1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * NVMe I/O command implementation.
4 * Copyright (c) 2015-2016 HGST, a Western Digital Company.
5 */
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 #include <linux/blkdev.h>
8 #include <linux/module.h>
9 #include "nvmet.h"
10
nvmet_bdev_set_limits(struct block_device * bdev,struct nvme_id_ns * id)11 void nvmet_bdev_set_limits(struct block_device *bdev, struct nvme_id_ns *id)
12 {
13 const struct queue_limits *ql = &bdev_get_queue(bdev)->limits;
14 /* Number of logical blocks per physical block. */
15 const u32 lpp = ql->physical_block_size / ql->logical_block_size;
16 /* Logical blocks per physical block, 0's based. */
17 const __le16 lpp0b = to0based(lpp);
18
19 /*
20 * For NVMe 1.2 and later, bit 1 indicates that the fields NAWUN,
21 * NAWUPF, and NACWU are defined for this namespace and should be
22 * used by the host for this namespace instead of the AWUN, AWUPF,
23 * and ACWU fields in the Identify Controller data structure. If
24 * any of these fields are zero that means that the corresponding
25 * field from the identify controller data structure should be used.
26 */
27 id->nsfeat |= 1 << 1;
28 id->nawun = lpp0b;
29 id->nawupf = lpp0b;
30 id->nacwu = lpp0b;
31
32 /*
33 * Bit 4 indicates that the fields NPWG, NPWA, NPDG, NPDA, and
34 * NOWS are defined for this namespace and should be used by
35 * the host for I/O optimization.
36 */
37 id->nsfeat |= 1 << 4;
38 /* NPWG = Namespace Preferred Write Granularity. 0's based */
39 id->npwg = lpp0b;
40 /* NPWA = Namespace Preferred Write Alignment. 0's based */
41 id->npwa = id->npwg;
42 /* NPDG = Namespace Preferred Deallocate Granularity. 0's based */
43 id->npdg = to0based(ql->discard_granularity / ql->logical_block_size);
44 /* NPDG = Namespace Preferred Deallocate Alignment */
45 id->npda = id->npdg;
46 /* NOWS = Namespace Optimal Write Size */
47 id->nows = to0based(ql->io_opt / ql->logical_block_size);
48 }
49
nvmet_bdev_ns_enable_integrity(struct nvmet_ns * ns)50 static void nvmet_bdev_ns_enable_integrity(struct nvmet_ns *ns)
51 {
52 struct blk_integrity *bi = bdev_get_integrity(ns->bdev);
53
54 if (bi) {
55 ns->metadata_size = bi->tuple_size;
56 if (bi->profile == &t10_pi_type1_crc)
57 ns->pi_type = NVME_NS_DPS_PI_TYPE1;
58 else if (bi->profile == &t10_pi_type3_crc)
59 ns->pi_type = NVME_NS_DPS_PI_TYPE3;
60 else
61 /* Unsupported metadata type */
62 ns->metadata_size = 0;
63 }
64 }
65
nvmet_bdev_ns_enable(struct nvmet_ns * ns)66 int nvmet_bdev_ns_enable(struct nvmet_ns *ns)
67 {
68 int ret;
69
70 ns->bdev = blkdev_get_by_path(ns->device_path,
71 FMODE_READ | FMODE_WRITE, NULL);
72 if (IS_ERR(ns->bdev)) {
73 ret = PTR_ERR(ns->bdev);
74 if (ret != -ENOTBLK) {
75 pr_err("failed to open block device %s: (%ld)\n",
76 ns->device_path, PTR_ERR(ns->bdev));
77 }
78 ns->bdev = NULL;
79 return ret;
80 }
81 ns->size = i_size_read(ns->bdev->bd_inode);
82 ns->blksize_shift = blksize_bits(bdev_logical_block_size(ns->bdev));
83
84 ns->pi_type = 0;
85 ns->metadata_size = 0;
86 if (IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY_T10))
87 nvmet_bdev_ns_enable_integrity(ns);
88
89 return 0;
90 }
91
nvmet_bdev_ns_disable(struct nvmet_ns * ns)92 void nvmet_bdev_ns_disable(struct nvmet_ns *ns)
93 {
94 if (ns->bdev) {
95 blkdev_put(ns->bdev, FMODE_WRITE | FMODE_READ);
96 ns->bdev = NULL;
97 }
98 }
99
nvmet_bdev_ns_revalidate(struct nvmet_ns * ns)100 void nvmet_bdev_ns_revalidate(struct nvmet_ns *ns)
101 {
102 ns->size = i_size_read(ns->bdev->bd_inode);
103 }
104
blk_to_nvme_status(struct nvmet_req * req,blk_status_t blk_sts)105 static u16 blk_to_nvme_status(struct nvmet_req *req, blk_status_t blk_sts)
106 {
107 u16 status = NVME_SC_SUCCESS;
108
109 if (likely(blk_sts == BLK_STS_OK))
110 return status;
111 /*
112 * Right now there exists M : 1 mapping between block layer error
113 * to the NVMe status code (see nvme_error_status()). For consistency,
114 * when we reverse map we use most appropriate NVMe Status code from
115 * the group of the NVMe staus codes used in the nvme_error_status().
116 */
117 switch (blk_sts) {
118 case BLK_STS_NOSPC:
119 status = NVME_SC_CAP_EXCEEDED | NVME_SC_DNR;
120 req->error_loc = offsetof(struct nvme_rw_command, length);
121 break;
122 case BLK_STS_TARGET:
123 status = NVME_SC_LBA_RANGE | NVME_SC_DNR;
124 req->error_loc = offsetof(struct nvme_rw_command, slba);
125 break;
126 case BLK_STS_NOTSUPP:
127 req->error_loc = offsetof(struct nvme_common_command, opcode);
128 switch (req->cmd->common.opcode) {
129 case nvme_cmd_dsm:
130 case nvme_cmd_write_zeroes:
131 status = NVME_SC_ONCS_NOT_SUPPORTED | NVME_SC_DNR;
132 break;
133 default:
134 status = NVME_SC_INVALID_OPCODE | NVME_SC_DNR;
135 }
136 break;
137 case BLK_STS_MEDIUM:
138 status = NVME_SC_ACCESS_DENIED;
139 req->error_loc = offsetof(struct nvme_rw_command, nsid);
140 break;
141 case BLK_STS_IOERR:
142 default:
143 status = NVME_SC_INTERNAL | NVME_SC_DNR;
144 req->error_loc = offsetof(struct nvme_common_command, opcode);
145 }
146
147 switch (req->cmd->common.opcode) {
148 case nvme_cmd_read:
149 case nvme_cmd_write:
150 req->error_slba = le64_to_cpu(req->cmd->rw.slba);
151 break;
152 case nvme_cmd_write_zeroes:
153 req->error_slba =
154 le64_to_cpu(req->cmd->write_zeroes.slba);
155 break;
156 default:
157 req->error_slba = 0;
158 }
159 return status;
160 }
161
nvmet_bio_done(struct bio * bio)162 static void nvmet_bio_done(struct bio *bio)
163 {
164 struct nvmet_req *req = bio->bi_private;
165
166 nvmet_req_complete(req, blk_to_nvme_status(req, bio->bi_status));
167 if (bio != &req->b.inline_bio)
168 bio_put(bio);
169 }
170
171 #ifdef CONFIG_BLK_DEV_INTEGRITY
nvmet_bdev_alloc_bip(struct nvmet_req * req,struct bio * bio,struct sg_mapping_iter * miter)172 static int nvmet_bdev_alloc_bip(struct nvmet_req *req, struct bio *bio,
173 struct sg_mapping_iter *miter)
174 {
175 struct blk_integrity *bi;
176 struct bio_integrity_payload *bip;
177 struct block_device *bdev = req->ns->bdev;
178 int rc;
179 size_t resid, len;
180
181 bi = bdev_get_integrity(bdev);
182 if (unlikely(!bi)) {
183 pr_err("Unable to locate bio_integrity\n");
184 return -ENODEV;
185 }
186
187 bip = bio_integrity_alloc(bio, GFP_NOIO,
188 min_t(unsigned int, req->metadata_sg_cnt, BIO_MAX_PAGES));
189 if (IS_ERR(bip)) {
190 pr_err("Unable to allocate bio_integrity_payload\n");
191 return PTR_ERR(bip);
192 }
193
194 bip->bip_iter.bi_size = bio_integrity_bytes(bi, bio_sectors(bio));
195 /* virtual start sector must be in integrity interval units */
196 bip_set_seed(bip, bio->bi_iter.bi_sector >>
197 (bi->interval_exp - SECTOR_SHIFT));
198
199 resid = bip->bip_iter.bi_size;
200 while (resid > 0 && sg_miter_next(miter)) {
201 len = min_t(size_t, miter->length, resid);
202 rc = bio_integrity_add_page(bio, miter->page, len,
203 offset_in_page(miter->addr));
204 if (unlikely(rc != len)) {
205 pr_err("bio_integrity_add_page() failed; %d\n", rc);
206 sg_miter_stop(miter);
207 return -ENOMEM;
208 }
209
210 resid -= len;
211 if (len < miter->length)
212 miter->consumed -= miter->length - len;
213 }
214 sg_miter_stop(miter);
215
216 return 0;
217 }
218 #else
nvmet_bdev_alloc_bip(struct nvmet_req * req,struct bio * bio,struct sg_mapping_iter * miter)219 static int nvmet_bdev_alloc_bip(struct nvmet_req *req, struct bio *bio,
220 struct sg_mapping_iter *miter)
221 {
222 return -EINVAL;
223 }
224 #endif /* CONFIG_BLK_DEV_INTEGRITY */
225
nvmet_bdev_execute_rw(struct nvmet_req * req)226 static void nvmet_bdev_execute_rw(struct nvmet_req *req)
227 {
228 int sg_cnt = req->sg_cnt;
229 struct bio *bio;
230 struct scatterlist *sg;
231 struct blk_plug plug;
232 sector_t sector;
233 int op, i, rc;
234 struct sg_mapping_iter prot_miter;
235 unsigned int iter_flags;
236 unsigned int total_len = nvmet_rw_data_len(req) + req->metadata_len;
237
238 if (!nvmet_check_transfer_len(req, total_len))
239 return;
240
241 if (!req->sg_cnt) {
242 nvmet_req_complete(req, 0);
243 return;
244 }
245
246 if (req->cmd->rw.opcode == nvme_cmd_write) {
247 op = REQ_OP_WRITE | REQ_SYNC | REQ_IDLE;
248 if (req->cmd->rw.control & cpu_to_le16(NVME_RW_FUA))
249 op |= REQ_FUA;
250 iter_flags = SG_MITER_TO_SG;
251 } else {
252 op = REQ_OP_READ;
253 iter_flags = SG_MITER_FROM_SG;
254 }
255
256 if (is_pci_p2pdma_page(sg_page(req->sg)))
257 op |= REQ_NOMERGE;
258
259 sector = nvmet_lba_to_sect(req->ns, req->cmd->rw.slba);
260
261 if (nvmet_use_inline_bvec(req)) {
262 bio = &req->b.inline_bio;
263 bio_init(bio, req->inline_bvec, ARRAY_SIZE(req->inline_bvec));
264 } else {
265 bio = bio_alloc(GFP_KERNEL, min(sg_cnt, BIO_MAX_PAGES));
266 }
267 bio_set_dev(bio, req->ns->bdev);
268 bio->bi_iter.bi_sector = sector;
269 bio->bi_private = req;
270 bio->bi_end_io = nvmet_bio_done;
271 bio->bi_opf = op;
272
273 blk_start_plug(&plug);
274 if (req->metadata_len)
275 sg_miter_start(&prot_miter, req->metadata_sg,
276 req->metadata_sg_cnt, iter_flags);
277
278 for_each_sg(req->sg, sg, req->sg_cnt, i) {
279 while (bio_add_page(bio, sg_page(sg), sg->length, sg->offset)
280 != sg->length) {
281 struct bio *prev = bio;
282
283 if (req->metadata_len) {
284 rc = nvmet_bdev_alloc_bip(req, bio,
285 &prot_miter);
286 if (unlikely(rc)) {
287 bio_io_error(bio);
288 return;
289 }
290 }
291
292 bio = bio_alloc(GFP_KERNEL, min(sg_cnt, BIO_MAX_PAGES));
293 bio_set_dev(bio, req->ns->bdev);
294 bio->bi_iter.bi_sector = sector;
295 bio->bi_opf = op;
296
297 bio_chain(bio, prev);
298 submit_bio(prev);
299 }
300
301 sector += sg->length >> 9;
302 sg_cnt--;
303 }
304
305 if (req->metadata_len) {
306 rc = nvmet_bdev_alloc_bip(req, bio, &prot_miter);
307 if (unlikely(rc)) {
308 bio_io_error(bio);
309 return;
310 }
311 }
312
313 submit_bio(bio);
314 blk_finish_plug(&plug);
315 }
316
nvmet_bdev_execute_flush(struct nvmet_req * req)317 static void nvmet_bdev_execute_flush(struct nvmet_req *req)
318 {
319 struct bio *bio = &req->b.inline_bio;
320
321 if (!nvmet_check_transfer_len(req, 0))
322 return;
323
324 bio_init(bio, req->inline_bvec, ARRAY_SIZE(req->inline_bvec));
325 bio_set_dev(bio, req->ns->bdev);
326 bio->bi_private = req;
327 bio->bi_end_io = nvmet_bio_done;
328 bio->bi_opf = REQ_OP_WRITE | REQ_PREFLUSH;
329
330 submit_bio(bio);
331 }
332
nvmet_bdev_flush(struct nvmet_req * req)333 u16 nvmet_bdev_flush(struct nvmet_req *req)
334 {
335 if (blkdev_issue_flush(req->ns->bdev, GFP_KERNEL))
336 return NVME_SC_INTERNAL | NVME_SC_DNR;
337 return 0;
338 }
339
nvmet_bdev_discard_range(struct nvmet_req * req,struct nvme_dsm_range * range,struct bio ** bio)340 static u16 nvmet_bdev_discard_range(struct nvmet_req *req,
341 struct nvme_dsm_range *range, struct bio **bio)
342 {
343 struct nvmet_ns *ns = req->ns;
344 int ret;
345
346 ret = __blkdev_issue_discard(ns->bdev,
347 nvmet_lba_to_sect(ns, range->slba),
348 le32_to_cpu(range->nlb) << (ns->blksize_shift - 9),
349 GFP_KERNEL, 0, bio);
350 if (ret && ret != -EOPNOTSUPP) {
351 req->error_slba = le64_to_cpu(range->slba);
352 return errno_to_nvme_status(req, ret);
353 }
354 return NVME_SC_SUCCESS;
355 }
356
nvmet_bdev_execute_discard(struct nvmet_req * req)357 static void nvmet_bdev_execute_discard(struct nvmet_req *req)
358 {
359 struct nvme_dsm_range range;
360 struct bio *bio = NULL;
361 int i;
362 u16 status;
363
364 for (i = 0; i <= le32_to_cpu(req->cmd->dsm.nr); i++) {
365 status = nvmet_copy_from_sgl(req, i * sizeof(range), &range,
366 sizeof(range));
367 if (status)
368 break;
369
370 status = nvmet_bdev_discard_range(req, &range, &bio);
371 if (status)
372 break;
373 }
374
375 if (bio) {
376 bio->bi_private = req;
377 bio->bi_end_io = nvmet_bio_done;
378 if (status)
379 bio_io_error(bio);
380 else
381 submit_bio(bio);
382 } else {
383 nvmet_req_complete(req, status);
384 }
385 }
386
nvmet_bdev_execute_dsm(struct nvmet_req * req)387 static void nvmet_bdev_execute_dsm(struct nvmet_req *req)
388 {
389 if (!nvmet_check_data_len_lte(req, nvmet_dsm_len(req)))
390 return;
391
392 switch (le32_to_cpu(req->cmd->dsm.attributes)) {
393 case NVME_DSMGMT_AD:
394 nvmet_bdev_execute_discard(req);
395 return;
396 case NVME_DSMGMT_IDR:
397 case NVME_DSMGMT_IDW:
398 default:
399 /* Not supported yet */
400 nvmet_req_complete(req, 0);
401 return;
402 }
403 }
404
nvmet_bdev_execute_write_zeroes(struct nvmet_req * req)405 static void nvmet_bdev_execute_write_zeroes(struct nvmet_req *req)
406 {
407 struct nvme_write_zeroes_cmd *write_zeroes = &req->cmd->write_zeroes;
408 struct bio *bio = NULL;
409 sector_t sector;
410 sector_t nr_sector;
411 int ret;
412
413 if (!nvmet_check_transfer_len(req, 0))
414 return;
415
416 sector = nvmet_lba_to_sect(req->ns, write_zeroes->slba);
417 nr_sector = (((sector_t)le16_to_cpu(write_zeroes->length) + 1) <<
418 (req->ns->blksize_shift - 9));
419
420 ret = __blkdev_issue_zeroout(req->ns->bdev, sector, nr_sector,
421 GFP_KERNEL, &bio, 0);
422 if (bio) {
423 bio->bi_private = req;
424 bio->bi_end_io = nvmet_bio_done;
425 submit_bio(bio);
426 } else {
427 nvmet_req_complete(req, errno_to_nvme_status(req, ret));
428 }
429 }
430
nvmet_bdev_parse_io_cmd(struct nvmet_req * req)431 u16 nvmet_bdev_parse_io_cmd(struct nvmet_req *req)
432 {
433 struct nvme_command *cmd = req->cmd;
434
435 switch (cmd->common.opcode) {
436 case nvme_cmd_read:
437 case nvme_cmd_write:
438 req->execute = nvmet_bdev_execute_rw;
439 if (req->sq->ctrl->pi_support && nvmet_ns_has_pi(req->ns))
440 req->metadata_len = nvmet_rw_metadata_len(req);
441 return 0;
442 case nvme_cmd_flush:
443 req->execute = nvmet_bdev_execute_flush;
444 return 0;
445 case nvme_cmd_dsm:
446 req->execute = nvmet_bdev_execute_dsm;
447 return 0;
448 case nvme_cmd_write_zeroes:
449 req->execute = nvmet_bdev_execute_write_zeroes;
450 return 0;
451 default:
452 pr_err("unhandled cmd %d on qid %d\n", cmd->common.opcode,
453 req->sq->qid);
454 req->error_loc = offsetof(struct nvme_common_command, opcode);
455 return NVME_SC_INVALID_OPCODE | NVME_SC_DNR;
456 }
457 }
458