1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Common code for the NVMe target.
4 * Copyright (c) 2015-2016 HGST, a Western Digital Company.
5 */
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 #include <linux/module.h>
8 #include <linux/random.h>
9 #include <linux/rculist.h>
10 #include <linux/pci-p2pdma.h>
11 #include <linux/scatterlist.h>
12
13 #define CREATE_TRACE_POINTS
14 #include "trace.h"
15
16 #include "nvmet.h"
17
18 struct workqueue_struct *buffered_io_wq;
19 static const struct nvmet_fabrics_ops *nvmet_transports[NVMF_TRTYPE_MAX];
20 static DEFINE_IDA(cntlid_ida);
21
22 /*
23 * This read/write semaphore is used to synchronize access to configuration
24 * information on a target system that will result in discovery log page
25 * information change for at least one host.
26 * The full list of resources to protected by this semaphore is:
27 *
28 * - subsystems list
29 * - per-subsystem allowed hosts list
30 * - allow_any_host subsystem attribute
31 * - nvmet_genctr
32 * - the nvmet_transports array
33 *
34 * When updating any of those lists/structures write lock should be obtained,
35 * while when reading (popolating discovery log page or checking host-subsystem
36 * link) read lock is obtained to allow concurrent reads.
37 */
38 DECLARE_RWSEM(nvmet_config_sem);
39
40 u32 nvmet_ana_group_enabled[NVMET_MAX_ANAGRPS + 1];
41 u64 nvmet_ana_chgcnt;
42 DECLARE_RWSEM(nvmet_ana_sem);
43
errno_to_nvme_status(struct nvmet_req * req,int errno)44 inline u16 errno_to_nvme_status(struct nvmet_req *req, int errno)
45 {
46 u16 status;
47
48 switch (errno) {
49 case 0:
50 status = NVME_SC_SUCCESS;
51 break;
52 case -ENOSPC:
53 req->error_loc = offsetof(struct nvme_rw_command, length);
54 status = NVME_SC_CAP_EXCEEDED | NVME_SC_DNR;
55 break;
56 case -EREMOTEIO:
57 req->error_loc = offsetof(struct nvme_rw_command, slba);
58 status = NVME_SC_LBA_RANGE | NVME_SC_DNR;
59 break;
60 case -EOPNOTSUPP:
61 req->error_loc = offsetof(struct nvme_common_command, opcode);
62 switch (req->cmd->common.opcode) {
63 case nvme_cmd_dsm:
64 case nvme_cmd_write_zeroes:
65 status = NVME_SC_ONCS_NOT_SUPPORTED | NVME_SC_DNR;
66 break;
67 default:
68 status = NVME_SC_INVALID_OPCODE | NVME_SC_DNR;
69 }
70 break;
71 case -ENODATA:
72 req->error_loc = offsetof(struct nvme_rw_command, nsid);
73 status = NVME_SC_ACCESS_DENIED;
74 break;
75 case -EIO:
76 fallthrough;
77 default:
78 req->error_loc = offsetof(struct nvme_common_command, opcode);
79 status = NVME_SC_INTERNAL | NVME_SC_DNR;
80 }
81
82 return status;
83 }
84
85 static struct nvmet_subsys *nvmet_find_get_subsys(struct nvmet_port *port,
86 const char *subsysnqn);
87
nvmet_copy_to_sgl(struct nvmet_req * req,off_t off,const void * buf,size_t len)88 u16 nvmet_copy_to_sgl(struct nvmet_req *req, off_t off, const void *buf,
89 size_t len)
90 {
91 if (sg_pcopy_from_buffer(req->sg, req->sg_cnt, buf, len, off) != len) {
92 req->error_loc = offsetof(struct nvme_common_command, dptr);
93 return NVME_SC_SGL_INVALID_DATA | NVME_SC_DNR;
94 }
95 return 0;
96 }
97
nvmet_copy_from_sgl(struct nvmet_req * req,off_t off,void * buf,size_t len)98 u16 nvmet_copy_from_sgl(struct nvmet_req *req, off_t off, void *buf, size_t len)
99 {
100 if (sg_pcopy_to_buffer(req->sg, req->sg_cnt, buf, len, off) != len) {
101 req->error_loc = offsetof(struct nvme_common_command, dptr);
102 return NVME_SC_SGL_INVALID_DATA | NVME_SC_DNR;
103 }
104 return 0;
105 }
106
nvmet_zero_sgl(struct nvmet_req * req,off_t off,size_t len)107 u16 nvmet_zero_sgl(struct nvmet_req *req, off_t off, size_t len)
108 {
109 if (sg_zero_buffer(req->sg, req->sg_cnt, len, off) != len) {
110 req->error_loc = offsetof(struct nvme_common_command, dptr);
111 return NVME_SC_SGL_INVALID_DATA | NVME_SC_DNR;
112 }
113 return 0;
114 }
115
nvmet_max_nsid(struct nvmet_subsys * subsys)116 static unsigned int nvmet_max_nsid(struct nvmet_subsys *subsys)
117 {
118 unsigned long nsid = 0;
119 struct nvmet_ns *cur;
120 unsigned long idx;
121
122 xa_for_each(&subsys->namespaces, idx, cur)
123 nsid = cur->nsid;
124
125 return nsid;
126 }
127
nvmet_async_event_result(struct nvmet_async_event * aen)128 static u32 nvmet_async_event_result(struct nvmet_async_event *aen)
129 {
130 return aen->event_type | (aen->event_info << 8) | (aen->log_page << 16);
131 }
132
nvmet_async_events_failall(struct nvmet_ctrl * ctrl)133 static void nvmet_async_events_failall(struct nvmet_ctrl *ctrl)
134 {
135 u16 status = NVME_SC_INTERNAL | NVME_SC_DNR;
136 struct nvmet_req *req;
137
138 mutex_lock(&ctrl->lock);
139 while (ctrl->nr_async_event_cmds) {
140 req = ctrl->async_event_cmds[--ctrl->nr_async_event_cmds];
141 mutex_unlock(&ctrl->lock);
142 nvmet_req_complete(req, status);
143 mutex_lock(&ctrl->lock);
144 }
145 mutex_unlock(&ctrl->lock);
146 }
147
nvmet_async_events_process(struct nvmet_ctrl * ctrl)148 static void nvmet_async_events_process(struct nvmet_ctrl *ctrl)
149 {
150 struct nvmet_async_event *aen;
151 struct nvmet_req *req;
152
153 mutex_lock(&ctrl->lock);
154 while (ctrl->nr_async_event_cmds && !list_empty(&ctrl->async_events)) {
155 aen = list_first_entry(&ctrl->async_events,
156 struct nvmet_async_event, entry);
157 req = ctrl->async_event_cmds[--ctrl->nr_async_event_cmds];
158 nvmet_set_result(req, nvmet_async_event_result(aen));
159
160 list_del(&aen->entry);
161 kfree(aen);
162
163 mutex_unlock(&ctrl->lock);
164 trace_nvmet_async_event(ctrl, req->cqe->result.u32);
165 nvmet_req_complete(req, 0);
166 mutex_lock(&ctrl->lock);
167 }
168 mutex_unlock(&ctrl->lock);
169 }
170
nvmet_async_events_free(struct nvmet_ctrl * ctrl)171 static void nvmet_async_events_free(struct nvmet_ctrl *ctrl)
172 {
173 struct nvmet_async_event *aen, *tmp;
174
175 mutex_lock(&ctrl->lock);
176 list_for_each_entry_safe(aen, tmp, &ctrl->async_events, entry) {
177 list_del(&aen->entry);
178 kfree(aen);
179 }
180 mutex_unlock(&ctrl->lock);
181 }
182
nvmet_async_event_work(struct work_struct * work)183 static void nvmet_async_event_work(struct work_struct *work)
184 {
185 struct nvmet_ctrl *ctrl =
186 container_of(work, struct nvmet_ctrl, async_event_work);
187
188 nvmet_async_events_process(ctrl);
189 }
190
nvmet_add_async_event(struct nvmet_ctrl * ctrl,u8 event_type,u8 event_info,u8 log_page)191 void nvmet_add_async_event(struct nvmet_ctrl *ctrl, u8 event_type,
192 u8 event_info, u8 log_page)
193 {
194 struct nvmet_async_event *aen;
195
196 aen = kmalloc(sizeof(*aen), GFP_KERNEL);
197 if (!aen)
198 return;
199
200 aen->event_type = event_type;
201 aen->event_info = event_info;
202 aen->log_page = log_page;
203
204 mutex_lock(&ctrl->lock);
205 list_add_tail(&aen->entry, &ctrl->async_events);
206 mutex_unlock(&ctrl->lock);
207
208 schedule_work(&ctrl->async_event_work);
209 }
210
nvmet_add_to_changed_ns_log(struct nvmet_ctrl * ctrl,__le32 nsid)211 static void nvmet_add_to_changed_ns_log(struct nvmet_ctrl *ctrl, __le32 nsid)
212 {
213 u32 i;
214
215 mutex_lock(&ctrl->lock);
216 if (ctrl->nr_changed_ns > NVME_MAX_CHANGED_NAMESPACES)
217 goto out_unlock;
218
219 for (i = 0; i < ctrl->nr_changed_ns; i++) {
220 if (ctrl->changed_ns_list[i] == nsid)
221 goto out_unlock;
222 }
223
224 if (ctrl->nr_changed_ns == NVME_MAX_CHANGED_NAMESPACES) {
225 ctrl->changed_ns_list[0] = cpu_to_le32(0xffffffff);
226 ctrl->nr_changed_ns = U32_MAX;
227 goto out_unlock;
228 }
229
230 ctrl->changed_ns_list[ctrl->nr_changed_ns++] = nsid;
231 out_unlock:
232 mutex_unlock(&ctrl->lock);
233 }
234
nvmet_ns_changed(struct nvmet_subsys * subsys,u32 nsid)235 void nvmet_ns_changed(struct nvmet_subsys *subsys, u32 nsid)
236 {
237 struct nvmet_ctrl *ctrl;
238
239 lockdep_assert_held(&subsys->lock);
240
241 list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) {
242 nvmet_add_to_changed_ns_log(ctrl, cpu_to_le32(nsid));
243 if (nvmet_aen_bit_disabled(ctrl, NVME_AEN_BIT_NS_ATTR))
244 continue;
245 nvmet_add_async_event(ctrl, NVME_AER_TYPE_NOTICE,
246 NVME_AER_NOTICE_NS_CHANGED,
247 NVME_LOG_CHANGED_NS);
248 }
249 }
250
nvmet_send_ana_event(struct nvmet_subsys * subsys,struct nvmet_port * port)251 void nvmet_send_ana_event(struct nvmet_subsys *subsys,
252 struct nvmet_port *port)
253 {
254 struct nvmet_ctrl *ctrl;
255
256 mutex_lock(&subsys->lock);
257 list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) {
258 if (port && ctrl->port != port)
259 continue;
260 if (nvmet_aen_bit_disabled(ctrl, NVME_AEN_BIT_ANA_CHANGE))
261 continue;
262 nvmet_add_async_event(ctrl, NVME_AER_TYPE_NOTICE,
263 NVME_AER_NOTICE_ANA, NVME_LOG_ANA);
264 }
265 mutex_unlock(&subsys->lock);
266 }
267
nvmet_port_send_ana_event(struct nvmet_port * port)268 void nvmet_port_send_ana_event(struct nvmet_port *port)
269 {
270 struct nvmet_subsys_link *p;
271
272 down_read(&nvmet_config_sem);
273 list_for_each_entry(p, &port->subsystems, entry)
274 nvmet_send_ana_event(p->subsys, port);
275 up_read(&nvmet_config_sem);
276 }
277
nvmet_register_transport(const struct nvmet_fabrics_ops * ops)278 int nvmet_register_transport(const struct nvmet_fabrics_ops *ops)
279 {
280 int ret = 0;
281
282 down_write(&nvmet_config_sem);
283 if (nvmet_transports[ops->type])
284 ret = -EINVAL;
285 else
286 nvmet_transports[ops->type] = ops;
287 up_write(&nvmet_config_sem);
288
289 return ret;
290 }
291 EXPORT_SYMBOL_GPL(nvmet_register_transport);
292
nvmet_unregister_transport(const struct nvmet_fabrics_ops * ops)293 void nvmet_unregister_transport(const struct nvmet_fabrics_ops *ops)
294 {
295 down_write(&nvmet_config_sem);
296 nvmet_transports[ops->type] = NULL;
297 up_write(&nvmet_config_sem);
298 }
299 EXPORT_SYMBOL_GPL(nvmet_unregister_transport);
300
nvmet_port_del_ctrls(struct nvmet_port * port,struct nvmet_subsys * subsys)301 void nvmet_port_del_ctrls(struct nvmet_port *port, struct nvmet_subsys *subsys)
302 {
303 struct nvmet_ctrl *ctrl;
304
305 mutex_lock(&subsys->lock);
306 list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) {
307 if (ctrl->port == port)
308 ctrl->ops->delete_ctrl(ctrl);
309 }
310 mutex_unlock(&subsys->lock);
311 }
312
nvmet_enable_port(struct nvmet_port * port)313 int nvmet_enable_port(struct nvmet_port *port)
314 {
315 const struct nvmet_fabrics_ops *ops;
316 int ret;
317
318 lockdep_assert_held(&nvmet_config_sem);
319
320 ops = nvmet_transports[port->disc_addr.trtype];
321 if (!ops) {
322 up_write(&nvmet_config_sem);
323 request_module("nvmet-transport-%d", port->disc_addr.trtype);
324 down_write(&nvmet_config_sem);
325 ops = nvmet_transports[port->disc_addr.trtype];
326 if (!ops) {
327 pr_err("transport type %d not supported\n",
328 port->disc_addr.trtype);
329 return -EINVAL;
330 }
331 }
332
333 if (!try_module_get(ops->owner))
334 return -EINVAL;
335
336 /*
337 * If the user requested PI support and the transport isn't pi capable,
338 * don't enable the port.
339 */
340 if (port->pi_enable && !(ops->flags & NVMF_METADATA_SUPPORTED)) {
341 pr_err("T10-PI is not supported by transport type %d\n",
342 port->disc_addr.trtype);
343 ret = -EINVAL;
344 goto out_put;
345 }
346
347 ret = ops->add_port(port);
348 if (ret)
349 goto out_put;
350
351 /* If the transport didn't set inline_data_size, then disable it. */
352 if (port->inline_data_size < 0)
353 port->inline_data_size = 0;
354
355 port->enabled = true;
356 port->tr_ops = ops;
357 return 0;
358
359 out_put:
360 module_put(ops->owner);
361 return ret;
362 }
363
nvmet_disable_port(struct nvmet_port * port)364 void nvmet_disable_port(struct nvmet_port *port)
365 {
366 const struct nvmet_fabrics_ops *ops;
367
368 lockdep_assert_held(&nvmet_config_sem);
369
370 port->enabled = false;
371 port->tr_ops = NULL;
372
373 ops = nvmet_transports[port->disc_addr.trtype];
374 ops->remove_port(port);
375 module_put(ops->owner);
376 }
377
nvmet_keep_alive_timer(struct work_struct * work)378 static void nvmet_keep_alive_timer(struct work_struct *work)
379 {
380 struct nvmet_ctrl *ctrl = container_of(to_delayed_work(work),
381 struct nvmet_ctrl, ka_work);
382 bool reset_tbkas = ctrl->reset_tbkas;
383
384 ctrl->reset_tbkas = false;
385 if (reset_tbkas) {
386 pr_debug("ctrl %d reschedule traffic based keep-alive timer\n",
387 ctrl->cntlid);
388 schedule_delayed_work(&ctrl->ka_work, ctrl->kato * HZ);
389 return;
390 }
391
392 pr_err("ctrl %d keep-alive timer (%d seconds) expired!\n",
393 ctrl->cntlid, ctrl->kato);
394
395 nvmet_ctrl_fatal_error(ctrl);
396 }
397
nvmet_start_keep_alive_timer(struct nvmet_ctrl * ctrl)398 void nvmet_start_keep_alive_timer(struct nvmet_ctrl *ctrl)
399 {
400 if (unlikely(ctrl->kato == 0))
401 return;
402
403 pr_debug("ctrl %d start keep-alive timer for %d secs\n",
404 ctrl->cntlid, ctrl->kato);
405
406 INIT_DELAYED_WORK(&ctrl->ka_work, nvmet_keep_alive_timer);
407 schedule_delayed_work(&ctrl->ka_work, ctrl->kato * HZ);
408 }
409
nvmet_stop_keep_alive_timer(struct nvmet_ctrl * ctrl)410 void nvmet_stop_keep_alive_timer(struct nvmet_ctrl *ctrl)
411 {
412 if (unlikely(ctrl->kato == 0))
413 return;
414
415 pr_debug("ctrl %d stop keep-alive\n", ctrl->cntlid);
416
417 cancel_delayed_work_sync(&ctrl->ka_work);
418 }
419
nvmet_find_namespace(struct nvmet_ctrl * ctrl,__le32 nsid)420 struct nvmet_ns *nvmet_find_namespace(struct nvmet_ctrl *ctrl, __le32 nsid)
421 {
422 struct nvmet_ns *ns;
423
424 ns = xa_load(&ctrl->subsys->namespaces, le32_to_cpu(nsid));
425 if (ns)
426 percpu_ref_get(&ns->ref);
427
428 return ns;
429 }
430
nvmet_destroy_namespace(struct percpu_ref * ref)431 static void nvmet_destroy_namespace(struct percpu_ref *ref)
432 {
433 struct nvmet_ns *ns = container_of(ref, struct nvmet_ns, ref);
434
435 complete(&ns->disable_done);
436 }
437
nvmet_put_namespace(struct nvmet_ns * ns)438 void nvmet_put_namespace(struct nvmet_ns *ns)
439 {
440 percpu_ref_put(&ns->ref);
441 }
442
nvmet_ns_dev_disable(struct nvmet_ns * ns)443 static void nvmet_ns_dev_disable(struct nvmet_ns *ns)
444 {
445 nvmet_bdev_ns_disable(ns);
446 nvmet_file_ns_disable(ns);
447 }
448
nvmet_p2pmem_ns_enable(struct nvmet_ns * ns)449 static int nvmet_p2pmem_ns_enable(struct nvmet_ns *ns)
450 {
451 int ret;
452 struct pci_dev *p2p_dev;
453
454 if (!ns->use_p2pmem)
455 return 0;
456
457 if (!ns->bdev) {
458 pr_err("peer-to-peer DMA is not supported by non-block device namespaces\n");
459 return -EINVAL;
460 }
461
462 if (!blk_queue_pci_p2pdma(ns->bdev->bd_disk->queue)) {
463 pr_err("peer-to-peer DMA is not supported by the driver of %s\n",
464 ns->device_path);
465 return -EINVAL;
466 }
467
468 if (ns->p2p_dev) {
469 ret = pci_p2pdma_distance(ns->p2p_dev, nvmet_ns_dev(ns), true);
470 if (ret < 0)
471 return -EINVAL;
472 } else {
473 /*
474 * Right now we just check that there is p2pmem available so
475 * we can report an error to the user right away if there
476 * is not. We'll find the actual device to use once we
477 * setup the controller when the port's device is available.
478 */
479
480 p2p_dev = pci_p2pmem_find(nvmet_ns_dev(ns));
481 if (!p2p_dev) {
482 pr_err("no peer-to-peer memory is available for %s\n",
483 ns->device_path);
484 return -EINVAL;
485 }
486
487 pci_dev_put(p2p_dev);
488 }
489
490 return 0;
491 }
492
493 /*
494 * Note: ctrl->subsys->lock should be held when calling this function
495 */
nvmet_p2pmem_ns_add_p2p(struct nvmet_ctrl * ctrl,struct nvmet_ns * ns)496 static void nvmet_p2pmem_ns_add_p2p(struct nvmet_ctrl *ctrl,
497 struct nvmet_ns *ns)
498 {
499 struct device *clients[2];
500 struct pci_dev *p2p_dev;
501 int ret;
502
503 if (!ctrl->p2p_client || !ns->use_p2pmem)
504 return;
505
506 if (ns->p2p_dev) {
507 ret = pci_p2pdma_distance(ns->p2p_dev, ctrl->p2p_client, true);
508 if (ret < 0)
509 return;
510
511 p2p_dev = pci_dev_get(ns->p2p_dev);
512 } else {
513 clients[0] = ctrl->p2p_client;
514 clients[1] = nvmet_ns_dev(ns);
515
516 p2p_dev = pci_p2pmem_find_many(clients, ARRAY_SIZE(clients));
517 if (!p2p_dev) {
518 pr_err("no peer-to-peer memory is available that's supported by %s and %s\n",
519 dev_name(ctrl->p2p_client), ns->device_path);
520 return;
521 }
522 }
523
524 ret = radix_tree_insert(&ctrl->p2p_ns_map, ns->nsid, p2p_dev);
525 if (ret < 0)
526 pci_dev_put(p2p_dev);
527
528 pr_info("using p2pmem on %s for nsid %d\n", pci_name(p2p_dev),
529 ns->nsid);
530 }
531
nvmet_ns_revalidate(struct nvmet_ns * ns)532 void nvmet_ns_revalidate(struct nvmet_ns *ns)
533 {
534 loff_t oldsize = ns->size;
535
536 if (ns->bdev)
537 nvmet_bdev_ns_revalidate(ns);
538 else
539 nvmet_file_ns_revalidate(ns);
540
541 if (oldsize != ns->size)
542 nvmet_ns_changed(ns->subsys, ns->nsid);
543 }
544
nvmet_ns_enable(struct nvmet_ns * ns)545 int nvmet_ns_enable(struct nvmet_ns *ns)
546 {
547 struct nvmet_subsys *subsys = ns->subsys;
548 struct nvmet_ctrl *ctrl;
549 int ret;
550
551 mutex_lock(&subsys->lock);
552 ret = 0;
553
554 if (nvmet_passthru_ctrl(subsys)) {
555 pr_info("cannot enable both passthru and regular namespaces for a single subsystem");
556 goto out_unlock;
557 }
558
559 if (ns->enabled)
560 goto out_unlock;
561
562 ret = -EMFILE;
563 if (subsys->nr_namespaces == NVMET_MAX_NAMESPACES)
564 goto out_unlock;
565
566 ret = nvmet_bdev_ns_enable(ns);
567 if (ret == -ENOTBLK)
568 ret = nvmet_file_ns_enable(ns);
569 if (ret)
570 goto out_unlock;
571
572 ret = nvmet_p2pmem_ns_enable(ns);
573 if (ret)
574 goto out_dev_disable;
575
576 list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry)
577 nvmet_p2pmem_ns_add_p2p(ctrl, ns);
578
579 ret = percpu_ref_init(&ns->ref, nvmet_destroy_namespace,
580 0, GFP_KERNEL);
581 if (ret)
582 goto out_dev_put;
583
584 if (ns->nsid > subsys->max_nsid)
585 subsys->max_nsid = ns->nsid;
586
587 ret = xa_insert(&subsys->namespaces, ns->nsid, ns, GFP_KERNEL);
588 if (ret)
589 goto out_restore_subsys_maxnsid;
590
591 subsys->nr_namespaces++;
592
593 nvmet_ns_changed(subsys, ns->nsid);
594 ns->enabled = true;
595 ret = 0;
596 out_unlock:
597 mutex_unlock(&subsys->lock);
598 return ret;
599
600 out_restore_subsys_maxnsid:
601 subsys->max_nsid = nvmet_max_nsid(subsys);
602 percpu_ref_exit(&ns->ref);
603 out_dev_put:
604 list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry)
605 pci_dev_put(radix_tree_delete(&ctrl->p2p_ns_map, ns->nsid));
606 out_dev_disable:
607 nvmet_ns_dev_disable(ns);
608 goto out_unlock;
609 }
610
nvmet_ns_disable(struct nvmet_ns * ns)611 void nvmet_ns_disable(struct nvmet_ns *ns)
612 {
613 struct nvmet_subsys *subsys = ns->subsys;
614 struct nvmet_ctrl *ctrl;
615
616 mutex_lock(&subsys->lock);
617 if (!ns->enabled)
618 goto out_unlock;
619
620 ns->enabled = false;
621 xa_erase(&ns->subsys->namespaces, ns->nsid);
622 if (ns->nsid == subsys->max_nsid)
623 subsys->max_nsid = nvmet_max_nsid(subsys);
624
625 list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry)
626 pci_dev_put(radix_tree_delete(&ctrl->p2p_ns_map, ns->nsid));
627
628 mutex_unlock(&subsys->lock);
629
630 /*
631 * Now that we removed the namespaces from the lookup list, we
632 * can kill the per_cpu ref and wait for any remaining references
633 * to be dropped, as well as a RCU grace period for anyone only
634 * using the namepace under rcu_read_lock(). Note that we can't
635 * use call_rcu here as we need to ensure the namespaces have
636 * been fully destroyed before unloading the module.
637 */
638 percpu_ref_kill(&ns->ref);
639 synchronize_rcu();
640 wait_for_completion(&ns->disable_done);
641 percpu_ref_exit(&ns->ref);
642
643 mutex_lock(&subsys->lock);
644
645 subsys->nr_namespaces--;
646 nvmet_ns_changed(subsys, ns->nsid);
647 nvmet_ns_dev_disable(ns);
648 out_unlock:
649 mutex_unlock(&subsys->lock);
650 }
651
nvmet_ns_free(struct nvmet_ns * ns)652 void nvmet_ns_free(struct nvmet_ns *ns)
653 {
654 nvmet_ns_disable(ns);
655
656 down_write(&nvmet_ana_sem);
657 nvmet_ana_group_enabled[ns->anagrpid]--;
658 up_write(&nvmet_ana_sem);
659
660 kfree(ns->device_path);
661 kfree(ns);
662 }
663
nvmet_ns_alloc(struct nvmet_subsys * subsys,u32 nsid)664 struct nvmet_ns *nvmet_ns_alloc(struct nvmet_subsys *subsys, u32 nsid)
665 {
666 struct nvmet_ns *ns;
667
668 ns = kzalloc(sizeof(*ns), GFP_KERNEL);
669 if (!ns)
670 return NULL;
671
672 init_completion(&ns->disable_done);
673
674 ns->nsid = nsid;
675 ns->subsys = subsys;
676
677 down_write(&nvmet_ana_sem);
678 ns->anagrpid = NVMET_DEFAULT_ANA_GRPID;
679 nvmet_ana_group_enabled[ns->anagrpid]++;
680 up_write(&nvmet_ana_sem);
681
682 uuid_gen(&ns->uuid);
683 ns->buffered_io = false;
684
685 return ns;
686 }
687
nvmet_update_sq_head(struct nvmet_req * req)688 static void nvmet_update_sq_head(struct nvmet_req *req)
689 {
690 if (req->sq->size) {
691 u32 old_sqhd, new_sqhd;
692
693 do {
694 old_sqhd = req->sq->sqhd;
695 new_sqhd = (old_sqhd + 1) % req->sq->size;
696 } while (cmpxchg(&req->sq->sqhd, old_sqhd, new_sqhd) !=
697 old_sqhd);
698 }
699 req->cqe->sq_head = cpu_to_le16(req->sq->sqhd & 0x0000FFFF);
700 }
701
nvmet_set_error(struct nvmet_req * req,u16 status)702 static void nvmet_set_error(struct nvmet_req *req, u16 status)
703 {
704 struct nvmet_ctrl *ctrl = req->sq->ctrl;
705 struct nvme_error_slot *new_error_slot;
706 unsigned long flags;
707
708 req->cqe->status = cpu_to_le16(status << 1);
709
710 if (!ctrl || req->error_loc == NVMET_NO_ERROR_LOC)
711 return;
712
713 spin_lock_irqsave(&ctrl->error_lock, flags);
714 ctrl->err_counter++;
715 new_error_slot =
716 &ctrl->slots[ctrl->err_counter % NVMET_ERROR_LOG_SLOTS];
717
718 new_error_slot->error_count = cpu_to_le64(ctrl->err_counter);
719 new_error_slot->sqid = cpu_to_le16(req->sq->qid);
720 new_error_slot->cmdid = cpu_to_le16(req->cmd->common.command_id);
721 new_error_slot->status_field = cpu_to_le16(status << 1);
722 new_error_slot->param_error_location = cpu_to_le16(req->error_loc);
723 new_error_slot->lba = cpu_to_le64(req->error_slba);
724 new_error_slot->nsid = req->cmd->common.nsid;
725 spin_unlock_irqrestore(&ctrl->error_lock, flags);
726
727 /* set the more bit for this request */
728 req->cqe->status |= cpu_to_le16(1 << 14);
729 }
730
__nvmet_req_complete(struct nvmet_req * req,u16 status)731 static void __nvmet_req_complete(struct nvmet_req *req, u16 status)
732 {
733 if (!req->sq->sqhd_disabled)
734 nvmet_update_sq_head(req);
735 req->cqe->sq_id = cpu_to_le16(req->sq->qid);
736 req->cqe->command_id = req->cmd->common.command_id;
737
738 if (unlikely(status))
739 nvmet_set_error(req, status);
740
741 trace_nvmet_req_complete(req);
742
743 if (req->ns)
744 nvmet_put_namespace(req->ns);
745 req->ops->queue_response(req);
746 }
747
nvmet_req_complete(struct nvmet_req * req,u16 status)748 void nvmet_req_complete(struct nvmet_req *req, u16 status)
749 {
750 __nvmet_req_complete(req, status);
751 percpu_ref_put(&req->sq->ref);
752 }
753 EXPORT_SYMBOL_GPL(nvmet_req_complete);
754
nvmet_cq_setup(struct nvmet_ctrl * ctrl,struct nvmet_cq * cq,u16 qid,u16 size)755 void nvmet_cq_setup(struct nvmet_ctrl *ctrl, struct nvmet_cq *cq,
756 u16 qid, u16 size)
757 {
758 cq->qid = qid;
759 cq->size = size;
760 }
761
nvmet_sq_setup(struct nvmet_ctrl * ctrl,struct nvmet_sq * sq,u16 qid,u16 size)762 void nvmet_sq_setup(struct nvmet_ctrl *ctrl, struct nvmet_sq *sq,
763 u16 qid, u16 size)
764 {
765 sq->sqhd = 0;
766 sq->qid = qid;
767 sq->size = size;
768
769 ctrl->sqs[qid] = sq;
770 }
771
nvmet_confirm_sq(struct percpu_ref * ref)772 static void nvmet_confirm_sq(struct percpu_ref *ref)
773 {
774 struct nvmet_sq *sq = container_of(ref, struct nvmet_sq, ref);
775
776 complete(&sq->confirm_done);
777 }
778
nvmet_sq_destroy(struct nvmet_sq * sq)779 void nvmet_sq_destroy(struct nvmet_sq *sq)
780 {
781 struct nvmet_ctrl *ctrl = sq->ctrl;
782
783 /*
784 * If this is the admin queue, complete all AERs so that our
785 * queue doesn't have outstanding requests on it.
786 */
787 if (ctrl && ctrl->sqs && ctrl->sqs[0] == sq)
788 nvmet_async_events_failall(ctrl);
789 percpu_ref_kill_and_confirm(&sq->ref, nvmet_confirm_sq);
790 wait_for_completion(&sq->confirm_done);
791 wait_for_completion(&sq->free_done);
792 percpu_ref_exit(&sq->ref);
793
794 if (ctrl) {
795 /*
796 * The teardown flow may take some time, and the host may not
797 * send us keep-alive during this period, hence reset the
798 * traffic based keep-alive timer so we don't trigger a
799 * controller teardown as a result of a keep-alive expiration.
800 */
801 ctrl->reset_tbkas = true;
802 nvmet_ctrl_put(ctrl);
803 sq->ctrl = NULL; /* allows reusing the queue later */
804 }
805 }
806 EXPORT_SYMBOL_GPL(nvmet_sq_destroy);
807
nvmet_sq_free(struct percpu_ref * ref)808 static void nvmet_sq_free(struct percpu_ref *ref)
809 {
810 struct nvmet_sq *sq = container_of(ref, struct nvmet_sq, ref);
811
812 complete(&sq->free_done);
813 }
814
nvmet_sq_init(struct nvmet_sq * sq)815 int nvmet_sq_init(struct nvmet_sq *sq)
816 {
817 int ret;
818
819 ret = percpu_ref_init(&sq->ref, nvmet_sq_free, 0, GFP_KERNEL);
820 if (ret) {
821 pr_err("percpu_ref init failed!\n");
822 return ret;
823 }
824 init_completion(&sq->free_done);
825 init_completion(&sq->confirm_done);
826
827 return 0;
828 }
829 EXPORT_SYMBOL_GPL(nvmet_sq_init);
830
nvmet_check_ana_state(struct nvmet_port * port,struct nvmet_ns * ns)831 static inline u16 nvmet_check_ana_state(struct nvmet_port *port,
832 struct nvmet_ns *ns)
833 {
834 enum nvme_ana_state state = port->ana_state[ns->anagrpid];
835
836 if (unlikely(state == NVME_ANA_INACCESSIBLE))
837 return NVME_SC_ANA_INACCESSIBLE;
838 if (unlikely(state == NVME_ANA_PERSISTENT_LOSS))
839 return NVME_SC_ANA_PERSISTENT_LOSS;
840 if (unlikely(state == NVME_ANA_CHANGE))
841 return NVME_SC_ANA_TRANSITION;
842 return 0;
843 }
844
nvmet_io_cmd_check_access(struct nvmet_req * req)845 static inline u16 nvmet_io_cmd_check_access(struct nvmet_req *req)
846 {
847 if (unlikely(req->ns->readonly)) {
848 switch (req->cmd->common.opcode) {
849 case nvme_cmd_read:
850 case nvme_cmd_flush:
851 break;
852 default:
853 return NVME_SC_NS_WRITE_PROTECTED;
854 }
855 }
856
857 return 0;
858 }
859
nvmet_parse_io_cmd(struct nvmet_req * req)860 static u16 nvmet_parse_io_cmd(struct nvmet_req *req)
861 {
862 struct nvme_command *cmd = req->cmd;
863 u16 ret;
864
865 ret = nvmet_check_ctrl_status(req, cmd);
866 if (unlikely(ret))
867 return ret;
868
869 if (nvmet_req_passthru_ctrl(req))
870 return nvmet_parse_passthru_io_cmd(req);
871
872 req->ns = nvmet_find_namespace(req->sq->ctrl, cmd->rw.nsid);
873 if (unlikely(!req->ns)) {
874 req->error_loc = offsetof(struct nvme_common_command, nsid);
875 return NVME_SC_INVALID_NS | NVME_SC_DNR;
876 }
877 ret = nvmet_check_ana_state(req->port, req->ns);
878 if (unlikely(ret)) {
879 req->error_loc = offsetof(struct nvme_common_command, nsid);
880 return ret;
881 }
882 ret = nvmet_io_cmd_check_access(req);
883 if (unlikely(ret)) {
884 req->error_loc = offsetof(struct nvme_common_command, nsid);
885 return ret;
886 }
887
888 if (req->ns->file)
889 return nvmet_file_parse_io_cmd(req);
890 else
891 return nvmet_bdev_parse_io_cmd(req);
892 }
893
nvmet_req_init(struct nvmet_req * req,struct nvmet_cq * cq,struct nvmet_sq * sq,const struct nvmet_fabrics_ops * ops)894 bool nvmet_req_init(struct nvmet_req *req, struct nvmet_cq *cq,
895 struct nvmet_sq *sq, const struct nvmet_fabrics_ops *ops)
896 {
897 u8 flags = req->cmd->common.flags;
898 u16 status;
899
900 req->cq = cq;
901 req->sq = sq;
902 req->ops = ops;
903 req->sg = NULL;
904 req->metadata_sg = NULL;
905 req->sg_cnt = 0;
906 req->metadata_sg_cnt = 0;
907 req->transfer_len = 0;
908 req->metadata_len = 0;
909 req->cqe->status = 0;
910 req->cqe->sq_head = 0;
911 req->ns = NULL;
912 req->error_loc = NVMET_NO_ERROR_LOC;
913 req->error_slba = 0;
914
915 /* no support for fused commands yet */
916 if (unlikely(flags & (NVME_CMD_FUSE_FIRST | NVME_CMD_FUSE_SECOND))) {
917 req->error_loc = offsetof(struct nvme_common_command, flags);
918 status = NVME_SC_INVALID_FIELD | NVME_SC_DNR;
919 goto fail;
920 }
921
922 /*
923 * For fabrics, PSDT field shall describe metadata pointer (MPTR) that
924 * contains an address of a single contiguous physical buffer that is
925 * byte aligned.
926 */
927 if (unlikely((flags & NVME_CMD_SGL_ALL) != NVME_CMD_SGL_METABUF)) {
928 req->error_loc = offsetof(struct nvme_common_command, flags);
929 status = NVME_SC_INVALID_FIELD | NVME_SC_DNR;
930 goto fail;
931 }
932
933 if (unlikely(!req->sq->ctrl))
934 /* will return an error for any non-connect command: */
935 status = nvmet_parse_connect_cmd(req);
936 else if (likely(req->sq->qid != 0))
937 status = nvmet_parse_io_cmd(req);
938 else
939 status = nvmet_parse_admin_cmd(req);
940
941 if (status)
942 goto fail;
943
944 trace_nvmet_req_init(req, req->cmd);
945
946 if (unlikely(!percpu_ref_tryget_live(&sq->ref))) {
947 status = NVME_SC_INVALID_FIELD | NVME_SC_DNR;
948 goto fail;
949 }
950
951 if (sq->ctrl)
952 sq->ctrl->reset_tbkas = true;
953
954 return true;
955
956 fail:
957 __nvmet_req_complete(req, status);
958 return false;
959 }
960 EXPORT_SYMBOL_GPL(nvmet_req_init);
961
nvmet_req_uninit(struct nvmet_req * req)962 void nvmet_req_uninit(struct nvmet_req *req)
963 {
964 percpu_ref_put(&req->sq->ref);
965 if (req->ns)
966 nvmet_put_namespace(req->ns);
967 }
968 EXPORT_SYMBOL_GPL(nvmet_req_uninit);
969
nvmet_check_transfer_len(struct nvmet_req * req,size_t len)970 bool nvmet_check_transfer_len(struct nvmet_req *req, size_t len)
971 {
972 if (unlikely(len != req->transfer_len)) {
973 req->error_loc = offsetof(struct nvme_common_command, dptr);
974 nvmet_req_complete(req, NVME_SC_SGL_INVALID_DATA | NVME_SC_DNR);
975 return false;
976 }
977
978 return true;
979 }
980 EXPORT_SYMBOL_GPL(nvmet_check_transfer_len);
981
nvmet_check_data_len_lte(struct nvmet_req * req,size_t data_len)982 bool nvmet_check_data_len_lte(struct nvmet_req *req, size_t data_len)
983 {
984 if (unlikely(data_len > req->transfer_len)) {
985 req->error_loc = offsetof(struct nvme_common_command, dptr);
986 nvmet_req_complete(req, NVME_SC_SGL_INVALID_DATA | NVME_SC_DNR);
987 return false;
988 }
989
990 return true;
991 }
992
nvmet_data_transfer_len(struct nvmet_req * req)993 static unsigned int nvmet_data_transfer_len(struct nvmet_req *req)
994 {
995 return req->transfer_len - req->metadata_len;
996 }
997
nvmet_req_alloc_p2pmem_sgls(struct pci_dev * p2p_dev,struct nvmet_req * req)998 static int nvmet_req_alloc_p2pmem_sgls(struct pci_dev *p2p_dev,
999 struct nvmet_req *req)
1000 {
1001 req->sg = pci_p2pmem_alloc_sgl(p2p_dev, &req->sg_cnt,
1002 nvmet_data_transfer_len(req));
1003 if (!req->sg)
1004 goto out_err;
1005
1006 if (req->metadata_len) {
1007 req->metadata_sg = pci_p2pmem_alloc_sgl(p2p_dev,
1008 &req->metadata_sg_cnt, req->metadata_len);
1009 if (!req->metadata_sg)
1010 goto out_free_sg;
1011 }
1012
1013 req->p2p_dev = p2p_dev;
1014
1015 return 0;
1016 out_free_sg:
1017 pci_p2pmem_free_sgl(req->p2p_dev, req->sg);
1018 out_err:
1019 return -ENOMEM;
1020 }
1021
nvmet_req_find_p2p_dev(struct nvmet_req * req)1022 static struct pci_dev *nvmet_req_find_p2p_dev(struct nvmet_req *req)
1023 {
1024 if (!IS_ENABLED(CONFIG_PCI_P2PDMA) ||
1025 !req->sq->ctrl || !req->sq->qid || !req->ns)
1026 return NULL;
1027 return radix_tree_lookup(&req->sq->ctrl->p2p_ns_map, req->ns->nsid);
1028 }
1029
nvmet_req_alloc_sgls(struct nvmet_req * req)1030 int nvmet_req_alloc_sgls(struct nvmet_req *req)
1031 {
1032 struct pci_dev *p2p_dev = nvmet_req_find_p2p_dev(req);
1033
1034 if (p2p_dev && !nvmet_req_alloc_p2pmem_sgls(p2p_dev, req))
1035 return 0;
1036
1037 req->sg = sgl_alloc(nvmet_data_transfer_len(req), GFP_KERNEL,
1038 &req->sg_cnt);
1039 if (unlikely(!req->sg))
1040 goto out;
1041
1042 if (req->metadata_len) {
1043 req->metadata_sg = sgl_alloc(req->metadata_len, GFP_KERNEL,
1044 &req->metadata_sg_cnt);
1045 if (unlikely(!req->metadata_sg))
1046 goto out_free;
1047 }
1048
1049 return 0;
1050 out_free:
1051 sgl_free(req->sg);
1052 out:
1053 return -ENOMEM;
1054 }
1055 EXPORT_SYMBOL_GPL(nvmet_req_alloc_sgls);
1056
nvmet_req_free_sgls(struct nvmet_req * req)1057 void nvmet_req_free_sgls(struct nvmet_req *req)
1058 {
1059 if (req->p2p_dev) {
1060 pci_p2pmem_free_sgl(req->p2p_dev, req->sg);
1061 if (req->metadata_sg)
1062 pci_p2pmem_free_sgl(req->p2p_dev, req->metadata_sg);
1063 req->p2p_dev = NULL;
1064 } else {
1065 sgl_free(req->sg);
1066 if (req->metadata_sg)
1067 sgl_free(req->metadata_sg);
1068 }
1069
1070 req->sg = NULL;
1071 req->metadata_sg = NULL;
1072 req->sg_cnt = 0;
1073 req->metadata_sg_cnt = 0;
1074 }
1075 EXPORT_SYMBOL_GPL(nvmet_req_free_sgls);
1076
nvmet_cc_en(u32 cc)1077 static inline bool nvmet_cc_en(u32 cc)
1078 {
1079 return (cc >> NVME_CC_EN_SHIFT) & 0x1;
1080 }
1081
nvmet_cc_css(u32 cc)1082 static inline u8 nvmet_cc_css(u32 cc)
1083 {
1084 return (cc >> NVME_CC_CSS_SHIFT) & 0x7;
1085 }
1086
nvmet_cc_mps(u32 cc)1087 static inline u8 nvmet_cc_mps(u32 cc)
1088 {
1089 return (cc >> NVME_CC_MPS_SHIFT) & 0xf;
1090 }
1091
nvmet_cc_ams(u32 cc)1092 static inline u8 nvmet_cc_ams(u32 cc)
1093 {
1094 return (cc >> NVME_CC_AMS_SHIFT) & 0x7;
1095 }
1096
nvmet_cc_shn(u32 cc)1097 static inline u8 nvmet_cc_shn(u32 cc)
1098 {
1099 return (cc >> NVME_CC_SHN_SHIFT) & 0x3;
1100 }
1101
nvmet_cc_iosqes(u32 cc)1102 static inline u8 nvmet_cc_iosqes(u32 cc)
1103 {
1104 return (cc >> NVME_CC_IOSQES_SHIFT) & 0xf;
1105 }
1106
nvmet_cc_iocqes(u32 cc)1107 static inline u8 nvmet_cc_iocqes(u32 cc)
1108 {
1109 return (cc >> NVME_CC_IOCQES_SHIFT) & 0xf;
1110 }
1111
nvmet_start_ctrl(struct nvmet_ctrl * ctrl)1112 static void nvmet_start_ctrl(struct nvmet_ctrl *ctrl)
1113 {
1114 lockdep_assert_held(&ctrl->lock);
1115
1116 /*
1117 * Only I/O controllers should verify iosqes,iocqes.
1118 * Strictly speaking, the spec says a discovery controller
1119 * should verify iosqes,iocqes are zeroed, however that
1120 * would break backwards compatibility, so don't enforce it.
1121 */
1122 if (ctrl->subsys->type != NVME_NQN_DISC &&
1123 (nvmet_cc_iosqes(ctrl->cc) != NVME_NVM_IOSQES ||
1124 nvmet_cc_iocqes(ctrl->cc) != NVME_NVM_IOCQES)) {
1125 ctrl->csts = NVME_CSTS_CFS;
1126 return;
1127 }
1128
1129 if (nvmet_cc_mps(ctrl->cc) != 0 ||
1130 nvmet_cc_ams(ctrl->cc) != 0 ||
1131 nvmet_cc_css(ctrl->cc) != 0) {
1132 ctrl->csts = NVME_CSTS_CFS;
1133 return;
1134 }
1135
1136 ctrl->csts = NVME_CSTS_RDY;
1137
1138 /*
1139 * Controllers that are not yet enabled should not really enforce the
1140 * keep alive timeout, but we still want to track a timeout and cleanup
1141 * in case a host died before it enabled the controller. Hence, simply
1142 * reset the keep alive timer when the controller is enabled.
1143 */
1144 if (ctrl->kato)
1145 mod_delayed_work(system_wq, &ctrl->ka_work, ctrl->kato * HZ);
1146 }
1147
nvmet_clear_ctrl(struct nvmet_ctrl * ctrl)1148 static void nvmet_clear_ctrl(struct nvmet_ctrl *ctrl)
1149 {
1150 lockdep_assert_held(&ctrl->lock);
1151
1152 /* XXX: tear down queues? */
1153 ctrl->csts &= ~NVME_CSTS_RDY;
1154 ctrl->cc = 0;
1155 }
1156
nvmet_update_cc(struct nvmet_ctrl * ctrl,u32 new)1157 void nvmet_update_cc(struct nvmet_ctrl *ctrl, u32 new)
1158 {
1159 u32 old;
1160
1161 mutex_lock(&ctrl->lock);
1162 old = ctrl->cc;
1163 ctrl->cc = new;
1164
1165 if (nvmet_cc_en(new) && !nvmet_cc_en(old))
1166 nvmet_start_ctrl(ctrl);
1167 if (!nvmet_cc_en(new) && nvmet_cc_en(old))
1168 nvmet_clear_ctrl(ctrl);
1169 if (nvmet_cc_shn(new) && !nvmet_cc_shn(old)) {
1170 nvmet_clear_ctrl(ctrl);
1171 ctrl->csts |= NVME_CSTS_SHST_CMPLT;
1172 }
1173 if (!nvmet_cc_shn(new) && nvmet_cc_shn(old))
1174 ctrl->csts &= ~NVME_CSTS_SHST_CMPLT;
1175 mutex_unlock(&ctrl->lock);
1176 }
1177
nvmet_init_cap(struct nvmet_ctrl * ctrl)1178 static void nvmet_init_cap(struct nvmet_ctrl *ctrl)
1179 {
1180 /* command sets supported: NVMe command set: */
1181 ctrl->cap = (1ULL << 37);
1182 /* CC.EN timeout in 500msec units: */
1183 ctrl->cap |= (15ULL << 24);
1184 /* maximum queue entries supported: */
1185 ctrl->cap |= NVMET_QUEUE_SIZE - 1;
1186 }
1187
nvmet_ctrl_find_get(const char * subsysnqn,const char * hostnqn,u16 cntlid,struct nvmet_req * req,struct nvmet_ctrl ** ret)1188 u16 nvmet_ctrl_find_get(const char *subsysnqn, const char *hostnqn, u16 cntlid,
1189 struct nvmet_req *req, struct nvmet_ctrl **ret)
1190 {
1191 struct nvmet_subsys *subsys;
1192 struct nvmet_ctrl *ctrl;
1193 u16 status = 0;
1194
1195 subsys = nvmet_find_get_subsys(req->port, subsysnqn);
1196 if (!subsys) {
1197 pr_warn("connect request for invalid subsystem %s!\n",
1198 subsysnqn);
1199 req->cqe->result.u32 = IPO_IATTR_CONNECT_DATA(subsysnqn);
1200 return NVME_SC_CONNECT_INVALID_PARAM | NVME_SC_DNR;
1201 }
1202
1203 mutex_lock(&subsys->lock);
1204 list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) {
1205 if (ctrl->cntlid == cntlid) {
1206 if (strncmp(hostnqn, ctrl->hostnqn, NVMF_NQN_SIZE)) {
1207 pr_warn("hostnqn mismatch.\n");
1208 continue;
1209 }
1210 if (!kref_get_unless_zero(&ctrl->ref))
1211 continue;
1212
1213 *ret = ctrl;
1214 goto out;
1215 }
1216 }
1217
1218 pr_warn("could not find controller %d for subsys %s / host %s\n",
1219 cntlid, subsysnqn, hostnqn);
1220 req->cqe->result.u32 = IPO_IATTR_CONNECT_DATA(cntlid);
1221 status = NVME_SC_CONNECT_INVALID_PARAM | NVME_SC_DNR;
1222
1223 out:
1224 mutex_unlock(&subsys->lock);
1225 nvmet_subsys_put(subsys);
1226 return status;
1227 }
1228
nvmet_check_ctrl_status(struct nvmet_req * req,struct nvme_command * cmd)1229 u16 nvmet_check_ctrl_status(struct nvmet_req *req, struct nvme_command *cmd)
1230 {
1231 if (unlikely(!(req->sq->ctrl->cc & NVME_CC_ENABLE))) {
1232 pr_err("got cmd %d while CC.EN == 0 on qid = %d\n",
1233 cmd->common.opcode, req->sq->qid);
1234 return NVME_SC_CMD_SEQ_ERROR | NVME_SC_DNR;
1235 }
1236
1237 if (unlikely(!(req->sq->ctrl->csts & NVME_CSTS_RDY))) {
1238 pr_err("got cmd %d while CSTS.RDY == 0 on qid = %d\n",
1239 cmd->common.opcode, req->sq->qid);
1240 return NVME_SC_CMD_SEQ_ERROR | NVME_SC_DNR;
1241 }
1242 return 0;
1243 }
1244
nvmet_host_allowed(struct nvmet_subsys * subsys,const char * hostnqn)1245 bool nvmet_host_allowed(struct nvmet_subsys *subsys, const char *hostnqn)
1246 {
1247 struct nvmet_host_link *p;
1248
1249 lockdep_assert_held(&nvmet_config_sem);
1250
1251 if (subsys->allow_any_host)
1252 return true;
1253
1254 if (subsys->type == NVME_NQN_DISC) /* allow all access to disc subsys */
1255 return true;
1256
1257 list_for_each_entry(p, &subsys->hosts, entry) {
1258 if (!strcmp(nvmet_host_name(p->host), hostnqn))
1259 return true;
1260 }
1261
1262 return false;
1263 }
1264
1265 /*
1266 * Note: ctrl->subsys->lock should be held when calling this function
1267 */
nvmet_setup_p2p_ns_map(struct nvmet_ctrl * ctrl,struct nvmet_req * req)1268 static void nvmet_setup_p2p_ns_map(struct nvmet_ctrl *ctrl,
1269 struct nvmet_req *req)
1270 {
1271 struct nvmet_ns *ns;
1272 unsigned long idx;
1273
1274 if (!req->p2p_client)
1275 return;
1276
1277 ctrl->p2p_client = get_device(req->p2p_client);
1278
1279 xa_for_each(&ctrl->subsys->namespaces, idx, ns)
1280 nvmet_p2pmem_ns_add_p2p(ctrl, ns);
1281 }
1282
1283 /*
1284 * Note: ctrl->subsys->lock should be held when calling this function
1285 */
nvmet_release_p2p_ns_map(struct nvmet_ctrl * ctrl)1286 static void nvmet_release_p2p_ns_map(struct nvmet_ctrl *ctrl)
1287 {
1288 struct radix_tree_iter iter;
1289 void __rcu **slot;
1290
1291 radix_tree_for_each_slot(slot, &ctrl->p2p_ns_map, &iter, 0)
1292 pci_dev_put(radix_tree_deref_slot(slot));
1293
1294 put_device(ctrl->p2p_client);
1295 }
1296
nvmet_fatal_error_handler(struct work_struct * work)1297 static void nvmet_fatal_error_handler(struct work_struct *work)
1298 {
1299 struct nvmet_ctrl *ctrl =
1300 container_of(work, struct nvmet_ctrl, fatal_err_work);
1301
1302 pr_err("ctrl %d fatal error occurred!\n", ctrl->cntlid);
1303 ctrl->ops->delete_ctrl(ctrl);
1304 }
1305
nvmet_alloc_ctrl(const char * subsysnqn,const char * hostnqn,struct nvmet_req * req,u32 kato,struct nvmet_ctrl ** ctrlp)1306 u16 nvmet_alloc_ctrl(const char *subsysnqn, const char *hostnqn,
1307 struct nvmet_req *req, u32 kato, struct nvmet_ctrl **ctrlp)
1308 {
1309 struct nvmet_subsys *subsys;
1310 struct nvmet_ctrl *ctrl;
1311 int ret;
1312 u16 status;
1313
1314 status = NVME_SC_CONNECT_INVALID_PARAM | NVME_SC_DNR;
1315 subsys = nvmet_find_get_subsys(req->port, subsysnqn);
1316 if (!subsys) {
1317 pr_warn("connect request for invalid subsystem %s!\n",
1318 subsysnqn);
1319 req->cqe->result.u32 = IPO_IATTR_CONNECT_DATA(subsysnqn);
1320 goto out;
1321 }
1322
1323 status = NVME_SC_CONNECT_INVALID_PARAM | NVME_SC_DNR;
1324 down_read(&nvmet_config_sem);
1325 if (!nvmet_host_allowed(subsys, hostnqn)) {
1326 pr_info("connect by host %s for subsystem %s not allowed\n",
1327 hostnqn, subsysnqn);
1328 req->cqe->result.u32 = IPO_IATTR_CONNECT_DATA(hostnqn);
1329 up_read(&nvmet_config_sem);
1330 status = NVME_SC_CONNECT_INVALID_HOST | NVME_SC_DNR;
1331 goto out_put_subsystem;
1332 }
1333 up_read(&nvmet_config_sem);
1334
1335 status = NVME_SC_INTERNAL;
1336 ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
1337 if (!ctrl)
1338 goto out_put_subsystem;
1339 mutex_init(&ctrl->lock);
1340
1341 nvmet_init_cap(ctrl);
1342
1343 ctrl->port = req->port;
1344
1345 INIT_WORK(&ctrl->async_event_work, nvmet_async_event_work);
1346 INIT_LIST_HEAD(&ctrl->async_events);
1347 INIT_RADIX_TREE(&ctrl->p2p_ns_map, GFP_KERNEL);
1348 INIT_WORK(&ctrl->fatal_err_work, nvmet_fatal_error_handler);
1349
1350 memcpy(ctrl->subsysnqn, subsysnqn, NVMF_NQN_SIZE);
1351 memcpy(ctrl->hostnqn, hostnqn, NVMF_NQN_SIZE);
1352
1353 kref_init(&ctrl->ref);
1354 ctrl->subsys = subsys;
1355 WRITE_ONCE(ctrl->aen_enabled, NVMET_AEN_CFG_OPTIONAL);
1356
1357 ctrl->changed_ns_list = kmalloc_array(NVME_MAX_CHANGED_NAMESPACES,
1358 sizeof(__le32), GFP_KERNEL);
1359 if (!ctrl->changed_ns_list)
1360 goto out_free_ctrl;
1361
1362 ctrl->sqs = kcalloc(subsys->max_qid + 1,
1363 sizeof(struct nvmet_sq *),
1364 GFP_KERNEL);
1365 if (!ctrl->sqs)
1366 goto out_free_changed_ns_list;
1367
1368 if (subsys->cntlid_min > subsys->cntlid_max)
1369 goto out_free_sqs;
1370
1371 ret = ida_simple_get(&cntlid_ida,
1372 subsys->cntlid_min, subsys->cntlid_max,
1373 GFP_KERNEL);
1374 if (ret < 0) {
1375 status = NVME_SC_CONNECT_CTRL_BUSY | NVME_SC_DNR;
1376 goto out_free_sqs;
1377 }
1378 ctrl->cntlid = ret;
1379
1380 ctrl->ops = req->ops;
1381
1382 /*
1383 * Discovery controllers may use some arbitrary high value
1384 * in order to cleanup stale discovery sessions
1385 */
1386 if ((ctrl->subsys->type == NVME_NQN_DISC) && !kato)
1387 kato = NVMET_DISC_KATO_MS;
1388
1389 /* keep-alive timeout in seconds */
1390 ctrl->kato = DIV_ROUND_UP(kato, 1000);
1391
1392 ctrl->err_counter = 0;
1393 spin_lock_init(&ctrl->error_lock);
1394
1395 nvmet_start_keep_alive_timer(ctrl);
1396
1397 mutex_lock(&subsys->lock);
1398 list_add_tail(&ctrl->subsys_entry, &subsys->ctrls);
1399 nvmet_setup_p2p_ns_map(ctrl, req);
1400 mutex_unlock(&subsys->lock);
1401
1402 *ctrlp = ctrl;
1403 return 0;
1404
1405 out_free_sqs:
1406 kfree(ctrl->sqs);
1407 out_free_changed_ns_list:
1408 kfree(ctrl->changed_ns_list);
1409 out_free_ctrl:
1410 kfree(ctrl);
1411 out_put_subsystem:
1412 nvmet_subsys_put(subsys);
1413 out:
1414 return status;
1415 }
1416
nvmet_ctrl_free(struct kref * ref)1417 static void nvmet_ctrl_free(struct kref *ref)
1418 {
1419 struct nvmet_ctrl *ctrl = container_of(ref, struct nvmet_ctrl, ref);
1420 struct nvmet_subsys *subsys = ctrl->subsys;
1421
1422 mutex_lock(&subsys->lock);
1423 nvmet_release_p2p_ns_map(ctrl);
1424 list_del(&ctrl->subsys_entry);
1425 mutex_unlock(&subsys->lock);
1426
1427 nvmet_stop_keep_alive_timer(ctrl);
1428
1429 flush_work(&ctrl->async_event_work);
1430 cancel_work_sync(&ctrl->fatal_err_work);
1431
1432 ida_simple_remove(&cntlid_ida, ctrl->cntlid);
1433
1434 nvmet_async_events_free(ctrl);
1435 kfree(ctrl->sqs);
1436 kfree(ctrl->changed_ns_list);
1437 kfree(ctrl);
1438
1439 nvmet_subsys_put(subsys);
1440 }
1441
nvmet_ctrl_put(struct nvmet_ctrl * ctrl)1442 void nvmet_ctrl_put(struct nvmet_ctrl *ctrl)
1443 {
1444 kref_put(&ctrl->ref, nvmet_ctrl_free);
1445 }
1446
nvmet_ctrl_fatal_error(struct nvmet_ctrl * ctrl)1447 void nvmet_ctrl_fatal_error(struct nvmet_ctrl *ctrl)
1448 {
1449 mutex_lock(&ctrl->lock);
1450 if (!(ctrl->csts & NVME_CSTS_CFS)) {
1451 ctrl->csts |= NVME_CSTS_CFS;
1452 schedule_work(&ctrl->fatal_err_work);
1453 }
1454 mutex_unlock(&ctrl->lock);
1455 }
1456 EXPORT_SYMBOL_GPL(nvmet_ctrl_fatal_error);
1457
nvmet_find_get_subsys(struct nvmet_port * port,const char * subsysnqn)1458 static struct nvmet_subsys *nvmet_find_get_subsys(struct nvmet_port *port,
1459 const char *subsysnqn)
1460 {
1461 struct nvmet_subsys_link *p;
1462
1463 if (!port)
1464 return NULL;
1465
1466 if (!strcmp(NVME_DISC_SUBSYS_NAME, subsysnqn)) {
1467 if (!kref_get_unless_zero(&nvmet_disc_subsys->ref))
1468 return NULL;
1469 return nvmet_disc_subsys;
1470 }
1471
1472 down_read(&nvmet_config_sem);
1473 list_for_each_entry(p, &port->subsystems, entry) {
1474 if (!strncmp(p->subsys->subsysnqn, subsysnqn,
1475 NVMF_NQN_SIZE)) {
1476 if (!kref_get_unless_zero(&p->subsys->ref))
1477 break;
1478 up_read(&nvmet_config_sem);
1479 return p->subsys;
1480 }
1481 }
1482 up_read(&nvmet_config_sem);
1483 return NULL;
1484 }
1485
nvmet_subsys_alloc(const char * subsysnqn,enum nvme_subsys_type type)1486 struct nvmet_subsys *nvmet_subsys_alloc(const char *subsysnqn,
1487 enum nvme_subsys_type type)
1488 {
1489 struct nvmet_subsys *subsys;
1490
1491 subsys = kzalloc(sizeof(*subsys), GFP_KERNEL);
1492 if (!subsys)
1493 return ERR_PTR(-ENOMEM);
1494
1495 subsys->ver = NVMET_DEFAULT_VS;
1496 /* generate a random serial number as our controllers are ephemeral: */
1497 get_random_bytes(&subsys->serial, sizeof(subsys->serial));
1498
1499 switch (type) {
1500 case NVME_NQN_NVME:
1501 subsys->max_qid = NVMET_NR_QUEUES;
1502 break;
1503 case NVME_NQN_DISC:
1504 subsys->max_qid = 0;
1505 break;
1506 default:
1507 pr_err("%s: Unknown Subsystem type - %d\n", __func__, type);
1508 kfree(subsys);
1509 return ERR_PTR(-EINVAL);
1510 }
1511 subsys->type = type;
1512 subsys->subsysnqn = kstrndup(subsysnqn, NVMF_NQN_SIZE,
1513 GFP_KERNEL);
1514 if (!subsys->subsysnqn) {
1515 kfree(subsys);
1516 return ERR_PTR(-ENOMEM);
1517 }
1518 subsys->cntlid_min = NVME_CNTLID_MIN;
1519 subsys->cntlid_max = NVME_CNTLID_MAX;
1520 kref_init(&subsys->ref);
1521
1522 mutex_init(&subsys->lock);
1523 xa_init(&subsys->namespaces);
1524 INIT_LIST_HEAD(&subsys->ctrls);
1525 INIT_LIST_HEAD(&subsys->hosts);
1526
1527 return subsys;
1528 }
1529
nvmet_subsys_free(struct kref * ref)1530 static void nvmet_subsys_free(struct kref *ref)
1531 {
1532 struct nvmet_subsys *subsys =
1533 container_of(ref, struct nvmet_subsys, ref);
1534
1535 WARN_ON_ONCE(!xa_empty(&subsys->namespaces));
1536
1537 xa_destroy(&subsys->namespaces);
1538 nvmet_passthru_subsys_free(subsys);
1539
1540 kfree(subsys->subsysnqn);
1541 kfree_rcu(subsys->model, rcuhead);
1542 kfree(subsys);
1543 }
1544
nvmet_subsys_del_ctrls(struct nvmet_subsys * subsys)1545 void nvmet_subsys_del_ctrls(struct nvmet_subsys *subsys)
1546 {
1547 struct nvmet_ctrl *ctrl;
1548
1549 mutex_lock(&subsys->lock);
1550 list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry)
1551 ctrl->ops->delete_ctrl(ctrl);
1552 mutex_unlock(&subsys->lock);
1553 }
1554
nvmet_subsys_put(struct nvmet_subsys * subsys)1555 void nvmet_subsys_put(struct nvmet_subsys *subsys)
1556 {
1557 kref_put(&subsys->ref, nvmet_subsys_free);
1558 }
1559
nvmet_init(void)1560 static int __init nvmet_init(void)
1561 {
1562 int error;
1563
1564 nvmet_ana_group_enabled[NVMET_DEFAULT_ANA_GRPID] = 1;
1565
1566 buffered_io_wq = alloc_workqueue("nvmet-buffered-io-wq",
1567 WQ_MEM_RECLAIM, 0);
1568 if (!buffered_io_wq) {
1569 error = -ENOMEM;
1570 goto out;
1571 }
1572
1573 error = nvmet_init_discovery();
1574 if (error)
1575 goto out_free_work_queue;
1576
1577 error = nvmet_init_configfs();
1578 if (error)
1579 goto out_exit_discovery;
1580 return 0;
1581
1582 out_exit_discovery:
1583 nvmet_exit_discovery();
1584 out_free_work_queue:
1585 destroy_workqueue(buffered_io_wq);
1586 out:
1587 return error;
1588 }
1589
nvmet_exit(void)1590 static void __exit nvmet_exit(void)
1591 {
1592 nvmet_exit_configfs();
1593 nvmet_exit_discovery();
1594 ida_destroy(&cntlid_ida);
1595 destroy_workqueue(buffered_io_wq);
1596
1597 BUILD_BUG_ON(sizeof(struct nvmf_disc_rsp_page_entry) != 1024);
1598 BUILD_BUG_ON(sizeof(struct nvmf_disc_rsp_page_hdr) != 1024);
1599 }
1600
1601 module_init(nvmet_init);
1602 module_exit(nvmet_exit);
1603
1604 MODULE_LICENSE("GPL v2");
1605