1 /*
2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4 *
5 * This file is released under the GPL.
6 */
7
8 #include "dm-core.h"
9 #include "dm-rq.h"
10 #include "dm-uevent.h"
11
12 #include <linux/init.h>
13 #include <linux/module.h>
14 #include <linux/mutex.h>
15 #include <linux/sched/mm.h>
16 #include <linux/sched/signal.h>
17 #include <linux/blkpg.h>
18 #include <linux/bio.h>
19 #include <linux/mempool.h>
20 #include <linux/dax.h>
21 #include <linux/slab.h>
22 #include <linux/idr.h>
23 #include <linux/uio.h>
24 #include <linux/hdreg.h>
25 #include <linux/delay.h>
26 #include <linux/wait.h>
27 #include <linux/pr.h>
28 #include <linux/refcount.h>
29 #include <linux/part_stat.h>
30 #include <linux/blk-crypto.h>
31
32 #define DM_MSG_PREFIX "core"
33
34 /*
35 * Cookies are numeric values sent with CHANGE and REMOVE
36 * uevents while resuming, removing or renaming the device.
37 */
38 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
39 #define DM_COOKIE_LENGTH 24
40
41 static const char *_name = DM_NAME;
42
43 static unsigned int major = 0;
44 static unsigned int _major = 0;
45
46 static DEFINE_IDR(_minor_idr);
47
48 static DEFINE_SPINLOCK(_minor_lock);
49
50 static void do_deferred_remove(struct work_struct *w);
51
52 static DECLARE_WORK(deferred_remove_work, do_deferred_remove);
53
54 static struct workqueue_struct *deferred_remove_workqueue;
55
56 atomic_t dm_global_event_nr = ATOMIC_INIT(0);
57 DECLARE_WAIT_QUEUE_HEAD(dm_global_eventq);
58
dm_issue_global_event(void)59 void dm_issue_global_event(void)
60 {
61 atomic_inc(&dm_global_event_nr);
62 wake_up(&dm_global_eventq);
63 }
64
65 /*
66 * One of these is allocated (on-stack) per original bio.
67 */
68 struct clone_info {
69 struct dm_table *map;
70 struct bio *bio;
71 struct dm_io *io;
72 sector_t sector;
73 unsigned sector_count;
74 };
75
76 /*
77 * One of these is allocated per clone bio.
78 */
79 #define DM_TIO_MAGIC 7282014
80 struct dm_target_io {
81 unsigned magic;
82 struct dm_io *io;
83 struct dm_target *ti;
84 unsigned target_bio_nr;
85 unsigned *len_ptr;
86 bool inside_dm_io;
87 struct bio clone;
88 };
89
90 /*
91 * One of these is allocated per original bio.
92 * It contains the first clone used for that original.
93 */
94 #define DM_IO_MAGIC 5191977
95 struct dm_io {
96 unsigned magic;
97 struct mapped_device *md;
98 blk_status_t status;
99 atomic_t io_count;
100 struct bio *orig_bio;
101 unsigned long start_time;
102 spinlock_t endio_lock;
103 struct dm_stats_aux stats_aux;
104 /* last member of dm_target_io is 'struct bio' */
105 struct dm_target_io tio;
106 };
107
dm_per_bio_data(struct bio * bio,size_t data_size)108 void *dm_per_bio_data(struct bio *bio, size_t data_size)
109 {
110 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
111 if (!tio->inside_dm_io)
112 return (char *)bio - offsetof(struct dm_target_io, clone) - data_size;
113 return (char *)bio - offsetof(struct dm_target_io, clone) - offsetof(struct dm_io, tio) - data_size;
114 }
115 EXPORT_SYMBOL_GPL(dm_per_bio_data);
116
dm_bio_from_per_bio_data(void * data,size_t data_size)117 struct bio *dm_bio_from_per_bio_data(void *data, size_t data_size)
118 {
119 struct dm_io *io = (struct dm_io *)((char *)data + data_size);
120 if (io->magic == DM_IO_MAGIC)
121 return (struct bio *)((char *)io + offsetof(struct dm_io, tio) + offsetof(struct dm_target_io, clone));
122 BUG_ON(io->magic != DM_TIO_MAGIC);
123 return (struct bio *)((char *)io + offsetof(struct dm_target_io, clone));
124 }
125 EXPORT_SYMBOL_GPL(dm_bio_from_per_bio_data);
126
dm_bio_get_target_bio_nr(const struct bio * bio)127 unsigned dm_bio_get_target_bio_nr(const struct bio *bio)
128 {
129 return container_of(bio, struct dm_target_io, clone)->target_bio_nr;
130 }
131 EXPORT_SYMBOL_GPL(dm_bio_get_target_bio_nr);
132
133 #define MINOR_ALLOCED ((void *)-1)
134
135 /*
136 * Bits for the md->flags field.
137 */
138 #define DMF_BLOCK_IO_FOR_SUSPEND 0
139 #define DMF_SUSPENDED 1
140 #define DMF_FROZEN 2
141 #define DMF_FREEING 3
142 #define DMF_DELETING 4
143 #define DMF_NOFLUSH_SUSPENDING 5
144 #define DMF_DEFERRED_REMOVE 6
145 #define DMF_SUSPENDED_INTERNALLY 7
146 #define DMF_POST_SUSPENDING 8
147
148 #define DM_NUMA_NODE NUMA_NO_NODE
149 static int dm_numa_node = DM_NUMA_NODE;
150
151 #define DEFAULT_SWAP_BIOS (8 * 1048576 / PAGE_SIZE)
152 static int swap_bios = DEFAULT_SWAP_BIOS;
get_swap_bios(void)153 static int get_swap_bios(void)
154 {
155 int latch = READ_ONCE(swap_bios);
156 if (unlikely(latch <= 0))
157 latch = DEFAULT_SWAP_BIOS;
158 return latch;
159 }
160
161 /*
162 * For mempools pre-allocation at the table loading time.
163 */
164 struct dm_md_mempools {
165 struct bio_set bs;
166 struct bio_set io_bs;
167 };
168
169 struct table_device {
170 struct list_head list;
171 refcount_t count;
172 struct dm_dev dm_dev;
173 };
174
175 /*
176 * Bio-based DM's mempools' reserved IOs set by the user.
177 */
178 #define RESERVED_BIO_BASED_IOS 16
179 static unsigned reserved_bio_based_ios = RESERVED_BIO_BASED_IOS;
180
__dm_get_module_param_int(int * module_param,int min,int max)181 static int __dm_get_module_param_int(int *module_param, int min, int max)
182 {
183 int param = READ_ONCE(*module_param);
184 int modified_param = 0;
185 bool modified = true;
186
187 if (param < min)
188 modified_param = min;
189 else if (param > max)
190 modified_param = max;
191 else
192 modified = false;
193
194 if (modified) {
195 (void)cmpxchg(module_param, param, modified_param);
196 param = modified_param;
197 }
198
199 return param;
200 }
201
__dm_get_module_param(unsigned * module_param,unsigned def,unsigned max)202 unsigned __dm_get_module_param(unsigned *module_param,
203 unsigned def, unsigned max)
204 {
205 unsigned param = READ_ONCE(*module_param);
206 unsigned modified_param = 0;
207
208 if (!param)
209 modified_param = def;
210 else if (param > max)
211 modified_param = max;
212
213 if (modified_param) {
214 (void)cmpxchg(module_param, param, modified_param);
215 param = modified_param;
216 }
217
218 return param;
219 }
220
dm_get_reserved_bio_based_ios(void)221 unsigned dm_get_reserved_bio_based_ios(void)
222 {
223 return __dm_get_module_param(&reserved_bio_based_ios,
224 RESERVED_BIO_BASED_IOS, DM_RESERVED_MAX_IOS);
225 }
226 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios);
227
dm_get_numa_node(void)228 static unsigned dm_get_numa_node(void)
229 {
230 return __dm_get_module_param_int(&dm_numa_node,
231 DM_NUMA_NODE, num_online_nodes() - 1);
232 }
233
local_init(void)234 static int __init local_init(void)
235 {
236 int r;
237
238 r = dm_uevent_init();
239 if (r)
240 return r;
241
242 deferred_remove_workqueue = alloc_workqueue("kdmremove", WQ_UNBOUND, 1);
243 if (!deferred_remove_workqueue) {
244 r = -ENOMEM;
245 goto out_uevent_exit;
246 }
247
248 _major = major;
249 r = register_blkdev(_major, _name);
250 if (r < 0)
251 goto out_free_workqueue;
252
253 if (!_major)
254 _major = r;
255
256 return 0;
257
258 out_free_workqueue:
259 destroy_workqueue(deferred_remove_workqueue);
260 out_uevent_exit:
261 dm_uevent_exit();
262
263 return r;
264 }
265
local_exit(void)266 static void local_exit(void)
267 {
268 flush_scheduled_work();
269 destroy_workqueue(deferred_remove_workqueue);
270
271 unregister_blkdev(_major, _name);
272 dm_uevent_exit();
273
274 _major = 0;
275
276 DMINFO("cleaned up");
277 }
278
279 static int (*_inits[])(void) __initdata = {
280 local_init,
281 dm_target_init,
282 dm_linear_init,
283 dm_stripe_init,
284 dm_io_init,
285 dm_kcopyd_init,
286 dm_interface_init,
287 dm_statistics_init,
288 };
289
290 static void (*_exits[])(void) = {
291 local_exit,
292 dm_target_exit,
293 dm_linear_exit,
294 dm_stripe_exit,
295 dm_io_exit,
296 dm_kcopyd_exit,
297 dm_interface_exit,
298 dm_statistics_exit,
299 };
300
dm_init(void)301 static int __init dm_init(void)
302 {
303 const int count = ARRAY_SIZE(_inits);
304
305 int r, i;
306
307 for (i = 0; i < count; i++) {
308 r = _inits[i]();
309 if (r)
310 goto bad;
311 }
312
313 return 0;
314
315 bad:
316 while (i--)
317 _exits[i]();
318
319 return r;
320 }
321
dm_exit(void)322 static void __exit dm_exit(void)
323 {
324 int i = ARRAY_SIZE(_exits);
325
326 while (i--)
327 _exits[i]();
328
329 /*
330 * Should be empty by this point.
331 */
332 idr_destroy(&_minor_idr);
333 }
334
335 /*
336 * Block device functions
337 */
dm_deleting_md(struct mapped_device * md)338 int dm_deleting_md(struct mapped_device *md)
339 {
340 return test_bit(DMF_DELETING, &md->flags);
341 }
342
dm_blk_open(struct block_device * bdev,fmode_t mode)343 static int dm_blk_open(struct block_device *bdev, fmode_t mode)
344 {
345 struct mapped_device *md;
346
347 spin_lock(&_minor_lock);
348
349 md = bdev->bd_disk->private_data;
350 if (!md)
351 goto out;
352
353 if (test_bit(DMF_FREEING, &md->flags) ||
354 dm_deleting_md(md)) {
355 md = NULL;
356 goto out;
357 }
358
359 dm_get(md);
360 atomic_inc(&md->open_count);
361 out:
362 spin_unlock(&_minor_lock);
363
364 return md ? 0 : -ENXIO;
365 }
366
dm_blk_close(struct gendisk * disk,fmode_t mode)367 static void dm_blk_close(struct gendisk *disk, fmode_t mode)
368 {
369 struct mapped_device *md;
370
371 spin_lock(&_minor_lock);
372
373 md = disk->private_data;
374 if (WARN_ON(!md))
375 goto out;
376
377 if (atomic_dec_and_test(&md->open_count) &&
378 (test_bit(DMF_DEFERRED_REMOVE, &md->flags)))
379 queue_work(deferred_remove_workqueue, &deferred_remove_work);
380
381 dm_put(md);
382 out:
383 spin_unlock(&_minor_lock);
384 }
385
dm_open_count(struct mapped_device * md)386 int dm_open_count(struct mapped_device *md)
387 {
388 return atomic_read(&md->open_count);
389 }
390
391 /*
392 * Guarantees nothing is using the device before it's deleted.
393 */
dm_lock_for_deletion(struct mapped_device * md,bool mark_deferred,bool only_deferred)394 int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred)
395 {
396 int r = 0;
397
398 spin_lock(&_minor_lock);
399
400 if (dm_open_count(md)) {
401 r = -EBUSY;
402 if (mark_deferred)
403 set_bit(DMF_DEFERRED_REMOVE, &md->flags);
404 } else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags))
405 r = -EEXIST;
406 else
407 set_bit(DMF_DELETING, &md->flags);
408
409 spin_unlock(&_minor_lock);
410
411 return r;
412 }
413
dm_cancel_deferred_remove(struct mapped_device * md)414 int dm_cancel_deferred_remove(struct mapped_device *md)
415 {
416 int r = 0;
417
418 spin_lock(&_minor_lock);
419
420 if (test_bit(DMF_DELETING, &md->flags))
421 r = -EBUSY;
422 else
423 clear_bit(DMF_DEFERRED_REMOVE, &md->flags);
424
425 spin_unlock(&_minor_lock);
426
427 return r;
428 }
429
do_deferred_remove(struct work_struct * w)430 static void do_deferred_remove(struct work_struct *w)
431 {
432 dm_deferred_remove();
433 }
434
dm_blk_getgeo(struct block_device * bdev,struct hd_geometry * geo)435 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
436 {
437 struct mapped_device *md = bdev->bd_disk->private_data;
438
439 return dm_get_geometry(md, geo);
440 }
441
442 #ifdef CONFIG_BLK_DEV_ZONED
dm_report_zones_cb(struct blk_zone * zone,unsigned int idx,void * data)443 int dm_report_zones_cb(struct blk_zone *zone, unsigned int idx, void *data)
444 {
445 struct dm_report_zones_args *args = data;
446 sector_t sector_diff = args->tgt->begin - args->start;
447
448 /*
449 * Ignore zones beyond the target range.
450 */
451 if (zone->start >= args->start + args->tgt->len)
452 return 0;
453
454 /*
455 * Remap the start sector and write pointer position of the zone
456 * to match its position in the target range.
457 */
458 zone->start += sector_diff;
459 if (zone->type != BLK_ZONE_TYPE_CONVENTIONAL) {
460 if (zone->cond == BLK_ZONE_COND_FULL)
461 zone->wp = zone->start + zone->len;
462 else if (zone->cond == BLK_ZONE_COND_EMPTY)
463 zone->wp = zone->start;
464 else
465 zone->wp += sector_diff;
466 }
467
468 args->next_sector = zone->start + zone->len;
469 return args->orig_cb(zone, args->zone_idx++, args->orig_data);
470 }
471 EXPORT_SYMBOL_GPL(dm_report_zones_cb);
472
dm_blk_report_zones(struct gendisk * disk,sector_t sector,unsigned int nr_zones,report_zones_cb cb,void * data)473 static int dm_blk_report_zones(struct gendisk *disk, sector_t sector,
474 unsigned int nr_zones, report_zones_cb cb, void *data)
475 {
476 struct mapped_device *md = disk->private_data;
477 struct dm_table *map;
478 int srcu_idx, ret;
479 struct dm_report_zones_args args = {
480 .next_sector = sector,
481 .orig_data = data,
482 .orig_cb = cb,
483 };
484
485 if (dm_suspended_md(md))
486 return -EAGAIN;
487
488 map = dm_get_live_table(md, &srcu_idx);
489 if (!map) {
490 ret = -EIO;
491 goto out;
492 }
493
494 do {
495 struct dm_target *tgt;
496
497 tgt = dm_table_find_target(map, args.next_sector);
498 if (WARN_ON_ONCE(!tgt->type->report_zones)) {
499 ret = -EIO;
500 goto out;
501 }
502
503 args.tgt = tgt;
504 ret = tgt->type->report_zones(tgt, &args,
505 nr_zones - args.zone_idx);
506 if (ret < 0)
507 goto out;
508 } while (args.zone_idx < nr_zones &&
509 args.next_sector < get_capacity(disk));
510
511 ret = args.zone_idx;
512 out:
513 dm_put_live_table(md, srcu_idx);
514 return ret;
515 }
516 #else
517 #define dm_blk_report_zones NULL
518 #endif /* CONFIG_BLK_DEV_ZONED */
519
dm_prepare_ioctl(struct mapped_device * md,int * srcu_idx,struct block_device ** bdev)520 static int dm_prepare_ioctl(struct mapped_device *md, int *srcu_idx,
521 struct block_device **bdev)
522 {
523 struct dm_target *tgt;
524 struct dm_table *map;
525 int r;
526
527 retry:
528 r = -ENOTTY;
529 map = dm_get_live_table(md, srcu_idx);
530 if (!map || !dm_table_get_size(map))
531 return r;
532
533 /* We only support devices that have a single target */
534 if (dm_table_get_num_targets(map) != 1)
535 return r;
536
537 tgt = dm_table_get_target(map, 0);
538 if (!tgt->type->prepare_ioctl)
539 return r;
540
541 if (dm_suspended_md(md))
542 return -EAGAIN;
543
544 r = tgt->type->prepare_ioctl(tgt, bdev);
545 if (r == -ENOTCONN && !fatal_signal_pending(current)) {
546 dm_put_live_table(md, *srcu_idx);
547 msleep(10);
548 goto retry;
549 }
550
551 return r;
552 }
553
dm_unprepare_ioctl(struct mapped_device * md,int srcu_idx)554 static void dm_unprepare_ioctl(struct mapped_device *md, int srcu_idx)
555 {
556 dm_put_live_table(md, srcu_idx);
557 }
558
dm_blk_ioctl(struct block_device * bdev,fmode_t mode,unsigned int cmd,unsigned long arg)559 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
560 unsigned int cmd, unsigned long arg)
561 {
562 struct mapped_device *md = bdev->bd_disk->private_data;
563 int r, srcu_idx;
564
565 r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
566 if (r < 0)
567 goto out;
568
569 if (r > 0) {
570 /*
571 * Target determined this ioctl is being issued against a
572 * subset of the parent bdev; require extra privileges.
573 */
574 if (!capable(CAP_SYS_RAWIO)) {
575 DMDEBUG_LIMIT(
576 "%s: sending ioctl %x to DM device without required privilege.",
577 current->comm, cmd);
578 r = -ENOIOCTLCMD;
579 goto out;
580 }
581 }
582
583 r = __blkdev_driver_ioctl(bdev, mode, cmd, arg);
584 out:
585 dm_unprepare_ioctl(md, srcu_idx);
586 return r;
587 }
588
dm_start_time_ns_from_clone(struct bio * bio)589 u64 dm_start_time_ns_from_clone(struct bio *bio)
590 {
591 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
592 struct dm_io *io = tio->io;
593
594 return jiffies_to_nsecs(io->start_time);
595 }
596 EXPORT_SYMBOL_GPL(dm_start_time_ns_from_clone);
597
start_io_acct(struct dm_io * io)598 static void start_io_acct(struct dm_io *io)
599 {
600 struct mapped_device *md = io->md;
601 struct bio *bio = io->orig_bio;
602
603 io->start_time = bio_start_io_acct(bio);
604 if (unlikely(dm_stats_used(&md->stats)))
605 dm_stats_account_io(&md->stats, bio_data_dir(bio),
606 bio->bi_iter.bi_sector, bio_sectors(bio),
607 false, 0, &io->stats_aux);
608 }
609
end_io_acct(struct dm_io * io)610 static void end_io_acct(struct dm_io *io)
611 {
612 struct mapped_device *md = io->md;
613 struct bio *bio = io->orig_bio;
614 unsigned long duration = jiffies - io->start_time;
615
616 bio_end_io_acct(bio, io->start_time);
617
618 if (unlikely(dm_stats_used(&md->stats)))
619 dm_stats_account_io(&md->stats, bio_data_dir(bio),
620 bio->bi_iter.bi_sector, bio_sectors(bio),
621 true, duration, &io->stats_aux);
622
623 /* nudge anyone waiting on suspend queue */
624 if (unlikely(wq_has_sleeper(&md->wait)))
625 wake_up(&md->wait);
626 }
627
alloc_io(struct mapped_device * md,struct bio * bio)628 static struct dm_io *alloc_io(struct mapped_device *md, struct bio *bio)
629 {
630 struct dm_io *io;
631 struct dm_target_io *tio;
632 struct bio *clone;
633
634 clone = bio_alloc_bioset(GFP_NOIO, 0, &md->io_bs);
635 if (!clone)
636 return NULL;
637
638 tio = container_of(clone, struct dm_target_io, clone);
639 tio->inside_dm_io = true;
640 tio->io = NULL;
641
642 io = container_of(tio, struct dm_io, tio);
643 io->magic = DM_IO_MAGIC;
644 io->status = 0;
645 atomic_set(&io->io_count, 1);
646 io->orig_bio = bio;
647 io->md = md;
648 spin_lock_init(&io->endio_lock);
649
650 start_io_acct(io);
651
652 return io;
653 }
654
free_io(struct mapped_device * md,struct dm_io * io)655 static void free_io(struct mapped_device *md, struct dm_io *io)
656 {
657 bio_put(&io->tio.clone);
658 }
659
alloc_tio(struct clone_info * ci,struct dm_target * ti,unsigned target_bio_nr,gfp_t gfp_mask)660 static struct dm_target_io *alloc_tio(struct clone_info *ci, struct dm_target *ti,
661 unsigned target_bio_nr, gfp_t gfp_mask)
662 {
663 struct dm_target_io *tio;
664
665 if (!ci->io->tio.io) {
666 /* the dm_target_io embedded in ci->io is available */
667 tio = &ci->io->tio;
668 } else {
669 struct bio *clone = bio_alloc_bioset(gfp_mask, 0, &ci->io->md->bs);
670 if (!clone)
671 return NULL;
672
673 tio = container_of(clone, struct dm_target_io, clone);
674 tio->inside_dm_io = false;
675 }
676
677 tio->magic = DM_TIO_MAGIC;
678 tio->io = ci->io;
679 tio->ti = ti;
680 tio->target_bio_nr = target_bio_nr;
681
682 return tio;
683 }
684
free_tio(struct dm_target_io * tio)685 static void free_tio(struct dm_target_io *tio)
686 {
687 if (tio->inside_dm_io)
688 return;
689 bio_put(&tio->clone);
690 }
691
692 /*
693 * Add the bio to the list of deferred io.
694 */
queue_io(struct mapped_device * md,struct bio * bio)695 static void queue_io(struct mapped_device *md, struct bio *bio)
696 {
697 unsigned long flags;
698
699 spin_lock_irqsave(&md->deferred_lock, flags);
700 bio_list_add(&md->deferred, bio);
701 spin_unlock_irqrestore(&md->deferred_lock, flags);
702 queue_work(md->wq, &md->work);
703 }
704
705 /*
706 * Everyone (including functions in this file), should use this
707 * function to access the md->map field, and make sure they call
708 * dm_put_live_table() when finished.
709 */
dm_get_live_table(struct mapped_device * md,int * srcu_idx)710 struct dm_table *dm_get_live_table(struct mapped_device *md, int *srcu_idx) __acquires(md->io_barrier)
711 {
712 *srcu_idx = srcu_read_lock(&md->io_barrier);
713
714 return srcu_dereference(md->map, &md->io_barrier);
715 }
716
dm_put_live_table(struct mapped_device * md,int srcu_idx)717 void dm_put_live_table(struct mapped_device *md, int srcu_idx) __releases(md->io_barrier)
718 {
719 srcu_read_unlock(&md->io_barrier, srcu_idx);
720 }
721
dm_sync_table(struct mapped_device * md)722 void dm_sync_table(struct mapped_device *md)
723 {
724 synchronize_srcu(&md->io_barrier);
725 synchronize_rcu_expedited();
726 }
727
728 /*
729 * A fast alternative to dm_get_live_table/dm_put_live_table.
730 * The caller must not block between these two functions.
731 */
dm_get_live_table_fast(struct mapped_device * md)732 static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU)
733 {
734 rcu_read_lock();
735 return rcu_dereference(md->map);
736 }
737
dm_put_live_table_fast(struct mapped_device * md)738 static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU)
739 {
740 rcu_read_unlock();
741 }
742
743 static char *_dm_claim_ptr = "I belong to device-mapper";
744
745 /*
746 * Open a table device so we can use it as a map destination.
747 */
open_table_device(struct table_device * td,dev_t dev,struct mapped_device * md)748 static int open_table_device(struct table_device *td, dev_t dev,
749 struct mapped_device *md)
750 {
751 struct block_device *bdev;
752
753 int r;
754
755 BUG_ON(td->dm_dev.bdev);
756
757 bdev = blkdev_get_by_dev(dev, td->dm_dev.mode | FMODE_EXCL, _dm_claim_ptr);
758 if (IS_ERR(bdev))
759 return PTR_ERR(bdev);
760
761 r = bd_link_disk_holder(bdev, dm_disk(md));
762 if (r) {
763 blkdev_put(bdev, td->dm_dev.mode | FMODE_EXCL);
764 return r;
765 }
766
767 td->dm_dev.bdev = bdev;
768 td->dm_dev.dax_dev = dax_get_by_host(bdev->bd_disk->disk_name);
769 return 0;
770 }
771
772 /*
773 * Close a table device that we've been using.
774 */
close_table_device(struct table_device * td,struct mapped_device * md)775 static void close_table_device(struct table_device *td, struct mapped_device *md)
776 {
777 if (!td->dm_dev.bdev)
778 return;
779
780 bd_unlink_disk_holder(td->dm_dev.bdev, dm_disk(md));
781 blkdev_put(td->dm_dev.bdev, td->dm_dev.mode | FMODE_EXCL);
782 put_dax(td->dm_dev.dax_dev);
783 td->dm_dev.bdev = NULL;
784 td->dm_dev.dax_dev = NULL;
785 }
786
find_table_device(struct list_head * l,dev_t dev,fmode_t mode)787 static struct table_device *find_table_device(struct list_head *l, dev_t dev,
788 fmode_t mode)
789 {
790 struct table_device *td;
791
792 list_for_each_entry(td, l, list)
793 if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode)
794 return td;
795
796 return NULL;
797 }
798
dm_get_table_device(struct mapped_device * md,dev_t dev,fmode_t mode,struct dm_dev ** result)799 int dm_get_table_device(struct mapped_device *md, dev_t dev, fmode_t mode,
800 struct dm_dev **result)
801 {
802 int r;
803 struct table_device *td;
804
805 mutex_lock(&md->table_devices_lock);
806 td = find_table_device(&md->table_devices, dev, mode);
807 if (!td) {
808 td = kmalloc_node(sizeof(*td), GFP_KERNEL, md->numa_node_id);
809 if (!td) {
810 mutex_unlock(&md->table_devices_lock);
811 return -ENOMEM;
812 }
813
814 td->dm_dev.mode = mode;
815 td->dm_dev.bdev = NULL;
816
817 if ((r = open_table_device(td, dev, md))) {
818 mutex_unlock(&md->table_devices_lock);
819 kfree(td);
820 return r;
821 }
822
823 format_dev_t(td->dm_dev.name, dev);
824
825 refcount_set(&td->count, 1);
826 list_add(&td->list, &md->table_devices);
827 } else {
828 refcount_inc(&td->count);
829 }
830 mutex_unlock(&md->table_devices_lock);
831
832 *result = &td->dm_dev;
833 return 0;
834 }
835 EXPORT_SYMBOL_GPL(dm_get_table_device);
836
dm_put_table_device(struct mapped_device * md,struct dm_dev * d)837 void dm_put_table_device(struct mapped_device *md, struct dm_dev *d)
838 {
839 struct table_device *td = container_of(d, struct table_device, dm_dev);
840
841 mutex_lock(&md->table_devices_lock);
842 if (refcount_dec_and_test(&td->count)) {
843 close_table_device(td, md);
844 list_del(&td->list);
845 kfree(td);
846 }
847 mutex_unlock(&md->table_devices_lock);
848 }
849 EXPORT_SYMBOL(dm_put_table_device);
850
free_table_devices(struct list_head * devices)851 static void free_table_devices(struct list_head *devices)
852 {
853 struct list_head *tmp, *next;
854
855 list_for_each_safe(tmp, next, devices) {
856 struct table_device *td = list_entry(tmp, struct table_device, list);
857
858 DMWARN("dm_destroy: %s still exists with %d references",
859 td->dm_dev.name, refcount_read(&td->count));
860 kfree(td);
861 }
862 }
863
864 /*
865 * Get the geometry associated with a dm device
866 */
dm_get_geometry(struct mapped_device * md,struct hd_geometry * geo)867 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
868 {
869 *geo = md->geometry;
870
871 return 0;
872 }
873
874 /*
875 * Set the geometry of a device.
876 */
dm_set_geometry(struct mapped_device * md,struct hd_geometry * geo)877 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
878 {
879 sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
880
881 if (geo->start > sz) {
882 DMWARN("Start sector is beyond the geometry limits.");
883 return -EINVAL;
884 }
885
886 md->geometry = *geo;
887
888 return 0;
889 }
890
__noflush_suspending(struct mapped_device * md)891 static int __noflush_suspending(struct mapped_device *md)
892 {
893 return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
894 }
895
896 /*
897 * Decrements the number of outstanding ios that a bio has been
898 * cloned into, completing the original io if necc.
899 */
dec_pending(struct dm_io * io,blk_status_t error)900 static void dec_pending(struct dm_io *io, blk_status_t error)
901 {
902 unsigned long flags;
903 blk_status_t io_error;
904 struct bio *bio;
905 struct mapped_device *md = io->md;
906
907 /* Push-back supersedes any I/O errors */
908 if (unlikely(error)) {
909 spin_lock_irqsave(&io->endio_lock, flags);
910 if (!(io->status == BLK_STS_DM_REQUEUE && __noflush_suspending(md)))
911 io->status = error;
912 spin_unlock_irqrestore(&io->endio_lock, flags);
913 }
914
915 if (atomic_dec_and_test(&io->io_count)) {
916 if (io->status == BLK_STS_DM_REQUEUE) {
917 /*
918 * Target requested pushing back the I/O.
919 */
920 spin_lock_irqsave(&md->deferred_lock, flags);
921 if (__noflush_suspending(md))
922 /* NOTE early return due to BLK_STS_DM_REQUEUE below */
923 bio_list_add_head(&md->deferred, io->orig_bio);
924 else
925 /* noflush suspend was interrupted. */
926 io->status = BLK_STS_IOERR;
927 spin_unlock_irqrestore(&md->deferred_lock, flags);
928 }
929
930 io_error = io->status;
931 bio = io->orig_bio;
932 end_io_acct(io);
933 free_io(md, io);
934
935 if (io_error == BLK_STS_DM_REQUEUE)
936 return;
937
938 if ((bio->bi_opf & REQ_PREFLUSH) && bio->bi_iter.bi_size) {
939 /*
940 * Preflush done for flush with data, reissue
941 * without REQ_PREFLUSH.
942 */
943 bio->bi_opf &= ~REQ_PREFLUSH;
944 queue_io(md, bio);
945 } else {
946 /* done with normal IO or empty flush */
947 if (io_error)
948 bio->bi_status = io_error;
949 bio_endio(bio);
950 }
951 }
952 }
953
disable_discard(struct mapped_device * md)954 void disable_discard(struct mapped_device *md)
955 {
956 struct queue_limits *limits = dm_get_queue_limits(md);
957
958 /* device doesn't really support DISCARD, disable it */
959 limits->max_discard_sectors = 0;
960 blk_queue_flag_clear(QUEUE_FLAG_DISCARD, md->queue);
961 }
962
disable_write_same(struct mapped_device * md)963 void disable_write_same(struct mapped_device *md)
964 {
965 struct queue_limits *limits = dm_get_queue_limits(md);
966
967 /* device doesn't really support WRITE SAME, disable it */
968 limits->max_write_same_sectors = 0;
969 }
970
disable_write_zeroes(struct mapped_device * md)971 void disable_write_zeroes(struct mapped_device *md)
972 {
973 struct queue_limits *limits = dm_get_queue_limits(md);
974
975 /* device doesn't really support WRITE ZEROES, disable it */
976 limits->max_write_zeroes_sectors = 0;
977 }
978
swap_bios_limit(struct dm_target * ti,struct bio * bio)979 static bool swap_bios_limit(struct dm_target *ti, struct bio *bio)
980 {
981 return unlikely((bio->bi_opf & REQ_SWAP) != 0) && unlikely(ti->limit_swap_bios);
982 }
983
clone_endio(struct bio * bio)984 static void clone_endio(struct bio *bio)
985 {
986 blk_status_t error = bio->bi_status;
987 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
988 struct dm_io *io = tio->io;
989 struct mapped_device *md = tio->io->md;
990 dm_endio_fn endio = tio->ti->type->end_io;
991 struct bio *orig_bio = io->orig_bio;
992
993 if (unlikely(error == BLK_STS_TARGET)) {
994 if (bio_op(bio) == REQ_OP_DISCARD &&
995 !bio->bi_disk->queue->limits.max_discard_sectors)
996 disable_discard(md);
997 else if (bio_op(bio) == REQ_OP_WRITE_SAME &&
998 !bio->bi_disk->queue->limits.max_write_same_sectors)
999 disable_write_same(md);
1000 else if (bio_op(bio) == REQ_OP_WRITE_ZEROES &&
1001 !bio->bi_disk->queue->limits.max_write_zeroes_sectors)
1002 disable_write_zeroes(md);
1003 }
1004
1005 /*
1006 * For zone-append bios get offset in zone of the written
1007 * sector and add that to the original bio sector pos.
1008 */
1009 if (bio_op(orig_bio) == REQ_OP_ZONE_APPEND) {
1010 sector_t written_sector = bio->bi_iter.bi_sector;
1011 struct request_queue *q = orig_bio->bi_disk->queue;
1012 u64 mask = (u64)blk_queue_zone_sectors(q) - 1;
1013
1014 orig_bio->bi_iter.bi_sector += written_sector & mask;
1015 }
1016
1017 if (endio) {
1018 int r = endio(tio->ti, bio, &error);
1019 switch (r) {
1020 case DM_ENDIO_REQUEUE:
1021 error = BLK_STS_DM_REQUEUE;
1022 fallthrough;
1023 case DM_ENDIO_DONE:
1024 break;
1025 case DM_ENDIO_INCOMPLETE:
1026 /* The target will handle the io */
1027 return;
1028 default:
1029 DMWARN("unimplemented target endio return value: %d", r);
1030 BUG();
1031 }
1032 }
1033
1034 if (unlikely(swap_bios_limit(tio->ti, bio))) {
1035 struct mapped_device *md = io->md;
1036 up(&md->swap_bios_semaphore);
1037 }
1038
1039 free_tio(tio);
1040 dec_pending(io, error);
1041 }
1042
1043 /*
1044 * Return maximum size of I/O possible at the supplied sector up to the current
1045 * target boundary.
1046 */
max_io_len_target_boundary(struct dm_target * ti,sector_t target_offset)1047 static inline sector_t max_io_len_target_boundary(struct dm_target *ti,
1048 sector_t target_offset)
1049 {
1050 return ti->len - target_offset;
1051 }
1052
max_io_len(struct dm_target * ti,sector_t sector)1053 static sector_t max_io_len(struct dm_target *ti, sector_t sector)
1054 {
1055 sector_t target_offset = dm_target_offset(ti, sector);
1056 sector_t len = max_io_len_target_boundary(ti, target_offset);
1057 sector_t max_len;
1058
1059 /*
1060 * Does the target need to split IO even further?
1061 * - varied (per target) IO splitting is a tenet of DM; this
1062 * explains why stacked chunk_sectors based splitting via
1063 * blk_max_size_offset() isn't possible here. So pass in
1064 * ti->max_io_len to override stacked chunk_sectors.
1065 */
1066 if (ti->max_io_len) {
1067 max_len = blk_max_size_offset(ti->table->md->queue,
1068 target_offset, ti->max_io_len);
1069 if (len > max_len)
1070 len = max_len;
1071 }
1072
1073 return len;
1074 }
1075
dm_set_target_max_io_len(struct dm_target * ti,sector_t len)1076 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len)
1077 {
1078 if (len > UINT_MAX) {
1079 DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
1080 (unsigned long long)len, UINT_MAX);
1081 ti->error = "Maximum size of target IO is too large";
1082 return -EINVAL;
1083 }
1084
1085 ti->max_io_len = (uint32_t) len;
1086
1087 return 0;
1088 }
1089 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len);
1090
dm_dax_get_live_target(struct mapped_device * md,sector_t sector,int * srcu_idx)1091 static struct dm_target *dm_dax_get_live_target(struct mapped_device *md,
1092 sector_t sector, int *srcu_idx)
1093 __acquires(md->io_barrier)
1094 {
1095 struct dm_table *map;
1096 struct dm_target *ti;
1097
1098 map = dm_get_live_table(md, srcu_idx);
1099 if (!map)
1100 return NULL;
1101
1102 ti = dm_table_find_target(map, sector);
1103 if (!ti)
1104 return NULL;
1105
1106 return ti;
1107 }
1108
dm_dax_direct_access(struct dax_device * dax_dev,pgoff_t pgoff,long nr_pages,void ** kaddr,pfn_t * pfn)1109 static long dm_dax_direct_access(struct dax_device *dax_dev, pgoff_t pgoff,
1110 long nr_pages, void **kaddr, pfn_t *pfn)
1111 {
1112 struct mapped_device *md = dax_get_private(dax_dev);
1113 sector_t sector = pgoff * PAGE_SECTORS;
1114 struct dm_target *ti;
1115 long len, ret = -EIO;
1116 int srcu_idx;
1117
1118 ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1119
1120 if (!ti)
1121 goto out;
1122 if (!ti->type->direct_access)
1123 goto out;
1124 len = max_io_len(ti, sector) / PAGE_SECTORS;
1125 if (len < 1)
1126 goto out;
1127 nr_pages = min(len, nr_pages);
1128 ret = ti->type->direct_access(ti, pgoff, nr_pages, kaddr, pfn);
1129
1130 out:
1131 dm_put_live_table(md, srcu_idx);
1132
1133 return ret;
1134 }
1135
dm_dax_supported(struct dax_device * dax_dev,struct block_device * bdev,int blocksize,sector_t start,sector_t len)1136 static bool dm_dax_supported(struct dax_device *dax_dev, struct block_device *bdev,
1137 int blocksize, sector_t start, sector_t len)
1138 {
1139 struct mapped_device *md = dax_get_private(dax_dev);
1140 struct dm_table *map;
1141 bool ret = false;
1142 int srcu_idx;
1143
1144 map = dm_get_live_table(md, &srcu_idx);
1145 if (!map)
1146 goto out;
1147
1148 ret = dm_table_supports_dax(map, device_not_dax_capable, &blocksize);
1149
1150 out:
1151 dm_put_live_table(md, srcu_idx);
1152
1153 return ret;
1154 }
1155
dm_dax_copy_from_iter(struct dax_device * dax_dev,pgoff_t pgoff,void * addr,size_t bytes,struct iov_iter * i)1156 static size_t dm_dax_copy_from_iter(struct dax_device *dax_dev, pgoff_t pgoff,
1157 void *addr, size_t bytes, struct iov_iter *i)
1158 {
1159 struct mapped_device *md = dax_get_private(dax_dev);
1160 sector_t sector = pgoff * PAGE_SECTORS;
1161 struct dm_target *ti;
1162 long ret = 0;
1163 int srcu_idx;
1164
1165 ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1166
1167 if (!ti)
1168 goto out;
1169 if (!ti->type->dax_copy_from_iter) {
1170 ret = copy_from_iter(addr, bytes, i);
1171 goto out;
1172 }
1173 ret = ti->type->dax_copy_from_iter(ti, pgoff, addr, bytes, i);
1174 out:
1175 dm_put_live_table(md, srcu_idx);
1176
1177 return ret;
1178 }
1179
dm_dax_copy_to_iter(struct dax_device * dax_dev,pgoff_t pgoff,void * addr,size_t bytes,struct iov_iter * i)1180 static size_t dm_dax_copy_to_iter(struct dax_device *dax_dev, pgoff_t pgoff,
1181 void *addr, size_t bytes, struct iov_iter *i)
1182 {
1183 struct mapped_device *md = dax_get_private(dax_dev);
1184 sector_t sector = pgoff * PAGE_SECTORS;
1185 struct dm_target *ti;
1186 long ret = 0;
1187 int srcu_idx;
1188
1189 ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1190
1191 if (!ti)
1192 goto out;
1193 if (!ti->type->dax_copy_to_iter) {
1194 ret = copy_to_iter(addr, bytes, i);
1195 goto out;
1196 }
1197 ret = ti->type->dax_copy_to_iter(ti, pgoff, addr, bytes, i);
1198 out:
1199 dm_put_live_table(md, srcu_idx);
1200
1201 return ret;
1202 }
1203
dm_dax_zero_page_range(struct dax_device * dax_dev,pgoff_t pgoff,size_t nr_pages)1204 static int dm_dax_zero_page_range(struct dax_device *dax_dev, pgoff_t pgoff,
1205 size_t nr_pages)
1206 {
1207 struct mapped_device *md = dax_get_private(dax_dev);
1208 sector_t sector = pgoff * PAGE_SECTORS;
1209 struct dm_target *ti;
1210 int ret = -EIO;
1211 int srcu_idx;
1212
1213 ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1214
1215 if (!ti)
1216 goto out;
1217 if (WARN_ON(!ti->type->dax_zero_page_range)) {
1218 /*
1219 * ->zero_page_range() is mandatory dax operation. If we are
1220 * here, something is wrong.
1221 */
1222 goto out;
1223 }
1224 ret = ti->type->dax_zero_page_range(ti, pgoff, nr_pages);
1225 out:
1226 dm_put_live_table(md, srcu_idx);
1227
1228 return ret;
1229 }
1230
1231 /*
1232 * A target may call dm_accept_partial_bio only from the map routine. It is
1233 * allowed for all bio types except REQ_PREFLUSH, REQ_OP_ZONE_* zone management
1234 * operations and REQ_OP_ZONE_APPEND (zone append writes).
1235 *
1236 * dm_accept_partial_bio informs the dm that the target only wants to process
1237 * additional n_sectors sectors of the bio and the rest of the data should be
1238 * sent in a next bio.
1239 *
1240 * A diagram that explains the arithmetics:
1241 * +--------------------+---------------+-------+
1242 * | 1 | 2 | 3 |
1243 * +--------------------+---------------+-------+
1244 *
1245 * <-------------- *tio->len_ptr --------------->
1246 * <------- bi_size ------->
1247 * <-- n_sectors -->
1248 *
1249 * Region 1 was already iterated over with bio_advance or similar function.
1250 * (it may be empty if the target doesn't use bio_advance)
1251 * Region 2 is the remaining bio size that the target wants to process.
1252 * (it may be empty if region 1 is non-empty, although there is no reason
1253 * to make it empty)
1254 * The target requires that region 3 is to be sent in the next bio.
1255 *
1256 * If the target wants to receive multiple copies of the bio (via num_*bios, etc),
1257 * the partially processed part (the sum of regions 1+2) must be the same for all
1258 * copies of the bio.
1259 */
dm_accept_partial_bio(struct bio * bio,unsigned n_sectors)1260 void dm_accept_partial_bio(struct bio *bio, unsigned n_sectors)
1261 {
1262 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
1263 unsigned bi_size = bio->bi_iter.bi_size >> SECTOR_SHIFT;
1264
1265 BUG_ON(bio->bi_opf & REQ_PREFLUSH);
1266 BUG_ON(op_is_zone_mgmt(bio_op(bio)));
1267 BUG_ON(bio_op(bio) == REQ_OP_ZONE_APPEND);
1268 BUG_ON(bi_size > *tio->len_ptr);
1269 BUG_ON(n_sectors > bi_size);
1270
1271 *tio->len_ptr -= bi_size - n_sectors;
1272 bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT;
1273 }
1274 EXPORT_SYMBOL_GPL(dm_accept_partial_bio);
1275
__set_swap_bios_limit(struct mapped_device * md,int latch)1276 static noinline void __set_swap_bios_limit(struct mapped_device *md, int latch)
1277 {
1278 mutex_lock(&md->swap_bios_lock);
1279 while (latch < md->swap_bios) {
1280 cond_resched();
1281 down(&md->swap_bios_semaphore);
1282 md->swap_bios--;
1283 }
1284 while (latch > md->swap_bios) {
1285 cond_resched();
1286 up(&md->swap_bios_semaphore);
1287 md->swap_bios++;
1288 }
1289 mutex_unlock(&md->swap_bios_lock);
1290 }
1291
__map_bio(struct dm_target_io * tio)1292 static blk_qc_t __map_bio(struct dm_target_io *tio)
1293 {
1294 int r;
1295 sector_t sector;
1296 struct bio *clone = &tio->clone;
1297 struct dm_io *io = tio->io;
1298 struct dm_target *ti = tio->ti;
1299 blk_qc_t ret = BLK_QC_T_NONE;
1300
1301 clone->bi_end_io = clone_endio;
1302
1303 /*
1304 * Map the clone. If r == 0 we don't need to do
1305 * anything, the target has assumed ownership of
1306 * this io.
1307 */
1308 atomic_inc(&io->io_count);
1309 sector = clone->bi_iter.bi_sector;
1310
1311 if (unlikely(swap_bios_limit(ti, clone))) {
1312 struct mapped_device *md = io->md;
1313 int latch = get_swap_bios();
1314 if (unlikely(latch != md->swap_bios))
1315 __set_swap_bios_limit(md, latch);
1316 down(&md->swap_bios_semaphore);
1317 }
1318
1319 r = ti->type->map(ti, clone);
1320 switch (r) {
1321 case DM_MAPIO_SUBMITTED:
1322 break;
1323 case DM_MAPIO_REMAPPED:
1324 /* the bio has been remapped so dispatch it */
1325 trace_block_bio_remap(clone->bi_disk->queue, clone,
1326 bio_dev(io->orig_bio), sector);
1327 ret = submit_bio_noacct(clone);
1328 break;
1329 case DM_MAPIO_KILL:
1330 if (unlikely(swap_bios_limit(ti, clone))) {
1331 struct mapped_device *md = io->md;
1332 up(&md->swap_bios_semaphore);
1333 }
1334 free_tio(tio);
1335 dec_pending(io, BLK_STS_IOERR);
1336 break;
1337 case DM_MAPIO_REQUEUE:
1338 if (unlikely(swap_bios_limit(ti, clone))) {
1339 struct mapped_device *md = io->md;
1340 up(&md->swap_bios_semaphore);
1341 }
1342 free_tio(tio);
1343 dec_pending(io, BLK_STS_DM_REQUEUE);
1344 break;
1345 default:
1346 DMWARN("unimplemented target map return value: %d", r);
1347 BUG();
1348 }
1349
1350 return ret;
1351 }
1352
bio_setup_sector(struct bio * bio,sector_t sector,unsigned len)1353 static void bio_setup_sector(struct bio *bio, sector_t sector, unsigned len)
1354 {
1355 bio->bi_iter.bi_sector = sector;
1356 bio->bi_iter.bi_size = to_bytes(len);
1357 }
1358
1359 /*
1360 * Creates a bio that consists of range of complete bvecs.
1361 */
clone_bio(struct dm_target_io * tio,struct bio * bio,sector_t sector,unsigned len)1362 static int clone_bio(struct dm_target_io *tio, struct bio *bio,
1363 sector_t sector, unsigned len)
1364 {
1365 struct bio *clone = &tio->clone;
1366 int r;
1367
1368 __bio_clone_fast(clone, bio);
1369
1370 r = bio_crypt_clone(clone, bio, GFP_NOIO);
1371 if (r < 0)
1372 return r;
1373
1374 if (bio_integrity(bio)) {
1375 if (unlikely(!dm_target_has_integrity(tio->ti->type) &&
1376 !dm_target_passes_integrity(tio->ti->type))) {
1377 DMWARN("%s: the target %s doesn't support integrity data.",
1378 dm_device_name(tio->io->md),
1379 tio->ti->type->name);
1380 return -EIO;
1381 }
1382
1383 r = bio_integrity_clone(clone, bio, GFP_NOIO);
1384 if (r < 0)
1385 return r;
1386 }
1387
1388 bio_advance(clone, to_bytes(sector - clone->bi_iter.bi_sector));
1389 clone->bi_iter.bi_size = to_bytes(len);
1390
1391 if (bio_integrity(bio))
1392 bio_integrity_trim(clone);
1393
1394 return 0;
1395 }
1396
alloc_multiple_bios(struct bio_list * blist,struct clone_info * ci,struct dm_target * ti,unsigned num_bios)1397 static void alloc_multiple_bios(struct bio_list *blist, struct clone_info *ci,
1398 struct dm_target *ti, unsigned num_bios)
1399 {
1400 struct dm_target_io *tio;
1401 int try;
1402
1403 if (!num_bios)
1404 return;
1405
1406 if (num_bios == 1) {
1407 tio = alloc_tio(ci, ti, 0, GFP_NOIO);
1408 bio_list_add(blist, &tio->clone);
1409 return;
1410 }
1411
1412 for (try = 0; try < 2; try++) {
1413 int bio_nr;
1414 struct bio *bio;
1415
1416 if (try)
1417 mutex_lock(&ci->io->md->table_devices_lock);
1418 for (bio_nr = 0; bio_nr < num_bios; bio_nr++) {
1419 tio = alloc_tio(ci, ti, bio_nr, try ? GFP_NOIO : GFP_NOWAIT);
1420 if (!tio)
1421 break;
1422
1423 bio_list_add(blist, &tio->clone);
1424 }
1425 if (try)
1426 mutex_unlock(&ci->io->md->table_devices_lock);
1427 if (bio_nr == num_bios)
1428 return;
1429
1430 while ((bio = bio_list_pop(blist))) {
1431 tio = container_of(bio, struct dm_target_io, clone);
1432 free_tio(tio);
1433 }
1434 }
1435 }
1436
__clone_and_map_simple_bio(struct clone_info * ci,struct dm_target_io * tio,unsigned * len)1437 static blk_qc_t __clone_and_map_simple_bio(struct clone_info *ci,
1438 struct dm_target_io *tio, unsigned *len)
1439 {
1440 struct bio *clone = &tio->clone;
1441
1442 tio->len_ptr = len;
1443
1444 __bio_clone_fast(clone, ci->bio);
1445 if (len)
1446 bio_setup_sector(clone, ci->sector, *len);
1447
1448 return __map_bio(tio);
1449 }
1450
__send_duplicate_bios(struct clone_info * ci,struct dm_target * ti,unsigned num_bios,unsigned * len)1451 static void __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti,
1452 unsigned num_bios, unsigned *len)
1453 {
1454 struct bio_list blist = BIO_EMPTY_LIST;
1455 struct bio *bio;
1456 struct dm_target_io *tio;
1457
1458 alloc_multiple_bios(&blist, ci, ti, num_bios);
1459
1460 while ((bio = bio_list_pop(&blist))) {
1461 tio = container_of(bio, struct dm_target_io, clone);
1462 (void) __clone_and_map_simple_bio(ci, tio, len);
1463 }
1464 }
1465
__send_empty_flush(struct clone_info * ci)1466 static int __send_empty_flush(struct clone_info *ci)
1467 {
1468 unsigned target_nr = 0;
1469 struct dm_target *ti;
1470 struct bio flush_bio;
1471
1472 /*
1473 * Use an on-stack bio for this, it's safe since we don't
1474 * need to reference it after submit. It's just used as
1475 * the basis for the clone(s).
1476 */
1477 bio_init(&flush_bio, NULL, 0);
1478 flush_bio.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC;
1479 ci->bio = &flush_bio;
1480 ci->sector_count = 0;
1481
1482 /*
1483 * Empty flush uses a statically initialized bio, as the base for
1484 * cloning. However, blkg association requires that a bdev is
1485 * associated with a gendisk, which doesn't happen until the bdev is
1486 * opened. So, blkg association is done at issue time of the flush
1487 * rather than when the device is created in alloc_dev().
1488 */
1489 bio_set_dev(ci->bio, ci->io->md->bdev);
1490
1491 BUG_ON(bio_has_data(ci->bio));
1492 while ((ti = dm_table_get_target(ci->map, target_nr++)))
1493 __send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL);
1494
1495 bio_uninit(ci->bio);
1496 return 0;
1497 }
1498
__clone_and_map_data_bio(struct clone_info * ci,struct dm_target * ti,sector_t sector,unsigned * len)1499 static int __clone_and_map_data_bio(struct clone_info *ci, struct dm_target *ti,
1500 sector_t sector, unsigned *len)
1501 {
1502 struct bio *bio = ci->bio;
1503 struct dm_target_io *tio;
1504 int r;
1505
1506 tio = alloc_tio(ci, ti, 0, GFP_NOIO);
1507 tio->len_ptr = len;
1508 r = clone_bio(tio, bio, sector, *len);
1509 if (r < 0) {
1510 free_tio(tio);
1511 return r;
1512 }
1513 (void) __map_bio(tio);
1514
1515 return 0;
1516 }
1517
__send_changing_extent_only(struct clone_info * ci,struct dm_target * ti,unsigned num_bios)1518 static int __send_changing_extent_only(struct clone_info *ci, struct dm_target *ti,
1519 unsigned num_bios)
1520 {
1521 unsigned len;
1522
1523 /*
1524 * Even though the device advertised support for this type of
1525 * request, that does not mean every target supports it, and
1526 * reconfiguration might also have changed that since the
1527 * check was performed.
1528 */
1529 if (!num_bios)
1530 return -EOPNOTSUPP;
1531
1532 len = min_t(sector_t, ci->sector_count,
1533 max_io_len_target_boundary(ti, dm_target_offset(ti, ci->sector)));
1534
1535 __send_duplicate_bios(ci, ti, num_bios, &len);
1536
1537 ci->sector += len;
1538 ci->sector_count -= len;
1539
1540 return 0;
1541 }
1542
is_abnormal_io(struct bio * bio)1543 static bool is_abnormal_io(struct bio *bio)
1544 {
1545 bool r = false;
1546
1547 switch (bio_op(bio)) {
1548 case REQ_OP_DISCARD:
1549 case REQ_OP_SECURE_ERASE:
1550 case REQ_OP_WRITE_SAME:
1551 case REQ_OP_WRITE_ZEROES:
1552 r = true;
1553 break;
1554 }
1555
1556 return r;
1557 }
1558
__process_abnormal_io(struct clone_info * ci,struct dm_target * ti,int * result)1559 static bool __process_abnormal_io(struct clone_info *ci, struct dm_target *ti,
1560 int *result)
1561 {
1562 struct bio *bio = ci->bio;
1563 unsigned num_bios = 0;
1564
1565 switch (bio_op(bio)) {
1566 case REQ_OP_DISCARD:
1567 num_bios = ti->num_discard_bios;
1568 break;
1569 case REQ_OP_SECURE_ERASE:
1570 num_bios = ti->num_secure_erase_bios;
1571 break;
1572 case REQ_OP_WRITE_SAME:
1573 num_bios = ti->num_write_same_bios;
1574 break;
1575 case REQ_OP_WRITE_ZEROES:
1576 num_bios = ti->num_write_zeroes_bios;
1577 break;
1578 default:
1579 return false;
1580 }
1581
1582 *result = __send_changing_extent_only(ci, ti, num_bios);
1583 return true;
1584 }
1585
1586 /*
1587 * Select the correct strategy for processing a non-flush bio.
1588 */
__split_and_process_non_flush(struct clone_info * ci)1589 static int __split_and_process_non_flush(struct clone_info *ci)
1590 {
1591 struct dm_target *ti;
1592 unsigned len;
1593 int r;
1594
1595 ti = dm_table_find_target(ci->map, ci->sector);
1596 if (!ti)
1597 return -EIO;
1598
1599 if (__process_abnormal_io(ci, ti, &r))
1600 return r;
1601
1602 len = min_t(sector_t, max_io_len(ti, ci->sector), ci->sector_count);
1603
1604 r = __clone_and_map_data_bio(ci, ti, ci->sector, &len);
1605 if (r < 0)
1606 return r;
1607
1608 ci->sector += len;
1609 ci->sector_count -= len;
1610
1611 return 0;
1612 }
1613
init_clone_info(struct clone_info * ci,struct mapped_device * md,struct dm_table * map,struct bio * bio)1614 static void init_clone_info(struct clone_info *ci, struct mapped_device *md,
1615 struct dm_table *map, struct bio *bio)
1616 {
1617 ci->map = map;
1618 ci->io = alloc_io(md, bio);
1619 ci->sector = bio->bi_iter.bi_sector;
1620 }
1621
1622 #define __dm_part_stat_sub(part, field, subnd) \
1623 (part_stat_get(part, field) -= (subnd))
1624
1625 /*
1626 * Entry point to split a bio into clones and submit them to the targets.
1627 */
__split_and_process_bio(struct mapped_device * md,struct dm_table * map,struct bio * bio)1628 static blk_qc_t __split_and_process_bio(struct mapped_device *md,
1629 struct dm_table *map, struct bio *bio)
1630 {
1631 struct clone_info ci;
1632 blk_qc_t ret = BLK_QC_T_NONE;
1633 int error = 0;
1634
1635 init_clone_info(&ci, md, map, bio);
1636
1637 if (bio->bi_opf & REQ_PREFLUSH) {
1638 error = __send_empty_flush(&ci);
1639 /* dec_pending submits any data associated with flush */
1640 } else if (op_is_zone_mgmt(bio_op(bio))) {
1641 ci.bio = bio;
1642 ci.sector_count = 0;
1643 error = __split_and_process_non_flush(&ci);
1644 } else {
1645 ci.bio = bio;
1646 ci.sector_count = bio_sectors(bio);
1647 while (ci.sector_count && !error) {
1648 error = __split_and_process_non_flush(&ci);
1649 if (current->bio_list && ci.sector_count && !error) {
1650 /*
1651 * Remainder must be passed to submit_bio_noacct()
1652 * so that it gets handled *after* bios already submitted
1653 * have been completely processed.
1654 * We take a clone of the original to store in
1655 * ci.io->orig_bio to be used by end_io_acct() and
1656 * for dec_pending to use for completion handling.
1657 */
1658 struct bio *b = bio_split(bio, bio_sectors(bio) - ci.sector_count,
1659 GFP_NOIO, &md->queue->bio_split);
1660 ci.io->orig_bio = b;
1661
1662 /*
1663 * Adjust IO stats for each split, otherwise upon queue
1664 * reentry there will be redundant IO accounting.
1665 * NOTE: this is a stop-gap fix, a proper fix involves
1666 * significant refactoring of DM core's bio splitting
1667 * (by eliminating DM's splitting and just using bio_split)
1668 */
1669 part_stat_lock();
1670 __dm_part_stat_sub(&dm_disk(md)->part0,
1671 sectors[op_stat_group(bio_op(bio))], ci.sector_count);
1672 part_stat_unlock();
1673
1674 bio_chain(b, bio);
1675 trace_block_split(md->queue, b, bio->bi_iter.bi_sector);
1676 ret = submit_bio_noacct(bio);
1677 break;
1678 }
1679 }
1680 }
1681
1682 /* drop the extra reference count */
1683 dec_pending(ci.io, errno_to_blk_status(error));
1684 return ret;
1685 }
1686
dm_submit_bio(struct bio * bio)1687 static blk_qc_t dm_submit_bio(struct bio *bio)
1688 {
1689 struct mapped_device *md = bio->bi_disk->private_data;
1690 blk_qc_t ret = BLK_QC_T_NONE;
1691 int srcu_idx;
1692 struct dm_table *map;
1693
1694 map = dm_get_live_table(md, &srcu_idx);
1695 if (unlikely(!map)) {
1696 DMERR_LIMIT("%s: mapping table unavailable, erroring io",
1697 dm_device_name(md));
1698 bio_io_error(bio);
1699 goto out;
1700 }
1701
1702 /* If suspended, queue this IO for later */
1703 if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) {
1704 if (bio->bi_opf & REQ_NOWAIT)
1705 bio_wouldblock_error(bio);
1706 else if (bio->bi_opf & REQ_RAHEAD)
1707 bio_io_error(bio);
1708 else
1709 queue_io(md, bio);
1710 goto out;
1711 }
1712
1713 /*
1714 * Use blk_queue_split() for abnormal IO (e.g. discard, writesame, etc)
1715 * otherwise associated queue_limits won't be imposed.
1716 */
1717 if (is_abnormal_io(bio))
1718 blk_queue_split(&bio);
1719
1720 ret = __split_and_process_bio(md, map, bio);
1721 out:
1722 dm_put_live_table(md, srcu_idx);
1723 return ret;
1724 }
1725
1726 /*-----------------------------------------------------------------
1727 * An IDR is used to keep track of allocated minor numbers.
1728 *---------------------------------------------------------------*/
free_minor(int minor)1729 static void free_minor(int minor)
1730 {
1731 spin_lock(&_minor_lock);
1732 idr_remove(&_minor_idr, minor);
1733 spin_unlock(&_minor_lock);
1734 }
1735
1736 /*
1737 * See if the device with a specific minor # is free.
1738 */
specific_minor(int minor)1739 static int specific_minor(int minor)
1740 {
1741 int r;
1742
1743 if (minor >= (1 << MINORBITS))
1744 return -EINVAL;
1745
1746 idr_preload(GFP_KERNEL);
1747 spin_lock(&_minor_lock);
1748
1749 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT);
1750
1751 spin_unlock(&_minor_lock);
1752 idr_preload_end();
1753 if (r < 0)
1754 return r == -ENOSPC ? -EBUSY : r;
1755 return 0;
1756 }
1757
next_free_minor(int * minor)1758 static int next_free_minor(int *minor)
1759 {
1760 int r;
1761
1762 idr_preload(GFP_KERNEL);
1763 spin_lock(&_minor_lock);
1764
1765 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT);
1766
1767 spin_unlock(&_minor_lock);
1768 idr_preload_end();
1769 if (r < 0)
1770 return r;
1771 *minor = r;
1772 return 0;
1773 }
1774
1775 static const struct block_device_operations dm_blk_dops;
1776 static const struct block_device_operations dm_rq_blk_dops;
1777 static const struct dax_operations dm_dax_ops;
1778
1779 static void dm_wq_work(struct work_struct *work);
1780
cleanup_mapped_device(struct mapped_device * md)1781 static void cleanup_mapped_device(struct mapped_device *md)
1782 {
1783 if (md->wq)
1784 destroy_workqueue(md->wq);
1785 bioset_exit(&md->bs);
1786 bioset_exit(&md->io_bs);
1787
1788 if (md->dax_dev) {
1789 kill_dax(md->dax_dev);
1790 put_dax(md->dax_dev);
1791 md->dax_dev = NULL;
1792 }
1793
1794 if (md->disk) {
1795 spin_lock(&_minor_lock);
1796 md->disk->private_data = NULL;
1797 spin_unlock(&_minor_lock);
1798 del_gendisk(md->disk);
1799 put_disk(md->disk);
1800 }
1801
1802 if (md->queue)
1803 blk_cleanup_queue(md->queue);
1804
1805 cleanup_srcu_struct(&md->io_barrier);
1806
1807 if (md->bdev) {
1808 bdput(md->bdev);
1809 md->bdev = NULL;
1810 }
1811
1812 mutex_destroy(&md->suspend_lock);
1813 mutex_destroy(&md->type_lock);
1814 mutex_destroy(&md->table_devices_lock);
1815 mutex_destroy(&md->swap_bios_lock);
1816
1817 dm_mq_cleanup_mapped_device(md);
1818 }
1819
1820 /*
1821 * Allocate and initialise a blank device with a given minor.
1822 */
alloc_dev(int minor)1823 static struct mapped_device *alloc_dev(int minor)
1824 {
1825 int r, numa_node_id = dm_get_numa_node();
1826 struct mapped_device *md;
1827 void *old_md;
1828
1829 md = kvzalloc_node(sizeof(*md), GFP_KERNEL, numa_node_id);
1830 if (!md) {
1831 DMWARN("unable to allocate device, out of memory.");
1832 return NULL;
1833 }
1834
1835 if (!try_module_get(THIS_MODULE))
1836 goto bad_module_get;
1837
1838 /* get a minor number for the dev */
1839 if (minor == DM_ANY_MINOR)
1840 r = next_free_minor(&minor);
1841 else
1842 r = specific_minor(minor);
1843 if (r < 0)
1844 goto bad_minor;
1845
1846 r = init_srcu_struct(&md->io_barrier);
1847 if (r < 0)
1848 goto bad_io_barrier;
1849
1850 md->numa_node_id = numa_node_id;
1851 md->init_tio_pdu = false;
1852 md->type = DM_TYPE_NONE;
1853 mutex_init(&md->suspend_lock);
1854 mutex_init(&md->type_lock);
1855 mutex_init(&md->table_devices_lock);
1856 spin_lock_init(&md->deferred_lock);
1857 atomic_set(&md->holders, 1);
1858 atomic_set(&md->open_count, 0);
1859 atomic_set(&md->event_nr, 0);
1860 atomic_set(&md->uevent_seq, 0);
1861 INIT_LIST_HEAD(&md->uevent_list);
1862 INIT_LIST_HEAD(&md->table_devices);
1863 spin_lock_init(&md->uevent_lock);
1864
1865 /*
1866 * default to bio-based until DM table is loaded and md->type
1867 * established. If request-based table is loaded: blk-mq will
1868 * override accordingly.
1869 */
1870 md->queue = blk_alloc_queue(numa_node_id);
1871 if (!md->queue)
1872 goto bad;
1873
1874 md->disk = alloc_disk_node(1, md->numa_node_id);
1875 if (!md->disk)
1876 goto bad;
1877
1878 init_waitqueue_head(&md->wait);
1879 INIT_WORK(&md->work, dm_wq_work);
1880 init_waitqueue_head(&md->eventq);
1881 init_completion(&md->kobj_holder.completion);
1882
1883 md->swap_bios = get_swap_bios();
1884 sema_init(&md->swap_bios_semaphore, md->swap_bios);
1885 mutex_init(&md->swap_bios_lock);
1886
1887 md->disk->major = _major;
1888 md->disk->first_minor = minor;
1889 md->disk->fops = &dm_blk_dops;
1890 md->disk->queue = md->queue;
1891 md->disk->private_data = md;
1892 sprintf(md->disk->disk_name, "dm-%d", minor);
1893
1894 if (IS_ENABLED(CONFIG_DAX_DRIVER)) {
1895 md->dax_dev = alloc_dax(md, md->disk->disk_name,
1896 &dm_dax_ops, 0);
1897 if (IS_ERR(md->dax_dev)) {
1898 md->dax_dev = NULL;
1899 goto bad;
1900 }
1901 }
1902
1903 add_disk_no_queue_reg(md->disk);
1904 format_dev_t(md->name, MKDEV(_major, minor));
1905
1906 md->wq = alloc_workqueue("kdmflush", WQ_MEM_RECLAIM, 0);
1907 if (!md->wq)
1908 goto bad;
1909
1910 md->bdev = bdget_disk(md->disk, 0);
1911 if (!md->bdev)
1912 goto bad;
1913
1914 dm_stats_init(&md->stats);
1915
1916 /* Populate the mapping, nobody knows we exist yet */
1917 spin_lock(&_minor_lock);
1918 old_md = idr_replace(&_minor_idr, md, minor);
1919 spin_unlock(&_minor_lock);
1920
1921 BUG_ON(old_md != MINOR_ALLOCED);
1922
1923 return md;
1924
1925 bad:
1926 cleanup_mapped_device(md);
1927 bad_io_barrier:
1928 free_minor(minor);
1929 bad_minor:
1930 module_put(THIS_MODULE);
1931 bad_module_get:
1932 kvfree(md);
1933 return NULL;
1934 }
1935
1936 static void unlock_fs(struct mapped_device *md);
1937
free_dev(struct mapped_device * md)1938 static void free_dev(struct mapped_device *md)
1939 {
1940 int minor = MINOR(disk_devt(md->disk));
1941
1942 unlock_fs(md);
1943
1944 cleanup_mapped_device(md);
1945
1946 free_table_devices(&md->table_devices);
1947 dm_stats_cleanup(&md->stats);
1948 free_minor(minor);
1949
1950 module_put(THIS_MODULE);
1951 kvfree(md);
1952 }
1953
__bind_mempools(struct mapped_device * md,struct dm_table * t)1954 static int __bind_mempools(struct mapped_device *md, struct dm_table *t)
1955 {
1956 struct dm_md_mempools *p = dm_table_get_md_mempools(t);
1957 int ret = 0;
1958
1959 if (dm_table_bio_based(t)) {
1960 /*
1961 * The md may already have mempools that need changing.
1962 * If so, reload bioset because front_pad may have changed
1963 * because a different table was loaded.
1964 */
1965 bioset_exit(&md->bs);
1966 bioset_exit(&md->io_bs);
1967
1968 } else if (bioset_initialized(&md->bs)) {
1969 /*
1970 * There's no need to reload with request-based dm
1971 * because the size of front_pad doesn't change.
1972 * Note for future: If you are to reload bioset,
1973 * prep-ed requests in the queue may refer
1974 * to bio from the old bioset, so you must walk
1975 * through the queue to unprep.
1976 */
1977 goto out;
1978 }
1979
1980 BUG_ON(!p ||
1981 bioset_initialized(&md->bs) ||
1982 bioset_initialized(&md->io_bs));
1983
1984 ret = bioset_init_from_src(&md->bs, &p->bs);
1985 if (ret)
1986 goto out;
1987 ret = bioset_init_from_src(&md->io_bs, &p->io_bs);
1988 if (ret)
1989 bioset_exit(&md->bs);
1990 out:
1991 /* mempool bind completed, no longer need any mempools in the table */
1992 dm_table_free_md_mempools(t);
1993 return ret;
1994 }
1995
1996 /*
1997 * Bind a table to the device.
1998 */
event_callback(void * context)1999 static void event_callback(void *context)
2000 {
2001 unsigned long flags;
2002 LIST_HEAD(uevents);
2003 struct mapped_device *md = (struct mapped_device *) context;
2004
2005 spin_lock_irqsave(&md->uevent_lock, flags);
2006 list_splice_init(&md->uevent_list, &uevents);
2007 spin_unlock_irqrestore(&md->uevent_lock, flags);
2008
2009 dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
2010
2011 atomic_inc(&md->event_nr);
2012 wake_up(&md->eventq);
2013 dm_issue_global_event();
2014 }
2015
2016 /*
2017 * Returns old map, which caller must destroy.
2018 */
__bind(struct mapped_device * md,struct dm_table * t,struct queue_limits * limits)2019 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
2020 struct queue_limits *limits)
2021 {
2022 struct dm_table *old_map;
2023 struct request_queue *q = md->queue;
2024 bool request_based = dm_table_request_based(t);
2025 sector_t size;
2026 int ret;
2027
2028 lockdep_assert_held(&md->suspend_lock);
2029
2030 size = dm_table_get_size(t);
2031
2032 /*
2033 * Wipe any geometry if the size of the table changed.
2034 */
2035 if (size != dm_get_size(md))
2036 memset(&md->geometry, 0, sizeof(md->geometry));
2037
2038 set_capacity(md->disk, size);
2039 bd_set_nr_sectors(md->bdev, size);
2040
2041 dm_table_event_callback(t, event_callback, md);
2042
2043 if (request_based) {
2044 /*
2045 * Leverage the fact that request-based DM targets are
2046 * immutable singletons - used to optimize dm_mq_queue_rq.
2047 */
2048 md->immutable_target = dm_table_get_immutable_target(t);
2049 }
2050
2051 ret = __bind_mempools(md, t);
2052 if (ret) {
2053 old_map = ERR_PTR(ret);
2054 goto out;
2055 }
2056
2057 old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2058 rcu_assign_pointer(md->map, (void *)t);
2059 md->immutable_target_type = dm_table_get_immutable_target_type(t);
2060
2061 dm_table_set_restrictions(t, q, limits);
2062 if (old_map)
2063 dm_sync_table(md);
2064
2065 out:
2066 return old_map;
2067 }
2068
2069 /*
2070 * Returns unbound table for the caller to free.
2071 */
__unbind(struct mapped_device * md)2072 static struct dm_table *__unbind(struct mapped_device *md)
2073 {
2074 struct dm_table *map = rcu_dereference_protected(md->map, 1);
2075
2076 if (!map)
2077 return NULL;
2078
2079 dm_table_event_callback(map, NULL, NULL);
2080 RCU_INIT_POINTER(md->map, NULL);
2081 dm_sync_table(md);
2082
2083 return map;
2084 }
2085
2086 /*
2087 * Constructor for a new device.
2088 */
dm_create(int minor,struct mapped_device ** result)2089 int dm_create(int minor, struct mapped_device **result)
2090 {
2091 int r;
2092 struct mapped_device *md;
2093
2094 md = alloc_dev(minor);
2095 if (!md)
2096 return -ENXIO;
2097
2098 r = dm_sysfs_init(md);
2099 if (r) {
2100 free_dev(md);
2101 return r;
2102 }
2103
2104 *result = md;
2105 return 0;
2106 }
2107
2108 /*
2109 * Functions to manage md->type.
2110 * All are required to hold md->type_lock.
2111 */
dm_lock_md_type(struct mapped_device * md)2112 void dm_lock_md_type(struct mapped_device *md)
2113 {
2114 mutex_lock(&md->type_lock);
2115 }
2116
dm_unlock_md_type(struct mapped_device * md)2117 void dm_unlock_md_type(struct mapped_device *md)
2118 {
2119 mutex_unlock(&md->type_lock);
2120 }
2121
dm_set_md_type(struct mapped_device * md,enum dm_queue_mode type)2122 void dm_set_md_type(struct mapped_device *md, enum dm_queue_mode type)
2123 {
2124 BUG_ON(!mutex_is_locked(&md->type_lock));
2125 md->type = type;
2126 }
2127
dm_get_md_type(struct mapped_device * md)2128 enum dm_queue_mode dm_get_md_type(struct mapped_device *md)
2129 {
2130 return md->type;
2131 }
2132
dm_get_immutable_target_type(struct mapped_device * md)2133 struct target_type *dm_get_immutable_target_type(struct mapped_device *md)
2134 {
2135 return md->immutable_target_type;
2136 }
2137
2138 /*
2139 * The queue_limits are only valid as long as you have a reference
2140 * count on 'md'.
2141 */
dm_get_queue_limits(struct mapped_device * md)2142 struct queue_limits *dm_get_queue_limits(struct mapped_device *md)
2143 {
2144 BUG_ON(!atomic_read(&md->holders));
2145 return &md->queue->limits;
2146 }
2147 EXPORT_SYMBOL_GPL(dm_get_queue_limits);
2148
2149 /*
2150 * Setup the DM device's queue based on md's type
2151 */
dm_setup_md_queue(struct mapped_device * md,struct dm_table * t)2152 int dm_setup_md_queue(struct mapped_device *md, struct dm_table *t)
2153 {
2154 int r;
2155 struct queue_limits limits;
2156 enum dm_queue_mode type = dm_get_md_type(md);
2157
2158 switch (type) {
2159 case DM_TYPE_REQUEST_BASED:
2160 md->disk->fops = &dm_rq_blk_dops;
2161 r = dm_mq_init_request_queue(md, t);
2162 if (r) {
2163 DMERR("Cannot initialize queue for request-based dm mapped device");
2164 return r;
2165 }
2166 break;
2167 case DM_TYPE_BIO_BASED:
2168 case DM_TYPE_DAX_BIO_BASED:
2169 break;
2170 case DM_TYPE_NONE:
2171 WARN_ON_ONCE(true);
2172 break;
2173 }
2174
2175 r = dm_calculate_queue_limits(t, &limits);
2176 if (r) {
2177 DMERR("Cannot calculate initial queue limits");
2178 return r;
2179 }
2180 dm_table_set_restrictions(t, md->queue, &limits);
2181 blk_register_queue(md->disk);
2182
2183 return 0;
2184 }
2185
dm_get_md(dev_t dev)2186 struct mapped_device *dm_get_md(dev_t dev)
2187 {
2188 struct mapped_device *md;
2189 unsigned minor = MINOR(dev);
2190
2191 if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
2192 return NULL;
2193
2194 spin_lock(&_minor_lock);
2195
2196 md = idr_find(&_minor_idr, minor);
2197 if (!md || md == MINOR_ALLOCED || (MINOR(disk_devt(dm_disk(md))) != minor) ||
2198 test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
2199 md = NULL;
2200 goto out;
2201 }
2202 dm_get(md);
2203 out:
2204 spin_unlock(&_minor_lock);
2205
2206 return md;
2207 }
2208 EXPORT_SYMBOL_GPL(dm_get_md);
2209
dm_get_mdptr(struct mapped_device * md)2210 void *dm_get_mdptr(struct mapped_device *md)
2211 {
2212 return md->interface_ptr;
2213 }
2214
dm_set_mdptr(struct mapped_device * md,void * ptr)2215 void dm_set_mdptr(struct mapped_device *md, void *ptr)
2216 {
2217 md->interface_ptr = ptr;
2218 }
2219
dm_get(struct mapped_device * md)2220 void dm_get(struct mapped_device *md)
2221 {
2222 atomic_inc(&md->holders);
2223 BUG_ON(test_bit(DMF_FREEING, &md->flags));
2224 }
2225
dm_hold(struct mapped_device * md)2226 int dm_hold(struct mapped_device *md)
2227 {
2228 spin_lock(&_minor_lock);
2229 if (test_bit(DMF_FREEING, &md->flags)) {
2230 spin_unlock(&_minor_lock);
2231 return -EBUSY;
2232 }
2233 dm_get(md);
2234 spin_unlock(&_minor_lock);
2235 return 0;
2236 }
2237 EXPORT_SYMBOL_GPL(dm_hold);
2238
dm_device_name(struct mapped_device * md)2239 const char *dm_device_name(struct mapped_device *md)
2240 {
2241 return md->name;
2242 }
2243 EXPORT_SYMBOL_GPL(dm_device_name);
2244
__dm_destroy(struct mapped_device * md,bool wait)2245 static void __dm_destroy(struct mapped_device *md, bool wait)
2246 {
2247 struct dm_table *map;
2248 int srcu_idx;
2249
2250 might_sleep();
2251
2252 spin_lock(&_minor_lock);
2253 idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
2254 set_bit(DMF_FREEING, &md->flags);
2255 spin_unlock(&_minor_lock);
2256
2257 blk_set_queue_dying(md->queue);
2258
2259 /*
2260 * Take suspend_lock so that presuspend and postsuspend methods
2261 * do not race with internal suspend.
2262 */
2263 mutex_lock(&md->suspend_lock);
2264 map = dm_get_live_table(md, &srcu_idx);
2265 if (!dm_suspended_md(md)) {
2266 dm_table_presuspend_targets(map);
2267 set_bit(DMF_SUSPENDED, &md->flags);
2268 set_bit(DMF_POST_SUSPENDING, &md->flags);
2269 dm_table_postsuspend_targets(map);
2270 }
2271 /* dm_put_live_table must be before msleep, otherwise deadlock is possible */
2272 dm_put_live_table(md, srcu_idx);
2273 mutex_unlock(&md->suspend_lock);
2274
2275 /*
2276 * Rare, but there may be I/O requests still going to complete,
2277 * for example. Wait for all references to disappear.
2278 * No one should increment the reference count of the mapped_device,
2279 * after the mapped_device state becomes DMF_FREEING.
2280 */
2281 if (wait)
2282 while (atomic_read(&md->holders))
2283 msleep(1);
2284 else if (atomic_read(&md->holders))
2285 DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2286 dm_device_name(md), atomic_read(&md->holders));
2287
2288 dm_sysfs_exit(md);
2289 dm_table_destroy(__unbind(md));
2290 free_dev(md);
2291 }
2292
dm_destroy(struct mapped_device * md)2293 void dm_destroy(struct mapped_device *md)
2294 {
2295 __dm_destroy(md, true);
2296 }
2297
dm_destroy_immediate(struct mapped_device * md)2298 void dm_destroy_immediate(struct mapped_device *md)
2299 {
2300 __dm_destroy(md, false);
2301 }
2302
dm_put(struct mapped_device * md)2303 void dm_put(struct mapped_device *md)
2304 {
2305 atomic_dec(&md->holders);
2306 }
2307 EXPORT_SYMBOL_GPL(dm_put);
2308
md_in_flight_bios(struct mapped_device * md)2309 static bool md_in_flight_bios(struct mapped_device *md)
2310 {
2311 int cpu;
2312 struct hd_struct *part = &dm_disk(md)->part0;
2313 long sum = 0;
2314
2315 for_each_possible_cpu(cpu) {
2316 sum += part_stat_local_read_cpu(part, in_flight[0], cpu);
2317 sum += part_stat_local_read_cpu(part, in_flight[1], cpu);
2318 }
2319
2320 return sum != 0;
2321 }
2322
dm_wait_for_bios_completion(struct mapped_device * md,long task_state)2323 static int dm_wait_for_bios_completion(struct mapped_device *md, long task_state)
2324 {
2325 int r = 0;
2326 DEFINE_WAIT(wait);
2327
2328 while (true) {
2329 prepare_to_wait(&md->wait, &wait, task_state);
2330
2331 if (!md_in_flight_bios(md))
2332 break;
2333
2334 if (signal_pending_state(task_state, current)) {
2335 r = -EINTR;
2336 break;
2337 }
2338
2339 io_schedule();
2340 }
2341 finish_wait(&md->wait, &wait);
2342
2343 return r;
2344 }
2345
dm_wait_for_completion(struct mapped_device * md,long task_state)2346 static int dm_wait_for_completion(struct mapped_device *md, long task_state)
2347 {
2348 int r = 0;
2349
2350 if (!queue_is_mq(md->queue))
2351 return dm_wait_for_bios_completion(md, task_state);
2352
2353 while (true) {
2354 if (!blk_mq_queue_inflight(md->queue))
2355 break;
2356
2357 if (signal_pending_state(task_state, current)) {
2358 r = -EINTR;
2359 break;
2360 }
2361
2362 msleep(5);
2363 }
2364
2365 return r;
2366 }
2367
2368 /*
2369 * Process the deferred bios
2370 */
dm_wq_work(struct work_struct * work)2371 static void dm_wq_work(struct work_struct *work)
2372 {
2373 struct mapped_device *md = container_of(work, struct mapped_device, work);
2374 struct bio *bio;
2375
2376 while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2377 spin_lock_irq(&md->deferred_lock);
2378 bio = bio_list_pop(&md->deferred);
2379 spin_unlock_irq(&md->deferred_lock);
2380
2381 if (!bio)
2382 break;
2383
2384 submit_bio_noacct(bio);
2385 }
2386 }
2387
dm_queue_flush(struct mapped_device * md)2388 static void dm_queue_flush(struct mapped_device *md)
2389 {
2390 clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2391 smp_mb__after_atomic();
2392 queue_work(md->wq, &md->work);
2393 }
2394
2395 /*
2396 * Swap in a new table, returning the old one for the caller to destroy.
2397 */
dm_swap_table(struct mapped_device * md,struct dm_table * table)2398 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
2399 {
2400 struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL);
2401 struct queue_limits limits;
2402 int r;
2403
2404 mutex_lock(&md->suspend_lock);
2405
2406 /* device must be suspended */
2407 if (!dm_suspended_md(md))
2408 goto out;
2409
2410 /*
2411 * If the new table has no data devices, retain the existing limits.
2412 * This helps multipath with queue_if_no_path if all paths disappear,
2413 * then new I/O is queued based on these limits, and then some paths
2414 * reappear.
2415 */
2416 if (dm_table_has_no_data_devices(table)) {
2417 live_map = dm_get_live_table_fast(md);
2418 if (live_map)
2419 limits = md->queue->limits;
2420 dm_put_live_table_fast(md);
2421 }
2422
2423 if (!live_map) {
2424 r = dm_calculate_queue_limits(table, &limits);
2425 if (r) {
2426 map = ERR_PTR(r);
2427 goto out;
2428 }
2429 }
2430
2431 map = __bind(md, table, &limits);
2432 dm_issue_global_event();
2433
2434 out:
2435 mutex_unlock(&md->suspend_lock);
2436 return map;
2437 }
2438
2439 /*
2440 * Functions to lock and unlock any filesystem running on the
2441 * device.
2442 */
lock_fs(struct mapped_device * md)2443 static int lock_fs(struct mapped_device *md)
2444 {
2445 int r;
2446
2447 WARN_ON(md->frozen_sb);
2448
2449 md->frozen_sb = freeze_bdev(md->bdev);
2450 if (IS_ERR(md->frozen_sb)) {
2451 r = PTR_ERR(md->frozen_sb);
2452 md->frozen_sb = NULL;
2453 return r;
2454 }
2455
2456 set_bit(DMF_FROZEN, &md->flags);
2457
2458 return 0;
2459 }
2460
unlock_fs(struct mapped_device * md)2461 static void unlock_fs(struct mapped_device *md)
2462 {
2463 if (!test_bit(DMF_FROZEN, &md->flags))
2464 return;
2465
2466 thaw_bdev(md->bdev, md->frozen_sb);
2467 md->frozen_sb = NULL;
2468 clear_bit(DMF_FROZEN, &md->flags);
2469 }
2470
2471 /*
2472 * @suspend_flags: DM_SUSPEND_LOCKFS_FLAG and/or DM_SUSPEND_NOFLUSH_FLAG
2473 * @task_state: e.g. TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE
2474 * @dmf_suspended_flag: DMF_SUSPENDED or DMF_SUSPENDED_INTERNALLY
2475 *
2476 * If __dm_suspend returns 0, the device is completely quiescent
2477 * now. There is no request-processing activity. All new requests
2478 * are being added to md->deferred list.
2479 */
__dm_suspend(struct mapped_device * md,struct dm_table * map,unsigned suspend_flags,long task_state,int dmf_suspended_flag)2480 static int __dm_suspend(struct mapped_device *md, struct dm_table *map,
2481 unsigned suspend_flags, long task_state,
2482 int dmf_suspended_flag)
2483 {
2484 bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG;
2485 bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG;
2486 int r;
2487
2488 lockdep_assert_held(&md->suspend_lock);
2489
2490 /*
2491 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2492 * This flag is cleared before dm_suspend returns.
2493 */
2494 if (noflush)
2495 set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2496 else
2497 DMDEBUG("%s: suspending with flush", dm_device_name(md));
2498
2499 /*
2500 * This gets reverted if there's an error later and the targets
2501 * provide the .presuspend_undo hook.
2502 */
2503 dm_table_presuspend_targets(map);
2504
2505 /*
2506 * Flush I/O to the device.
2507 * Any I/O submitted after lock_fs() may not be flushed.
2508 * noflush takes precedence over do_lockfs.
2509 * (lock_fs() flushes I/Os and waits for them to complete.)
2510 */
2511 if (!noflush && do_lockfs) {
2512 r = lock_fs(md);
2513 if (r) {
2514 dm_table_presuspend_undo_targets(map);
2515 return r;
2516 }
2517 }
2518
2519 /*
2520 * Here we must make sure that no processes are submitting requests
2521 * to target drivers i.e. no one may be executing
2522 * __split_and_process_bio from dm_submit_bio.
2523 *
2524 * To get all processes out of __split_and_process_bio in dm_submit_bio,
2525 * we take the write lock. To prevent any process from reentering
2526 * __split_and_process_bio from dm_submit_bio and quiesce the thread
2527 * (dm_wq_work), we set DMF_BLOCK_IO_FOR_SUSPEND and call
2528 * flush_workqueue(md->wq).
2529 */
2530 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2531 if (map)
2532 synchronize_srcu(&md->io_barrier);
2533
2534 /*
2535 * Stop md->queue before flushing md->wq in case request-based
2536 * dm defers requests to md->wq from md->queue.
2537 */
2538 if (dm_request_based(md))
2539 dm_stop_queue(md->queue);
2540
2541 flush_workqueue(md->wq);
2542
2543 /*
2544 * At this point no more requests are entering target request routines.
2545 * We call dm_wait_for_completion to wait for all existing requests
2546 * to finish.
2547 */
2548 r = dm_wait_for_completion(md, task_state);
2549 if (!r)
2550 set_bit(dmf_suspended_flag, &md->flags);
2551
2552 if (noflush)
2553 clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2554 if (map)
2555 synchronize_srcu(&md->io_barrier);
2556
2557 /* were we interrupted ? */
2558 if (r < 0) {
2559 dm_queue_flush(md);
2560
2561 if (dm_request_based(md))
2562 dm_start_queue(md->queue);
2563
2564 unlock_fs(md);
2565 dm_table_presuspend_undo_targets(map);
2566 /* pushback list is already flushed, so skip flush */
2567 }
2568
2569 return r;
2570 }
2571
2572 /*
2573 * We need to be able to change a mapping table under a mounted
2574 * filesystem. For example we might want to move some data in
2575 * the background. Before the table can be swapped with
2576 * dm_bind_table, dm_suspend must be called to flush any in
2577 * flight bios and ensure that any further io gets deferred.
2578 */
2579 /*
2580 * Suspend mechanism in request-based dm.
2581 *
2582 * 1. Flush all I/Os by lock_fs() if needed.
2583 * 2. Stop dispatching any I/O by stopping the request_queue.
2584 * 3. Wait for all in-flight I/Os to be completed or requeued.
2585 *
2586 * To abort suspend, start the request_queue.
2587 */
dm_suspend(struct mapped_device * md,unsigned suspend_flags)2588 int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
2589 {
2590 struct dm_table *map = NULL;
2591 int r = 0;
2592
2593 retry:
2594 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2595
2596 if (dm_suspended_md(md)) {
2597 r = -EINVAL;
2598 goto out_unlock;
2599 }
2600
2601 if (dm_suspended_internally_md(md)) {
2602 /* already internally suspended, wait for internal resume */
2603 mutex_unlock(&md->suspend_lock);
2604 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2605 if (r)
2606 return r;
2607 goto retry;
2608 }
2609
2610 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2611
2612 r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE, DMF_SUSPENDED);
2613 if (r)
2614 goto out_unlock;
2615
2616 set_bit(DMF_POST_SUSPENDING, &md->flags);
2617 dm_table_postsuspend_targets(map);
2618 clear_bit(DMF_POST_SUSPENDING, &md->flags);
2619
2620 out_unlock:
2621 mutex_unlock(&md->suspend_lock);
2622 return r;
2623 }
2624
__dm_resume(struct mapped_device * md,struct dm_table * map)2625 static int __dm_resume(struct mapped_device *md, struct dm_table *map)
2626 {
2627 if (map) {
2628 int r = dm_table_resume_targets(map);
2629 if (r)
2630 return r;
2631 }
2632
2633 dm_queue_flush(md);
2634
2635 /*
2636 * Flushing deferred I/Os must be done after targets are resumed
2637 * so that mapping of targets can work correctly.
2638 * Request-based dm is queueing the deferred I/Os in its request_queue.
2639 */
2640 if (dm_request_based(md))
2641 dm_start_queue(md->queue);
2642
2643 unlock_fs(md);
2644
2645 return 0;
2646 }
2647
dm_resume(struct mapped_device * md)2648 int dm_resume(struct mapped_device *md)
2649 {
2650 int r;
2651 struct dm_table *map = NULL;
2652
2653 retry:
2654 r = -EINVAL;
2655 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2656
2657 if (!dm_suspended_md(md))
2658 goto out;
2659
2660 if (dm_suspended_internally_md(md)) {
2661 /* already internally suspended, wait for internal resume */
2662 mutex_unlock(&md->suspend_lock);
2663 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2664 if (r)
2665 return r;
2666 goto retry;
2667 }
2668
2669 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2670 if (!map || !dm_table_get_size(map))
2671 goto out;
2672
2673 r = __dm_resume(md, map);
2674 if (r)
2675 goto out;
2676
2677 clear_bit(DMF_SUSPENDED, &md->flags);
2678 out:
2679 mutex_unlock(&md->suspend_lock);
2680
2681 return r;
2682 }
2683
2684 /*
2685 * Internal suspend/resume works like userspace-driven suspend. It waits
2686 * until all bios finish and prevents issuing new bios to the target drivers.
2687 * It may be used only from the kernel.
2688 */
2689
__dm_internal_suspend(struct mapped_device * md,unsigned suspend_flags)2690 static void __dm_internal_suspend(struct mapped_device *md, unsigned suspend_flags)
2691 {
2692 struct dm_table *map = NULL;
2693
2694 lockdep_assert_held(&md->suspend_lock);
2695
2696 if (md->internal_suspend_count++)
2697 return; /* nested internal suspend */
2698
2699 if (dm_suspended_md(md)) {
2700 set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2701 return; /* nest suspend */
2702 }
2703
2704 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2705
2706 /*
2707 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is
2708 * supported. Properly supporting a TASK_INTERRUPTIBLE internal suspend
2709 * would require changing .presuspend to return an error -- avoid this
2710 * until there is a need for more elaborate variants of internal suspend.
2711 */
2712 (void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE,
2713 DMF_SUSPENDED_INTERNALLY);
2714
2715 set_bit(DMF_POST_SUSPENDING, &md->flags);
2716 dm_table_postsuspend_targets(map);
2717 clear_bit(DMF_POST_SUSPENDING, &md->flags);
2718 }
2719
__dm_internal_resume(struct mapped_device * md)2720 static void __dm_internal_resume(struct mapped_device *md)
2721 {
2722 BUG_ON(!md->internal_suspend_count);
2723
2724 if (--md->internal_suspend_count)
2725 return; /* resume from nested internal suspend */
2726
2727 if (dm_suspended_md(md))
2728 goto done; /* resume from nested suspend */
2729
2730 /*
2731 * NOTE: existing callers don't need to call dm_table_resume_targets
2732 * (which may fail -- so best to avoid it for now by passing NULL map)
2733 */
2734 (void) __dm_resume(md, NULL);
2735
2736 done:
2737 clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2738 smp_mb__after_atomic();
2739 wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY);
2740 }
2741
dm_internal_suspend_noflush(struct mapped_device * md)2742 void dm_internal_suspend_noflush(struct mapped_device *md)
2743 {
2744 mutex_lock(&md->suspend_lock);
2745 __dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG);
2746 mutex_unlock(&md->suspend_lock);
2747 }
2748 EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush);
2749
dm_internal_resume(struct mapped_device * md)2750 void dm_internal_resume(struct mapped_device *md)
2751 {
2752 mutex_lock(&md->suspend_lock);
2753 __dm_internal_resume(md);
2754 mutex_unlock(&md->suspend_lock);
2755 }
2756 EXPORT_SYMBOL_GPL(dm_internal_resume);
2757
2758 /*
2759 * Fast variants of internal suspend/resume hold md->suspend_lock,
2760 * which prevents interaction with userspace-driven suspend.
2761 */
2762
dm_internal_suspend_fast(struct mapped_device * md)2763 void dm_internal_suspend_fast(struct mapped_device *md)
2764 {
2765 mutex_lock(&md->suspend_lock);
2766 if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2767 return;
2768
2769 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2770 synchronize_srcu(&md->io_barrier);
2771 flush_workqueue(md->wq);
2772 dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
2773 }
2774 EXPORT_SYMBOL_GPL(dm_internal_suspend_fast);
2775
dm_internal_resume_fast(struct mapped_device * md)2776 void dm_internal_resume_fast(struct mapped_device *md)
2777 {
2778 if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2779 goto done;
2780
2781 dm_queue_flush(md);
2782
2783 done:
2784 mutex_unlock(&md->suspend_lock);
2785 }
2786 EXPORT_SYMBOL_GPL(dm_internal_resume_fast);
2787
2788 /*-----------------------------------------------------------------
2789 * Event notification.
2790 *---------------------------------------------------------------*/
dm_kobject_uevent(struct mapped_device * md,enum kobject_action action,unsigned cookie)2791 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
2792 unsigned cookie)
2793 {
2794 int r;
2795 unsigned noio_flag;
2796 char udev_cookie[DM_COOKIE_LENGTH];
2797 char *envp[] = { udev_cookie, NULL };
2798
2799 noio_flag = memalloc_noio_save();
2800
2801 if (!cookie)
2802 r = kobject_uevent(&disk_to_dev(md->disk)->kobj, action);
2803 else {
2804 snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
2805 DM_COOKIE_ENV_VAR_NAME, cookie);
2806 r = kobject_uevent_env(&disk_to_dev(md->disk)->kobj,
2807 action, envp);
2808 }
2809
2810 memalloc_noio_restore(noio_flag);
2811
2812 return r;
2813 }
2814
dm_next_uevent_seq(struct mapped_device * md)2815 uint32_t dm_next_uevent_seq(struct mapped_device *md)
2816 {
2817 return atomic_add_return(1, &md->uevent_seq);
2818 }
2819
dm_get_event_nr(struct mapped_device * md)2820 uint32_t dm_get_event_nr(struct mapped_device *md)
2821 {
2822 return atomic_read(&md->event_nr);
2823 }
2824
dm_wait_event(struct mapped_device * md,int event_nr)2825 int dm_wait_event(struct mapped_device *md, int event_nr)
2826 {
2827 return wait_event_interruptible(md->eventq,
2828 (event_nr != atomic_read(&md->event_nr)));
2829 }
2830
dm_uevent_add(struct mapped_device * md,struct list_head * elist)2831 void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
2832 {
2833 unsigned long flags;
2834
2835 spin_lock_irqsave(&md->uevent_lock, flags);
2836 list_add(elist, &md->uevent_list);
2837 spin_unlock_irqrestore(&md->uevent_lock, flags);
2838 }
2839
2840 /*
2841 * The gendisk is only valid as long as you have a reference
2842 * count on 'md'.
2843 */
dm_disk(struct mapped_device * md)2844 struct gendisk *dm_disk(struct mapped_device *md)
2845 {
2846 return md->disk;
2847 }
2848 EXPORT_SYMBOL_GPL(dm_disk);
2849
dm_kobject(struct mapped_device * md)2850 struct kobject *dm_kobject(struct mapped_device *md)
2851 {
2852 return &md->kobj_holder.kobj;
2853 }
2854
dm_get_from_kobject(struct kobject * kobj)2855 struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
2856 {
2857 struct mapped_device *md;
2858
2859 md = container_of(kobj, struct mapped_device, kobj_holder.kobj);
2860
2861 spin_lock(&_minor_lock);
2862 if (test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
2863 md = NULL;
2864 goto out;
2865 }
2866 dm_get(md);
2867 out:
2868 spin_unlock(&_minor_lock);
2869
2870 return md;
2871 }
2872
dm_suspended_md(struct mapped_device * md)2873 int dm_suspended_md(struct mapped_device *md)
2874 {
2875 return test_bit(DMF_SUSPENDED, &md->flags);
2876 }
2877
dm_post_suspending_md(struct mapped_device * md)2878 static int dm_post_suspending_md(struct mapped_device *md)
2879 {
2880 return test_bit(DMF_POST_SUSPENDING, &md->flags);
2881 }
2882
dm_suspended_internally_md(struct mapped_device * md)2883 int dm_suspended_internally_md(struct mapped_device *md)
2884 {
2885 return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2886 }
2887
dm_test_deferred_remove_flag(struct mapped_device * md)2888 int dm_test_deferred_remove_flag(struct mapped_device *md)
2889 {
2890 return test_bit(DMF_DEFERRED_REMOVE, &md->flags);
2891 }
2892
dm_suspended(struct dm_target * ti)2893 int dm_suspended(struct dm_target *ti)
2894 {
2895 return dm_suspended_md(ti->table->md);
2896 }
2897 EXPORT_SYMBOL_GPL(dm_suspended);
2898
dm_post_suspending(struct dm_target * ti)2899 int dm_post_suspending(struct dm_target *ti)
2900 {
2901 return dm_post_suspending_md(ti->table->md);
2902 }
2903 EXPORT_SYMBOL_GPL(dm_post_suspending);
2904
dm_noflush_suspending(struct dm_target * ti)2905 int dm_noflush_suspending(struct dm_target *ti)
2906 {
2907 return __noflush_suspending(ti->table->md);
2908 }
2909 EXPORT_SYMBOL_GPL(dm_noflush_suspending);
2910
dm_alloc_md_mempools(struct mapped_device * md,enum dm_queue_mode type,unsigned integrity,unsigned per_io_data_size,unsigned min_pool_size)2911 struct dm_md_mempools *dm_alloc_md_mempools(struct mapped_device *md, enum dm_queue_mode type,
2912 unsigned integrity, unsigned per_io_data_size,
2913 unsigned min_pool_size)
2914 {
2915 struct dm_md_mempools *pools = kzalloc_node(sizeof(*pools), GFP_KERNEL, md->numa_node_id);
2916 unsigned int pool_size = 0;
2917 unsigned int front_pad, io_front_pad;
2918 int ret;
2919
2920 if (!pools)
2921 return NULL;
2922
2923 switch (type) {
2924 case DM_TYPE_BIO_BASED:
2925 case DM_TYPE_DAX_BIO_BASED:
2926 pool_size = max(dm_get_reserved_bio_based_ios(), min_pool_size);
2927 front_pad = roundup(per_io_data_size, __alignof__(struct dm_target_io)) + offsetof(struct dm_target_io, clone);
2928 io_front_pad = roundup(front_pad, __alignof__(struct dm_io)) + offsetof(struct dm_io, tio);
2929 ret = bioset_init(&pools->io_bs, pool_size, io_front_pad, 0);
2930 if (ret)
2931 goto out;
2932 if (integrity && bioset_integrity_create(&pools->io_bs, pool_size))
2933 goto out;
2934 break;
2935 case DM_TYPE_REQUEST_BASED:
2936 pool_size = max(dm_get_reserved_rq_based_ios(), min_pool_size);
2937 front_pad = offsetof(struct dm_rq_clone_bio_info, clone);
2938 /* per_io_data_size is used for blk-mq pdu at queue allocation */
2939 break;
2940 default:
2941 BUG();
2942 }
2943
2944 ret = bioset_init(&pools->bs, pool_size, front_pad, 0);
2945 if (ret)
2946 goto out;
2947
2948 if (integrity && bioset_integrity_create(&pools->bs, pool_size))
2949 goto out;
2950
2951 return pools;
2952
2953 out:
2954 dm_free_md_mempools(pools);
2955
2956 return NULL;
2957 }
2958
dm_free_md_mempools(struct dm_md_mempools * pools)2959 void dm_free_md_mempools(struct dm_md_mempools *pools)
2960 {
2961 if (!pools)
2962 return;
2963
2964 bioset_exit(&pools->bs);
2965 bioset_exit(&pools->io_bs);
2966
2967 kfree(pools);
2968 }
2969
2970 struct dm_pr {
2971 u64 old_key;
2972 u64 new_key;
2973 u32 flags;
2974 bool fail_early;
2975 };
2976
dm_call_pr(struct block_device * bdev,iterate_devices_callout_fn fn,void * data)2977 static int dm_call_pr(struct block_device *bdev, iterate_devices_callout_fn fn,
2978 void *data)
2979 {
2980 struct mapped_device *md = bdev->bd_disk->private_data;
2981 struct dm_table *table;
2982 struct dm_target *ti;
2983 int ret = -ENOTTY, srcu_idx;
2984
2985 table = dm_get_live_table(md, &srcu_idx);
2986 if (!table || !dm_table_get_size(table))
2987 goto out;
2988
2989 /* We only support devices that have a single target */
2990 if (dm_table_get_num_targets(table) != 1)
2991 goto out;
2992 ti = dm_table_get_target(table, 0);
2993
2994 ret = -EINVAL;
2995 if (!ti->type->iterate_devices)
2996 goto out;
2997
2998 ret = ti->type->iterate_devices(ti, fn, data);
2999 out:
3000 dm_put_live_table(md, srcu_idx);
3001 return ret;
3002 }
3003
3004 /*
3005 * For register / unregister we need to manually call out to every path.
3006 */
__dm_pr_register(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)3007 static int __dm_pr_register(struct dm_target *ti, struct dm_dev *dev,
3008 sector_t start, sector_t len, void *data)
3009 {
3010 struct dm_pr *pr = data;
3011 const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3012
3013 if (!ops || !ops->pr_register)
3014 return -EOPNOTSUPP;
3015 return ops->pr_register(dev->bdev, pr->old_key, pr->new_key, pr->flags);
3016 }
3017
dm_pr_register(struct block_device * bdev,u64 old_key,u64 new_key,u32 flags)3018 static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
3019 u32 flags)
3020 {
3021 struct dm_pr pr = {
3022 .old_key = old_key,
3023 .new_key = new_key,
3024 .flags = flags,
3025 .fail_early = true,
3026 };
3027 int ret;
3028
3029 ret = dm_call_pr(bdev, __dm_pr_register, &pr);
3030 if (ret && new_key) {
3031 /* unregister all paths if we failed to register any path */
3032 pr.old_key = new_key;
3033 pr.new_key = 0;
3034 pr.flags = 0;
3035 pr.fail_early = false;
3036 dm_call_pr(bdev, __dm_pr_register, &pr);
3037 }
3038
3039 return ret;
3040 }
3041
dm_pr_reserve(struct block_device * bdev,u64 key,enum pr_type type,u32 flags)3042 static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
3043 u32 flags)
3044 {
3045 struct mapped_device *md = bdev->bd_disk->private_data;
3046 const struct pr_ops *ops;
3047 int r, srcu_idx;
3048
3049 r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3050 if (r < 0)
3051 goto out;
3052
3053 ops = bdev->bd_disk->fops->pr_ops;
3054 if (ops && ops->pr_reserve)
3055 r = ops->pr_reserve(bdev, key, type, flags);
3056 else
3057 r = -EOPNOTSUPP;
3058 out:
3059 dm_unprepare_ioctl(md, srcu_idx);
3060 return r;
3061 }
3062
dm_pr_release(struct block_device * bdev,u64 key,enum pr_type type)3063 static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
3064 {
3065 struct mapped_device *md = bdev->bd_disk->private_data;
3066 const struct pr_ops *ops;
3067 int r, srcu_idx;
3068
3069 r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3070 if (r < 0)
3071 goto out;
3072
3073 ops = bdev->bd_disk->fops->pr_ops;
3074 if (ops && ops->pr_release)
3075 r = ops->pr_release(bdev, key, type);
3076 else
3077 r = -EOPNOTSUPP;
3078 out:
3079 dm_unprepare_ioctl(md, srcu_idx);
3080 return r;
3081 }
3082
dm_pr_preempt(struct block_device * bdev,u64 old_key,u64 new_key,enum pr_type type,bool abort)3083 static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
3084 enum pr_type type, bool abort)
3085 {
3086 struct mapped_device *md = bdev->bd_disk->private_data;
3087 const struct pr_ops *ops;
3088 int r, srcu_idx;
3089
3090 r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3091 if (r < 0)
3092 goto out;
3093
3094 ops = bdev->bd_disk->fops->pr_ops;
3095 if (ops && ops->pr_preempt)
3096 r = ops->pr_preempt(bdev, old_key, new_key, type, abort);
3097 else
3098 r = -EOPNOTSUPP;
3099 out:
3100 dm_unprepare_ioctl(md, srcu_idx);
3101 return r;
3102 }
3103
dm_pr_clear(struct block_device * bdev,u64 key)3104 static int dm_pr_clear(struct block_device *bdev, u64 key)
3105 {
3106 struct mapped_device *md = bdev->bd_disk->private_data;
3107 const struct pr_ops *ops;
3108 int r, srcu_idx;
3109
3110 r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3111 if (r < 0)
3112 goto out;
3113
3114 ops = bdev->bd_disk->fops->pr_ops;
3115 if (ops && ops->pr_clear)
3116 r = ops->pr_clear(bdev, key);
3117 else
3118 r = -EOPNOTSUPP;
3119 out:
3120 dm_unprepare_ioctl(md, srcu_idx);
3121 return r;
3122 }
3123
3124 static const struct pr_ops dm_pr_ops = {
3125 .pr_register = dm_pr_register,
3126 .pr_reserve = dm_pr_reserve,
3127 .pr_release = dm_pr_release,
3128 .pr_preempt = dm_pr_preempt,
3129 .pr_clear = dm_pr_clear,
3130 };
3131
3132 static const struct block_device_operations dm_blk_dops = {
3133 .submit_bio = dm_submit_bio,
3134 .open = dm_blk_open,
3135 .release = dm_blk_close,
3136 .ioctl = dm_blk_ioctl,
3137 .getgeo = dm_blk_getgeo,
3138 .report_zones = dm_blk_report_zones,
3139 .pr_ops = &dm_pr_ops,
3140 .owner = THIS_MODULE
3141 };
3142
3143 static const struct block_device_operations dm_rq_blk_dops = {
3144 .open = dm_blk_open,
3145 .release = dm_blk_close,
3146 .ioctl = dm_blk_ioctl,
3147 .getgeo = dm_blk_getgeo,
3148 .pr_ops = &dm_pr_ops,
3149 .owner = THIS_MODULE
3150 };
3151
3152 static const struct dax_operations dm_dax_ops = {
3153 .direct_access = dm_dax_direct_access,
3154 .dax_supported = dm_dax_supported,
3155 .copy_from_iter = dm_dax_copy_from_iter,
3156 .copy_to_iter = dm_dax_copy_to_iter,
3157 .zero_page_range = dm_dax_zero_page_range,
3158 };
3159
3160 /*
3161 * module hooks
3162 */
3163 module_init(dm_init);
3164 module_exit(dm_exit);
3165
3166 module_param(major, uint, 0);
3167 MODULE_PARM_DESC(major, "The major number of the device mapper");
3168
3169 module_param(reserved_bio_based_ios, uint, S_IRUGO | S_IWUSR);
3170 MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools");
3171
3172 module_param(dm_numa_node, int, S_IRUGO | S_IWUSR);
3173 MODULE_PARM_DESC(dm_numa_node, "NUMA node for DM device memory allocations");
3174
3175 module_param(swap_bios, int, S_IRUGO | S_IWUSR);
3176 MODULE_PARM_DESC(swap_bios, "Maximum allowed inflight swap IOs");
3177
3178 MODULE_DESCRIPTION(DM_NAME " driver");
3179 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
3180 MODULE_LICENSE("GPL");
3181