1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * NVM Express device driver
4 * Copyright (c) 2011-2014, Intel Corporation.
5 */
6
7 #include <linux/blkdev.h>
8 #include <linux/blk-mq.h>
9 #include <linux/compat.h>
10 #include <linux/delay.h>
11 #include <linux/errno.h>
12 #include <linux/hdreg.h>
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/backing-dev.h>
16 #include <linux/slab.h>
17 #include <linux/types.h>
18 #include <linux/pr.h>
19 #include <linux/ptrace.h>
20 #include <linux/nvme_ioctl.h>
21 #include <linux/pm_qos.h>
22 #include <asm/unaligned.h>
23
24 #include "nvme.h"
25 #include "fabrics.h"
26
27 #define CREATE_TRACE_POINTS
28 #include "trace.h"
29
30 #define NVME_MINORS (1U << MINORBITS)
31
32 unsigned int admin_timeout = 60;
33 module_param(admin_timeout, uint, 0644);
34 MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands");
35 EXPORT_SYMBOL_GPL(admin_timeout);
36
37 unsigned int nvme_io_timeout = 30;
38 module_param_named(io_timeout, nvme_io_timeout, uint, 0644);
39 MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O");
40 EXPORT_SYMBOL_GPL(nvme_io_timeout);
41
42 static unsigned char shutdown_timeout = 5;
43 module_param(shutdown_timeout, byte, 0644);
44 MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown");
45
46 static u8 nvme_max_retries = 5;
47 module_param_named(max_retries, nvme_max_retries, byte, 0644);
48 MODULE_PARM_DESC(max_retries, "max number of retries a command may have");
49
50 static unsigned long default_ps_max_latency_us = 100000;
51 module_param(default_ps_max_latency_us, ulong, 0644);
52 MODULE_PARM_DESC(default_ps_max_latency_us,
53 "max power saving latency for new devices; use PM QOS to change per device");
54
55 static bool force_apst;
56 module_param(force_apst, bool, 0644);
57 MODULE_PARM_DESC(force_apst, "allow APST for newly enumerated devices even if quirked off");
58
59 static bool streams;
60 module_param(streams, bool, 0644);
61 MODULE_PARM_DESC(streams, "turn on support for Streams write directives");
62
63 /*
64 * nvme_wq - hosts nvme related works that are not reset or delete
65 * nvme_reset_wq - hosts nvme reset works
66 * nvme_delete_wq - hosts nvme delete works
67 *
68 * nvme_wq will host works such as scan, aen handling, fw activation,
69 * keep-alive, periodic reconnects etc. nvme_reset_wq
70 * runs reset works which also flush works hosted on nvme_wq for
71 * serialization purposes. nvme_delete_wq host controller deletion
72 * works which flush reset works for serialization.
73 */
74 struct workqueue_struct *nvme_wq;
75 EXPORT_SYMBOL_GPL(nvme_wq);
76
77 struct workqueue_struct *nvme_reset_wq;
78 EXPORT_SYMBOL_GPL(nvme_reset_wq);
79
80 struct workqueue_struct *nvme_delete_wq;
81 EXPORT_SYMBOL_GPL(nvme_delete_wq);
82
83 static LIST_HEAD(nvme_subsystems);
84 static DEFINE_MUTEX(nvme_subsystems_lock);
85
86 static DEFINE_IDA(nvme_instance_ida);
87 static dev_t nvme_chr_devt;
88 static struct class *nvme_class;
89 static struct class *nvme_subsys_class;
90
91 static void nvme_put_subsystem(struct nvme_subsystem *subsys);
92 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
93 unsigned nsid);
94
nvme_update_bdev_size(struct gendisk * disk)95 static void nvme_update_bdev_size(struct gendisk *disk)
96 {
97 struct block_device *bdev = bdget_disk(disk, 0);
98
99 if (bdev) {
100 bd_set_nr_sectors(bdev, get_capacity(disk));
101 bdput(bdev);
102 }
103 }
104
nvme_queue_scan(struct nvme_ctrl * ctrl)105 static void nvme_queue_scan(struct nvme_ctrl *ctrl)
106 {
107 /*
108 * Only new queue scan work when admin and IO queues are both alive
109 */
110 if (ctrl->state == NVME_CTRL_LIVE && ctrl->tagset)
111 queue_work(nvme_wq, &ctrl->scan_work);
112 }
113
114 /*
115 * Use this function to proceed with scheduling reset_work for a controller
116 * that had previously been set to the resetting state. This is intended for
117 * code paths that can't be interrupted by other reset attempts. A hot removal
118 * may prevent this from succeeding.
119 */
nvme_try_sched_reset(struct nvme_ctrl * ctrl)120 int nvme_try_sched_reset(struct nvme_ctrl *ctrl)
121 {
122 if (ctrl->state != NVME_CTRL_RESETTING)
123 return -EBUSY;
124 if (!queue_work(nvme_reset_wq, &ctrl->reset_work))
125 return -EBUSY;
126 return 0;
127 }
128 EXPORT_SYMBOL_GPL(nvme_try_sched_reset);
129
nvme_reset_ctrl(struct nvme_ctrl * ctrl)130 int nvme_reset_ctrl(struct nvme_ctrl *ctrl)
131 {
132 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING))
133 return -EBUSY;
134 if (!queue_work(nvme_reset_wq, &ctrl->reset_work))
135 return -EBUSY;
136 return 0;
137 }
138 EXPORT_SYMBOL_GPL(nvme_reset_ctrl);
139
nvme_reset_ctrl_sync(struct nvme_ctrl * ctrl)140 int nvme_reset_ctrl_sync(struct nvme_ctrl *ctrl)
141 {
142 int ret;
143
144 ret = nvme_reset_ctrl(ctrl);
145 if (!ret) {
146 flush_work(&ctrl->reset_work);
147 if (ctrl->state != NVME_CTRL_LIVE)
148 ret = -ENETRESET;
149 }
150
151 return ret;
152 }
153 EXPORT_SYMBOL_GPL(nvme_reset_ctrl_sync);
154
nvme_do_delete_ctrl(struct nvme_ctrl * ctrl)155 static void nvme_do_delete_ctrl(struct nvme_ctrl *ctrl)
156 {
157 dev_info(ctrl->device,
158 "Removing ctrl: NQN \"%s\"\n", ctrl->opts->subsysnqn);
159
160 flush_work(&ctrl->reset_work);
161 nvme_stop_ctrl(ctrl);
162 nvme_remove_namespaces(ctrl);
163 ctrl->ops->delete_ctrl(ctrl);
164 nvme_uninit_ctrl(ctrl);
165 }
166
nvme_delete_ctrl_work(struct work_struct * work)167 static void nvme_delete_ctrl_work(struct work_struct *work)
168 {
169 struct nvme_ctrl *ctrl =
170 container_of(work, struct nvme_ctrl, delete_work);
171
172 nvme_do_delete_ctrl(ctrl);
173 }
174
nvme_delete_ctrl(struct nvme_ctrl * ctrl)175 int nvme_delete_ctrl(struct nvme_ctrl *ctrl)
176 {
177 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING))
178 return -EBUSY;
179 if (!queue_work(nvme_delete_wq, &ctrl->delete_work))
180 return -EBUSY;
181 return 0;
182 }
183 EXPORT_SYMBOL_GPL(nvme_delete_ctrl);
184
nvme_delete_ctrl_sync(struct nvme_ctrl * ctrl)185 static void nvme_delete_ctrl_sync(struct nvme_ctrl *ctrl)
186 {
187 /*
188 * Keep a reference until nvme_do_delete_ctrl() complete,
189 * since ->delete_ctrl can free the controller.
190 */
191 nvme_get_ctrl(ctrl);
192 if (nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING))
193 nvme_do_delete_ctrl(ctrl);
194 nvme_put_ctrl(ctrl);
195 }
196
nvme_error_status(u16 status)197 static blk_status_t nvme_error_status(u16 status)
198 {
199 switch (status & 0x7ff) {
200 case NVME_SC_SUCCESS:
201 return BLK_STS_OK;
202 case NVME_SC_CAP_EXCEEDED:
203 return BLK_STS_NOSPC;
204 case NVME_SC_LBA_RANGE:
205 case NVME_SC_CMD_INTERRUPTED:
206 case NVME_SC_NS_NOT_READY:
207 return BLK_STS_TARGET;
208 case NVME_SC_BAD_ATTRIBUTES:
209 case NVME_SC_ONCS_NOT_SUPPORTED:
210 case NVME_SC_INVALID_OPCODE:
211 case NVME_SC_INVALID_FIELD:
212 case NVME_SC_INVALID_NS:
213 return BLK_STS_NOTSUPP;
214 case NVME_SC_WRITE_FAULT:
215 case NVME_SC_READ_ERROR:
216 case NVME_SC_UNWRITTEN_BLOCK:
217 case NVME_SC_ACCESS_DENIED:
218 case NVME_SC_READ_ONLY:
219 case NVME_SC_COMPARE_FAILED:
220 return BLK_STS_MEDIUM;
221 case NVME_SC_GUARD_CHECK:
222 case NVME_SC_APPTAG_CHECK:
223 case NVME_SC_REFTAG_CHECK:
224 case NVME_SC_INVALID_PI:
225 return BLK_STS_PROTECTION;
226 case NVME_SC_RESERVATION_CONFLICT:
227 return BLK_STS_NEXUS;
228 case NVME_SC_HOST_PATH_ERROR:
229 return BLK_STS_TRANSPORT;
230 case NVME_SC_ZONE_TOO_MANY_ACTIVE:
231 return BLK_STS_ZONE_ACTIVE_RESOURCE;
232 case NVME_SC_ZONE_TOO_MANY_OPEN:
233 return BLK_STS_ZONE_OPEN_RESOURCE;
234 default:
235 return BLK_STS_IOERR;
236 }
237 }
238
nvme_retry_req(struct request * req)239 static void nvme_retry_req(struct request *req)
240 {
241 struct nvme_ns *ns = req->q->queuedata;
242 unsigned long delay = 0;
243 u16 crd;
244
245 /* The mask and shift result must be <= 3 */
246 crd = (nvme_req(req)->status & NVME_SC_CRD) >> 11;
247 if (ns && crd)
248 delay = ns->ctrl->crdt[crd - 1] * 100;
249
250 nvme_req(req)->retries++;
251 blk_mq_requeue_request(req, false);
252 blk_mq_delay_kick_requeue_list(req->q, delay);
253 }
254
255 enum nvme_disposition {
256 COMPLETE,
257 RETRY,
258 FAILOVER,
259 };
260
nvme_decide_disposition(struct request * req)261 static inline enum nvme_disposition nvme_decide_disposition(struct request *req)
262 {
263 if (likely(nvme_req(req)->status == 0))
264 return COMPLETE;
265
266 if (blk_noretry_request(req) ||
267 (nvme_req(req)->status & NVME_SC_DNR) ||
268 nvme_req(req)->retries >= nvme_max_retries)
269 return COMPLETE;
270
271 if (req->cmd_flags & REQ_NVME_MPATH) {
272 if (nvme_is_path_error(nvme_req(req)->status) ||
273 blk_queue_dying(req->q))
274 return FAILOVER;
275 } else {
276 if (blk_queue_dying(req->q))
277 return COMPLETE;
278 }
279
280 return RETRY;
281 }
282
nvme_end_req(struct request * req)283 static inline void nvme_end_req(struct request *req)
284 {
285 blk_status_t status = nvme_error_status(nvme_req(req)->status);
286
287 if (IS_ENABLED(CONFIG_BLK_DEV_ZONED) &&
288 req_op(req) == REQ_OP_ZONE_APPEND)
289 req->__sector = nvme_lba_to_sect(req->q->queuedata,
290 le64_to_cpu(nvme_req(req)->result.u64));
291
292 nvme_trace_bio_complete(req, status);
293 blk_mq_end_request(req, status);
294 }
295
nvme_complete_rq(struct request * req)296 void nvme_complete_rq(struct request *req)
297 {
298 trace_nvme_complete_rq(req);
299 nvme_cleanup_cmd(req);
300
301 if (nvme_req(req)->ctrl->kas)
302 nvme_req(req)->ctrl->comp_seen = true;
303
304 switch (nvme_decide_disposition(req)) {
305 case COMPLETE:
306 nvme_end_req(req);
307 return;
308 case RETRY:
309 nvme_retry_req(req);
310 return;
311 case FAILOVER:
312 nvme_failover_req(req);
313 return;
314 }
315 }
316 EXPORT_SYMBOL_GPL(nvme_complete_rq);
317
nvme_cancel_request(struct request * req,void * data,bool reserved)318 bool nvme_cancel_request(struct request *req, void *data, bool reserved)
319 {
320 dev_dbg_ratelimited(((struct nvme_ctrl *) data)->device,
321 "Cancelling I/O %d", req->tag);
322
323 /* don't abort one completed request */
324 if (blk_mq_request_completed(req))
325 return true;
326
327 nvme_req(req)->status = NVME_SC_HOST_ABORTED_CMD;
328 nvme_req(req)->flags |= NVME_REQ_CANCELLED;
329 blk_mq_complete_request(req);
330 return true;
331 }
332 EXPORT_SYMBOL_GPL(nvme_cancel_request);
333
nvme_cancel_tagset(struct nvme_ctrl * ctrl)334 void nvme_cancel_tagset(struct nvme_ctrl *ctrl)
335 {
336 if (ctrl->tagset) {
337 blk_mq_tagset_busy_iter(ctrl->tagset,
338 nvme_cancel_request, ctrl);
339 blk_mq_tagset_wait_completed_request(ctrl->tagset);
340 }
341 }
342 EXPORT_SYMBOL_GPL(nvme_cancel_tagset);
343
nvme_cancel_admin_tagset(struct nvme_ctrl * ctrl)344 void nvme_cancel_admin_tagset(struct nvme_ctrl *ctrl)
345 {
346 if (ctrl->admin_tagset) {
347 blk_mq_tagset_busy_iter(ctrl->admin_tagset,
348 nvme_cancel_request, ctrl);
349 blk_mq_tagset_wait_completed_request(ctrl->admin_tagset);
350 }
351 }
352 EXPORT_SYMBOL_GPL(nvme_cancel_admin_tagset);
353
nvme_change_ctrl_state(struct nvme_ctrl * ctrl,enum nvme_ctrl_state new_state)354 bool nvme_change_ctrl_state(struct nvme_ctrl *ctrl,
355 enum nvme_ctrl_state new_state)
356 {
357 enum nvme_ctrl_state old_state;
358 unsigned long flags;
359 bool changed = false;
360
361 spin_lock_irqsave(&ctrl->lock, flags);
362
363 old_state = ctrl->state;
364 switch (new_state) {
365 case NVME_CTRL_LIVE:
366 switch (old_state) {
367 case NVME_CTRL_NEW:
368 case NVME_CTRL_RESETTING:
369 case NVME_CTRL_CONNECTING:
370 changed = true;
371 fallthrough;
372 default:
373 break;
374 }
375 break;
376 case NVME_CTRL_RESETTING:
377 switch (old_state) {
378 case NVME_CTRL_NEW:
379 case NVME_CTRL_LIVE:
380 changed = true;
381 fallthrough;
382 default:
383 break;
384 }
385 break;
386 case NVME_CTRL_CONNECTING:
387 switch (old_state) {
388 case NVME_CTRL_NEW:
389 case NVME_CTRL_RESETTING:
390 changed = true;
391 fallthrough;
392 default:
393 break;
394 }
395 break;
396 case NVME_CTRL_DELETING:
397 switch (old_state) {
398 case NVME_CTRL_LIVE:
399 case NVME_CTRL_RESETTING:
400 case NVME_CTRL_CONNECTING:
401 changed = true;
402 fallthrough;
403 default:
404 break;
405 }
406 break;
407 case NVME_CTRL_DELETING_NOIO:
408 switch (old_state) {
409 case NVME_CTRL_DELETING:
410 case NVME_CTRL_DEAD:
411 changed = true;
412 fallthrough;
413 default:
414 break;
415 }
416 break;
417 case NVME_CTRL_DEAD:
418 switch (old_state) {
419 case NVME_CTRL_DELETING:
420 changed = true;
421 fallthrough;
422 default:
423 break;
424 }
425 break;
426 default:
427 break;
428 }
429
430 if (changed) {
431 ctrl->state = new_state;
432 wake_up_all(&ctrl->state_wq);
433 }
434
435 spin_unlock_irqrestore(&ctrl->lock, flags);
436 if (changed && ctrl->state == NVME_CTRL_LIVE)
437 nvme_kick_requeue_lists(ctrl);
438 return changed;
439 }
440 EXPORT_SYMBOL_GPL(nvme_change_ctrl_state);
441
442 /*
443 * Returns true for sink states that can't ever transition back to live.
444 */
nvme_state_terminal(struct nvme_ctrl * ctrl)445 static bool nvme_state_terminal(struct nvme_ctrl *ctrl)
446 {
447 switch (ctrl->state) {
448 case NVME_CTRL_NEW:
449 case NVME_CTRL_LIVE:
450 case NVME_CTRL_RESETTING:
451 case NVME_CTRL_CONNECTING:
452 return false;
453 case NVME_CTRL_DELETING:
454 case NVME_CTRL_DELETING_NOIO:
455 case NVME_CTRL_DEAD:
456 return true;
457 default:
458 WARN_ONCE(1, "Unhandled ctrl state:%d", ctrl->state);
459 return true;
460 }
461 }
462
463 /*
464 * Waits for the controller state to be resetting, or returns false if it is
465 * not possible to ever transition to that state.
466 */
nvme_wait_reset(struct nvme_ctrl * ctrl)467 bool nvme_wait_reset(struct nvme_ctrl *ctrl)
468 {
469 wait_event(ctrl->state_wq,
470 nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING) ||
471 nvme_state_terminal(ctrl));
472 return ctrl->state == NVME_CTRL_RESETTING;
473 }
474 EXPORT_SYMBOL_GPL(nvme_wait_reset);
475
nvme_free_ns_head(struct kref * ref)476 static void nvme_free_ns_head(struct kref *ref)
477 {
478 struct nvme_ns_head *head =
479 container_of(ref, struct nvme_ns_head, ref);
480
481 nvme_mpath_remove_disk(head);
482 ida_simple_remove(&head->subsys->ns_ida, head->instance);
483 cleanup_srcu_struct(&head->srcu);
484 nvme_put_subsystem(head->subsys);
485 kfree(head);
486 }
487
nvme_put_ns_head(struct nvme_ns_head * head)488 static void nvme_put_ns_head(struct nvme_ns_head *head)
489 {
490 kref_put(&head->ref, nvme_free_ns_head);
491 }
492
nvme_free_ns(struct kref * kref)493 static void nvme_free_ns(struct kref *kref)
494 {
495 struct nvme_ns *ns = container_of(kref, struct nvme_ns, kref);
496
497 if (ns->ndev)
498 nvme_nvm_unregister(ns);
499
500 put_disk(ns->disk);
501 nvme_put_ns_head(ns->head);
502 nvme_put_ctrl(ns->ctrl);
503 kfree(ns);
504 }
505
nvme_put_ns(struct nvme_ns * ns)506 void nvme_put_ns(struct nvme_ns *ns)
507 {
508 kref_put(&ns->kref, nvme_free_ns);
509 }
510 EXPORT_SYMBOL_NS_GPL(nvme_put_ns, NVME_TARGET_PASSTHRU);
511
nvme_clear_nvme_request(struct request * req)512 static inline void nvme_clear_nvme_request(struct request *req)
513 {
514 if (!(req->rq_flags & RQF_DONTPREP)) {
515 nvme_req(req)->retries = 0;
516 nvme_req(req)->flags = 0;
517 req->rq_flags |= RQF_DONTPREP;
518 }
519 }
520
nvme_alloc_request(struct request_queue * q,struct nvme_command * cmd,blk_mq_req_flags_t flags,int qid)521 struct request *nvme_alloc_request(struct request_queue *q,
522 struct nvme_command *cmd, blk_mq_req_flags_t flags, int qid)
523 {
524 unsigned op = nvme_is_write(cmd) ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN;
525 struct request *req;
526
527 if (qid == NVME_QID_ANY) {
528 req = blk_mq_alloc_request(q, op, flags);
529 } else {
530 req = blk_mq_alloc_request_hctx(q, op, flags,
531 qid ? qid - 1 : 0);
532 }
533 if (IS_ERR(req))
534 return req;
535
536 req->cmd_flags |= REQ_FAILFAST_DRIVER;
537 nvme_clear_nvme_request(req);
538 nvme_req(req)->cmd = cmd;
539
540 return req;
541 }
542 EXPORT_SYMBOL_GPL(nvme_alloc_request);
543
nvme_toggle_streams(struct nvme_ctrl * ctrl,bool enable)544 static int nvme_toggle_streams(struct nvme_ctrl *ctrl, bool enable)
545 {
546 struct nvme_command c;
547
548 memset(&c, 0, sizeof(c));
549
550 c.directive.opcode = nvme_admin_directive_send;
551 c.directive.nsid = cpu_to_le32(NVME_NSID_ALL);
552 c.directive.doper = NVME_DIR_SND_ID_OP_ENABLE;
553 c.directive.dtype = NVME_DIR_IDENTIFY;
554 c.directive.tdtype = NVME_DIR_STREAMS;
555 c.directive.endir = enable ? NVME_DIR_ENDIR : 0;
556
557 return nvme_submit_sync_cmd(ctrl->admin_q, &c, NULL, 0);
558 }
559
nvme_disable_streams(struct nvme_ctrl * ctrl)560 static int nvme_disable_streams(struct nvme_ctrl *ctrl)
561 {
562 return nvme_toggle_streams(ctrl, false);
563 }
564
nvme_enable_streams(struct nvme_ctrl * ctrl)565 static int nvme_enable_streams(struct nvme_ctrl *ctrl)
566 {
567 return nvme_toggle_streams(ctrl, true);
568 }
569
nvme_get_stream_params(struct nvme_ctrl * ctrl,struct streams_directive_params * s,u32 nsid)570 static int nvme_get_stream_params(struct nvme_ctrl *ctrl,
571 struct streams_directive_params *s, u32 nsid)
572 {
573 struct nvme_command c;
574
575 memset(&c, 0, sizeof(c));
576 memset(s, 0, sizeof(*s));
577
578 c.directive.opcode = nvme_admin_directive_recv;
579 c.directive.nsid = cpu_to_le32(nsid);
580 c.directive.numd = cpu_to_le32(nvme_bytes_to_numd(sizeof(*s)));
581 c.directive.doper = NVME_DIR_RCV_ST_OP_PARAM;
582 c.directive.dtype = NVME_DIR_STREAMS;
583
584 return nvme_submit_sync_cmd(ctrl->admin_q, &c, s, sizeof(*s));
585 }
586
nvme_configure_directives(struct nvme_ctrl * ctrl)587 static int nvme_configure_directives(struct nvme_ctrl *ctrl)
588 {
589 struct streams_directive_params s;
590 int ret;
591
592 if (!(ctrl->oacs & NVME_CTRL_OACS_DIRECTIVES))
593 return 0;
594 if (!streams)
595 return 0;
596
597 ret = nvme_enable_streams(ctrl);
598 if (ret)
599 return ret;
600
601 ret = nvme_get_stream_params(ctrl, &s, NVME_NSID_ALL);
602 if (ret)
603 goto out_disable_stream;
604
605 ctrl->nssa = le16_to_cpu(s.nssa);
606 if (ctrl->nssa < BLK_MAX_WRITE_HINTS - 1) {
607 dev_info(ctrl->device, "too few streams (%u) available\n",
608 ctrl->nssa);
609 goto out_disable_stream;
610 }
611
612 ctrl->nr_streams = min_t(u16, ctrl->nssa, BLK_MAX_WRITE_HINTS - 1);
613 dev_info(ctrl->device, "Using %u streams\n", ctrl->nr_streams);
614 return 0;
615
616 out_disable_stream:
617 nvme_disable_streams(ctrl);
618 return ret;
619 }
620
621 /*
622 * Check if 'req' has a write hint associated with it. If it does, assign
623 * a valid namespace stream to the write.
624 */
nvme_assign_write_stream(struct nvme_ctrl * ctrl,struct request * req,u16 * control,u32 * dsmgmt)625 static void nvme_assign_write_stream(struct nvme_ctrl *ctrl,
626 struct request *req, u16 *control,
627 u32 *dsmgmt)
628 {
629 enum rw_hint streamid = req->write_hint;
630
631 if (streamid == WRITE_LIFE_NOT_SET || streamid == WRITE_LIFE_NONE)
632 streamid = 0;
633 else {
634 streamid--;
635 if (WARN_ON_ONCE(streamid > ctrl->nr_streams))
636 return;
637
638 *control |= NVME_RW_DTYPE_STREAMS;
639 *dsmgmt |= streamid << 16;
640 }
641
642 if (streamid < ARRAY_SIZE(req->q->write_hints))
643 req->q->write_hints[streamid] += blk_rq_bytes(req) >> 9;
644 }
645
nvme_setup_passthrough(struct request * req,struct nvme_command * cmd)646 static void nvme_setup_passthrough(struct request *req,
647 struct nvme_command *cmd)
648 {
649 memcpy(cmd, nvme_req(req)->cmd, sizeof(*cmd));
650 /* passthru commands should let the driver set the SGL flags */
651 cmd->common.flags &= ~NVME_CMD_SGL_ALL;
652 }
653
nvme_setup_flush(struct nvme_ns * ns,struct nvme_command * cmnd)654 static inline void nvme_setup_flush(struct nvme_ns *ns,
655 struct nvme_command *cmnd)
656 {
657 cmnd->common.opcode = nvme_cmd_flush;
658 cmnd->common.nsid = cpu_to_le32(ns->head->ns_id);
659 }
660
nvme_setup_discard(struct nvme_ns * ns,struct request * req,struct nvme_command * cmnd)661 static blk_status_t nvme_setup_discard(struct nvme_ns *ns, struct request *req,
662 struct nvme_command *cmnd)
663 {
664 unsigned short segments = blk_rq_nr_discard_segments(req), n = 0;
665 struct nvme_dsm_range *range;
666 struct bio *bio;
667
668 /*
669 * Some devices do not consider the DSM 'Number of Ranges' field when
670 * determining how much data to DMA. Always allocate memory for maximum
671 * number of segments to prevent device reading beyond end of buffer.
672 */
673 static const size_t alloc_size = sizeof(*range) * NVME_DSM_MAX_RANGES;
674
675 range = kzalloc(alloc_size, GFP_ATOMIC | __GFP_NOWARN);
676 if (!range) {
677 /*
678 * If we fail allocation our range, fallback to the controller
679 * discard page. If that's also busy, it's safe to return
680 * busy, as we know we can make progress once that's freed.
681 */
682 if (test_and_set_bit_lock(0, &ns->ctrl->discard_page_busy))
683 return BLK_STS_RESOURCE;
684
685 range = page_address(ns->ctrl->discard_page);
686 }
687
688 __rq_for_each_bio(bio, req) {
689 u64 slba = nvme_sect_to_lba(ns, bio->bi_iter.bi_sector);
690 u32 nlb = bio->bi_iter.bi_size >> ns->lba_shift;
691
692 if (n < segments) {
693 range[n].cattr = cpu_to_le32(0);
694 range[n].nlb = cpu_to_le32(nlb);
695 range[n].slba = cpu_to_le64(slba);
696 }
697 n++;
698 }
699
700 if (WARN_ON_ONCE(n != segments)) {
701 if (virt_to_page(range) == ns->ctrl->discard_page)
702 clear_bit_unlock(0, &ns->ctrl->discard_page_busy);
703 else
704 kfree(range);
705 return BLK_STS_IOERR;
706 }
707
708 cmnd->dsm.opcode = nvme_cmd_dsm;
709 cmnd->dsm.nsid = cpu_to_le32(ns->head->ns_id);
710 cmnd->dsm.nr = cpu_to_le32(segments - 1);
711 cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
712
713 req->special_vec.bv_page = virt_to_page(range);
714 req->special_vec.bv_offset = offset_in_page(range);
715 req->special_vec.bv_len = alloc_size;
716 req->rq_flags |= RQF_SPECIAL_PAYLOAD;
717
718 return BLK_STS_OK;
719 }
720
nvme_setup_write_zeroes(struct nvme_ns * ns,struct request * req,struct nvme_command * cmnd)721 static inline blk_status_t nvme_setup_write_zeroes(struct nvme_ns *ns,
722 struct request *req, struct nvme_command *cmnd)
723 {
724 if (ns->ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES)
725 return nvme_setup_discard(ns, req, cmnd);
726
727 cmnd->write_zeroes.opcode = nvme_cmd_write_zeroes;
728 cmnd->write_zeroes.nsid = cpu_to_le32(ns->head->ns_id);
729 cmnd->write_zeroes.slba =
730 cpu_to_le64(nvme_sect_to_lba(ns, blk_rq_pos(req)));
731 cmnd->write_zeroes.length =
732 cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);
733 if (nvme_ns_has_pi(ns))
734 cmnd->write_zeroes.control = cpu_to_le16(NVME_RW_PRINFO_PRACT);
735 else
736 cmnd->write_zeroes.control = 0;
737 return BLK_STS_OK;
738 }
739
nvme_setup_rw(struct nvme_ns * ns,struct request * req,struct nvme_command * cmnd,enum nvme_opcode op)740 static inline blk_status_t nvme_setup_rw(struct nvme_ns *ns,
741 struct request *req, struct nvme_command *cmnd,
742 enum nvme_opcode op)
743 {
744 struct nvme_ctrl *ctrl = ns->ctrl;
745 u16 control = 0;
746 u32 dsmgmt = 0;
747
748 if (req->cmd_flags & REQ_FUA)
749 control |= NVME_RW_FUA;
750 if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD))
751 control |= NVME_RW_LR;
752
753 if (req->cmd_flags & REQ_RAHEAD)
754 dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
755
756 cmnd->rw.opcode = op;
757 cmnd->rw.nsid = cpu_to_le32(ns->head->ns_id);
758 cmnd->rw.slba = cpu_to_le64(nvme_sect_to_lba(ns, blk_rq_pos(req)));
759 cmnd->rw.length = cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);
760
761 if (req_op(req) == REQ_OP_WRITE && ctrl->nr_streams)
762 nvme_assign_write_stream(ctrl, req, &control, &dsmgmt);
763
764 if (ns->ms) {
765 /*
766 * If formated with metadata, the block layer always provides a
767 * metadata buffer if CONFIG_BLK_DEV_INTEGRITY is enabled. Else
768 * we enable the PRACT bit for protection information or set the
769 * namespace capacity to zero to prevent any I/O.
770 */
771 if (!blk_integrity_rq(req)) {
772 if (WARN_ON_ONCE(!nvme_ns_has_pi(ns)))
773 return BLK_STS_NOTSUPP;
774 control |= NVME_RW_PRINFO_PRACT;
775 }
776
777 switch (ns->pi_type) {
778 case NVME_NS_DPS_PI_TYPE3:
779 control |= NVME_RW_PRINFO_PRCHK_GUARD;
780 break;
781 case NVME_NS_DPS_PI_TYPE1:
782 case NVME_NS_DPS_PI_TYPE2:
783 control |= NVME_RW_PRINFO_PRCHK_GUARD |
784 NVME_RW_PRINFO_PRCHK_REF;
785 if (op == nvme_cmd_zone_append)
786 control |= NVME_RW_APPEND_PIREMAP;
787 cmnd->rw.reftag = cpu_to_le32(t10_pi_ref_tag(req));
788 break;
789 }
790 }
791
792 cmnd->rw.control = cpu_to_le16(control);
793 cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
794 return 0;
795 }
796
nvme_cleanup_cmd(struct request * req)797 void nvme_cleanup_cmd(struct request *req)
798 {
799 if (req->rq_flags & RQF_SPECIAL_PAYLOAD) {
800 struct nvme_ns *ns = req->rq_disk->private_data;
801 struct page *page = req->special_vec.bv_page;
802
803 if (page == ns->ctrl->discard_page)
804 clear_bit_unlock(0, &ns->ctrl->discard_page_busy);
805 else
806 kfree(page_address(page) + req->special_vec.bv_offset);
807 }
808 }
809 EXPORT_SYMBOL_GPL(nvme_cleanup_cmd);
810
nvme_setup_cmd(struct nvme_ns * ns,struct request * req,struct nvme_command * cmd)811 blk_status_t nvme_setup_cmd(struct nvme_ns *ns, struct request *req,
812 struct nvme_command *cmd)
813 {
814 struct nvme_ctrl *ctrl = nvme_req(req)->ctrl;
815 blk_status_t ret = BLK_STS_OK;
816
817 nvme_clear_nvme_request(req);
818
819 memset(cmd, 0, sizeof(*cmd));
820 switch (req_op(req)) {
821 case REQ_OP_DRV_IN:
822 case REQ_OP_DRV_OUT:
823 nvme_setup_passthrough(req, cmd);
824 break;
825 case REQ_OP_FLUSH:
826 nvme_setup_flush(ns, cmd);
827 break;
828 case REQ_OP_ZONE_RESET_ALL:
829 case REQ_OP_ZONE_RESET:
830 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_RESET);
831 break;
832 case REQ_OP_ZONE_OPEN:
833 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_OPEN);
834 break;
835 case REQ_OP_ZONE_CLOSE:
836 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_CLOSE);
837 break;
838 case REQ_OP_ZONE_FINISH:
839 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_FINISH);
840 break;
841 case REQ_OP_WRITE_ZEROES:
842 ret = nvme_setup_write_zeroes(ns, req, cmd);
843 break;
844 case REQ_OP_DISCARD:
845 ret = nvme_setup_discard(ns, req, cmd);
846 break;
847 case REQ_OP_READ:
848 ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_read);
849 break;
850 case REQ_OP_WRITE:
851 ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_write);
852 break;
853 case REQ_OP_ZONE_APPEND:
854 ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_zone_append);
855 break;
856 default:
857 WARN_ON_ONCE(1);
858 return BLK_STS_IOERR;
859 }
860
861 if (!(ctrl->quirks & NVME_QUIRK_SKIP_CID_GEN))
862 nvme_req(req)->genctr++;
863 cmd->common.command_id = nvme_cid(req);
864 trace_nvme_setup_cmd(req, cmd);
865 return ret;
866 }
867 EXPORT_SYMBOL_GPL(nvme_setup_cmd);
868
nvme_end_sync_rq(struct request * rq,blk_status_t error)869 static void nvme_end_sync_rq(struct request *rq, blk_status_t error)
870 {
871 struct completion *waiting = rq->end_io_data;
872
873 rq->end_io_data = NULL;
874 complete(waiting);
875 }
876
nvme_execute_rq_polled(struct request_queue * q,struct gendisk * bd_disk,struct request * rq,int at_head)877 static void nvme_execute_rq_polled(struct request_queue *q,
878 struct gendisk *bd_disk, struct request *rq, int at_head)
879 {
880 DECLARE_COMPLETION_ONSTACK(wait);
881
882 WARN_ON_ONCE(!test_bit(QUEUE_FLAG_POLL, &q->queue_flags));
883
884 rq->cmd_flags |= REQ_HIPRI;
885 rq->end_io_data = &wait;
886 blk_execute_rq_nowait(q, bd_disk, rq, at_head, nvme_end_sync_rq);
887
888 while (!completion_done(&wait)) {
889 blk_poll(q, request_to_qc_t(rq->mq_hctx, rq), true);
890 cond_resched();
891 }
892 }
893
894 /*
895 * Returns 0 on success. If the result is negative, it's a Linux error code;
896 * if the result is positive, it's an NVM Express status code
897 */
__nvme_submit_sync_cmd(struct request_queue * q,struct nvme_command * cmd,union nvme_result * result,void * buffer,unsigned bufflen,unsigned timeout,int qid,int at_head,blk_mq_req_flags_t flags,bool poll)898 int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
899 union nvme_result *result, void *buffer, unsigned bufflen,
900 unsigned timeout, int qid, int at_head,
901 blk_mq_req_flags_t flags, bool poll)
902 {
903 struct request *req;
904 int ret;
905
906 req = nvme_alloc_request(q, cmd, flags, qid);
907 if (IS_ERR(req))
908 return PTR_ERR(req);
909
910 req->timeout = timeout ? timeout : ADMIN_TIMEOUT;
911
912 if (buffer && bufflen) {
913 ret = blk_rq_map_kern(q, req, buffer, bufflen, GFP_KERNEL);
914 if (ret)
915 goto out;
916 }
917
918 if (poll)
919 nvme_execute_rq_polled(req->q, NULL, req, at_head);
920 else
921 blk_execute_rq(req->q, NULL, req, at_head);
922 if (result)
923 *result = nvme_req(req)->result;
924 if (nvme_req(req)->flags & NVME_REQ_CANCELLED)
925 ret = -EINTR;
926 else
927 ret = nvme_req(req)->status;
928 out:
929 blk_mq_free_request(req);
930 return ret;
931 }
932 EXPORT_SYMBOL_GPL(__nvme_submit_sync_cmd);
933
nvme_submit_sync_cmd(struct request_queue * q,struct nvme_command * cmd,void * buffer,unsigned bufflen)934 int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
935 void *buffer, unsigned bufflen)
936 {
937 return __nvme_submit_sync_cmd(q, cmd, NULL, buffer, bufflen, 0,
938 NVME_QID_ANY, 0, 0, false);
939 }
940 EXPORT_SYMBOL_GPL(nvme_submit_sync_cmd);
941
nvme_add_user_metadata(struct bio * bio,void __user * ubuf,unsigned len,u32 seed,bool write)942 static void *nvme_add_user_metadata(struct bio *bio, void __user *ubuf,
943 unsigned len, u32 seed, bool write)
944 {
945 struct bio_integrity_payload *bip;
946 int ret = -ENOMEM;
947 void *buf;
948
949 buf = kmalloc(len, GFP_KERNEL);
950 if (!buf)
951 goto out;
952
953 ret = -EFAULT;
954 if (write && copy_from_user(buf, ubuf, len))
955 goto out_free_meta;
956
957 bip = bio_integrity_alloc(bio, GFP_KERNEL, 1);
958 if (IS_ERR(bip)) {
959 ret = PTR_ERR(bip);
960 goto out_free_meta;
961 }
962
963 bip->bip_iter.bi_size = len;
964 bip->bip_iter.bi_sector = seed;
965 ret = bio_integrity_add_page(bio, virt_to_page(buf), len,
966 offset_in_page(buf));
967 if (ret == len)
968 return buf;
969 ret = -ENOMEM;
970 out_free_meta:
971 kfree(buf);
972 out:
973 return ERR_PTR(ret);
974 }
975
nvme_known_admin_effects(u8 opcode)976 static u32 nvme_known_admin_effects(u8 opcode)
977 {
978 switch (opcode) {
979 case nvme_admin_format_nvm:
980 return NVME_CMD_EFFECTS_LBCC | NVME_CMD_EFFECTS_NCC |
981 NVME_CMD_EFFECTS_CSE_MASK;
982 case nvme_admin_sanitize_nvm:
983 return NVME_CMD_EFFECTS_LBCC | NVME_CMD_EFFECTS_CSE_MASK;
984 default:
985 break;
986 }
987 return 0;
988 }
989
nvme_command_effects(struct nvme_ctrl * ctrl,struct nvme_ns * ns,u8 opcode)990 u32 nvme_command_effects(struct nvme_ctrl *ctrl, struct nvme_ns *ns, u8 opcode)
991 {
992 u32 effects = 0;
993
994 if (ns) {
995 if (ns->head->effects)
996 effects = le32_to_cpu(ns->head->effects->iocs[opcode]);
997 if (effects & ~(NVME_CMD_EFFECTS_CSUPP | NVME_CMD_EFFECTS_LBCC))
998 dev_warn(ctrl->device,
999 "IO command:%02x has unhandled effects:%08x\n",
1000 opcode, effects);
1001 return 0;
1002 }
1003
1004 if (ctrl->effects)
1005 effects = le32_to_cpu(ctrl->effects->acs[opcode]);
1006 effects |= nvme_known_admin_effects(opcode);
1007
1008 return effects;
1009 }
1010 EXPORT_SYMBOL_NS_GPL(nvme_command_effects, NVME_TARGET_PASSTHRU);
1011
nvme_passthru_start(struct nvme_ctrl * ctrl,struct nvme_ns * ns,u8 opcode)1012 static u32 nvme_passthru_start(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
1013 u8 opcode)
1014 {
1015 u32 effects = nvme_command_effects(ctrl, ns, opcode);
1016
1017 /*
1018 * For simplicity, IO to all namespaces is quiesced even if the command
1019 * effects say only one namespace is affected.
1020 */
1021 if (effects & NVME_CMD_EFFECTS_CSE_MASK) {
1022 mutex_lock(&ctrl->scan_lock);
1023 mutex_lock(&ctrl->subsys->lock);
1024 nvme_mpath_start_freeze(ctrl->subsys);
1025 nvme_mpath_wait_freeze(ctrl->subsys);
1026 nvme_start_freeze(ctrl);
1027 nvme_wait_freeze(ctrl);
1028 }
1029 return effects;
1030 }
1031
nvme_passthru_end(struct nvme_ctrl * ctrl,u32 effects)1032 static void nvme_passthru_end(struct nvme_ctrl *ctrl, u32 effects)
1033 {
1034 if (effects & NVME_CMD_EFFECTS_CSE_MASK) {
1035 nvme_unfreeze(ctrl);
1036 nvme_mpath_unfreeze(ctrl->subsys);
1037 mutex_unlock(&ctrl->subsys->lock);
1038 nvme_remove_invalid_namespaces(ctrl, NVME_NSID_ALL);
1039 mutex_unlock(&ctrl->scan_lock);
1040 }
1041 if (effects & NVME_CMD_EFFECTS_CCC)
1042 nvme_init_identify(ctrl);
1043 if (effects & (NVME_CMD_EFFECTS_NIC | NVME_CMD_EFFECTS_NCC)) {
1044 nvme_queue_scan(ctrl);
1045 flush_work(&ctrl->scan_work);
1046 }
1047 }
1048
nvme_execute_passthru_rq(struct request * rq)1049 void nvme_execute_passthru_rq(struct request *rq)
1050 {
1051 struct nvme_command *cmd = nvme_req(rq)->cmd;
1052 struct nvme_ctrl *ctrl = nvme_req(rq)->ctrl;
1053 struct nvme_ns *ns = rq->q->queuedata;
1054 struct gendisk *disk = ns ? ns->disk : NULL;
1055 u32 effects;
1056
1057 effects = nvme_passthru_start(ctrl, ns, cmd->common.opcode);
1058 blk_execute_rq(rq->q, disk, rq, 0);
1059 nvme_passthru_end(ctrl, effects);
1060 }
1061 EXPORT_SYMBOL_NS_GPL(nvme_execute_passthru_rq, NVME_TARGET_PASSTHRU);
1062
nvme_submit_user_cmd(struct request_queue * q,struct nvme_command * cmd,void __user * ubuffer,unsigned bufflen,void __user * meta_buffer,unsigned meta_len,u32 meta_seed,u64 * result,unsigned timeout)1063 static int nvme_submit_user_cmd(struct request_queue *q,
1064 struct nvme_command *cmd, void __user *ubuffer,
1065 unsigned bufflen, void __user *meta_buffer, unsigned meta_len,
1066 u32 meta_seed, u64 *result, unsigned timeout)
1067 {
1068 bool write = nvme_is_write(cmd);
1069 struct nvme_ns *ns = q->queuedata;
1070 struct gendisk *disk = ns ? ns->disk : NULL;
1071 struct request *req;
1072 struct bio *bio = NULL;
1073 void *meta = NULL;
1074 int ret;
1075
1076 req = nvme_alloc_request(q, cmd, 0, NVME_QID_ANY);
1077 if (IS_ERR(req))
1078 return PTR_ERR(req);
1079
1080 req->timeout = timeout ? timeout : ADMIN_TIMEOUT;
1081 nvme_req(req)->flags |= NVME_REQ_USERCMD;
1082
1083 if (ubuffer && bufflen) {
1084 ret = blk_rq_map_user(q, req, NULL, ubuffer, bufflen,
1085 GFP_KERNEL);
1086 if (ret)
1087 goto out;
1088 bio = req->bio;
1089 bio->bi_disk = disk;
1090 if (disk && meta_buffer && meta_len) {
1091 meta = nvme_add_user_metadata(bio, meta_buffer, meta_len,
1092 meta_seed, write);
1093 if (IS_ERR(meta)) {
1094 ret = PTR_ERR(meta);
1095 goto out_unmap;
1096 }
1097 req->cmd_flags |= REQ_INTEGRITY;
1098 }
1099 }
1100
1101 nvme_execute_passthru_rq(req);
1102 if (nvme_req(req)->flags & NVME_REQ_CANCELLED)
1103 ret = -EINTR;
1104 else
1105 ret = nvme_req(req)->status;
1106 if (result)
1107 *result = le64_to_cpu(nvme_req(req)->result.u64);
1108 if (meta && !ret && !write) {
1109 if (copy_to_user(meta_buffer, meta, meta_len))
1110 ret = -EFAULT;
1111 }
1112 kfree(meta);
1113 out_unmap:
1114 if (bio)
1115 blk_rq_unmap_user(bio);
1116 out:
1117 blk_mq_free_request(req);
1118 return ret;
1119 }
1120
nvme_keep_alive_end_io(struct request * rq,blk_status_t status)1121 static void nvme_keep_alive_end_io(struct request *rq, blk_status_t status)
1122 {
1123 struct nvme_ctrl *ctrl = rq->end_io_data;
1124 unsigned long flags;
1125 bool startka = false;
1126
1127 blk_mq_free_request(rq);
1128
1129 if (status) {
1130 dev_err(ctrl->device,
1131 "failed nvme_keep_alive_end_io error=%d\n",
1132 status);
1133 return;
1134 }
1135
1136 ctrl->comp_seen = false;
1137 spin_lock_irqsave(&ctrl->lock, flags);
1138 if (ctrl->state == NVME_CTRL_LIVE ||
1139 ctrl->state == NVME_CTRL_CONNECTING)
1140 startka = true;
1141 spin_unlock_irqrestore(&ctrl->lock, flags);
1142 if (startka)
1143 queue_delayed_work(nvme_wq, &ctrl->ka_work, ctrl->kato * HZ);
1144 }
1145
nvme_keep_alive(struct nvme_ctrl * ctrl)1146 static int nvme_keep_alive(struct nvme_ctrl *ctrl)
1147 {
1148 struct request *rq;
1149
1150 rq = nvme_alloc_request(ctrl->admin_q, &ctrl->ka_cmd, BLK_MQ_REQ_RESERVED,
1151 NVME_QID_ANY);
1152 if (IS_ERR(rq))
1153 return PTR_ERR(rq);
1154
1155 rq->timeout = ctrl->kato * HZ;
1156 rq->end_io_data = ctrl;
1157
1158 blk_execute_rq_nowait(rq->q, NULL, rq, 0, nvme_keep_alive_end_io);
1159
1160 return 0;
1161 }
1162
nvme_keep_alive_work(struct work_struct * work)1163 static void nvme_keep_alive_work(struct work_struct *work)
1164 {
1165 struct nvme_ctrl *ctrl = container_of(to_delayed_work(work),
1166 struct nvme_ctrl, ka_work);
1167 bool comp_seen = ctrl->comp_seen;
1168
1169 if ((ctrl->ctratt & NVME_CTRL_ATTR_TBKAS) && comp_seen) {
1170 dev_dbg(ctrl->device,
1171 "reschedule traffic based keep-alive timer\n");
1172 ctrl->comp_seen = false;
1173 queue_delayed_work(nvme_wq, &ctrl->ka_work, ctrl->kato * HZ);
1174 return;
1175 }
1176
1177 if (nvme_keep_alive(ctrl)) {
1178 /* allocation failure, reset the controller */
1179 dev_err(ctrl->device, "keep-alive failed\n");
1180 nvme_reset_ctrl(ctrl);
1181 return;
1182 }
1183 }
1184
nvme_start_keep_alive(struct nvme_ctrl * ctrl)1185 static void nvme_start_keep_alive(struct nvme_ctrl *ctrl)
1186 {
1187 if (unlikely(ctrl->kato == 0))
1188 return;
1189
1190 queue_delayed_work(nvme_wq, &ctrl->ka_work, ctrl->kato * HZ);
1191 }
1192
nvme_stop_keep_alive(struct nvme_ctrl * ctrl)1193 void nvme_stop_keep_alive(struct nvme_ctrl *ctrl)
1194 {
1195 if (unlikely(ctrl->kato == 0))
1196 return;
1197
1198 cancel_delayed_work_sync(&ctrl->ka_work);
1199 }
1200 EXPORT_SYMBOL_GPL(nvme_stop_keep_alive);
1201
1202 /*
1203 * In NVMe 1.0 the CNS field was just a binary controller or namespace
1204 * flag, thus sending any new CNS opcodes has a big chance of not working.
1205 * Qemu unfortunately had that bug after reporting a 1.1 version compliance
1206 * (but not for any later version).
1207 */
nvme_ctrl_limited_cns(struct nvme_ctrl * ctrl)1208 static bool nvme_ctrl_limited_cns(struct nvme_ctrl *ctrl)
1209 {
1210 if (ctrl->quirks & NVME_QUIRK_IDENTIFY_CNS)
1211 return ctrl->vs < NVME_VS(1, 2, 0);
1212 return ctrl->vs < NVME_VS(1, 1, 0);
1213 }
1214
nvme_identify_ctrl(struct nvme_ctrl * dev,struct nvme_id_ctrl ** id)1215 static int nvme_identify_ctrl(struct nvme_ctrl *dev, struct nvme_id_ctrl **id)
1216 {
1217 struct nvme_command c = { };
1218 int error;
1219
1220 /* gcc-4.4.4 (at least) has issues with initializers and anon unions */
1221 c.identify.opcode = nvme_admin_identify;
1222 c.identify.cns = NVME_ID_CNS_CTRL;
1223
1224 *id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL);
1225 if (!*id)
1226 return -ENOMEM;
1227
1228 error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
1229 sizeof(struct nvme_id_ctrl));
1230 if (error)
1231 kfree(*id);
1232 return error;
1233 }
1234
nvme_multi_css(struct nvme_ctrl * ctrl)1235 static bool nvme_multi_css(struct nvme_ctrl *ctrl)
1236 {
1237 return (ctrl->ctrl_config & NVME_CC_CSS_MASK) == NVME_CC_CSS_CSI;
1238 }
1239
nvme_process_ns_desc(struct nvme_ctrl * ctrl,struct nvme_ns_ids * ids,struct nvme_ns_id_desc * cur,bool * csi_seen)1240 static int nvme_process_ns_desc(struct nvme_ctrl *ctrl, struct nvme_ns_ids *ids,
1241 struct nvme_ns_id_desc *cur, bool *csi_seen)
1242 {
1243 const char *warn_str = "ctrl returned bogus length:";
1244 void *data = cur;
1245
1246 switch (cur->nidt) {
1247 case NVME_NIDT_EUI64:
1248 if (cur->nidl != NVME_NIDT_EUI64_LEN) {
1249 dev_warn(ctrl->device, "%s %d for NVME_NIDT_EUI64\n",
1250 warn_str, cur->nidl);
1251 return -1;
1252 }
1253 memcpy(ids->eui64, data + sizeof(*cur), NVME_NIDT_EUI64_LEN);
1254 return NVME_NIDT_EUI64_LEN;
1255 case NVME_NIDT_NGUID:
1256 if (cur->nidl != NVME_NIDT_NGUID_LEN) {
1257 dev_warn(ctrl->device, "%s %d for NVME_NIDT_NGUID\n",
1258 warn_str, cur->nidl);
1259 return -1;
1260 }
1261 memcpy(ids->nguid, data + sizeof(*cur), NVME_NIDT_NGUID_LEN);
1262 return NVME_NIDT_NGUID_LEN;
1263 case NVME_NIDT_UUID:
1264 if (cur->nidl != NVME_NIDT_UUID_LEN) {
1265 dev_warn(ctrl->device, "%s %d for NVME_NIDT_UUID\n",
1266 warn_str, cur->nidl);
1267 return -1;
1268 }
1269 uuid_copy(&ids->uuid, data + sizeof(*cur));
1270 return NVME_NIDT_UUID_LEN;
1271 case NVME_NIDT_CSI:
1272 if (cur->nidl != NVME_NIDT_CSI_LEN) {
1273 dev_warn(ctrl->device, "%s %d for NVME_NIDT_CSI\n",
1274 warn_str, cur->nidl);
1275 return -1;
1276 }
1277 memcpy(&ids->csi, data + sizeof(*cur), NVME_NIDT_CSI_LEN);
1278 *csi_seen = true;
1279 return NVME_NIDT_CSI_LEN;
1280 default:
1281 /* Skip unknown types */
1282 return cur->nidl;
1283 }
1284 }
1285
nvme_identify_ns_descs(struct nvme_ctrl * ctrl,unsigned nsid,struct nvme_ns_ids * ids)1286 static int nvme_identify_ns_descs(struct nvme_ctrl *ctrl, unsigned nsid,
1287 struct nvme_ns_ids *ids)
1288 {
1289 struct nvme_command c = { };
1290 bool csi_seen = false;
1291 int status, pos, len;
1292 void *data;
1293
1294 if (ctrl->vs < NVME_VS(1, 3, 0) && !nvme_multi_css(ctrl))
1295 return 0;
1296 if (ctrl->quirks & NVME_QUIRK_NO_NS_DESC_LIST)
1297 return 0;
1298
1299 c.identify.opcode = nvme_admin_identify;
1300 c.identify.nsid = cpu_to_le32(nsid);
1301 c.identify.cns = NVME_ID_CNS_NS_DESC_LIST;
1302
1303 data = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
1304 if (!data)
1305 return -ENOMEM;
1306
1307 status = nvme_submit_sync_cmd(ctrl->admin_q, &c, data,
1308 NVME_IDENTIFY_DATA_SIZE);
1309 if (status) {
1310 dev_warn(ctrl->device,
1311 "Identify Descriptors failed (%d)\n", status);
1312 goto free_data;
1313 }
1314
1315 for (pos = 0; pos < NVME_IDENTIFY_DATA_SIZE; pos += len) {
1316 struct nvme_ns_id_desc *cur = data + pos;
1317
1318 if (cur->nidl == 0)
1319 break;
1320
1321 len = nvme_process_ns_desc(ctrl, ids, cur, &csi_seen);
1322 if (len < 0)
1323 break;
1324
1325 len += sizeof(*cur);
1326 }
1327
1328 if (nvme_multi_css(ctrl) && !csi_seen) {
1329 dev_warn(ctrl->device, "Command set not reported for nsid:%d\n",
1330 nsid);
1331 status = -EINVAL;
1332 }
1333
1334 free_data:
1335 kfree(data);
1336 return status;
1337 }
1338
nvme_identify_ns(struct nvme_ctrl * ctrl,unsigned nsid,struct nvme_ns_ids * ids,struct nvme_id_ns ** id)1339 static int nvme_identify_ns(struct nvme_ctrl *ctrl, unsigned nsid,
1340 struct nvme_ns_ids *ids, struct nvme_id_ns **id)
1341 {
1342 struct nvme_command c = { };
1343 int error;
1344
1345 /* gcc-4.4.4 (at least) has issues with initializers and anon unions */
1346 c.identify.opcode = nvme_admin_identify;
1347 c.identify.nsid = cpu_to_le32(nsid);
1348 c.identify.cns = NVME_ID_CNS_NS;
1349
1350 *id = kmalloc(sizeof(**id), GFP_KERNEL);
1351 if (!*id)
1352 return -ENOMEM;
1353
1354 error = nvme_submit_sync_cmd(ctrl->admin_q, &c, *id, sizeof(**id));
1355 if (error) {
1356 dev_warn(ctrl->device, "Identify namespace failed (%d)\n", error);
1357 goto out_free_id;
1358 }
1359
1360 error = NVME_SC_INVALID_NS | NVME_SC_DNR;
1361 if ((*id)->ncap == 0) /* namespace not allocated or attached */
1362 goto out_free_id;
1363
1364 if (ctrl->vs >= NVME_VS(1, 1, 0) &&
1365 !memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
1366 memcpy(ids->eui64, (*id)->eui64, sizeof(ids->eui64));
1367 if (ctrl->vs >= NVME_VS(1, 2, 0) &&
1368 !memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
1369 memcpy(ids->nguid, (*id)->nguid, sizeof(ids->nguid));
1370
1371 return 0;
1372
1373 out_free_id:
1374 kfree(*id);
1375 return error;
1376 }
1377
nvme_features(struct nvme_ctrl * dev,u8 op,unsigned int fid,unsigned int dword11,void * buffer,size_t buflen,u32 * result)1378 static int nvme_features(struct nvme_ctrl *dev, u8 op, unsigned int fid,
1379 unsigned int dword11, void *buffer, size_t buflen, u32 *result)
1380 {
1381 union nvme_result res = { 0 };
1382 struct nvme_command c;
1383 int ret;
1384
1385 memset(&c, 0, sizeof(c));
1386 c.features.opcode = op;
1387 c.features.fid = cpu_to_le32(fid);
1388 c.features.dword11 = cpu_to_le32(dword11);
1389
1390 ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &res,
1391 buffer, buflen, 0, NVME_QID_ANY, 0, 0, false);
1392 if (ret >= 0 && result)
1393 *result = le32_to_cpu(res.u32);
1394 return ret;
1395 }
1396
nvme_set_features(struct nvme_ctrl * dev,unsigned int fid,unsigned int dword11,void * buffer,size_t buflen,u32 * result)1397 int nvme_set_features(struct nvme_ctrl *dev, unsigned int fid,
1398 unsigned int dword11, void *buffer, size_t buflen,
1399 u32 *result)
1400 {
1401 return nvme_features(dev, nvme_admin_set_features, fid, dword11, buffer,
1402 buflen, result);
1403 }
1404 EXPORT_SYMBOL_GPL(nvme_set_features);
1405
nvme_get_features(struct nvme_ctrl * dev,unsigned int fid,unsigned int dword11,void * buffer,size_t buflen,u32 * result)1406 int nvme_get_features(struct nvme_ctrl *dev, unsigned int fid,
1407 unsigned int dword11, void *buffer, size_t buflen,
1408 u32 *result)
1409 {
1410 return nvme_features(dev, nvme_admin_get_features, fid, dword11, buffer,
1411 buflen, result);
1412 }
1413 EXPORT_SYMBOL_GPL(nvme_get_features);
1414
nvme_set_queue_count(struct nvme_ctrl * ctrl,int * count)1415 int nvme_set_queue_count(struct nvme_ctrl *ctrl, int *count)
1416 {
1417 u32 q_count = (*count - 1) | ((*count - 1) << 16);
1418 u32 result;
1419 int status, nr_io_queues;
1420
1421 status = nvme_set_features(ctrl, NVME_FEAT_NUM_QUEUES, q_count, NULL, 0,
1422 &result);
1423 if (status < 0)
1424 return status;
1425
1426 /*
1427 * Degraded controllers might return an error when setting the queue
1428 * count. We still want to be able to bring them online and offer
1429 * access to the admin queue, as that might be only way to fix them up.
1430 */
1431 if (status > 0) {
1432 dev_err(ctrl->device, "Could not set queue count (%d)\n", status);
1433 *count = 0;
1434 } else {
1435 nr_io_queues = min(result & 0xffff, result >> 16) + 1;
1436 *count = min(*count, nr_io_queues);
1437 }
1438
1439 return 0;
1440 }
1441 EXPORT_SYMBOL_GPL(nvme_set_queue_count);
1442
1443 #define NVME_AEN_SUPPORTED \
1444 (NVME_AEN_CFG_NS_ATTR | NVME_AEN_CFG_FW_ACT | \
1445 NVME_AEN_CFG_ANA_CHANGE | NVME_AEN_CFG_DISC_CHANGE)
1446
nvme_enable_aen(struct nvme_ctrl * ctrl)1447 static void nvme_enable_aen(struct nvme_ctrl *ctrl)
1448 {
1449 u32 result, supported_aens = ctrl->oaes & NVME_AEN_SUPPORTED;
1450 int status;
1451
1452 if (!supported_aens)
1453 return;
1454
1455 status = nvme_set_features(ctrl, NVME_FEAT_ASYNC_EVENT, supported_aens,
1456 NULL, 0, &result);
1457 if (status)
1458 dev_warn(ctrl->device, "Failed to configure AEN (cfg %x)\n",
1459 supported_aens);
1460
1461 queue_work(nvme_wq, &ctrl->async_event_work);
1462 }
1463
1464 /*
1465 * Convert integer values from ioctl structures to user pointers, silently
1466 * ignoring the upper bits in the compat case to match behaviour of 32-bit
1467 * kernels.
1468 */
nvme_to_user_ptr(uintptr_t ptrval)1469 static void __user *nvme_to_user_ptr(uintptr_t ptrval)
1470 {
1471 if (in_compat_syscall())
1472 ptrval = (compat_uptr_t)ptrval;
1473 return (void __user *)ptrval;
1474 }
1475
nvme_submit_io(struct nvme_ns * ns,struct nvme_user_io __user * uio)1476 static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio)
1477 {
1478 struct nvme_user_io io;
1479 struct nvme_command c;
1480 unsigned length, meta_len;
1481 void __user *metadata;
1482
1483 if (copy_from_user(&io, uio, sizeof(io)))
1484 return -EFAULT;
1485 if (io.flags)
1486 return -EINVAL;
1487
1488 switch (io.opcode) {
1489 case nvme_cmd_write:
1490 case nvme_cmd_read:
1491 case nvme_cmd_compare:
1492 break;
1493 default:
1494 return -EINVAL;
1495 }
1496
1497 length = (io.nblocks + 1) << ns->lba_shift;
1498
1499 if ((io.control & NVME_RW_PRINFO_PRACT) &&
1500 ns->ms == sizeof(struct t10_pi_tuple)) {
1501 /*
1502 * Protection information is stripped/inserted by the
1503 * controller.
1504 */
1505 if (nvme_to_user_ptr(io.metadata))
1506 return -EINVAL;
1507 meta_len = 0;
1508 metadata = NULL;
1509 } else {
1510 meta_len = (io.nblocks + 1) * ns->ms;
1511 metadata = nvme_to_user_ptr(io.metadata);
1512 }
1513
1514 if (ns->features & NVME_NS_EXT_LBAS) {
1515 length += meta_len;
1516 meta_len = 0;
1517 } else if (meta_len) {
1518 if ((io.metadata & 3) || !io.metadata)
1519 return -EINVAL;
1520 }
1521
1522 memset(&c, 0, sizeof(c));
1523 c.rw.opcode = io.opcode;
1524 c.rw.flags = io.flags;
1525 c.rw.nsid = cpu_to_le32(ns->head->ns_id);
1526 c.rw.slba = cpu_to_le64(io.slba);
1527 c.rw.length = cpu_to_le16(io.nblocks);
1528 c.rw.control = cpu_to_le16(io.control);
1529 c.rw.dsmgmt = cpu_to_le32(io.dsmgmt);
1530 c.rw.reftag = cpu_to_le32(io.reftag);
1531 c.rw.apptag = cpu_to_le16(io.apptag);
1532 c.rw.appmask = cpu_to_le16(io.appmask);
1533
1534 return nvme_submit_user_cmd(ns->queue, &c,
1535 nvme_to_user_ptr(io.addr), length,
1536 metadata, meta_len, lower_32_bits(io.slba), NULL, 0);
1537 }
1538
nvme_user_cmd(struct nvme_ctrl * ctrl,struct nvme_ns * ns,struct nvme_passthru_cmd __user * ucmd)1539 static int nvme_user_cmd(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
1540 struct nvme_passthru_cmd __user *ucmd)
1541 {
1542 struct nvme_passthru_cmd cmd;
1543 struct nvme_command c;
1544 unsigned timeout = 0;
1545 u64 result;
1546 int status;
1547
1548 if (!capable(CAP_SYS_ADMIN))
1549 return -EACCES;
1550 if (copy_from_user(&cmd, ucmd, sizeof(cmd)))
1551 return -EFAULT;
1552 if (cmd.flags)
1553 return -EINVAL;
1554
1555 memset(&c, 0, sizeof(c));
1556 c.common.opcode = cmd.opcode;
1557 c.common.flags = cmd.flags;
1558 c.common.nsid = cpu_to_le32(cmd.nsid);
1559 c.common.cdw2[0] = cpu_to_le32(cmd.cdw2);
1560 c.common.cdw2[1] = cpu_to_le32(cmd.cdw3);
1561 c.common.cdw10 = cpu_to_le32(cmd.cdw10);
1562 c.common.cdw11 = cpu_to_le32(cmd.cdw11);
1563 c.common.cdw12 = cpu_to_le32(cmd.cdw12);
1564 c.common.cdw13 = cpu_to_le32(cmd.cdw13);
1565 c.common.cdw14 = cpu_to_le32(cmd.cdw14);
1566 c.common.cdw15 = cpu_to_le32(cmd.cdw15);
1567
1568 if (cmd.timeout_ms)
1569 timeout = msecs_to_jiffies(cmd.timeout_ms);
1570
1571 status = nvme_submit_user_cmd(ns ? ns->queue : ctrl->admin_q, &c,
1572 nvme_to_user_ptr(cmd.addr), cmd.data_len,
1573 nvme_to_user_ptr(cmd.metadata), cmd.metadata_len,
1574 0, &result, timeout);
1575
1576 if (status >= 0) {
1577 if (put_user(result, &ucmd->result))
1578 return -EFAULT;
1579 }
1580
1581 return status;
1582 }
1583
nvme_user_cmd64(struct nvme_ctrl * ctrl,struct nvme_ns * ns,struct nvme_passthru_cmd64 __user * ucmd)1584 static int nvme_user_cmd64(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
1585 struct nvme_passthru_cmd64 __user *ucmd)
1586 {
1587 struct nvme_passthru_cmd64 cmd;
1588 struct nvme_command c;
1589 unsigned timeout = 0;
1590 int status;
1591
1592 if (!capable(CAP_SYS_ADMIN))
1593 return -EACCES;
1594 if (copy_from_user(&cmd, ucmd, sizeof(cmd)))
1595 return -EFAULT;
1596 if (cmd.flags)
1597 return -EINVAL;
1598
1599 memset(&c, 0, sizeof(c));
1600 c.common.opcode = cmd.opcode;
1601 c.common.flags = cmd.flags;
1602 c.common.nsid = cpu_to_le32(cmd.nsid);
1603 c.common.cdw2[0] = cpu_to_le32(cmd.cdw2);
1604 c.common.cdw2[1] = cpu_to_le32(cmd.cdw3);
1605 c.common.cdw10 = cpu_to_le32(cmd.cdw10);
1606 c.common.cdw11 = cpu_to_le32(cmd.cdw11);
1607 c.common.cdw12 = cpu_to_le32(cmd.cdw12);
1608 c.common.cdw13 = cpu_to_le32(cmd.cdw13);
1609 c.common.cdw14 = cpu_to_le32(cmd.cdw14);
1610 c.common.cdw15 = cpu_to_le32(cmd.cdw15);
1611
1612 if (cmd.timeout_ms)
1613 timeout = msecs_to_jiffies(cmd.timeout_ms);
1614
1615 status = nvme_submit_user_cmd(ns ? ns->queue : ctrl->admin_q, &c,
1616 nvme_to_user_ptr(cmd.addr), cmd.data_len,
1617 nvme_to_user_ptr(cmd.metadata), cmd.metadata_len,
1618 0, &cmd.result, timeout);
1619
1620 if (status >= 0) {
1621 if (put_user(cmd.result, &ucmd->result))
1622 return -EFAULT;
1623 }
1624
1625 return status;
1626 }
1627
1628 /*
1629 * Issue ioctl requests on the first available path. Note that unlike normal
1630 * block layer requests we will not retry failed request on another controller.
1631 */
nvme_get_ns_from_disk(struct gendisk * disk,struct nvme_ns_head ** head,int * srcu_idx)1632 struct nvme_ns *nvme_get_ns_from_disk(struct gendisk *disk,
1633 struct nvme_ns_head **head, int *srcu_idx)
1634 {
1635 #ifdef CONFIG_NVME_MULTIPATH
1636 if (disk->fops == &nvme_ns_head_ops) {
1637 struct nvme_ns *ns;
1638
1639 *head = disk->private_data;
1640 *srcu_idx = srcu_read_lock(&(*head)->srcu);
1641 ns = nvme_find_path(*head);
1642 if (!ns)
1643 srcu_read_unlock(&(*head)->srcu, *srcu_idx);
1644 return ns;
1645 }
1646 #endif
1647 *head = NULL;
1648 *srcu_idx = -1;
1649 return disk->private_data;
1650 }
1651
nvme_put_ns_from_disk(struct nvme_ns_head * head,int idx)1652 void nvme_put_ns_from_disk(struct nvme_ns_head *head, int idx)
1653 {
1654 if (head)
1655 srcu_read_unlock(&head->srcu, idx);
1656 }
1657
is_ctrl_ioctl(unsigned int cmd)1658 static bool is_ctrl_ioctl(unsigned int cmd)
1659 {
1660 if (cmd == NVME_IOCTL_ADMIN_CMD || cmd == NVME_IOCTL_ADMIN64_CMD)
1661 return true;
1662 if (is_sed_ioctl(cmd))
1663 return true;
1664 return false;
1665 }
1666
nvme_handle_ctrl_ioctl(struct nvme_ns * ns,unsigned int cmd,void __user * argp,struct nvme_ns_head * head,int srcu_idx)1667 static int nvme_handle_ctrl_ioctl(struct nvme_ns *ns, unsigned int cmd,
1668 void __user *argp,
1669 struct nvme_ns_head *head,
1670 int srcu_idx)
1671 {
1672 struct nvme_ctrl *ctrl = ns->ctrl;
1673 int ret;
1674
1675 nvme_get_ctrl(ns->ctrl);
1676 nvme_put_ns_from_disk(head, srcu_idx);
1677
1678 switch (cmd) {
1679 case NVME_IOCTL_ADMIN_CMD:
1680 ret = nvme_user_cmd(ctrl, NULL, argp);
1681 break;
1682 case NVME_IOCTL_ADMIN64_CMD:
1683 ret = nvme_user_cmd64(ctrl, NULL, argp);
1684 break;
1685 default:
1686 ret = sed_ioctl(ctrl->opal_dev, cmd, argp);
1687 break;
1688 }
1689 nvme_put_ctrl(ctrl);
1690 return ret;
1691 }
1692
nvme_ioctl(struct block_device * bdev,fmode_t mode,unsigned int cmd,unsigned long arg)1693 static int nvme_ioctl(struct block_device *bdev, fmode_t mode,
1694 unsigned int cmd, unsigned long arg)
1695 {
1696 struct nvme_ns_head *head = NULL;
1697 void __user *argp = (void __user *)arg;
1698 struct nvme_ns *ns;
1699 int srcu_idx, ret;
1700
1701 ns = nvme_get_ns_from_disk(bdev->bd_disk, &head, &srcu_idx);
1702 if (unlikely(!ns))
1703 return -EWOULDBLOCK;
1704
1705 /*
1706 * Handle ioctls that apply to the controller instead of the namespace
1707 * seperately and drop the ns SRCU reference early. This avoids a
1708 * deadlock when deleting namespaces using the passthrough interface.
1709 */
1710 if (is_ctrl_ioctl(cmd))
1711 return nvme_handle_ctrl_ioctl(ns, cmd, argp, head, srcu_idx);
1712
1713 switch (cmd) {
1714 case NVME_IOCTL_ID:
1715 force_successful_syscall_return();
1716 ret = ns->head->ns_id;
1717 break;
1718 case NVME_IOCTL_IO_CMD:
1719 ret = nvme_user_cmd(ns->ctrl, ns, argp);
1720 break;
1721 case NVME_IOCTL_SUBMIT_IO:
1722 ret = nvme_submit_io(ns, argp);
1723 break;
1724 case NVME_IOCTL_IO64_CMD:
1725 ret = nvme_user_cmd64(ns->ctrl, ns, argp);
1726 break;
1727 default:
1728 if (ns->ndev)
1729 ret = nvme_nvm_ioctl(ns, cmd, arg);
1730 else
1731 ret = -ENOTTY;
1732 }
1733
1734 nvme_put_ns_from_disk(head, srcu_idx);
1735 return ret;
1736 }
1737
1738 #ifdef CONFIG_COMPAT
1739 struct nvme_user_io32 {
1740 __u8 opcode;
1741 __u8 flags;
1742 __u16 control;
1743 __u16 nblocks;
1744 __u16 rsvd;
1745 __u64 metadata;
1746 __u64 addr;
1747 __u64 slba;
1748 __u32 dsmgmt;
1749 __u32 reftag;
1750 __u16 apptag;
1751 __u16 appmask;
1752 } __attribute__((__packed__));
1753
1754 #define NVME_IOCTL_SUBMIT_IO32 _IOW('N', 0x42, struct nvme_user_io32)
1755
nvme_compat_ioctl(struct block_device * bdev,fmode_t mode,unsigned int cmd,unsigned long arg)1756 static int nvme_compat_ioctl(struct block_device *bdev, fmode_t mode,
1757 unsigned int cmd, unsigned long arg)
1758 {
1759 /*
1760 * Corresponds to the difference of NVME_IOCTL_SUBMIT_IO
1761 * between 32 bit programs and 64 bit kernel.
1762 * The cause is that the results of sizeof(struct nvme_user_io),
1763 * which is used to define NVME_IOCTL_SUBMIT_IO,
1764 * are not same between 32 bit compiler and 64 bit compiler.
1765 * NVME_IOCTL_SUBMIT_IO32 is for 64 bit kernel handling
1766 * NVME_IOCTL_SUBMIT_IO issued from 32 bit programs.
1767 * Other IOCTL numbers are same between 32 bit and 64 bit.
1768 * So there is nothing to do regarding to other IOCTL numbers.
1769 */
1770 if (cmd == NVME_IOCTL_SUBMIT_IO32)
1771 return nvme_ioctl(bdev, mode, NVME_IOCTL_SUBMIT_IO, arg);
1772
1773 return nvme_ioctl(bdev, mode, cmd, arg);
1774 }
1775 #else
1776 #define nvme_compat_ioctl NULL
1777 #endif /* CONFIG_COMPAT */
1778
nvme_open(struct block_device * bdev,fmode_t mode)1779 static int nvme_open(struct block_device *bdev, fmode_t mode)
1780 {
1781 struct nvme_ns *ns = bdev->bd_disk->private_data;
1782
1783 #ifdef CONFIG_NVME_MULTIPATH
1784 /* should never be called due to GENHD_FL_HIDDEN */
1785 if (WARN_ON_ONCE(ns->head->disk))
1786 goto fail;
1787 #endif
1788 if (!kref_get_unless_zero(&ns->kref))
1789 goto fail;
1790 if (!try_module_get(ns->ctrl->ops->module))
1791 goto fail_put_ns;
1792
1793 return 0;
1794
1795 fail_put_ns:
1796 nvme_put_ns(ns);
1797 fail:
1798 return -ENXIO;
1799 }
1800
nvme_release(struct gendisk * disk,fmode_t mode)1801 static void nvme_release(struct gendisk *disk, fmode_t mode)
1802 {
1803 struct nvme_ns *ns = disk->private_data;
1804
1805 module_put(ns->ctrl->ops->module);
1806 nvme_put_ns(ns);
1807 }
1808
nvme_getgeo(struct block_device * bdev,struct hd_geometry * geo)1809 static int nvme_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1810 {
1811 /* some standard values */
1812 geo->heads = 1 << 6;
1813 geo->sectors = 1 << 5;
1814 geo->cylinders = get_capacity(bdev->bd_disk) >> 11;
1815 return 0;
1816 }
1817
1818 #ifdef CONFIG_BLK_DEV_INTEGRITY
nvme_init_integrity(struct gendisk * disk,u16 ms,u8 pi_type,u32 max_integrity_segments)1819 static void nvme_init_integrity(struct gendisk *disk, u16 ms, u8 pi_type,
1820 u32 max_integrity_segments)
1821 {
1822 struct blk_integrity integrity;
1823
1824 memset(&integrity, 0, sizeof(integrity));
1825 switch (pi_type) {
1826 case NVME_NS_DPS_PI_TYPE3:
1827 integrity.profile = &t10_pi_type3_crc;
1828 integrity.tag_size = sizeof(u16) + sizeof(u32);
1829 integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1830 break;
1831 case NVME_NS_DPS_PI_TYPE1:
1832 case NVME_NS_DPS_PI_TYPE2:
1833 integrity.profile = &t10_pi_type1_crc;
1834 integrity.tag_size = sizeof(u16);
1835 integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1836 break;
1837 default:
1838 integrity.profile = NULL;
1839 break;
1840 }
1841 integrity.tuple_size = ms;
1842 blk_integrity_register(disk, &integrity);
1843 blk_queue_max_integrity_segments(disk->queue, max_integrity_segments);
1844 }
1845 #else
nvme_init_integrity(struct gendisk * disk,u16 ms,u8 pi_type,u32 max_integrity_segments)1846 static void nvme_init_integrity(struct gendisk *disk, u16 ms, u8 pi_type,
1847 u32 max_integrity_segments)
1848 {
1849 }
1850 #endif /* CONFIG_BLK_DEV_INTEGRITY */
1851
nvme_config_discard(struct gendisk * disk,struct nvme_ns * ns)1852 static void nvme_config_discard(struct gendisk *disk, struct nvme_ns *ns)
1853 {
1854 struct nvme_ctrl *ctrl = ns->ctrl;
1855 struct request_queue *queue = disk->queue;
1856 u32 size = queue_logical_block_size(queue);
1857
1858 if (!(ctrl->oncs & NVME_CTRL_ONCS_DSM)) {
1859 blk_queue_flag_clear(QUEUE_FLAG_DISCARD, queue);
1860 return;
1861 }
1862
1863 if (ctrl->nr_streams && ns->sws && ns->sgs)
1864 size *= ns->sws * ns->sgs;
1865
1866 BUILD_BUG_ON(PAGE_SIZE / sizeof(struct nvme_dsm_range) <
1867 NVME_DSM_MAX_RANGES);
1868
1869 queue->limits.discard_alignment = 0;
1870 queue->limits.discard_granularity = size;
1871
1872 /* If discard is already enabled, don't reset queue limits */
1873 if (blk_queue_flag_test_and_set(QUEUE_FLAG_DISCARD, queue))
1874 return;
1875
1876 blk_queue_max_discard_sectors(queue, UINT_MAX);
1877 blk_queue_max_discard_segments(queue, NVME_DSM_MAX_RANGES);
1878
1879 if (ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES)
1880 blk_queue_max_write_zeroes_sectors(queue, UINT_MAX);
1881 }
1882
1883 /*
1884 * Even though NVMe spec explicitly states that MDTS is not applicable to the
1885 * write-zeroes, we are cautious and limit the size to the controllers
1886 * max_hw_sectors value, which is based on the MDTS field and possibly other
1887 * limiting factors.
1888 */
nvme_config_write_zeroes(struct request_queue * q,struct nvme_ctrl * ctrl)1889 static void nvme_config_write_zeroes(struct request_queue *q,
1890 struct nvme_ctrl *ctrl)
1891 {
1892 if ((ctrl->oncs & NVME_CTRL_ONCS_WRITE_ZEROES) &&
1893 !(ctrl->quirks & NVME_QUIRK_DISABLE_WRITE_ZEROES))
1894 blk_queue_max_write_zeroes_sectors(q, ctrl->max_hw_sectors);
1895 }
1896
nvme_ns_ids_valid(struct nvme_ns_ids * ids)1897 static bool nvme_ns_ids_valid(struct nvme_ns_ids *ids)
1898 {
1899 return !uuid_is_null(&ids->uuid) ||
1900 memchr_inv(ids->nguid, 0, sizeof(ids->nguid)) ||
1901 memchr_inv(ids->eui64, 0, sizeof(ids->eui64));
1902 }
1903
nvme_ns_ids_equal(struct nvme_ns_ids * a,struct nvme_ns_ids * b)1904 static bool nvme_ns_ids_equal(struct nvme_ns_ids *a, struct nvme_ns_ids *b)
1905 {
1906 return uuid_equal(&a->uuid, &b->uuid) &&
1907 memcmp(&a->nguid, &b->nguid, sizeof(a->nguid)) == 0 &&
1908 memcmp(&a->eui64, &b->eui64, sizeof(a->eui64)) == 0 &&
1909 a->csi == b->csi;
1910 }
1911
nvme_setup_streams_ns(struct nvme_ctrl * ctrl,struct nvme_ns * ns,u32 * phys_bs,u32 * io_opt)1912 static int nvme_setup_streams_ns(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
1913 u32 *phys_bs, u32 *io_opt)
1914 {
1915 struct streams_directive_params s;
1916 int ret;
1917
1918 if (!ctrl->nr_streams)
1919 return 0;
1920
1921 ret = nvme_get_stream_params(ctrl, &s, ns->head->ns_id);
1922 if (ret)
1923 return ret;
1924
1925 ns->sws = le32_to_cpu(s.sws);
1926 ns->sgs = le16_to_cpu(s.sgs);
1927
1928 if (ns->sws) {
1929 *phys_bs = ns->sws * (1 << ns->lba_shift);
1930 if (ns->sgs)
1931 *io_opt = *phys_bs * ns->sgs;
1932 }
1933
1934 return 0;
1935 }
1936
nvme_configure_metadata(struct nvme_ns * ns,struct nvme_id_ns * id)1937 static int nvme_configure_metadata(struct nvme_ns *ns, struct nvme_id_ns *id)
1938 {
1939 struct nvme_ctrl *ctrl = ns->ctrl;
1940
1941 /*
1942 * The PI implementation requires the metadata size to be equal to the
1943 * t10 pi tuple size.
1944 */
1945 ns->ms = le16_to_cpu(id->lbaf[id->flbas & NVME_NS_FLBAS_LBA_MASK].ms);
1946 if (ns->ms == sizeof(struct t10_pi_tuple))
1947 ns->pi_type = id->dps & NVME_NS_DPS_PI_MASK;
1948 else
1949 ns->pi_type = 0;
1950
1951 ns->features &= ~(NVME_NS_METADATA_SUPPORTED | NVME_NS_EXT_LBAS);
1952 if (!ns->ms || !(ctrl->ops->flags & NVME_F_METADATA_SUPPORTED))
1953 return 0;
1954 if (ctrl->ops->flags & NVME_F_FABRICS) {
1955 /*
1956 * The NVMe over Fabrics specification only supports metadata as
1957 * part of the extended data LBA. We rely on HCA/HBA support to
1958 * remap the separate metadata buffer from the block layer.
1959 */
1960 if (WARN_ON_ONCE(!(id->flbas & NVME_NS_FLBAS_META_EXT)))
1961 return -EINVAL;
1962 if (ctrl->max_integrity_segments)
1963 ns->features |=
1964 (NVME_NS_METADATA_SUPPORTED | NVME_NS_EXT_LBAS);
1965 } else {
1966 /*
1967 * For PCIe controllers, we can't easily remap the separate
1968 * metadata buffer from the block layer and thus require a
1969 * separate metadata buffer for block layer metadata/PI support.
1970 * We allow extended LBAs for the passthrough interface, though.
1971 */
1972 if (id->flbas & NVME_NS_FLBAS_META_EXT)
1973 ns->features |= NVME_NS_EXT_LBAS;
1974 else
1975 ns->features |= NVME_NS_METADATA_SUPPORTED;
1976 }
1977
1978 return 0;
1979 }
1980
nvme_set_queue_limits(struct nvme_ctrl * ctrl,struct request_queue * q)1981 static void nvme_set_queue_limits(struct nvme_ctrl *ctrl,
1982 struct request_queue *q)
1983 {
1984 bool vwc = ctrl->vwc & NVME_CTRL_VWC_PRESENT;
1985
1986 if (ctrl->max_hw_sectors) {
1987 u32 max_segments =
1988 (ctrl->max_hw_sectors / (NVME_CTRL_PAGE_SIZE >> 9)) + 1;
1989
1990 max_segments = min_not_zero(max_segments, ctrl->max_segments);
1991 blk_queue_max_hw_sectors(q, ctrl->max_hw_sectors);
1992 blk_queue_max_segments(q, min_t(u32, max_segments, USHRT_MAX));
1993 }
1994 blk_queue_virt_boundary(q, NVME_CTRL_PAGE_SIZE - 1);
1995 blk_queue_dma_alignment(q, 7);
1996 blk_queue_write_cache(q, vwc, vwc);
1997 }
1998
nvme_update_disk_info(struct gendisk * disk,struct nvme_ns * ns,struct nvme_id_ns * id)1999 static void nvme_update_disk_info(struct gendisk *disk,
2000 struct nvme_ns *ns, struct nvme_id_ns *id)
2001 {
2002 sector_t capacity = nvme_lba_to_sect(ns, le64_to_cpu(id->nsze));
2003 unsigned short bs = 1 << ns->lba_shift;
2004 u32 atomic_bs, phys_bs, io_opt = 0;
2005
2006 /*
2007 * The block layer can't support LBA sizes larger than the page size
2008 * yet, so catch this early and don't allow block I/O.
2009 */
2010 if (ns->lba_shift > PAGE_SHIFT) {
2011 capacity = 0;
2012 bs = (1 << 9);
2013 }
2014
2015 blk_integrity_unregister(disk);
2016
2017 atomic_bs = phys_bs = bs;
2018 nvme_setup_streams_ns(ns->ctrl, ns, &phys_bs, &io_opt);
2019 if (id->nabo == 0) {
2020 /*
2021 * Bit 1 indicates whether NAWUPF is defined for this namespace
2022 * and whether it should be used instead of AWUPF. If NAWUPF ==
2023 * 0 then AWUPF must be used instead.
2024 */
2025 if (id->nsfeat & NVME_NS_FEAT_ATOMICS && id->nawupf)
2026 atomic_bs = (1 + le16_to_cpu(id->nawupf)) * bs;
2027 else
2028 atomic_bs = (1 + ns->ctrl->subsys->awupf) * bs;
2029 }
2030
2031 if (id->nsfeat & NVME_NS_FEAT_IO_OPT) {
2032 /* NPWG = Namespace Preferred Write Granularity */
2033 phys_bs = bs * (1 + le16_to_cpu(id->npwg));
2034 /* NOWS = Namespace Optimal Write Size */
2035 io_opt = bs * (1 + le16_to_cpu(id->nows));
2036 }
2037
2038 blk_queue_logical_block_size(disk->queue, bs);
2039 /*
2040 * Linux filesystems assume writing a single physical block is
2041 * an atomic operation. Hence limit the physical block size to the
2042 * value of the Atomic Write Unit Power Fail parameter.
2043 */
2044 blk_queue_physical_block_size(disk->queue, min(phys_bs, atomic_bs));
2045 blk_queue_io_min(disk->queue, phys_bs);
2046 blk_queue_io_opt(disk->queue, io_opt);
2047
2048 /*
2049 * Register a metadata profile for PI, or the plain non-integrity NVMe
2050 * metadata masquerading as Type 0 if supported, otherwise reject block
2051 * I/O to namespaces with metadata except when the namespace supports
2052 * PI, as it can strip/insert in that case.
2053 */
2054 if (ns->ms) {
2055 if (IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY) &&
2056 (ns->features & NVME_NS_METADATA_SUPPORTED))
2057 nvme_init_integrity(disk, ns->ms, ns->pi_type,
2058 ns->ctrl->max_integrity_segments);
2059 else if (!nvme_ns_has_pi(ns))
2060 capacity = 0;
2061 }
2062
2063 set_capacity_revalidate_and_notify(disk, capacity, false);
2064
2065 nvme_config_discard(disk, ns);
2066 nvme_config_write_zeroes(disk->queue, ns->ctrl);
2067
2068 if (id->nsattr & NVME_NS_ATTR_RO)
2069 set_disk_ro(disk, true);
2070 }
2071
nvme_first_scan(struct gendisk * disk)2072 static inline bool nvme_first_scan(struct gendisk *disk)
2073 {
2074 /* nvme_alloc_ns() scans the disk prior to adding it */
2075 return !(disk->flags & GENHD_FL_UP);
2076 }
2077
nvme_set_chunk_sectors(struct nvme_ns * ns,struct nvme_id_ns * id)2078 static void nvme_set_chunk_sectors(struct nvme_ns *ns, struct nvme_id_ns *id)
2079 {
2080 struct nvme_ctrl *ctrl = ns->ctrl;
2081 u32 iob;
2082
2083 if ((ctrl->quirks & NVME_QUIRK_STRIPE_SIZE) &&
2084 is_power_of_2(ctrl->max_hw_sectors))
2085 iob = ctrl->max_hw_sectors;
2086 else
2087 iob = nvme_lba_to_sect(ns, le16_to_cpu(id->noiob));
2088
2089 if (!iob)
2090 return;
2091
2092 if (!is_power_of_2(iob)) {
2093 if (nvme_first_scan(ns->disk))
2094 pr_warn("%s: ignoring unaligned IO boundary:%u\n",
2095 ns->disk->disk_name, iob);
2096 return;
2097 }
2098
2099 if (blk_queue_is_zoned(ns->disk->queue)) {
2100 if (nvme_first_scan(ns->disk))
2101 pr_warn("%s: ignoring zoned namespace IO boundary\n",
2102 ns->disk->disk_name);
2103 return;
2104 }
2105
2106 blk_queue_chunk_sectors(ns->queue, iob);
2107 }
2108
nvme_update_ns_info(struct nvme_ns * ns,struct nvme_id_ns * id)2109 static int nvme_update_ns_info(struct nvme_ns *ns, struct nvme_id_ns *id)
2110 {
2111 unsigned lbaf = id->flbas & NVME_NS_FLBAS_LBA_MASK;
2112 int ret;
2113
2114 blk_mq_freeze_queue(ns->disk->queue);
2115 ns->lba_shift = id->lbaf[lbaf].ds;
2116 nvme_set_queue_limits(ns->ctrl, ns->queue);
2117
2118 if (ns->head->ids.csi == NVME_CSI_ZNS) {
2119 ret = nvme_update_zone_info(ns, lbaf);
2120 if (ret)
2121 goto out_unfreeze;
2122 }
2123
2124 ret = nvme_configure_metadata(ns, id);
2125 if (ret)
2126 goto out_unfreeze;
2127 nvme_set_chunk_sectors(ns, id);
2128 nvme_update_disk_info(ns->disk, ns, id);
2129 blk_mq_unfreeze_queue(ns->disk->queue);
2130
2131 if (blk_queue_is_zoned(ns->queue)) {
2132 ret = nvme_revalidate_zones(ns);
2133 if (ret && !nvme_first_scan(ns->disk))
2134 return ret;
2135 }
2136
2137 #ifdef CONFIG_NVME_MULTIPATH
2138 if (ns->head->disk) {
2139 blk_mq_freeze_queue(ns->head->disk->queue);
2140 nvme_update_disk_info(ns->head->disk, ns, id);
2141 blk_stack_limits(&ns->head->disk->queue->limits,
2142 &ns->queue->limits, 0);
2143 blk_queue_update_readahead(ns->head->disk->queue);
2144 nvme_update_bdev_size(ns->head->disk);
2145 blk_mq_unfreeze_queue(ns->head->disk->queue);
2146 }
2147 #endif
2148 return 0;
2149
2150 out_unfreeze:
2151 blk_mq_unfreeze_queue(ns->disk->queue);
2152 return ret;
2153 }
2154
nvme_pr_type(enum pr_type type)2155 static char nvme_pr_type(enum pr_type type)
2156 {
2157 switch (type) {
2158 case PR_WRITE_EXCLUSIVE:
2159 return 1;
2160 case PR_EXCLUSIVE_ACCESS:
2161 return 2;
2162 case PR_WRITE_EXCLUSIVE_REG_ONLY:
2163 return 3;
2164 case PR_EXCLUSIVE_ACCESS_REG_ONLY:
2165 return 4;
2166 case PR_WRITE_EXCLUSIVE_ALL_REGS:
2167 return 5;
2168 case PR_EXCLUSIVE_ACCESS_ALL_REGS:
2169 return 6;
2170 default:
2171 return 0;
2172 }
2173 };
2174
nvme_pr_command(struct block_device * bdev,u32 cdw10,u64 key,u64 sa_key,u8 op)2175 static int nvme_pr_command(struct block_device *bdev, u32 cdw10,
2176 u64 key, u64 sa_key, u8 op)
2177 {
2178 struct nvme_ns_head *head = NULL;
2179 struct nvme_ns *ns;
2180 struct nvme_command c;
2181 int srcu_idx, ret;
2182 u8 data[16] = { 0, };
2183
2184 ns = nvme_get_ns_from_disk(bdev->bd_disk, &head, &srcu_idx);
2185 if (unlikely(!ns))
2186 return -EWOULDBLOCK;
2187
2188 put_unaligned_le64(key, &data[0]);
2189 put_unaligned_le64(sa_key, &data[8]);
2190
2191 memset(&c, 0, sizeof(c));
2192 c.common.opcode = op;
2193 c.common.nsid = cpu_to_le32(ns->head->ns_id);
2194 c.common.cdw10 = cpu_to_le32(cdw10);
2195
2196 ret = nvme_submit_sync_cmd(ns->queue, &c, data, 16);
2197 nvme_put_ns_from_disk(head, srcu_idx);
2198 return ret;
2199 }
2200
nvme_pr_register(struct block_device * bdev,u64 old,u64 new,unsigned flags)2201 static int nvme_pr_register(struct block_device *bdev, u64 old,
2202 u64 new, unsigned flags)
2203 {
2204 u32 cdw10;
2205
2206 if (flags & ~PR_FL_IGNORE_KEY)
2207 return -EOPNOTSUPP;
2208
2209 cdw10 = old ? 2 : 0;
2210 cdw10 |= (flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0;
2211 cdw10 |= (1 << 30) | (1 << 31); /* PTPL=1 */
2212 return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_register);
2213 }
2214
nvme_pr_reserve(struct block_device * bdev,u64 key,enum pr_type type,unsigned flags)2215 static int nvme_pr_reserve(struct block_device *bdev, u64 key,
2216 enum pr_type type, unsigned flags)
2217 {
2218 u32 cdw10;
2219
2220 if (flags & ~PR_FL_IGNORE_KEY)
2221 return -EOPNOTSUPP;
2222
2223 cdw10 = nvme_pr_type(type) << 8;
2224 cdw10 |= ((flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0);
2225 return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_acquire);
2226 }
2227
nvme_pr_preempt(struct block_device * bdev,u64 old,u64 new,enum pr_type type,bool abort)2228 static int nvme_pr_preempt(struct block_device *bdev, u64 old, u64 new,
2229 enum pr_type type, bool abort)
2230 {
2231 u32 cdw10 = nvme_pr_type(type) << 8 | (abort ? 2 : 1);
2232 return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_acquire);
2233 }
2234
nvme_pr_clear(struct block_device * bdev,u64 key)2235 static int nvme_pr_clear(struct block_device *bdev, u64 key)
2236 {
2237 u32 cdw10 = 1 | (key ? 1 << 3 : 0);
2238 return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_register);
2239 }
2240
nvme_pr_release(struct block_device * bdev,u64 key,enum pr_type type)2241 static int nvme_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
2242 {
2243 u32 cdw10 = nvme_pr_type(type) << 8 | (key ? 1 << 3 : 0);
2244 return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_release);
2245 }
2246
2247 static const struct pr_ops nvme_pr_ops = {
2248 .pr_register = nvme_pr_register,
2249 .pr_reserve = nvme_pr_reserve,
2250 .pr_release = nvme_pr_release,
2251 .pr_preempt = nvme_pr_preempt,
2252 .pr_clear = nvme_pr_clear,
2253 };
2254
2255 #ifdef CONFIG_BLK_SED_OPAL
nvme_sec_submit(void * data,u16 spsp,u8 secp,void * buffer,size_t len,bool send)2256 int nvme_sec_submit(void *data, u16 spsp, u8 secp, void *buffer, size_t len,
2257 bool send)
2258 {
2259 struct nvme_ctrl *ctrl = data;
2260 struct nvme_command cmd;
2261
2262 memset(&cmd, 0, sizeof(cmd));
2263 if (send)
2264 cmd.common.opcode = nvme_admin_security_send;
2265 else
2266 cmd.common.opcode = nvme_admin_security_recv;
2267 cmd.common.nsid = 0;
2268 cmd.common.cdw10 = cpu_to_le32(((u32)secp) << 24 | ((u32)spsp) << 8);
2269 cmd.common.cdw11 = cpu_to_le32(len);
2270
2271 return __nvme_submit_sync_cmd(ctrl->admin_q, &cmd, NULL, buffer, len,
2272 ADMIN_TIMEOUT, NVME_QID_ANY, 1, 0, false);
2273 }
2274 EXPORT_SYMBOL_GPL(nvme_sec_submit);
2275 #endif /* CONFIG_BLK_SED_OPAL */
2276
2277 static const struct block_device_operations nvme_fops = {
2278 .owner = THIS_MODULE,
2279 .ioctl = nvme_ioctl,
2280 .compat_ioctl = nvme_compat_ioctl,
2281 .open = nvme_open,
2282 .release = nvme_release,
2283 .getgeo = nvme_getgeo,
2284 .report_zones = nvme_report_zones,
2285 .pr_ops = &nvme_pr_ops,
2286 };
2287
2288 #ifdef CONFIG_NVME_MULTIPATH
nvme_ns_head_open(struct block_device * bdev,fmode_t mode)2289 static int nvme_ns_head_open(struct block_device *bdev, fmode_t mode)
2290 {
2291 struct nvme_ns_head *head = bdev->bd_disk->private_data;
2292
2293 if (!kref_get_unless_zero(&head->ref))
2294 return -ENXIO;
2295 return 0;
2296 }
2297
nvme_ns_head_release(struct gendisk * disk,fmode_t mode)2298 static void nvme_ns_head_release(struct gendisk *disk, fmode_t mode)
2299 {
2300 nvme_put_ns_head(disk->private_data);
2301 }
2302
2303 const struct block_device_operations nvme_ns_head_ops = {
2304 .owner = THIS_MODULE,
2305 .submit_bio = nvme_ns_head_submit_bio,
2306 .open = nvme_ns_head_open,
2307 .release = nvme_ns_head_release,
2308 .ioctl = nvme_ioctl,
2309 .compat_ioctl = nvme_compat_ioctl,
2310 .getgeo = nvme_getgeo,
2311 .report_zones = nvme_report_zones,
2312 .pr_ops = &nvme_pr_ops,
2313 };
2314 #endif /* CONFIG_NVME_MULTIPATH */
2315
nvme_wait_ready(struct nvme_ctrl * ctrl,u64 cap,bool enabled)2316 static int nvme_wait_ready(struct nvme_ctrl *ctrl, u64 cap, bool enabled)
2317 {
2318 unsigned long timeout =
2319 ((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies;
2320 u32 csts, bit = enabled ? NVME_CSTS_RDY : 0;
2321 int ret;
2322
2323 while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
2324 if (csts == ~0)
2325 return -ENODEV;
2326 if ((csts & NVME_CSTS_RDY) == bit)
2327 break;
2328
2329 usleep_range(1000, 2000);
2330 if (fatal_signal_pending(current))
2331 return -EINTR;
2332 if (time_after(jiffies, timeout)) {
2333 dev_err(ctrl->device,
2334 "Device not ready; aborting %s, CSTS=0x%x\n",
2335 enabled ? "initialisation" : "reset", csts);
2336 return -ENODEV;
2337 }
2338 }
2339
2340 return ret;
2341 }
2342
2343 /*
2344 * If the device has been passed off to us in an enabled state, just clear
2345 * the enabled bit. The spec says we should set the 'shutdown notification
2346 * bits', but doing so may cause the device to complete commands to the
2347 * admin queue ... and we don't know what memory that might be pointing at!
2348 */
nvme_disable_ctrl(struct nvme_ctrl * ctrl)2349 int nvme_disable_ctrl(struct nvme_ctrl *ctrl)
2350 {
2351 int ret;
2352
2353 ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
2354 ctrl->ctrl_config &= ~NVME_CC_ENABLE;
2355
2356 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2357 if (ret)
2358 return ret;
2359
2360 if (ctrl->quirks & NVME_QUIRK_DELAY_BEFORE_CHK_RDY)
2361 msleep(NVME_QUIRK_DELAY_AMOUNT);
2362
2363 return nvme_wait_ready(ctrl, ctrl->cap, false);
2364 }
2365 EXPORT_SYMBOL_GPL(nvme_disable_ctrl);
2366
nvme_enable_ctrl(struct nvme_ctrl * ctrl)2367 int nvme_enable_ctrl(struct nvme_ctrl *ctrl)
2368 {
2369 unsigned dev_page_min;
2370 int ret;
2371
2372 ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &ctrl->cap);
2373 if (ret) {
2374 dev_err(ctrl->device, "Reading CAP failed (%d)\n", ret);
2375 return ret;
2376 }
2377 dev_page_min = NVME_CAP_MPSMIN(ctrl->cap) + 12;
2378
2379 if (NVME_CTRL_PAGE_SHIFT < dev_page_min) {
2380 dev_err(ctrl->device,
2381 "Minimum device page size %u too large for host (%u)\n",
2382 1 << dev_page_min, 1 << NVME_CTRL_PAGE_SHIFT);
2383 return -ENODEV;
2384 }
2385
2386 if (NVME_CAP_CSS(ctrl->cap) & NVME_CAP_CSS_CSI)
2387 ctrl->ctrl_config = NVME_CC_CSS_CSI;
2388 else
2389 ctrl->ctrl_config = NVME_CC_CSS_NVM;
2390 ctrl->ctrl_config |= (NVME_CTRL_PAGE_SHIFT - 12) << NVME_CC_MPS_SHIFT;
2391 ctrl->ctrl_config |= NVME_CC_AMS_RR | NVME_CC_SHN_NONE;
2392 ctrl->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
2393 ctrl->ctrl_config |= NVME_CC_ENABLE;
2394
2395 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2396 if (ret)
2397 return ret;
2398 return nvme_wait_ready(ctrl, ctrl->cap, true);
2399 }
2400 EXPORT_SYMBOL_GPL(nvme_enable_ctrl);
2401
nvme_shutdown_ctrl(struct nvme_ctrl * ctrl)2402 int nvme_shutdown_ctrl(struct nvme_ctrl *ctrl)
2403 {
2404 unsigned long timeout = jiffies + (ctrl->shutdown_timeout * HZ);
2405 u32 csts;
2406 int ret;
2407
2408 ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
2409 ctrl->ctrl_config |= NVME_CC_SHN_NORMAL;
2410
2411 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2412 if (ret)
2413 return ret;
2414
2415 while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
2416 if ((csts & NVME_CSTS_SHST_MASK) == NVME_CSTS_SHST_CMPLT)
2417 break;
2418
2419 msleep(100);
2420 if (fatal_signal_pending(current))
2421 return -EINTR;
2422 if (time_after(jiffies, timeout)) {
2423 dev_err(ctrl->device,
2424 "Device shutdown incomplete; abort shutdown\n");
2425 return -ENODEV;
2426 }
2427 }
2428
2429 return ret;
2430 }
2431 EXPORT_SYMBOL_GPL(nvme_shutdown_ctrl);
2432
nvme_configure_timestamp(struct nvme_ctrl * ctrl)2433 static int nvme_configure_timestamp(struct nvme_ctrl *ctrl)
2434 {
2435 __le64 ts;
2436 int ret;
2437
2438 if (!(ctrl->oncs & NVME_CTRL_ONCS_TIMESTAMP))
2439 return 0;
2440
2441 ts = cpu_to_le64(ktime_to_ms(ktime_get_real()));
2442 ret = nvme_set_features(ctrl, NVME_FEAT_TIMESTAMP, 0, &ts, sizeof(ts),
2443 NULL);
2444 if (ret)
2445 dev_warn_once(ctrl->device,
2446 "could not set timestamp (%d)\n", ret);
2447 return ret;
2448 }
2449
nvme_configure_acre(struct nvme_ctrl * ctrl)2450 static int nvme_configure_acre(struct nvme_ctrl *ctrl)
2451 {
2452 struct nvme_feat_host_behavior *host;
2453 int ret;
2454
2455 /* Don't bother enabling the feature if retry delay is not reported */
2456 if (!ctrl->crdt[0])
2457 return 0;
2458
2459 host = kzalloc(sizeof(*host), GFP_KERNEL);
2460 if (!host)
2461 return 0;
2462
2463 host->acre = NVME_ENABLE_ACRE;
2464 ret = nvme_set_features(ctrl, NVME_FEAT_HOST_BEHAVIOR, 0,
2465 host, sizeof(*host), NULL);
2466 kfree(host);
2467 return ret;
2468 }
2469
nvme_configure_apst(struct nvme_ctrl * ctrl)2470 static int nvme_configure_apst(struct nvme_ctrl *ctrl)
2471 {
2472 /*
2473 * APST (Autonomous Power State Transition) lets us program a
2474 * table of power state transitions that the controller will
2475 * perform automatically. We configure it with a simple
2476 * heuristic: we are willing to spend at most 2% of the time
2477 * transitioning between power states. Therefore, when running
2478 * in any given state, we will enter the next lower-power
2479 * non-operational state after waiting 50 * (enlat + exlat)
2480 * microseconds, as long as that state's exit latency is under
2481 * the requested maximum latency.
2482 *
2483 * We will not autonomously enter any non-operational state for
2484 * which the total latency exceeds ps_max_latency_us. Users
2485 * can set ps_max_latency_us to zero to turn off APST.
2486 */
2487
2488 unsigned apste;
2489 struct nvme_feat_auto_pst *table;
2490 u64 max_lat_us = 0;
2491 int max_ps = -1;
2492 int ret;
2493
2494 /*
2495 * If APST isn't supported or if we haven't been initialized yet,
2496 * then don't do anything.
2497 */
2498 if (!ctrl->apsta)
2499 return 0;
2500
2501 if (ctrl->npss > 31) {
2502 dev_warn(ctrl->device, "NPSS is invalid; not using APST\n");
2503 return 0;
2504 }
2505
2506 table = kzalloc(sizeof(*table), GFP_KERNEL);
2507 if (!table)
2508 return 0;
2509
2510 if (!ctrl->apst_enabled || ctrl->ps_max_latency_us == 0) {
2511 /* Turn off APST. */
2512 apste = 0;
2513 dev_dbg(ctrl->device, "APST disabled\n");
2514 } else {
2515 __le64 target = cpu_to_le64(0);
2516 int state;
2517
2518 /*
2519 * Walk through all states from lowest- to highest-power.
2520 * According to the spec, lower-numbered states use more
2521 * power. NPSS, despite the name, is the index of the
2522 * lowest-power state, not the number of states.
2523 */
2524 for (state = (int)ctrl->npss; state >= 0; state--) {
2525 u64 total_latency_us, exit_latency_us, transition_ms;
2526
2527 if (target)
2528 table->entries[state] = target;
2529
2530 /*
2531 * Don't allow transitions to the deepest state
2532 * if it's quirked off.
2533 */
2534 if (state == ctrl->npss &&
2535 (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS))
2536 continue;
2537
2538 /*
2539 * Is this state a useful non-operational state for
2540 * higher-power states to autonomously transition to?
2541 */
2542 if (!(ctrl->psd[state].flags &
2543 NVME_PS_FLAGS_NON_OP_STATE))
2544 continue;
2545
2546 exit_latency_us =
2547 (u64)le32_to_cpu(ctrl->psd[state].exit_lat);
2548 if (exit_latency_us > ctrl->ps_max_latency_us)
2549 continue;
2550
2551 total_latency_us =
2552 exit_latency_us +
2553 le32_to_cpu(ctrl->psd[state].entry_lat);
2554
2555 /*
2556 * This state is good. Use it as the APST idle
2557 * target for higher power states.
2558 */
2559 transition_ms = total_latency_us + 19;
2560 do_div(transition_ms, 20);
2561 if (transition_ms > (1 << 24) - 1)
2562 transition_ms = (1 << 24) - 1;
2563
2564 target = cpu_to_le64((state << 3) |
2565 (transition_ms << 8));
2566
2567 if (max_ps == -1)
2568 max_ps = state;
2569
2570 if (total_latency_us > max_lat_us)
2571 max_lat_us = total_latency_us;
2572 }
2573
2574 apste = 1;
2575
2576 if (max_ps == -1) {
2577 dev_dbg(ctrl->device, "APST enabled but no non-operational states are available\n");
2578 } else {
2579 dev_dbg(ctrl->device, "APST enabled: max PS = %d, max round-trip latency = %lluus, table = %*phN\n",
2580 max_ps, max_lat_us, (int)sizeof(*table), table);
2581 }
2582 }
2583
2584 ret = nvme_set_features(ctrl, NVME_FEAT_AUTO_PST, apste,
2585 table, sizeof(*table), NULL);
2586 if (ret)
2587 dev_err(ctrl->device, "failed to set APST feature (%d)\n", ret);
2588
2589 kfree(table);
2590 return ret;
2591 }
2592
nvme_set_latency_tolerance(struct device * dev,s32 val)2593 static void nvme_set_latency_tolerance(struct device *dev, s32 val)
2594 {
2595 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2596 u64 latency;
2597
2598 switch (val) {
2599 case PM_QOS_LATENCY_TOLERANCE_NO_CONSTRAINT:
2600 case PM_QOS_LATENCY_ANY:
2601 latency = U64_MAX;
2602 break;
2603
2604 default:
2605 latency = val;
2606 }
2607
2608 if (ctrl->ps_max_latency_us != latency) {
2609 ctrl->ps_max_latency_us = latency;
2610 if (ctrl->state == NVME_CTRL_LIVE)
2611 nvme_configure_apst(ctrl);
2612 }
2613 }
2614
2615 struct nvme_core_quirk_entry {
2616 /*
2617 * NVMe model and firmware strings are padded with spaces. For
2618 * simplicity, strings in the quirk table are padded with NULLs
2619 * instead.
2620 */
2621 u16 vid;
2622 const char *mn;
2623 const char *fr;
2624 unsigned long quirks;
2625 };
2626
2627 static const struct nvme_core_quirk_entry core_quirks[] = {
2628 {
2629 /*
2630 * This Toshiba device seems to die using any APST states. See:
2631 * https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1678184/comments/11
2632 */
2633 .vid = 0x1179,
2634 .mn = "THNSF5256GPUK TOSHIBA",
2635 .quirks = NVME_QUIRK_NO_APST,
2636 },
2637 {
2638 /*
2639 * This LiteON CL1-3D*-Q11 firmware version has a race
2640 * condition associated with actions related to suspend to idle
2641 * LiteON has resolved the problem in future firmware
2642 */
2643 .vid = 0x14a4,
2644 .fr = "22301111",
2645 .quirks = NVME_QUIRK_SIMPLE_SUSPEND,
2646 }
2647 };
2648
2649 /* match is null-terminated but idstr is space-padded. */
string_matches(const char * idstr,const char * match,size_t len)2650 static bool string_matches(const char *idstr, const char *match, size_t len)
2651 {
2652 size_t matchlen;
2653
2654 if (!match)
2655 return true;
2656
2657 matchlen = strlen(match);
2658 WARN_ON_ONCE(matchlen > len);
2659
2660 if (memcmp(idstr, match, matchlen))
2661 return false;
2662
2663 for (; matchlen < len; matchlen++)
2664 if (idstr[matchlen] != ' ')
2665 return false;
2666
2667 return true;
2668 }
2669
quirk_matches(const struct nvme_id_ctrl * id,const struct nvme_core_quirk_entry * q)2670 static bool quirk_matches(const struct nvme_id_ctrl *id,
2671 const struct nvme_core_quirk_entry *q)
2672 {
2673 return q->vid == le16_to_cpu(id->vid) &&
2674 string_matches(id->mn, q->mn, sizeof(id->mn)) &&
2675 string_matches(id->fr, q->fr, sizeof(id->fr));
2676 }
2677
nvme_init_subnqn(struct nvme_subsystem * subsys,struct nvme_ctrl * ctrl,struct nvme_id_ctrl * id)2678 static void nvme_init_subnqn(struct nvme_subsystem *subsys, struct nvme_ctrl *ctrl,
2679 struct nvme_id_ctrl *id)
2680 {
2681 size_t nqnlen;
2682 int off;
2683
2684 if(!(ctrl->quirks & NVME_QUIRK_IGNORE_DEV_SUBNQN)) {
2685 nqnlen = strnlen(id->subnqn, NVMF_NQN_SIZE);
2686 if (nqnlen > 0 && nqnlen < NVMF_NQN_SIZE) {
2687 strlcpy(subsys->subnqn, id->subnqn, NVMF_NQN_SIZE);
2688 return;
2689 }
2690
2691 if (ctrl->vs >= NVME_VS(1, 2, 1))
2692 dev_warn(ctrl->device, "missing or invalid SUBNQN field.\n");
2693 }
2694
2695 /* Generate a "fake" NQN per Figure 254 in NVMe 1.3 + ECN 001 */
2696 off = snprintf(subsys->subnqn, NVMF_NQN_SIZE,
2697 "nqn.2014.08.org.nvmexpress:%04x%04x",
2698 le16_to_cpu(id->vid), le16_to_cpu(id->ssvid));
2699 memcpy(subsys->subnqn + off, id->sn, sizeof(id->sn));
2700 off += sizeof(id->sn);
2701 memcpy(subsys->subnqn + off, id->mn, sizeof(id->mn));
2702 off += sizeof(id->mn);
2703 memset(subsys->subnqn + off, 0, sizeof(subsys->subnqn) - off);
2704 }
2705
nvme_release_subsystem(struct device * dev)2706 static void nvme_release_subsystem(struct device *dev)
2707 {
2708 struct nvme_subsystem *subsys =
2709 container_of(dev, struct nvme_subsystem, dev);
2710
2711 if (subsys->instance >= 0)
2712 ida_simple_remove(&nvme_instance_ida, subsys->instance);
2713 kfree(subsys);
2714 }
2715
nvme_destroy_subsystem(struct kref * ref)2716 static void nvme_destroy_subsystem(struct kref *ref)
2717 {
2718 struct nvme_subsystem *subsys =
2719 container_of(ref, struct nvme_subsystem, ref);
2720
2721 mutex_lock(&nvme_subsystems_lock);
2722 list_del(&subsys->entry);
2723 mutex_unlock(&nvme_subsystems_lock);
2724
2725 ida_destroy(&subsys->ns_ida);
2726 device_del(&subsys->dev);
2727 put_device(&subsys->dev);
2728 }
2729
nvme_put_subsystem(struct nvme_subsystem * subsys)2730 static void nvme_put_subsystem(struct nvme_subsystem *subsys)
2731 {
2732 kref_put(&subsys->ref, nvme_destroy_subsystem);
2733 }
2734
__nvme_find_get_subsystem(const char * subsysnqn)2735 static struct nvme_subsystem *__nvme_find_get_subsystem(const char *subsysnqn)
2736 {
2737 struct nvme_subsystem *subsys;
2738
2739 lockdep_assert_held(&nvme_subsystems_lock);
2740
2741 /*
2742 * Fail matches for discovery subsystems. This results
2743 * in each discovery controller bound to a unique subsystem.
2744 * This avoids issues with validating controller values
2745 * that can only be true when there is a single unique subsystem.
2746 * There may be multiple and completely independent entities
2747 * that provide discovery controllers.
2748 */
2749 if (!strcmp(subsysnqn, NVME_DISC_SUBSYS_NAME))
2750 return NULL;
2751
2752 list_for_each_entry(subsys, &nvme_subsystems, entry) {
2753 if (strcmp(subsys->subnqn, subsysnqn))
2754 continue;
2755 if (!kref_get_unless_zero(&subsys->ref))
2756 continue;
2757 return subsys;
2758 }
2759
2760 return NULL;
2761 }
2762
2763 #define SUBSYS_ATTR_RO(_name, _mode, _show) \
2764 struct device_attribute subsys_attr_##_name = \
2765 __ATTR(_name, _mode, _show, NULL)
2766
nvme_subsys_show_nqn(struct device * dev,struct device_attribute * attr,char * buf)2767 static ssize_t nvme_subsys_show_nqn(struct device *dev,
2768 struct device_attribute *attr,
2769 char *buf)
2770 {
2771 struct nvme_subsystem *subsys =
2772 container_of(dev, struct nvme_subsystem, dev);
2773
2774 return snprintf(buf, PAGE_SIZE, "%s\n", subsys->subnqn);
2775 }
2776 static SUBSYS_ATTR_RO(subsysnqn, S_IRUGO, nvme_subsys_show_nqn);
2777
2778 #define nvme_subsys_show_str_function(field) \
2779 static ssize_t subsys_##field##_show(struct device *dev, \
2780 struct device_attribute *attr, char *buf) \
2781 { \
2782 struct nvme_subsystem *subsys = \
2783 container_of(dev, struct nvme_subsystem, dev); \
2784 return sprintf(buf, "%.*s\n", \
2785 (int)sizeof(subsys->field), subsys->field); \
2786 } \
2787 static SUBSYS_ATTR_RO(field, S_IRUGO, subsys_##field##_show);
2788
2789 nvme_subsys_show_str_function(model);
2790 nvme_subsys_show_str_function(serial);
2791 nvme_subsys_show_str_function(firmware_rev);
2792
2793 static struct attribute *nvme_subsys_attrs[] = {
2794 &subsys_attr_model.attr,
2795 &subsys_attr_serial.attr,
2796 &subsys_attr_firmware_rev.attr,
2797 &subsys_attr_subsysnqn.attr,
2798 #ifdef CONFIG_NVME_MULTIPATH
2799 &subsys_attr_iopolicy.attr,
2800 #endif
2801 NULL,
2802 };
2803
2804 static struct attribute_group nvme_subsys_attrs_group = {
2805 .attrs = nvme_subsys_attrs,
2806 };
2807
2808 static const struct attribute_group *nvme_subsys_attrs_groups[] = {
2809 &nvme_subsys_attrs_group,
2810 NULL,
2811 };
2812
nvme_discovery_ctrl(struct nvme_ctrl * ctrl)2813 static inline bool nvme_discovery_ctrl(struct nvme_ctrl *ctrl)
2814 {
2815 return ctrl->opts && ctrl->opts->discovery_nqn;
2816 }
2817
nvme_validate_cntlid(struct nvme_subsystem * subsys,struct nvme_ctrl * ctrl,struct nvme_id_ctrl * id)2818 static bool nvme_validate_cntlid(struct nvme_subsystem *subsys,
2819 struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
2820 {
2821 struct nvme_ctrl *tmp;
2822
2823 lockdep_assert_held(&nvme_subsystems_lock);
2824
2825 list_for_each_entry(tmp, &subsys->ctrls, subsys_entry) {
2826 if (nvme_state_terminal(tmp))
2827 continue;
2828
2829 if (tmp->cntlid == ctrl->cntlid) {
2830 dev_err(ctrl->device,
2831 "Duplicate cntlid %u with %s, rejecting\n",
2832 ctrl->cntlid, dev_name(tmp->device));
2833 return false;
2834 }
2835
2836 if ((id->cmic & NVME_CTRL_CMIC_MULTI_CTRL) ||
2837 nvme_discovery_ctrl(ctrl))
2838 continue;
2839
2840 dev_err(ctrl->device,
2841 "Subsystem does not support multiple controllers\n");
2842 return false;
2843 }
2844
2845 return true;
2846 }
2847
nvme_init_subsystem(struct nvme_ctrl * ctrl,struct nvme_id_ctrl * id)2848 static int nvme_init_subsystem(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
2849 {
2850 struct nvme_subsystem *subsys, *found;
2851 int ret;
2852
2853 subsys = kzalloc(sizeof(*subsys), GFP_KERNEL);
2854 if (!subsys)
2855 return -ENOMEM;
2856
2857 subsys->instance = -1;
2858 mutex_init(&subsys->lock);
2859 kref_init(&subsys->ref);
2860 INIT_LIST_HEAD(&subsys->ctrls);
2861 INIT_LIST_HEAD(&subsys->nsheads);
2862 nvme_init_subnqn(subsys, ctrl, id);
2863 memcpy(subsys->serial, id->sn, sizeof(subsys->serial));
2864 memcpy(subsys->model, id->mn, sizeof(subsys->model));
2865 memcpy(subsys->firmware_rev, id->fr, sizeof(subsys->firmware_rev));
2866 subsys->vendor_id = le16_to_cpu(id->vid);
2867 subsys->cmic = id->cmic;
2868 subsys->awupf = le16_to_cpu(id->awupf);
2869 #ifdef CONFIG_NVME_MULTIPATH
2870 subsys->iopolicy = NVME_IOPOLICY_NUMA;
2871 #endif
2872
2873 subsys->dev.class = nvme_subsys_class;
2874 subsys->dev.release = nvme_release_subsystem;
2875 subsys->dev.groups = nvme_subsys_attrs_groups;
2876 dev_set_name(&subsys->dev, "nvme-subsys%d", ctrl->instance);
2877 device_initialize(&subsys->dev);
2878
2879 mutex_lock(&nvme_subsystems_lock);
2880 found = __nvme_find_get_subsystem(subsys->subnqn);
2881 if (found) {
2882 put_device(&subsys->dev);
2883 subsys = found;
2884
2885 if (!nvme_validate_cntlid(subsys, ctrl, id)) {
2886 ret = -EINVAL;
2887 goto out_put_subsystem;
2888 }
2889 } else {
2890 ret = device_add(&subsys->dev);
2891 if (ret) {
2892 dev_err(ctrl->device,
2893 "failed to register subsystem device.\n");
2894 put_device(&subsys->dev);
2895 goto out_unlock;
2896 }
2897 ida_init(&subsys->ns_ida);
2898 list_add_tail(&subsys->entry, &nvme_subsystems);
2899 }
2900
2901 ret = sysfs_create_link(&subsys->dev.kobj, &ctrl->device->kobj,
2902 dev_name(ctrl->device));
2903 if (ret) {
2904 dev_err(ctrl->device,
2905 "failed to create sysfs link from subsystem.\n");
2906 goto out_put_subsystem;
2907 }
2908
2909 if (!found)
2910 subsys->instance = ctrl->instance;
2911 ctrl->subsys = subsys;
2912 list_add_tail(&ctrl->subsys_entry, &subsys->ctrls);
2913 mutex_unlock(&nvme_subsystems_lock);
2914 return 0;
2915
2916 out_put_subsystem:
2917 nvme_put_subsystem(subsys);
2918 out_unlock:
2919 mutex_unlock(&nvme_subsystems_lock);
2920 return ret;
2921 }
2922
nvme_get_log(struct nvme_ctrl * ctrl,u32 nsid,u8 log_page,u8 lsp,u8 csi,void * log,size_t size,u64 offset)2923 int nvme_get_log(struct nvme_ctrl *ctrl, u32 nsid, u8 log_page, u8 lsp, u8 csi,
2924 void *log, size_t size, u64 offset)
2925 {
2926 struct nvme_command c = { };
2927 u32 dwlen = nvme_bytes_to_numd(size);
2928
2929 c.get_log_page.opcode = nvme_admin_get_log_page;
2930 c.get_log_page.nsid = cpu_to_le32(nsid);
2931 c.get_log_page.lid = log_page;
2932 c.get_log_page.lsp = lsp;
2933 c.get_log_page.numdl = cpu_to_le16(dwlen & ((1 << 16) - 1));
2934 c.get_log_page.numdu = cpu_to_le16(dwlen >> 16);
2935 c.get_log_page.lpol = cpu_to_le32(lower_32_bits(offset));
2936 c.get_log_page.lpou = cpu_to_le32(upper_32_bits(offset));
2937 c.get_log_page.csi = csi;
2938
2939 return nvme_submit_sync_cmd(ctrl->admin_q, &c, log, size);
2940 }
2941
nvme_get_effects_log(struct nvme_ctrl * ctrl,u8 csi,struct nvme_effects_log ** log)2942 static int nvme_get_effects_log(struct nvme_ctrl *ctrl, u8 csi,
2943 struct nvme_effects_log **log)
2944 {
2945 struct nvme_effects_log *cel = xa_load(&ctrl->cels, csi);
2946 int ret;
2947
2948 if (cel)
2949 goto out;
2950
2951 cel = kzalloc(sizeof(*cel), GFP_KERNEL);
2952 if (!cel)
2953 return -ENOMEM;
2954
2955 ret = nvme_get_log(ctrl, 0x00, NVME_LOG_CMD_EFFECTS, 0, csi,
2956 cel, sizeof(*cel), 0);
2957 if (ret) {
2958 kfree(cel);
2959 return ret;
2960 }
2961
2962 xa_store(&ctrl->cels, csi, cel, GFP_KERNEL);
2963 out:
2964 *log = cel;
2965 return 0;
2966 }
2967
2968 /*
2969 * Initialize the cached copies of the Identify data and various controller
2970 * register in our nvme_ctrl structure. This should be called as soon as
2971 * the admin queue is fully up and running.
2972 */
nvme_init_identify(struct nvme_ctrl * ctrl)2973 int nvme_init_identify(struct nvme_ctrl *ctrl)
2974 {
2975 struct nvme_id_ctrl *id;
2976 int ret, page_shift;
2977 u32 max_hw_sectors;
2978 bool prev_apst_enabled;
2979
2980 ret = ctrl->ops->reg_read32(ctrl, NVME_REG_VS, &ctrl->vs);
2981 if (ret) {
2982 dev_err(ctrl->device, "Reading VS failed (%d)\n", ret);
2983 return ret;
2984 }
2985 page_shift = NVME_CAP_MPSMIN(ctrl->cap) + 12;
2986 ctrl->sqsize = min_t(u16, NVME_CAP_MQES(ctrl->cap), ctrl->sqsize);
2987
2988 if (ctrl->vs >= NVME_VS(1, 1, 0))
2989 ctrl->subsystem = NVME_CAP_NSSRC(ctrl->cap);
2990
2991 ret = nvme_identify_ctrl(ctrl, &id);
2992 if (ret) {
2993 dev_err(ctrl->device, "Identify Controller failed (%d)\n", ret);
2994 return -EIO;
2995 }
2996
2997 if (id->lpa & NVME_CTRL_LPA_CMD_EFFECTS_LOG) {
2998 ret = nvme_get_effects_log(ctrl, NVME_CSI_NVM, &ctrl->effects);
2999 if (ret < 0)
3000 goto out_free;
3001 }
3002
3003 if (!(ctrl->ops->flags & NVME_F_FABRICS))
3004 ctrl->cntlid = le16_to_cpu(id->cntlid);
3005
3006 if (!ctrl->identified) {
3007 int i;
3008
3009 ret = nvme_init_subsystem(ctrl, id);
3010 if (ret)
3011 goto out_free;
3012
3013 /*
3014 * Check for quirks. Quirk can depend on firmware version,
3015 * so, in principle, the set of quirks present can change
3016 * across a reset. As a possible future enhancement, we
3017 * could re-scan for quirks every time we reinitialize
3018 * the device, but we'd have to make sure that the driver
3019 * behaves intelligently if the quirks change.
3020 */
3021 for (i = 0; i < ARRAY_SIZE(core_quirks); i++) {
3022 if (quirk_matches(id, &core_quirks[i]))
3023 ctrl->quirks |= core_quirks[i].quirks;
3024 }
3025 }
3026
3027 if (force_apst && (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS)) {
3028 dev_warn(ctrl->device, "forcibly allowing all power states due to nvme_core.force_apst -- use at your own risk\n");
3029 ctrl->quirks &= ~NVME_QUIRK_NO_DEEPEST_PS;
3030 }
3031
3032 ctrl->crdt[0] = le16_to_cpu(id->crdt1);
3033 ctrl->crdt[1] = le16_to_cpu(id->crdt2);
3034 ctrl->crdt[2] = le16_to_cpu(id->crdt3);
3035
3036 ctrl->oacs = le16_to_cpu(id->oacs);
3037 ctrl->oncs = le16_to_cpu(id->oncs);
3038 ctrl->mtfa = le16_to_cpu(id->mtfa);
3039 ctrl->oaes = le32_to_cpu(id->oaes);
3040 ctrl->wctemp = le16_to_cpu(id->wctemp);
3041 ctrl->cctemp = le16_to_cpu(id->cctemp);
3042
3043 atomic_set(&ctrl->abort_limit, id->acl + 1);
3044 ctrl->vwc = id->vwc;
3045 if (id->mdts)
3046 max_hw_sectors = 1 << (id->mdts + page_shift - 9);
3047 else
3048 max_hw_sectors = UINT_MAX;
3049 ctrl->max_hw_sectors =
3050 min_not_zero(ctrl->max_hw_sectors, max_hw_sectors);
3051
3052 nvme_set_queue_limits(ctrl, ctrl->admin_q);
3053 ctrl->sgls = le32_to_cpu(id->sgls);
3054 ctrl->kas = le16_to_cpu(id->kas);
3055 ctrl->max_namespaces = le32_to_cpu(id->mnan);
3056 ctrl->ctratt = le32_to_cpu(id->ctratt);
3057
3058 if (id->rtd3e) {
3059 /* us -> s */
3060 u32 transition_time = le32_to_cpu(id->rtd3e) / USEC_PER_SEC;
3061
3062 ctrl->shutdown_timeout = clamp_t(unsigned int, transition_time,
3063 shutdown_timeout, 60);
3064
3065 if (ctrl->shutdown_timeout != shutdown_timeout)
3066 dev_info(ctrl->device,
3067 "Shutdown timeout set to %u seconds\n",
3068 ctrl->shutdown_timeout);
3069 } else
3070 ctrl->shutdown_timeout = shutdown_timeout;
3071
3072 ctrl->npss = id->npss;
3073 ctrl->apsta = id->apsta;
3074 prev_apst_enabled = ctrl->apst_enabled;
3075 if (ctrl->quirks & NVME_QUIRK_NO_APST) {
3076 if (force_apst && id->apsta) {
3077 dev_warn(ctrl->device, "forcibly allowing APST due to nvme_core.force_apst -- use at your own risk\n");
3078 ctrl->apst_enabled = true;
3079 } else {
3080 ctrl->apst_enabled = false;
3081 }
3082 } else {
3083 ctrl->apst_enabled = id->apsta;
3084 }
3085 memcpy(ctrl->psd, id->psd, sizeof(ctrl->psd));
3086
3087 if (ctrl->ops->flags & NVME_F_FABRICS) {
3088 ctrl->icdoff = le16_to_cpu(id->icdoff);
3089 ctrl->ioccsz = le32_to_cpu(id->ioccsz);
3090 ctrl->iorcsz = le32_to_cpu(id->iorcsz);
3091 ctrl->maxcmd = le16_to_cpu(id->maxcmd);
3092
3093 /*
3094 * In fabrics we need to verify the cntlid matches the
3095 * admin connect
3096 */
3097 if (ctrl->cntlid != le16_to_cpu(id->cntlid)) {
3098 dev_err(ctrl->device,
3099 "Mismatching cntlid: Connect %u vs Identify "
3100 "%u, rejecting\n",
3101 ctrl->cntlid, le16_to_cpu(id->cntlid));
3102 ret = -EINVAL;
3103 goto out_free;
3104 }
3105
3106 if (!nvme_discovery_ctrl(ctrl) && !ctrl->kas) {
3107 dev_err(ctrl->device,
3108 "keep-alive support is mandatory for fabrics\n");
3109 ret = -EINVAL;
3110 goto out_free;
3111 }
3112 } else {
3113 ctrl->hmpre = le32_to_cpu(id->hmpre);
3114 ctrl->hmmin = le32_to_cpu(id->hmmin);
3115 ctrl->hmminds = le32_to_cpu(id->hmminds);
3116 ctrl->hmmaxd = le16_to_cpu(id->hmmaxd);
3117 }
3118
3119 ret = nvme_mpath_init_identify(ctrl, id);
3120 kfree(id);
3121
3122 if (ret < 0)
3123 return ret;
3124
3125 if (ctrl->apst_enabled && !prev_apst_enabled)
3126 dev_pm_qos_expose_latency_tolerance(ctrl->device);
3127 else if (!ctrl->apst_enabled && prev_apst_enabled)
3128 dev_pm_qos_hide_latency_tolerance(ctrl->device);
3129
3130 ret = nvme_configure_apst(ctrl);
3131 if (ret < 0)
3132 return ret;
3133
3134 ret = nvme_configure_timestamp(ctrl);
3135 if (ret < 0)
3136 return ret;
3137
3138 ret = nvme_configure_directives(ctrl);
3139 if (ret < 0)
3140 return ret;
3141
3142 ret = nvme_configure_acre(ctrl);
3143 if (ret < 0)
3144 return ret;
3145
3146 if (!ctrl->identified && !nvme_discovery_ctrl(ctrl)) {
3147 ret = nvme_hwmon_init(ctrl);
3148 if (ret < 0)
3149 return ret;
3150 }
3151
3152 ctrl->identified = true;
3153
3154 return 0;
3155
3156 out_free:
3157 kfree(id);
3158 return ret;
3159 }
3160 EXPORT_SYMBOL_GPL(nvme_init_identify);
3161
nvme_dev_open(struct inode * inode,struct file * file)3162 static int nvme_dev_open(struct inode *inode, struct file *file)
3163 {
3164 struct nvme_ctrl *ctrl =
3165 container_of(inode->i_cdev, struct nvme_ctrl, cdev);
3166
3167 switch (ctrl->state) {
3168 case NVME_CTRL_LIVE:
3169 break;
3170 default:
3171 return -EWOULDBLOCK;
3172 }
3173
3174 nvme_get_ctrl(ctrl);
3175 if (!try_module_get(ctrl->ops->module)) {
3176 nvme_put_ctrl(ctrl);
3177 return -EINVAL;
3178 }
3179
3180 file->private_data = ctrl;
3181 return 0;
3182 }
3183
nvme_dev_release(struct inode * inode,struct file * file)3184 static int nvme_dev_release(struct inode *inode, struct file *file)
3185 {
3186 struct nvme_ctrl *ctrl =
3187 container_of(inode->i_cdev, struct nvme_ctrl, cdev);
3188
3189 module_put(ctrl->ops->module);
3190 nvme_put_ctrl(ctrl);
3191 return 0;
3192 }
3193
nvme_dev_user_cmd(struct nvme_ctrl * ctrl,void __user * argp)3194 static int nvme_dev_user_cmd(struct nvme_ctrl *ctrl, void __user *argp)
3195 {
3196 struct nvme_ns *ns;
3197 int ret;
3198
3199 down_read(&ctrl->namespaces_rwsem);
3200 if (list_empty(&ctrl->namespaces)) {
3201 ret = -ENOTTY;
3202 goto out_unlock;
3203 }
3204
3205 ns = list_first_entry(&ctrl->namespaces, struct nvme_ns, list);
3206 if (ns != list_last_entry(&ctrl->namespaces, struct nvme_ns, list)) {
3207 dev_warn(ctrl->device,
3208 "NVME_IOCTL_IO_CMD not supported when multiple namespaces present!\n");
3209 ret = -EINVAL;
3210 goto out_unlock;
3211 }
3212
3213 dev_warn(ctrl->device,
3214 "using deprecated NVME_IOCTL_IO_CMD ioctl on the char device!\n");
3215 kref_get(&ns->kref);
3216 up_read(&ctrl->namespaces_rwsem);
3217
3218 ret = nvme_user_cmd(ctrl, ns, argp);
3219 nvme_put_ns(ns);
3220 return ret;
3221
3222 out_unlock:
3223 up_read(&ctrl->namespaces_rwsem);
3224 return ret;
3225 }
3226
nvme_dev_ioctl(struct file * file,unsigned int cmd,unsigned long arg)3227 static long nvme_dev_ioctl(struct file *file, unsigned int cmd,
3228 unsigned long arg)
3229 {
3230 struct nvme_ctrl *ctrl = file->private_data;
3231 void __user *argp = (void __user *)arg;
3232
3233 switch (cmd) {
3234 case NVME_IOCTL_ADMIN_CMD:
3235 return nvme_user_cmd(ctrl, NULL, argp);
3236 case NVME_IOCTL_ADMIN64_CMD:
3237 return nvme_user_cmd64(ctrl, NULL, argp);
3238 case NVME_IOCTL_IO_CMD:
3239 return nvme_dev_user_cmd(ctrl, argp);
3240 case NVME_IOCTL_RESET:
3241 dev_warn(ctrl->device, "resetting controller\n");
3242 return nvme_reset_ctrl_sync(ctrl);
3243 case NVME_IOCTL_SUBSYS_RESET:
3244 return nvme_reset_subsystem(ctrl);
3245 case NVME_IOCTL_RESCAN:
3246 nvme_queue_scan(ctrl);
3247 return 0;
3248 default:
3249 return -ENOTTY;
3250 }
3251 }
3252
3253 static const struct file_operations nvme_dev_fops = {
3254 .owner = THIS_MODULE,
3255 .open = nvme_dev_open,
3256 .release = nvme_dev_release,
3257 .unlocked_ioctl = nvme_dev_ioctl,
3258 .compat_ioctl = compat_ptr_ioctl,
3259 };
3260
nvme_sysfs_reset(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)3261 static ssize_t nvme_sysfs_reset(struct device *dev,
3262 struct device_attribute *attr, const char *buf,
3263 size_t count)
3264 {
3265 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3266 int ret;
3267
3268 ret = nvme_reset_ctrl_sync(ctrl);
3269 if (ret < 0)
3270 return ret;
3271 return count;
3272 }
3273 static DEVICE_ATTR(reset_controller, S_IWUSR, NULL, nvme_sysfs_reset);
3274
nvme_sysfs_rescan(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)3275 static ssize_t nvme_sysfs_rescan(struct device *dev,
3276 struct device_attribute *attr, const char *buf,
3277 size_t count)
3278 {
3279 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3280
3281 nvme_queue_scan(ctrl);
3282 return count;
3283 }
3284 static DEVICE_ATTR(rescan_controller, S_IWUSR, NULL, nvme_sysfs_rescan);
3285
dev_to_ns_head(struct device * dev)3286 static inline struct nvme_ns_head *dev_to_ns_head(struct device *dev)
3287 {
3288 struct gendisk *disk = dev_to_disk(dev);
3289
3290 if (disk->fops == &nvme_fops)
3291 return nvme_get_ns_from_dev(dev)->head;
3292 else
3293 return disk->private_data;
3294 }
3295
wwid_show(struct device * dev,struct device_attribute * attr,char * buf)3296 static ssize_t wwid_show(struct device *dev, struct device_attribute *attr,
3297 char *buf)
3298 {
3299 struct nvme_ns_head *head = dev_to_ns_head(dev);
3300 struct nvme_ns_ids *ids = &head->ids;
3301 struct nvme_subsystem *subsys = head->subsys;
3302 int serial_len = sizeof(subsys->serial);
3303 int model_len = sizeof(subsys->model);
3304
3305 if (!uuid_is_null(&ids->uuid))
3306 return sprintf(buf, "uuid.%pU\n", &ids->uuid);
3307
3308 if (memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
3309 return sprintf(buf, "eui.%16phN\n", ids->nguid);
3310
3311 if (memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
3312 return sprintf(buf, "eui.%8phN\n", ids->eui64);
3313
3314 while (serial_len > 0 && (subsys->serial[serial_len - 1] == ' ' ||
3315 subsys->serial[serial_len - 1] == '\0'))
3316 serial_len--;
3317 while (model_len > 0 && (subsys->model[model_len - 1] == ' ' ||
3318 subsys->model[model_len - 1] == '\0'))
3319 model_len--;
3320
3321 return sprintf(buf, "nvme.%04x-%*phN-%*phN-%08x\n", subsys->vendor_id,
3322 serial_len, subsys->serial, model_len, subsys->model,
3323 head->ns_id);
3324 }
3325 static DEVICE_ATTR_RO(wwid);
3326
nguid_show(struct device * dev,struct device_attribute * attr,char * buf)3327 static ssize_t nguid_show(struct device *dev, struct device_attribute *attr,
3328 char *buf)
3329 {
3330 return sprintf(buf, "%pU\n", dev_to_ns_head(dev)->ids.nguid);
3331 }
3332 static DEVICE_ATTR_RO(nguid);
3333
uuid_show(struct device * dev,struct device_attribute * attr,char * buf)3334 static ssize_t uuid_show(struct device *dev, struct device_attribute *attr,
3335 char *buf)
3336 {
3337 struct nvme_ns_ids *ids = &dev_to_ns_head(dev)->ids;
3338
3339 /* For backward compatibility expose the NGUID to userspace if
3340 * we have no UUID set
3341 */
3342 if (uuid_is_null(&ids->uuid)) {
3343 printk_ratelimited(KERN_WARNING
3344 "No UUID available providing old NGUID\n");
3345 return sprintf(buf, "%pU\n", ids->nguid);
3346 }
3347 return sprintf(buf, "%pU\n", &ids->uuid);
3348 }
3349 static DEVICE_ATTR_RO(uuid);
3350
eui_show(struct device * dev,struct device_attribute * attr,char * buf)3351 static ssize_t eui_show(struct device *dev, struct device_attribute *attr,
3352 char *buf)
3353 {
3354 return sprintf(buf, "%8ph\n", dev_to_ns_head(dev)->ids.eui64);
3355 }
3356 static DEVICE_ATTR_RO(eui);
3357
nsid_show(struct device * dev,struct device_attribute * attr,char * buf)3358 static ssize_t nsid_show(struct device *dev, struct device_attribute *attr,
3359 char *buf)
3360 {
3361 return sprintf(buf, "%d\n", dev_to_ns_head(dev)->ns_id);
3362 }
3363 static DEVICE_ATTR_RO(nsid);
3364
3365 static struct attribute *nvme_ns_id_attrs[] = {
3366 &dev_attr_wwid.attr,
3367 &dev_attr_uuid.attr,
3368 &dev_attr_nguid.attr,
3369 &dev_attr_eui.attr,
3370 &dev_attr_nsid.attr,
3371 #ifdef CONFIG_NVME_MULTIPATH
3372 &dev_attr_ana_grpid.attr,
3373 &dev_attr_ana_state.attr,
3374 #endif
3375 NULL,
3376 };
3377
nvme_ns_id_attrs_are_visible(struct kobject * kobj,struct attribute * a,int n)3378 static umode_t nvme_ns_id_attrs_are_visible(struct kobject *kobj,
3379 struct attribute *a, int n)
3380 {
3381 struct device *dev = container_of(kobj, struct device, kobj);
3382 struct nvme_ns_ids *ids = &dev_to_ns_head(dev)->ids;
3383
3384 if (a == &dev_attr_uuid.attr) {
3385 if (uuid_is_null(&ids->uuid) &&
3386 !memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
3387 return 0;
3388 }
3389 if (a == &dev_attr_nguid.attr) {
3390 if (!memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
3391 return 0;
3392 }
3393 if (a == &dev_attr_eui.attr) {
3394 if (!memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
3395 return 0;
3396 }
3397 #ifdef CONFIG_NVME_MULTIPATH
3398 if (a == &dev_attr_ana_grpid.attr || a == &dev_attr_ana_state.attr) {
3399 if (dev_to_disk(dev)->fops != &nvme_fops) /* per-path attr */
3400 return 0;
3401 if (!nvme_ctrl_use_ana(nvme_get_ns_from_dev(dev)->ctrl))
3402 return 0;
3403 }
3404 #endif
3405 return a->mode;
3406 }
3407
3408 static const struct attribute_group nvme_ns_id_attr_group = {
3409 .attrs = nvme_ns_id_attrs,
3410 .is_visible = nvme_ns_id_attrs_are_visible,
3411 };
3412
3413 const struct attribute_group *nvme_ns_id_attr_groups[] = {
3414 &nvme_ns_id_attr_group,
3415 #ifdef CONFIG_NVM
3416 &nvme_nvm_attr_group,
3417 #endif
3418 NULL,
3419 };
3420
3421 #define nvme_show_str_function(field) \
3422 static ssize_t field##_show(struct device *dev, \
3423 struct device_attribute *attr, char *buf) \
3424 { \
3425 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); \
3426 return sprintf(buf, "%.*s\n", \
3427 (int)sizeof(ctrl->subsys->field), ctrl->subsys->field); \
3428 } \
3429 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
3430
3431 nvme_show_str_function(model);
3432 nvme_show_str_function(serial);
3433 nvme_show_str_function(firmware_rev);
3434
3435 #define nvme_show_int_function(field) \
3436 static ssize_t field##_show(struct device *dev, \
3437 struct device_attribute *attr, char *buf) \
3438 { \
3439 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); \
3440 return sprintf(buf, "%d\n", ctrl->field); \
3441 } \
3442 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
3443
3444 nvme_show_int_function(cntlid);
3445 nvme_show_int_function(numa_node);
3446 nvme_show_int_function(queue_count);
3447 nvme_show_int_function(sqsize);
3448
nvme_sysfs_delete(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)3449 static ssize_t nvme_sysfs_delete(struct device *dev,
3450 struct device_attribute *attr, const char *buf,
3451 size_t count)
3452 {
3453 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3454
3455 if (device_remove_file_self(dev, attr))
3456 nvme_delete_ctrl_sync(ctrl);
3457 return count;
3458 }
3459 static DEVICE_ATTR(delete_controller, S_IWUSR, NULL, nvme_sysfs_delete);
3460
nvme_sysfs_show_transport(struct device * dev,struct device_attribute * attr,char * buf)3461 static ssize_t nvme_sysfs_show_transport(struct device *dev,
3462 struct device_attribute *attr,
3463 char *buf)
3464 {
3465 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3466
3467 return snprintf(buf, PAGE_SIZE, "%s\n", ctrl->ops->name);
3468 }
3469 static DEVICE_ATTR(transport, S_IRUGO, nvme_sysfs_show_transport, NULL);
3470
nvme_sysfs_show_state(struct device * dev,struct device_attribute * attr,char * buf)3471 static ssize_t nvme_sysfs_show_state(struct device *dev,
3472 struct device_attribute *attr,
3473 char *buf)
3474 {
3475 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3476 static const char *const state_name[] = {
3477 [NVME_CTRL_NEW] = "new",
3478 [NVME_CTRL_LIVE] = "live",
3479 [NVME_CTRL_RESETTING] = "resetting",
3480 [NVME_CTRL_CONNECTING] = "connecting",
3481 [NVME_CTRL_DELETING] = "deleting",
3482 [NVME_CTRL_DELETING_NOIO]= "deleting (no IO)",
3483 [NVME_CTRL_DEAD] = "dead",
3484 };
3485
3486 if ((unsigned)ctrl->state < ARRAY_SIZE(state_name) &&
3487 state_name[ctrl->state])
3488 return sprintf(buf, "%s\n", state_name[ctrl->state]);
3489
3490 return sprintf(buf, "unknown state\n");
3491 }
3492
3493 static DEVICE_ATTR(state, S_IRUGO, nvme_sysfs_show_state, NULL);
3494
nvme_sysfs_show_subsysnqn(struct device * dev,struct device_attribute * attr,char * buf)3495 static ssize_t nvme_sysfs_show_subsysnqn(struct device *dev,
3496 struct device_attribute *attr,
3497 char *buf)
3498 {
3499 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3500
3501 return snprintf(buf, PAGE_SIZE, "%s\n", ctrl->subsys->subnqn);
3502 }
3503 static DEVICE_ATTR(subsysnqn, S_IRUGO, nvme_sysfs_show_subsysnqn, NULL);
3504
nvme_sysfs_show_hostnqn(struct device * dev,struct device_attribute * attr,char * buf)3505 static ssize_t nvme_sysfs_show_hostnqn(struct device *dev,
3506 struct device_attribute *attr,
3507 char *buf)
3508 {
3509 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3510
3511 return snprintf(buf, PAGE_SIZE, "%s\n", ctrl->opts->host->nqn);
3512 }
3513 static DEVICE_ATTR(hostnqn, S_IRUGO, nvme_sysfs_show_hostnqn, NULL);
3514
nvme_sysfs_show_hostid(struct device * dev,struct device_attribute * attr,char * buf)3515 static ssize_t nvme_sysfs_show_hostid(struct device *dev,
3516 struct device_attribute *attr,
3517 char *buf)
3518 {
3519 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3520
3521 return snprintf(buf, PAGE_SIZE, "%pU\n", &ctrl->opts->host->id);
3522 }
3523 static DEVICE_ATTR(hostid, S_IRUGO, nvme_sysfs_show_hostid, NULL);
3524
nvme_sysfs_show_address(struct device * dev,struct device_attribute * attr,char * buf)3525 static ssize_t nvme_sysfs_show_address(struct device *dev,
3526 struct device_attribute *attr,
3527 char *buf)
3528 {
3529 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3530
3531 return ctrl->ops->get_address(ctrl, buf, PAGE_SIZE);
3532 }
3533 static DEVICE_ATTR(address, S_IRUGO, nvme_sysfs_show_address, NULL);
3534
nvme_ctrl_loss_tmo_show(struct device * dev,struct device_attribute * attr,char * buf)3535 static ssize_t nvme_ctrl_loss_tmo_show(struct device *dev,
3536 struct device_attribute *attr, char *buf)
3537 {
3538 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3539 struct nvmf_ctrl_options *opts = ctrl->opts;
3540
3541 if (ctrl->opts->max_reconnects == -1)
3542 return sprintf(buf, "off\n");
3543 return sprintf(buf, "%d\n",
3544 opts->max_reconnects * opts->reconnect_delay);
3545 }
3546
nvme_ctrl_loss_tmo_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)3547 static ssize_t nvme_ctrl_loss_tmo_store(struct device *dev,
3548 struct device_attribute *attr, const char *buf, size_t count)
3549 {
3550 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3551 struct nvmf_ctrl_options *opts = ctrl->opts;
3552 int ctrl_loss_tmo, err;
3553
3554 err = kstrtoint(buf, 10, &ctrl_loss_tmo);
3555 if (err)
3556 return -EINVAL;
3557
3558 else if (ctrl_loss_tmo < 0)
3559 opts->max_reconnects = -1;
3560 else
3561 opts->max_reconnects = DIV_ROUND_UP(ctrl_loss_tmo,
3562 opts->reconnect_delay);
3563 return count;
3564 }
3565 static DEVICE_ATTR(ctrl_loss_tmo, S_IRUGO | S_IWUSR,
3566 nvme_ctrl_loss_tmo_show, nvme_ctrl_loss_tmo_store);
3567
nvme_ctrl_reconnect_delay_show(struct device * dev,struct device_attribute * attr,char * buf)3568 static ssize_t nvme_ctrl_reconnect_delay_show(struct device *dev,
3569 struct device_attribute *attr, char *buf)
3570 {
3571 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3572
3573 if (ctrl->opts->reconnect_delay == -1)
3574 return sprintf(buf, "off\n");
3575 return sprintf(buf, "%d\n", ctrl->opts->reconnect_delay);
3576 }
3577
nvme_ctrl_reconnect_delay_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)3578 static ssize_t nvme_ctrl_reconnect_delay_store(struct device *dev,
3579 struct device_attribute *attr, const char *buf, size_t count)
3580 {
3581 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3582 unsigned int v;
3583 int err;
3584
3585 err = kstrtou32(buf, 10, &v);
3586 if (err)
3587 return err;
3588
3589 ctrl->opts->reconnect_delay = v;
3590 return count;
3591 }
3592 static DEVICE_ATTR(reconnect_delay, S_IRUGO | S_IWUSR,
3593 nvme_ctrl_reconnect_delay_show, nvme_ctrl_reconnect_delay_store);
3594
3595 static struct attribute *nvme_dev_attrs[] = {
3596 &dev_attr_reset_controller.attr,
3597 &dev_attr_rescan_controller.attr,
3598 &dev_attr_model.attr,
3599 &dev_attr_serial.attr,
3600 &dev_attr_firmware_rev.attr,
3601 &dev_attr_cntlid.attr,
3602 &dev_attr_delete_controller.attr,
3603 &dev_attr_transport.attr,
3604 &dev_attr_subsysnqn.attr,
3605 &dev_attr_address.attr,
3606 &dev_attr_state.attr,
3607 &dev_attr_numa_node.attr,
3608 &dev_attr_queue_count.attr,
3609 &dev_attr_sqsize.attr,
3610 &dev_attr_hostnqn.attr,
3611 &dev_attr_hostid.attr,
3612 &dev_attr_ctrl_loss_tmo.attr,
3613 &dev_attr_reconnect_delay.attr,
3614 NULL
3615 };
3616
nvme_dev_attrs_are_visible(struct kobject * kobj,struct attribute * a,int n)3617 static umode_t nvme_dev_attrs_are_visible(struct kobject *kobj,
3618 struct attribute *a, int n)
3619 {
3620 struct device *dev = container_of(kobj, struct device, kobj);
3621 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3622
3623 if (a == &dev_attr_delete_controller.attr && !ctrl->ops->delete_ctrl)
3624 return 0;
3625 if (a == &dev_attr_address.attr && !ctrl->ops->get_address)
3626 return 0;
3627 if (a == &dev_attr_hostnqn.attr && !ctrl->opts)
3628 return 0;
3629 if (a == &dev_attr_hostid.attr && !ctrl->opts)
3630 return 0;
3631 if (a == &dev_attr_ctrl_loss_tmo.attr && !ctrl->opts)
3632 return 0;
3633 if (a == &dev_attr_reconnect_delay.attr && !ctrl->opts)
3634 return 0;
3635
3636 return a->mode;
3637 }
3638
3639 static struct attribute_group nvme_dev_attrs_group = {
3640 .attrs = nvme_dev_attrs,
3641 .is_visible = nvme_dev_attrs_are_visible,
3642 };
3643
3644 static const struct attribute_group *nvme_dev_attr_groups[] = {
3645 &nvme_dev_attrs_group,
3646 NULL,
3647 };
3648
nvme_find_ns_head(struct nvme_subsystem * subsys,unsigned nsid)3649 static struct nvme_ns_head *nvme_find_ns_head(struct nvme_subsystem *subsys,
3650 unsigned nsid)
3651 {
3652 struct nvme_ns_head *h;
3653
3654 lockdep_assert_held(&subsys->lock);
3655
3656 list_for_each_entry(h, &subsys->nsheads, entry) {
3657 if (h->ns_id == nsid && kref_get_unless_zero(&h->ref))
3658 return h;
3659 }
3660
3661 return NULL;
3662 }
3663
__nvme_check_ids(struct nvme_subsystem * subsys,struct nvme_ns_head * new)3664 static int __nvme_check_ids(struct nvme_subsystem *subsys,
3665 struct nvme_ns_head *new)
3666 {
3667 struct nvme_ns_head *h;
3668
3669 lockdep_assert_held(&subsys->lock);
3670
3671 list_for_each_entry(h, &subsys->nsheads, entry) {
3672 if (nvme_ns_ids_valid(&new->ids) &&
3673 nvme_ns_ids_equal(&new->ids, &h->ids))
3674 return -EINVAL;
3675 }
3676
3677 return 0;
3678 }
3679
nvme_alloc_ns_head(struct nvme_ctrl * ctrl,unsigned nsid,struct nvme_ns_ids * ids)3680 static struct nvme_ns_head *nvme_alloc_ns_head(struct nvme_ctrl *ctrl,
3681 unsigned nsid, struct nvme_ns_ids *ids)
3682 {
3683 struct nvme_ns_head *head;
3684 size_t size = sizeof(*head);
3685 int ret = -ENOMEM;
3686
3687 #ifdef CONFIG_NVME_MULTIPATH
3688 size += num_possible_nodes() * sizeof(struct nvme_ns *);
3689 #endif
3690
3691 head = kzalloc(size, GFP_KERNEL);
3692 if (!head)
3693 goto out;
3694 ret = ida_simple_get(&ctrl->subsys->ns_ida, 1, 0, GFP_KERNEL);
3695 if (ret < 0)
3696 goto out_free_head;
3697 head->instance = ret;
3698 INIT_LIST_HEAD(&head->list);
3699 ret = init_srcu_struct(&head->srcu);
3700 if (ret)
3701 goto out_ida_remove;
3702 head->subsys = ctrl->subsys;
3703 head->ns_id = nsid;
3704 head->ids = *ids;
3705 kref_init(&head->ref);
3706
3707 ret = __nvme_check_ids(ctrl->subsys, head);
3708 if (ret) {
3709 dev_err(ctrl->device,
3710 "duplicate IDs for nsid %d\n", nsid);
3711 goto out_cleanup_srcu;
3712 }
3713
3714 if (head->ids.csi) {
3715 ret = nvme_get_effects_log(ctrl, head->ids.csi, &head->effects);
3716 if (ret)
3717 goto out_cleanup_srcu;
3718 } else
3719 head->effects = ctrl->effects;
3720
3721 ret = nvme_mpath_alloc_disk(ctrl, head);
3722 if (ret)
3723 goto out_cleanup_srcu;
3724
3725 list_add_tail(&head->entry, &ctrl->subsys->nsheads);
3726
3727 kref_get(&ctrl->subsys->ref);
3728
3729 return head;
3730 out_cleanup_srcu:
3731 cleanup_srcu_struct(&head->srcu);
3732 out_ida_remove:
3733 ida_simple_remove(&ctrl->subsys->ns_ida, head->instance);
3734 out_free_head:
3735 kfree(head);
3736 out:
3737 if (ret > 0)
3738 ret = blk_status_to_errno(nvme_error_status(ret));
3739 return ERR_PTR(ret);
3740 }
3741
nvme_init_ns_head(struct nvme_ns * ns,unsigned nsid,struct nvme_ns_ids * ids,bool is_shared)3742 static int nvme_init_ns_head(struct nvme_ns *ns, unsigned nsid,
3743 struct nvme_ns_ids *ids, bool is_shared)
3744 {
3745 struct nvme_ctrl *ctrl = ns->ctrl;
3746 struct nvme_ns_head *head = NULL;
3747 int ret = 0;
3748
3749 mutex_lock(&ctrl->subsys->lock);
3750 head = nvme_find_ns_head(ctrl->subsys, nsid);
3751 if (!head) {
3752 head = nvme_alloc_ns_head(ctrl, nsid, ids);
3753 if (IS_ERR(head)) {
3754 ret = PTR_ERR(head);
3755 goto out_unlock;
3756 }
3757 head->shared = is_shared;
3758 } else {
3759 ret = -EINVAL;
3760 if (!is_shared || !head->shared) {
3761 dev_err(ctrl->device,
3762 "Duplicate unshared namespace %d\n", nsid);
3763 goto out_put_ns_head;
3764 }
3765 if (!nvme_ns_ids_equal(&head->ids, ids)) {
3766 dev_err(ctrl->device,
3767 "IDs don't match for shared namespace %d\n",
3768 nsid);
3769 goto out_put_ns_head;
3770 }
3771 }
3772
3773 list_add_tail(&ns->siblings, &head->list);
3774 ns->head = head;
3775 mutex_unlock(&ctrl->subsys->lock);
3776 return 0;
3777
3778 out_put_ns_head:
3779 nvme_put_ns_head(head);
3780 out_unlock:
3781 mutex_unlock(&ctrl->subsys->lock);
3782 return ret;
3783 }
3784
nvme_find_get_ns(struct nvme_ctrl * ctrl,unsigned nsid)3785 struct nvme_ns *nvme_find_get_ns(struct nvme_ctrl *ctrl, unsigned nsid)
3786 {
3787 struct nvme_ns *ns, *ret = NULL;
3788
3789 down_read(&ctrl->namespaces_rwsem);
3790 list_for_each_entry(ns, &ctrl->namespaces, list) {
3791 if (ns->head->ns_id == nsid) {
3792 if (!kref_get_unless_zero(&ns->kref))
3793 continue;
3794 ret = ns;
3795 break;
3796 }
3797 if (ns->head->ns_id > nsid)
3798 break;
3799 }
3800 up_read(&ctrl->namespaces_rwsem);
3801 return ret;
3802 }
3803 EXPORT_SYMBOL_NS_GPL(nvme_find_get_ns, NVME_TARGET_PASSTHRU);
3804
3805 /*
3806 * Add the namespace to the controller list while keeping the list ordered.
3807 */
nvme_ns_add_to_ctrl_list(struct nvme_ns * ns)3808 static void nvme_ns_add_to_ctrl_list(struct nvme_ns *ns)
3809 {
3810 struct nvme_ns *tmp;
3811
3812 list_for_each_entry_reverse(tmp, &ns->ctrl->namespaces, list) {
3813 if (tmp->head->ns_id < ns->head->ns_id) {
3814 list_add(&ns->list, &tmp->list);
3815 return;
3816 }
3817 }
3818 list_add(&ns->list, &ns->ctrl->namespaces);
3819 }
3820
nvme_alloc_ns(struct nvme_ctrl * ctrl,unsigned nsid,struct nvme_ns_ids * ids)3821 static void nvme_alloc_ns(struct nvme_ctrl *ctrl, unsigned nsid,
3822 struct nvme_ns_ids *ids)
3823 {
3824 struct nvme_ns *ns;
3825 struct gendisk *disk;
3826 struct nvme_id_ns *id;
3827 char disk_name[DISK_NAME_LEN];
3828 int node = ctrl->numa_node, flags = GENHD_FL_EXT_DEVT, ret;
3829
3830 if (nvme_identify_ns(ctrl, nsid, ids, &id))
3831 return;
3832
3833 ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node);
3834 if (!ns)
3835 goto out_free_id;
3836
3837 ns->queue = blk_mq_init_queue(ctrl->tagset);
3838 if (IS_ERR(ns->queue))
3839 goto out_free_ns;
3840
3841 if (ctrl->opts && ctrl->opts->data_digest)
3842 blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES, ns->queue);
3843
3844 blk_queue_flag_set(QUEUE_FLAG_NONROT, ns->queue);
3845 if (ctrl->ops->flags & NVME_F_PCI_P2PDMA)
3846 blk_queue_flag_set(QUEUE_FLAG_PCI_P2PDMA, ns->queue);
3847
3848 ns->queue->queuedata = ns;
3849 ns->ctrl = ctrl;
3850 kref_init(&ns->kref);
3851
3852 ret = nvme_init_ns_head(ns, nsid, ids, id->nmic & NVME_NS_NMIC_SHARED);
3853 if (ret)
3854 goto out_free_queue;
3855 nvme_set_disk_name(disk_name, ns, ctrl, &flags);
3856
3857 disk = alloc_disk_node(0, node);
3858 if (!disk)
3859 goto out_unlink_ns;
3860
3861 disk->fops = &nvme_fops;
3862 disk->private_data = ns;
3863 disk->queue = ns->queue;
3864 disk->flags = flags;
3865 memcpy(disk->disk_name, disk_name, DISK_NAME_LEN);
3866 ns->disk = disk;
3867
3868 if (nvme_update_ns_info(ns, id))
3869 goto out_put_disk;
3870
3871 if ((ctrl->quirks & NVME_QUIRK_LIGHTNVM) && id->vs[0] == 0x1) {
3872 ret = nvme_nvm_register(ns, disk_name, node);
3873 if (ret) {
3874 dev_warn(ctrl->device, "LightNVM init failure\n");
3875 goto out_put_disk;
3876 }
3877 }
3878
3879 down_write(&ctrl->namespaces_rwsem);
3880 nvme_ns_add_to_ctrl_list(ns);
3881 up_write(&ctrl->namespaces_rwsem);
3882 nvme_get_ctrl(ctrl);
3883
3884 device_add_disk(ctrl->device, ns->disk, nvme_ns_id_attr_groups);
3885
3886 nvme_mpath_add_disk(ns, id);
3887 nvme_fault_inject_init(&ns->fault_inject, ns->disk->disk_name);
3888 kfree(id);
3889
3890 return;
3891 out_put_disk:
3892 /* prevent double queue cleanup */
3893 ns->disk->queue = NULL;
3894 put_disk(ns->disk);
3895 out_unlink_ns:
3896 mutex_lock(&ctrl->subsys->lock);
3897 list_del_rcu(&ns->siblings);
3898 if (list_empty(&ns->head->list))
3899 list_del_init(&ns->head->entry);
3900 mutex_unlock(&ctrl->subsys->lock);
3901 nvme_put_ns_head(ns->head);
3902 out_free_queue:
3903 blk_cleanup_queue(ns->queue);
3904 out_free_ns:
3905 kfree(ns);
3906 out_free_id:
3907 kfree(id);
3908 }
3909
nvme_ns_remove(struct nvme_ns * ns)3910 static void nvme_ns_remove(struct nvme_ns *ns)
3911 {
3912 if (test_and_set_bit(NVME_NS_REMOVING, &ns->flags))
3913 return;
3914
3915 set_capacity(ns->disk, 0);
3916 nvme_fault_inject_fini(&ns->fault_inject);
3917
3918 mutex_lock(&ns->ctrl->subsys->lock);
3919 list_del_rcu(&ns->siblings);
3920 if (list_empty(&ns->head->list))
3921 list_del_init(&ns->head->entry);
3922 mutex_unlock(&ns->ctrl->subsys->lock);
3923
3924 synchronize_rcu(); /* guarantee not available in head->list */
3925 nvme_mpath_clear_current_path(ns);
3926 synchronize_srcu(&ns->head->srcu); /* wait for concurrent submissions */
3927
3928 if (ns->disk->flags & GENHD_FL_UP) {
3929 del_gendisk(ns->disk);
3930 blk_cleanup_queue(ns->queue);
3931 if (blk_get_integrity(ns->disk))
3932 blk_integrity_unregister(ns->disk);
3933 }
3934
3935 down_write(&ns->ctrl->namespaces_rwsem);
3936 list_del_init(&ns->list);
3937 up_write(&ns->ctrl->namespaces_rwsem);
3938
3939 nvme_mpath_check_last_path(ns);
3940 nvme_put_ns(ns);
3941 }
3942
nvme_ns_remove_by_nsid(struct nvme_ctrl * ctrl,u32 nsid)3943 static void nvme_ns_remove_by_nsid(struct nvme_ctrl *ctrl, u32 nsid)
3944 {
3945 struct nvme_ns *ns = nvme_find_get_ns(ctrl, nsid);
3946
3947 if (ns) {
3948 nvme_ns_remove(ns);
3949 nvme_put_ns(ns);
3950 }
3951 }
3952
nvme_validate_ns(struct nvme_ns * ns,struct nvme_ns_ids * ids)3953 static void nvme_validate_ns(struct nvme_ns *ns, struct nvme_ns_ids *ids)
3954 {
3955 struct nvme_id_ns *id;
3956 int ret = NVME_SC_INVALID_NS | NVME_SC_DNR;
3957
3958 if (test_bit(NVME_NS_DEAD, &ns->flags))
3959 goto out;
3960
3961 ret = nvme_identify_ns(ns->ctrl, ns->head->ns_id, ids, &id);
3962 if (ret)
3963 goto out;
3964
3965 ret = NVME_SC_INVALID_NS | NVME_SC_DNR;
3966 if (!nvme_ns_ids_equal(&ns->head->ids, ids)) {
3967 dev_err(ns->ctrl->device,
3968 "identifiers changed for nsid %d\n", ns->head->ns_id);
3969 goto out_free_id;
3970 }
3971
3972 ret = nvme_update_ns_info(ns, id);
3973
3974 out_free_id:
3975 kfree(id);
3976 out:
3977 /*
3978 * Only remove the namespace if we got a fatal error back from the
3979 * device, otherwise ignore the error and just move on.
3980 *
3981 * TODO: we should probably schedule a delayed retry here.
3982 */
3983 if (ret > 0 && (ret & NVME_SC_DNR))
3984 nvme_ns_remove(ns);
3985 else
3986 revalidate_disk_size(ns->disk, true);
3987 }
3988
nvme_validate_or_alloc_ns(struct nvme_ctrl * ctrl,unsigned nsid)3989 static void nvme_validate_or_alloc_ns(struct nvme_ctrl *ctrl, unsigned nsid)
3990 {
3991 struct nvme_ns_ids ids = { };
3992 struct nvme_ns *ns;
3993
3994 if (nvme_identify_ns_descs(ctrl, nsid, &ids))
3995 return;
3996
3997 ns = nvme_find_get_ns(ctrl, nsid);
3998 if (ns) {
3999 nvme_validate_ns(ns, &ids);
4000 nvme_put_ns(ns);
4001 return;
4002 }
4003
4004 switch (ids.csi) {
4005 case NVME_CSI_NVM:
4006 nvme_alloc_ns(ctrl, nsid, &ids);
4007 break;
4008 case NVME_CSI_ZNS:
4009 if (!IS_ENABLED(CONFIG_BLK_DEV_ZONED)) {
4010 dev_warn(ctrl->device,
4011 "nsid %u not supported without CONFIG_BLK_DEV_ZONED\n",
4012 nsid);
4013 break;
4014 }
4015 if (!nvme_multi_css(ctrl)) {
4016 dev_warn(ctrl->device,
4017 "command set not reported for nsid: %d\n",
4018 nsid);
4019 break;
4020 }
4021 nvme_alloc_ns(ctrl, nsid, &ids);
4022 break;
4023 default:
4024 dev_warn(ctrl->device, "unknown csi %u for nsid %u\n",
4025 ids.csi, nsid);
4026 break;
4027 }
4028 }
4029
nvme_remove_invalid_namespaces(struct nvme_ctrl * ctrl,unsigned nsid)4030 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
4031 unsigned nsid)
4032 {
4033 struct nvme_ns *ns, *next;
4034 LIST_HEAD(rm_list);
4035
4036 down_write(&ctrl->namespaces_rwsem);
4037 list_for_each_entry_safe(ns, next, &ctrl->namespaces, list) {
4038 if (ns->head->ns_id > nsid || test_bit(NVME_NS_DEAD, &ns->flags))
4039 list_move_tail(&ns->list, &rm_list);
4040 }
4041 up_write(&ctrl->namespaces_rwsem);
4042
4043 list_for_each_entry_safe(ns, next, &rm_list, list)
4044 nvme_ns_remove(ns);
4045
4046 }
4047
nvme_scan_ns_list(struct nvme_ctrl * ctrl)4048 static int nvme_scan_ns_list(struct nvme_ctrl *ctrl)
4049 {
4050 const int nr_entries = NVME_IDENTIFY_DATA_SIZE / sizeof(__le32);
4051 __le32 *ns_list;
4052 u32 prev = 0;
4053 int ret = 0, i;
4054
4055 if (nvme_ctrl_limited_cns(ctrl))
4056 return -EOPNOTSUPP;
4057
4058 ns_list = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
4059 if (!ns_list)
4060 return -ENOMEM;
4061
4062 for (;;) {
4063 struct nvme_command cmd = {
4064 .identify.opcode = nvme_admin_identify,
4065 .identify.cns = NVME_ID_CNS_NS_ACTIVE_LIST,
4066 .identify.nsid = cpu_to_le32(prev),
4067 };
4068
4069 ret = nvme_submit_sync_cmd(ctrl->admin_q, &cmd, ns_list,
4070 NVME_IDENTIFY_DATA_SIZE);
4071 if (ret)
4072 goto free;
4073
4074 for (i = 0; i < nr_entries; i++) {
4075 u32 nsid = le32_to_cpu(ns_list[i]);
4076
4077 if (!nsid) /* end of the list? */
4078 goto out;
4079 nvme_validate_or_alloc_ns(ctrl, nsid);
4080 while (++prev < nsid)
4081 nvme_ns_remove_by_nsid(ctrl, prev);
4082 }
4083 }
4084 out:
4085 nvme_remove_invalid_namespaces(ctrl, prev);
4086 free:
4087 kfree(ns_list);
4088 return ret;
4089 }
4090
nvme_scan_ns_sequential(struct nvme_ctrl * ctrl)4091 static void nvme_scan_ns_sequential(struct nvme_ctrl *ctrl)
4092 {
4093 struct nvme_id_ctrl *id;
4094 u32 nn, i;
4095
4096 if (nvme_identify_ctrl(ctrl, &id))
4097 return;
4098 nn = le32_to_cpu(id->nn);
4099 kfree(id);
4100
4101 for (i = 1; i <= nn; i++)
4102 nvme_validate_or_alloc_ns(ctrl, i);
4103
4104 nvme_remove_invalid_namespaces(ctrl, nn);
4105 }
4106
nvme_clear_changed_ns_log(struct nvme_ctrl * ctrl)4107 static void nvme_clear_changed_ns_log(struct nvme_ctrl *ctrl)
4108 {
4109 size_t log_size = NVME_MAX_CHANGED_NAMESPACES * sizeof(__le32);
4110 __le32 *log;
4111 int error;
4112
4113 log = kzalloc(log_size, GFP_KERNEL);
4114 if (!log)
4115 return;
4116
4117 /*
4118 * We need to read the log to clear the AEN, but we don't want to rely
4119 * on it for the changed namespace information as userspace could have
4120 * raced with us in reading the log page, which could cause us to miss
4121 * updates.
4122 */
4123 error = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_CHANGED_NS, 0,
4124 NVME_CSI_NVM, log, log_size, 0);
4125 if (error)
4126 dev_warn(ctrl->device,
4127 "reading changed ns log failed: %d\n", error);
4128
4129 kfree(log);
4130 }
4131
nvme_scan_work(struct work_struct * work)4132 static void nvme_scan_work(struct work_struct *work)
4133 {
4134 struct nvme_ctrl *ctrl =
4135 container_of(work, struct nvme_ctrl, scan_work);
4136
4137 /* No tagset on a live ctrl means IO queues could not created */
4138 if (ctrl->state != NVME_CTRL_LIVE || !ctrl->tagset)
4139 return;
4140
4141 if (test_and_clear_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events)) {
4142 dev_info(ctrl->device, "rescanning namespaces.\n");
4143 nvme_clear_changed_ns_log(ctrl);
4144 }
4145
4146 mutex_lock(&ctrl->scan_lock);
4147 if (nvme_scan_ns_list(ctrl) != 0)
4148 nvme_scan_ns_sequential(ctrl);
4149 mutex_unlock(&ctrl->scan_lock);
4150 }
4151
4152 /*
4153 * This function iterates the namespace list unlocked to allow recovery from
4154 * controller failure. It is up to the caller to ensure the namespace list is
4155 * not modified by scan work while this function is executing.
4156 */
nvme_remove_namespaces(struct nvme_ctrl * ctrl)4157 void nvme_remove_namespaces(struct nvme_ctrl *ctrl)
4158 {
4159 struct nvme_ns *ns, *next;
4160 LIST_HEAD(ns_list);
4161
4162 /*
4163 * make sure to requeue I/O to all namespaces as these
4164 * might result from the scan itself and must complete
4165 * for the scan_work to make progress
4166 */
4167 nvme_mpath_clear_ctrl_paths(ctrl);
4168
4169 /* prevent racing with ns scanning */
4170 flush_work(&ctrl->scan_work);
4171
4172 /*
4173 * The dead states indicates the controller was not gracefully
4174 * disconnected. In that case, we won't be able to flush any data while
4175 * removing the namespaces' disks; fail all the queues now to avoid
4176 * potentially having to clean up the failed sync later.
4177 */
4178 if (ctrl->state == NVME_CTRL_DEAD)
4179 nvme_kill_queues(ctrl);
4180
4181 /* this is a no-op when called from the controller reset handler */
4182 nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING_NOIO);
4183
4184 down_write(&ctrl->namespaces_rwsem);
4185 list_splice_init(&ctrl->namespaces, &ns_list);
4186 up_write(&ctrl->namespaces_rwsem);
4187
4188 list_for_each_entry_safe(ns, next, &ns_list, list)
4189 nvme_ns_remove(ns);
4190 }
4191 EXPORT_SYMBOL_GPL(nvme_remove_namespaces);
4192
nvme_class_uevent(struct device * dev,struct kobj_uevent_env * env)4193 static int nvme_class_uevent(struct device *dev, struct kobj_uevent_env *env)
4194 {
4195 struct nvme_ctrl *ctrl =
4196 container_of(dev, struct nvme_ctrl, ctrl_device);
4197 struct nvmf_ctrl_options *opts = ctrl->opts;
4198 int ret;
4199
4200 ret = add_uevent_var(env, "NVME_TRTYPE=%s", ctrl->ops->name);
4201 if (ret)
4202 return ret;
4203
4204 if (opts) {
4205 ret = add_uevent_var(env, "NVME_TRADDR=%s", opts->traddr);
4206 if (ret)
4207 return ret;
4208
4209 ret = add_uevent_var(env, "NVME_TRSVCID=%s",
4210 opts->trsvcid ?: "none");
4211 if (ret)
4212 return ret;
4213
4214 ret = add_uevent_var(env, "NVME_HOST_TRADDR=%s",
4215 opts->host_traddr ?: "none");
4216 }
4217 return ret;
4218 }
4219
nvme_aen_uevent(struct nvme_ctrl * ctrl)4220 static void nvme_aen_uevent(struct nvme_ctrl *ctrl)
4221 {
4222 char *envp[2] = { NULL, NULL };
4223 u32 aen_result = ctrl->aen_result;
4224
4225 ctrl->aen_result = 0;
4226 if (!aen_result)
4227 return;
4228
4229 envp[0] = kasprintf(GFP_KERNEL, "NVME_AEN=%#08x", aen_result);
4230 if (!envp[0])
4231 return;
4232 kobject_uevent_env(&ctrl->device->kobj, KOBJ_CHANGE, envp);
4233 kfree(envp[0]);
4234 }
4235
nvme_async_event_work(struct work_struct * work)4236 static void nvme_async_event_work(struct work_struct *work)
4237 {
4238 struct nvme_ctrl *ctrl =
4239 container_of(work, struct nvme_ctrl, async_event_work);
4240
4241 nvme_aen_uevent(ctrl);
4242 ctrl->ops->submit_async_event(ctrl);
4243 }
4244
nvme_ctrl_pp_status(struct nvme_ctrl * ctrl)4245 static bool nvme_ctrl_pp_status(struct nvme_ctrl *ctrl)
4246 {
4247
4248 u32 csts;
4249
4250 if (ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts))
4251 return false;
4252
4253 if (csts == ~0)
4254 return false;
4255
4256 return ((ctrl->ctrl_config & NVME_CC_ENABLE) && (csts & NVME_CSTS_PP));
4257 }
4258
nvme_get_fw_slot_info(struct nvme_ctrl * ctrl)4259 static void nvme_get_fw_slot_info(struct nvme_ctrl *ctrl)
4260 {
4261 struct nvme_fw_slot_info_log *log;
4262
4263 log = kmalloc(sizeof(*log), GFP_KERNEL);
4264 if (!log)
4265 return;
4266
4267 if (nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_FW_SLOT, 0, NVME_CSI_NVM,
4268 log, sizeof(*log), 0))
4269 dev_warn(ctrl->device, "Get FW SLOT INFO log error\n");
4270 kfree(log);
4271 }
4272
nvme_fw_act_work(struct work_struct * work)4273 static void nvme_fw_act_work(struct work_struct *work)
4274 {
4275 struct nvme_ctrl *ctrl = container_of(work,
4276 struct nvme_ctrl, fw_act_work);
4277 unsigned long fw_act_timeout;
4278
4279 if (ctrl->mtfa)
4280 fw_act_timeout = jiffies +
4281 msecs_to_jiffies(ctrl->mtfa * 100);
4282 else
4283 fw_act_timeout = jiffies +
4284 msecs_to_jiffies(admin_timeout * 1000);
4285
4286 nvme_stop_queues(ctrl);
4287 while (nvme_ctrl_pp_status(ctrl)) {
4288 if (time_after(jiffies, fw_act_timeout)) {
4289 dev_warn(ctrl->device,
4290 "Fw activation timeout, reset controller\n");
4291 nvme_try_sched_reset(ctrl);
4292 return;
4293 }
4294 msleep(100);
4295 }
4296
4297 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE))
4298 return;
4299
4300 nvme_start_queues(ctrl);
4301 /* read FW slot information to clear the AER */
4302 nvme_get_fw_slot_info(ctrl);
4303 }
4304
nvme_handle_aen_notice(struct nvme_ctrl * ctrl,u32 result)4305 static void nvme_handle_aen_notice(struct nvme_ctrl *ctrl, u32 result)
4306 {
4307 u32 aer_notice_type = (result & 0xff00) >> 8;
4308
4309 trace_nvme_async_event(ctrl, aer_notice_type);
4310
4311 switch (aer_notice_type) {
4312 case NVME_AER_NOTICE_NS_CHANGED:
4313 set_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events);
4314 nvme_queue_scan(ctrl);
4315 break;
4316 case NVME_AER_NOTICE_FW_ACT_STARTING:
4317 /*
4318 * We are (ab)using the RESETTING state to prevent subsequent
4319 * recovery actions from interfering with the controller's
4320 * firmware activation.
4321 */
4322 if (nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING))
4323 queue_work(nvme_wq, &ctrl->fw_act_work);
4324 break;
4325 #ifdef CONFIG_NVME_MULTIPATH
4326 case NVME_AER_NOTICE_ANA:
4327 if (!ctrl->ana_log_buf)
4328 break;
4329 queue_work(nvme_wq, &ctrl->ana_work);
4330 break;
4331 #endif
4332 case NVME_AER_NOTICE_DISC_CHANGED:
4333 ctrl->aen_result = result;
4334 break;
4335 default:
4336 dev_warn(ctrl->device, "async event result %08x\n", result);
4337 }
4338 }
4339
nvme_complete_async_event(struct nvme_ctrl * ctrl,__le16 status,volatile union nvme_result * res)4340 void nvme_complete_async_event(struct nvme_ctrl *ctrl, __le16 status,
4341 volatile union nvme_result *res)
4342 {
4343 u32 result = le32_to_cpu(res->u32);
4344 u32 aer_type = result & 0x07;
4345
4346 if (le16_to_cpu(status) >> 1 != NVME_SC_SUCCESS)
4347 return;
4348
4349 switch (aer_type) {
4350 case NVME_AER_NOTICE:
4351 nvme_handle_aen_notice(ctrl, result);
4352 break;
4353 case NVME_AER_ERROR:
4354 case NVME_AER_SMART:
4355 case NVME_AER_CSS:
4356 case NVME_AER_VS:
4357 trace_nvme_async_event(ctrl, aer_type);
4358 ctrl->aen_result = result;
4359 break;
4360 default:
4361 break;
4362 }
4363 queue_work(nvme_wq, &ctrl->async_event_work);
4364 }
4365 EXPORT_SYMBOL_GPL(nvme_complete_async_event);
4366
nvme_stop_ctrl(struct nvme_ctrl * ctrl)4367 void nvme_stop_ctrl(struct nvme_ctrl *ctrl)
4368 {
4369 nvme_mpath_stop(ctrl);
4370 nvme_stop_keep_alive(ctrl);
4371 flush_work(&ctrl->async_event_work);
4372 cancel_work_sync(&ctrl->fw_act_work);
4373 }
4374 EXPORT_SYMBOL_GPL(nvme_stop_ctrl);
4375
nvme_start_ctrl(struct nvme_ctrl * ctrl)4376 void nvme_start_ctrl(struct nvme_ctrl *ctrl)
4377 {
4378 nvme_start_keep_alive(ctrl);
4379
4380 nvme_enable_aen(ctrl);
4381
4382 if (ctrl->queue_count > 1) {
4383 nvme_queue_scan(ctrl);
4384 nvme_start_queues(ctrl);
4385 }
4386 }
4387 EXPORT_SYMBOL_GPL(nvme_start_ctrl);
4388
nvme_uninit_ctrl(struct nvme_ctrl * ctrl)4389 void nvme_uninit_ctrl(struct nvme_ctrl *ctrl)
4390 {
4391 nvme_fault_inject_fini(&ctrl->fault_inject);
4392 dev_pm_qos_hide_latency_tolerance(ctrl->device);
4393 cdev_device_del(&ctrl->cdev, ctrl->device);
4394 nvme_put_ctrl(ctrl);
4395 }
4396 EXPORT_SYMBOL_GPL(nvme_uninit_ctrl);
4397
nvme_free_cels(struct nvme_ctrl * ctrl)4398 static void nvme_free_cels(struct nvme_ctrl *ctrl)
4399 {
4400 struct nvme_effects_log *cel;
4401 unsigned long i;
4402
4403 xa_for_each (&ctrl->cels, i, cel) {
4404 xa_erase(&ctrl->cels, i);
4405 kfree(cel);
4406 }
4407
4408 xa_destroy(&ctrl->cels);
4409 }
4410
nvme_free_ctrl(struct device * dev)4411 static void nvme_free_ctrl(struct device *dev)
4412 {
4413 struct nvme_ctrl *ctrl =
4414 container_of(dev, struct nvme_ctrl, ctrl_device);
4415 struct nvme_subsystem *subsys = ctrl->subsys;
4416
4417 if (!subsys || ctrl->instance != subsys->instance)
4418 ida_simple_remove(&nvme_instance_ida, ctrl->instance);
4419
4420 nvme_free_cels(ctrl);
4421 nvme_mpath_uninit(ctrl);
4422 __free_page(ctrl->discard_page);
4423
4424 if (subsys) {
4425 mutex_lock(&nvme_subsystems_lock);
4426 list_del(&ctrl->subsys_entry);
4427 sysfs_remove_link(&subsys->dev.kobj, dev_name(ctrl->device));
4428 mutex_unlock(&nvme_subsystems_lock);
4429 }
4430
4431 ctrl->ops->free_ctrl(ctrl);
4432
4433 if (subsys)
4434 nvme_put_subsystem(subsys);
4435 }
4436
4437 /*
4438 * Initialize a NVMe controller structures. This needs to be called during
4439 * earliest initialization so that we have the initialized structured around
4440 * during probing.
4441 */
nvme_init_ctrl(struct nvme_ctrl * ctrl,struct device * dev,const struct nvme_ctrl_ops * ops,unsigned long quirks)4442 int nvme_init_ctrl(struct nvme_ctrl *ctrl, struct device *dev,
4443 const struct nvme_ctrl_ops *ops, unsigned long quirks)
4444 {
4445 int ret;
4446
4447 ctrl->state = NVME_CTRL_NEW;
4448 spin_lock_init(&ctrl->lock);
4449 mutex_init(&ctrl->scan_lock);
4450 INIT_LIST_HEAD(&ctrl->namespaces);
4451 xa_init(&ctrl->cels);
4452 init_rwsem(&ctrl->namespaces_rwsem);
4453 ctrl->dev = dev;
4454 ctrl->ops = ops;
4455 ctrl->quirks = quirks;
4456 ctrl->numa_node = NUMA_NO_NODE;
4457 INIT_WORK(&ctrl->scan_work, nvme_scan_work);
4458 INIT_WORK(&ctrl->async_event_work, nvme_async_event_work);
4459 INIT_WORK(&ctrl->fw_act_work, nvme_fw_act_work);
4460 INIT_WORK(&ctrl->delete_work, nvme_delete_ctrl_work);
4461 init_waitqueue_head(&ctrl->state_wq);
4462
4463 INIT_DELAYED_WORK(&ctrl->ka_work, nvme_keep_alive_work);
4464 memset(&ctrl->ka_cmd, 0, sizeof(ctrl->ka_cmd));
4465 ctrl->ka_cmd.common.opcode = nvme_admin_keep_alive;
4466
4467 BUILD_BUG_ON(NVME_DSM_MAX_RANGES * sizeof(struct nvme_dsm_range) >
4468 PAGE_SIZE);
4469 ctrl->discard_page = alloc_page(GFP_KERNEL);
4470 if (!ctrl->discard_page) {
4471 ret = -ENOMEM;
4472 goto out;
4473 }
4474
4475 ret = ida_simple_get(&nvme_instance_ida, 0, 0, GFP_KERNEL);
4476 if (ret < 0)
4477 goto out;
4478 ctrl->instance = ret;
4479
4480 device_initialize(&ctrl->ctrl_device);
4481 ctrl->device = &ctrl->ctrl_device;
4482 ctrl->device->devt = MKDEV(MAJOR(nvme_chr_devt), ctrl->instance);
4483 ctrl->device->class = nvme_class;
4484 ctrl->device->parent = ctrl->dev;
4485 ctrl->device->groups = nvme_dev_attr_groups;
4486 ctrl->device->release = nvme_free_ctrl;
4487 dev_set_drvdata(ctrl->device, ctrl);
4488 ret = dev_set_name(ctrl->device, "nvme%d", ctrl->instance);
4489 if (ret)
4490 goto out_release_instance;
4491
4492 nvme_get_ctrl(ctrl);
4493 cdev_init(&ctrl->cdev, &nvme_dev_fops);
4494 ctrl->cdev.owner = ops->module;
4495 ret = cdev_device_add(&ctrl->cdev, ctrl->device);
4496 if (ret)
4497 goto out_free_name;
4498
4499 /*
4500 * Initialize latency tolerance controls. The sysfs files won't
4501 * be visible to userspace unless the device actually supports APST.
4502 */
4503 ctrl->device->power.set_latency_tolerance = nvme_set_latency_tolerance;
4504 dev_pm_qos_update_user_latency_tolerance(ctrl->device,
4505 min(default_ps_max_latency_us, (unsigned long)S32_MAX));
4506
4507 nvme_fault_inject_init(&ctrl->fault_inject, dev_name(ctrl->device));
4508 nvme_mpath_init_ctrl(ctrl);
4509
4510 return 0;
4511 out_free_name:
4512 nvme_put_ctrl(ctrl);
4513 kfree_const(ctrl->device->kobj.name);
4514 out_release_instance:
4515 ida_simple_remove(&nvme_instance_ida, ctrl->instance);
4516 out:
4517 if (ctrl->discard_page)
4518 __free_page(ctrl->discard_page);
4519 return ret;
4520 }
4521 EXPORT_SYMBOL_GPL(nvme_init_ctrl);
4522
nvme_start_ns_queue(struct nvme_ns * ns)4523 static void nvme_start_ns_queue(struct nvme_ns *ns)
4524 {
4525 if (test_and_clear_bit(NVME_NS_STOPPED, &ns->flags))
4526 blk_mq_unquiesce_queue(ns->queue);
4527 }
4528
nvme_stop_ns_queue(struct nvme_ns * ns)4529 static void nvme_stop_ns_queue(struct nvme_ns *ns)
4530 {
4531 if (!test_and_set_bit(NVME_NS_STOPPED, &ns->flags))
4532 blk_mq_quiesce_queue(ns->queue);
4533 }
4534
4535 /*
4536 * Prepare a queue for teardown.
4537 *
4538 * This must forcibly unquiesce queues to avoid blocking dispatch, and only set
4539 * the capacity to 0 after that to avoid blocking dispatchers that may be
4540 * holding bd_butex. This will end buffered writers dirtying pages that can't
4541 * be synced.
4542 */
nvme_set_queue_dying(struct nvme_ns * ns)4543 static void nvme_set_queue_dying(struct nvme_ns *ns)
4544 {
4545 if (test_and_set_bit(NVME_NS_DEAD, &ns->flags))
4546 return;
4547
4548 blk_set_queue_dying(ns->queue);
4549 nvme_start_ns_queue(ns);
4550
4551 set_capacity(ns->disk, 0);
4552 nvme_update_bdev_size(ns->disk);
4553 }
4554
4555 /**
4556 * nvme_kill_queues(): Ends all namespace queues
4557 * @ctrl: the dead controller that needs to end
4558 *
4559 * Call this function when the driver determines it is unable to get the
4560 * controller in a state capable of servicing IO.
4561 */
nvme_kill_queues(struct nvme_ctrl * ctrl)4562 void nvme_kill_queues(struct nvme_ctrl *ctrl)
4563 {
4564 struct nvme_ns *ns;
4565
4566 down_read(&ctrl->namespaces_rwsem);
4567
4568 /* Forcibly unquiesce queues to avoid blocking dispatch */
4569 if (ctrl->admin_q && !blk_queue_dying(ctrl->admin_q))
4570 nvme_start_admin_queue(ctrl);
4571
4572 list_for_each_entry(ns, &ctrl->namespaces, list)
4573 nvme_set_queue_dying(ns);
4574
4575 up_read(&ctrl->namespaces_rwsem);
4576 }
4577 EXPORT_SYMBOL_GPL(nvme_kill_queues);
4578
nvme_unfreeze(struct nvme_ctrl * ctrl)4579 void nvme_unfreeze(struct nvme_ctrl *ctrl)
4580 {
4581 struct nvme_ns *ns;
4582
4583 down_read(&ctrl->namespaces_rwsem);
4584 list_for_each_entry(ns, &ctrl->namespaces, list)
4585 blk_mq_unfreeze_queue(ns->queue);
4586 up_read(&ctrl->namespaces_rwsem);
4587 }
4588 EXPORT_SYMBOL_GPL(nvme_unfreeze);
4589
nvme_wait_freeze_timeout(struct nvme_ctrl * ctrl,long timeout)4590 int nvme_wait_freeze_timeout(struct nvme_ctrl *ctrl, long timeout)
4591 {
4592 struct nvme_ns *ns;
4593
4594 down_read(&ctrl->namespaces_rwsem);
4595 list_for_each_entry(ns, &ctrl->namespaces, list) {
4596 timeout = blk_mq_freeze_queue_wait_timeout(ns->queue, timeout);
4597 if (timeout <= 0)
4598 break;
4599 }
4600 up_read(&ctrl->namespaces_rwsem);
4601 return timeout;
4602 }
4603 EXPORT_SYMBOL_GPL(nvme_wait_freeze_timeout);
4604
nvme_wait_freeze(struct nvme_ctrl * ctrl)4605 void nvme_wait_freeze(struct nvme_ctrl *ctrl)
4606 {
4607 struct nvme_ns *ns;
4608
4609 down_read(&ctrl->namespaces_rwsem);
4610 list_for_each_entry(ns, &ctrl->namespaces, list)
4611 blk_mq_freeze_queue_wait(ns->queue);
4612 up_read(&ctrl->namespaces_rwsem);
4613 }
4614 EXPORT_SYMBOL_GPL(nvme_wait_freeze);
4615
nvme_start_freeze(struct nvme_ctrl * ctrl)4616 void nvme_start_freeze(struct nvme_ctrl *ctrl)
4617 {
4618 struct nvme_ns *ns;
4619
4620 down_read(&ctrl->namespaces_rwsem);
4621 list_for_each_entry(ns, &ctrl->namespaces, list)
4622 blk_freeze_queue_start(ns->queue);
4623 up_read(&ctrl->namespaces_rwsem);
4624 }
4625 EXPORT_SYMBOL_GPL(nvme_start_freeze);
4626
nvme_stop_queues(struct nvme_ctrl * ctrl)4627 void nvme_stop_queues(struct nvme_ctrl *ctrl)
4628 {
4629 struct nvme_ns *ns;
4630
4631 down_read(&ctrl->namespaces_rwsem);
4632 list_for_each_entry(ns, &ctrl->namespaces, list)
4633 nvme_stop_ns_queue(ns);
4634 up_read(&ctrl->namespaces_rwsem);
4635 }
4636 EXPORT_SYMBOL_GPL(nvme_stop_queues);
4637
nvme_start_queues(struct nvme_ctrl * ctrl)4638 void nvme_start_queues(struct nvme_ctrl *ctrl)
4639 {
4640 struct nvme_ns *ns;
4641
4642 down_read(&ctrl->namespaces_rwsem);
4643 list_for_each_entry(ns, &ctrl->namespaces, list)
4644 nvme_start_ns_queue(ns);
4645 up_read(&ctrl->namespaces_rwsem);
4646 }
4647 EXPORT_SYMBOL_GPL(nvme_start_queues);
4648
nvme_stop_admin_queue(struct nvme_ctrl * ctrl)4649 void nvme_stop_admin_queue(struct nvme_ctrl *ctrl)
4650 {
4651 if (!test_and_set_bit(NVME_CTRL_ADMIN_Q_STOPPED, &ctrl->flags))
4652 blk_mq_quiesce_queue(ctrl->admin_q);
4653 }
4654 EXPORT_SYMBOL_GPL(nvme_stop_admin_queue);
4655
nvme_start_admin_queue(struct nvme_ctrl * ctrl)4656 void nvme_start_admin_queue(struct nvme_ctrl *ctrl)
4657 {
4658 if (test_and_clear_bit(NVME_CTRL_ADMIN_Q_STOPPED, &ctrl->flags))
4659 blk_mq_unquiesce_queue(ctrl->admin_q);
4660 }
4661 EXPORT_SYMBOL_GPL(nvme_start_admin_queue);
4662
nvme_sync_io_queues(struct nvme_ctrl * ctrl)4663 void nvme_sync_io_queues(struct nvme_ctrl *ctrl)
4664 {
4665 struct nvme_ns *ns;
4666
4667 down_read(&ctrl->namespaces_rwsem);
4668 list_for_each_entry(ns, &ctrl->namespaces, list)
4669 blk_sync_queue(ns->queue);
4670 up_read(&ctrl->namespaces_rwsem);
4671 }
4672 EXPORT_SYMBOL_GPL(nvme_sync_io_queues);
4673
nvme_sync_queues(struct nvme_ctrl * ctrl)4674 void nvme_sync_queues(struct nvme_ctrl *ctrl)
4675 {
4676 nvme_sync_io_queues(ctrl);
4677 if (ctrl->admin_q)
4678 blk_sync_queue(ctrl->admin_q);
4679 }
4680 EXPORT_SYMBOL_GPL(nvme_sync_queues);
4681
nvme_ctrl_from_file(struct file * file)4682 struct nvme_ctrl *nvme_ctrl_from_file(struct file *file)
4683 {
4684 if (file->f_op != &nvme_dev_fops)
4685 return NULL;
4686 return file->private_data;
4687 }
4688 EXPORT_SYMBOL_NS_GPL(nvme_ctrl_from_file, NVME_TARGET_PASSTHRU);
4689
4690 /*
4691 * Check we didn't inadvertently grow the command structure sizes:
4692 */
_nvme_check_size(void)4693 static inline void _nvme_check_size(void)
4694 {
4695 BUILD_BUG_ON(sizeof(struct nvme_common_command) != 64);
4696 BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
4697 BUILD_BUG_ON(sizeof(struct nvme_identify) != 64);
4698 BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
4699 BUILD_BUG_ON(sizeof(struct nvme_download_firmware) != 64);
4700 BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
4701 BUILD_BUG_ON(sizeof(struct nvme_dsm_cmd) != 64);
4702 BUILD_BUG_ON(sizeof(struct nvme_write_zeroes_cmd) != 64);
4703 BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
4704 BUILD_BUG_ON(sizeof(struct nvme_get_log_page_command) != 64);
4705 BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
4706 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != NVME_IDENTIFY_DATA_SIZE);
4707 BUILD_BUG_ON(sizeof(struct nvme_id_ns) != NVME_IDENTIFY_DATA_SIZE);
4708 BUILD_BUG_ON(sizeof(struct nvme_id_ns_zns) != NVME_IDENTIFY_DATA_SIZE);
4709 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl_zns) != NVME_IDENTIFY_DATA_SIZE);
4710 BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
4711 BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
4712 BUILD_BUG_ON(sizeof(struct nvme_dbbuf) != 64);
4713 BUILD_BUG_ON(sizeof(struct nvme_directive_cmd) != 64);
4714 }
4715
4716
nvme_core_init(void)4717 static int __init nvme_core_init(void)
4718 {
4719 int result = -ENOMEM;
4720
4721 _nvme_check_size();
4722
4723 nvme_wq = alloc_workqueue("nvme-wq",
4724 WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
4725 if (!nvme_wq)
4726 goto out;
4727
4728 nvme_reset_wq = alloc_workqueue("nvme-reset-wq",
4729 WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
4730 if (!nvme_reset_wq)
4731 goto destroy_wq;
4732
4733 nvme_delete_wq = alloc_workqueue("nvme-delete-wq",
4734 WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
4735 if (!nvme_delete_wq)
4736 goto destroy_reset_wq;
4737
4738 result = alloc_chrdev_region(&nvme_chr_devt, 0, NVME_MINORS, "nvme");
4739 if (result < 0)
4740 goto destroy_delete_wq;
4741
4742 nvme_class = class_create(THIS_MODULE, "nvme");
4743 if (IS_ERR(nvme_class)) {
4744 result = PTR_ERR(nvme_class);
4745 goto unregister_chrdev;
4746 }
4747 nvme_class->dev_uevent = nvme_class_uevent;
4748
4749 nvme_subsys_class = class_create(THIS_MODULE, "nvme-subsystem");
4750 if (IS_ERR(nvme_subsys_class)) {
4751 result = PTR_ERR(nvme_subsys_class);
4752 goto destroy_class;
4753 }
4754 return 0;
4755
4756 destroy_class:
4757 class_destroy(nvme_class);
4758 unregister_chrdev:
4759 unregister_chrdev_region(nvme_chr_devt, NVME_MINORS);
4760 destroy_delete_wq:
4761 destroy_workqueue(nvme_delete_wq);
4762 destroy_reset_wq:
4763 destroy_workqueue(nvme_reset_wq);
4764 destroy_wq:
4765 destroy_workqueue(nvme_wq);
4766 out:
4767 return result;
4768 }
4769
nvme_core_exit(void)4770 static void __exit nvme_core_exit(void)
4771 {
4772 class_destroy(nvme_subsys_class);
4773 class_destroy(nvme_class);
4774 unregister_chrdev_region(nvme_chr_devt, NVME_MINORS);
4775 destroy_workqueue(nvme_delete_wq);
4776 destroy_workqueue(nvme_reset_wq);
4777 destroy_workqueue(nvme_wq);
4778 ida_destroy(&nvme_instance_ida);
4779 }
4780
4781 MODULE_LICENSE("GPL");
4782 MODULE_VERSION("1.0");
4783 module_init(nvme_core_init);
4784 module_exit(nvme_core_exit);
4785