1 /*
2 * Copyright © 2014 Connor Abbott
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include "nir_instr_set.h"
25 #include "nir_vla.h"
26 #include "util/half_float.h"
27
28 static bool
src_is_ssa(nir_src * src,void * data)29 src_is_ssa(nir_src *src, void *data)
30 {
31 (void) data;
32 return src->is_ssa;
33 }
34
35 static bool
dest_is_ssa(nir_dest * dest,void * data)36 dest_is_ssa(nir_dest *dest, void *data)
37 {
38 (void) data;
39 return dest->is_ssa;
40 }
41
42 ASSERTED static inline bool
instr_each_src_and_dest_is_ssa(const nir_instr * instr)43 instr_each_src_and_dest_is_ssa(const nir_instr *instr)
44 {
45 if (!nir_foreach_dest((nir_instr *)instr, dest_is_ssa, NULL) ||
46 !nir_foreach_src((nir_instr *)instr, src_is_ssa, NULL))
47 return false;
48
49 return true;
50 }
51
52 /* This function determines if uses of an instruction can safely be rewritten
53 * to use another identical instruction instead. Note that this function must
54 * be kept in sync with hash_instr() and nir_instrs_equal() -- only
55 * instructions that pass this test will be handed on to those functions, and
56 * conversely they must handle everything that this function returns true for.
57 */
58 static bool
instr_can_rewrite(const nir_instr * instr)59 instr_can_rewrite(const nir_instr *instr)
60 {
61 /* We only handle SSA. */
62 assert(instr_each_src_and_dest_is_ssa(instr));
63
64 switch (instr->type) {
65 case nir_instr_type_alu:
66 case nir_instr_type_deref:
67 case nir_instr_type_tex:
68 case nir_instr_type_load_const:
69 case nir_instr_type_phi:
70 return true;
71 case nir_instr_type_intrinsic:
72 return nir_intrinsic_can_reorder(nir_instr_as_intrinsic(instr));
73 case nir_instr_type_call:
74 case nir_instr_type_jump:
75 case nir_instr_type_ssa_undef:
76 return false;
77 case nir_instr_type_parallel_copy:
78 default:
79 unreachable("Invalid instruction type");
80 }
81
82 return false;
83 }
84
85
86 #define HASH(hash, data) XXH32(&(data), sizeof(data), hash)
87
88 static uint32_t
hash_src(uint32_t hash,const nir_src * src)89 hash_src(uint32_t hash, const nir_src *src)
90 {
91 assert(src->is_ssa);
92 hash = HASH(hash, src->ssa);
93 return hash;
94 }
95
96 static uint32_t
hash_alu_src(uint32_t hash,const nir_alu_src * src,unsigned num_components)97 hash_alu_src(uint32_t hash, const nir_alu_src *src, unsigned num_components)
98 {
99 hash = HASH(hash, src->abs);
100 hash = HASH(hash, src->negate);
101
102 for (unsigned i = 0; i < num_components; i++)
103 hash = HASH(hash, src->swizzle[i]);
104
105 hash = hash_src(hash, &src->src);
106 return hash;
107 }
108
109 static uint32_t
hash_alu(uint32_t hash,const nir_alu_instr * instr)110 hash_alu(uint32_t hash, const nir_alu_instr *instr)
111 {
112 hash = HASH(hash, instr->op);
113
114 /* We explicitly don't hash instr->exact. */
115 uint8_t flags = instr->no_signed_wrap |
116 instr->no_unsigned_wrap << 1;
117 hash = HASH(hash, flags);
118
119 hash = HASH(hash, instr->dest.dest.ssa.num_components);
120 hash = HASH(hash, instr->dest.dest.ssa.bit_size);
121
122 if (nir_op_infos[instr->op].algebraic_properties & NIR_OP_IS_2SRC_COMMUTATIVE) {
123 assert(nir_op_infos[instr->op].num_inputs >= 2);
124
125 uint32_t hash0 = hash_alu_src(hash, &instr->src[0],
126 nir_ssa_alu_instr_src_components(instr, 0));
127 uint32_t hash1 = hash_alu_src(hash, &instr->src[1],
128 nir_ssa_alu_instr_src_components(instr, 1));
129 /* For commutative operations, we need some commutative way of
130 * combining the hashes. One option would be to XOR them but that
131 * means that anything with two identical sources will hash to 0 and
132 * that's common enough we probably don't want the guaranteed
133 * collision. Either addition or multiplication will also work.
134 */
135 hash = hash0 * hash1;
136
137 for (unsigned i = 2; i < nir_op_infos[instr->op].num_inputs; i++) {
138 hash = hash_alu_src(hash, &instr->src[i],
139 nir_ssa_alu_instr_src_components(instr, i));
140 }
141 } else {
142 for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++) {
143 hash = hash_alu_src(hash, &instr->src[i],
144 nir_ssa_alu_instr_src_components(instr, i));
145 }
146 }
147
148 return hash;
149 }
150
151 static uint32_t
hash_deref(uint32_t hash,const nir_deref_instr * instr)152 hash_deref(uint32_t hash, const nir_deref_instr *instr)
153 {
154 hash = HASH(hash, instr->deref_type);
155 hash = HASH(hash, instr->modes);
156 hash = HASH(hash, instr->type);
157
158 if (instr->deref_type == nir_deref_type_var)
159 return HASH(hash, instr->var);
160
161 hash = hash_src(hash, &instr->parent);
162
163 switch (instr->deref_type) {
164 case nir_deref_type_struct:
165 hash = HASH(hash, instr->strct.index);
166 break;
167
168 case nir_deref_type_array:
169 case nir_deref_type_ptr_as_array:
170 hash = hash_src(hash, &instr->arr.index);
171 break;
172
173 case nir_deref_type_cast:
174 hash = HASH(hash, instr->cast.ptr_stride);
175 hash = HASH(hash, instr->cast.align_mul);
176 hash = HASH(hash, instr->cast.align_offset);
177 break;
178
179 case nir_deref_type_var:
180 case nir_deref_type_array_wildcard:
181 /* Nothing to do */
182 break;
183
184 default:
185 unreachable("Invalid instruction deref type");
186 }
187
188 return hash;
189 }
190
191 static uint32_t
hash_load_const(uint32_t hash,const nir_load_const_instr * instr)192 hash_load_const(uint32_t hash, const nir_load_const_instr *instr)
193 {
194 hash = HASH(hash, instr->def.num_components);
195
196 if (instr->def.bit_size == 1) {
197 for (unsigned i = 0; i < instr->def.num_components; i++) {
198 uint8_t b = instr->value[i].b;
199 hash = HASH(hash, b);
200 }
201 } else {
202 unsigned size = instr->def.num_components * sizeof(*instr->value);
203 hash = XXH32(instr->value, size, hash);
204 }
205
206 return hash;
207 }
208
209 static int
cmp_phi_src(const void * data1,const void * data2)210 cmp_phi_src(const void *data1, const void *data2)
211 {
212 nir_phi_src *src1 = *(nir_phi_src **)data1;
213 nir_phi_src *src2 = *(nir_phi_src **)data2;
214 return src1->pred - src2->pred;
215 }
216
217 static uint32_t
hash_phi(uint32_t hash,const nir_phi_instr * instr)218 hash_phi(uint32_t hash, const nir_phi_instr *instr)
219 {
220 hash = HASH(hash, instr->instr.block);
221
222 /* sort sources by predecessor, since the order shouldn't matter */
223 unsigned num_preds = instr->instr.block->predecessors->entries;
224 NIR_VLA(nir_phi_src *, srcs, num_preds);
225 unsigned i = 0;
226 nir_foreach_phi_src(src, instr) {
227 srcs[i++] = src;
228 }
229
230 qsort(srcs, num_preds, sizeof(nir_phi_src *), cmp_phi_src);
231
232 for (i = 0; i < num_preds; i++) {
233 hash = hash_src(hash, &srcs[i]->src);
234 hash = HASH(hash, srcs[i]->pred);
235 }
236
237 return hash;
238 }
239
240 static uint32_t
hash_intrinsic(uint32_t hash,const nir_intrinsic_instr * instr)241 hash_intrinsic(uint32_t hash, const nir_intrinsic_instr *instr)
242 {
243 const nir_intrinsic_info *info = &nir_intrinsic_infos[instr->intrinsic];
244 hash = HASH(hash, instr->intrinsic);
245
246 if (info->has_dest) {
247 hash = HASH(hash, instr->dest.ssa.num_components);
248 hash = HASH(hash, instr->dest.ssa.bit_size);
249 }
250
251 hash = XXH32(instr->const_index, info->num_indices * sizeof(instr->const_index[0]), hash);
252
253 for (unsigned i = 0; i < nir_intrinsic_infos[instr->intrinsic].num_srcs; i++)
254 hash = hash_src(hash, &instr->src[i]);
255
256 return hash;
257 }
258
259 static uint32_t
hash_tex(uint32_t hash,const nir_tex_instr * instr)260 hash_tex(uint32_t hash, const nir_tex_instr *instr)
261 {
262 hash = HASH(hash, instr->op);
263 hash = HASH(hash, instr->num_srcs);
264
265 for (unsigned i = 0; i < instr->num_srcs; i++) {
266 hash = HASH(hash, instr->src[i].src_type);
267 hash = hash_src(hash, &instr->src[i].src);
268 }
269
270 hash = HASH(hash, instr->coord_components);
271 hash = HASH(hash, instr->sampler_dim);
272 hash = HASH(hash, instr->is_array);
273 hash = HASH(hash, instr->is_shadow);
274 hash = HASH(hash, instr->is_new_style_shadow);
275 unsigned component = instr->component;
276 hash = HASH(hash, component);
277 for (unsigned i = 0; i < 4; ++i)
278 for (unsigned j = 0; j < 2; ++j)
279 hash = HASH(hash, instr->tg4_offsets[i][j]);
280 hash = HASH(hash, instr->texture_index);
281 hash = HASH(hash, instr->sampler_index);
282 hash = HASH(hash, instr->texture_non_uniform);
283 hash = HASH(hash, instr->sampler_non_uniform);
284
285 return hash;
286 }
287
288 /* Computes a hash of an instruction for use in a hash table. Note that this
289 * will only work for instructions where instr_can_rewrite() returns true, and
290 * it should return identical hashes for two instructions that are the same
291 * according nir_instrs_equal().
292 */
293
294 static uint32_t
hash_instr(const void * data)295 hash_instr(const void *data)
296 {
297 const nir_instr *instr = data;
298 uint32_t hash = 0;
299
300 switch (instr->type) {
301 case nir_instr_type_alu:
302 hash = hash_alu(hash, nir_instr_as_alu(instr));
303 break;
304 case nir_instr_type_deref:
305 hash = hash_deref(hash, nir_instr_as_deref(instr));
306 break;
307 case nir_instr_type_load_const:
308 hash = hash_load_const(hash, nir_instr_as_load_const(instr));
309 break;
310 case nir_instr_type_phi:
311 hash = hash_phi(hash, nir_instr_as_phi(instr));
312 break;
313 case nir_instr_type_intrinsic:
314 hash = hash_intrinsic(hash, nir_instr_as_intrinsic(instr));
315 break;
316 case nir_instr_type_tex:
317 hash = hash_tex(hash, nir_instr_as_tex(instr));
318 break;
319 default:
320 unreachable("Invalid instruction type");
321 }
322
323 return hash;
324 }
325
326 bool
nir_srcs_equal(nir_src src1,nir_src src2)327 nir_srcs_equal(nir_src src1, nir_src src2)
328 {
329 if (src1.is_ssa) {
330 if (src2.is_ssa) {
331 return src1.ssa == src2.ssa;
332 } else {
333 return false;
334 }
335 } else {
336 if (src2.is_ssa) {
337 return false;
338 } else {
339 if ((src1.reg.indirect == NULL) != (src2.reg.indirect == NULL))
340 return false;
341
342 if (src1.reg.indirect) {
343 if (!nir_srcs_equal(*src1.reg.indirect, *src2.reg.indirect))
344 return false;
345 }
346
347 return src1.reg.reg == src2.reg.reg &&
348 src1.reg.base_offset == src2.reg.base_offset;
349 }
350 }
351 }
352
353 /**
354 * If the \p s is an SSA value that was generated by a negation instruction,
355 * that instruction is returned as a \c nir_alu_instr. Otherwise \c NULL is
356 * returned.
357 */
358 static nir_alu_instr *
get_neg_instr(nir_src s)359 get_neg_instr(nir_src s)
360 {
361 nir_alu_instr *alu = nir_src_as_alu_instr(s);
362
363 return alu != NULL && (alu->op == nir_op_fneg || alu->op == nir_op_ineg)
364 ? alu : NULL;
365 }
366
367 bool
nir_const_value_negative_equal(nir_const_value c1,nir_const_value c2,nir_alu_type full_type)368 nir_const_value_negative_equal(nir_const_value c1,
369 nir_const_value c2,
370 nir_alu_type full_type)
371 {
372 assert(nir_alu_type_get_base_type(full_type) != nir_type_invalid);
373 assert(nir_alu_type_get_type_size(full_type) != 0);
374
375 switch (full_type) {
376 case nir_type_float16:
377 return _mesa_half_to_float(c1.u16) == -_mesa_half_to_float(c2.u16);
378
379 case nir_type_float32:
380 return c1.f32 == -c2.f32;
381
382 case nir_type_float64:
383 return c1.f64 == -c2.f64;
384
385 case nir_type_int8:
386 case nir_type_uint8:
387 return c1.i8 == -c2.i8;
388
389 case nir_type_int16:
390 case nir_type_uint16:
391 return c1.i16 == -c2.i16;
392
393 case nir_type_int32:
394 case nir_type_uint32:
395 return c1.i32 == -c2.i32;
396
397 case nir_type_int64:
398 case nir_type_uint64:
399 return c1.i64 == -c2.i64;
400
401 default:
402 break;
403 }
404
405 return false;
406 }
407
408 /**
409 * Shallow compare of ALU srcs to determine if one is the negation of the other
410 *
411 * This function detects cases where \p alu1 is a constant and \p alu2 is a
412 * constant that is its negation. It will also detect cases where \p alu2 is
413 * an SSA value that is a \c nir_op_fneg applied to \p alu1 (and vice versa).
414 *
415 * This function does not detect the general case when \p alu1 and \p alu2 are
416 * SSA values that are the negations of each other (e.g., \p alu1 represents
417 * (a * b) and \p alu2 represents (-a * b)).
418 *
419 * \warning
420 * It is the responsibility of the caller to ensure that the component counts,
421 * write masks, and base types of the sources being compared are compatible.
422 */
423 bool
nir_alu_srcs_negative_equal(const nir_alu_instr * alu1,const nir_alu_instr * alu2,unsigned src1,unsigned src2)424 nir_alu_srcs_negative_equal(const nir_alu_instr *alu1,
425 const nir_alu_instr *alu2,
426 unsigned src1, unsigned src2)
427 {
428 #ifndef NDEBUG
429 for (unsigned i = 0; i < NIR_MAX_VEC_COMPONENTS; i++) {
430 assert(nir_alu_instr_channel_used(alu1, src1, i) ==
431 nir_alu_instr_channel_used(alu2, src2, i));
432 }
433
434 if (nir_op_infos[alu1->op].input_types[src1] == nir_type_float) {
435 assert(nir_op_infos[alu1->op].input_types[src1] ==
436 nir_op_infos[alu2->op].input_types[src2]);
437 } else {
438 assert(nir_op_infos[alu1->op].input_types[src1] == nir_type_int);
439 assert(nir_op_infos[alu2->op].input_types[src2] == nir_type_int);
440 }
441 #endif
442
443 if (alu1->src[src1].abs != alu2->src[src2].abs)
444 return false;
445
446 bool parity = alu1->src[src1].negate != alu2->src[src2].negate;
447
448 /* Handling load_const instructions is tricky. */
449
450 const nir_const_value *const const1 =
451 nir_src_as_const_value(alu1->src[src1].src);
452
453 if (const1 != NULL) {
454 /* Assume that constant folding will eliminate source mods and unary
455 * ops.
456 */
457 if (parity)
458 return false;
459
460 const nir_const_value *const const2 =
461 nir_src_as_const_value(alu2->src[src2].src);
462
463 if (const2 == NULL)
464 return false;
465
466 if (nir_src_bit_size(alu1->src[src1].src) !=
467 nir_src_bit_size(alu2->src[src2].src))
468 return false;
469
470 const nir_alu_type full_type = nir_op_infos[alu1->op].input_types[src1] |
471 nir_src_bit_size(alu1->src[src1].src);
472 for (unsigned i = 0; i < NIR_MAX_VEC_COMPONENTS; i++) {
473 if (nir_alu_instr_channel_used(alu1, src1, i) &&
474 !nir_const_value_negative_equal(const1[alu1->src[src1].swizzle[i]],
475 const2[alu2->src[src2].swizzle[i]],
476 full_type))
477 return false;
478 }
479
480 return true;
481 }
482
483 uint8_t alu1_swizzle[NIR_MAX_VEC_COMPONENTS] = {0};
484 nir_src alu1_actual_src;
485 nir_alu_instr *neg1 = get_neg_instr(alu1->src[src1].src);
486
487 if (neg1) {
488 parity = !parity;
489 alu1_actual_src = neg1->src[0].src;
490
491 for (unsigned i = 0; i < nir_ssa_alu_instr_src_components(neg1, 0); i++)
492 alu1_swizzle[i] = neg1->src[0].swizzle[i];
493 } else {
494 alu1_actual_src = alu1->src[src1].src;
495
496 for (unsigned i = 0; i < nir_ssa_alu_instr_src_components(alu1, src1); i++)
497 alu1_swizzle[i] = i;
498 }
499
500 uint8_t alu2_swizzle[NIR_MAX_VEC_COMPONENTS] = {0};
501 nir_src alu2_actual_src;
502 nir_alu_instr *neg2 = get_neg_instr(alu2->src[src2].src);
503
504 if (neg2) {
505 parity = !parity;
506 alu2_actual_src = neg2->src[0].src;
507
508 for (unsigned i = 0; i < nir_ssa_alu_instr_src_components(neg2, 0); i++)
509 alu2_swizzle[i] = neg2->src[0].swizzle[i];
510 } else {
511 alu2_actual_src = alu2->src[src2].src;
512
513 for (unsigned i = 0; i < nir_ssa_alu_instr_src_components(alu2, src2); i++)
514 alu2_swizzle[i] = i;
515 }
516
517 for (unsigned i = 0; i < nir_ssa_alu_instr_src_components(alu1, src1); i++) {
518 if (alu1_swizzle[alu1->src[src1].swizzle[i]] !=
519 alu2_swizzle[alu2->src[src2].swizzle[i]])
520 return false;
521 }
522
523 return parity && nir_srcs_equal(alu1_actual_src, alu2_actual_src);
524 }
525
526 bool
nir_alu_srcs_equal(const nir_alu_instr * alu1,const nir_alu_instr * alu2,unsigned src1,unsigned src2)527 nir_alu_srcs_equal(const nir_alu_instr *alu1, const nir_alu_instr *alu2,
528 unsigned src1, unsigned src2)
529 {
530 if (alu1->src[src1].abs != alu2->src[src2].abs ||
531 alu1->src[src1].negate != alu2->src[src2].negate)
532 return false;
533
534 for (unsigned i = 0; i < nir_ssa_alu_instr_src_components(alu1, src1); i++) {
535 if (alu1->src[src1].swizzle[i] != alu2->src[src2].swizzle[i])
536 return false;
537 }
538
539 return nir_srcs_equal(alu1->src[src1].src, alu2->src[src2].src);
540 }
541
542 /* Returns "true" if two instructions are equal. Note that this will only
543 * work for the subset of instructions defined by instr_can_rewrite(). Also,
544 * it should only return "true" for instructions that hash_instr() will return
545 * the same hash for (ignoring collisions, of course).
546 */
547
548 bool
nir_instrs_equal(const nir_instr * instr1,const nir_instr * instr2)549 nir_instrs_equal(const nir_instr *instr1, const nir_instr *instr2)
550 {
551 assert(instr_can_rewrite(instr1) && instr_can_rewrite(instr2));
552
553 if (instr1->type != instr2->type)
554 return false;
555
556 switch (instr1->type) {
557 case nir_instr_type_alu: {
558 nir_alu_instr *alu1 = nir_instr_as_alu(instr1);
559 nir_alu_instr *alu2 = nir_instr_as_alu(instr2);
560
561 if (alu1->op != alu2->op)
562 return false;
563
564 /* We explicitly don't compare instr->exact. */
565
566 if (alu1->no_signed_wrap != alu2->no_signed_wrap)
567 return false;
568
569 if (alu1->no_unsigned_wrap != alu2->no_unsigned_wrap)
570 return false;
571
572 /* TODO: We can probably acutally do something more inteligent such
573 * as allowing different numbers and taking a maximum or something
574 * here */
575 if (alu1->dest.dest.ssa.num_components != alu2->dest.dest.ssa.num_components)
576 return false;
577
578 if (alu1->dest.dest.ssa.bit_size != alu2->dest.dest.ssa.bit_size)
579 return false;
580
581 if (nir_op_infos[alu1->op].algebraic_properties & NIR_OP_IS_2SRC_COMMUTATIVE) {
582 if ((!nir_alu_srcs_equal(alu1, alu2, 0, 0) ||
583 !nir_alu_srcs_equal(alu1, alu2, 1, 1)) &&
584 (!nir_alu_srcs_equal(alu1, alu2, 0, 1) ||
585 !nir_alu_srcs_equal(alu1, alu2, 1, 0)))
586 return false;
587
588 for (unsigned i = 2; i < nir_op_infos[alu1->op].num_inputs; i++) {
589 if (!nir_alu_srcs_equal(alu1, alu2, i, i))
590 return false;
591 }
592 } else {
593 for (unsigned i = 0; i < nir_op_infos[alu1->op].num_inputs; i++) {
594 if (!nir_alu_srcs_equal(alu1, alu2, i, i))
595 return false;
596 }
597 }
598 return true;
599 }
600 case nir_instr_type_deref: {
601 nir_deref_instr *deref1 = nir_instr_as_deref(instr1);
602 nir_deref_instr *deref2 = nir_instr_as_deref(instr2);
603
604 if (deref1->deref_type != deref2->deref_type ||
605 deref1->modes != deref2->modes ||
606 deref1->type != deref2->type)
607 return false;
608
609 if (deref1->deref_type == nir_deref_type_var)
610 return deref1->var == deref2->var;
611
612 if (!nir_srcs_equal(deref1->parent, deref2->parent))
613 return false;
614
615 switch (deref1->deref_type) {
616 case nir_deref_type_struct:
617 if (deref1->strct.index != deref2->strct.index)
618 return false;
619 break;
620
621 case nir_deref_type_array:
622 case nir_deref_type_ptr_as_array:
623 if (!nir_srcs_equal(deref1->arr.index, deref2->arr.index))
624 return false;
625 break;
626
627 case nir_deref_type_cast:
628 if (deref1->cast.ptr_stride != deref2->cast.ptr_stride ||
629 deref1->cast.align_mul != deref2->cast.align_mul ||
630 deref1->cast.align_offset != deref2->cast.align_offset)
631 return false;
632 break;
633
634 case nir_deref_type_var:
635 case nir_deref_type_array_wildcard:
636 /* Nothing to do */
637 break;
638
639 default:
640 unreachable("Invalid instruction deref type");
641 }
642 return true;
643 }
644 case nir_instr_type_tex: {
645 nir_tex_instr *tex1 = nir_instr_as_tex(instr1);
646 nir_tex_instr *tex2 = nir_instr_as_tex(instr2);
647
648 if (tex1->op != tex2->op)
649 return false;
650
651 if (tex1->num_srcs != tex2->num_srcs)
652 return false;
653 for (unsigned i = 0; i < tex1->num_srcs; i++) {
654 if (tex1->src[i].src_type != tex2->src[i].src_type ||
655 !nir_srcs_equal(tex1->src[i].src, tex2->src[i].src)) {
656 return false;
657 }
658 }
659
660 if (tex1->coord_components != tex2->coord_components ||
661 tex1->sampler_dim != tex2->sampler_dim ||
662 tex1->is_array != tex2->is_array ||
663 tex1->is_shadow != tex2->is_shadow ||
664 tex1->is_new_style_shadow != tex2->is_new_style_shadow ||
665 tex1->component != tex2->component ||
666 tex1->texture_index != tex2->texture_index ||
667 tex1->sampler_index != tex2->sampler_index) {
668 return false;
669 }
670
671 if (memcmp(tex1->tg4_offsets, tex2->tg4_offsets,
672 sizeof(tex1->tg4_offsets)))
673 return false;
674
675 return true;
676 }
677 case nir_instr_type_load_const: {
678 nir_load_const_instr *load1 = nir_instr_as_load_const(instr1);
679 nir_load_const_instr *load2 = nir_instr_as_load_const(instr2);
680
681 if (load1->def.num_components != load2->def.num_components)
682 return false;
683
684 if (load1->def.bit_size != load2->def.bit_size)
685 return false;
686
687 if (load1->def.bit_size == 1) {
688 for (unsigned i = 0; i < load1->def.num_components; ++i) {
689 if (load1->value[i].b != load2->value[i].b)
690 return false;
691 }
692 } else {
693 unsigned size = load1->def.num_components * sizeof(*load1->value);
694 if (memcmp(load1->value, load2->value, size) != 0)
695 return false;
696 }
697 return true;
698 }
699 case nir_instr_type_phi: {
700 nir_phi_instr *phi1 = nir_instr_as_phi(instr1);
701 nir_phi_instr *phi2 = nir_instr_as_phi(instr2);
702
703 if (phi1->instr.block != phi2->instr.block)
704 return false;
705
706 nir_foreach_phi_src(src1, phi1) {
707 nir_foreach_phi_src(src2, phi2) {
708 if (src1->pred == src2->pred) {
709 if (!nir_srcs_equal(src1->src, src2->src))
710 return false;
711
712 break;
713 }
714 }
715 }
716
717 return true;
718 }
719 case nir_instr_type_intrinsic: {
720 nir_intrinsic_instr *intrinsic1 = nir_instr_as_intrinsic(instr1);
721 nir_intrinsic_instr *intrinsic2 = nir_instr_as_intrinsic(instr2);
722 const nir_intrinsic_info *info =
723 &nir_intrinsic_infos[intrinsic1->intrinsic];
724
725 if (intrinsic1->intrinsic != intrinsic2->intrinsic ||
726 intrinsic1->num_components != intrinsic2->num_components)
727 return false;
728
729 if (info->has_dest && intrinsic1->dest.ssa.num_components !=
730 intrinsic2->dest.ssa.num_components)
731 return false;
732
733 if (info->has_dest && intrinsic1->dest.ssa.bit_size !=
734 intrinsic2->dest.ssa.bit_size)
735 return false;
736
737 for (unsigned i = 0; i < info->num_srcs; i++) {
738 if (!nir_srcs_equal(intrinsic1->src[i], intrinsic2->src[i]))
739 return false;
740 }
741
742 for (unsigned i = 0; i < info->num_indices; i++) {
743 if (intrinsic1->const_index[i] != intrinsic2->const_index[i])
744 return false;
745 }
746
747 return true;
748 }
749 case nir_instr_type_call:
750 case nir_instr_type_jump:
751 case nir_instr_type_ssa_undef:
752 case nir_instr_type_parallel_copy:
753 default:
754 unreachable("Invalid instruction type");
755 }
756
757 unreachable("All cases in the above switch should return");
758 }
759
760 static nir_ssa_def *
nir_instr_get_dest_ssa_def(nir_instr * instr)761 nir_instr_get_dest_ssa_def(nir_instr *instr)
762 {
763 switch (instr->type) {
764 case nir_instr_type_alu:
765 assert(nir_instr_as_alu(instr)->dest.dest.is_ssa);
766 return &nir_instr_as_alu(instr)->dest.dest.ssa;
767 case nir_instr_type_deref:
768 assert(nir_instr_as_deref(instr)->dest.is_ssa);
769 return &nir_instr_as_deref(instr)->dest.ssa;
770 case nir_instr_type_load_const:
771 return &nir_instr_as_load_const(instr)->def;
772 case nir_instr_type_phi:
773 assert(nir_instr_as_phi(instr)->dest.is_ssa);
774 return &nir_instr_as_phi(instr)->dest.ssa;
775 case nir_instr_type_intrinsic:
776 assert(nir_instr_as_intrinsic(instr)->dest.is_ssa);
777 return &nir_instr_as_intrinsic(instr)->dest.ssa;
778 case nir_instr_type_tex:
779 assert(nir_instr_as_tex(instr)->dest.is_ssa);
780 return &nir_instr_as_tex(instr)->dest.ssa;
781 default:
782 unreachable("We never ask for any of these");
783 }
784 }
785
786 static bool
cmp_func(const void * data1,const void * data2)787 cmp_func(const void *data1, const void *data2)
788 {
789 return nir_instrs_equal(data1, data2);
790 }
791
792 struct set *
nir_instr_set_create(void * mem_ctx)793 nir_instr_set_create(void *mem_ctx)
794 {
795 return _mesa_set_create(mem_ctx, hash_instr, cmp_func);
796 }
797
798 void
nir_instr_set_destroy(struct set * instr_set)799 nir_instr_set_destroy(struct set *instr_set)
800 {
801 _mesa_set_destroy(instr_set, NULL);
802 }
803
804 bool
nir_instr_set_add_or_rewrite(struct set * instr_set,nir_instr * instr,bool (* cond_function)(const nir_instr * a,const nir_instr * b))805 nir_instr_set_add_or_rewrite(struct set *instr_set, nir_instr *instr,
806 bool (*cond_function) (const nir_instr *a,
807 const nir_instr *b))
808 {
809 if (!instr_can_rewrite(instr))
810 return false;
811
812 struct set_entry *e = _mesa_set_search_or_add(instr_set, instr, NULL);
813 nir_instr *match = (nir_instr *) e->key;
814 if (match == instr)
815 return false;
816
817 if (!cond_function || cond_function(match, instr)) {
818 /* rewrite instruction if condition is matched */
819 nir_ssa_def *def = nir_instr_get_dest_ssa_def(instr);
820 nir_ssa_def *new_def = nir_instr_get_dest_ssa_def(match);
821
822 /* It's safe to replace an exact instruction with an inexact one as
823 * long as we make it exact. If we got here, the two instructions are
824 * exactly identical in every other way so, once we've set the exact
825 * bit, they are the same.
826 */
827 if (instr->type == nir_instr_type_alu && nir_instr_as_alu(instr)->exact)
828 nir_instr_as_alu(match)->exact = true;
829
830 nir_ssa_def_rewrite_uses(def, new_def);
831
832 nir_instr_remove(instr);
833
834 return true;
835 } else {
836 /* otherwise, replace hashed instruction */
837 e->key = instr;
838 return false;
839 }
840 }
841
842 void
nir_instr_set_remove(struct set * instr_set,nir_instr * instr)843 nir_instr_set_remove(struct set *instr_set, nir_instr *instr)
844 {
845 if (!instr_can_rewrite(instr))
846 return;
847
848 struct set_entry *entry = _mesa_set_search(instr_set, instr);
849 if (entry)
850 _mesa_set_remove(instr_set, entry);
851 }
852
853