Ensure that we revalidate inode->i_nlink */
nfs_drop_nlink(struct inode * inode)1498 static void nfs_drop_nlink(struct inode *inode)
1499 {
1500 spin_lock(&inode->i_lock);
1501 /* drop the inode if we're reasonably sure this is the last link */
1502 if (inode->i_nlink > 0)
1503 drop_nlink(inode);
1504 NFS_I(inode)->attr_gencount = nfs_inc_attr_generation_counter();
1505 NFS_I(inode)->cache_validity |= NFS_INO_INVALID_CHANGE
1506 | NFS_INO_INVALID_CTIME
1507 | NFS_INO_INVALID_OTHER
1508 | NFS_INO_REVAL_FORCED;
1509 spin_unlock(&inode->i_lock);
1510 }
1511
1512 /*
1513 * Called when the dentry loses inode.
1514 * We use it to clean up silly-renamed files.
1515 */
nfs_dentry_iput(struct dentry * dentry,struct inode * inode)1516 static void nfs_dentry_iput(struct dentry *dentry, struct inode *inode)
1517 {
1518 if (S_ISDIR(inode->i_mode))
1519 /* drop any readdir cache as it could easily be old */
1520 NFS_I(inode)->cache_validity |= NFS_INO_INVALID_DATA;
1521
1522 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1523 nfs_complete_unlink(dentry, inode);
1524 nfs_drop_nlink(inode);
1525 }
1526 iput(inode);
1527 }
1528
nfs_d_release(struct dentry * dentry)1529 static void nfs_d_release(struct dentry *dentry)
1530 {
1531 /* free cached devname value, if it survived that far */
1532 if (unlikely(dentry->d_fsdata)) {
1533 if (dentry->d_flags & DCACHE_NFSFS_RENAMED)
1534 WARN_ON(1);
1535 else
1536 kfree(dentry->d_fsdata);
1537 }
1538 }
1539
1540 const struct dentry_operations nfs_dentry_operations = {
1541 .d_revalidate = nfs_lookup_revalidate,
1542 .d_weak_revalidate = nfs_weak_revalidate,
1543 .d_delete = nfs_dentry_delete,
1544 .d_iput = nfs_dentry_iput,
1545 .d_automount = nfs_d_automount,
1546 .d_release = nfs_d_release,
1547 };
1548 EXPORT_SYMBOL_GPL(nfs_dentry_operations);
1549
nfs_lookup(struct inode * dir,struct dentry * dentry,unsigned int flags)1550 struct dentry *nfs_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
1551 {
1552 struct dentry *res;
1553 struct inode *inode = NULL;
1554 struct nfs_fh *fhandle = NULL;
1555 struct nfs_fattr *fattr = NULL;
1556 struct nfs4_label *label = NULL;
1557 unsigned long dir_verifier;
1558 int error;
1559
1560 dfprintk(VFS, "NFS: lookup(%pd2)\n", dentry);
1561 nfs_inc_stats(dir, NFSIOS_VFSLOOKUP);
1562
1563 if (unlikely(dentry->d_name.len > NFS_SERVER(dir)->namelen))
1564 return ERR_PTR(-ENAMETOOLONG);
1565
1566 /*
1567 * If we're doing an exclusive create, optimize away the lookup
1568 * but don't hash the dentry.
1569 */
1570 if (nfs_is_exclusive_create(dir, flags) || flags & LOOKUP_RENAME_TARGET)
1571 return NULL;
1572
1573 res = ERR_PTR(-ENOMEM);
1574 fhandle = nfs_alloc_fhandle();
1575 fattr = nfs_alloc_fattr();
1576 if (fhandle == NULL || fattr == NULL)
1577 goto out;
1578
1579 label = nfs4_label_alloc(NFS_SERVER(dir), GFP_NOWAIT);
1580 if (IS_ERR(label))
1581 goto out;
1582
1583 dir_verifier = nfs_save_change_attribute(dir);
1584 trace_nfs_lookup_enter(dir, dentry, flags);
1585 error = NFS_PROTO(dir)->lookup(dir, dentry, fhandle, fattr, label);
1586 if (error == -ENOENT)
1587 goto no_entry;
1588 if (error < 0) {
1589 res = ERR_PTR(error);
1590 goto out_label;
1591 }
1592 inode = nfs_fhget(dentry->d_sb, fhandle, fattr, label);
1593 res = ERR_CAST(inode);
1594 if (IS_ERR(res))
1595 goto out_label;
1596
1597 /* Notify readdir to use READDIRPLUS */
1598 nfs_force_use_readdirplus(dir);
1599
1600 no_entry:
1601 res = d_splice_alias(inode, dentry);
1602 if (res != NULL) {
1603 if (IS_ERR(res))
1604 goto out_label;
1605 dentry = res;
1606 }
1607 nfs_set_verifier(dentry, dir_verifier);
1608 out_label:
1609 trace_nfs_lookup_exit(dir, dentry, flags, error);
1610 nfs4_label_free(label);
1611 out:
1612 nfs_free_fattr(fattr);
1613 nfs_free_fhandle(fhandle);
1614 return res;
1615 }
1616 EXPORT_SYMBOL_GPL(nfs_lookup);
1617
1618 #if IS_ENABLED(CONFIG_NFS_V4)
1619 static int nfs4_lookup_revalidate(struct dentry *, unsigned int);
1620
1621 const struct dentry_operations nfs4_dentry_operations = {
1622 .d_revalidate = nfs4_lookup_revalidate,
1623 .d_weak_revalidate = nfs_weak_revalidate,
1624 .d_delete = nfs_dentry_delete,
1625 .d_iput = nfs_dentry_iput,
1626 .d_automount = nfs_d_automount,
1627 .d_release = nfs_d_release,
1628 };
1629 EXPORT_SYMBOL_GPL(nfs4_dentry_operations);
1630
flags_to_mode(int flags)1631 static fmode_t flags_to_mode(int flags)
1632 {
1633 fmode_t res = (__force fmode_t)flags & FMODE_EXEC;
1634 if ((flags & O_ACCMODE) != O_WRONLY)
1635 res |= FMODE_READ;
1636 if ((flags & O_ACCMODE) != O_RDONLY)
1637 res |= FMODE_WRITE;
1638 return res;
1639 }
1640
create_nfs_open_context(struct dentry * dentry,int open_flags,struct file * filp)1641 static struct nfs_open_context *create_nfs_open_context(struct dentry *dentry, int open_flags, struct file *filp)
1642 {
1643 return alloc_nfs_open_context(dentry, flags_to_mode(open_flags), filp);
1644 }
1645
do_open(struct inode * inode,struct file * filp)1646 static int do_open(struct inode *inode, struct file *filp)
1647 {
1648 nfs_fscache_open_file(inode, filp);
1649 return 0;
1650 }
1651
nfs_finish_open(struct nfs_open_context * ctx,struct dentry * dentry,struct file * file,unsigned open_flags)1652 static int nfs_finish_open(struct nfs_open_context *ctx,
1653 struct dentry *dentry,
1654 struct file *file, unsigned open_flags)
1655 {
1656 int err;
1657
1658 err = finish_open(file, dentry, do_open);
1659 if (err)
1660 goto out;
1661 if (S_ISREG(file->f_path.dentry->d_inode->i_mode))
1662 nfs_file_set_open_context(file, ctx);
1663 else
1664 err = -EOPENSTALE;
1665 out:
1666 return err;
1667 }
1668
nfs_atomic_open(struct inode * dir,struct dentry * dentry,struct file * file,unsigned open_flags,umode_t mode)1669 int nfs_atomic_open(struct inode *dir, struct dentry *dentry,
1670 struct file *file, unsigned open_flags,
1671 umode_t mode)
1672 {
1673 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
1674 struct nfs_open_context *ctx;
1675 struct dentry *res;
1676 struct iattr attr = { .ia_valid = ATTR_OPEN };
1677 struct inode *inode;
1678 unsigned int lookup_flags = 0;
1679 bool switched = false;
1680 int created = 0;
1681 int err;
1682
1683 /* Expect a negative dentry */
1684 BUG_ON(d_inode(dentry));
1685
1686 dfprintk(VFS, "NFS: atomic_open(%s/%lu), %pd\n",
1687 dir->i_sb->s_id, dir->i_ino, dentry);
1688
1689 err = nfs_check_flags(open_flags);
1690 if (err)
1691 return err;
1692
1693 /* NFS only supports OPEN on regular files */
1694 if ((open_flags & O_DIRECTORY)) {
1695 if (!d_in_lookup(dentry)) {
1696 /*
1697 * Hashed negative dentry with O_DIRECTORY: dentry was
1698 * revalidated and is fine, no need to perform lookup
1699 * again
1700 */
1701 return -ENOENT;
1702 }
1703 lookup_flags = LOOKUP_OPEN|LOOKUP_DIRECTORY;
1704 goto no_open;
1705 }
1706
1707 if (dentry->d_name.len > NFS_SERVER(dir)->namelen)
1708 return -ENAMETOOLONG;
1709
1710 if (open_flags & O_CREAT) {
1711 struct nfs_server *server = NFS_SERVER(dir);
1712
1713 if (!(server->attr_bitmask[2] & FATTR4_WORD2_MODE_UMASK))
1714 mode &= ~current_umask();
1715
1716 attr.ia_valid |= ATTR_MODE;
1717 attr.ia_mode = mode;
1718 }
1719 if (open_flags & O_TRUNC) {
1720 attr.ia_valid |= ATTR_SIZE;
1721 attr.ia_size = 0;
1722 }
1723
1724 if (!(open_flags & O_CREAT) && !d_in_lookup(dentry)) {
1725 d_drop(dentry);
1726 switched = true;
1727 dentry = d_alloc_parallel(dentry->d_parent,
1728 &dentry->d_name, &wq);
1729 if (IS_ERR(dentry))
1730 return PTR_ERR(dentry);
1731 if (unlikely(!d_in_lookup(dentry)))
1732 return finish_no_open(file, dentry);
1733 }
1734
1735 ctx = create_nfs_open_context(dentry, open_flags, file);
1736 err = PTR_ERR(ctx);
1737 if (IS_ERR(ctx))
1738 goto out;
1739
1740 trace_nfs_atomic_open_enter(dir, ctx, open_flags);
1741 inode = NFS_PROTO(dir)->open_context(dir, ctx, open_flags, &attr, &created);
1742 if (created)
1743 file->f_mode |= FMODE_CREATED;
1744 if (IS_ERR(inode)) {
1745 err = PTR_ERR(inode);
1746 trace_nfs_atomic_open_exit(dir, ctx, open_flags, err);
1747 put_nfs_open_context(ctx);
1748 d_drop(dentry);
1749 switch (err) {
1750 case -ENOENT:
1751 d_splice_alias(NULL, dentry);
1752 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1753 break;
1754 case -EISDIR:
1755 case -ENOTDIR:
1756 goto no_open;
1757 case -ELOOP:
1758 if (!(open_flags & O_NOFOLLOW))
1759 goto no_open;
1760 break;
1761 /* case -EINVAL: */
1762 default:
1763 break;
1764 }
1765 goto out;
1766 }
1767
1768 err = nfs_finish_open(ctx, ctx->dentry, file, open_flags);
1769 trace_nfs_atomic_open_exit(dir, ctx, open_flags, err);
1770 put_nfs_open_context(ctx);
1771 out:
1772 if (unlikely(switched)) {
1773 d_lookup_done(dentry);
1774 dput(dentry);
1775 }
1776 return err;
1777
1778 no_open:
1779 res = nfs_lookup(dir, dentry, lookup_flags);
1780 if (!res) {
1781 inode = d_inode(dentry);
1782 if ((lookup_flags & LOOKUP_DIRECTORY) && inode &&
1783 !(S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode)))
1784 res = ERR_PTR(-ENOTDIR);
1785 else if (inode && S_ISREG(inode->i_mode))
1786 res = ERR_PTR(-EOPENSTALE);
1787 } else if (!IS_ERR(res)) {
1788 inode = d_inode(res);
1789 if ((lookup_flags & LOOKUP_DIRECTORY) && inode &&
1790 !(S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))) {
1791 dput(res);
1792 res = ERR_PTR(-ENOTDIR);
1793 } else if (inode && S_ISREG(inode->i_mode)) {
1794 dput(res);
1795 res = ERR_PTR(-EOPENSTALE);
1796 }
1797 }
1798 if (switched) {
1799 d_lookup_done(dentry);
1800 if (!res)
1801 res = dentry;
1802 else
1803 dput(dentry);
1804 }
1805 if (IS_ERR(res))
1806 return PTR_ERR(res);
1807 return finish_no_open(file, res);
1808 }
1809 EXPORT_SYMBOL_GPL(nfs_atomic_open);
1810
1811 static int
nfs4_do_lookup_revalidate(struct inode * dir,struct dentry * dentry,unsigned int flags)1812 nfs4_do_lookup_revalidate(struct inode *dir, struct dentry *dentry,
1813 unsigned int flags)
1814 {
1815 struct inode *inode;
1816
1817 if (!(flags & LOOKUP_OPEN) || (flags & LOOKUP_DIRECTORY))
1818 goto full_reval;
1819 if (d_mountpoint(dentry))
1820 goto full_reval;
1821
1822 inode = d_inode(dentry);
1823
1824 /* We can't create new files in nfs_open_revalidate(), so we
1825 * optimize away revalidation of negative dentries.
1826 */
1827 if (inode == NULL)
1828 goto full_reval;
1829
1830 if (nfs_verifier_is_delegated(dentry))
1831 return nfs_lookup_revalidate_delegated(dir, dentry, inode);
1832
1833 /* NFS only supports OPEN on regular files */
1834 if (!S_ISREG(inode->i_mode))
1835 goto full_reval;
1836
1837 /* We cannot do exclusive creation on a positive dentry */
1838 if (flags & (LOOKUP_EXCL | LOOKUP_REVAL))
1839 goto reval_dentry;
1840
1841 /* Check if the directory changed */
1842 if (!nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU))
1843 goto reval_dentry;
1844
1845 /* Let f_op->open() actually open (and revalidate) the file */
1846 return 1;
1847 reval_dentry:
1848 if (flags & LOOKUP_RCU)
1849 return -ECHILD;
1850 return nfs_lookup_revalidate_dentry(dir, dentry, inode);
1851
1852 full_reval:
1853 return nfs_do_lookup_revalidate(dir, dentry, flags);
1854 }
1855
nfs4_lookup_revalidate(struct dentry * dentry,unsigned int flags)1856 static int nfs4_lookup_revalidate(struct dentry *dentry, unsigned int flags)
1857 {
1858 return __nfs_lookup_revalidate(dentry, flags,
1859 nfs4_do_lookup_revalidate);
1860 }
1861
1862 #endif /* CONFIG_NFSV4 */
1863
1864 struct dentry *
nfs_add_or_obtain(struct dentry * dentry,struct nfs_fh * fhandle,struct nfs_fattr * fattr,struct nfs4_label * label)1865 nfs_add_or_obtain(struct dentry *dentry, struct nfs_fh *fhandle,
1866 struct nfs_fattr *fattr,
1867 struct nfs4_label *label)
1868 {
1869 struct dentry *parent = dget_parent(dentry);
1870 struct inode *dir = d_inode(parent);
1871 struct inode *inode;
1872 struct dentry *d;
1873 int error;
1874
1875 d_drop(dentry);
1876
1877 if (fhandle->size == 0) {
1878 error = NFS_PROTO(dir)->lookup(dir, dentry, fhandle, fattr, NULL);
1879 if (error)
1880 goto out_error;
1881 }
1882 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1883 if (!(fattr->valid & NFS_ATTR_FATTR)) {
1884 struct nfs_server *server = NFS_SB(dentry->d_sb);
1885 error = server->nfs_client->rpc_ops->getattr(server, fhandle,
1886 fattr, NULL, NULL);
1887 if (error < 0)
1888 goto out_error;
1889 }
1890 inode = nfs_fhget(dentry->d_sb, fhandle, fattr, label);
1891 d = d_splice_alias(inode, dentry);
1892 out:
1893 dput(parent);
1894 return d;
1895 out_error:
1896 d = ERR_PTR(error);
1897 goto out;
1898 }
1899 EXPORT_SYMBOL_GPL(nfs_add_or_obtain);
1900
1901 /*
1902 * Code common to create, mkdir, and mknod.
1903 */
nfs_instantiate(struct dentry * dentry,struct nfs_fh * fhandle,struct nfs_fattr * fattr,struct nfs4_label * label)1904 int nfs_instantiate(struct dentry *dentry, struct nfs_fh *fhandle,
1905 struct nfs_fattr *fattr,
1906 struct nfs4_label *label)
1907 {
1908 struct dentry *d;
1909
1910 d = nfs_add_or_obtain(dentry, fhandle, fattr, label);
1911 if (IS_ERR(d))
1912 return PTR_ERR(d);
1913
1914 /* Callers don't care */
1915 dput(d);
1916 return 0;
1917 }
1918 EXPORT_SYMBOL_GPL(nfs_instantiate);
1919
1920 /*
1921 * Following a failed create operation, we drop the dentry rather
1922 * than retain a negative dentry. This avoids a problem in the event
1923 * that the operation succeeded on the server, but an error in the
1924 * reply path made it appear to have failed.
1925 */
nfs_create(struct inode * dir,struct dentry * dentry,umode_t mode,bool excl)1926 int nfs_create(struct inode *dir, struct dentry *dentry,
1927 umode_t mode, bool excl)
1928 {
1929 struct iattr attr;
1930 int open_flags = excl ? O_CREAT | O_EXCL : O_CREAT;
1931 int error;
1932
1933 dfprintk(VFS, "NFS: create(%s/%lu), %pd\n",
1934 dir->i_sb->s_id, dir->i_ino, dentry);
1935
1936 attr.ia_mode = mode;
1937 attr.ia_valid = ATTR_MODE;
1938
1939 trace_nfs_create_enter(dir, dentry, open_flags);
1940 error = NFS_PROTO(dir)->create(dir, dentry, &attr, open_flags);
1941 trace_nfs_create_exit(dir, dentry, open_flags, error);
1942 if (error != 0)
1943 goto out_err;
1944 return 0;
1945 out_err:
1946 d_drop(dentry);
1947 return error;
1948 }
1949 EXPORT_SYMBOL_GPL(nfs_create);
1950
1951 /*
1952 * See comments for nfs_proc_create regarding failed operations.
1953 */
1954 int
nfs_mknod(struct inode * dir,struct dentry * dentry,umode_t mode,dev_t rdev)1955 nfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t rdev)
1956 {
1957 struct iattr attr;
1958 int status;
1959
1960 dfprintk(VFS, "NFS: mknod(%s/%lu), %pd\n",
1961 dir->i_sb->s_id, dir->i_ino, dentry);
1962
1963 attr.ia_mode = mode;
1964 attr.ia_valid = ATTR_MODE;
1965
1966 trace_nfs_mknod_enter(dir, dentry);
1967 status = NFS_PROTO(dir)->mknod(dir, dentry, &attr, rdev);
1968 trace_nfs_mknod_exit(dir, dentry, status);
1969 if (status != 0)
1970 goto out_err;
1971 return 0;
1972 out_err:
1973 d_drop(dentry);
1974 return status;
1975 }
1976 EXPORT_SYMBOL_GPL(nfs_mknod);
1977
1978 /*
1979 * See comments for nfs_proc_create regarding failed operations.
1980 */
nfs_mkdir(struct inode * dir,struct dentry * dentry,umode_t mode)1981 int nfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
1982 {
1983 struct iattr attr;
1984 int error;
1985
1986 dfprintk(VFS, "NFS: mkdir(%s/%lu), %pd\n",
1987 dir->i_sb->s_id, dir->i_ino, dentry);
1988
1989 attr.ia_valid = ATTR_MODE;
1990 attr.ia_mode = mode | S_IFDIR;
1991
1992 trace_nfs_mkdir_enter(dir, dentry);
1993 error = NFS_PROTO(dir)->mkdir(dir, dentry, &attr);
1994 trace_nfs_mkdir_exit(dir, dentry, error);
1995 if (error != 0)
1996 goto out_err;
1997 return 0;
1998 out_err:
1999 d_drop(dentry);
2000 return error;
2001 }
2002 EXPORT_SYMBOL_GPL(nfs_mkdir);
2003
nfs_dentry_handle_enoent(struct dentry * dentry)2004 static void nfs_dentry_handle_enoent(struct dentry *dentry)
2005 {
2006 if (simple_positive(dentry))
2007 d_delete(dentry);
2008 }
2009
nfs_rmdir(struct inode * dir,struct dentry * dentry)2010 int nfs_rmdir(struct inode *dir, struct dentry *dentry)
2011 {
2012 int error;
2013
2014 dfprintk(VFS, "NFS: rmdir(%s/%lu), %pd\n",
2015 dir->i_sb->s_id, dir->i_ino, dentry);
2016
2017 trace_nfs_rmdir_enter(dir, dentry);
2018 if (d_really_is_positive(dentry)) {
2019 down_write(&NFS_I(d_inode(dentry))->rmdir_sem);
2020 error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
2021 /* Ensure the VFS deletes this inode */
2022 switch (error) {
2023 case 0:
2024 clear_nlink(d_inode(dentry));
2025 break;
2026 case -ENOENT:
2027 nfs_dentry_handle_enoent(dentry);
2028 }
2029 up_write(&NFS_I(d_inode(dentry))->rmdir_sem);
2030 } else
2031 error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
2032 trace_nfs_rmdir_exit(dir, dentry, error);
2033
2034 return error;
2035 }
2036 EXPORT_SYMBOL_GPL(nfs_rmdir);
2037
2038 /*
2039 * Remove a file after making sure there are no pending writes,
2040 * and after checking that the file has only one user.
2041 *
2042 * We invalidate the attribute cache and free the inode prior to the operation
2043 * to avoid possible races if the server reuses the inode.
2044 */
nfs_safe_remove(struct dentry * dentry)2045 static int nfs_safe_remove(struct dentry *dentry)
2046 {
2047 struct inode *dir = d_inode(dentry->d_parent);
2048 struct inode *inode = d_inode(dentry);
2049 int error = -EBUSY;
2050
2051 dfprintk(VFS, "NFS: safe_remove(%pd2)\n", dentry);
2052
2053 /* If the dentry was sillyrenamed, we simply call d_delete() */
2054 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
2055 error = 0;
2056 goto out;
2057 }
2058
2059 trace_nfs_remove_enter(dir, dentry);
2060 if (inode != NULL) {
2061 error = NFS_PROTO(dir)->remove(dir, dentry);
2062 if (error == 0)
2063 nfs_drop_nlink(inode);
2064 } else
2065 error = NFS_PROTO(dir)->remove(dir, dentry);
2066 if (error == -ENOENT)
2067 nfs_dentry_handle_enoent(dentry);
2068 trace_nfs_remove_exit(dir, dentry, error);
2069 out:
2070 return error;
2071 }
2072
2073 /* We do silly rename. In case sillyrename() returns -EBUSY, the inode
2074 * belongs to an active ".nfs..." file and we return -EBUSY.
2075 *
2076 * If sillyrename() returns 0, we do nothing, otherwise we unlink.
2077 */
nfs_unlink(struct inode * dir,struct dentry * dentry)2078 int nfs_unlink(struct inode *dir, struct dentry *dentry)
2079 {
2080 int error;
2081 int need_rehash = 0;
2082
2083 dfprintk(VFS, "NFS: unlink(%s/%lu, %pd)\n", dir->i_sb->s_id,
2084 dir->i_ino, dentry);
2085
2086 trace_nfs_unlink_enter(dir, dentry);
2087 spin_lock(&dentry->d_lock);
2088 if (d_count(dentry) > 1) {
2089 spin_unlock(&dentry->d_lock);
2090 /* Start asynchronous writeout of the inode */
2091 write_inode_now(d_inode(dentry), 0);
2092 error = nfs_sillyrename(dir, dentry);
2093 goto out;
2094 }
2095 if (!d_unhashed(dentry)) {
2096 __d_drop(dentry);
2097 need_rehash = 1;
2098 }
2099 spin_unlock(&dentry->d_lock);
2100 error = nfs_safe_remove(dentry);
2101 if (!error || error == -ENOENT) {
2102 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
2103 } else if (need_rehash)
2104 d_rehash(dentry);
2105 out:
2106 trace_nfs_unlink_exit(dir, dentry, error);
2107 return error;
2108 }
2109 EXPORT_SYMBOL_GPL(nfs_unlink);
2110
2111 /*
2112 * To create a symbolic link, most file systems instantiate a new inode,
2113 * add a page to it containing the path, then write it out to the disk
2114 * using prepare_write/commit_write.
2115 *
2116 * Unfortunately the NFS client can't create the in-core inode first
2117 * because it needs a file handle to create an in-core inode (see
2118 * fs/nfs/inode.c:nfs_fhget). We only have a file handle *after* the
2119 * symlink request has completed on the server.
2120 *
2121 * So instead we allocate a raw page, copy the symname into it, then do
2122 * the SYMLINK request with the page as the buffer. If it succeeds, we
2123 * now have a new file handle and can instantiate an in-core NFS inode
2124 * and move the raw page into its mapping.
2125 */
nfs_symlink(struct inode * dir,struct dentry * dentry,const char * symname)2126 int nfs_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
2127 {
2128 struct page *page;
2129 char *kaddr;
2130 struct iattr attr;
2131 unsigned int pathlen = strlen(symname);
2132 int error;
2133
2134 dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s)\n", dir->i_sb->s_id,
2135 dir->i_ino, dentry, symname);
2136
2137 if (pathlen > PAGE_SIZE)
2138 return -ENAMETOOLONG;
2139
2140 attr.ia_mode = S_IFLNK | S_IRWXUGO;
2141 attr.ia_valid = ATTR_MODE;
2142
2143 page = alloc_page(GFP_USER);
2144 if (!page)
2145 return -ENOMEM;
2146
2147 kaddr = page_address(page);
2148 memcpy(kaddr, symname, pathlen);
2149 if (pathlen < PAGE_SIZE)
2150 memset(kaddr + pathlen, 0, PAGE_SIZE - pathlen);
2151
2152 trace_nfs_symlink_enter(dir, dentry);
2153 error = NFS_PROTO(dir)->symlink(dir, dentry, page, pathlen, &attr);
2154 trace_nfs_symlink_exit(dir, dentry, error);
2155 if (error != 0) {
2156 dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s) error %d\n",
2157 dir->i_sb->s_id, dir->i_ino,
2158 dentry, symname, error);
2159 d_drop(dentry);
2160 __free_page(page);
2161 return error;
2162 }
2163
2164 /*
2165 * No big deal if we can't add this page to the page cache here.
2166 * READLINK will get the missing page from the server if needed.
2167 */
2168 if (!add_to_page_cache_lru(page, d_inode(dentry)->i_mapping, 0,
2169 GFP_KERNEL)) {
2170 SetPageUptodate(page);
2171 unlock_page(page);
2172 /*
2173 * add_to_page_cache_lru() grabs an extra page refcount.
2174 * Drop it here to avoid leaking this page later.
2175 */
2176 put_page(page);
2177 } else
2178 __free_page(page);
2179
2180 return 0;
2181 }
2182 EXPORT_SYMBOL_GPL(nfs_symlink);
2183
2184 int
nfs_link(struct dentry * old_dentry,struct inode * dir,struct dentry * dentry)2185 nfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2186 {
2187 struct inode *inode = d_inode(old_dentry);
2188 int error;
2189
2190 dfprintk(VFS, "NFS: link(%pd2 -> %pd2)\n",
2191 old_dentry, dentry);
2192
2193 trace_nfs_link_enter(inode, dir, dentry);
2194 d_drop(dentry);
2195 if (S_ISREG(inode->i_mode))
2196 nfs_sync_inode(inode);
2197 error = NFS_PROTO(dir)->link(inode, dir, &dentry->d_name);
2198 if (error == 0) {
2199 ihold(inode);
2200 d_add(dentry, inode);
2201 }
2202 trace_nfs_link_exit(inode, dir, dentry, error);
2203 return error;
2204 }
2205 EXPORT_SYMBOL_GPL(nfs_link);
2206
2207 /*
2208 * RENAME
2209 * FIXME: Some nfsds, like the Linux user space nfsd, may generate a
2210 * different file handle for the same inode after a rename (e.g. when
2211 * moving to a different directory). A fail-safe method to do so would
2212 * be to look up old_dir/old_name, create a link to new_dir/new_name and
2213 * rename the old file using the sillyrename stuff. This way, the original
2214 * file in old_dir will go away when the last process iput()s the inode.
2215 *
2216 * FIXED.
2217 *
2218 * It actually works quite well. One needs to have the possibility for
2219 * at least one ".nfs..." file in each directory the file ever gets
2220 * moved or linked to which happens automagically with the new
2221 * implementation that only depends on the dcache stuff instead of
2222 * using the inode layer
2223 *
2224 * Unfortunately, things are a little more complicated than indicated
2225 * above. For a cross-directory move, we want to make sure we can get
2226 * rid of the old inode after the operation. This means there must be
2227 * no pending writes (if it's a file), and the use count must be 1.
2228 * If these conditions are met, we can drop the dentries before doing
2229 * the rename.
2230 */
nfs_rename(struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry,unsigned int flags)2231 int nfs_rename(struct inode *old_dir, struct dentry *old_dentry,
2232 struct inode *new_dir, struct dentry *new_dentry,
2233 unsigned int flags)
2234 {
2235 struct inode *old_inode = d_inode(old_dentry);
2236 struct inode *new_inode = d_inode(new_dentry);
2237 struct dentry *dentry = NULL, *rehash = NULL;
2238 struct rpc_task *task;
2239 int error = -EBUSY;
2240
2241 if (flags)
2242 return -EINVAL;
2243
2244 dfprintk(VFS, "NFS: rename(%pd2 -> %pd2, ct=%d)\n",
2245 old_dentry, new_dentry,
2246 d_count(new_dentry));
2247
2248 trace_nfs_rename_enter(old_dir, old_dentry, new_dir, new_dentry);
2249 /*
2250 * For non-directories, check whether the target is busy and if so,
2251 * make a copy of the dentry and then do a silly-rename. If the
2252 * silly-rename succeeds, the copied dentry is hashed and becomes
2253 * the new target.
2254 */
2255 if (new_inode && !S_ISDIR(new_inode->i_mode)) {
2256 /*
2257 * To prevent any new references to the target during the
2258 * rename, we unhash the dentry in advance.
2259 */
2260 if (!d_unhashed(new_dentry)) {
2261 d_drop(new_dentry);
2262 rehash = new_dentry;
2263 }
2264
2265 if (d_count(new_dentry) > 2) {
2266 int err;
2267
2268 /* copy the target dentry's name */
2269 dentry = d_alloc(new_dentry->d_parent,
2270 &new_dentry->d_name);
2271 if (!dentry)
2272 goto out;
2273
2274 /* silly-rename the existing target ... */
2275 err = nfs_sillyrename(new_dir, new_dentry);
2276 if (err)
2277 goto out;
2278
2279 new_dentry = dentry;
2280 rehash = NULL;
2281 new_inode = NULL;
2282 }
2283 }
2284
2285 if (S_ISREG(old_inode->i_mode))
2286 nfs_sync_inode(old_inode);
2287 task = nfs_async_rename(old_dir, new_dir, old_dentry, new_dentry, NULL);
2288 if (IS_ERR(task)) {
2289 error = PTR_ERR(task);
2290 goto out;
2291 }
2292
2293 error = rpc_wait_for_completion_task(task);
2294 if (error != 0) {
2295 ((struct nfs_renamedata *)task->tk_calldata)->cancelled = 1;
2296 /* Paired with the atomic_dec_and_test() barrier in rpc_do_put_task() */
2297 smp_wmb();
2298 } else
2299 error = task->tk_status;
2300 rpc_put_task(task);
2301 /* Ensure the inode attributes are revalidated */
2302 if (error == 0) {
2303 spin_lock(&old_inode->i_lock);
2304 NFS_I(old_inode)->attr_gencount = nfs_inc_attr_generation_counter();
2305 NFS_I(old_inode)->cache_validity |= NFS_INO_INVALID_CHANGE
2306 | NFS_INO_INVALID_CTIME
2307 | NFS_INO_REVAL_FORCED;
2308 spin_unlock(&old_inode->i_lock);
2309 }
2310 out:
2311 if (rehash)
2312 d_rehash(rehash);
2313 trace_nfs_rename_exit(old_dir, old_dentry,
2314 new_dir, new_dentry, error);
2315 if (!error) {
2316 if (new_inode != NULL)
2317 nfs_drop_nlink(new_inode);
2318 /*
2319 * The d_move() should be here instead of in an async RPC completion
2320 * handler because we need the proper locks to move the dentry. If
2321 * we're interrupted by a signal, the async RPC completion handler
2322 * should mark the directories for revalidation.
2323 */
2324 d_move(old_dentry, new_dentry);
2325 nfs_set_verifier(old_dentry,
2326 nfs_save_change_attribute(new_dir));
2327 } else if (error == -ENOENT)
2328 nfs_dentry_handle_enoent(old_dentry);
2329
2330 /* new dentry created? */
2331 if (dentry)
2332 dput(dentry);
2333 return error;
2334 }
2335 EXPORT_SYMBOL_GPL(nfs_rename);
2336
2337 static DEFINE_SPINLOCK(nfs_access_lru_lock);
2338 static LIST_HEAD(nfs_access_lru_list);
2339 static atomic_long_t nfs_access_nr_entries;
2340
2341 static unsigned long nfs_access_max_cachesize = 4*1024*1024;
2342 module_param(nfs_access_max_cachesize, ulong, 0644);
2343 MODULE_PARM_DESC(nfs_access_max_cachesize, "NFS access maximum total cache length");
2344
nfs_access_free_entry(struct nfs_access_entry * entry)2345 static void nfs_access_free_entry(struct nfs_access_entry *entry)
2346 {
2347 put_cred(entry->cred);
2348 kfree_rcu(entry, rcu_head);
2349 smp_mb__before_atomic();
2350 atomic_long_dec(&nfs_access_nr_entries);
2351 smp_mb__after_atomic();
2352 }
2353
nfs_access_free_list(struct list_head * head)2354 static void nfs_access_free_list(struct list_head *head)
2355 {
2356 struct nfs_access_entry *cache;
2357
2358 while (!list_empty(head)) {
2359 cache = list_entry(head->next, struct nfs_access_entry, lru);
2360 list_del(&cache->lru);
2361 nfs_access_free_entry(cache);
2362 }
2363 }
2364
2365 static unsigned long
nfs_do_access_cache_scan(unsigned int nr_to_scan)2366 nfs_do_access_cache_scan(unsigned int nr_to_scan)
2367 {
2368 LIST_HEAD(head);
2369 struct nfs_inode *nfsi, *next;
2370 struct nfs_access_entry *cache;
2371 long freed = 0;
2372
2373 spin_lock(&nfs_access_lru_lock);
2374 list_for_each_entry_safe(nfsi, next, &nfs_access_lru_list, access_cache_inode_lru) {
2375 struct inode *inode;
2376
2377 if (nr_to_scan-- == 0)
2378 break;
2379 inode = &nfsi->vfs_inode;
2380 spin_lock(&inode->i_lock);
2381 if (list_empty(&nfsi->access_cache_entry_lru))
2382 goto remove_lru_entry;
2383 cache = list_entry(nfsi->access_cache_entry_lru.next,
2384 struct nfs_access_entry, lru);
2385 list_move(&cache->lru, &head);
2386 rb_erase(&cache->rb_node, &nfsi->access_cache);
2387 freed++;
2388 if (!list_empty(&nfsi->access_cache_entry_lru))
2389 list_move_tail(&nfsi->access_cache_inode_lru,
2390 &nfs_access_lru_list);
2391 else {
2392 remove_lru_entry:
2393 list_del_init(&nfsi->access_cache_inode_lru);
2394 smp_mb__before_atomic();
2395 clear_bit(NFS_INO_ACL_LRU_SET, &nfsi->flags);
2396 smp_mb__after_atomic();
2397 }
2398 spin_unlock(&inode->i_lock);
2399 }
2400 spin_unlock(&nfs_access_lru_lock);
2401 nfs_access_free_list(&head);
2402 return freed;
2403 }
2404
2405 unsigned long
nfs_access_cache_scan(struct shrinker * shrink,struct shrink_control * sc)2406 nfs_access_cache_scan(struct shrinker *shrink, struct shrink_control *sc)
2407 {
2408 int nr_to_scan = sc->nr_to_scan;
2409 gfp_t gfp_mask = sc->gfp_mask;
2410
2411 if ((gfp_mask & GFP_KERNEL) != GFP_KERNEL)
2412 return SHRINK_STOP;
2413 return nfs_do_access_cache_scan(nr_to_scan);
2414 }
2415
2416
2417 unsigned long
nfs_access_cache_count(struct shrinker * shrink,struct shrink_control * sc)2418 nfs_access_cache_count(struct shrinker *shrink, struct shrink_control *sc)
2419 {
2420 return vfs_pressure_ratio(atomic_long_read(&nfs_access_nr_entries));
2421 }
2422
2423 static void
nfs_access_cache_enforce_limit(void)2424 nfs_access_cache_enforce_limit(void)
2425 {
2426 long nr_entries = atomic_long_read(&nfs_access_nr_entries);
2427 unsigned long diff;
2428 unsigned int nr_to_scan;
2429
2430 if (nr_entries < 0 || nr_entries <= nfs_access_max_cachesize)
2431 return;
2432 nr_to_scan = 100;
2433 diff = nr_entries - nfs_access_max_cachesize;
2434 if (diff < nr_to_scan)
2435 nr_to_scan = diff;
2436 nfs_do_access_cache_scan(nr_to_scan);
2437 }
2438
__nfs_access_zap_cache(struct nfs_inode * nfsi,struct list_head * head)2439 static void __nfs_access_zap_cache(struct nfs_inode *nfsi, struct list_head *head)
2440 {
2441 struct rb_root *root_node = &nfsi->access_cache;
2442 struct rb_node *n;
2443 struct nfs_access_entry *entry;
2444
2445 /* Unhook entries from the cache */
2446 while ((n = rb_first(root_node)) != NULL) {
2447 entry = rb_entry(n, struct nfs_access_entry, rb_node);
2448 rb_erase(n, root_node);
2449 list_move(&entry->lru, head);
2450 }
2451 nfsi->cache_validity &= ~NFS_INO_INVALID_ACCESS;
2452 }
2453
nfs_access_zap_cache(struct inode * inode)2454 void nfs_access_zap_cache(struct inode *inode)
2455 {
2456 LIST_HEAD(head);
2457
2458 if (test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags) == 0)
2459 return;
2460 /* Remove from global LRU init */
2461 spin_lock(&nfs_access_lru_lock);
2462 if (test_and_clear_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
2463 list_del_init(&NFS_I(inode)->access_cache_inode_lru);
2464
2465 spin_lock(&inode->i_lock);
2466 __nfs_access_zap_cache(NFS_I(inode), &head);
2467 spin_unlock(&inode->i_lock);
2468 spin_unlock(&nfs_access_lru_lock);
2469 nfs_access_free_list(&head);
2470 }
2471 EXPORT_SYMBOL_GPL(nfs_access_zap_cache);
2472
nfs_access_search_rbtree(struct inode * inode,const struct cred * cred)2473 static struct nfs_access_entry *nfs_access_search_rbtree(struct inode *inode, const struct cred *cred)
2474 {
2475 struct rb_node *n = NFS_I(inode)->access_cache.rb_node;
2476
2477 while (n != NULL) {
2478 struct nfs_access_entry *entry =
2479 rb_entry(n, struct nfs_access_entry, rb_node);
2480 int cmp = cred_fscmp(cred, entry->cred);
2481
2482 if (cmp < 0)
2483 n = n->rb_left;
2484 else if (cmp > 0)
2485 n = n->rb_right;
2486 else
2487 return entry;
2488 }
2489 return NULL;
2490 }
2491
nfs_access_get_cached_locked(struct inode * inode,const struct cred * cred,struct nfs_access_entry * res,bool may_block)2492 static int nfs_access_get_cached_locked(struct inode *inode, const struct cred *cred, struct nfs_access_entry *res, bool may_block)
2493 {
2494 struct nfs_inode *nfsi = NFS_I(inode);
2495 struct nfs_access_entry *cache;
2496 bool retry = true;
2497 int err;
2498
2499 spin_lock(&inode->i_lock);
2500 for(;;) {
2501 if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
2502 goto out_zap;
2503 cache = nfs_access_search_rbtree(inode, cred);
2504 err = -ENOENT;
2505 if (cache == NULL)
2506 goto out;
2507 /* Found an entry, is our attribute cache valid? */
2508 if (!nfs_check_cache_invalid(inode, NFS_INO_INVALID_ACCESS))
2509 break;
2510 if (!retry)
2511 break;
2512 err = -ECHILD;
2513 if (!may_block)
2514 goto out;
2515 spin_unlock(&inode->i_lock);
2516 err = __nfs_revalidate_inode(NFS_SERVER(inode), inode);
2517 if (err)
2518 return err;
2519 spin_lock(&inode->i_lock);
2520 retry = false;
2521 }
2522 res->cred = cache->cred;
2523 res->mask = cache->mask;
2524 list_move_tail(&cache->lru, &nfsi->access_cache_entry_lru);
2525 err = 0;
2526 out:
2527 spin_unlock(&inode->i_lock);
2528 return err;
2529 out_zap:
2530 spin_unlock(&inode->i_lock);
2531 nfs_access_zap_cache(inode);
2532 return -ENOENT;
2533 }
2534
nfs_access_get_cached_rcu(struct inode * inode,const struct cred * cred,struct nfs_access_entry * res)2535 static int nfs_access_get_cached_rcu(struct inode *inode, const struct cred *cred, struct nfs_access_entry *res)
2536 {
2537 /* Only check the most recently returned cache entry,
2538 * but do it without locking.
2539 */
2540 struct nfs_inode *nfsi = NFS_I(inode);
2541 struct nfs_access_entry *cache;
2542 int err = -ECHILD;
2543 struct list_head *lh;
2544
2545 rcu_read_lock();
2546 if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
2547 goto out;
2548 lh = rcu_dereference(list_tail_rcu(&nfsi->access_cache_entry_lru));
2549 cache = list_entry(lh, struct nfs_access_entry, lru);
2550 if (lh == &nfsi->access_cache_entry_lru ||
2551 cred_fscmp(cred, cache->cred) != 0)
2552 cache = NULL;
2553 if (cache == NULL)
2554 goto out;
2555 if (nfs_check_cache_invalid(inode, NFS_INO_INVALID_ACCESS))
2556 goto out;
2557 res->cred = cache->cred;
2558 res->mask = cache->mask;
2559 err = 0;
2560 out:
2561 rcu_read_unlock();
2562 return err;
2563 }
2564
nfs_access_get_cached(struct inode * inode,const struct cred * cred,struct nfs_access_entry * res,bool may_block)2565 int nfs_access_get_cached(struct inode *inode, const struct cred *cred, struct
2566 nfs_access_entry *res, bool may_block)
2567 {
2568 int status;
2569
2570 status = nfs_access_get_cached_rcu(inode, cred, res);
2571 if (status != 0)
2572 status = nfs_access_get_cached_locked(inode, cred, res,
2573 may_block);
2574
2575 return status;
2576 }
2577 EXPORT_SYMBOL_GPL(nfs_access_get_cached);
2578
nfs_access_add_rbtree(struct inode * inode,struct nfs_access_entry * set)2579 static void nfs_access_add_rbtree(struct inode *inode, struct nfs_access_entry *set)
2580 {
2581 struct nfs_inode *nfsi = NFS_I(inode);
2582 struct rb_root *root_node = &nfsi->access_cache;
2583 struct rb_node **p = &root_node->rb_node;
2584 struct rb_node *parent = NULL;
2585 struct nfs_access_entry *entry;
2586 int cmp;
2587
2588 spin_lock(&inode->i_lock);
2589 while (*p != NULL) {
2590 parent = *p;
2591 entry = rb_entry(parent, struct nfs_access_entry, rb_node);
2592 cmp = cred_fscmp(set->cred, entry->cred);
2593
2594 if (cmp < 0)
2595 p = &parent->rb_left;
2596 else if (cmp > 0)
2597 p = &parent->rb_right;
2598 else
2599 goto found;
2600 }
2601 rb_link_node(&set->rb_node, parent, p);
2602 rb_insert_color(&set->rb_node, root_node);
2603 list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
2604 spin_unlock(&inode->i_lock);
2605 return;
2606 found:
2607 rb_replace_node(parent, &set->rb_node, root_node);
2608 list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
2609 list_del(&entry->lru);
2610 spin_unlock(&inode->i_lock);
2611 nfs_access_free_entry(entry);
2612 }
2613
nfs_access_add_cache(struct inode * inode,struct nfs_access_entry * set)2614 void nfs_access_add_cache(struct inode *inode, struct nfs_access_entry *set)
2615 {
2616 struct nfs_access_entry *cache = kmalloc(sizeof(*cache), GFP_KERNEL);
2617 if (cache == NULL)
2618 return;
2619 RB_CLEAR_NODE(&cache->rb_node);
2620 cache->cred = get_cred(set->cred);
2621 cache->mask = set->mask;
2622
2623 /* The above field assignments must be visible
2624 * before this item appears on the lru. We cannot easily
2625 * use rcu_assign_pointer, so just force the memory barrier.
2626 */
2627 smp_wmb();
2628 nfs_access_add_rbtree(inode, cache);
2629
2630 /* Update accounting */
2631 smp_mb__before_atomic();
2632 atomic_long_inc(&nfs_access_nr_entries);
2633 smp_mb__after_atomic();
2634
2635 /* Add inode to global LRU list */
2636 if (!test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) {
2637 spin_lock(&nfs_access_lru_lock);
2638 if (!test_and_set_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
2639 list_add_tail(&NFS_I(inode)->access_cache_inode_lru,
2640 &nfs_access_lru_list);
2641 spin_unlock(&nfs_access_lru_lock);
2642 }
2643 nfs_access_cache_enforce_limit();
2644 }
2645 EXPORT_SYMBOL_GPL(nfs_access_add_cache);
2646
2647 #define NFS_MAY_READ (NFS_ACCESS_READ)
2648 #define NFS_MAY_WRITE (NFS_ACCESS_MODIFY | \
2649 NFS_ACCESS_EXTEND | \
2650 NFS_ACCESS_DELETE)
2651 #define NFS_FILE_MAY_WRITE (NFS_ACCESS_MODIFY | \
2652 NFS_ACCESS_EXTEND)
2653 #define NFS_DIR_MAY_WRITE NFS_MAY_WRITE
2654 #define NFS_MAY_LOOKUP (NFS_ACCESS_LOOKUP)
2655 #define NFS_MAY_EXECUTE (NFS_ACCESS_EXECUTE)
2656 static int
nfs_access_calc_mask(u32 access_result,umode_t umode)2657 nfs_access_calc_mask(u32 access_result, umode_t umode)
2658 {
2659 int mask = 0;
2660
2661 if (access_result & NFS_MAY_READ)
2662 mask |= MAY_READ;
2663 if (S_ISDIR(umode)) {
2664 if ((access_result & NFS_DIR_MAY_WRITE) == NFS_DIR_MAY_WRITE)
2665 mask |= MAY_WRITE;
2666 if ((access_result & NFS_MAY_LOOKUP) == NFS_MAY_LOOKUP)
2667 mask |= MAY_EXEC;
2668 } else if (S_ISREG(umode)) {
2669 if ((access_result & NFS_FILE_MAY_WRITE) == NFS_FILE_MAY_WRITE)
2670 mask |= MAY_WRITE;
2671 if ((access_result & NFS_MAY_EXECUTE) == NFS_MAY_EXECUTE)
2672 mask |= MAY_EXEC;
2673 } else if (access_result & NFS_MAY_WRITE)
2674 mask |= MAY_WRITE;
2675 return mask;
2676 }
2677
nfs_access_set_mask(struct nfs_access_entry * entry,u32 access_result)2678 void nfs_access_set_mask(struct nfs_access_entry *entry, u32 access_result)
2679 {
2680 entry->mask = access_result;
2681 }
2682 EXPORT_SYMBOL_GPL(nfs_access_set_mask);
2683
nfs_do_access(struct inode * inode,const struct cred * cred,int mask)2684 static int nfs_do_access(struct inode *inode, const struct cred *cred, int mask)
2685 {
2686 struct nfs_access_entry cache;
2687 bool may_block = (mask & MAY_NOT_BLOCK) == 0;
2688 int cache_mask = -1;
2689 int status;
2690
2691 trace_nfs_access_enter(inode);
2692
2693 status = nfs_access_get_cached(inode, cred, &cache, may_block);
2694 if (status == 0)
2695 goto out_cached;
2696
2697 status = -ECHILD;
2698 if (!may_block)
2699 goto out;
2700
2701 /*
2702 * Determine which access bits we want to ask for...
2703 */
2704 cache.mask = NFS_ACCESS_READ | NFS_ACCESS_MODIFY | NFS_ACCESS_EXTEND;
2705 if (nfs_server_capable(inode, NFS_CAP_XATTR)) {
2706 cache.mask |= NFS_ACCESS_XAREAD | NFS_ACCESS_XAWRITE |
2707 NFS_ACCESS_XALIST;
2708 }
2709 if (S_ISDIR(inode->i_mode))
2710 cache.mask |= NFS_ACCESS_DELETE | NFS_ACCESS_LOOKUP;
2711 else
2712 cache.mask |= NFS_ACCESS_EXECUTE;
2713 cache.cred = cred;
2714 status = NFS_PROTO(inode)->access(inode, &cache);
2715 if (status != 0) {
2716 if (status == -ESTALE) {
2717 if (!S_ISDIR(inode->i_mode))
2718 nfs_set_inode_stale(inode);
2719 else
2720 nfs_zap_caches(inode);
2721 }
2722 goto out;
2723 }
2724 nfs_access_add_cache(inode, &cache);
2725 out_cached:
2726 cache_mask = nfs_access_calc_mask(cache.mask, inode->i_mode);
2727 if ((mask & ~cache_mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) != 0)
2728 status = -EACCES;
2729 out:
2730 trace_nfs_access_exit(inode, mask, cache_mask, status);
2731 return status;
2732 }
2733
nfs_open_permission_mask(int openflags)2734 static int nfs_open_permission_mask(int openflags)
2735 {
2736 int mask = 0;
2737
2738 if (openflags & __FMODE_EXEC) {
2739 /* ONLY check exec rights */
2740 mask = MAY_EXEC;
2741 } else {
2742 if ((openflags & O_ACCMODE) != O_WRONLY)
2743 mask |= MAY_READ;
2744 if ((openflags & O_ACCMODE) != O_RDONLY)
2745 mask |= MAY_WRITE;
2746 }
2747
2748 return mask;
2749 }
2750
nfs_may_open(struct inode * inode,const struct cred * cred,int openflags)2751 int nfs_may_open(struct inode *inode, const struct cred *cred, int openflags)
2752 {
2753 return nfs_do_access(inode, cred, nfs_open_permission_mask(openflags));
2754 }
2755 EXPORT_SYMBOL_GPL(nfs_may_open);
2756
nfs_execute_ok(struct inode * inode,int mask)2757 static int nfs_execute_ok(struct inode *inode, int mask)
2758 {
2759 struct nfs_server *server = NFS_SERVER(inode);
2760 int ret = 0;
2761
2762 if (S_ISDIR(inode->i_mode))
2763 return 0;
2764 if (nfs_check_cache_invalid(inode, NFS_INO_INVALID_OTHER)) {
2765 if (mask & MAY_NOT_BLOCK)
2766 return -ECHILD;
2767 ret = __nfs_revalidate_inode(server, inode);
2768 }
2769 if (ret == 0 && !execute_ok(inode))
2770 ret = -EACCES;
2771 return ret;
2772 }
2773
nfs_permission(struct inode * inode,int mask)2774 int nfs_permission(struct inode *inode, int mask)
2775 {
2776 const struct cred *cred = current_cred();
2777 int res = 0;
2778
2779 nfs_inc_stats(inode, NFSIOS_VFSACCESS);
2780
2781 if ((mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
2782 goto out;
2783 /* Is this sys_access() ? */
2784 if (mask & (MAY_ACCESS | MAY_CHDIR))
2785 goto force_lookup;
2786
2787 switch (inode->i_mode & S_IFMT) {
2788 case S_IFLNK:
2789 goto out;
2790 case S_IFREG:
2791 if ((mask & MAY_OPEN) &&
2792 nfs_server_capable(inode, NFS_CAP_ATOMIC_OPEN))
2793 return 0;
2794 break;
2795 case S_IFDIR:
2796 /*
2797 * Optimize away all write operations, since the server
2798 * will check permissions when we perform the op.
2799 */
2800 if ((mask & MAY_WRITE) && !(mask & MAY_READ))
2801 goto out;
2802 }
2803
2804 force_lookup:
2805 if (!NFS_PROTO(inode)->access)
2806 goto out_notsup;
2807
2808 res = nfs_do_access(inode, cred, mask);
2809 out:
2810 if (!res && (mask & MAY_EXEC))
2811 res = nfs_execute_ok(inode, mask);
2812
2813 dfprintk(VFS, "NFS: permission(%s/%lu), mask=0x%x, res=%d\n",
2814 inode->i_sb->s_id, inode->i_ino, mask, res);
2815 return res;
2816 out_notsup:
2817 if (mask & MAY_NOT_BLOCK)
2818 return -ECHILD;
2819
2820 res = nfs_revalidate_inode(NFS_SERVER(inode), inode);
2821 if (res == 0)
2822 res = generic_permission(inode, mask);
2823 goto out;
2824 }
2825 EXPORT_SYMBOL_GPL(nfs_permission);
2826
2827 /*
2828 * Local variables:
2829 * version-control: t
2830 * kept-new-versions: 5
2831 * End:
2832 */
2833