• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3  * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4  *
5  * This file is released under the GPL.
6  */
7 
8 #include "dm-core.h"
9 #include "dm-rq.h"
10 #include "dm-uevent.h"
11 
12 #include <linux/init.h>
13 #include <linux/module.h>
14 #include <linux/mutex.h>
15 #include <linux/sched/mm.h>
16 #include <linux/sched/signal.h>
17 #include <linux/blkpg.h>
18 #include <linux/bio.h>
19 #include <linux/mempool.h>
20 #include <linux/dax.h>
21 #include <linux/slab.h>
22 #include <linux/idr.h>
23 #include <linux/uio.h>
24 #include <linux/hdreg.h>
25 #include <linux/delay.h>
26 #include <linux/wait.h>
27 #include <linux/pr.h>
28 #include <linux/refcount.h>
29 #include <linux/part_stat.h>
30 #include <linux/blk-crypto.h>
31 
32 #define DM_MSG_PREFIX "core"
33 
34 /*
35  * Cookies are numeric values sent with CHANGE and REMOVE
36  * uevents while resuming, removing or renaming the device.
37  */
38 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
39 #define DM_COOKIE_LENGTH 24
40 
41 static const char *_name = DM_NAME;
42 
43 static unsigned int major = 0;
44 static unsigned int _major = 0;
45 
46 static DEFINE_IDR(_minor_idr);
47 
48 static DEFINE_SPINLOCK(_minor_lock);
49 
50 static void do_deferred_remove(struct work_struct *w);
51 
52 static DECLARE_WORK(deferred_remove_work, do_deferred_remove);
53 
54 static struct workqueue_struct *deferred_remove_workqueue;
55 
56 atomic_t dm_global_event_nr = ATOMIC_INIT(0);
57 DECLARE_WAIT_QUEUE_HEAD(dm_global_eventq);
58 
dm_issue_global_event(void)59 void dm_issue_global_event(void)
60 {
61 	atomic_inc(&dm_global_event_nr);
62 	wake_up(&dm_global_eventq);
63 }
64 
65 /*
66  * One of these is allocated (on-stack) per original bio.
67  */
68 struct clone_info {
69 	struct dm_table *map;
70 	struct bio *bio;
71 	struct dm_io *io;
72 	sector_t sector;
73 	unsigned sector_count;
74 };
75 
76 /*
77  * One of these is allocated per clone bio.
78  */
79 #define DM_TIO_MAGIC 7282014
80 struct dm_target_io {
81 	unsigned magic;
82 	struct dm_io *io;
83 	struct dm_target *ti;
84 	unsigned target_bio_nr;
85 	unsigned *len_ptr;
86 	bool inside_dm_io;
87 	struct bio clone;
88 };
89 
90 /*
91  * One of these is allocated per original bio.
92  * It contains the first clone used for that original.
93  */
94 #define DM_IO_MAGIC 5191977
95 struct dm_io {
96 	unsigned magic;
97 	struct mapped_device *md;
98 	blk_status_t status;
99 	atomic_t io_count;
100 	struct bio *orig_bio;
101 	unsigned long start_time;
102 	spinlock_t endio_lock;
103 	struct dm_stats_aux stats_aux;
104 	/* last member of dm_target_io is 'struct bio' */
105 	struct dm_target_io tio;
106 };
107 
dm_per_bio_data(struct bio * bio,size_t data_size)108 void *dm_per_bio_data(struct bio *bio, size_t data_size)
109 {
110 	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
111 	if (!tio->inside_dm_io)
112 		return (char *)bio - offsetof(struct dm_target_io, clone) - data_size;
113 	return (char *)bio - offsetof(struct dm_target_io, clone) - offsetof(struct dm_io, tio) - data_size;
114 }
115 EXPORT_SYMBOL_GPL(dm_per_bio_data);
116 
dm_bio_from_per_bio_data(void * data,size_t data_size)117 struct bio *dm_bio_from_per_bio_data(void *data, size_t data_size)
118 {
119 	struct dm_io *io = (struct dm_io *)((char *)data + data_size);
120 	if (io->magic == DM_IO_MAGIC)
121 		return (struct bio *)((char *)io + offsetof(struct dm_io, tio) + offsetof(struct dm_target_io, clone));
122 	BUG_ON(io->magic != DM_TIO_MAGIC);
123 	return (struct bio *)((char *)io + offsetof(struct dm_target_io, clone));
124 }
125 EXPORT_SYMBOL_GPL(dm_bio_from_per_bio_data);
126 
dm_bio_get_target_bio_nr(const struct bio * bio)127 unsigned dm_bio_get_target_bio_nr(const struct bio *bio)
128 {
129 	return container_of(bio, struct dm_target_io, clone)->target_bio_nr;
130 }
131 EXPORT_SYMBOL_GPL(dm_bio_get_target_bio_nr);
132 
133 #define MINOR_ALLOCED ((void *)-1)
134 
135 /*
136  * Bits for the md->flags field.
137  */
138 #define DMF_BLOCK_IO_FOR_SUSPEND 0
139 #define DMF_SUSPENDED 1
140 #define DMF_FROZEN 2
141 #define DMF_FREEING 3
142 #define DMF_DELETING 4
143 #define DMF_NOFLUSH_SUSPENDING 5
144 #define DMF_DEFERRED_REMOVE 6
145 #define DMF_SUSPENDED_INTERNALLY 7
146 #define DMF_POST_SUSPENDING 8
147 
148 #define DM_NUMA_NODE NUMA_NO_NODE
149 static int dm_numa_node = DM_NUMA_NODE;
150 
151 #define DEFAULT_SWAP_BIOS	(8 * 1048576 / PAGE_SIZE)
152 static int swap_bios = DEFAULT_SWAP_BIOS;
get_swap_bios(void)153 static int get_swap_bios(void)
154 {
155 	int latch = READ_ONCE(swap_bios);
156 	if (unlikely(latch <= 0))
157 		latch = DEFAULT_SWAP_BIOS;
158 	return latch;
159 }
160 
161 /*
162  * For mempools pre-allocation at the table loading time.
163  */
164 struct dm_md_mempools {
165 	struct bio_set bs;
166 	struct bio_set io_bs;
167 };
168 
169 struct table_device {
170 	struct list_head list;
171 	refcount_t count;
172 	struct dm_dev dm_dev;
173 };
174 
175 /*
176  * Bio-based DM's mempools' reserved IOs set by the user.
177  */
178 #define RESERVED_BIO_BASED_IOS		16
179 static unsigned reserved_bio_based_ios = RESERVED_BIO_BASED_IOS;
180 
__dm_get_module_param_int(int * module_param,int min,int max)181 static int __dm_get_module_param_int(int *module_param, int min, int max)
182 {
183 	int param = READ_ONCE(*module_param);
184 	int modified_param = 0;
185 	bool modified = true;
186 
187 	if (param < min)
188 		modified_param = min;
189 	else if (param > max)
190 		modified_param = max;
191 	else
192 		modified = false;
193 
194 	if (modified) {
195 		(void)cmpxchg(module_param, param, modified_param);
196 		param = modified_param;
197 	}
198 
199 	return param;
200 }
201 
__dm_get_module_param(unsigned * module_param,unsigned def,unsigned max)202 unsigned __dm_get_module_param(unsigned *module_param,
203 			       unsigned def, unsigned max)
204 {
205 	unsigned param = READ_ONCE(*module_param);
206 	unsigned modified_param = 0;
207 
208 	if (!param)
209 		modified_param = def;
210 	else if (param > max)
211 		modified_param = max;
212 
213 	if (modified_param) {
214 		(void)cmpxchg(module_param, param, modified_param);
215 		param = modified_param;
216 	}
217 
218 	return param;
219 }
220 
dm_get_reserved_bio_based_ios(void)221 unsigned dm_get_reserved_bio_based_ios(void)
222 {
223 	return __dm_get_module_param(&reserved_bio_based_ios,
224 				     RESERVED_BIO_BASED_IOS, DM_RESERVED_MAX_IOS);
225 }
226 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios);
227 
dm_get_numa_node(void)228 static unsigned dm_get_numa_node(void)
229 {
230 	return __dm_get_module_param_int(&dm_numa_node,
231 					 DM_NUMA_NODE, num_online_nodes() - 1);
232 }
233 
local_init(void)234 static int __init local_init(void)
235 {
236 	int r;
237 
238 	r = dm_uevent_init();
239 	if (r)
240 		return r;
241 
242 	deferred_remove_workqueue = alloc_workqueue("kdmremove", WQ_UNBOUND, 1);
243 	if (!deferred_remove_workqueue) {
244 		r = -ENOMEM;
245 		goto out_uevent_exit;
246 	}
247 
248 	_major = major;
249 	r = register_blkdev(_major, _name);
250 	if (r < 0)
251 		goto out_free_workqueue;
252 
253 	if (!_major)
254 		_major = r;
255 
256 	return 0;
257 
258 out_free_workqueue:
259 	destroy_workqueue(deferred_remove_workqueue);
260 out_uevent_exit:
261 	dm_uevent_exit();
262 
263 	return r;
264 }
265 
local_exit(void)266 static void local_exit(void)
267 {
268 	flush_scheduled_work();
269 	destroy_workqueue(deferred_remove_workqueue);
270 
271 	unregister_blkdev(_major, _name);
272 	dm_uevent_exit();
273 
274 	_major = 0;
275 
276 	DMINFO("cleaned up");
277 }
278 
279 static int (*_inits[])(void) __initdata = {
280 	local_init,
281 	dm_target_init,
282 	dm_linear_init,
283 	dm_stripe_init,
284 	dm_io_init,
285 	dm_kcopyd_init,
286 	dm_interface_init,
287 	dm_statistics_init,
288 };
289 
290 static void (*_exits[])(void) = {
291 	local_exit,
292 	dm_target_exit,
293 	dm_linear_exit,
294 	dm_stripe_exit,
295 	dm_io_exit,
296 	dm_kcopyd_exit,
297 	dm_interface_exit,
298 	dm_statistics_exit,
299 };
300 
dm_init(void)301 static int __init dm_init(void)
302 {
303 	const int count = ARRAY_SIZE(_inits);
304 
305 	int r, i;
306 
307 	for (i = 0; i < count; i++) {
308 		r = _inits[i]();
309 		if (r)
310 			goto bad;
311 	}
312 
313 	return 0;
314 
315       bad:
316 	while (i--)
317 		_exits[i]();
318 
319 	return r;
320 }
321 
dm_exit(void)322 static void __exit dm_exit(void)
323 {
324 	int i = ARRAY_SIZE(_exits);
325 
326 	while (i--)
327 		_exits[i]();
328 
329 	/*
330 	 * Should be empty by this point.
331 	 */
332 	idr_destroy(&_minor_idr);
333 }
334 
335 /*
336  * Block device functions
337  */
dm_deleting_md(struct mapped_device * md)338 int dm_deleting_md(struct mapped_device *md)
339 {
340 	return test_bit(DMF_DELETING, &md->flags);
341 }
342 
dm_blk_open(struct block_device * bdev,fmode_t mode)343 static int dm_blk_open(struct block_device *bdev, fmode_t mode)
344 {
345 	struct mapped_device *md;
346 
347 	spin_lock(&_minor_lock);
348 
349 	md = bdev->bd_disk->private_data;
350 	if (!md)
351 		goto out;
352 
353 	if (test_bit(DMF_FREEING, &md->flags) ||
354 	    dm_deleting_md(md)) {
355 		md = NULL;
356 		goto out;
357 	}
358 
359 	dm_get(md);
360 	atomic_inc(&md->open_count);
361 out:
362 	spin_unlock(&_minor_lock);
363 
364 	return md ? 0 : -ENXIO;
365 }
366 
dm_blk_close(struct gendisk * disk,fmode_t mode)367 static void dm_blk_close(struct gendisk *disk, fmode_t mode)
368 {
369 	struct mapped_device *md;
370 
371 	spin_lock(&_minor_lock);
372 
373 	md = disk->private_data;
374 	if (WARN_ON(!md))
375 		goto out;
376 
377 	if (atomic_dec_and_test(&md->open_count) &&
378 	    (test_bit(DMF_DEFERRED_REMOVE, &md->flags)))
379 		queue_work(deferred_remove_workqueue, &deferred_remove_work);
380 
381 	dm_put(md);
382 out:
383 	spin_unlock(&_minor_lock);
384 }
385 
dm_open_count(struct mapped_device * md)386 int dm_open_count(struct mapped_device *md)
387 {
388 	return atomic_read(&md->open_count);
389 }
390 
391 /*
392  * Guarantees nothing is using the device before it's deleted.
393  */
dm_lock_for_deletion(struct mapped_device * md,bool mark_deferred,bool only_deferred)394 int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred)
395 {
396 	int r = 0;
397 
398 	spin_lock(&_minor_lock);
399 
400 	if (dm_open_count(md)) {
401 		r = -EBUSY;
402 		if (mark_deferred)
403 			set_bit(DMF_DEFERRED_REMOVE, &md->flags);
404 	} else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags))
405 		r = -EEXIST;
406 	else
407 		set_bit(DMF_DELETING, &md->flags);
408 
409 	spin_unlock(&_minor_lock);
410 
411 	return r;
412 }
413 
dm_cancel_deferred_remove(struct mapped_device * md)414 int dm_cancel_deferred_remove(struct mapped_device *md)
415 {
416 	int r = 0;
417 
418 	spin_lock(&_minor_lock);
419 
420 	if (test_bit(DMF_DELETING, &md->flags))
421 		r = -EBUSY;
422 	else
423 		clear_bit(DMF_DEFERRED_REMOVE, &md->flags);
424 
425 	spin_unlock(&_minor_lock);
426 
427 	return r;
428 }
429 
do_deferred_remove(struct work_struct * w)430 static void do_deferred_remove(struct work_struct *w)
431 {
432 	dm_deferred_remove();
433 }
434 
dm_blk_getgeo(struct block_device * bdev,struct hd_geometry * geo)435 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
436 {
437 	struct mapped_device *md = bdev->bd_disk->private_data;
438 
439 	return dm_get_geometry(md, geo);
440 }
441 
442 #ifdef CONFIG_BLK_DEV_ZONED
dm_report_zones_cb(struct blk_zone * zone,unsigned int idx,void * data)443 int dm_report_zones_cb(struct blk_zone *zone, unsigned int idx, void *data)
444 {
445 	struct dm_report_zones_args *args = data;
446 	sector_t sector_diff = args->tgt->begin - args->start;
447 
448 	/*
449 	 * Ignore zones beyond the target range.
450 	 */
451 	if (zone->start >= args->start + args->tgt->len)
452 		return 0;
453 
454 	/*
455 	 * Remap the start sector and write pointer position of the zone
456 	 * to match its position in the target range.
457 	 */
458 	zone->start += sector_diff;
459 	if (zone->type != BLK_ZONE_TYPE_CONVENTIONAL) {
460 		if (zone->cond == BLK_ZONE_COND_FULL)
461 			zone->wp = zone->start + zone->len;
462 		else if (zone->cond == BLK_ZONE_COND_EMPTY)
463 			zone->wp = zone->start;
464 		else
465 			zone->wp += sector_diff;
466 	}
467 
468 	args->next_sector = zone->start + zone->len;
469 	return args->orig_cb(zone, args->zone_idx++, args->orig_data);
470 }
471 EXPORT_SYMBOL_GPL(dm_report_zones_cb);
472 
dm_blk_report_zones(struct gendisk * disk,sector_t sector,unsigned int nr_zones,report_zones_cb cb,void * data)473 static int dm_blk_report_zones(struct gendisk *disk, sector_t sector,
474 		unsigned int nr_zones, report_zones_cb cb, void *data)
475 {
476 	struct mapped_device *md = disk->private_data;
477 	struct dm_table *map;
478 	int srcu_idx, ret;
479 	struct dm_report_zones_args args = {
480 		.next_sector = sector,
481 		.orig_data = data,
482 		.orig_cb = cb,
483 	};
484 
485 	if (dm_suspended_md(md))
486 		return -EAGAIN;
487 
488 	map = dm_get_live_table(md, &srcu_idx);
489 	if (!map) {
490 		ret = -EIO;
491 		goto out;
492 	}
493 
494 	do {
495 		struct dm_target *tgt;
496 
497 		tgt = dm_table_find_target(map, args.next_sector);
498 		if (WARN_ON_ONCE(!tgt->type->report_zones)) {
499 			ret = -EIO;
500 			goto out;
501 		}
502 
503 		args.tgt = tgt;
504 		ret = tgt->type->report_zones(tgt, &args,
505 					      nr_zones - args.zone_idx);
506 		if (ret < 0)
507 			goto out;
508 	} while (args.zone_idx < nr_zones &&
509 		 args.next_sector < get_capacity(disk));
510 
511 	ret = args.zone_idx;
512 out:
513 	dm_put_live_table(md, srcu_idx);
514 	return ret;
515 }
516 #else
517 #define dm_blk_report_zones		NULL
518 #endif /* CONFIG_BLK_DEV_ZONED */
519 
dm_prepare_ioctl(struct mapped_device * md,int * srcu_idx,struct block_device ** bdev)520 static int dm_prepare_ioctl(struct mapped_device *md, int *srcu_idx,
521 			    struct block_device **bdev)
522 {
523 	struct dm_target *tgt;
524 	struct dm_table *map;
525 	int r;
526 
527 retry:
528 	r = -ENOTTY;
529 	map = dm_get_live_table(md, srcu_idx);
530 	if (!map || !dm_table_get_size(map))
531 		return r;
532 
533 	/* We only support devices that have a single target */
534 	if (dm_table_get_num_targets(map) != 1)
535 		return r;
536 
537 	tgt = dm_table_get_target(map, 0);
538 	if (!tgt->type->prepare_ioctl)
539 		return r;
540 
541 	if (dm_suspended_md(md))
542 		return -EAGAIN;
543 
544 	r = tgt->type->prepare_ioctl(tgt, bdev);
545 	if (r == -ENOTCONN && !fatal_signal_pending(current)) {
546 		dm_put_live_table(md, *srcu_idx);
547 		msleep(10);
548 		goto retry;
549 	}
550 
551 	return r;
552 }
553 
dm_unprepare_ioctl(struct mapped_device * md,int srcu_idx)554 static void dm_unprepare_ioctl(struct mapped_device *md, int srcu_idx)
555 {
556 	dm_put_live_table(md, srcu_idx);
557 }
558 
dm_blk_ioctl(struct block_device * bdev,fmode_t mode,unsigned int cmd,unsigned long arg)559 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
560 			unsigned int cmd, unsigned long arg)
561 {
562 	struct mapped_device *md = bdev->bd_disk->private_data;
563 	int r, srcu_idx;
564 
565 	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
566 	if (r < 0)
567 		goto out;
568 
569 	if (r > 0) {
570 		/*
571 		 * Target determined this ioctl is being issued against a
572 		 * subset of the parent bdev; require extra privileges.
573 		 */
574 		if (!capable(CAP_SYS_RAWIO)) {
575 			DMDEBUG_LIMIT(
576 	"%s: sending ioctl %x to DM device without required privilege.",
577 				current->comm, cmd);
578 			r = -ENOIOCTLCMD;
579 			goto out;
580 		}
581 	}
582 
583 	r =  __blkdev_driver_ioctl(bdev, mode, cmd, arg);
584 out:
585 	dm_unprepare_ioctl(md, srcu_idx);
586 	return r;
587 }
588 
dm_start_time_ns_from_clone(struct bio * bio)589 u64 dm_start_time_ns_from_clone(struct bio *bio)
590 {
591 	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
592 	struct dm_io *io = tio->io;
593 
594 	return jiffies_to_nsecs(io->start_time);
595 }
596 EXPORT_SYMBOL_GPL(dm_start_time_ns_from_clone);
597 
start_io_acct(struct dm_io * io)598 static void start_io_acct(struct dm_io *io)
599 {
600 	struct mapped_device *md = io->md;
601 	struct bio *bio = io->orig_bio;
602 
603 	io->start_time = bio_start_io_acct(bio);
604 	if (unlikely(dm_stats_used(&md->stats)))
605 		dm_stats_account_io(&md->stats, bio_data_dir(bio),
606 				    bio->bi_iter.bi_sector, bio_sectors(bio),
607 				    false, 0, &io->stats_aux);
608 }
609 
end_io_acct(struct dm_io * io)610 static void end_io_acct(struct dm_io *io)
611 {
612 	struct mapped_device *md = io->md;
613 	struct bio *bio = io->orig_bio;
614 	unsigned long duration = jiffies - io->start_time;
615 
616 	bio_end_io_acct(bio, io->start_time);
617 
618 	if (unlikely(dm_stats_used(&md->stats)))
619 		dm_stats_account_io(&md->stats, bio_data_dir(bio),
620 				    bio->bi_iter.bi_sector, bio_sectors(bio),
621 				    true, duration, &io->stats_aux);
622 
623 	/* nudge anyone waiting on suspend queue */
624 	if (unlikely(wq_has_sleeper(&md->wait)))
625 		wake_up(&md->wait);
626 }
627 
alloc_io(struct mapped_device * md,struct bio * bio)628 static struct dm_io *alloc_io(struct mapped_device *md, struct bio *bio)
629 {
630 	struct dm_io *io;
631 	struct dm_target_io *tio;
632 	struct bio *clone;
633 
634 	clone = bio_alloc_bioset(GFP_NOIO, 0, &md->io_bs);
635 	if (!clone)
636 		return NULL;
637 
638 	tio = container_of(clone, struct dm_target_io, clone);
639 	tio->inside_dm_io = true;
640 	tio->io = NULL;
641 
642 	io = container_of(tio, struct dm_io, tio);
643 	io->magic = DM_IO_MAGIC;
644 	io->status = 0;
645 	atomic_set(&io->io_count, 1);
646 	io->orig_bio = bio;
647 	io->md = md;
648 	spin_lock_init(&io->endio_lock);
649 
650 	start_io_acct(io);
651 
652 	return io;
653 }
654 
free_io(struct mapped_device * md,struct dm_io * io)655 static void free_io(struct mapped_device *md, struct dm_io *io)
656 {
657 	bio_put(&io->tio.clone);
658 }
659 
alloc_tio(struct clone_info * ci,struct dm_target * ti,unsigned target_bio_nr,gfp_t gfp_mask)660 static struct dm_target_io *alloc_tio(struct clone_info *ci, struct dm_target *ti,
661 				      unsigned target_bio_nr, gfp_t gfp_mask)
662 {
663 	struct dm_target_io *tio;
664 
665 	if (!ci->io->tio.io) {
666 		/* the dm_target_io embedded in ci->io is available */
667 		tio = &ci->io->tio;
668 	} else {
669 		struct bio *clone = bio_alloc_bioset(gfp_mask, 0, &ci->io->md->bs);
670 		if (!clone)
671 			return NULL;
672 
673 		tio = container_of(clone, struct dm_target_io, clone);
674 		tio->inside_dm_io = false;
675 	}
676 
677 	tio->magic = DM_TIO_MAGIC;
678 	tio->io = ci->io;
679 	tio->ti = ti;
680 	tio->target_bio_nr = target_bio_nr;
681 
682 	return tio;
683 }
684 
free_tio(struct dm_target_io * tio)685 static void free_tio(struct dm_target_io *tio)
686 {
687 	if (tio->inside_dm_io)
688 		return;
689 	bio_put(&tio->clone);
690 }
691 
692 /*
693  * Add the bio to the list of deferred io.
694  */
queue_io(struct mapped_device * md,struct bio * bio)695 static void queue_io(struct mapped_device *md, struct bio *bio)
696 {
697 	unsigned long flags;
698 
699 	spin_lock_irqsave(&md->deferred_lock, flags);
700 	bio_list_add(&md->deferred, bio);
701 	spin_unlock_irqrestore(&md->deferred_lock, flags);
702 	queue_work(md->wq, &md->work);
703 }
704 
705 /*
706  * Everyone (including functions in this file), should use this
707  * function to access the md->map field, and make sure they call
708  * dm_put_live_table() when finished.
709  */
dm_get_live_table(struct mapped_device * md,int * srcu_idx)710 struct dm_table *dm_get_live_table(struct mapped_device *md, int *srcu_idx) __acquires(md->io_barrier)
711 {
712 	*srcu_idx = srcu_read_lock(&md->io_barrier);
713 
714 	return srcu_dereference(md->map, &md->io_barrier);
715 }
716 
dm_put_live_table(struct mapped_device * md,int srcu_idx)717 void dm_put_live_table(struct mapped_device *md, int srcu_idx) __releases(md->io_barrier)
718 {
719 	srcu_read_unlock(&md->io_barrier, srcu_idx);
720 }
721 
dm_sync_table(struct mapped_device * md)722 void dm_sync_table(struct mapped_device *md)
723 {
724 	synchronize_srcu(&md->io_barrier);
725 	synchronize_rcu_expedited();
726 }
727 
728 /*
729  * A fast alternative to dm_get_live_table/dm_put_live_table.
730  * The caller must not block between these two functions.
731  */
dm_get_live_table_fast(struct mapped_device * md)732 static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU)
733 {
734 	rcu_read_lock();
735 	return rcu_dereference(md->map);
736 }
737 
dm_put_live_table_fast(struct mapped_device * md)738 static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU)
739 {
740 	rcu_read_unlock();
741 }
742 
743 static char *_dm_claim_ptr = "I belong to device-mapper";
744 
745 /*
746  * Open a table device so we can use it as a map destination.
747  */
open_table_device(struct table_device * td,dev_t dev,struct mapped_device * md)748 static int open_table_device(struct table_device *td, dev_t dev,
749 			     struct mapped_device *md)
750 {
751 	struct block_device *bdev;
752 
753 	int r;
754 
755 	BUG_ON(td->dm_dev.bdev);
756 
757 	bdev = blkdev_get_by_dev(dev, td->dm_dev.mode | FMODE_EXCL, _dm_claim_ptr);
758 	if (IS_ERR(bdev))
759 		return PTR_ERR(bdev);
760 
761 	r = bd_link_disk_holder(bdev, dm_disk(md));
762 	if (r) {
763 		blkdev_put(bdev, td->dm_dev.mode | FMODE_EXCL);
764 		return r;
765 	}
766 
767 	td->dm_dev.bdev = bdev;
768 	td->dm_dev.dax_dev = dax_get_by_host(bdev->bd_disk->disk_name);
769 	return 0;
770 }
771 
772 /*
773  * Close a table device that we've been using.
774  */
close_table_device(struct table_device * td,struct mapped_device * md)775 static void close_table_device(struct table_device *td, struct mapped_device *md)
776 {
777 	if (!td->dm_dev.bdev)
778 		return;
779 
780 	bd_unlink_disk_holder(td->dm_dev.bdev, dm_disk(md));
781 	blkdev_put(td->dm_dev.bdev, td->dm_dev.mode | FMODE_EXCL);
782 	put_dax(td->dm_dev.dax_dev);
783 	td->dm_dev.bdev = NULL;
784 	td->dm_dev.dax_dev = NULL;
785 }
786 
find_table_device(struct list_head * l,dev_t dev,fmode_t mode)787 static struct table_device *find_table_device(struct list_head *l, dev_t dev,
788 					      fmode_t mode)
789 {
790 	struct table_device *td;
791 
792 	list_for_each_entry(td, l, list)
793 		if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode)
794 			return td;
795 
796 	return NULL;
797 }
798 
dm_get_table_device(struct mapped_device * md,dev_t dev,fmode_t mode,struct dm_dev ** result)799 int dm_get_table_device(struct mapped_device *md, dev_t dev, fmode_t mode,
800 			struct dm_dev **result)
801 {
802 	int r;
803 	struct table_device *td;
804 
805 	mutex_lock(&md->table_devices_lock);
806 	td = find_table_device(&md->table_devices, dev, mode);
807 	if (!td) {
808 		td = kmalloc_node(sizeof(*td), GFP_KERNEL, md->numa_node_id);
809 		if (!td) {
810 			mutex_unlock(&md->table_devices_lock);
811 			return -ENOMEM;
812 		}
813 
814 		td->dm_dev.mode = mode;
815 		td->dm_dev.bdev = NULL;
816 
817 		if ((r = open_table_device(td, dev, md))) {
818 			mutex_unlock(&md->table_devices_lock);
819 			kfree(td);
820 			return r;
821 		}
822 
823 		format_dev_t(td->dm_dev.name, dev);
824 
825 		refcount_set(&td->count, 1);
826 		list_add(&td->list, &md->table_devices);
827 	} else {
828 		refcount_inc(&td->count);
829 	}
830 	mutex_unlock(&md->table_devices_lock);
831 
832 	*result = &td->dm_dev;
833 	return 0;
834 }
835 EXPORT_SYMBOL_GPL(dm_get_table_device);
836 
dm_put_table_device(struct mapped_device * md,struct dm_dev * d)837 void dm_put_table_device(struct mapped_device *md, struct dm_dev *d)
838 {
839 	struct table_device *td = container_of(d, struct table_device, dm_dev);
840 
841 	mutex_lock(&md->table_devices_lock);
842 	if (refcount_dec_and_test(&td->count)) {
843 		close_table_device(td, md);
844 		list_del(&td->list);
845 		kfree(td);
846 	}
847 	mutex_unlock(&md->table_devices_lock);
848 }
849 EXPORT_SYMBOL(dm_put_table_device);
850 
free_table_devices(struct list_head * devices)851 static void free_table_devices(struct list_head *devices)
852 {
853 	struct list_head *tmp, *next;
854 
855 	list_for_each_safe(tmp, next, devices) {
856 		struct table_device *td = list_entry(tmp, struct table_device, list);
857 
858 		DMWARN("dm_destroy: %s still exists with %d references",
859 		       td->dm_dev.name, refcount_read(&td->count));
860 		kfree(td);
861 	}
862 }
863 
864 /*
865  * Get the geometry associated with a dm device
866  */
dm_get_geometry(struct mapped_device * md,struct hd_geometry * geo)867 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
868 {
869 	*geo = md->geometry;
870 
871 	return 0;
872 }
873 
874 /*
875  * Set the geometry of a device.
876  */
dm_set_geometry(struct mapped_device * md,struct hd_geometry * geo)877 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
878 {
879 	sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
880 
881 	if (geo->start > sz) {
882 		DMWARN("Start sector is beyond the geometry limits.");
883 		return -EINVAL;
884 	}
885 
886 	md->geometry = *geo;
887 
888 	return 0;
889 }
890 
__noflush_suspending(struct mapped_device * md)891 static int __noflush_suspending(struct mapped_device *md)
892 {
893 	return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
894 }
895 
896 /*
897  * Decrements the number of outstanding ios that a bio has been
898  * cloned into, completing the original io if necc.
899  */
dec_pending(struct dm_io * io,blk_status_t error)900 static void dec_pending(struct dm_io *io, blk_status_t error)
901 {
902 	unsigned long flags;
903 	blk_status_t io_error;
904 	struct bio *bio;
905 	struct mapped_device *md = io->md;
906 
907 	/* Push-back supersedes any I/O errors */
908 	if (unlikely(error)) {
909 		spin_lock_irqsave(&io->endio_lock, flags);
910 		if (!(io->status == BLK_STS_DM_REQUEUE && __noflush_suspending(md)))
911 			io->status = error;
912 		spin_unlock_irqrestore(&io->endio_lock, flags);
913 	}
914 
915 	if (atomic_dec_and_test(&io->io_count)) {
916 		if (io->status == BLK_STS_DM_REQUEUE) {
917 			/*
918 			 * Target requested pushing back the I/O.
919 			 */
920 			spin_lock_irqsave(&md->deferred_lock, flags);
921 			if (__noflush_suspending(md))
922 				/* NOTE early return due to BLK_STS_DM_REQUEUE below */
923 				bio_list_add_head(&md->deferred, io->orig_bio);
924 			else
925 				/* noflush suspend was interrupted. */
926 				io->status = BLK_STS_IOERR;
927 			spin_unlock_irqrestore(&md->deferred_lock, flags);
928 		}
929 
930 		io_error = io->status;
931 		bio = io->orig_bio;
932 		end_io_acct(io);
933 		free_io(md, io);
934 
935 		if (io_error == BLK_STS_DM_REQUEUE)
936 			return;
937 
938 		if ((bio->bi_opf & REQ_PREFLUSH) && bio->bi_iter.bi_size) {
939 			/*
940 			 * Preflush done for flush with data, reissue
941 			 * without REQ_PREFLUSH.
942 			 */
943 			bio->bi_opf &= ~REQ_PREFLUSH;
944 			queue_io(md, bio);
945 		} else {
946 			/* done with normal IO or empty flush */
947 			if (io_error)
948 				bio->bi_status = io_error;
949 			bio_endio(bio);
950 		}
951 	}
952 }
953 
disable_discard(struct mapped_device * md)954 void disable_discard(struct mapped_device *md)
955 {
956 	struct queue_limits *limits = dm_get_queue_limits(md);
957 
958 	/* device doesn't really support DISCARD, disable it */
959 	limits->max_discard_sectors = 0;
960 	blk_queue_flag_clear(QUEUE_FLAG_DISCARD, md->queue);
961 }
962 
disable_write_same(struct mapped_device * md)963 void disable_write_same(struct mapped_device *md)
964 {
965 	struct queue_limits *limits = dm_get_queue_limits(md);
966 
967 	/* device doesn't really support WRITE SAME, disable it */
968 	limits->max_write_same_sectors = 0;
969 }
970 
disable_write_zeroes(struct mapped_device * md)971 void disable_write_zeroes(struct mapped_device *md)
972 {
973 	struct queue_limits *limits = dm_get_queue_limits(md);
974 
975 	/* device doesn't really support WRITE ZEROES, disable it */
976 	limits->max_write_zeroes_sectors = 0;
977 }
978 
swap_bios_limit(struct dm_target * ti,struct bio * bio)979 static bool swap_bios_limit(struct dm_target *ti, struct bio *bio)
980 {
981 	return unlikely((bio->bi_opf & REQ_SWAP) != 0) && unlikely(ti->limit_swap_bios);
982 }
983 
clone_endio(struct bio * bio)984 static void clone_endio(struct bio *bio)
985 {
986 	blk_status_t error = bio->bi_status;
987 	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
988 	struct dm_io *io = tio->io;
989 	struct mapped_device *md = tio->io->md;
990 	dm_endio_fn endio = tio->ti->type->end_io;
991 	struct bio *orig_bio = io->orig_bio;
992 
993 	if (unlikely(error == BLK_STS_TARGET)) {
994 		if (bio_op(bio) == REQ_OP_DISCARD &&
995 		    !bio->bi_disk->queue->limits.max_discard_sectors)
996 			disable_discard(md);
997 		else if (bio_op(bio) == REQ_OP_WRITE_SAME &&
998 			 !bio->bi_disk->queue->limits.max_write_same_sectors)
999 			disable_write_same(md);
1000 		else if (bio_op(bio) == REQ_OP_WRITE_ZEROES &&
1001 			 !bio->bi_disk->queue->limits.max_write_zeroes_sectors)
1002 			disable_write_zeroes(md);
1003 	}
1004 
1005 	/*
1006 	 * For zone-append bios get offset in zone of the written
1007 	 * sector and add that to the original bio sector pos.
1008 	 */
1009 	if (bio_op(orig_bio) == REQ_OP_ZONE_APPEND) {
1010 		sector_t written_sector = bio->bi_iter.bi_sector;
1011 		struct request_queue *q = orig_bio->bi_disk->queue;
1012 		u64 mask = (u64)blk_queue_zone_sectors(q) - 1;
1013 
1014 		orig_bio->bi_iter.bi_sector += written_sector & mask;
1015 	}
1016 
1017 	if (endio) {
1018 		int r = endio(tio->ti, bio, &error);
1019 		switch (r) {
1020 		case DM_ENDIO_REQUEUE:
1021 			error = BLK_STS_DM_REQUEUE;
1022 			fallthrough;
1023 		case DM_ENDIO_DONE:
1024 			break;
1025 		case DM_ENDIO_INCOMPLETE:
1026 			/* The target will handle the io */
1027 			return;
1028 		default:
1029 			DMWARN("unimplemented target endio return value: %d", r);
1030 			BUG();
1031 		}
1032 	}
1033 
1034 	if (unlikely(swap_bios_limit(tio->ti, bio))) {
1035 		struct mapped_device *md = io->md;
1036 		up(&md->swap_bios_semaphore);
1037 	}
1038 
1039 	free_tio(tio);
1040 	dec_pending(io, error);
1041 }
1042 
1043 /*
1044  * Return maximum size of I/O possible at the supplied sector up to the current
1045  * target boundary.
1046  */
max_io_len_target_boundary(struct dm_target * ti,sector_t target_offset)1047 static inline sector_t max_io_len_target_boundary(struct dm_target *ti,
1048 						  sector_t target_offset)
1049 {
1050 	return ti->len - target_offset;
1051 }
1052 
max_io_len(struct dm_target * ti,sector_t sector)1053 static sector_t max_io_len(struct dm_target *ti, sector_t sector)
1054 {
1055 	sector_t target_offset = dm_target_offset(ti, sector);
1056 	sector_t len = max_io_len_target_boundary(ti, target_offset);
1057 	sector_t max_len;
1058 
1059 	/*
1060 	 * Does the target need to split IO even further?
1061 	 * - varied (per target) IO splitting is a tenet of DM; this
1062 	 *   explains why stacked chunk_sectors based splitting via
1063 	 *   blk_max_size_offset() isn't possible here. So pass in
1064 	 *   ti->max_io_len to override stacked chunk_sectors.
1065 	 */
1066 	if (ti->max_io_len) {
1067 		max_len = blk_max_size_offset(ti->table->md->queue,
1068 					      target_offset, ti->max_io_len);
1069 		if (len > max_len)
1070 			len = max_len;
1071 	}
1072 
1073 	return len;
1074 }
1075 
dm_set_target_max_io_len(struct dm_target * ti,sector_t len)1076 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len)
1077 {
1078 	if (len > UINT_MAX) {
1079 		DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
1080 		      (unsigned long long)len, UINT_MAX);
1081 		ti->error = "Maximum size of target IO is too large";
1082 		return -EINVAL;
1083 	}
1084 
1085 	ti->max_io_len = (uint32_t) len;
1086 
1087 	return 0;
1088 }
1089 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len);
1090 
dm_dax_get_live_target(struct mapped_device * md,sector_t sector,int * srcu_idx)1091 static struct dm_target *dm_dax_get_live_target(struct mapped_device *md,
1092 						sector_t sector, int *srcu_idx)
1093 	__acquires(md->io_barrier)
1094 {
1095 	struct dm_table *map;
1096 	struct dm_target *ti;
1097 
1098 	map = dm_get_live_table(md, srcu_idx);
1099 	if (!map)
1100 		return NULL;
1101 
1102 	ti = dm_table_find_target(map, sector);
1103 	if (!ti)
1104 		return NULL;
1105 
1106 	return ti;
1107 }
1108 
dm_dax_direct_access(struct dax_device * dax_dev,pgoff_t pgoff,long nr_pages,void ** kaddr,pfn_t * pfn)1109 static long dm_dax_direct_access(struct dax_device *dax_dev, pgoff_t pgoff,
1110 				 long nr_pages, void **kaddr, pfn_t *pfn)
1111 {
1112 	struct mapped_device *md = dax_get_private(dax_dev);
1113 	sector_t sector = pgoff * PAGE_SECTORS;
1114 	struct dm_target *ti;
1115 	long len, ret = -EIO;
1116 	int srcu_idx;
1117 
1118 	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1119 
1120 	if (!ti)
1121 		goto out;
1122 	if (!ti->type->direct_access)
1123 		goto out;
1124 	len = max_io_len(ti, sector) / PAGE_SECTORS;
1125 	if (len < 1)
1126 		goto out;
1127 	nr_pages = min(len, nr_pages);
1128 	ret = ti->type->direct_access(ti, pgoff, nr_pages, kaddr, pfn);
1129 
1130  out:
1131 	dm_put_live_table(md, srcu_idx);
1132 
1133 	return ret;
1134 }
1135 
dm_dax_supported(struct dax_device * dax_dev,struct block_device * bdev,int blocksize,sector_t start,sector_t len)1136 static bool dm_dax_supported(struct dax_device *dax_dev, struct block_device *bdev,
1137 		int blocksize, sector_t start, sector_t len)
1138 {
1139 	struct mapped_device *md = dax_get_private(dax_dev);
1140 	struct dm_table *map;
1141 	bool ret = false;
1142 	int srcu_idx;
1143 
1144 	map = dm_get_live_table(md, &srcu_idx);
1145 	if (!map)
1146 		goto out;
1147 
1148 	ret = dm_table_supports_dax(map, device_not_dax_capable, &blocksize);
1149 
1150 out:
1151 	dm_put_live_table(md, srcu_idx);
1152 
1153 	return ret;
1154 }
1155 
dm_dax_copy_from_iter(struct dax_device * dax_dev,pgoff_t pgoff,void * addr,size_t bytes,struct iov_iter * i)1156 static size_t dm_dax_copy_from_iter(struct dax_device *dax_dev, pgoff_t pgoff,
1157 				    void *addr, size_t bytes, struct iov_iter *i)
1158 {
1159 	struct mapped_device *md = dax_get_private(dax_dev);
1160 	sector_t sector = pgoff * PAGE_SECTORS;
1161 	struct dm_target *ti;
1162 	long ret = 0;
1163 	int srcu_idx;
1164 
1165 	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1166 
1167 	if (!ti)
1168 		goto out;
1169 	if (!ti->type->dax_copy_from_iter) {
1170 		ret = copy_from_iter(addr, bytes, i);
1171 		goto out;
1172 	}
1173 	ret = ti->type->dax_copy_from_iter(ti, pgoff, addr, bytes, i);
1174  out:
1175 	dm_put_live_table(md, srcu_idx);
1176 
1177 	return ret;
1178 }
1179 
dm_dax_copy_to_iter(struct dax_device * dax_dev,pgoff_t pgoff,void * addr,size_t bytes,struct iov_iter * i)1180 static size_t dm_dax_copy_to_iter(struct dax_device *dax_dev, pgoff_t pgoff,
1181 		void *addr, size_t bytes, struct iov_iter *i)
1182 {
1183 	struct mapped_device *md = dax_get_private(dax_dev);
1184 	sector_t sector = pgoff * PAGE_SECTORS;
1185 	struct dm_target *ti;
1186 	long ret = 0;
1187 	int srcu_idx;
1188 
1189 	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1190 
1191 	if (!ti)
1192 		goto out;
1193 	if (!ti->type->dax_copy_to_iter) {
1194 		ret = copy_to_iter(addr, bytes, i);
1195 		goto out;
1196 	}
1197 	ret = ti->type->dax_copy_to_iter(ti, pgoff, addr, bytes, i);
1198  out:
1199 	dm_put_live_table(md, srcu_idx);
1200 
1201 	return ret;
1202 }
1203 
dm_dax_zero_page_range(struct dax_device * dax_dev,pgoff_t pgoff,size_t nr_pages)1204 static int dm_dax_zero_page_range(struct dax_device *dax_dev, pgoff_t pgoff,
1205 				  size_t nr_pages)
1206 {
1207 	struct mapped_device *md = dax_get_private(dax_dev);
1208 	sector_t sector = pgoff * PAGE_SECTORS;
1209 	struct dm_target *ti;
1210 	int ret = -EIO;
1211 	int srcu_idx;
1212 
1213 	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1214 
1215 	if (!ti)
1216 		goto out;
1217 	if (WARN_ON(!ti->type->dax_zero_page_range)) {
1218 		/*
1219 		 * ->zero_page_range() is mandatory dax operation. If we are
1220 		 *  here, something is wrong.
1221 		 */
1222 		goto out;
1223 	}
1224 	ret = ti->type->dax_zero_page_range(ti, pgoff, nr_pages);
1225  out:
1226 	dm_put_live_table(md, srcu_idx);
1227 
1228 	return ret;
1229 }
1230 
1231 /*
1232  * A target may call dm_accept_partial_bio only from the map routine.  It is
1233  * allowed for all bio types except REQ_PREFLUSH, REQ_OP_ZONE_* zone management
1234  * operations and REQ_OP_ZONE_APPEND (zone append writes).
1235  *
1236  * dm_accept_partial_bio informs the dm that the target only wants to process
1237  * additional n_sectors sectors of the bio and the rest of the data should be
1238  * sent in a next bio.
1239  *
1240  * A diagram that explains the arithmetics:
1241  * +--------------------+---------------+-------+
1242  * |         1          |       2       |   3   |
1243  * +--------------------+---------------+-------+
1244  *
1245  * <-------------- *tio->len_ptr --------------->
1246  *                      <------- bi_size ------->
1247  *                      <-- n_sectors -->
1248  *
1249  * Region 1 was already iterated over with bio_advance or similar function.
1250  *	(it may be empty if the target doesn't use bio_advance)
1251  * Region 2 is the remaining bio size that the target wants to process.
1252  *	(it may be empty if region 1 is non-empty, although there is no reason
1253  *	 to make it empty)
1254  * The target requires that region 3 is to be sent in the next bio.
1255  *
1256  * If the target wants to receive multiple copies of the bio (via num_*bios, etc),
1257  * the partially processed part (the sum of regions 1+2) must be the same for all
1258  * copies of the bio.
1259  */
dm_accept_partial_bio(struct bio * bio,unsigned n_sectors)1260 void dm_accept_partial_bio(struct bio *bio, unsigned n_sectors)
1261 {
1262 	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
1263 	unsigned bi_size = bio->bi_iter.bi_size >> SECTOR_SHIFT;
1264 
1265 	BUG_ON(bio->bi_opf & REQ_PREFLUSH);
1266 	BUG_ON(op_is_zone_mgmt(bio_op(bio)));
1267 	BUG_ON(bio_op(bio) == REQ_OP_ZONE_APPEND);
1268 	BUG_ON(bi_size > *tio->len_ptr);
1269 	BUG_ON(n_sectors > bi_size);
1270 
1271 	*tio->len_ptr -= bi_size - n_sectors;
1272 	bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT;
1273 }
1274 EXPORT_SYMBOL_GPL(dm_accept_partial_bio);
1275 
__set_swap_bios_limit(struct mapped_device * md,int latch)1276 static noinline void __set_swap_bios_limit(struct mapped_device *md, int latch)
1277 {
1278 	mutex_lock(&md->swap_bios_lock);
1279 	while (latch < md->swap_bios) {
1280 		cond_resched();
1281 		down(&md->swap_bios_semaphore);
1282 		md->swap_bios--;
1283 	}
1284 	while (latch > md->swap_bios) {
1285 		cond_resched();
1286 		up(&md->swap_bios_semaphore);
1287 		md->swap_bios++;
1288 	}
1289 	mutex_unlock(&md->swap_bios_lock);
1290 }
1291 
__map_bio(struct dm_target_io * tio)1292 static blk_qc_t __map_bio(struct dm_target_io *tio)
1293 {
1294 	int r;
1295 	sector_t sector;
1296 	struct bio *clone = &tio->clone;
1297 	struct dm_io *io = tio->io;
1298 	struct dm_target *ti = tio->ti;
1299 	blk_qc_t ret = BLK_QC_T_NONE;
1300 
1301 	clone->bi_end_io = clone_endio;
1302 
1303 	/*
1304 	 * Map the clone.  If r == 0 we don't need to do
1305 	 * anything, the target has assumed ownership of
1306 	 * this io.
1307 	 */
1308 	atomic_inc(&io->io_count);
1309 	sector = clone->bi_iter.bi_sector;
1310 
1311 	if (unlikely(swap_bios_limit(ti, clone))) {
1312 		struct mapped_device *md = io->md;
1313 		int latch = get_swap_bios();
1314 		if (unlikely(latch != md->swap_bios))
1315 			__set_swap_bios_limit(md, latch);
1316 		down(&md->swap_bios_semaphore);
1317 	}
1318 
1319 	r = ti->type->map(ti, clone);
1320 	switch (r) {
1321 	case DM_MAPIO_SUBMITTED:
1322 		break;
1323 	case DM_MAPIO_REMAPPED:
1324 		/* the bio has been remapped so dispatch it */
1325 		trace_block_bio_remap(clone->bi_disk->queue, clone,
1326 				      bio_dev(io->orig_bio), sector);
1327 		ret = submit_bio_noacct(clone);
1328 		break;
1329 	case DM_MAPIO_KILL:
1330 		if (unlikely(swap_bios_limit(ti, clone))) {
1331 			struct mapped_device *md = io->md;
1332 			up(&md->swap_bios_semaphore);
1333 		}
1334 		free_tio(tio);
1335 		dec_pending(io, BLK_STS_IOERR);
1336 		break;
1337 	case DM_MAPIO_REQUEUE:
1338 		if (unlikely(swap_bios_limit(ti, clone))) {
1339 			struct mapped_device *md = io->md;
1340 			up(&md->swap_bios_semaphore);
1341 		}
1342 		free_tio(tio);
1343 		dec_pending(io, BLK_STS_DM_REQUEUE);
1344 		break;
1345 	default:
1346 		DMWARN("unimplemented target map return value: %d", r);
1347 		BUG();
1348 	}
1349 
1350 	return ret;
1351 }
1352 
bio_setup_sector(struct bio * bio,sector_t sector,unsigned len)1353 static void bio_setup_sector(struct bio *bio, sector_t sector, unsigned len)
1354 {
1355 	bio->bi_iter.bi_sector = sector;
1356 	bio->bi_iter.bi_size = to_bytes(len);
1357 }
1358 
1359 /*
1360  * Creates a bio that consists of range of complete bvecs.
1361  */
clone_bio(struct dm_target_io * tio,struct bio * bio,sector_t sector,unsigned len)1362 static int clone_bio(struct dm_target_io *tio, struct bio *bio,
1363 		     sector_t sector, unsigned len)
1364 {
1365 	struct bio *clone = &tio->clone;
1366 	int r;
1367 
1368 	__bio_clone_fast(clone, bio);
1369 
1370 	r = bio_crypt_clone(clone, bio, GFP_NOIO);
1371 	if (r < 0)
1372 		return r;
1373 
1374 	if (bio_integrity(bio)) {
1375 		if (unlikely(!dm_target_has_integrity(tio->ti->type) &&
1376 			     !dm_target_passes_integrity(tio->ti->type))) {
1377 			DMWARN("%s: the target %s doesn't support integrity data.",
1378 				dm_device_name(tio->io->md),
1379 				tio->ti->type->name);
1380 			return -EIO;
1381 		}
1382 
1383 		r = bio_integrity_clone(clone, bio, GFP_NOIO);
1384 		if (r < 0)
1385 			return r;
1386 	}
1387 
1388 	bio_advance(clone, to_bytes(sector - clone->bi_iter.bi_sector));
1389 	clone->bi_iter.bi_size = to_bytes(len);
1390 
1391 	if (bio_integrity(bio))
1392 		bio_integrity_trim(clone);
1393 
1394 	return 0;
1395 }
1396 
alloc_multiple_bios(struct bio_list * blist,struct clone_info * ci,struct dm_target * ti,unsigned num_bios)1397 static void alloc_multiple_bios(struct bio_list *blist, struct clone_info *ci,
1398 				struct dm_target *ti, unsigned num_bios)
1399 {
1400 	struct dm_target_io *tio;
1401 	int try;
1402 
1403 	if (!num_bios)
1404 		return;
1405 
1406 	if (num_bios == 1) {
1407 		tio = alloc_tio(ci, ti, 0, GFP_NOIO);
1408 		bio_list_add(blist, &tio->clone);
1409 		return;
1410 	}
1411 
1412 	for (try = 0; try < 2; try++) {
1413 		int bio_nr;
1414 		struct bio *bio;
1415 
1416 		if (try)
1417 			mutex_lock(&ci->io->md->table_devices_lock);
1418 		for (bio_nr = 0; bio_nr < num_bios; bio_nr++) {
1419 			tio = alloc_tio(ci, ti, bio_nr, try ? GFP_NOIO : GFP_NOWAIT);
1420 			if (!tio)
1421 				break;
1422 
1423 			bio_list_add(blist, &tio->clone);
1424 		}
1425 		if (try)
1426 			mutex_unlock(&ci->io->md->table_devices_lock);
1427 		if (bio_nr == num_bios)
1428 			return;
1429 
1430 		while ((bio = bio_list_pop(blist))) {
1431 			tio = container_of(bio, struct dm_target_io, clone);
1432 			free_tio(tio);
1433 		}
1434 	}
1435 }
1436 
__clone_and_map_simple_bio(struct clone_info * ci,struct dm_target_io * tio,unsigned * len)1437 static blk_qc_t __clone_and_map_simple_bio(struct clone_info *ci,
1438 					   struct dm_target_io *tio, unsigned *len)
1439 {
1440 	struct bio *clone = &tio->clone;
1441 
1442 	tio->len_ptr = len;
1443 
1444 	__bio_clone_fast(clone, ci->bio);
1445 	if (len)
1446 		bio_setup_sector(clone, ci->sector, *len);
1447 
1448 	return __map_bio(tio);
1449 }
1450 
__send_duplicate_bios(struct clone_info * ci,struct dm_target * ti,unsigned num_bios,unsigned * len)1451 static void __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti,
1452 				  unsigned num_bios, unsigned *len)
1453 {
1454 	struct bio_list blist = BIO_EMPTY_LIST;
1455 	struct bio *bio;
1456 	struct dm_target_io *tio;
1457 
1458 	alloc_multiple_bios(&blist, ci, ti, num_bios);
1459 
1460 	while ((bio = bio_list_pop(&blist))) {
1461 		tio = container_of(bio, struct dm_target_io, clone);
1462 		(void) __clone_and_map_simple_bio(ci, tio, len);
1463 	}
1464 }
1465 
__send_empty_flush(struct clone_info * ci)1466 static int __send_empty_flush(struct clone_info *ci)
1467 {
1468 	unsigned target_nr = 0;
1469 	struct dm_target *ti;
1470 	struct bio flush_bio;
1471 
1472 	/*
1473 	 * Use an on-stack bio for this, it's safe since we don't
1474 	 * need to reference it after submit. It's just used as
1475 	 * the basis for the clone(s).
1476 	 */
1477 	bio_init(&flush_bio, NULL, 0);
1478 	flush_bio.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC;
1479 	ci->bio = &flush_bio;
1480 	ci->sector_count = 0;
1481 
1482 	/*
1483 	 * Empty flush uses a statically initialized bio, as the base for
1484 	 * cloning.  However, blkg association requires that a bdev is
1485 	 * associated with a gendisk, which doesn't happen until the bdev is
1486 	 * opened.  So, blkg association is done at issue time of the flush
1487 	 * rather than when the device is created in alloc_dev().
1488 	 */
1489 	bio_set_dev(ci->bio, ci->io->md->bdev);
1490 
1491 	BUG_ON(bio_has_data(ci->bio));
1492 	while ((ti = dm_table_get_target(ci->map, target_nr++)))
1493 		__send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL);
1494 
1495 	bio_uninit(ci->bio);
1496 	return 0;
1497 }
1498 
__clone_and_map_data_bio(struct clone_info * ci,struct dm_target * ti,sector_t sector,unsigned * len)1499 static int __clone_and_map_data_bio(struct clone_info *ci, struct dm_target *ti,
1500 				    sector_t sector, unsigned *len)
1501 {
1502 	struct bio *bio = ci->bio;
1503 	struct dm_target_io *tio;
1504 	int r;
1505 
1506 	tio = alloc_tio(ci, ti, 0, GFP_NOIO);
1507 	tio->len_ptr = len;
1508 	r = clone_bio(tio, bio, sector, *len);
1509 	if (r < 0) {
1510 		free_tio(tio);
1511 		return r;
1512 	}
1513 	(void) __map_bio(tio);
1514 
1515 	return 0;
1516 }
1517 
__send_changing_extent_only(struct clone_info * ci,struct dm_target * ti,unsigned num_bios)1518 static int __send_changing_extent_only(struct clone_info *ci, struct dm_target *ti,
1519 				       unsigned num_bios)
1520 {
1521 	unsigned len;
1522 
1523 	/*
1524 	 * Even though the device advertised support for this type of
1525 	 * request, that does not mean every target supports it, and
1526 	 * reconfiguration might also have changed that since the
1527 	 * check was performed.
1528 	 */
1529 	if (!num_bios)
1530 		return -EOPNOTSUPP;
1531 
1532 	len = min_t(sector_t, ci->sector_count,
1533 		    max_io_len_target_boundary(ti, dm_target_offset(ti, ci->sector)));
1534 
1535 	__send_duplicate_bios(ci, ti, num_bios, &len);
1536 
1537 	ci->sector += len;
1538 	ci->sector_count -= len;
1539 
1540 	return 0;
1541 }
1542 
is_abnormal_io(struct bio * bio)1543 static bool is_abnormal_io(struct bio *bio)
1544 {
1545 	bool r = false;
1546 
1547 	switch (bio_op(bio)) {
1548 	case REQ_OP_DISCARD:
1549 	case REQ_OP_SECURE_ERASE:
1550 	case REQ_OP_WRITE_SAME:
1551 	case REQ_OP_WRITE_ZEROES:
1552 		r = true;
1553 		break;
1554 	}
1555 
1556 	return r;
1557 }
1558 
__process_abnormal_io(struct clone_info * ci,struct dm_target * ti,int * result)1559 static bool __process_abnormal_io(struct clone_info *ci, struct dm_target *ti,
1560 				  int *result)
1561 {
1562 	struct bio *bio = ci->bio;
1563 	unsigned num_bios = 0;
1564 
1565 	switch (bio_op(bio)) {
1566 	case REQ_OP_DISCARD:
1567 		num_bios = ti->num_discard_bios;
1568 		break;
1569 	case REQ_OP_SECURE_ERASE:
1570 		num_bios = ti->num_secure_erase_bios;
1571 		break;
1572 	case REQ_OP_WRITE_SAME:
1573 		num_bios = ti->num_write_same_bios;
1574 		break;
1575 	case REQ_OP_WRITE_ZEROES:
1576 		num_bios = ti->num_write_zeroes_bios;
1577 		break;
1578 	default:
1579 		return false;
1580 	}
1581 
1582 	*result = __send_changing_extent_only(ci, ti, num_bios);
1583 	return true;
1584 }
1585 
1586 /*
1587  * Select the correct strategy for processing a non-flush bio.
1588  */
__split_and_process_non_flush(struct clone_info * ci)1589 static int __split_and_process_non_flush(struct clone_info *ci)
1590 {
1591 	struct dm_target *ti;
1592 	unsigned len;
1593 	int r;
1594 
1595 	ti = dm_table_find_target(ci->map, ci->sector);
1596 	if (!ti)
1597 		return -EIO;
1598 
1599 	if (__process_abnormal_io(ci, ti, &r))
1600 		return r;
1601 
1602 	len = min_t(sector_t, max_io_len(ti, ci->sector), ci->sector_count);
1603 
1604 	r = __clone_and_map_data_bio(ci, ti, ci->sector, &len);
1605 	if (r < 0)
1606 		return r;
1607 
1608 	ci->sector += len;
1609 	ci->sector_count -= len;
1610 
1611 	return 0;
1612 }
1613 
init_clone_info(struct clone_info * ci,struct mapped_device * md,struct dm_table * map,struct bio * bio)1614 static void init_clone_info(struct clone_info *ci, struct mapped_device *md,
1615 			    struct dm_table *map, struct bio *bio)
1616 {
1617 	ci->map = map;
1618 	ci->io = alloc_io(md, bio);
1619 	ci->sector = bio->bi_iter.bi_sector;
1620 }
1621 
1622 #define __dm_part_stat_sub(part, field, subnd)	\
1623 	(part_stat_get(part, field) -= (subnd))
1624 
1625 /*
1626  * Entry point to split a bio into clones and submit them to the targets.
1627  */
__split_and_process_bio(struct mapped_device * md,struct dm_table * map,struct bio * bio)1628 static blk_qc_t __split_and_process_bio(struct mapped_device *md,
1629 					struct dm_table *map, struct bio *bio)
1630 {
1631 	struct clone_info ci;
1632 	blk_qc_t ret = BLK_QC_T_NONE;
1633 	int error = 0;
1634 
1635 	init_clone_info(&ci, md, map, bio);
1636 
1637 	if (bio->bi_opf & REQ_PREFLUSH) {
1638 		error = __send_empty_flush(&ci);
1639 		/* dec_pending submits any data associated with flush */
1640 	} else if (op_is_zone_mgmt(bio_op(bio))) {
1641 		ci.bio = bio;
1642 		ci.sector_count = 0;
1643 		error = __split_and_process_non_flush(&ci);
1644 	} else {
1645 		ci.bio = bio;
1646 		ci.sector_count = bio_sectors(bio);
1647 		while (ci.sector_count && !error) {
1648 			error = __split_and_process_non_flush(&ci);
1649 			if (current->bio_list && ci.sector_count && !error) {
1650 				/*
1651 				 * Remainder must be passed to submit_bio_noacct()
1652 				 * so that it gets handled *after* bios already submitted
1653 				 * have been completely processed.
1654 				 * We take a clone of the original to store in
1655 				 * ci.io->orig_bio to be used by end_io_acct() and
1656 				 * for dec_pending to use for completion handling.
1657 				 */
1658 				struct bio *b = bio_split(bio, bio_sectors(bio) - ci.sector_count,
1659 							  GFP_NOIO, &md->queue->bio_split);
1660 				ci.io->orig_bio = b;
1661 
1662 				/*
1663 				 * Adjust IO stats for each split, otherwise upon queue
1664 				 * reentry there will be redundant IO accounting.
1665 				 * NOTE: this is a stop-gap fix, a proper fix involves
1666 				 * significant refactoring of DM core's bio splitting
1667 				 * (by eliminating DM's splitting and just using bio_split)
1668 				 */
1669 				part_stat_lock();
1670 				__dm_part_stat_sub(&dm_disk(md)->part0,
1671 						   sectors[op_stat_group(bio_op(bio))], ci.sector_count);
1672 				part_stat_unlock();
1673 
1674 				bio_chain(b, bio);
1675 				trace_block_split(md->queue, b, bio->bi_iter.bi_sector);
1676 				ret = submit_bio_noacct(bio);
1677 				break;
1678 			}
1679 		}
1680 	}
1681 
1682 	/* drop the extra reference count */
1683 	dec_pending(ci.io, errno_to_blk_status(error));
1684 	return ret;
1685 }
1686 
dm_submit_bio(struct bio * bio)1687 static blk_qc_t dm_submit_bio(struct bio *bio)
1688 {
1689 	struct mapped_device *md = bio->bi_disk->private_data;
1690 	blk_qc_t ret = BLK_QC_T_NONE;
1691 	int srcu_idx;
1692 	struct dm_table *map;
1693 
1694 	map = dm_get_live_table(md, &srcu_idx);
1695 	if (unlikely(!map)) {
1696 		DMERR_LIMIT("%s: mapping table unavailable, erroring io",
1697 			    dm_device_name(md));
1698 		bio_io_error(bio);
1699 		goto out;
1700 	}
1701 
1702 	/* If suspended, queue this IO for later */
1703 	if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) {
1704 		if (bio->bi_opf & REQ_NOWAIT)
1705 			bio_wouldblock_error(bio);
1706 		else if (bio->bi_opf & REQ_RAHEAD)
1707 			bio_io_error(bio);
1708 		else
1709 			queue_io(md, bio);
1710 		goto out;
1711 	}
1712 
1713 	/*
1714 	 * Use blk_queue_split() for abnormal IO (e.g. discard, writesame, etc)
1715 	 * otherwise associated queue_limits won't be imposed.
1716 	 */
1717 	if (is_abnormal_io(bio))
1718 		blk_queue_split(&bio);
1719 
1720 	ret = __split_and_process_bio(md, map, bio);
1721 out:
1722 	dm_put_live_table(md, srcu_idx);
1723 	return ret;
1724 }
1725 
1726 /*-----------------------------------------------------------------
1727  * An IDR is used to keep track of allocated minor numbers.
1728  *---------------------------------------------------------------*/
free_minor(int minor)1729 static void free_minor(int minor)
1730 {
1731 	spin_lock(&_minor_lock);
1732 	idr_remove(&_minor_idr, minor);
1733 	spin_unlock(&_minor_lock);
1734 }
1735 
1736 /*
1737  * See if the device with a specific minor # is free.
1738  */
specific_minor(int minor)1739 static int specific_minor(int minor)
1740 {
1741 	int r;
1742 
1743 	if (minor >= (1 << MINORBITS))
1744 		return -EINVAL;
1745 
1746 	idr_preload(GFP_KERNEL);
1747 	spin_lock(&_minor_lock);
1748 
1749 	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT);
1750 
1751 	spin_unlock(&_minor_lock);
1752 	idr_preload_end();
1753 	if (r < 0)
1754 		return r == -ENOSPC ? -EBUSY : r;
1755 	return 0;
1756 }
1757 
next_free_minor(int * minor)1758 static int next_free_minor(int *minor)
1759 {
1760 	int r;
1761 
1762 	idr_preload(GFP_KERNEL);
1763 	spin_lock(&_minor_lock);
1764 
1765 	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT);
1766 
1767 	spin_unlock(&_minor_lock);
1768 	idr_preload_end();
1769 	if (r < 0)
1770 		return r;
1771 	*minor = r;
1772 	return 0;
1773 }
1774 
1775 static const struct block_device_operations dm_blk_dops;
1776 static const struct block_device_operations dm_rq_blk_dops;
1777 static const struct dax_operations dm_dax_ops;
1778 
1779 static void dm_wq_work(struct work_struct *work);
1780 
cleanup_mapped_device(struct mapped_device * md)1781 static void cleanup_mapped_device(struct mapped_device *md)
1782 {
1783 	if (md->wq)
1784 		destroy_workqueue(md->wq);
1785 	bioset_exit(&md->bs);
1786 	bioset_exit(&md->io_bs);
1787 
1788 	if (md->dax_dev) {
1789 		kill_dax(md->dax_dev);
1790 		put_dax(md->dax_dev);
1791 		md->dax_dev = NULL;
1792 	}
1793 
1794 	if (md->disk) {
1795 		spin_lock(&_minor_lock);
1796 		md->disk->private_data = NULL;
1797 		spin_unlock(&_minor_lock);
1798 		del_gendisk(md->disk);
1799 		put_disk(md->disk);
1800 	}
1801 
1802 	if (md->queue)
1803 		blk_cleanup_queue(md->queue);
1804 
1805 	cleanup_srcu_struct(&md->io_barrier);
1806 
1807 	if (md->bdev) {
1808 		bdput(md->bdev);
1809 		md->bdev = NULL;
1810 	}
1811 
1812 	mutex_destroy(&md->suspend_lock);
1813 	mutex_destroy(&md->type_lock);
1814 	mutex_destroy(&md->table_devices_lock);
1815 	mutex_destroy(&md->swap_bios_lock);
1816 
1817 	dm_mq_cleanup_mapped_device(md);
1818 }
1819 
1820 /*
1821  * Allocate and initialise a blank device with a given minor.
1822  */
alloc_dev(int minor)1823 static struct mapped_device *alloc_dev(int minor)
1824 {
1825 	int r, numa_node_id = dm_get_numa_node();
1826 	struct mapped_device *md;
1827 	void *old_md;
1828 
1829 	md = kvzalloc_node(sizeof(*md), GFP_KERNEL, numa_node_id);
1830 	if (!md) {
1831 		DMWARN("unable to allocate device, out of memory.");
1832 		return NULL;
1833 	}
1834 
1835 	if (!try_module_get(THIS_MODULE))
1836 		goto bad_module_get;
1837 
1838 	/* get a minor number for the dev */
1839 	if (minor == DM_ANY_MINOR)
1840 		r = next_free_minor(&minor);
1841 	else
1842 		r = specific_minor(minor);
1843 	if (r < 0)
1844 		goto bad_minor;
1845 
1846 	r = init_srcu_struct(&md->io_barrier);
1847 	if (r < 0)
1848 		goto bad_io_barrier;
1849 
1850 	md->numa_node_id = numa_node_id;
1851 	md->init_tio_pdu = false;
1852 	md->type = DM_TYPE_NONE;
1853 	mutex_init(&md->suspend_lock);
1854 	mutex_init(&md->type_lock);
1855 	mutex_init(&md->table_devices_lock);
1856 	spin_lock_init(&md->deferred_lock);
1857 	atomic_set(&md->holders, 1);
1858 	atomic_set(&md->open_count, 0);
1859 	atomic_set(&md->event_nr, 0);
1860 	atomic_set(&md->uevent_seq, 0);
1861 	INIT_LIST_HEAD(&md->uevent_list);
1862 	INIT_LIST_HEAD(&md->table_devices);
1863 	spin_lock_init(&md->uevent_lock);
1864 
1865 	/*
1866 	 * default to bio-based until DM table is loaded and md->type
1867 	 * established. If request-based table is loaded: blk-mq will
1868 	 * override accordingly.
1869 	 */
1870 	md->queue = blk_alloc_queue(numa_node_id);
1871 	if (!md->queue)
1872 		goto bad;
1873 
1874 	md->disk = alloc_disk_node(1, md->numa_node_id);
1875 	if (!md->disk)
1876 		goto bad;
1877 
1878 	init_waitqueue_head(&md->wait);
1879 	INIT_WORK(&md->work, dm_wq_work);
1880 	init_waitqueue_head(&md->eventq);
1881 	init_completion(&md->kobj_holder.completion);
1882 
1883 	md->swap_bios = get_swap_bios();
1884 	sema_init(&md->swap_bios_semaphore, md->swap_bios);
1885 	mutex_init(&md->swap_bios_lock);
1886 
1887 	md->disk->major = _major;
1888 	md->disk->first_minor = minor;
1889 	md->disk->fops = &dm_blk_dops;
1890 	md->disk->queue = md->queue;
1891 	md->disk->private_data = md;
1892 	sprintf(md->disk->disk_name, "dm-%d", minor);
1893 
1894 	if (IS_ENABLED(CONFIG_DAX_DRIVER)) {
1895 		md->dax_dev = alloc_dax(md, md->disk->disk_name,
1896 					&dm_dax_ops, 0);
1897 		if (IS_ERR(md->dax_dev)) {
1898 			md->dax_dev = NULL;
1899 			goto bad;
1900 		}
1901 	}
1902 
1903 	add_disk_no_queue_reg(md->disk);
1904 	format_dev_t(md->name, MKDEV(_major, minor));
1905 
1906 	md->wq = alloc_workqueue("kdmflush", WQ_MEM_RECLAIM, 0);
1907 	if (!md->wq)
1908 		goto bad;
1909 
1910 	md->bdev = bdget_disk(md->disk, 0);
1911 	if (!md->bdev)
1912 		goto bad;
1913 
1914 	dm_stats_init(&md->stats);
1915 
1916 	/* Populate the mapping, nobody knows we exist yet */
1917 	spin_lock(&_minor_lock);
1918 	old_md = idr_replace(&_minor_idr, md, minor);
1919 	spin_unlock(&_minor_lock);
1920 
1921 	BUG_ON(old_md != MINOR_ALLOCED);
1922 
1923 	return md;
1924 
1925 bad:
1926 	cleanup_mapped_device(md);
1927 bad_io_barrier:
1928 	free_minor(minor);
1929 bad_minor:
1930 	module_put(THIS_MODULE);
1931 bad_module_get:
1932 	kvfree(md);
1933 	return NULL;
1934 }
1935 
1936 static void unlock_fs(struct mapped_device *md);
1937 
free_dev(struct mapped_device * md)1938 static void free_dev(struct mapped_device *md)
1939 {
1940 	int minor = MINOR(disk_devt(md->disk));
1941 
1942 	unlock_fs(md);
1943 
1944 	cleanup_mapped_device(md);
1945 
1946 	free_table_devices(&md->table_devices);
1947 	dm_stats_cleanup(&md->stats);
1948 	free_minor(minor);
1949 
1950 	module_put(THIS_MODULE);
1951 	kvfree(md);
1952 }
1953 
__bind_mempools(struct mapped_device * md,struct dm_table * t)1954 static int __bind_mempools(struct mapped_device *md, struct dm_table *t)
1955 {
1956 	struct dm_md_mempools *p = dm_table_get_md_mempools(t);
1957 	int ret = 0;
1958 
1959 	if (dm_table_bio_based(t)) {
1960 		/*
1961 		 * The md may already have mempools that need changing.
1962 		 * If so, reload bioset because front_pad may have changed
1963 		 * because a different table was loaded.
1964 		 */
1965 		bioset_exit(&md->bs);
1966 		bioset_exit(&md->io_bs);
1967 
1968 	} else if (bioset_initialized(&md->bs)) {
1969 		/*
1970 		 * There's no need to reload with request-based dm
1971 		 * because the size of front_pad doesn't change.
1972 		 * Note for future: If you are to reload bioset,
1973 		 * prep-ed requests in the queue may refer
1974 		 * to bio from the old bioset, so you must walk
1975 		 * through the queue to unprep.
1976 		 */
1977 		goto out;
1978 	}
1979 
1980 	BUG_ON(!p ||
1981 	       bioset_initialized(&md->bs) ||
1982 	       bioset_initialized(&md->io_bs));
1983 
1984 	ret = bioset_init_from_src(&md->bs, &p->bs);
1985 	if (ret)
1986 		goto out;
1987 	ret = bioset_init_from_src(&md->io_bs, &p->io_bs);
1988 	if (ret)
1989 		bioset_exit(&md->bs);
1990 out:
1991 	/* mempool bind completed, no longer need any mempools in the table */
1992 	dm_table_free_md_mempools(t);
1993 	return ret;
1994 }
1995 
1996 /*
1997  * Bind a table to the device.
1998  */
event_callback(void * context)1999 static void event_callback(void *context)
2000 {
2001 	unsigned long flags;
2002 	LIST_HEAD(uevents);
2003 	struct mapped_device *md = (struct mapped_device *) context;
2004 
2005 	spin_lock_irqsave(&md->uevent_lock, flags);
2006 	list_splice_init(&md->uevent_list, &uevents);
2007 	spin_unlock_irqrestore(&md->uevent_lock, flags);
2008 
2009 	dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
2010 
2011 	atomic_inc(&md->event_nr);
2012 	wake_up(&md->eventq);
2013 	dm_issue_global_event();
2014 }
2015 
2016 /*
2017  * Returns old map, which caller must destroy.
2018  */
__bind(struct mapped_device * md,struct dm_table * t,struct queue_limits * limits)2019 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
2020 			       struct queue_limits *limits)
2021 {
2022 	struct dm_table *old_map;
2023 	struct request_queue *q = md->queue;
2024 	bool request_based = dm_table_request_based(t);
2025 	sector_t size;
2026 	int ret;
2027 
2028 	lockdep_assert_held(&md->suspend_lock);
2029 
2030 	size = dm_table_get_size(t);
2031 
2032 	/*
2033 	 * Wipe any geometry if the size of the table changed.
2034 	 */
2035 	if (size != dm_get_size(md))
2036 		memset(&md->geometry, 0, sizeof(md->geometry));
2037 
2038 	set_capacity(md->disk, size);
2039 	bd_set_nr_sectors(md->bdev, size);
2040 
2041 	dm_table_event_callback(t, event_callback, md);
2042 
2043 	if (request_based) {
2044 		/*
2045 		 * Leverage the fact that request-based DM targets are
2046 		 * immutable singletons - used to optimize dm_mq_queue_rq.
2047 		 */
2048 		md->immutable_target = dm_table_get_immutable_target(t);
2049 	}
2050 
2051 	ret = __bind_mempools(md, t);
2052 	if (ret) {
2053 		old_map = ERR_PTR(ret);
2054 		goto out;
2055 	}
2056 
2057 	old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2058 	rcu_assign_pointer(md->map, (void *)t);
2059 	md->immutable_target_type = dm_table_get_immutable_target_type(t);
2060 
2061 	dm_table_set_restrictions(t, q, limits);
2062 	if (old_map)
2063 		dm_sync_table(md);
2064 
2065 out:
2066 	return old_map;
2067 }
2068 
2069 /*
2070  * Returns unbound table for the caller to free.
2071  */
__unbind(struct mapped_device * md)2072 static struct dm_table *__unbind(struct mapped_device *md)
2073 {
2074 	struct dm_table *map = rcu_dereference_protected(md->map, 1);
2075 
2076 	if (!map)
2077 		return NULL;
2078 
2079 	dm_table_event_callback(map, NULL, NULL);
2080 	RCU_INIT_POINTER(md->map, NULL);
2081 	dm_sync_table(md);
2082 
2083 	return map;
2084 }
2085 
2086 /*
2087  * Constructor for a new device.
2088  */
dm_create(int minor,struct mapped_device ** result)2089 int dm_create(int minor, struct mapped_device **result)
2090 {
2091 	int r;
2092 	struct mapped_device *md;
2093 
2094 	md = alloc_dev(minor);
2095 	if (!md)
2096 		return -ENXIO;
2097 
2098 	r = dm_sysfs_init(md);
2099 	if (r) {
2100 		free_dev(md);
2101 		return r;
2102 	}
2103 
2104 	*result = md;
2105 	return 0;
2106 }
2107 
2108 /*
2109  * Functions to manage md->type.
2110  * All are required to hold md->type_lock.
2111  */
dm_lock_md_type(struct mapped_device * md)2112 void dm_lock_md_type(struct mapped_device *md)
2113 {
2114 	mutex_lock(&md->type_lock);
2115 }
2116 
dm_unlock_md_type(struct mapped_device * md)2117 void dm_unlock_md_type(struct mapped_device *md)
2118 {
2119 	mutex_unlock(&md->type_lock);
2120 }
2121 
dm_set_md_type(struct mapped_device * md,enum dm_queue_mode type)2122 void dm_set_md_type(struct mapped_device *md, enum dm_queue_mode type)
2123 {
2124 	BUG_ON(!mutex_is_locked(&md->type_lock));
2125 	md->type = type;
2126 }
2127 
dm_get_md_type(struct mapped_device * md)2128 enum dm_queue_mode dm_get_md_type(struct mapped_device *md)
2129 {
2130 	return md->type;
2131 }
2132 
dm_get_immutable_target_type(struct mapped_device * md)2133 struct target_type *dm_get_immutable_target_type(struct mapped_device *md)
2134 {
2135 	return md->immutable_target_type;
2136 }
2137 
2138 /*
2139  * The queue_limits are only valid as long as you have a reference
2140  * count on 'md'.
2141  */
dm_get_queue_limits(struct mapped_device * md)2142 struct queue_limits *dm_get_queue_limits(struct mapped_device *md)
2143 {
2144 	BUG_ON(!atomic_read(&md->holders));
2145 	return &md->queue->limits;
2146 }
2147 EXPORT_SYMBOL_GPL(dm_get_queue_limits);
2148 
2149 /*
2150  * Setup the DM device's queue based on md's type
2151  */
dm_setup_md_queue(struct mapped_device * md,struct dm_table * t)2152 int dm_setup_md_queue(struct mapped_device *md, struct dm_table *t)
2153 {
2154 	int r;
2155 	struct queue_limits limits;
2156 	enum dm_queue_mode type = dm_get_md_type(md);
2157 
2158 	switch (type) {
2159 	case DM_TYPE_REQUEST_BASED:
2160 		md->disk->fops = &dm_rq_blk_dops;
2161 		r = dm_mq_init_request_queue(md, t);
2162 		if (r) {
2163 			DMERR("Cannot initialize queue for request-based dm mapped device");
2164 			return r;
2165 		}
2166 		break;
2167 	case DM_TYPE_BIO_BASED:
2168 	case DM_TYPE_DAX_BIO_BASED:
2169 		break;
2170 	case DM_TYPE_NONE:
2171 		WARN_ON_ONCE(true);
2172 		break;
2173 	}
2174 
2175 	r = dm_calculate_queue_limits(t, &limits);
2176 	if (r) {
2177 		DMERR("Cannot calculate initial queue limits");
2178 		return r;
2179 	}
2180 	dm_table_set_restrictions(t, md->queue, &limits);
2181 	blk_register_queue(md->disk);
2182 
2183 	return 0;
2184 }
2185 
dm_get_md(dev_t dev)2186 struct mapped_device *dm_get_md(dev_t dev)
2187 {
2188 	struct mapped_device *md;
2189 	unsigned minor = MINOR(dev);
2190 
2191 	if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
2192 		return NULL;
2193 
2194 	spin_lock(&_minor_lock);
2195 
2196 	md = idr_find(&_minor_idr, minor);
2197 	if (!md || md == MINOR_ALLOCED || (MINOR(disk_devt(dm_disk(md))) != minor) ||
2198 	    test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
2199 		md = NULL;
2200 		goto out;
2201 	}
2202 	dm_get(md);
2203 out:
2204 	spin_unlock(&_minor_lock);
2205 
2206 	return md;
2207 }
2208 EXPORT_SYMBOL_GPL(dm_get_md);
2209 
dm_get_mdptr(struct mapped_device * md)2210 void *dm_get_mdptr(struct mapped_device *md)
2211 {
2212 	return md->interface_ptr;
2213 }
2214 
dm_set_mdptr(struct mapped_device * md,void * ptr)2215 void dm_set_mdptr(struct mapped_device *md, void *ptr)
2216 {
2217 	md->interface_ptr = ptr;
2218 }
2219 
dm_get(struct mapped_device * md)2220 void dm_get(struct mapped_device *md)
2221 {
2222 	atomic_inc(&md->holders);
2223 	BUG_ON(test_bit(DMF_FREEING, &md->flags));
2224 }
2225 
dm_hold(struct mapped_device * md)2226 int dm_hold(struct mapped_device *md)
2227 {
2228 	spin_lock(&_minor_lock);
2229 	if (test_bit(DMF_FREEING, &md->flags)) {
2230 		spin_unlock(&_minor_lock);
2231 		return -EBUSY;
2232 	}
2233 	dm_get(md);
2234 	spin_unlock(&_minor_lock);
2235 	return 0;
2236 }
2237 EXPORT_SYMBOL_GPL(dm_hold);
2238 
dm_device_name(struct mapped_device * md)2239 const char *dm_device_name(struct mapped_device *md)
2240 {
2241 	return md->name;
2242 }
2243 EXPORT_SYMBOL_GPL(dm_device_name);
2244 
__dm_destroy(struct mapped_device * md,bool wait)2245 static void __dm_destroy(struct mapped_device *md, bool wait)
2246 {
2247 	struct dm_table *map;
2248 	int srcu_idx;
2249 
2250 	might_sleep();
2251 
2252 	spin_lock(&_minor_lock);
2253 	idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
2254 	set_bit(DMF_FREEING, &md->flags);
2255 	spin_unlock(&_minor_lock);
2256 
2257 	blk_set_queue_dying(md->queue);
2258 
2259 	/*
2260 	 * Take suspend_lock so that presuspend and postsuspend methods
2261 	 * do not race with internal suspend.
2262 	 */
2263 	mutex_lock(&md->suspend_lock);
2264 	map = dm_get_live_table(md, &srcu_idx);
2265 	if (!dm_suspended_md(md)) {
2266 		dm_table_presuspend_targets(map);
2267 		set_bit(DMF_SUSPENDED, &md->flags);
2268 		set_bit(DMF_POST_SUSPENDING, &md->flags);
2269 		dm_table_postsuspend_targets(map);
2270 	}
2271 	/* dm_put_live_table must be before msleep, otherwise deadlock is possible */
2272 	dm_put_live_table(md, srcu_idx);
2273 	mutex_unlock(&md->suspend_lock);
2274 
2275 	/*
2276 	 * Rare, but there may be I/O requests still going to complete,
2277 	 * for example.  Wait for all references to disappear.
2278 	 * No one should increment the reference count of the mapped_device,
2279 	 * after the mapped_device state becomes DMF_FREEING.
2280 	 */
2281 	if (wait)
2282 		while (atomic_read(&md->holders))
2283 			msleep(1);
2284 	else if (atomic_read(&md->holders))
2285 		DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2286 		       dm_device_name(md), atomic_read(&md->holders));
2287 
2288 	dm_sysfs_exit(md);
2289 	dm_table_destroy(__unbind(md));
2290 	free_dev(md);
2291 }
2292 
dm_destroy(struct mapped_device * md)2293 void dm_destroy(struct mapped_device *md)
2294 {
2295 	__dm_destroy(md, true);
2296 }
2297 
dm_destroy_immediate(struct mapped_device * md)2298 void dm_destroy_immediate(struct mapped_device *md)
2299 {
2300 	__dm_destroy(md, false);
2301 }
2302 
dm_put(struct mapped_device * md)2303 void dm_put(struct mapped_device *md)
2304 {
2305 	atomic_dec(&md->holders);
2306 }
2307 EXPORT_SYMBOL_GPL(dm_put);
2308 
md_in_flight_bios(struct mapped_device * md)2309 static bool md_in_flight_bios(struct mapped_device *md)
2310 {
2311 	int cpu;
2312 	struct hd_struct *part = &dm_disk(md)->part0;
2313 	long sum = 0;
2314 
2315 	for_each_possible_cpu(cpu) {
2316 		sum += part_stat_local_read_cpu(part, in_flight[0], cpu);
2317 		sum += part_stat_local_read_cpu(part, in_flight[1], cpu);
2318 	}
2319 
2320 	return sum != 0;
2321 }
2322 
dm_wait_for_bios_completion(struct mapped_device * md,long task_state)2323 static int dm_wait_for_bios_completion(struct mapped_device *md, long task_state)
2324 {
2325 	int r = 0;
2326 	DEFINE_WAIT(wait);
2327 
2328 	while (true) {
2329 		prepare_to_wait(&md->wait, &wait, task_state);
2330 
2331 		if (!md_in_flight_bios(md))
2332 			break;
2333 
2334 		if (signal_pending_state(task_state, current)) {
2335 			r = -EINTR;
2336 			break;
2337 		}
2338 
2339 		io_schedule();
2340 	}
2341 	finish_wait(&md->wait, &wait);
2342 
2343 	return r;
2344 }
2345 
dm_wait_for_completion(struct mapped_device * md,long task_state)2346 static int dm_wait_for_completion(struct mapped_device *md, long task_state)
2347 {
2348 	int r = 0;
2349 
2350 	if (!queue_is_mq(md->queue))
2351 		return dm_wait_for_bios_completion(md, task_state);
2352 
2353 	while (true) {
2354 		if (!blk_mq_queue_inflight(md->queue))
2355 			break;
2356 
2357 		if (signal_pending_state(task_state, current)) {
2358 			r = -EINTR;
2359 			break;
2360 		}
2361 
2362 		msleep(5);
2363 	}
2364 
2365 	return r;
2366 }
2367 
2368 /*
2369  * Process the deferred bios
2370  */
dm_wq_work(struct work_struct * work)2371 static void dm_wq_work(struct work_struct *work)
2372 {
2373 	struct mapped_device *md = container_of(work, struct mapped_device, work);
2374 	struct bio *bio;
2375 
2376 	while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2377 		spin_lock_irq(&md->deferred_lock);
2378 		bio = bio_list_pop(&md->deferred);
2379 		spin_unlock_irq(&md->deferred_lock);
2380 
2381 		if (!bio)
2382 			break;
2383 
2384 		submit_bio_noacct(bio);
2385 	}
2386 }
2387 
dm_queue_flush(struct mapped_device * md)2388 static void dm_queue_flush(struct mapped_device *md)
2389 {
2390 	clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2391 	smp_mb__after_atomic();
2392 	queue_work(md->wq, &md->work);
2393 }
2394 
2395 /*
2396  * Swap in a new table, returning the old one for the caller to destroy.
2397  */
dm_swap_table(struct mapped_device * md,struct dm_table * table)2398 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
2399 {
2400 	struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL);
2401 	struct queue_limits limits;
2402 	int r;
2403 
2404 	mutex_lock(&md->suspend_lock);
2405 
2406 	/* device must be suspended */
2407 	if (!dm_suspended_md(md))
2408 		goto out;
2409 
2410 	/*
2411 	 * If the new table has no data devices, retain the existing limits.
2412 	 * This helps multipath with queue_if_no_path if all paths disappear,
2413 	 * then new I/O is queued based on these limits, and then some paths
2414 	 * reappear.
2415 	 */
2416 	if (dm_table_has_no_data_devices(table)) {
2417 		live_map = dm_get_live_table_fast(md);
2418 		if (live_map)
2419 			limits = md->queue->limits;
2420 		dm_put_live_table_fast(md);
2421 	}
2422 
2423 	if (!live_map) {
2424 		r = dm_calculate_queue_limits(table, &limits);
2425 		if (r) {
2426 			map = ERR_PTR(r);
2427 			goto out;
2428 		}
2429 	}
2430 
2431 	map = __bind(md, table, &limits);
2432 	dm_issue_global_event();
2433 
2434 out:
2435 	mutex_unlock(&md->suspend_lock);
2436 	return map;
2437 }
2438 
2439 /*
2440  * Functions to lock and unlock any filesystem running on the
2441  * device.
2442  */
lock_fs(struct mapped_device * md)2443 static int lock_fs(struct mapped_device *md)
2444 {
2445 	int r;
2446 
2447 	WARN_ON(md->frozen_sb);
2448 
2449 	md->frozen_sb = freeze_bdev(md->bdev);
2450 	if (IS_ERR(md->frozen_sb)) {
2451 		r = PTR_ERR(md->frozen_sb);
2452 		md->frozen_sb = NULL;
2453 		return r;
2454 	}
2455 
2456 	set_bit(DMF_FROZEN, &md->flags);
2457 
2458 	return 0;
2459 }
2460 
unlock_fs(struct mapped_device * md)2461 static void unlock_fs(struct mapped_device *md)
2462 {
2463 	if (!test_bit(DMF_FROZEN, &md->flags))
2464 		return;
2465 
2466 	thaw_bdev(md->bdev, md->frozen_sb);
2467 	md->frozen_sb = NULL;
2468 	clear_bit(DMF_FROZEN, &md->flags);
2469 }
2470 
2471 /*
2472  * @suspend_flags: DM_SUSPEND_LOCKFS_FLAG and/or DM_SUSPEND_NOFLUSH_FLAG
2473  * @task_state: e.g. TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE
2474  * @dmf_suspended_flag: DMF_SUSPENDED or DMF_SUSPENDED_INTERNALLY
2475  *
2476  * If __dm_suspend returns 0, the device is completely quiescent
2477  * now. There is no request-processing activity. All new requests
2478  * are being added to md->deferred list.
2479  */
__dm_suspend(struct mapped_device * md,struct dm_table * map,unsigned suspend_flags,long task_state,int dmf_suspended_flag)2480 static int __dm_suspend(struct mapped_device *md, struct dm_table *map,
2481 			unsigned suspend_flags, long task_state,
2482 			int dmf_suspended_flag)
2483 {
2484 	bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG;
2485 	bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG;
2486 	int r;
2487 
2488 	lockdep_assert_held(&md->suspend_lock);
2489 
2490 	/*
2491 	 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2492 	 * This flag is cleared before dm_suspend returns.
2493 	 */
2494 	if (noflush)
2495 		set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2496 	else
2497 		DMDEBUG("%s: suspending with flush", dm_device_name(md));
2498 
2499 	/*
2500 	 * This gets reverted if there's an error later and the targets
2501 	 * provide the .presuspend_undo hook.
2502 	 */
2503 	dm_table_presuspend_targets(map);
2504 
2505 	/*
2506 	 * Flush I/O to the device.
2507 	 * Any I/O submitted after lock_fs() may not be flushed.
2508 	 * noflush takes precedence over do_lockfs.
2509 	 * (lock_fs() flushes I/Os and waits for them to complete.)
2510 	 */
2511 	if (!noflush && do_lockfs) {
2512 		r = lock_fs(md);
2513 		if (r) {
2514 			dm_table_presuspend_undo_targets(map);
2515 			return r;
2516 		}
2517 	}
2518 
2519 	/*
2520 	 * Here we must make sure that no processes are submitting requests
2521 	 * to target drivers i.e. no one may be executing
2522 	 * __split_and_process_bio from dm_submit_bio.
2523 	 *
2524 	 * To get all processes out of __split_and_process_bio in dm_submit_bio,
2525 	 * we take the write lock. To prevent any process from reentering
2526 	 * __split_and_process_bio from dm_submit_bio and quiesce the thread
2527 	 * (dm_wq_work), we set DMF_BLOCK_IO_FOR_SUSPEND and call
2528 	 * flush_workqueue(md->wq).
2529 	 */
2530 	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2531 	if (map)
2532 		synchronize_srcu(&md->io_barrier);
2533 
2534 	/*
2535 	 * Stop md->queue before flushing md->wq in case request-based
2536 	 * dm defers requests to md->wq from md->queue.
2537 	 */
2538 	if (dm_request_based(md))
2539 		dm_stop_queue(md->queue);
2540 
2541 	flush_workqueue(md->wq);
2542 
2543 	/*
2544 	 * At this point no more requests are entering target request routines.
2545 	 * We call dm_wait_for_completion to wait for all existing requests
2546 	 * to finish.
2547 	 */
2548 	r = dm_wait_for_completion(md, task_state);
2549 	if (!r)
2550 		set_bit(dmf_suspended_flag, &md->flags);
2551 
2552 	if (noflush)
2553 		clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2554 	if (map)
2555 		synchronize_srcu(&md->io_barrier);
2556 
2557 	/* were we interrupted ? */
2558 	if (r < 0) {
2559 		dm_queue_flush(md);
2560 
2561 		if (dm_request_based(md))
2562 			dm_start_queue(md->queue);
2563 
2564 		unlock_fs(md);
2565 		dm_table_presuspend_undo_targets(map);
2566 		/* pushback list is already flushed, so skip flush */
2567 	}
2568 
2569 	return r;
2570 }
2571 
2572 /*
2573  * We need to be able to change a mapping table under a mounted
2574  * filesystem.  For example we might want to move some data in
2575  * the background.  Before the table can be swapped with
2576  * dm_bind_table, dm_suspend must be called to flush any in
2577  * flight bios and ensure that any further io gets deferred.
2578  */
2579 /*
2580  * Suspend mechanism in request-based dm.
2581  *
2582  * 1. Flush all I/Os by lock_fs() if needed.
2583  * 2. Stop dispatching any I/O by stopping the request_queue.
2584  * 3. Wait for all in-flight I/Os to be completed or requeued.
2585  *
2586  * To abort suspend, start the request_queue.
2587  */
dm_suspend(struct mapped_device * md,unsigned suspend_flags)2588 int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
2589 {
2590 	struct dm_table *map = NULL;
2591 	int r = 0;
2592 
2593 retry:
2594 	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2595 
2596 	if (dm_suspended_md(md)) {
2597 		r = -EINVAL;
2598 		goto out_unlock;
2599 	}
2600 
2601 	if (dm_suspended_internally_md(md)) {
2602 		/* already internally suspended, wait for internal resume */
2603 		mutex_unlock(&md->suspend_lock);
2604 		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2605 		if (r)
2606 			return r;
2607 		goto retry;
2608 	}
2609 
2610 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2611 
2612 	r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE, DMF_SUSPENDED);
2613 	if (r)
2614 		goto out_unlock;
2615 
2616 	set_bit(DMF_POST_SUSPENDING, &md->flags);
2617 	dm_table_postsuspend_targets(map);
2618 	clear_bit(DMF_POST_SUSPENDING, &md->flags);
2619 
2620 out_unlock:
2621 	mutex_unlock(&md->suspend_lock);
2622 	return r;
2623 }
2624 
__dm_resume(struct mapped_device * md,struct dm_table * map)2625 static int __dm_resume(struct mapped_device *md, struct dm_table *map)
2626 {
2627 	if (map) {
2628 		int r = dm_table_resume_targets(map);
2629 		if (r)
2630 			return r;
2631 	}
2632 
2633 	dm_queue_flush(md);
2634 
2635 	/*
2636 	 * Flushing deferred I/Os must be done after targets are resumed
2637 	 * so that mapping of targets can work correctly.
2638 	 * Request-based dm is queueing the deferred I/Os in its request_queue.
2639 	 */
2640 	if (dm_request_based(md))
2641 		dm_start_queue(md->queue);
2642 
2643 	unlock_fs(md);
2644 
2645 	return 0;
2646 }
2647 
dm_resume(struct mapped_device * md)2648 int dm_resume(struct mapped_device *md)
2649 {
2650 	int r;
2651 	struct dm_table *map = NULL;
2652 
2653 retry:
2654 	r = -EINVAL;
2655 	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2656 
2657 	if (!dm_suspended_md(md))
2658 		goto out;
2659 
2660 	if (dm_suspended_internally_md(md)) {
2661 		/* already internally suspended, wait for internal resume */
2662 		mutex_unlock(&md->suspend_lock);
2663 		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2664 		if (r)
2665 			return r;
2666 		goto retry;
2667 	}
2668 
2669 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2670 	if (!map || !dm_table_get_size(map))
2671 		goto out;
2672 
2673 	r = __dm_resume(md, map);
2674 	if (r)
2675 		goto out;
2676 
2677 	clear_bit(DMF_SUSPENDED, &md->flags);
2678 out:
2679 	mutex_unlock(&md->suspend_lock);
2680 
2681 	return r;
2682 }
2683 
2684 /*
2685  * Internal suspend/resume works like userspace-driven suspend. It waits
2686  * until all bios finish and prevents issuing new bios to the target drivers.
2687  * It may be used only from the kernel.
2688  */
2689 
__dm_internal_suspend(struct mapped_device * md,unsigned suspend_flags)2690 static void __dm_internal_suspend(struct mapped_device *md, unsigned suspend_flags)
2691 {
2692 	struct dm_table *map = NULL;
2693 
2694 	lockdep_assert_held(&md->suspend_lock);
2695 
2696 	if (md->internal_suspend_count++)
2697 		return; /* nested internal suspend */
2698 
2699 	if (dm_suspended_md(md)) {
2700 		set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2701 		return; /* nest suspend */
2702 	}
2703 
2704 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2705 
2706 	/*
2707 	 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is
2708 	 * supported.  Properly supporting a TASK_INTERRUPTIBLE internal suspend
2709 	 * would require changing .presuspend to return an error -- avoid this
2710 	 * until there is a need for more elaborate variants of internal suspend.
2711 	 */
2712 	(void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE,
2713 			    DMF_SUSPENDED_INTERNALLY);
2714 
2715 	set_bit(DMF_POST_SUSPENDING, &md->flags);
2716 	dm_table_postsuspend_targets(map);
2717 	clear_bit(DMF_POST_SUSPENDING, &md->flags);
2718 }
2719 
__dm_internal_resume(struct mapped_device * md)2720 static void __dm_internal_resume(struct mapped_device *md)
2721 {
2722 	BUG_ON(!md->internal_suspend_count);
2723 
2724 	if (--md->internal_suspend_count)
2725 		return; /* resume from nested internal suspend */
2726 
2727 	if (dm_suspended_md(md))
2728 		goto done; /* resume from nested suspend */
2729 
2730 	/*
2731 	 * NOTE: existing callers don't need to call dm_table_resume_targets
2732 	 * (which may fail -- so best to avoid it for now by passing NULL map)
2733 	 */
2734 	(void) __dm_resume(md, NULL);
2735 
2736 done:
2737 	clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2738 	smp_mb__after_atomic();
2739 	wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY);
2740 }
2741 
dm_internal_suspend_noflush(struct mapped_device * md)2742 void dm_internal_suspend_noflush(struct mapped_device *md)
2743 {
2744 	mutex_lock(&md->suspend_lock);
2745 	__dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG);
2746 	mutex_unlock(&md->suspend_lock);
2747 }
2748 EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush);
2749 
dm_internal_resume(struct mapped_device * md)2750 void dm_internal_resume(struct mapped_device *md)
2751 {
2752 	mutex_lock(&md->suspend_lock);
2753 	__dm_internal_resume(md);
2754 	mutex_unlock(&md->suspend_lock);
2755 }
2756 EXPORT_SYMBOL_GPL(dm_internal_resume);
2757 
2758 /*
2759  * Fast variants of internal suspend/resume hold md->suspend_lock,
2760  * which prevents interaction with userspace-driven suspend.
2761  */
2762 
dm_internal_suspend_fast(struct mapped_device * md)2763 void dm_internal_suspend_fast(struct mapped_device *md)
2764 {
2765 	mutex_lock(&md->suspend_lock);
2766 	if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2767 		return;
2768 
2769 	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2770 	synchronize_srcu(&md->io_barrier);
2771 	flush_workqueue(md->wq);
2772 	dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
2773 }
2774 EXPORT_SYMBOL_GPL(dm_internal_suspend_fast);
2775 
dm_internal_resume_fast(struct mapped_device * md)2776 void dm_internal_resume_fast(struct mapped_device *md)
2777 {
2778 	if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2779 		goto done;
2780 
2781 	dm_queue_flush(md);
2782 
2783 done:
2784 	mutex_unlock(&md->suspend_lock);
2785 }
2786 EXPORT_SYMBOL_GPL(dm_internal_resume_fast);
2787 
2788 /*-----------------------------------------------------------------
2789  * Event notification.
2790  *---------------------------------------------------------------*/
dm_kobject_uevent(struct mapped_device * md,enum kobject_action action,unsigned cookie)2791 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
2792 		       unsigned cookie)
2793 {
2794 	int r;
2795 	unsigned noio_flag;
2796 	char udev_cookie[DM_COOKIE_LENGTH];
2797 	char *envp[] = { udev_cookie, NULL };
2798 
2799 	noio_flag = memalloc_noio_save();
2800 
2801 	if (!cookie)
2802 		r = kobject_uevent(&disk_to_dev(md->disk)->kobj, action);
2803 	else {
2804 		snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
2805 			 DM_COOKIE_ENV_VAR_NAME, cookie);
2806 		r = kobject_uevent_env(&disk_to_dev(md->disk)->kobj,
2807 				       action, envp);
2808 	}
2809 
2810 	memalloc_noio_restore(noio_flag);
2811 
2812 	return r;
2813 }
2814 
dm_next_uevent_seq(struct mapped_device * md)2815 uint32_t dm_next_uevent_seq(struct mapped_device *md)
2816 {
2817 	return atomic_add_return(1, &md->uevent_seq);
2818 }
2819 
dm_get_event_nr(struct mapped_device * md)2820 uint32_t dm_get_event_nr(struct mapped_device *md)
2821 {
2822 	return atomic_read(&md->event_nr);
2823 }
2824 
dm_wait_event(struct mapped_device * md,int event_nr)2825 int dm_wait_event(struct mapped_device *md, int event_nr)
2826 {
2827 	return wait_event_interruptible(md->eventq,
2828 			(event_nr != atomic_read(&md->event_nr)));
2829 }
2830 
dm_uevent_add(struct mapped_device * md,struct list_head * elist)2831 void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
2832 {
2833 	unsigned long flags;
2834 
2835 	spin_lock_irqsave(&md->uevent_lock, flags);
2836 	list_add(elist, &md->uevent_list);
2837 	spin_unlock_irqrestore(&md->uevent_lock, flags);
2838 }
2839 
2840 /*
2841  * The gendisk is only valid as long as you have a reference
2842  * count on 'md'.
2843  */
dm_disk(struct mapped_device * md)2844 struct gendisk *dm_disk(struct mapped_device *md)
2845 {
2846 	return md->disk;
2847 }
2848 EXPORT_SYMBOL_GPL(dm_disk);
2849 
dm_kobject(struct mapped_device * md)2850 struct kobject *dm_kobject(struct mapped_device *md)
2851 {
2852 	return &md->kobj_holder.kobj;
2853 }
2854 
dm_get_from_kobject(struct kobject * kobj)2855 struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
2856 {
2857 	struct mapped_device *md;
2858 
2859 	md = container_of(kobj, struct mapped_device, kobj_holder.kobj);
2860 
2861 	spin_lock(&_minor_lock);
2862 	if (test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
2863 		md = NULL;
2864 		goto out;
2865 	}
2866 	dm_get(md);
2867 out:
2868 	spin_unlock(&_minor_lock);
2869 
2870 	return md;
2871 }
2872 
dm_suspended_md(struct mapped_device * md)2873 int dm_suspended_md(struct mapped_device *md)
2874 {
2875 	return test_bit(DMF_SUSPENDED, &md->flags);
2876 }
2877 
dm_post_suspending_md(struct mapped_device * md)2878 static int dm_post_suspending_md(struct mapped_device *md)
2879 {
2880 	return test_bit(DMF_POST_SUSPENDING, &md->flags);
2881 }
2882 
dm_suspended_internally_md(struct mapped_device * md)2883 int dm_suspended_internally_md(struct mapped_device *md)
2884 {
2885 	return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2886 }
2887 
dm_test_deferred_remove_flag(struct mapped_device * md)2888 int dm_test_deferred_remove_flag(struct mapped_device *md)
2889 {
2890 	return test_bit(DMF_DEFERRED_REMOVE, &md->flags);
2891 }
2892 
dm_suspended(struct dm_target * ti)2893 int dm_suspended(struct dm_target *ti)
2894 {
2895 	return dm_suspended_md(ti->table->md);
2896 }
2897 EXPORT_SYMBOL_GPL(dm_suspended);
2898 
dm_post_suspending(struct dm_target * ti)2899 int dm_post_suspending(struct dm_target *ti)
2900 {
2901 	return dm_post_suspending_md(ti->table->md);
2902 }
2903 EXPORT_SYMBOL_GPL(dm_post_suspending);
2904 
dm_noflush_suspending(struct dm_target * ti)2905 int dm_noflush_suspending(struct dm_target *ti)
2906 {
2907 	return __noflush_suspending(ti->table->md);
2908 }
2909 EXPORT_SYMBOL_GPL(dm_noflush_suspending);
2910 
dm_alloc_md_mempools(struct mapped_device * md,enum dm_queue_mode type,unsigned integrity,unsigned per_io_data_size,unsigned min_pool_size)2911 struct dm_md_mempools *dm_alloc_md_mempools(struct mapped_device *md, enum dm_queue_mode type,
2912 					    unsigned integrity, unsigned per_io_data_size,
2913 					    unsigned min_pool_size)
2914 {
2915 	struct dm_md_mempools *pools = kzalloc_node(sizeof(*pools), GFP_KERNEL, md->numa_node_id);
2916 	unsigned int pool_size = 0;
2917 	unsigned int front_pad, io_front_pad;
2918 	int ret;
2919 
2920 	if (!pools)
2921 		return NULL;
2922 
2923 	switch (type) {
2924 	case DM_TYPE_BIO_BASED:
2925 	case DM_TYPE_DAX_BIO_BASED:
2926 		pool_size = max(dm_get_reserved_bio_based_ios(), min_pool_size);
2927 		front_pad = roundup(per_io_data_size, __alignof__(struct dm_target_io)) + offsetof(struct dm_target_io, clone);
2928 		io_front_pad = roundup(front_pad,  __alignof__(struct dm_io)) + offsetof(struct dm_io, tio);
2929 		ret = bioset_init(&pools->io_bs, pool_size, io_front_pad, 0);
2930 		if (ret)
2931 			goto out;
2932 		if (integrity && bioset_integrity_create(&pools->io_bs, pool_size))
2933 			goto out;
2934 		break;
2935 	case DM_TYPE_REQUEST_BASED:
2936 		pool_size = max(dm_get_reserved_rq_based_ios(), min_pool_size);
2937 		front_pad = offsetof(struct dm_rq_clone_bio_info, clone);
2938 		/* per_io_data_size is used for blk-mq pdu at queue allocation */
2939 		break;
2940 	default:
2941 		BUG();
2942 	}
2943 
2944 	ret = bioset_init(&pools->bs, pool_size, front_pad, 0);
2945 	if (ret)
2946 		goto out;
2947 
2948 	if (integrity && bioset_integrity_create(&pools->bs, pool_size))
2949 		goto out;
2950 
2951 	return pools;
2952 
2953 out:
2954 	dm_free_md_mempools(pools);
2955 
2956 	return NULL;
2957 }
2958 
dm_free_md_mempools(struct dm_md_mempools * pools)2959 void dm_free_md_mempools(struct dm_md_mempools *pools)
2960 {
2961 	if (!pools)
2962 		return;
2963 
2964 	bioset_exit(&pools->bs);
2965 	bioset_exit(&pools->io_bs);
2966 
2967 	kfree(pools);
2968 }
2969 
2970 struct dm_pr {
2971 	u64	old_key;
2972 	u64	new_key;
2973 	u32	flags;
2974 	bool	fail_early;
2975 };
2976 
dm_call_pr(struct block_device * bdev,iterate_devices_callout_fn fn,void * data)2977 static int dm_call_pr(struct block_device *bdev, iterate_devices_callout_fn fn,
2978 		      void *data)
2979 {
2980 	struct mapped_device *md = bdev->bd_disk->private_data;
2981 	struct dm_table *table;
2982 	struct dm_target *ti;
2983 	int ret = -ENOTTY, srcu_idx;
2984 
2985 	table = dm_get_live_table(md, &srcu_idx);
2986 	if (!table || !dm_table_get_size(table))
2987 		goto out;
2988 
2989 	/* We only support devices that have a single target */
2990 	if (dm_table_get_num_targets(table) != 1)
2991 		goto out;
2992 	ti = dm_table_get_target(table, 0);
2993 
2994 	ret = -EINVAL;
2995 	if (!ti->type->iterate_devices)
2996 		goto out;
2997 
2998 	ret = ti->type->iterate_devices(ti, fn, data);
2999 out:
3000 	dm_put_live_table(md, srcu_idx);
3001 	return ret;
3002 }
3003 
3004 /*
3005  * For register / unregister we need to manually call out to every path.
3006  */
__dm_pr_register(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)3007 static int __dm_pr_register(struct dm_target *ti, struct dm_dev *dev,
3008 			    sector_t start, sector_t len, void *data)
3009 {
3010 	struct dm_pr *pr = data;
3011 	const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3012 
3013 	if (!ops || !ops->pr_register)
3014 		return -EOPNOTSUPP;
3015 	return ops->pr_register(dev->bdev, pr->old_key, pr->new_key, pr->flags);
3016 }
3017 
dm_pr_register(struct block_device * bdev,u64 old_key,u64 new_key,u32 flags)3018 static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
3019 			  u32 flags)
3020 {
3021 	struct dm_pr pr = {
3022 		.old_key	= old_key,
3023 		.new_key	= new_key,
3024 		.flags		= flags,
3025 		.fail_early	= true,
3026 	};
3027 	int ret;
3028 
3029 	ret = dm_call_pr(bdev, __dm_pr_register, &pr);
3030 	if (ret && new_key) {
3031 		/* unregister all paths if we failed to register any path */
3032 		pr.old_key = new_key;
3033 		pr.new_key = 0;
3034 		pr.flags = 0;
3035 		pr.fail_early = false;
3036 		dm_call_pr(bdev, __dm_pr_register, &pr);
3037 	}
3038 
3039 	return ret;
3040 }
3041 
dm_pr_reserve(struct block_device * bdev,u64 key,enum pr_type type,u32 flags)3042 static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
3043 			 u32 flags)
3044 {
3045 	struct mapped_device *md = bdev->bd_disk->private_data;
3046 	const struct pr_ops *ops;
3047 	int r, srcu_idx;
3048 
3049 	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3050 	if (r < 0)
3051 		goto out;
3052 
3053 	ops = bdev->bd_disk->fops->pr_ops;
3054 	if (ops && ops->pr_reserve)
3055 		r = ops->pr_reserve(bdev, key, type, flags);
3056 	else
3057 		r = -EOPNOTSUPP;
3058 out:
3059 	dm_unprepare_ioctl(md, srcu_idx);
3060 	return r;
3061 }
3062 
dm_pr_release(struct block_device * bdev,u64 key,enum pr_type type)3063 static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
3064 {
3065 	struct mapped_device *md = bdev->bd_disk->private_data;
3066 	const struct pr_ops *ops;
3067 	int r, srcu_idx;
3068 
3069 	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3070 	if (r < 0)
3071 		goto out;
3072 
3073 	ops = bdev->bd_disk->fops->pr_ops;
3074 	if (ops && ops->pr_release)
3075 		r = ops->pr_release(bdev, key, type);
3076 	else
3077 		r = -EOPNOTSUPP;
3078 out:
3079 	dm_unprepare_ioctl(md, srcu_idx);
3080 	return r;
3081 }
3082 
dm_pr_preempt(struct block_device * bdev,u64 old_key,u64 new_key,enum pr_type type,bool abort)3083 static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
3084 			 enum pr_type type, bool abort)
3085 {
3086 	struct mapped_device *md = bdev->bd_disk->private_data;
3087 	const struct pr_ops *ops;
3088 	int r, srcu_idx;
3089 
3090 	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3091 	if (r < 0)
3092 		goto out;
3093 
3094 	ops = bdev->bd_disk->fops->pr_ops;
3095 	if (ops && ops->pr_preempt)
3096 		r = ops->pr_preempt(bdev, old_key, new_key, type, abort);
3097 	else
3098 		r = -EOPNOTSUPP;
3099 out:
3100 	dm_unprepare_ioctl(md, srcu_idx);
3101 	return r;
3102 }
3103 
dm_pr_clear(struct block_device * bdev,u64 key)3104 static int dm_pr_clear(struct block_device *bdev, u64 key)
3105 {
3106 	struct mapped_device *md = bdev->bd_disk->private_data;
3107 	const struct pr_ops *ops;
3108 	int r, srcu_idx;
3109 
3110 	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3111 	if (r < 0)
3112 		goto out;
3113 
3114 	ops = bdev->bd_disk->fops->pr_ops;
3115 	if (ops && ops->pr_clear)
3116 		r = ops->pr_clear(bdev, key);
3117 	else
3118 		r = -EOPNOTSUPP;
3119 out:
3120 	dm_unprepare_ioctl(md, srcu_idx);
3121 	return r;
3122 }
3123 
3124 static const struct pr_ops dm_pr_ops = {
3125 	.pr_register	= dm_pr_register,
3126 	.pr_reserve	= dm_pr_reserve,
3127 	.pr_release	= dm_pr_release,
3128 	.pr_preempt	= dm_pr_preempt,
3129 	.pr_clear	= dm_pr_clear,
3130 };
3131 
3132 static const struct block_device_operations dm_blk_dops = {
3133 	.submit_bio = dm_submit_bio,
3134 	.open = dm_blk_open,
3135 	.release = dm_blk_close,
3136 	.ioctl = dm_blk_ioctl,
3137 	.getgeo = dm_blk_getgeo,
3138 	.report_zones = dm_blk_report_zones,
3139 	.pr_ops = &dm_pr_ops,
3140 	.owner = THIS_MODULE
3141 };
3142 
3143 static const struct block_device_operations dm_rq_blk_dops = {
3144 	.open = dm_blk_open,
3145 	.release = dm_blk_close,
3146 	.ioctl = dm_blk_ioctl,
3147 	.getgeo = dm_blk_getgeo,
3148 	.pr_ops = &dm_pr_ops,
3149 	.owner = THIS_MODULE
3150 };
3151 
3152 static const struct dax_operations dm_dax_ops = {
3153 	.direct_access = dm_dax_direct_access,
3154 	.dax_supported = dm_dax_supported,
3155 	.copy_from_iter = dm_dax_copy_from_iter,
3156 	.copy_to_iter = dm_dax_copy_to_iter,
3157 	.zero_page_range = dm_dax_zero_page_range,
3158 };
3159 
3160 /*
3161  * module hooks
3162  */
3163 module_init(dm_init);
3164 module_exit(dm_exit);
3165 
3166 module_param(major, uint, 0);
3167 MODULE_PARM_DESC(major, "The major number of the device mapper");
3168 
3169 module_param(reserved_bio_based_ios, uint, S_IRUGO | S_IWUSR);
3170 MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools");
3171 
3172 module_param(dm_numa_node, int, S_IRUGO | S_IWUSR);
3173 MODULE_PARM_DESC(dm_numa_node, "NUMA node for DM device memory allocations");
3174 
3175 module_param(swap_bios, int, S_IRUGO | S_IWUSR);
3176 MODULE_PARM_DESC(swap_bios, "Maximum allowed inflight swap IOs");
3177 
3178 MODULE_DESCRIPTION(DM_NAME " driver");
3179 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
3180 MODULE_LICENSE("GPL");
3181