• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 #ifndef __KVM_HOST_H
3 #define __KVM_HOST_H
4 
5 
6 #include <linux/types.h>
7 #include <linux/hardirq.h>
8 #include <linux/list.h>
9 #include <linux/mutex.h>
10 #include <linux/spinlock.h>
11 #include <linux/signal.h>
12 #include <linux/sched.h>
13 #include <linux/bug.h>
14 #include <linux/mm.h>
15 #include <linux/mmu_notifier.h>
16 #include <linux/preempt.h>
17 #include <linux/msi.h>
18 #include <linux/slab.h>
19 #include <linux/vmalloc.h>
20 #include <linux/rcupdate.h>
21 #include <linux/ratelimit.h>
22 #include <linux/err.h>
23 #include <linux/irqflags.h>
24 #include <linux/context_tracking.h>
25 #include <linux/irqbypass.h>
26 #include <linux/rcuwait.h>
27 #include <linux/refcount.h>
28 #include <linux/nospec.h>
29 #include <asm/signal.h>
30 
31 #include <linux/kvm.h>
32 #include <linux/kvm_para.h>
33 
34 #include <linux/kvm_types.h>
35 
36 #include <asm/kvm_host.h>
37 
38 #ifndef KVM_MAX_VCPU_ID
39 #define KVM_MAX_VCPU_ID KVM_MAX_VCPUS
40 #endif
41 
42 /*
43  * The bit 16 ~ bit 31 of kvm_memory_region::flags are internally used
44  * in kvm, other bits are visible for userspace which are defined in
45  * include/linux/kvm_h.
46  */
47 #define KVM_MEMSLOT_INVALID	(1UL << 16)
48 
49 /*
50  * Bit 63 of the memslot generation number is an "update in-progress flag",
51  * e.g. is temporarily set for the duration of install_new_memslots().
52  * This flag effectively creates a unique generation number that is used to
53  * mark cached memslot data, e.g. MMIO accesses, as potentially being stale,
54  * i.e. may (or may not) have come from the previous memslots generation.
55  *
56  * This is necessary because the actual memslots update is not atomic with
57  * respect to the generation number update.  Updating the generation number
58  * first would allow a vCPU to cache a spte from the old memslots using the
59  * new generation number, and updating the generation number after switching
60  * to the new memslots would allow cache hits using the old generation number
61  * to reference the defunct memslots.
62  *
63  * This mechanism is used to prevent getting hits in KVM's caches while a
64  * memslot update is in-progress, and to prevent cache hits *after* updating
65  * the actual generation number against accesses that were inserted into the
66  * cache *before* the memslots were updated.
67  */
68 #define KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS	BIT_ULL(63)
69 
70 /* Two fragments for cross MMIO pages. */
71 #define KVM_MAX_MMIO_FRAGMENTS	2
72 
73 #ifndef KVM_ADDRESS_SPACE_NUM
74 #define KVM_ADDRESS_SPACE_NUM	1
75 #endif
76 
77 /*
78  * For the normal pfn, the highest 12 bits should be zero,
79  * so we can mask bit 62 ~ bit 52  to indicate the error pfn,
80  * mask bit 63 to indicate the noslot pfn.
81  */
82 #define KVM_PFN_ERR_MASK	(0x7ffULL << 52)
83 #define KVM_PFN_ERR_NOSLOT_MASK	(0xfffULL << 52)
84 #define KVM_PFN_NOSLOT		(0x1ULL << 63)
85 
86 #define KVM_PFN_ERR_FAULT	(KVM_PFN_ERR_MASK)
87 #define KVM_PFN_ERR_HWPOISON	(KVM_PFN_ERR_MASK + 1)
88 #define KVM_PFN_ERR_RO_FAULT	(KVM_PFN_ERR_MASK + 2)
89 
90 /*
91  * error pfns indicate that the gfn is in slot but faild to
92  * translate it to pfn on host.
93  */
is_error_pfn(kvm_pfn_t pfn)94 static inline bool is_error_pfn(kvm_pfn_t pfn)
95 {
96 	return !!(pfn & KVM_PFN_ERR_MASK);
97 }
98 
99 /*
100  * error_noslot pfns indicate that the gfn can not be
101  * translated to pfn - it is not in slot or failed to
102  * translate it to pfn.
103  */
is_error_noslot_pfn(kvm_pfn_t pfn)104 static inline bool is_error_noslot_pfn(kvm_pfn_t pfn)
105 {
106 	return !!(pfn & KVM_PFN_ERR_NOSLOT_MASK);
107 }
108 
109 /* noslot pfn indicates that the gfn is not in slot. */
is_noslot_pfn(kvm_pfn_t pfn)110 static inline bool is_noslot_pfn(kvm_pfn_t pfn)
111 {
112 	return pfn == KVM_PFN_NOSLOT;
113 }
114 
115 /*
116  * architectures with KVM_HVA_ERR_BAD other than PAGE_OFFSET (e.g. s390)
117  * provide own defines and kvm_is_error_hva
118  */
119 #ifndef KVM_HVA_ERR_BAD
120 
121 #define KVM_HVA_ERR_BAD		(PAGE_OFFSET)
122 #define KVM_HVA_ERR_RO_BAD	(PAGE_OFFSET + PAGE_SIZE)
123 
kvm_is_error_hva(unsigned long addr)124 static inline bool kvm_is_error_hva(unsigned long addr)
125 {
126 	return addr >= PAGE_OFFSET;
127 }
128 
129 #endif
130 
131 #define KVM_ERR_PTR_BAD_PAGE	(ERR_PTR(-ENOENT))
132 
is_error_page(struct page * page)133 static inline bool is_error_page(struct page *page)
134 {
135 	return IS_ERR(page);
136 }
137 
138 #define KVM_REQUEST_MASK           GENMASK(7,0)
139 #define KVM_REQUEST_NO_WAKEUP      BIT(8)
140 #define KVM_REQUEST_WAIT           BIT(9)
141 /*
142  * Architecture-independent vcpu->requests bit members
143  * Bits 4-7 are reserved for more arch-independent bits.
144  */
145 #define KVM_REQ_TLB_FLUSH         (0 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
146 #define KVM_REQ_MMU_RELOAD        (1 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
147 #define KVM_REQ_PENDING_TIMER     2
148 #define KVM_REQ_UNHALT            3
149 #define KVM_REQUEST_ARCH_BASE     8
150 
151 #define KVM_ARCH_REQ_FLAGS(nr, flags) ({ \
152 	BUILD_BUG_ON((unsigned)(nr) >= (sizeof_field(struct kvm_vcpu, requests) * 8) - KVM_REQUEST_ARCH_BASE); \
153 	(unsigned)(((nr) + KVM_REQUEST_ARCH_BASE) | (flags)); \
154 })
155 #define KVM_ARCH_REQ(nr)           KVM_ARCH_REQ_FLAGS(nr, 0)
156 
157 #define KVM_USERSPACE_IRQ_SOURCE_ID		0
158 #define KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID	1
159 
160 extern struct mutex kvm_lock;
161 extern struct list_head vm_list;
162 
163 struct kvm_io_range {
164 	gpa_t addr;
165 	int len;
166 	struct kvm_io_device *dev;
167 };
168 
169 #define NR_IOBUS_DEVS 1000
170 
171 struct kvm_io_bus {
172 	int dev_count;
173 	int ioeventfd_count;
174 	struct kvm_io_range range[];
175 };
176 
177 enum kvm_bus {
178 	KVM_MMIO_BUS,
179 	KVM_PIO_BUS,
180 	KVM_VIRTIO_CCW_NOTIFY_BUS,
181 	KVM_FAST_MMIO_BUS,
182 	KVM_NR_BUSES
183 };
184 
185 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
186 		     int len, const void *val);
187 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
188 			    gpa_t addr, int len, const void *val, long cookie);
189 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
190 		    int len, void *val);
191 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
192 			    int len, struct kvm_io_device *dev);
193 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
194 			      struct kvm_io_device *dev);
195 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
196 					 gpa_t addr);
197 
198 #ifdef CONFIG_KVM_ASYNC_PF
199 struct kvm_async_pf {
200 	struct work_struct work;
201 	struct list_head link;
202 	struct list_head queue;
203 	struct kvm_vcpu *vcpu;
204 	struct mm_struct *mm;
205 	gpa_t cr2_or_gpa;
206 	unsigned long addr;
207 	struct kvm_arch_async_pf arch;
208 	bool   wakeup_all;
209 	bool notpresent_injected;
210 };
211 
212 void kvm_clear_async_pf_completion_queue(struct kvm_vcpu *vcpu);
213 void kvm_check_async_pf_completion(struct kvm_vcpu *vcpu);
214 bool kvm_setup_async_pf(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
215 			unsigned long hva, struct kvm_arch_async_pf *arch);
216 int kvm_async_pf_wakeup_all(struct kvm_vcpu *vcpu);
217 #endif
218 
219 enum {
220 	OUTSIDE_GUEST_MODE,
221 	IN_GUEST_MODE,
222 	EXITING_GUEST_MODE,
223 	READING_SHADOW_PAGE_TABLES,
224 };
225 
226 #define KVM_UNMAPPED_PAGE	((void *) 0x500 + POISON_POINTER_DELTA)
227 
228 struct kvm_host_map {
229 	/*
230 	 * Only valid if the 'pfn' is managed by the host kernel (i.e. There is
231 	 * a 'struct page' for it. When using mem= kernel parameter some memory
232 	 * can be used as guest memory but they are not managed by host
233 	 * kernel).
234 	 * If 'pfn' is not managed by the host kernel, this field is
235 	 * initialized to KVM_UNMAPPED_PAGE.
236 	 */
237 	struct page *page;
238 	void *hva;
239 	kvm_pfn_t pfn;
240 	kvm_pfn_t gfn;
241 };
242 
243 /*
244  * Used to check if the mapping is valid or not. Never use 'kvm_host_map'
245  * directly to check for that.
246  */
kvm_vcpu_mapped(struct kvm_host_map * map)247 static inline bool kvm_vcpu_mapped(struct kvm_host_map *map)
248 {
249 	return !!map->hva;
250 }
251 
252 /*
253  * Sometimes a large or cross-page mmio needs to be broken up into separate
254  * exits for userspace servicing.
255  */
256 struct kvm_mmio_fragment {
257 	gpa_t gpa;
258 	void *data;
259 	unsigned len;
260 };
261 
262 struct kvm_vcpu {
263 	struct kvm *kvm;
264 #ifdef CONFIG_PREEMPT_NOTIFIERS
265 	struct preempt_notifier preempt_notifier;
266 #endif
267 	int cpu;
268 	int vcpu_id; /* id given by userspace at creation */
269 	int vcpu_idx; /* index in kvm->vcpus array */
270 	int srcu_idx;
271 	int mode;
272 	u64 requests;
273 	unsigned long guest_debug;
274 
275 	int pre_pcpu;
276 	struct list_head blocked_vcpu_list;
277 
278 	struct mutex mutex;
279 	struct kvm_run *run;
280 
281 	struct rcuwait wait;
282 	struct pid __rcu *pid;
283 	int sigset_active;
284 	sigset_t sigset;
285 	struct kvm_vcpu_stat stat;
286 	unsigned int halt_poll_ns;
287 	bool valid_wakeup;
288 
289 #ifdef CONFIG_HAS_IOMEM
290 	int mmio_needed;
291 	int mmio_read_completed;
292 	int mmio_is_write;
293 	int mmio_cur_fragment;
294 	int mmio_nr_fragments;
295 	struct kvm_mmio_fragment mmio_fragments[KVM_MAX_MMIO_FRAGMENTS];
296 #endif
297 
298 #ifdef CONFIG_KVM_ASYNC_PF
299 	struct {
300 		u32 queued;
301 		struct list_head queue;
302 		struct list_head done;
303 		spinlock_t lock;
304 	} async_pf;
305 #endif
306 
307 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
308 	/*
309 	 * Cpu relax intercept or pause loop exit optimization
310 	 * in_spin_loop: set when a vcpu does a pause loop exit
311 	 *  or cpu relax intercepted.
312 	 * dy_eligible: indicates whether vcpu is eligible for directed yield.
313 	 */
314 	struct {
315 		bool in_spin_loop;
316 		bool dy_eligible;
317 	} spin_loop;
318 #endif
319 	bool preempted;
320 	bool ready;
321 	struct kvm_vcpu_arch arch;
322 };
323 
kvm_vcpu_exiting_guest_mode(struct kvm_vcpu * vcpu)324 static inline int kvm_vcpu_exiting_guest_mode(struct kvm_vcpu *vcpu)
325 {
326 	/*
327 	 * The memory barrier ensures a previous write to vcpu->requests cannot
328 	 * be reordered with the read of vcpu->mode.  It pairs with the general
329 	 * memory barrier following the write of vcpu->mode in VCPU RUN.
330 	 */
331 	smp_mb__before_atomic();
332 	return cmpxchg(&vcpu->mode, IN_GUEST_MODE, EXITING_GUEST_MODE);
333 }
334 
335 /*
336  * Some of the bitops functions do not support too long bitmaps.
337  * This number must be determined not to exceed such limits.
338  */
339 #define KVM_MEM_MAX_NR_PAGES ((1UL << 31) - 1)
340 
341 struct kvm_memory_slot {
342 	gfn_t base_gfn;
343 	unsigned long npages;
344 	unsigned long *dirty_bitmap;
345 	struct kvm_arch_memory_slot arch;
346 	unsigned long userspace_addr;
347 	u32 flags;
348 	short id;
349 	u16 as_id;
350 };
351 
kvm_dirty_bitmap_bytes(struct kvm_memory_slot * memslot)352 static inline unsigned long kvm_dirty_bitmap_bytes(struct kvm_memory_slot *memslot)
353 {
354 	return ALIGN(memslot->npages, BITS_PER_LONG) / 8;
355 }
356 
kvm_second_dirty_bitmap(struct kvm_memory_slot * memslot)357 static inline unsigned long *kvm_second_dirty_bitmap(struct kvm_memory_slot *memslot)
358 {
359 	unsigned long len = kvm_dirty_bitmap_bytes(memslot);
360 
361 	return memslot->dirty_bitmap + len / sizeof(*memslot->dirty_bitmap);
362 }
363 
364 #ifndef KVM_DIRTY_LOG_MANUAL_CAPS
365 #define KVM_DIRTY_LOG_MANUAL_CAPS KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE
366 #endif
367 
368 struct kvm_s390_adapter_int {
369 	u64 ind_addr;
370 	u64 summary_addr;
371 	u64 ind_offset;
372 	u32 summary_offset;
373 	u32 adapter_id;
374 };
375 
376 struct kvm_hv_sint {
377 	u32 vcpu;
378 	u32 sint;
379 };
380 
381 struct kvm_kernel_irq_routing_entry {
382 	u32 gsi;
383 	u32 type;
384 	int (*set)(struct kvm_kernel_irq_routing_entry *e,
385 		   struct kvm *kvm, int irq_source_id, int level,
386 		   bool line_status);
387 	union {
388 		struct {
389 			unsigned irqchip;
390 			unsigned pin;
391 		} irqchip;
392 		struct {
393 			u32 address_lo;
394 			u32 address_hi;
395 			u32 data;
396 			u32 flags;
397 			u32 devid;
398 		} msi;
399 		struct kvm_s390_adapter_int adapter;
400 		struct kvm_hv_sint hv_sint;
401 	};
402 	struct hlist_node link;
403 };
404 
405 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
406 struct kvm_irq_routing_table {
407 	int chip[KVM_NR_IRQCHIPS][KVM_IRQCHIP_NUM_PINS];
408 	u32 nr_rt_entries;
409 	/*
410 	 * Array indexed by gsi. Each entry contains list of irq chips
411 	 * the gsi is connected to.
412 	 */
413 	struct hlist_head map[];
414 };
415 #endif
416 
417 #ifndef KVM_PRIVATE_MEM_SLOTS
418 #define KVM_PRIVATE_MEM_SLOTS 0
419 #endif
420 
421 #ifndef KVM_MEM_SLOTS_NUM
422 #define KVM_MEM_SLOTS_NUM (KVM_USER_MEM_SLOTS + KVM_PRIVATE_MEM_SLOTS)
423 #endif
424 
425 #ifndef __KVM_VCPU_MULTIPLE_ADDRESS_SPACE
kvm_arch_vcpu_memslots_id(struct kvm_vcpu * vcpu)426 static inline int kvm_arch_vcpu_memslots_id(struct kvm_vcpu *vcpu)
427 {
428 	return 0;
429 }
430 #endif
431 
432 /*
433  * Note:
434  * memslots are not sorted by id anymore, please use id_to_memslot()
435  * to get the memslot by its id.
436  */
437 struct kvm_memslots {
438 	u64 generation;
439 	/* The mapping table from slot id to the index in memslots[]. */
440 	short id_to_index[KVM_MEM_SLOTS_NUM];
441 	atomic_t lru_slot;
442 	int used_slots;
443 	struct kvm_memory_slot memslots[];
444 };
445 
446 struct kvm {
447 	spinlock_t mmu_lock;
448 	struct mutex slots_lock;
449 	struct mm_struct *mm; /* userspace tied to this vm */
450 	struct kvm_memslots __rcu *memslots[KVM_ADDRESS_SPACE_NUM];
451 	struct kvm_vcpu *vcpus[KVM_MAX_VCPUS];
452 
453 	/*
454 	 * created_vcpus is protected by kvm->lock, and is incremented
455 	 * at the beginning of KVM_CREATE_VCPU.  online_vcpus is only
456 	 * incremented after storing the kvm_vcpu pointer in vcpus,
457 	 * and is accessed atomically.
458 	 */
459 	atomic_t online_vcpus;
460 	int created_vcpus;
461 	int last_boosted_vcpu;
462 	struct list_head vm_list;
463 	struct mutex lock;
464 	struct kvm_io_bus __rcu *buses[KVM_NR_BUSES];
465 #ifdef CONFIG_HAVE_KVM_EVENTFD
466 	struct {
467 		spinlock_t        lock;
468 		struct list_head  items;
469 		struct list_head  resampler_list;
470 		struct mutex      resampler_lock;
471 	} irqfds;
472 	struct list_head ioeventfds;
473 #endif
474 	struct kvm_vm_stat stat;
475 	struct kvm_arch arch;
476 	refcount_t users_count;
477 #ifdef CONFIG_KVM_MMIO
478 	struct kvm_coalesced_mmio_ring *coalesced_mmio_ring;
479 	spinlock_t ring_lock;
480 	struct list_head coalesced_zones;
481 #endif
482 
483 	struct mutex irq_lock;
484 #ifdef CONFIG_HAVE_KVM_IRQCHIP
485 	/*
486 	 * Update side is protected by irq_lock.
487 	 */
488 	struct kvm_irq_routing_table __rcu *irq_routing;
489 #endif
490 #ifdef CONFIG_HAVE_KVM_IRQFD
491 	struct hlist_head irq_ack_notifier_list;
492 #endif
493 
494 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
495 	struct mmu_notifier mmu_notifier;
496 	unsigned long mmu_notifier_seq;
497 	long mmu_notifier_count;
498 #endif
499 	long tlbs_dirty;
500 	struct list_head devices;
501 	u64 manual_dirty_log_protect;
502 	struct dentry *debugfs_dentry;
503 	struct kvm_stat_data **debugfs_stat_data;
504 	struct srcu_struct srcu;
505 	struct srcu_struct irq_srcu;
506 	pid_t userspace_pid;
507 	unsigned int max_halt_poll_ns;
508 };
509 
510 #define kvm_err(fmt, ...) \
511 	pr_err("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__)
512 #define kvm_info(fmt, ...) \
513 	pr_info("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__)
514 #define kvm_debug(fmt, ...) \
515 	pr_debug("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__)
516 #define kvm_debug_ratelimited(fmt, ...) \
517 	pr_debug_ratelimited("kvm [%i]: " fmt, task_pid_nr(current), \
518 			     ## __VA_ARGS__)
519 #define kvm_pr_unimpl(fmt, ...) \
520 	pr_err_ratelimited("kvm [%i]: " fmt, \
521 			   task_tgid_nr(current), ## __VA_ARGS__)
522 
523 /* The guest did something we don't support. */
524 #define vcpu_unimpl(vcpu, fmt, ...)					\
525 	kvm_pr_unimpl("vcpu%i, guest rIP: 0x%lx " fmt,			\
526 			(vcpu)->vcpu_id, kvm_rip_read(vcpu), ## __VA_ARGS__)
527 
528 #define vcpu_debug(vcpu, fmt, ...)					\
529 	kvm_debug("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__)
530 #define vcpu_debug_ratelimited(vcpu, fmt, ...)				\
531 	kvm_debug_ratelimited("vcpu%i " fmt, (vcpu)->vcpu_id,           \
532 			      ## __VA_ARGS__)
533 #define vcpu_err(vcpu, fmt, ...)					\
534 	kvm_err("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__)
535 
kvm_dirty_log_manual_protect_and_init_set(struct kvm * kvm)536 static inline bool kvm_dirty_log_manual_protect_and_init_set(struct kvm *kvm)
537 {
538 	return !!(kvm->manual_dirty_log_protect & KVM_DIRTY_LOG_INITIALLY_SET);
539 }
540 
kvm_get_bus(struct kvm * kvm,enum kvm_bus idx)541 static inline struct kvm_io_bus *kvm_get_bus(struct kvm *kvm, enum kvm_bus idx)
542 {
543 	return srcu_dereference_check(kvm->buses[idx], &kvm->srcu,
544 				      lockdep_is_held(&kvm->slots_lock) ||
545 				      !refcount_read(&kvm->users_count));
546 }
547 
kvm_get_vcpu(struct kvm * kvm,int i)548 static inline struct kvm_vcpu *kvm_get_vcpu(struct kvm *kvm, int i)
549 {
550 	int num_vcpus = atomic_read(&kvm->online_vcpus);
551 	i = array_index_nospec(i, num_vcpus);
552 
553 	/* Pairs with smp_wmb() in kvm_vm_ioctl_create_vcpu.  */
554 	smp_rmb();
555 	return kvm->vcpus[i];
556 }
557 
558 #define kvm_for_each_vcpu(idx, vcpup, kvm) \
559 	for (idx = 0; \
560 	     idx < atomic_read(&kvm->online_vcpus) && \
561 	     (vcpup = kvm_get_vcpu(kvm, idx)) != NULL; \
562 	     idx++)
563 
kvm_get_vcpu_by_id(struct kvm * kvm,int id)564 static inline struct kvm_vcpu *kvm_get_vcpu_by_id(struct kvm *kvm, int id)
565 {
566 	struct kvm_vcpu *vcpu = NULL;
567 	int i;
568 
569 	if (id < 0)
570 		return NULL;
571 	if (id < KVM_MAX_VCPUS)
572 		vcpu = kvm_get_vcpu(kvm, id);
573 	if (vcpu && vcpu->vcpu_id == id)
574 		return vcpu;
575 	kvm_for_each_vcpu(i, vcpu, kvm)
576 		if (vcpu->vcpu_id == id)
577 			return vcpu;
578 	return NULL;
579 }
580 
kvm_vcpu_get_idx(struct kvm_vcpu * vcpu)581 static inline int kvm_vcpu_get_idx(struct kvm_vcpu *vcpu)
582 {
583 	return vcpu->vcpu_idx;
584 }
585 
586 #define kvm_for_each_memslot(memslot, slots)				\
587 	for (memslot = &slots->memslots[0];				\
588 	     memslot < slots->memslots + slots->used_slots; memslot++)	\
589 		if (WARN_ON_ONCE(!memslot->npages)) {			\
590 		} else
591 
592 void kvm_vcpu_destroy(struct kvm_vcpu *vcpu);
593 
594 void vcpu_load(struct kvm_vcpu *vcpu);
595 void vcpu_put(struct kvm_vcpu *vcpu);
596 
597 #ifdef __KVM_HAVE_IOAPIC
598 void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm);
599 void kvm_arch_post_irq_routing_update(struct kvm *kvm);
600 #else
kvm_arch_post_irq_ack_notifier_list_update(struct kvm * kvm)601 static inline void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm)
602 {
603 }
kvm_arch_post_irq_routing_update(struct kvm * kvm)604 static inline void kvm_arch_post_irq_routing_update(struct kvm *kvm)
605 {
606 }
607 #endif
608 
609 #ifdef CONFIG_HAVE_KVM_IRQFD
610 int kvm_irqfd_init(void);
611 void kvm_irqfd_exit(void);
612 #else
kvm_irqfd_init(void)613 static inline int kvm_irqfd_init(void)
614 {
615 	return 0;
616 }
617 
kvm_irqfd_exit(void)618 static inline void kvm_irqfd_exit(void)
619 {
620 }
621 #endif
622 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
623 		  struct module *module);
624 void kvm_exit(void);
625 
626 void kvm_get_kvm(struct kvm *kvm);
627 void kvm_put_kvm(struct kvm *kvm);
628 void kvm_put_kvm_no_destroy(struct kvm *kvm);
629 
__kvm_memslots(struct kvm * kvm,int as_id)630 static inline struct kvm_memslots *__kvm_memslots(struct kvm *kvm, int as_id)
631 {
632 	as_id = array_index_nospec(as_id, KVM_ADDRESS_SPACE_NUM);
633 	return srcu_dereference_check(kvm->memslots[as_id], &kvm->srcu,
634 			lockdep_is_held(&kvm->slots_lock) ||
635 			!refcount_read(&kvm->users_count));
636 }
637 
kvm_memslots(struct kvm * kvm)638 static inline struct kvm_memslots *kvm_memslots(struct kvm *kvm)
639 {
640 	return __kvm_memslots(kvm, 0);
641 }
642 
kvm_vcpu_memslots(struct kvm_vcpu * vcpu)643 static inline struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu)
644 {
645 	int as_id = kvm_arch_vcpu_memslots_id(vcpu);
646 
647 	return __kvm_memslots(vcpu->kvm, as_id);
648 }
649 
650 static inline
id_to_memslot(struct kvm_memslots * slots,int id)651 struct kvm_memory_slot *id_to_memslot(struct kvm_memslots *slots, int id)
652 {
653 	int index = slots->id_to_index[id];
654 	struct kvm_memory_slot *slot;
655 
656 	if (index < 0)
657 		return NULL;
658 
659 	slot = &slots->memslots[index];
660 
661 	WARN_ON(slot->id != id);
662 	return slot;
663 }
664 
665 /*
666  * KVM_SET_USER_MEMORY_REGION ioctl allows the following operations:
667  * - create a new memory slot
668  * - delete an existing memory slot
669  * - modify an existing memory slot
670  *   -- move it in the guest physical memory space
671  *   -- just change its flags
672  *
673  * Since flags can be changed by some of these operations, the following
674  * differentiation is the best we can do for __kvm_set_memory_region():
675  */
676 enum kvm_mr_change {
677 	KVM_MR_CREATE,
678 	KVM_MR_DELETE,
679 	KVM_MR_MOVE,
680 	KVM_MR_FLAGS_ONLY,
681 };
682 
683 int kvm_set_memory_region(struct kvm *kvm,
684 			  const struct kvm_userspace_memory_region *mem);
685 int __kvm_set_memory_region(struct kvm *kvm,
686 			    const struct kvm_userspace_memory_region *mem);
687 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot);
688 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen);
689 int kvm_arch_prepare_memory_region(struct kvm *kvm,
690 				struct kvm_memory_slot *memslot,
691 				const struct kvm_userspace_memory_region *mem,
692 				enum kvm_mr_change change);
693 void kvm_arch_commit_memory_region(struct kvm *kvm,
694 				const struct kvm_userspace_memory_region *mem,
695 				struct kvm_memory_slot *old,
696 				const struct kvm_memory_slot *new,
697 				enum kvm_mr_change change);
698 /* flush all memory translations */
699 void kvm_arch_flush_shadow_all(struct kvm *kvm);
700 /* flush memory translations pointing to 'slot' */
701 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
702 				   struct kvm_memory_slot *slot);
703 
704 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
705 			    struct page **pages, int nr_pages);
706 
707 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn);
708 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn);
709 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable);
710 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot, gfn_t gfn);
711 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot, gfn_t gfn,
712 				      bool *writable);
713 void kvm_release_page_clean(struct page *page);
714 void kvm_release_page_dirty(struct page *page);
715 void kvm_set_page_accessed(struct page *page);
716 
717 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn);
718 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
719 		      bool *writable);
720 kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn);
721 kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn);
722 kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn,
723 			       bool atomic, bool *async, bool write_fault,
724 			       bool *writable);
725 
726 void kvm_release_pfn_clean(kvm_pfn_t pfn);
727 void kvm_release_pfn_dirty(kvm_pfn_t pfn);
728 void kvm_set_pfn_dirty(kvm_pfn_t pfn);
729 void kvm_set_pfn_accessed(kvm_pfn_t pfn);
730 void kvm_get_pfn(kvm_pfn_t pfn);
731 
732 void kvm_release_pfn(kvm_pfn_t pfn, bool dirty, struct gfn_to_pfn_cache *cache);
733 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
734 			int len);
735 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len);
736 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
737 			   void *data, unsigned long len);
738 int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
739 				 void *data, unsigned int offset,
740 				 unsigned long len);
741 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
742 			 int offset, int len);
743 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
744 		    unsigned long len);
745 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
746 			   void *data, unsigned long len);
747 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
748 				  void *data, unsigned int offset,
749 				  unsigned long len);
750 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
751 			      gpa_t gpa, unsigned long len);
752 
753 #define __kvm_get_guest(kvm, gfn, offset, v)				\
754 ({									\
755 	unsigned long __addr = gfn_to_hva(kvm, gfn);			\
756 	typeof(v) __user *__uaddr = (typeof(__uaddr))(__addr + offset);	\
757 	int __ret = -EFAULT;						\
758 									\
759 	if (!kvm_is_error_hva(__addr))					\
760 		__ret = get_user(v, __uaddr);				\
761 	__ret;								\
762 })
763 
764 #define kvm_get_guest(kvm, gpa, v)					\
765 ({									\
766 	gpa_t __gpa = gpa;						\
767 	struct kvm *__kvm = kvm;					\
768 									\
769 	__kvm_get_guest(__kvm, __gpa >> PAGE_SHIFT,			\
770 			offset_in_page(__gpa), v);			\
771 })
772 
773 #define __kvm_put_guest(kvm, gfn, offset, v)				\
774 ({									\
775 	unsigned long __addr = gfn_to_hva(kvm, gfn);			\
776 	typeof(v) __user *__uaddr = (typeof(__uaddr))(__addr + offset);	\
777 	int __ret = -EFAULT;						\
778 									\
779 	if (!kvm_is_error_hva(__addr))					\
780 		__ret = put_user(v, __uaddr);				\
781 	if (!__ret)							\
782 		mark_page_dirty(kvm, gfn);				\
783 	__ret;								\
784 })
785 
786 #define kvm_put_guest(kvm, gpa, v)					\
787 ({									\
788 	gpa_t __gpa = gpa;						\
789 	struct kvm *__kvm = kvm;					\
790 									\
791 	__kvm_put_guest(__kvm, __gpa >> PAGE_SHIFT,			\
792 			offset_in_page(__gpa), v);			\
793 })
794 
795 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len);
796 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len);
797 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn);
798 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn);
799 bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn);
800 unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn);
801 void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, gfn_t gfn);
802 void mark_page_dirty(struct kvm *kvm, gfn_t gfn);
803 
804 struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu);
805 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn);
806 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn);
807 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn);
808 int kvm_vcpu_map(struct kvm_vcpu *vcpu, gpa_t gpa, struct kvm_host_map *map);
809 int kvm_map_gfn(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map,
810 		struct gfn_to_pfn_cache *cache, bool atomic);
811 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn);
812 void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty);
813 int kvm_unmap_gfn(struct kvm_vcpu *vcpu, struct kvm_host_map *map,
814 		  struct gfn_to_pfn_cache *cache, bool dirty, bool atomic);
815 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn);
816 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable);
817 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data, int offset,
818 			     int len);
819 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa, void *data,
820 			       unsigned long len);
821 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data,
822 			unsigned long len);
823 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, const void *data,
824 			      int offset, int len);
825 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
826 			 unsigned long len);
827 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn);
828 
829 void kvm_sigset_activate(struct kvm_vcpu *vcpu);
830 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu);
831 
832 void kvm_vcpu_block(struct kvm_vcpu *vcpu);
833 void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu);
834 void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu);
835 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu);
836 void kvm_vcpu_kick(struct kvm_vcpu *vcpu);
837 int kvm_vcpu_yield_to(struct kvm_vcpu *target);
838 void kvm_vcpu_on_spin(struct kvm_vcpu *vcpu, bool usermode_vcpu_not_eligible);
839 
840 void kvm_flush_remote_tlbs(struct kvm *kvm);
841 void kvm_reload_remote_mmus(struct kvm *kvm);
842 
843 #ifdef KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE
844 int kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int min);
845 int kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache *mc);
846 void kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc);
847 void *kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc);
848 #endif
849 
850 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
851 				 struct kvm_vcpu *except,
852 				 unsigned long *vcpu_bitmap, cpumask_var_t tmp);
853 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req);
854 bool kvm_make_all_cpus_request_except(struct kvm *kvm, unsigned int req,
855 				      struct kvm_vcpu *except);
856 bool kvm_make_cpus_request_mask(struct kvm *kvm, unsigned int req,
857 				unsigned long *vcpu_bitmap);
858 
859 long kvm_arch_dev_ioctl(struct file *filp,
860 			unsigned int ioctl, unsigned long arg);
861 long kvm_arch_vcpu_ioctl(struct file *filp,
862 			 unsigned int ioctl, unsigned long arg);
863 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf);
864 
865 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext);
866 
867 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
868 					struct kvm_memory_slot *slot,
869 					gfn_t gfn_offset,
870 					unsigned long mask);
871 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot);
872 
873 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
874 void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm,
875 					struct kvm_memory_slot *memslot);
876 #else /* !CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
877 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log);
878 int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log,
879 		      int *is_dirty, struct kvm_memory_slot **memslot);
880 #endif
881 
882 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
883 			bool line_status);
884 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
885 			    struct kvm_enable_cap *cap);
886 long kvm_arch_vm_ioctl(struct file *filp,
887 		       unsigned int ioctl, unsigned long arg);
888 
889 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu);
890 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu);
891 
892 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
893 				    struct kvm_translation *tr);
894 
895 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs);
896 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs);
897 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
898 				  struct kvm_sregs *sregs);
899 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
900 				  struct kvm_sregs *sregs);
901 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
902 				    struct kvm_mp_state *mp_state);
903 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
904 				    struct kvm_mp_state *mp_state);
905 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
906 					struct kvm_guest_debug *dbg);
907 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu);
908 
909 int kvm_arch_init(void *opaque);
910 void kvm_arch_exit(void);
911 
912 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu);
913 
914 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu);
915 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu);
916 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id);
917 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu);
918 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu);
919 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu);
920 
921 #ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS
922 void kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu, struct dentry *debugfs_dentry);
923 #endif
924 
925 int kvm_arch_hardware_enable(void);
926 void kvm_arch_hardware_disable(void);
927 int kvm_arch_hardware_setup(void *opaque);
928 void kvm_arch_hardware_unsetup(void);
929 int kvm_arch_check_processor_compat(void *opaque);
930 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu);
931 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu);
932 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu);
933 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu);
934 int kvm_arch_post_init_vm(struct kvm *kvm);
935 void kvm_arch_pre_destroy_vm(struct kvm *kvm);
936 
937 #ifndef __KVM_HAVE_ARCH_VM_ALLOC
938 /*
939  * All architectures that want to use vzalloc currently also
940  * need their own kvm_arch_alloc_vm implementation.
941  */
kvm_arch_alloc_vm(void)942 static inline struct kvm *kvm_arch_alloc_vm(void)
943 {
944 	return kzalloc(sizeof(struct kvm), GFP_KERNEL);
945 }
946 
kvm_arch_free_vm(struct kvm * kvm)947 static inline void kvm_arch_free_vm(struct kvm *kvm)
948 {
949 	kfree(kvm);
950 }
951 #endif
952 
953 #ifndef __KVM_HAVE_ARCH_FLUSH_REMOTE_TLB
kvm_arch_flush_remote_tlb(struct kvm * kvm)954 static inline int kvm_arch_flush_remote_tlb(struct kvm *kvm)
955 {
956 	return -ENOTSUPP;
957 }
958 #endif
959 
960 #ifdef __KVM_HAVE_ARCH_NONCOHERENT_DMA
961 void kvm_arch_register_noncoherent_dma(struct kvm *kvm);
962 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm);
963 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm);
964 #else
kvm_arch_register_noncoherent_dma(struct kvm * kvm)965 static inline void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
966 {
967 }
968 
kvm_arch_unregister_noncoherent_dma(struct kvm * kvm)969 static inline void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
970 {
971 }
972 
kvm_arch_has_noncoherent_dma(struct kvm * kvm)973 static inline bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
974 {
975 	return false;
976 }
977 #endif
978 #ifdef __KVM_HAVE_ARCH_ASSIGNED_DEVICE
979 void kvm_arch_start_assignment(struct kvm *kvm);
980 void kvm_arch_end_assignment(struct kvm *kvm);
981 bool kvm_arch_has_assigned_device(struct kvm *kvm);
982 #else
kvm_arch_start_assignment(struct kvm * kvm)983 static inline void kvm_arch_start_assignment(struct kvm *kvm)
984 {
985 }
986 
kvm_arch_end_assignment(struct kvm * kvm)987 static inline void kvm_arch_end_assignment(struct kvm *kvm)
988 {
989 }
990 
kvm_arch_has_assigned_device(struct kvm * kvm)991 static __always_inline bool kvm_arch_has_assigned_device(struct kvm *kvm)
992 {
993 	return false;
994 }
995 #endif
996 
kvm_arch_vcpu_get_wait(struct kvm_vcpu * vcpu)997 static inline struct rcuwait *kvm_arch_vcpu_get_wait(struct kvm_vcpu *vcpu)
998 {
999 #ifdef __KVM_HAVE_ARCH_WQP
1000 	return vcpu->arch.waitp;
1001 #else
1002 	return &vcpu->wait;
1003 #endif
1004 }
1005 
1006 #ifdef __KVM_HAVE_ARCH_INTC_INITIALIZED
1007 /*
1008  * returns true if the virtual interrupt controller is initialized and
1009  * ready to accept virtual IRQ. On some architectures the virtual interrupt
1010  * controller is dynamically instantiated and this is not always true.
1011  */
1012 bool kvm_arch_intc_initialized(struct kvm *kvm);
1013 #else
kvm_arch_intc_initialized(struct kvm * kvm)1014 static inline bool kvm_arch_intc_initialized(struct kvm *kvm)
1015 {
1016 	return true;
1017 }
1018 #endif
1019 
1020 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type);
1021 void kvm_arch_destroy_vm(struct kvm *kvm);
1022 void kvm_arch_sync_events(struct kvm *kvm);
1023 
1024 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu);
1025 
1026 bool kvm_is_reserved_pfn(kvm_pfn_t pfn);
1027 bool kvm_is_zone_device_pfn(kvm_pfn_t pfn);
1028 bool kvm_is_transparent_hugepage(kvm_pfn_t pfn);
1029 
1030 struct kvm_irq_ack_notifier {
1031 	struct hlist_node link;
1032 	unsigned gsi;
1033 	void (*irq_acked)(struct kvm_irq_ack_notifier *kian);
1034 };
1035 
1036 int kvm_irq_map_gsi(struct kvm *kvm,
1037 		    struct kvm_kernel_irq_routing_entry *entries, int gsi);
1038 int kvm_irq_map_chip_pin(struct kvm *kvm, unsigned irqchip, unsigned pin);
1039 
1040 int kvm_set_irq(struct kvm *kvm, int irq_source_id, u32 irq, int level,
1041 		bool line_status);
1042 int kvm_set_msi(struct kvm_kernel_irq_routing_entry *irq_entry, struct kvm *kvm,
1043 		int irq_source_id, int level, bool line_status);
1044 int kvm_arch_set_irq_inatomic(struct kvm_kernel_irq_routing_entry *e,
1045 			       struct kvm *kvm, int irq_source_id,
1046 			       int level, bool line_status);
1047 bool kvm_irq_has_notifier(struct kvm *kvm, unsigned irqchip, unsigned pin);
1048 void kvm_notify_acked_gsi(struct kvm *kvm, int gsi);
1049 void kvm_notify_acked_irq(struct kvm *kvm, unsigned irqchip, unsigned pin);
1050 void kvm_register_irq_ack_notifier(struct kvm *kvm,
1051 				   struct kvm_irq_ack_notifier *kian);
1052 void kvm_unregister_irq_ack_notifier(struct kvm *kvm,
1053 				   struct kvm_irq_ack_notifier *kian);
1054 int kvm_request_irq_source_id(struct kvm *kvm);
1055 void kvm_free_irq_source_id(struct kvm *kvm, int irq_source_id);
1056 bool kvm_arch_irqfd_allowed(struct kvm *kvm, struct kvm_irqfd *args);
1057 
1058 /*
1059  * search_memslots() and __gfn_to_memslot() are here because they are
1060  * used in non-modular code in arch/powerpc/kvm/book3s_hv_rm_mmu.c.
1061  * gfn_to_memslot() itself isn't here as an inline because that would
1062  * bloat other code too much.
1063  *
1064  * IMPORTANT: Slots are sorted from highest GFN to lowest GFN!
1065  */
1066 static inline struct kvm_memory_slot *
search_memslots(struct kvm_memslots * slots,gfn_t gfn)1067 search_memslots(struct kvm_memslots *slots, gfn_t gfn)
1068 {
1069 	int start = 0, end = slots->used_slots;
1070 	int slot = atomic_read(&slots->lru_slot);
1071 	struct kvm_memory_slot *memslots = slots->memslots;
1072 
1073 	if (unlikely(!slots->used_slots))
1074 		return NULL;
1075 
1076 	if (gfn >= memslots[slot].base_gfn &&
1077 	    gfn < memslots[slot].base_gfn + memslots[slot].npages)
1078 		return &memslots[slot];
1079 
1080 	while (start < end) {
1081 		slot = start + (end - start) / 2;
1082 
1083 		if (gfn >= memslots[slot].base_gfn)
1084 			end = slot;
1085 		else
1086 			start = slot + 1;
1087 	}
1088 
1089 	if (start < slots->used_slots && gfn >= memslots[start].base_gfn &&
1090 	    gfn < memslots[start].base_gfn + memslots[start].npages) {
1091 		atomic_set(&slots->lru_slot, start);
1092 		return &memslots[start];
1093 	}
1094 
1095 	return NULL;
1096 }
1097 
1098 static inline struct kvm_memory_slot *
__gfn_to_memslot(struct kvm_memslots * slots,gfn_t gfn)1099 __gfn_to_memslot(struct kvm_memslots *slots, gfn_t gfn)
1100 {
1101 	return search_memslots(slots, gfn);
1102 }
1103 
1104 static inline unsigned long
__gfn_to_hva_memslot(struct kvm_memory_slot * slot,gfn_t gfn)1105 __gfn_to_hva_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1106 {
1107 	/*
1108 	 * The index was checked originally in search_memslots.  To avoid
1109 	 * that a malicious guest builds a Spectre gadget out of e.g. page
1110 	 * table walks, do not let the processor speculate loads outside
1111 	 * the guest's registered memslots.
1112 	 */
1113 	unsigned long offset = gfn - slot->base_gfn;
1114 	offset = array_index_nospec(offset, slot->npages);
1115 	return slot->userspace_addr + offset * PAGE_SIZE;
1116 }
1117 
memslot_id(struct kvm * kvm,gfn_t gfn)1118 static inline int memslot_id(struct kvm *kvm, gfn_t gfn)
1119 {
1120 	return gfn_to_memslot(kvm, gfn)->id;
1121 }
1122 
1123 static inline gfn_t
hva_to_gfn_memslot(unsigned long hva,struct kvm_memory_slot * slot)1124 hva_to_gfn_memslot(unsigned long hva, struct kvm_memory_slot *slot)
1125 {
1126 	gfn_t gfn_offset = (hva - slot->userspace_addr) >> PAGE_SHIFT;
1127 
1128 	return slot->base_gfn + gfn_offset;
1129 }
1130 
gfn_to_gpa(gfn_t gfn)1131 static inline gpa_t gfn_to_gpa(gfn_t gfn)
1132 {
1133 	return (gpa_t)gfn << PAGE_SHIFT;
1134 }
1135 
gpa_to_gfn(gpa_t gpa)1136 static inline gfn_t gpa_to_gfn(gpa_t gpa)
1137 {
1138 	return (gfn_t)(gpa >> PAGE_SHIFT);
1139 }
1140 
pfn_to_hpa(kvm_pfn_t pfn)1141 static inline hpa_t pfn_to_hpa(kvm_pfn_t pfn)
1142 {
1143 	return (hpa_t)pfn << PAGE_SHIFT;
1144 }
1145 
kvm_vcpu_gpa_to_page(struct kvm_vcpu * vcpu,gpa_t gpa)1146 static inline struct page *kvm_vcpu_gpa_to_page(struct kvm_vcpu *vcpu,
1147 						gpa_t gpa)
1148 {
1149 	return kvm_vcpu_gfn_to_page(vcpu, gpa_to_gfn(gpa));
1150 }
1151 
kvm_is_error_gpa(struct kvm * kvm,gpa_t gpa)1152 static inline bool kvm_is_error_gpa(struct kvm *kvm, gpa_t gpa)
1153 {
1154 	unsigned long hva = gfn_to_hva(kvm, gpa_to_gfn(gpa));
1155 
1156 	return kvm_is_error_hva(hva);
1157 }
1158 
1159 enum kvm_stat_kind {
1160 	KVM_STAT_VM,
1161 	KVM_STAT_VCPU,
1162 };
1163 
1164 struct kvm_stat_data {
1165 	struct kvm *kvm;
1166 	struct kvm_stats_debugfs_item *dbgfs_item;
1167 };
1168 
1169 struct kvm_stats_debugfs_item {
1170 	const char *name;
1171 	int offset;
1172 	enum kvm_stat_kind kind;
1173 	int mode;
1174 };
1175 
1176 #define KVM_DBGFS_GET_MODE(dbgfs_item)                                         \
1177 	((dbgfs_item)->mode ? (dbgfs_item)->mode : 0644)
1178 
1179 #define VM_STAT(n, x, ...) 							\
1180 	{ n, offsetof(struct kvm, stat.x), KVM_STAT_VM, ## __VA_ARGS__ }
1181 #define VCPU_STAT(n, x, ...)							\
1182 	{ n, offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU, ## __VA_ARGS__ }
1183 
1184 extern struct kvm_stats_debugfs_item debugfs_entries[];
1185 extern struct dentry *kvm_debugfs_dir;
1186 
1187 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
mmu_notifier_retry(struct kvm * kvm,unsigned long mmu_seq)1188 static inline int mmu_notifier_retry(struct kvm *kvm, unsigned long mmu_seq)
1189 {
1190 	if (unlikely(kvm->mmu_notifier_count))
1191 		return 1;
1192 	/*
1193 	 * Ensure the read of mmu_notifier_count happens before the read
1194 	 * of mmu_notifier_seq.  This interacts with the smp_wmb() in
1195 	 * mmu_notifier_invalidate_range_end to make sure that the caller
1196 	 * either sees the old (non-zero) value of mmu_notifier_count or
1197 	 * the new (incremented) value of mmu_notifier_seq.
1198 	 * PowerPC Book3s HV KVM calls this under a per-page lock
1199 	 * rather than under kvm->mmu_lock, for scalability, so
1200 	 * can't rely on kvm->mmu_lock to keep things ordered.
1201 	 */
1202 	smp_rmb();
1203 	if (kvm->mmu_notifier_seq != mmu_seq)
1204 		return 1;
1205 	return 0;
1206 }
1207 #endif
1208 
1209 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
1210 
1211 #define KVM_MAX_IRQ_ROUTES 4096 /* might need extension/rework in the future */
1212 
1213 bool kvm_arch_can_set_irq_routing(struct kvm *kvm);
1214 int kvm_set_irq_routing(struct kvm *kvm,
1215 			const struct kvm_irq_routing_entry *entries,
1216 			unsigned nr,
1217 			unsigned flags);
1218 int kvm_set_routing_entry(struct kvm *kvm,
1219 			  struct kvm_kernel_irq_routing_entry *e,
1220 			  const struct kvm_irq_routing_entry *ue);
1221 void kvm_free_irq_routing(struct kvm *kvm);
1222 
1223 #else
1224 
kvm_free_irq_routing(struct kvm * kvm)1225 static inline void kvm_free_irq_routing(struct kvm *kvm) {}
1226 
1227 #endif
1228 
1229 int kvm_send_userspace_msi(struct kvm *kvm, struct kvm_msi *msi);
1230 
1231 #ifdef CONFIG_HAVE_KVM_EVENTFD
1232 
1233 void kvm_eventfd_init(struct kvm *kvm);
1234 int kvm_ioeventfd(struct kvm *kvm, struct kvm_ioeventfd *args);
1235 
1236 #ifdef CONFIG_HAVE_KVM_IRQFD
1237 int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args);
1238 void kvm_irqfd_release(struct kvm *kvm);
1239 void kvm_irq_routing_update(struct kvm *);
1240 #else
kvm_irqfd(struct kvm * kvm,struct kvm_irqfd * args)1241 static inline int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args)
1242 {
1243 	return -EINVAL;
1244 }
1245 
kvm_irqfd_release(struct kvm * kvm)1246 static inline void kvm_irqfd_release(struct kvm *kvm) {}
1247 #endif
1248 
1249 #else
1250 
kvm_eventfd_init(struct kvm * kvm)1251 static inline void kvm_eventfd_init(struct kvm *kvm) {}
1252 
kvm_irqfd(struct kvm * kvm,struct kvm_irqfd * args)1253 static inline int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args)
1254 {
1255 	return -EINVAL;
1256 }
1257 
kvm_irqfd_release(struct kvm * kvm)1258 static inline void kvm_irqfd_release(struct kvm *kvm) {}
1259 
1260 #ifdef CONFIG_HAVE_KVM_IRQCHIP
kvm_irq_routing_update(struct kvm * kvm)1261 static inline void kvm_irq_routing_update(struct kvm *kvm)
1262 {
1263 }
1264 #endif
1265 
kvm_ioeventfd(struct kvm * kvm,struct kvm_ioeventfd * args)1266 static inline int kvm_ioeventfd(struct kvm *kvm, struct kvm_ioeventfd *args)
1267 {
1268 	return -ENOSYS;
1269 }
1270 
1271 #endif /* CONFIG_HAVE_KVM_EVENTFD */
1272 
1273 void kvm_arch_irq_routing_update(struct kvm *kvm);
1274 
kvm_make_request(int req,struct kvm_vcpu * vcpu)1275 static inline void kvm_make_request(int req, struct kvm_vcpu *vcpu)
1276 {
1277 	/*
1278 	 * Ensure the rest of the request is published to kvm_check_request's
1279 	 * caller.  Paired with the smp_mb__after_atomic in kvm_check_request.
1280 	 */
1281 	smp_wmb();
1282 	set_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests);
1283 }
1284 
kvm_request_pending(struct kvm_vcpu * vcpu)1285 static inline bool kvm_request_pending(struct kvm_vcpu *vcpu)
1286 {
1287 	return READ_ONCE(vcpu->requests);
1288 }
1289 
kvm_test_request(int req,struct kvm_vcpu * vcpu)1290 static inline bool kvm_test_request(int req, struct kvm_vcpu *vcpu)
1291 {
1292 	return test_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests);
1293 }
1294 
kvm_clear_request(int req,struct kvm_vcpu * vcpu)1295 static inline void kvm_clear_request(int req, struct kvm_vcpu *vcpu)
1296 {
1297 	clear_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests);
1298 }
1299 
kvm_check_request(int req,struct kvm_vcpu * vcpu)1300 static inline bool kvm_check_request(int req, struct kvm_vcpu *vcpu)
1301 {
1302 	if (kvm_test_request(req, vcpu)) {
1303 		kvm_clear_request(req, vcpu);
1304 
1305 		/*
1306 		 * Ensure the rest of the request is visible to kvm_check_request's
1307 		 * caller.  Paired with the smp_wmb in kvm_make_request.
1308 		 */
1309 		smp_mb__after_atomic();
1310 		return true;
1311 	} else {
1312 		return false;
1313 	}
1314 }
1315 
1316 extern bool kvm_rebooting;
1317 
1318 extern unsigned int halt_poll_ns;
1319 extern unsigned int halt_poll_ns_grow;
1320 extern unsigned int halt_poll_ns_grow_start;
1321 extern unsigned int halt_poll_ns_shrink;
1322 
1323 struct kvm_device {
1324 	const struct kvm_device_ops *ops;
1325 	struct kvm *kvm;
1326 	void *private;
1327 	struct list_head vm_node;
1328 };
1329 
1330 /* create, destroy, and name are mandatory */
1331 struct kvm_device_ops {
1332 	const char *name;
1333 
1334 	/*
1335 	 * create is called holding kvm->lock and any operations not suitable
1336 	 * to do while holding the lock should be deferred to init (see
1337 	 * below).
1338 	 */
1339 	int (*create)(struct kvm_device *dev, u32 type);
1340 
1341 	/*
1342 	 * init is called after create if create is successful and is called
1343 	 * outside of holding kvm->lock.
1344 	 */
1345 	void (*init)(struct kvm_device *dev);
1346 
1347 	/*
1348 	 * Destroy is responsible for freeing dev.
1349 	 *
1350 	 * Destroy may be called before or after destructors are called
1351 	 * on emulated I/O regions, depending on whether a reference is
1352 	 * held by a vcpu or other kvm component that gets destroyed
1353 	 * after the emulated I/O.
1354 	 */
1355 	void (*destroy)(struct kvm_device *dev);
1356 
1357 	/*
1358 	 * Release is an alternative method to free the device. It is
1359 	 * called when the device file descriptor is closed. Once
1360 	 * release is called, the destroy method will not be called
1361 	 * anymore as the device is removed from the device list of
1362 	 * the VM. kvm->lock is held.
1363 	 */
1364 	void (*release)(struct kvm_device *dev);
1365 
1366 	int (*set_attr)(struct kvm_device *dev, struct kvm_device_attr *attr);
1367 	int (*get_attr)(struct kvm_device *dev, struct kvm_device_attr *attr);
1368 	int (*has_attr)(struct kvm_device *dev, struct kvm_device_attr *attr);
1369 	long (*ioctl)(struct kvm_device *dev, unsigned int ioctl,
1370 		      unsigned long arg);
1371 	int (*mmap)(struct kvm_device *dev, struct vm_area_struct *vma);
1372 };
1373 
1374 void kvm_device_get(struct kvm_device *dev);
1375 void kvm_device_put(struct kvm_device *dev);
1376 struct kvm_device *kvm_device_from_filp(struct file *filp);
1377 int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type);
1378 void kvm_unregister_device_ops(u32 type);
1379 
1380 extern struct kvm_device_ops kvm_mpic_ops;
1381 extern struct kvm_device_ops kvm_arm_vgic_v2_ops;
1382 extern struct kvm_device_ops kvm_arm_vgic_v3_ops;
1383 
1384 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
1385 
kvm_vcpu_set_in_spin_loop(struct kvm_vcpu * vcpu,bool val)1386 static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val)
1387 {
1388 	vcpu->spin_loop.in_spin_loop = val;
1389 }
kvm_vcpu_set_dy_eligible(struct kvm_vcpu * vcpu,bool val)1390 static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val)
1391 {
1392 	vcpu->spin_loop.dy_eligible = val;
1393 }
1394 
1395 #else /* !CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */
1396 
kvm_vcpu_set_in_spin_loop(struct kvm_vcpu * vcpu,bool val)1397 static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val)
1398 {
1399 }
1400 
kvm_vcpu_set_dy_eligible(struct kvm_vcpu * vcpu,bool val)1401 static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val)
1402 {
1403 }
1404 #endif /* CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */
1405 
kvm_is_visible_memslot(struct kvm_memory_slot * memslot)1406 static inline bool kvm_is_visible_memslot(struct kvm_memory_slot *memslot)
1407 {
1408 	return (memslot && memslot->id < KVM_USER_MEM_SLOTS &&
1409 		!(memslot->flags & KVM_MEMSLOT_INVALID));
1410 }
1411 
1412 struct kvm_vcpu *kvm_get_running_vcpu(void);
1413 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void);
1414 
1415 #ifdef CONFIG_HAVE_KVM_IRQ_BYPASS
1416 bool kvm_arch_has_irq_bypass(void);
1417 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *,
1418 			   struct irq_bypass_producer *);
1419 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *,
1420 			   struct irq_bypass_producer *);
1421 void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *);
1422 void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *);
1423 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
1424 				  uint32_t guest_irq, bool set);
1425 #endif /* CONFIG_HAVE_KVM_IRQ_BYPASS */
1426 
1427 #ifdef CONFIG_HAVE_KVM_INVALID_WAKEUPS
1428 /* If we wakeup during the poll time, was it a sucessful poll? */
vcpu_valid_wakeup(struct kvm_vcpu * vcpu)1429 static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu)
1430 {
1431 	return vcpu->valid_wakeup;
1432 }
1433 
1434 #else
vcpu_valid_wakeup(struct kvm_vcpu * vcpu)1435 static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu)
1436 {
1437 	return true;
1438 }
1439 #endif /* CONFIG_HAVE_KVM_INVALID_WAKEUPS */
1440 
1441 #ifdef CONFIG_HAVE_KVM_NO_POLL
1442 /* Callback that tells if we must not poll */
1443 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu);
1444 #else
kvm_arch_no_poll(struct kvm_vcpu * vcpu)1445 static inline bool kvm_arch_no_poll(struct kvm_vcpu *vcpu)
1446 {
1447 	return false;
1448 }
1449 #endif /* CONFIG_HAVE_KVM_NO_POLL */
1450 
1451 #ifdef CONFIG_HAVE_KVM_VCPU_ASYNC_IOCTL
1452 long kvm_arch_vcpu_async_ioctl(struct file *filp,
1453 			       unsigned int ioctl, unsigned long arg);
1454 #else
kvm_arch_vcpu_async_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)1455 static inline long kvm_arch_vcpu_async_ioctl(struct file *filp,
1456 					     unsigned int ioctl,
1457 					     unsigned long arg)
1458 {
1459 	return -ENOIOCTLCMD;
1460 }
1461 #endif /* CONFIG_HAVE_KVM_VCPU_ASYNC_IOCTL */
1462 
1463 void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
1464 					    unsigned long start, unsigned long end);
1465 
1466 #ifdef CONFIG_HAVE_KVM_VCPU_RUN_PID_CHANGE
1467 int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu);
1468 #else
kvm_arch_vcpu_run_pid_change(struct kvm_vcpu * vcpu)1469 static inline int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu)
1470 {
1471 	return 0;
1472 }
1473 #endif /* CONFIG_HAVE_KVM_VCPU_RUN_PID_CHANGE */
1474 
1475 typedef int (*kvm_vm_thread_fn_t)(struct kvm *kvm, uintptr_t data);
1476 
1477 int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn,
1478 				uintptr_t data, const char *name,
1479 				struct task_struct **thread_ptr);
1480 
1481 #ifdef CONFIG_KVM_XFER_TO_GUEST_WORK
kvm_handle_signal_exit(struct kvm_vcpu * vcpu)1482 static inline void kvm_handle_signal_exit(struct kvm_vcpu *vcpu)
1483 {
1484 	vcpu->run->exit_reason = KVM_EXIT_INTR;
1485 	vcpu->stat.signal_exits++;
1486 }
1487 #endif /* CONFIG_KVM_XFER_TO_GUEST_WORK */
1488 
1489 #endif
1490