1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * Procedures for creating, accessing and interpreting the device tree.
4 *
5 * Paul Mackerras August 1996.
6 * Copyright (C) 1996-2005 Paul Mackerras.
7 *
8 * Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner.
9 * {engebret|bergner}@us.ibm.com
10 *
11 * Adapted for sparc and sparc64 by David S. Miller davem@davemloft.net
12 *
13 * Reconsolidated from arch/x/kernel/prom.c by Stephen Rothwell and
14 * Grant Likely.
15 */
16
17 #define pr_fmt(fmt) "OF: " fmt
18
19 #include <linux/bitmap.h>
20 #include <linux/console.h>
21 #include <linux/ctype.h>
22 #include <linux/cpu.h>
23 #include <linux/module.h>
24 #include <linux/of.h>
25 #include <linux/of_device.h>
26 #include <linux/of_graph.h>
27 #include <linux/spinlock.h>
28 #include <linux/slab.h>
29 #include <linux/string.h>
30 #include <linux/proc_fs.h>
31
32 #include "of_private.h"
33
34 LIST_HEAD(aliases_lookup);
35
36 struct device_node *of_root;
37 EXPORT_SYMBOL(of_root);
38 struct device_node *of_chosen;
39 struct device_node *of_aliases;
40 struct device_node *of_stdout;
41 static const char *of_stdout_options;
42
43 struct kset *of_kset;
44
45 /*
46 * Used to protect the of_aliases, to hold off addition of nodes to sysfs.
47 * This mutex must be held whenever modifications are being made to the
48 * device tree. The of_{attach,detach}_node() and
49 * of_{add,remove,update}_property() helpers make sure this happens.
50 */
51 DEFINE_MUTEX(of_mutex);
52
53 /* use when traversing tree through the child, sibling,
54 * or parent members of struct device_node.
55 */
56 DEFINE_RAW_SPINLOCK(devtree_lock);
57
of_node_name_eq(const struct device_node * np,const char * name)58 bool of_node_name_eq(const struct device_node *np, const char *name)
59 {
60 const char *node_name;
61 size_t len;
62
63 if (!np)
64 return false;
65
66 node_name = kbasename(np->full_name);
67 len = strchrnul(node_name, '@') - node_name;
68
69 return (strlen(name) == len) && (strncmp(node_name, name, len) == 0);
70 }
71 EXPORT_SYMBOL(of_node_name_eq);
72
of_node_name_prefix(const struct device_node * np,const char * prefix)73 bool of_node_name_prefix(const struct device_node *np, const char *prefix)
74 {
75 if (!np)
76 return false;
77
78 return strncmp(kbasename(np->full_name), prefix, strlen(prefix)) == 0;
79 }
80 EXPORT_SYMBOL(of_node_name_prefix);
81
__of_node_is_type(const struct device_node * np,const char * type)82 static bool __of_node_is_type(const struct device_node *np, const char *type)
83 {
84 const char *match = __of_get_property(np, "device_type", NULL);
85
86 return np && match && type && !strcmp(match, type);
87 }
88
of_bus_n_addr_cells(struct device_node * np)89 int of_bus_n_addr_cells(struct device_node *np)
90 {
91 u32 cells;
92
93 for (; np; np = np->parent)
94 if (!of_property_read_u32(np, "#address-cells", &cells))
95 return cells;
96
97 /* No #address-cells property for the root node */
98 return OF_ROOT_NODE_ADDR_CELLS_DEFAULT;
99 }
100
of_n_addr_cells(struct device_node * np)101 int of_n_addr_cells(struct device_node *np)
102 {
103 if (np->parent)
104 np = np->parent;
105
106 return of_bus_n_addr_cells(np);
107 }
108 EXPORT_SYMBOL(of_n_addr_cells);
109
of_bus_n_size_cells(struct device_node * np)110 int of_bus_n_size_cells(struct device_node *np)
111 {
112 u32 cells;
113
114 for (; np; np = np->parent)
115 if (!of_property_read_u32(np, "#size-cells", &cells))
116 return cells;
117
118 /* No #size-cells property for the root node */
119 return OF_ROOT_NODE_SIZE_CELLS_DEFAULT;
120 }
121
of_n_size_cells(struct device_node * np)122 int of_n_size_cells(struct device_node *np)
123 {
124 if (np->parent)
125 np = np->parent;
126
127 return of_bus_n_size_cells(np);
128 }
129 EXPORT_SYMBOL(of_n_size_cells);
130
131 #ifdef CONFIG_NUMA
of_node_to_nid(struct device_node * np)132 int __weak of_node_to_nid(struct device_node *np)
133 {
134 return NUMA_NO_NODE;
135 }
136 #endif
137
138 #define OF_PHANDLE_CACHE_BITS 7
139 #define OF_PHANDLE_CACHE_SZ BIT(OF_PHANDLE_CACHE_BITS)
140
141 static struct device_node *phandle_cache[OF_PHANDLE_CACHE_SZ];
142
of_phandle_cache_hash(phandle handle)143 static u32 of_phandle_cache_hash(phandle handle)
144 {
145 return hash_32(handle, OF_PHANDLE_CACHE_BITS);
146 }
147
148 /*
149 * Caller must hold devtree_lock.
150 */
__of_phandle_cache_inv_entry(phandle handle)151 void __of_phandle_cache_inv_entry(phandle handle)
152 {
153 u32 handle_hash;
154 struct device_node *np;
155
156 if (!handle)
157 return;
158
159 handle_hash = of_phandle_cache_hash(handle);
160
161 np = phandle_cache[handle_hash];
162 if (np && handle == np->phandle)
163 phandle_cache[handle_hash] = NULL;
164 }
165
of_core_init(void)166 void __init of_core_init(void)
167 {
168 struct device_node *np;
169
170
171 /* Create the kset, and register existing nodes */
172 mutex_lock(&of_mutex);
173 of_kset = kset_create_and_add("devicetree", NULL, firmware_kobj);
174 if (!of_kset) {
175 mutex_unlock(&of_mutex);
176 pr_err("failed to register existing nodes\n");
177 return;
178 }
179 for_each_of_allnodes(np) {
180 __of_attach_node_sysfs(np);
181 if (np->phandle && !phandle_cache[of_phandle_cache_hash(np->phandle)])
182 phandle_cache[of_phandle_cache_hash(np->phandle)] = np;
183 }
184 mutex_unlock(&of_mutex);
185
186 /* Symlink in /proc as required by userspace ABI */
187 if (of_root)
188 proc_symlink("device-tree", NULL, "/sys/firmware/devicetree/base");
189 }
190
__of_find_property(const struct device_node * np,const char * name,int * lenp)191 static struct property *__of_find_property(const struct device_node *np,
192 const char *name, int *lenp)
193 {
194 struct property *pp;
195
196 if (!np)
197 return NULL;
198
199 for (pp = np->properties; pp; pp = pp->next) {
200 if (of_prop_cmp(pp->name, name) == 0) {
201 if (lenp)
202 *lenp = pp->length;
203 break;
204 }
205 }
206
207 return pp;
208 }
209
of_find_property(const struct device_node * np,const char * name,int * lenp)210 struct property *of_find_property(const struct device_node *np,
211 const char *name,
212 int *lenp)
213 {
214 struct property *pp;
215 unsigned long flags;
216
217 raw_spin_lock_irqsave(&devtree_lock, flags);
218 pp = __of_find_property(np, name, lenp);
219 raw_spin_unlock_irqrestore(&devtree_lock, flags);
220
221 return pp;
222 }
223 EXPORT_SYMBOL(of_find_property);
224
__of_find_all_nodes(struct device_node * prev)225 struct device_node *__of_find_all_nodes(struct device_node *prev)
226 {
227 struct device_node *np;
228 if (!prev) {
229 np = of_root;
230 } else if (prev->child) {
231 np = prev->child;
232 } else {
233 /* Walk back up looking for a sibling, or the end of the structure */
234 np = prev;
235 while (np->parent && !np->sibling)
236 np = np->parent;
237 np = np->sibling; /* Might be null at the end of the tree */
238 }
239 return np;
240 }
241
242 /**
243 * of_find_all_nodes - Get next node in global list
244 * @prev: Previous node or NULL to start iteration
245 * of_node_put() will be called on it
246 *
247 * Returns a node pointer with refcount incremented, use
248 * of_node_put() on it when done.
249 */
of_find_all_nodes(struct device_node * prev)250 struct device_node *of_find_all_nodes(struct device_node *prev)
251 {
252 struct device_node *np;
253 unsigned long flags;
254
255 raw_spin_lock_irqsave(&devtree_lock, flags);
256 np = __of_find_all_nodes(prev);
257 of_node_get(np);
258 of_node_put(prev);
259 raw_spin_unlock_irqrestore(&devtree_lock, flags);
260 return np;
261 }
262 EXPORT_SYMBOL(of_find_all_nodes);
263
264 /*
265 * Find a property with a given name for a given node
266 * and return the value.
267 */
__of_get_property(const struct device_node * np,const char * name,int * lenp)268 const void *__of_get_property(const struct device_node *np,
269 const char *name, int *lenp)
270 {
271 struct property *pp = __of_find_property(np, name, lenp);
272
273 return pp ? pp->value : NULL;
274 }
275
276 /*
277 * Find a property with a given name for a given node
278 * and return the value.
279 */
of_get_property(const struct device_node * np,const char * name,int * lenp)280 const void *of_get_property(const struct device_node *np, const char *name,
281 int *lenp)
282 {
283 struct property *pp = of_find_property(np, name, lenp);
284
285 return pp ? pp->value : NULL;
286 }
287 EXPORT_SYMBOL(of_get_property);
288
289 /*
290 * arch_match_cpu_phys_id - Match the given logical CPU and physical id
291 *
292 * @cpu: logical cpu index of a core/thread
293 * @phys_id: physical identifier of a core/thread
294 *
295 * CPU logical to physical index mapping is architecture specific.
296 * However this __weak function provides a default match of physical
297 * id to logical cpu index. phys_id provided here is usually values read
298 * from the device tree which must match the hardware internal registers.
299 *
300 * Returns true if the physical identifier and the logical cpu index
301 * correspond to the same core/thread, false otherwise.
302 */
arch_match_cpu_phys_id(int cpu,u64 phys_id)303 bool __weak arch_match_cpu_phys_id(int cpu, u64 phys_id)
304 {
305 return (u32)phys_id == cpu;
306 }
307
308 /**
309 * Checks if the given "prop_name" property holds the physical id of the
310 * core/thread corresponding to the logical cpu 'cpu'. If 'thread' is not
311 * NULL, local thread number within the core is returned in it.
312 */
__of_find_n_match_cpu_property(struct device_node * cpun,const char * prop_name,int cpu,unsigned int * thread)313 static bool __of_find_n_match_cpu_property(struct device_node *cpun,
314 const char *prop_name, int cpu, unsigned int *thread)
315 {
316 const __be32 *cell;
317 int ac, prop_len, tid;
318 u64 hwid;
319
320 ac = of_n_addr_cells(cpun);
321 cell = of_get_property(cpun, prop_name, &prop_len);
322 if (!cell && !ac && arch_match_cpu_phys_id(cpu, 0))
323 return true;
324 if (!cell || !ac)
325 return false;
326 prop_len /= sizeof(*cell) * ac;
327 for (tid = 0; tid < prop_len; tid++) {
328 hwid = of_read_number(cell, ac);
329 if (arch_match_cpu_phys_id(cpu, hwid)) {
330 if (thread)
331 *thread = tid;
332 return true;
333 }
334 cell += ac;
335 }
336 return false;
337 }
338
339 /*
340 * arch_find_n_match_cpu_physical_id - See if the given device node is
341 * for the cpu corresponding to logical cpu 'cpu'. Return true if so,
342 * else false. If 'thread' is non-NULL, the local thread number within the
343 * core is returned in it.
344 */
arch_find_n_match_cpu_physical_id(struct device_node * cpun,int cpu,unsigned int * thread)345 bool __weak arch_find_n_match_cpu_physical_id(struct device_node *cpun,
346 int cpu, unsigned int *thread)
347 {
348 /* Check for non-standard "ibm,ppc-interrupt-server#s" property
349 * for thread ids on PowerPC. If it doesn't exist fallback to
350 * standard "reg" property.
351 */
352 if (IS_ENABLED(CONFIG_PPC) &&
353 __of_find_n_match_cpu_property(cpun,
354 "ibm,ppc-interrupt-server#s",
355 cpu, thread))
356 return true;
357
358 return __of_find_n_match_cpu_property(cpun, "reg", cpu, thread);
359 }
360
361 /**
362 * of_get_cpu_node - Get device node associated with the given logical CPU
363 *
364 * @cpu: CPU number(logical index) for which device node is required
365 * @thread: if not NULL, local thread number within the physical core is
366 * returned
367 *
368 * The main purpose of this function is to retrieve the device node for the
369 * given logical CPU index. It should be used to initialize the of_node in
370 * cpu device. Once of_node in cpu device is populated, all the further
371 * references can use that instead.
372 *
373 * CPU logical to physical index mapping is architecture specific and is built
374 * before booting secondary cores. This function uses arch_match_cpu_phys_id
375 * which can be overridden by architecture specific implementation.
376 *
377 * Returns a node pointer for the logical cpu with refcount incremented, use
378 * of_node_put() on it when done. Returns NULL if not found.
379 */
of_get_cpu_node(int cpu,unsigned int * thread)380 struct device_node *of_get_cpu_node(int cpu, unsigned int *thread)
381 {
382 struct device_node *cpun;
383
384 for_each_of_cpu_node(cpun) {
385 if (arch_find_n_match_cpu_physical_id(cpun, cpu, thread))
386 return cpun;
387 }
388 return NULL;
389 }
390 EXPORT_SYMBOL(of_get_cpu_node);
391
392 /**
393 * of_cpu_node_to_id: Get the logical CPU number for a given device_node
394 *
395 * @cpu_node: Pointer to the device_node for CPU.
396 *
397 * Returns the logical CPU number of the given CPU device_node.
398 * Returns -ENODEV if the CPU is not found.
399 */
of_cpu_node_to_id(struct device_node * cpu_node)400 int of_cpu_node_to_id(struct device_node *cpu_node)
401 {
402 int cpu;
403 bool found = false;
404 struct device_node *np;
405
406 for_each_possible_cpu(cpu) {
407 np = of_cpu_device_node_get(cpu);
408 found = (cpu_node == np);
409 of_node_put(np);
410 if (found)
411 return cpu;
412 }
413
414 return -ENODEV;
415 }
416 EXPORT_SYMBOL(of_cpu_node_to_id);
417
418 /**
419 * of_get_cpu_state_node - Get CPU's idle state node at the given index
420 *
421 * @cpu_node: The device node for the CPU
422 * @index: The index in the list of the idle states
423 *
424 * Two generic methods can be used to describe a CPU's idle states, either via
425 * a flattened description through the "cpu-idle-states" binding or via the
426 * hierarchical layout, using the "power-domains" and the "domain-idle-states"
427 * bindings. This function check for both and returns the idle state node for
428 * the requested index.
429 *
430 * In case an idle state node is found at @index, the refcount is incremented
431 * for it, so call of_node_put() on it when done. Returns NULL if not found.
432 */
of_get_cpu_state_node(struct device_node * cpu_node,int index)433 struct device_node *of_get_cpu_state_node(struct device_node *cpu_node,
434 int index)
435 {
436 struct of_phandle_args args;
437 int err;
438
439 err = of_parse_phandle_with_args(cpu_node, "power-domains",
440 "#power-domain-cells", 0, &args);
441 if (!err) {
442 struct device_node *state_node =
443 of_parse_phandle(args.np, "domain-idle-states", index);
444
445 of_node_put(args.np);
446 if (state_node)
447 return state_node;
448 }
449
450 return of_parse_phandle(cpu_node, "cpu-idle-states", index);
451 }
452 EXPORT_SYMBOL(of_get_cpu_state_node);
453
454 /**
455 * __of_device_is_compatible() - Check if the node matches given constraints
456 * @device: pointer to node
457 * @compat: required compatible string, NULL or "" for any match
458 * @type: required device_type value, NULL or "" for any match
459 * @name: required node name, NULL or "" for any match
460 *
461 * Checks if the given @compat, @type and @name strings match the
462 * properties of the given @device. A constraints can be skipped by
463 * passing NULL or an empty string as the constraint.
464 *
465 * Returns 0 for no match, and a positive integer on match. The return
466 * value is a relative score with larger values indicating better
467 * matches. The score is weighted for the most specific compatible value
468 * to get the highest score. Matching type is next, followed by matching
469 * name. Practically speaking, this results in the following priority
470 * order for matches:
471 *
472 * 1. specific compatible && type && name
473 * 2. specific compatible && type
474 * 3. specific compatible && name
475 * 4. specific compatible
476 * 5. general compatible && type && name
477 * 6. general compatible && type
478 * 7. general compatible && name
479 * 8. general compatible
480 * 9. type && name
481 * 10. type
482 * 11. name
483 */
__of_device_is_compatible(const struct device_node * device,const char * compat,const char * type,const char * name)484 static int __of_device_is_compatible(const struct device_node *device,
485 const char *compat, const char *type, const char *name)
486 {
487 struct property *prop;
488 const char *cp;
489 int index = 0, score = 0;
490
491 /* Compatible match has highest priority */
492 if (compat && compat[0]) {
493 prop = __of_find_property(device, "compatible", NULL);
494 for (cp = of_prop_next_string(prop, NULL); cp;
495 cp = of_prop_next_string(prop, cp), index++) {
496 if (of_compat_cmp(cp, compat, strlen(compat)) == 0) {
497 score = INT_MAX/2 - (index << 2);
498 break;
499 }
500 }
501 if (!score)
502 return 0;
503 }
504
505 /* Matching type is better than matching name */
506 if (type && type[0]) {
507 if (!__of_node_is_type(device, type))
508 return 0;
509 score += 2;
510 }
511
512 /* Matching name is a bit better than not */
513 if (name && name[0]) {
514 if (!of_node_name_eq(device, name))
515 return 0;
516 score++;
517 }
518
519 return score;
520 }
521
522 /** Checks if the given "compat" string matches one of the strings in
523 * the device's "compatible" property
524 */
of_device_is_compatible(const struct device_node * device,const char * compat)525 int of_device_is_compatible(const struct device_node *device,
526 const char *compat)
527 {
528 unsigned long flags;
529 int res;
530
531 raw_spin_lock_irqsave(&devtree_lock, flags);
532 res = __of_device_is_compatible(device, compat, NULL, NULL);
533 raw_spin_unlock_irqrestore(&devtree_lock, flags);
534 return res;
535 }
536 EXPORT_SYMBOL(of_device_is_compatible);
537
538 /** Checks if the device is compatible with any of the entries in
539 * a NULL terminated array of strings. Returns the best match
540 * score or 0.
541 */
of_device_compatible_match(struct device_node * device,const char * const * compat)542 int of_device_compatible_match(struct device_node *device,
543 const char *const *compat)
544 {
545 unsigned int tmp, score = 0;
546
547 if (!compat)
548 return 0;
549
550 while (*compat) {
551 tmp = of_device_is_compatible(device, *compat);
552 if (tmp > score)
553 score = tmp;
554 compat++;
555 }
556
557 return score;
558 }
559
560 /**
561 * of_machine_is_compatible - Test root of device tree for a given compatible value
562 * @compat: compatible string to look for in root node's compatible property.
563 *
564 * Returns a positive integer if the root node has the given value in its
565 * compatible property.
566 */
of_machine_is_compatible(const char * compat)567 int of_machine_is_compatible(const char *compat)
568 {
569 struct device_node *root;
570 int rc = 0;
571
572 root = of_find_node_by_path("/");
573 if (root) {
574 rc = of_device_is_compatible(root, compat);
575 of_node_put(root);
576 }
577 return rc;
578 }
579 EXPORT_SYMBOL(of_machine_is_compatible);
580
581 /**
582 * __of_device_is_available - check if a device is available for use
583 *
584 * @device: Node to check for availability, with locks already held
585 *
586 * Returns true if the status property is absent or set to "okay" or "ok",
587 * false otherwise
588 */
__of_device_is_available(const struct device_node * device)589 static bool __of_device_is_available(const struct device_node *device)
590 {
591 const char *status;
592 int statlen;
593
594 if (!device)
595 return false;
596
597 status = __of_get_property(device, "status", &statlen);
598 if (status == NULL)
599 return true;
600
601 if (statlen > 0) {
602 if (!strcmp(status, "okay") || !strcmp(status, "ok"))
603 return true;
604 }
605
606 return false;
607 }
608
609 /**
610 * of_device_is_available - check if a device is available for use
611 *
612 * @device: Node to check for availability
613 *
614 * Returns true if the status property is absent or set to "okay" or "ok",
615 * false otherwise
616 */
of_device_is_available(const struct device_node * device)617 bool of_device_is_available(const struct device_node *device)
618 {
619 unsigned long flags;
620 bool res;
621
622 raw_spin_lock_irqsave(&devtree_lock, flags);
623 res = __of_device_is_available(device);
624 raw_spin_unlock_irqrestore(&devtree_lock, flags);
625 return res;
626
627 }
628 EXPORT_SYMBOL(of_device_is_available);
629
630 /**
631 * of_device_is_big_endian - check if a device has BE registers
632 *
633 * @device: Node to check for endianness
634 *
635 * Returns true if the device has a "big-endian" property, or if the kernel
636 * was compiled for BE *and* the device has a "native-endian" property.
637 * Returns false otherwise.
638 *
639 * Callers would nominally use ioread32be/iowrite32be if
640 * of_device_is_big_endian() == true, or readl/writel otherwise.
641 */
of_device_is_big_endian(const struct device_node * device)642 bool of_device_is_big_endian(const struct device_node *device)
643 {
644 if (of_property_read_bool(device, "big-endian"))
645 return true;
646 if (IS_ENABLED(CONFIG_CPU_BIG_ENDIAN) &&
647 of_property_read_bool(device, "native-endian"))
648 return true;
649 return false;
650 }
651 EXPORT_SYMBOL(of_device_is_big_endian);
652
653 /**
654 * of_get_parent - Get a node's parent if any
655 * @node: Node to get parent
656 *
657 * Returns a node pointer with refcount incremented, use
658 * of_node_put() on it when done.
659 */
of_get_parent(const struct device_node * node)660 struct device_node *of_get_parent(const struct device_node *node)
661 {
662 struct device_node *np;
663 unsigned long flags;
664
665 if (!node)
666 return NULL;
667
668 raw_spin_lock_irqsave(&devtree_lock, flags);
669 np = of_node_get(node->parent);
670 raw_spin_unlock_irqrestore(&devtree_lock, flags);
671 return np;
672 }
673 EXPORT_SYMBOL(of_get_parent);
674
675 /**
676 * of_get_next_parent - Iterate to a node's parent
677 * @node: Node to get parent of
678 *
679 * This is like of_get_parent() except that it drops the
680 * refcount on the passed node, making it suitable for iterating
681 * through a node's parents.
682 *
683 * Returns a node pointer with refcount incremented, use
684 * of_node_put() on it when done.
685 */
of_get_next_parent(struct device_node * node)686 struct device_node *of_get_next_parent(struct device_node *node)
687 {
688 struct device_node *parent;
689 unsigned long flags;
690
691 if (!node)
692 return NULL;
693
694 raw_spin_lock_irqsave(&devtree_lock, flags);
695 parent = of_node_get(node->parent);
696 of_node_put(node);
697 raw_spin_unlock_irqrestore(&devtree_lock, flags);
698 return parent;
699 }
700 EXPORT_SYMBOL(of_get_next_parent);
701
__of_get_next_child(const struct device_node * node,struct device_node * prev)702 static struct device_node *__of_get_next_child(const struct device_node *node,
703 struct device_node *prev)
704 {
705 struct device_node *next;
706
707 if (!node)
708 return NULL;
709
710 next = prev ? prev->sibling : node->child;
711 for (; next; next = next->sibling)
712 if (of_node_get(next))
713 break;
714 of_node_put(prev);
715 return next;
716 }
717 #define __for_each_child_of_node(parent, child) \
718 for (child = __of_get_next_child(parent, NULL); child != NULL; \
719 child = __of_get_next_child(parent, child))
720
721 /**
722 * of_get_next_child - Iterate a node childs
723 * @node: parent node
724 * @prev: previous child of the parent node, or NULL to get first
725 *
726 * Returns a node pointer with refcount incremented, use of_node_put() on
727 * it when done. Returns NULL when prev is the last child. Decrements the
728 * refcount of prev.
729 */
of_get_next_child(const struct device_node * node,struct device_node * prev)730 struct device_node *of_get_next_child(const struct device_node *node,
731 struct device_node *prev)
732 {
733 struct device_node *next;
734 unsigned long flags;
735
736 raw_spin_lock_irqsave(&devtree_lock, flags);
737 next = __of_get_next_child(node, prev);
738 raw_spin_unlock_irqrestore(&devtree_lock, flags);
739 return next;
740 }
741 EXPORT_SYMBOL(of_get_next_child);
742
743 /**
744 * of_get_next_available_child - Find the next available child node
745 * @node: parent node
746 * @prev: previous child of the parent node, or NULL to get first
747 *
748 * This function is like of_get_next_child(), except that it
749 * automatically skips any disabled nodes (i.e. status = "disabled").
750 */
of_get_next_available_child(const struct device_node * node,struct device_node * prev)751 struct device_node *of_get_next_available_child(const struct device_node *node,
752 struct device_node *prev)
753 {
754 struct device_node *next;
755 unsigned long flags;
756
757 if (!node)
758 return NULL;
759
760 raw_spin_lock_irqsave(&devtree_lock, flags);
761 next = prev ? prev->sibling : node->child;
762 for (; next; next = next->sibling) {
763 if (!__of_device_is_available(next))
764 continue;
765 if (of_node_get(next))
766 break;
767 }
768 of_node_put(prev);
769 raw_spin_unlock_irqrestore(&devtree_lock, flags);
770 return next;
771 }
772 EXPORT_SYMBOL(of_get_next_available_child);
773
774 /**
775 * of_get_next_cpu_node - Iterate on cpu nodes
776 * @prev: previous child of the /cpus node, or NULL to get first
777 *
778 * Returns a cpu node pointer with refcount incremented, use of_node_put()
779 * on it when done. Returns NULL when prev is the last child. Decrements
780 * the refcount of prev.
781 */
of_get_next_cpu_node(struct device_node * prev)782 struct device_node *of_get_next_cpu_node(struct device_node *prev)
783 {
784 struct device_node *next = NULL;
785 unsigned long flags;
786 struct device_node *node;
787
788 if (!prev)
789 node = of_find_node_by_path("/cpus");
790
791 raw_spin_lock_irqsave(&devtree_lock, flags);
792 if (prev)
793 next = prev->sibling;
794 else if (node) {
795 next = node->child;
796 of_node_put(node);
797 }
798 for (; next; next = next->sibling) {
799 if (!(of_node_name_eq(next, "cpu") ||
800 __of_node_is_type(next, "cpu")))
801 continue;
802 if (of_node_get(next))
803 break;
804 }
805 of_node_put(prev);
806 raw_spin_unlock_irqrestore(&devtree_lock, flags);
807 return next;
808 }
809 EXPORT_SYMBOL(of_get_next_cpu_node);
810
811 /**
812 * of_get_compatible_child - Find compatible child node
813 * @parent: parent node
814 * @compatible: compatible string
815 *
816 * Lookup child node whose compatible property contains the given compatible
817 * string.
818 *
819 * Returns a node pointer with refcount incremented, use of_node_put() on it
820 * when done; or NULL if not found.
821 */
of_get_compatible_child(const struct device_node * parent,const char * compatible)822 struct device_node *of_get_compatible_child(const struct device_node *parent,
823 const char *compatible)
824 {
825 struct device_node *child;
826
827 for_each_child_of_node(parent, child) {
828 if (of_device_is_compatible(child, compatible))
829 break;
830 }
831
832 return child;
833 }
834 EXPORT_SYMBOL(of_get_compatible_child);
835
836 /**
837 * of_get_child_by_name - Find the child node by name for a given parent
838 * @node: parent node
839 * @name: child name to look for.
840 *
841 * This function looks for child node for given matching name
842 *
843 * Returns a node pointer if found, with refcount incremented, use
844 * of_node_put() on it when done.
845 * Returns NULL if node is not found.
846 */
of_get_child_by_name(const struct device_node * node,const char * name)847 struct device_node *of_get_child_by_name(const struct device_node *node,
848 const char *name)
849 {
850 struct device_node *child;
851
852 for_each_child_of_node(node, child)
853 if (of_node_name_eq(child, name))
854 break;
855 return child;
856 }
857 EXPORT_SYMBOL(of_get_child_by_name);
858
__of_find_node_by_path(struct device_node * parent,const char * path)859 struct device_node *__of_find_node_by_path(struct device_node *parent,
860 const char *path)
861 {
862 struct device_node *child;
863 int len;
864
865 len = strcspn(path, "/:");
866 if (!len)
867 return NULL;
868
869 __for_each_child_of_node(parent, child) {
870 const char *name = kbasename(child->full_name);
871 if (strncmp(path, name, len) == 0 && (strlen(name) == len))
872 return child;
873 }
874 return NULL;
875 }
876
__of_find_node_by_full_path(struct device_node * node,const char * path)877 struct device_node *__of_find_node_by_full_path(struct device_node *node,
878 const char *path)
879 {
880 const char *separator = strchr(path, ':');
881
882 while (node && *path == '/') {
883 struct device_node *tmp = node;
884
885 path++; /* Increment past '/' delimiter */
886 node = __of_find_node_by_path(node, path);
887 of_node_put(tmp);
888 path = strchrnul(path, '/');
889 if (separator && separator < path)
890 break;
891 }
892 return node;
893 }
894
895 /**
896 * of_find_node_opts_by_path - Find a node matching a full OF path
897 * @path: Either the full path to match, or if the path does not
898 * start with '/', the name of a property of the /aliases
899 * node (an alias). In the case of an alias, the node
900 * matching the alias' value will be returned.
901 * @opts: Address of a pointer into which to store the start of
902 * an options string appended to the end of the path with
903 * a ':' separator.
904 *
905 * Valid paths:
906 * /foo/bar Full path
907 * foo Valid alias
908 * foo/bar Valid alias + relative path
909 *
910 * Returns a node pointer with refcount incremented, use
911 * of_node_put() on it when done.
912 */
of_find_node_opts_by_path(const char * path,const char ** opts)913 struct device_node *of_find_node_opts_by_path(const char *path, const char **opts)
914 {
915 struct device_node *np = NULL;
916 struct property *pp;
917 unsigned long flags;
918 const char *separator = strchr(path, ':');
919
920 if (opts)
921 *opts = separator ? separator + 1 : NULL;
922
923 if (strcmp(path, "/") == 0)
924 return of_node_get(of_root);
925
926 /* The path could begin with an alias */
927 if (*path != '/') {
928 int len;
929 const char *p = separator;
930
931 if (!p)
932 p = strchrnul(path, '/');
933 len = p - path;
934
935 /* of_aliases must not be NULL */
936 if (!of_aliases)
937 return NULL;
938
939 for_each_property_of_node(of_aliases, pp) {
940 if (strlen(pp->name) == len && !strncmp(pp->name, path, len)) {
941 np = of_find_node_by_path(pp->value);
942 break;
943 }
944 }
945 if (!np)
946 return NULL;
947 path = p;
948 }
949
950 /* Step down the tree matching path components */
951 raw_spin_lock_irqsave(&devtree_lock, flags);
952 if (!np)
953 np = of_node_get(of_root);
954 np = __of_find_node_by_full_path(np, path);
955 raw_spin_unlock_irqrestore(&devtree_lock, flags);
956 return np;
957 }
958 EXPORT_SYMBOL(of_find_node_opts_by_path);
959
960 /**
961 * of_find_node_by_name - Find a node by its "name" property
962 * @from: The node to start searching from or NULL; the node
963 * you pass will not be searched, only the next one
964 * will. Typically, you pass what the previous call
965 * returned. of_node_put() will be called on @from.
966 * @name: The name string to match against
967 *
968 * Returns a node pointer with refcount incremented, use
969 * of_node_put() on it when done.
970 */
of_find_node_by_name(struct device_node * from,const char * name)971 struct device_node *of_find_node_by_name(struct device_node *from,
972 const char *name)
973 {
974 struct device_node *np;
975 unsigned long flags;
976
977 raw_spin_lock_irqsave(&devtree_lock, flags);
978 for_each_of_allnodes_from(from, np)
979 if (of_node_name_eq(np, name) && of_node_get(np))
980 break;
981 of_node_put(from);
982 raw_spin_unlock_irqrestore(&devtree_lock, flags);
983 return np;
984 }
985 EXPORT_SYMBOL(of_find_node_by_name);
986
987 /**
988 * of_find_node_by_type - Find a node by its "device_type" property
989 * @from: The node to start searching from, or NULL to start searching
990 * the entire device tree. The node you pass will not be
991 * searched, only the next one will; typically, you pass
992 * what the previous call returned. of_node_put() will be
993 * called on from for you.
994 * @type: The type string to match against
995 *
996 * Returns a node pointer with refcount incremented, use
997 * of_node_put() on it when done.
998 */
of_find_node_by_type(struct device_node * from,const char * type)999 struct device_node *of_find_node_by_type(struct device_node *from,
1000 const char *type)
1001 {
1002 struct device_node *np;
1003 unsigned long flags;
1004
1005 raw_spin_lock_irqsave(&devtree_lock, flags);
1006 for_each_of_allnodes_from(from, np)
1007 if (__of_node_is_type(np, type) && of_node_get(np))
1008 break;
1009 of_node_put(from);
1010 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1011 return np;
1012 }
1013 EXPORT_SYMBOL(of_find_node_by_type);
1014
1015 /**
1016 * of_find_compatible_node - Find a node based on type and one of the
1017 * tokens in its "compatible" property
1018 * @from: The node to start searching from or NULL, the node
1019 * you pass will not be searched, only the next one
1020 * will; typically, you pass what the previous call
1021 * returned. of_node_put() will be called on it
1022 * @type: The type string to match "device_type" or NULL to ignore
1023 * @compatible: The string to match to one of the tokens in the device
1024 * "compatible" list.
1025 *
1026 * Returns a node pointer with refcount incremented, use
1027 * of_node_put() on it when done.
1028 */
of_find_compatible_node(struct device_node * from,const char * type,const char * compatible)1029 struct device_node *of_find_compatible_node(struct device_node *from,
1030 const char *type, const char *compatible)
1031 {
1032 struct device_node *np;
1033 unsigned long flags;
1034
1035 raw_spin_lock_irqsave(&devtree_lock, flags);
1036 for_each_of_allnodes_from(from, np)
1037 if (__of_device_is_compatible(np, compatible, type, NULL) &&
1038 of_node_get(np))
1039 break;
1040 of_node_put(from);
1041 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1042 return np;
1043 }
1044 EXPORT_SYMBOL(of_find_compatible_node);
1045
1046 /**
1047 * of_find_node_with_property - Find a node which has a property with
1048 * the given name.
1049 * @from: The node to start searching from or NULL, the node
1050 * you pass will not be searched, only the next one
1051 * will; typically, you pass what the previous call
1052 * returned. of_node_put() will be called on it
1053 * @prop_name: The name of the property to look for.
1054 *
1055 * Returns a node pointer with refcount incremented, use
1056 * of_node_put() on it when done.
1057 */
of_find_node_with_property(struct device_node * from,const char * prop_name)1058 struct device_node *of_find_node_with_property(struct device_node *from,
1059 const char *prop_name)
1060 {
1061 struct device_node *np;
1062 struct property *pp;
1063 unsigned long flags;
1064
1065 raw_spin_lock_irqsave(&devtree_lock, flags);
1066 for_each_of_allnodes_from(from, np) {
1067 for (pp = np->properties; pp; pp = pp->next) {
1068 if (of_prop_cmp(pp->name, prop_name) == 0) {
1069 of_node_get(np);
1070 goto out;
1071 }
1072 }
1073 }
1074 out:
1075 of_node_put(from);
1076 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1077 return np;
1078 }
1079 EXPORT_SYMBOL(of_find_node_with_property);
1080
1081 static
__of_match_node(const struct of_device_id * matches,const struct device_node * node)1082 const struct of_device_id *__of_match_node(const struct of_device_id *matches,
1083 const struct device_node *node)
1084 {
1085 const struct of_device_id *best_match = NULL;
1086 int score, best_score = 0;
1087
1088 if (!matches)
1089 return NULL;
1090
1091 for (; matches->name[0] || matches->type[0] || matches->compatible[0]; matches++) {
1092 score = __of_device_is_compatible(node, matches->compatible,
1093 matches->type, matches->name);
1094 if (score > best_score) {
1095 best_match = matches;
1096 best_score = score;
1097 }
1098 }
1099
1100 return best_match;
1101 }
1102
1103 /**
1104 * of_match_node - Tell if a device_node has a matching of_match structure
1105 * @matches: array of of device match structures to search in
1106 * @node: the of device structure to match against
1107 *
1108 * Low level utility function used by device matching.
1109 */
of_match_node(const struct of_device_id * matches,const struct device_node * node)1110 const struct of_device_id *of_match_node(const struct of_device_id *matches,
1111 const struct device_node *node)
1112 {
1113 const struct of_device_id *match;
1114 unsigned long flags;
1115
1116 raw_spin_lock_irqsave(&devtree_lock, flags);
1117 match = __of_match_node(matches, node);
1118 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1119 return match;
1120 }
1121 EXPORT_SYMBOL(of_match_node);
1122
1123 /**
1124 * of_find_matching_node_and_match - Find a node based on an of_device_id
1125 * match table.
1126 * @from: The node to start searching from or NULL, the node
1127 * you pass will not be searched, only the next one
1128 * will; typically, you pass what the previous call
1129 * returned. of_node_put() will be called on it
1130 * @matches: array of of device match structures to search in
1131 * @match Updated to point at the matches entry which matched
1132 *
1133 * Returns a node pointer with refcount incremented, use
1134 * of_node_put() on it when done.
1135 */
of_find_matching_node_and_match(struct device_node * from,const struct of_device_id * matches,const struct of_device_id ** match)1136 struct device_node *of_find_matching_node_and_match(struct device_node *from,
1137 const struct of_device_id *matches,
1138 const struct of_device_id **match)
1139 {
1140 struct device_node *np;
1141 const struct of_device_id *m;
1142 unsigned long flags;
1143
1144 if (match)
1145 *match = NULL;
1146
1147 raw_spin_lock_irqsave(&devtree_lock, flags);
1148 for_each_of_allnodes_from(from, np) {
1149 m = __of_match_node(matches, np);
1150 if (m && of_node_get(np)) {
1151 if (match)
1152 *match = m;
1153 break;
1154 }
1155 }
1156 of_node_put(from);
1157 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1158 return np;
1159 }
1160 EXPORT_SYMBOL(of_find_matching_node_and_match);
1161
1162 /**
1163 * of_modalias_node - Lookup appropriate modalias for a device node
1164 * @node: pointer to a device tree node
1165 * @modalias: Pointer to buffer that modalias value will be copied into
1166 * @len: Length of modalias value
1167 *
1168 * Based on the value of the compatible property, this routine will attempt
1169 * to choose an appropriate modalias value for a particular device tree node.
1170 * It does this by stripping the manufacturer prefix (as delimited by a ',')
1171 * from the first entry in the compatible list property.
1172 *
1173 * This routine returns 0 on success, <0 on failure.
1174 */
of_modalias_node(struct device_node * node,char * modalias,int len)1175 int of_modalias_node(struct device_node *node, char *modalias, int len)
1176 {
1177 const char *compatible, *p;
1178 int cplen;
1179
1180 compatible = of_get_property(node, "compatible", &cplen);
1181 if (!compatible || strlen(compatible) > cplen)
1182 return -ENODEV;
1183 p = strchr(compatible, ',');
1184 strlcpy(modalias, p ? p + 1 : compatible, len);
1185 return 0;
1186 }
1187 EXPORT_SYMBOL_GPL(of_modalias_node);
1188
1189 /**
1190 * of_find_node_by_phandle - Find a node given a phandle
1191 * @handle: phandle of the node to find
1192 *
1193 * Returns a node pointer with refcount incremented, use
1194 * of_node_put() on it when done.
1195 */
of_find_node_by_phandle(phandle handle)1196 struct device_node *of_find_node_by_phandle(phandle handle)
1197 {
1198 struct device_node *np = NULL;
1199 unsigned long flags;
1200 u32 handle_hash;
1201
1202 if (!handle)
1203 return NULL;
1204
1205 handle_hash = of_phandle_cache_hash(handle);
1206
1207 raw_spin_lock_irqsave(&devtree_lock, flags);
1208
1209 if (phandle_cache[handle_hash] &&
1210 handle == phandle_cache[handle_hash]->phandle)
1211 np = phandle_cache[handle_hash];
1212
1213 if (!np) {
1214 for_each_of_allnodes(np)
1215 if (np->phandle == handle &&
1216 !of_node_check_flag(np, OF_DETACHED)) {
1217 phandle_cache[handle_hash] = np;
1218 break;
1219 }
1220 }
1221
1222 of_node_get(np);
1223 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1224 return np;
1225 }
1226 EXPORT_SYMBOL(of_find_node_by_phandle);
1227
of_print_phandle_args(const char * msg,const struct of_phandle_args * args)1228 void of_print_phandle_args(const char *msg, const struct of_phandle_args *args)
1229 {
1230 int i;
1231 printk("%s %pOF", msg, args->np);
1232 for (i = 0; i < args->args_count; i++) {
1233 const char delim = i ? ',' : ':';
1234
1235 pr_cont("%c%08x", delim, args->args[i]);
1236 }
1237 pr_cont("\n");
1238 }
1239
of_phandle_iterator_init(struct of_phandle_iterator * it,const struct device_node * np,const char * list_name,const char * cells_name,int cell_count)1240 int of_phandle_iterator_init(struct of_phandle_iterator *it,
1241 const struct device_node *np,
1242 const char *list_name,
1243 const char *cells_name,
1244 int cell_count)
1245 {
1246 const __be32 *list;
1247 int size;
1248
1249 memset(it, 0, sizeof(*it));
1250
1251 /*
1252 * one of cell_count or cells_name must be provided to determine the
1253 * argument length.
1254 */
1255 if (cell_count < 0 && !cells_name)
1256 return -EINVAL;
1257
1258 list = of_get_property(np, list_name, &size);
1259 if (!list)
1260 return -ENOENT;
1261
1262 it->cells_name = cells_name;
1263 it->cell_count = cell_count;
1264 it->parent = np;
1265 it->list_end = list + size / sizeof(*list);
1266 it->phandle_end = list;
1267 it->cur = list;
1268
1269 return 0;
1270 }
1271 EXPORT_SYMBOL_GPL(of_phandle_iterator_init);
1272
of_phandle_iterator_next(struct of_phandle_iterator * it)1273 int of_phandle_iterator_next(struct of_phandle_iterator *it)
1274 {
1275 uint32_t count = 0;
1276
1277 if (it->node) {
1278 of_node_put(it->node);
1279 it->node = NULL;
1280 }
1281
1282 if (!it->cur || it->phandle_end >= it->list_end)
1283 return -ENOENT;
1284
1285 it->cur = it->phandle_end;
1286
1287 /* If phandle is 0, then it is an empty entry with no arguments. */
1288 it->phandle = be32_to_cpup(it->cur++);
1289
1290 if (it->phandle) {
1291
1292 /*
1293 * Find the provider node and parse the #*-cells property to
1294 * determine the argument length.
1295 */
1296 it->node = of_find_node_by_phandle(it->phandle);
1297
1298 if (it->cells_name) {
1299 if (!it->node) {
1300 pr_err("%pOF: could not find phandle\n",
1301 it->parent);
1302 goto err;
1303 }
1304
1305 if (of_property_read_u32(it->node, it->cells_name,
1306 &count)) {
1307 /*
1308 * If both cell_count and cells_name is given,
1309 * fall back to cell_count in absence
1310 * of the cells_name property
1311 */
1312 if (it->cell_count >= 0) {
1313 count = it->cell_count;
1314 } else {
1315 pr_err("%pOF: could not get %s for %pOF\n",
1316 it->parent,
1317 it->cells_name,
1318 it->node);
1319 goto err;
1320 }
1321 }
1322 } else {
1323 count = it->cell_count;
1324 }
1325
1326 /*
1327 * Make sure that the arguments actually fit in the remaining
1328 * property data length
1329 */
1330 if (it->cur + count > it->list_end) {
1331 if (it->cells_name)
1332 pr_err("%pOF: %s = %d found %td\n",
1333 it->parent, it->cells_name,
1334 count, it->list_end - it->cur);
1335 else
1336 pr_err("%pOF: phandle %s needs %d, found %td\n",
1337 it->parent, of_node_full_name(it->node),
1338 count, it->list_end - it->cur);
1339 goto err;
1340 }
1341 }
1342
1343 it->phandle_end = it->cur + count;
1344 it->cur_count = count;
1345
1346 return 0;
1347
1348 err:
1349 if (it->node) {
1350 of_node_put(it->node);
1351 it->node = NULL;
1352 }
1353
1354 return -EINVAL;
1355 }
1356 EXPORT_SYMBOL_GPL(of_phandle_iterator_next);
1357
of_phandle_iterator_args(struct of_phandle_iterator * it,uint32_t * args,int size)1358 int of_phandle_iterator_args(struct of_phandle_iterator *it,
1359 uint32_t *args,
1360 int size)
1361 {
1362 int i, count;
1363
1364 count = it->cur_count;
1365
1366 if (WARN_ON(size < count))
1367 count = size;
1368
1369 for (i = 0; i < count; i++)
1370 args[i] = be32_to_cpup(it->cur++);
1371
1372 return count;
1373 }
1374
__of_parse_phandle_with_args(const struct device_node * np,const char * list_name,const char * cells_name,int cell_count,int index,struct of_phandle_args * out_args)1375 static int __of_parse_phandle_with_args(const struct device_node *np,
1376 const char *list_name,
1377 const char *cells_name,
1378 int cell_count, int index,
1379 struct of_phandle_args *out_args)
1380 {
1381 struct of_phandle_iterator it;
1382 int rc, cur_index = 0;
1383
1384 /* Loop over the phandles until all the requested entry is found */
1385 of_for_each_phandle(&it, rc, np, list_name, cells_name, cell_count) {
1386 /*
1387 * All of the error cases bail out of the loop, so at
1388 * this point, the parsing is successful. If the requested
1389 * index matches, then fill the out_args structure and return,
1390 * or return -ENOENT for an empty entry.
1391 */
1392 rc = -ENOENT;
1393 if (cur_index == index) {
1394 if (!it.phandle)
1395 goto err;
1396
1397 if (out_args) {
1398 int c;
1399
1400 c = of_phandle_iterator_args(&it,
1401 out_args->args,
1402 MAX_PHANDLE_ARGS);
1403 out_args->np = it.node;
1404 out_args->args_count = c;
1405 } else {
1406 of_node_put(it.node);
1407 }
1408
1409 /* Found it! return success */
1410 return 0;
1411 }
1412
1413 cur_index++;
1414 }
1415
1416 /*
1417 * Unlock node before returning result; will be one of:
1418 * -ENOENT : index is for empty phandle
1419 * -EINVAL : parsing error on data
1420 */
1421
1422 err:
1423 of_node_put(it.node);
1424 return rc;
1425 }
1426
1427 /**
1428 * of_parse_phandle - Resolve a phandle property to a device_node pointer
1429 * @np: Pointer to device node holding phandle property
1430 * @phandle_name: Name of property holding a phandle value
1431 * @index: For properties holding a table of phandles, this is the index into
1432 * the table
1433 *
1434 * Returns the device_node pointer with refcount incremented. Use
1435 * of_node_put() on it when done.
1436 */
of_parse_phandle(const struct device_node * np,const char * phandle_name,int index)1437 struct device_node *of_parse_phandle(const struct device_node *np,
1438 const char *phandle_name, int index)
1439 {
1440 struct of_phandle_args args;
1441
1442 if (index < 0)
1443 return NULL;
1444
1445 if (__of_parse_phandle_with_args(np, phandle_name, NULL, 0,
1446 index, &args))
1447 return NULL;
1448
1449 return args.np;
1450 }
1451 EXPORT_SYMBOL(of_parse_phandle);
1452
1453 /**
1454 * of_parse_phandle_with_args() - Find a node pointed by phandle in a list
1455 * @np: pointer to a device tree node containing a list
1456 * @list_name: property name that contains a list
1457 * @cells_name: property name that specifies phandles' arguments count
1458 * @index: index of a phandle to parse out
1459 * @out_args: optional pointer to output arguments structure (will be filled)
1460 *
1461 * This function is useful to parse lists of phandles and their arguments.
1462 * Returns 0 on success and fills out_args, on error returns appropriate
1463 * errno value.
1464 *
1465 * Caller is responsible to call of_node_put() on the returned out_args->np
1466 * pointer.
1467 *
1468 * Example:
1469 *
1470 * phandle1: node1 {
1471 * #list-cells = <2>;
1472 * }
1473 *
1474 * phandle2: node2 {
1475 * #list-cells = <1>;
1476 * }
1477 *
1478 * node3 {
1479 * list = <&phandle1 1 2 &phandle2 3>;
1480 * }
1481 *
1482 * To get a device_node of the `node2' node you may call this:
1483 * of_parse_phandle_with_args(node3, "list", "#list-cells", 1, &args);
1484 */
of_parse_phandle_with_args(const struct device_node * np,const char * list_name,const char * cells_name,int index,struct of_phandle_args * out_args)1485 int of_parse_phandle_with_args(const struct device_node *np, const char *list_name,
1486 const char *cells_name, int index,
1487 struct of_phandle_args *out_args)
1488 {
1489 int cell_count = -1;
1490
1491 if (index < 0)
1492 return -EINVAL;
1493
1494 /* If cells_name is NULL we assume a cell count of 0 */
1495 if (!cells_name)
1496 cell_count = 0;
1497
1498 return __of_parse_phandle_with_args(np, list_name, cells_name,
1499 cell_count, index, out_args);
1500 }
1501 EXPORT_SYMBOL(of_parse_phandle_with_args);
1502
1503 /**
1504 * of_parse_phandle_with_args_map() - Find a node pointed by phandle in a list and remap it
1505 * @np: pointer to a device tree node containing a list
1506 * @list_name: property name that contains a list
1507 * @stem_name: stem of property names that specify phandles' arguments count
1508 * @index: index of a phandle to parse out
1509 * @out_args: optional pointer to output arguments structure (will be filled)
1510 *
1511 * This function is useful to parse lists of phandles and their arguments.
1512 * Returns 0 on success and fills out_args, on error returns appropriate errno
1513 * value. The difference between this function and of_parse_phandle_with_args()
1514 * is that this API remaps a phandle if the node the phandle points to has
1515 * a <@stem_name>-map property.
1516 *
1517 * Caller is responsible to call of_node_put() on the returned out_args->np
1518 * pointer.
1519 *
1520 * Example:
1521 *
1522 * phandle1: node1 {
1523 * #list-cells = <2>;
1524 * }
1525 *
1526 * phandle2: node2 {
1527 * #list-cells = <1>;
1528 * }
1529 *
1530 * phandle3: node3 {
1531 * #list-cells = <1>;
1532 * list-map = <0 &phandle2 3>,
1533 * <1 &phandle2 2>,
1534 * <2 &phandle1 5 1>;
1535 * list-map-mask = <0x3>;
1536 * };
1537 *
1538 * node4 {
1539 * list = <&phandle1 1 2 &phandle3 0>;
1540 * }
1541 *
1542 * To get a device_node of the `node2' node you may call this:
1543 * of_parse_phandle_with_args(node4, "list", "list", 1, &args);
1544 */
of_parse_phandle_with_args_map(const struct device_node * np,const char * list_name,const char * stem_name,int index,struct of_phandle_args * out_args)1545 int of_parse_phandle_with_args_map(const struct device_node *np,
1546 const char *list_name,
1547 const char *stem_name,
1548 int index, struct of_phandle_args *out_args)
1549 {
1550 char *cells_name, *map_name = NULL, *mask_name = NULL;
1551 char *pass_name = NULL;
1552 struct device_node *cur, *new = NULL;
1553 const __be32 *map, *mask, *pass;
1554 static const __be32 dummy_mask[] = { [0 ... MAX_PHANDLE_ARGS] = ~0 };
1555 static const __be32 dummy_pass[] = { [0 ... MAX_PHANDLE_ARGS] = 0 };
1556 __be32 initial_match_array[MAX_PHANDLE_ARGS];
1557 const __be32 *match_array = initial_match_array;
1558 int i, ret, map_len, match;
1559 u32 list_size, new_size;
1560
1561 if (index < 0)
1562 return -EINVAL;
1563
1564 cells_name = kasprintf(GFP_KERNEL, "#%s-cells", stem_name);
1565 if (!cells_name)
1566 return -ENOMEM;
1567
1568 ret = -ENOMEM;
1569 map_name = kasprintf(GFP_KERNEL, "%s-map", stem_name);
1570 if (!map_name)
1571 goto free;
1572
1573 mask_name = kasprintf(GFP_KERNEL, "%s-map-mask", stem_name);
1574 if (!mask_name)
1575 goto free;
1576
1577 pass_name = kasprintf(GFP_KERNEL, "%s-map-pass-thru", stem_name);
1578 if (!pass_name)
1579 goto free;
1580
1581 ret = __of_parse_phandle_with_args(np, list_name, cells_name, -1, index,
1582 out_args);
1583 if (ret)
1584 goto free;
1585
1586 /* Get the #<list>-cells property */
1587 cur = out_args->np;
1588 ret = of_property_read_u32(cur, cells_name, &list_size);
1589 if (ret < 0)
1590 goto put;
1591
1592 /* Precalculate the match array - this simplifies match loop */
1593 for (i = 0; i < list_size; i++)
1594 initial_match_array[i] = cpu_to_be32(out_args->args[i]);
1595
1596 ret = -EINVAL;
1597 while (cur) {
1598 /* Get the <list>-map property */
1599 map = of_get_property(cur, map_name, &map_len);
1600 if (!map) {
1601 ret = 0;
1602 goto free;
1603 }
1604 map_len /= sizeof(u32);
1605
1606 /* Get the <list>-map-mask property (optional) */
1607 mask = of_get_property(cur, mask_name, NULL);
1608 if (!mask)
1609 mask = dummy_mask;
1610 /* Iterate through <list>-map property */
1611 match = 0;
1612 while (map_len > (list_size + 1) && !match) {
1613 /* Compare specifiers */
1614 match = 1;
1615 for (i = 0; i < list_size; i++, map_len--)
1616 match &= !((match_array[i] ^ *map++) & mask[i]);
1617
1618 of_node_put(new);
1619 new = of_find_node_by_phandle(be32_to_cpup(map));
1620 map++;
1621 map_len--;
1622
1623 /* Check if not found */
1624 if (!new)
1625 goto put;
1626
1627 if (!of_device_is_available(new))
1628 match = 0;
1629
1630 ret = of_property_read_u32(new, cells_name, &new_size);
1631 if (ret)
1632 goto put;
1633
1634 /* Check for malformed properties */
1635 if (WARN_ON(new_size > MAX_PHANDLE_ARGS))
1636 goto put;
1637 if (map_len < new_size)
1638 goto put;
1639
1640 /* Move forward by new node's #<list>-cells amount */
1641 map += new_size;
1642 map_len -= new_size;
1643 }
1644 if (!match)
1645 goto put;
1646
1647 /* Get the <list>-map-pass-thru property (optional) */
1648 pass = of_get_property(cur, pass_name, NULL);
1649 if (!pass)
1650 pass = dummy_pass;
1651
1652 /*
1653 * Successfully parsed a <list>-map translation; copy new
1654 * specifier into the out_args structure, keeping the
1655 * bits specified in <list>-map-pass-thru.
1656 */
1657 match_array = map - new_size;
1658 for (i = 0; i < new_size; i++) {
1659 __be32 val = *(map - new_size + i);
1660
1661 if (i < list_size) {
1662 val &= ~pass[i];
1663 val |= cpu_to_be32(out_args->args[i]) & pass[i];
1664 }
1665
1666 out_args->args[i] = be32_to_cpu(val);
1667 }
1668 out_args->args_count = list_size = new_size;
1669 /* Iterate again with new provider */
1670 out_args->np = new;
1671 of_node_put(cur);
1672 cur = new;
1673 }
1674 put:
1675 of_node_put(cur);
1676 of_node_put(new);
1677 free:
1678 kfree(mask_name);
1679 kfree(map_name);
1680 kfree(cells_name);
1681 kfree(pass_name);
1682
1683 return ret;
1684 }
1685 EXPORT_SYMBOL(of_parse_phandle_with_args_map);
1686
1687 /**
1688 * of_parse_phandle_with_fixed_args() - Find a node pointed by phandle in a list
1689 * @np: pointer to a device tree node containing a list
1690 * @list_name: property name that contains a list
1691 * @cell_count: number of argument cells following the phandle
1692 * @index: index of a phandle to parse out
1693 * @out_args: optional pointer to output arguments structure (will be filled)
1694 *
1695 * This function is useful to parse lists of phandles and their arguments.
1696 * Returns 0 on success and fills out_args, on error returns appropriate
1697 * errno value.
1698 *
1699 * Caller is responsible to call of_node_put() on the returned out_args->np
1700 * pointer.
1701 *
1702 * Example:
1703 *
1704 * phandle1: node1 {
1705 * }
1706 *
1707 * phandle2: node2 {
1708 * }
1709 *
1710 * node3 {
1711 * list = <&phandle1 0 2 &phandle2 2 3>;
1712 * }
1713 *
1714 * To get a device_node of the `node2' node you may call this:
1715 * of_parse_phandle_with_fixed_args(node3, "list", 2, 1, &args);
1716 */
of_parse_phandle_with_fixed_args(const struct device_node * np,const char * list_name,int cell_count,int index,struct of_phandle_args * out_args)1717 int of_parse_phandle_with_fixed_args(const struct device_node *np,
1718 const char *list_name, int cell_count,
1719 int index, struct of_phandle_args *out_args)
1720 {
1721 if (index < 0)
1722 return -EINVAL;
1723 return __of_parse_phandle_with_args(np, list_name, NULL, cell_count,
1724 index, out_args);
1725 }
1726 EXPORT_SYMBOL(of_parse_phandle_with_fixed_args);
1727
1728 /**
1729 * of_count_phandle_with_args() - Find the number of phandles references in a property
1730 * @np: pointer to a device tree node containing a list
1731 * @list_name: property name that contains a list
1732 * @cells_name: property name that specifies phandles' arguments count
1733 *
1734 * Returns the number of phandle + argument tuples within a property. It
1735 * is a typical pattern to encode a list of phandle and variable
1736 * arguments into a single property. The number of arguments is encoded
1737 * by a property in the phandle-target node. For example, a gpios
1738 * property would contain a list of GPIO specifies consisting of a
1739 * phandle and 1 or more arguments. The number of arguments are
1740 * determined by the #gpio-cells property in the node pointed to by the
1741 * phandle.
1742 */
of_count_phandle_with_args(const struct device_node * np,const char * list_name,const char * cells_name)1743 int of_count_phandle_with_args(const struct device_node *np, const char *list_name,
1744 const char *cells_name)
1745 {
1746 struct of_phandle_iterator it;
1747 int rc, cur_index = 0;
1748
1749 /*
1750 * If cells_name is NULL we assume a cell count of 0. This makes
1751 * counting the phandles trivial as each 32bit word in the list is a
1752 * phandle and no arguments are to consider. So we don't iterate through
1753 * the list but just use the length to determine the phandle count.
1754 */
1755 if (!cells_name) {
1756 const __be32 *list;
1757 int size;
1758
1759 list = of_get_property(np, list_name, &size);
1760 if (!list)
1761 return -ENOENT;
1762
1763 return size / sizeof(*list);
1764 }
1765
1766 rc = of_phandle_iterator_init(&it, np, list_name, cells_name, -1);
1767 if (rc)
1768 return rc;
1769
1770 while ((rc = of_phandle_iterator_next(&it)) == 0)
1771 cur_index += 1;
1772
1773 if (rc != -ENOENT)
1774 return rc;
1775
1776 return cur_index;
1777 }
1778 EXPORT_SYMBOL(of_count_phandle_with_args);
1779
1780 /**
1781 * __of_add_property - Add a property to a node without lock operations
1782 */
__of_add_property(struct device_node * np,struct property * prop)1783 int __of_add_property(struct device_node *np, struct property *prop)
1784 {
1785 struct property **next;
1786
1787 prop->next = NULL;
1788 next = &np->properties;
1789 while (*next) {
1790 if (strcmp(prop->name, (*next)->name) == 0)
1791 /* duplicate ! don't insert it */
1792 return -EEXIST;
1793
1794 next = &(*next)->next;
1795 }
1796 *next = prop;
1797
1798 return 0;
1799 }
1800
1801 /**
1802 * of_add_property - Add a property to a node
1803 */
of_add_property(struct device_node * np,struct property * prop)1804 int of_add_property(struct device_node *np, struct property *prop)
1805 {
1806 unsigned long flags;
1807 int rc;
1808
1809 mutex_lock(&of_mutex);
1810
1811 raw_spin_lock_irqsave(&devtree_lock, flags);
1812 rc = __of_add_property(np, prop);
1813 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1814
1815 if (!rc)
1816 __of_add_property_sysfs(np, prop);
1817
1818 mutex_unlock(&of_mutex);
1819
1820 if (!rc)
1821 of_property_notify(OF_RECONFIG_ADD_PROPERTY, np, prop, NULL);
1822
1823 return rc;
1824 }
1825
__of_remove_property(struct device_node * np,struct property * prop)1826 int __of_remove_property(struct device_node *np, struct property *prop)
1827 {
1828 struct property **next;
1829
1830 for (next = &np->properties; *next; next = &(*next)->next) {
1831 if (*next == prop)
1832 break;
1833 }
1834 if (*next == NULL)
1835 return -ENODEV;
1836
1837 /* found the node */
1838 *next = prop->next;
1839 prop->next = np->deadprops;
1840 np->deadprops = prop;
1841
1842 return 0;
1843 }
1844
1845 /**
1846 * of_remove_property - Remove a property from a node.
1847 *
1848 * Note that we don't actually remove it, since we have given out
1849 * who-knows-how-many pointers to the data using get-property.
1850 * Instead we just move the property to the "dead properties"
1851 * list, so it won't be found any more.
1852 */
of_remove_property(struct device_node * np,struct property * prop)1853 int of_remove_property(struct device_node *np, struct property *prop)
1854 {
1855 unsigned long flags;
1856 int rc;
1857
1858 if (!prop)
1859 return -ENODEV;
1860
1861 mutex_lock(&of_mutex);
1862
1863 raw_spin_lock_irqsave(&devtree_lock, flags);
1864 rc = __of_remove_property(np, prop);
1865 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1866
1867 if (!rc)
1868 __of_remove_property_sysfs(np, prop);
1869
1870 mutex_unlock(&of_mutex);
1871
1872 if (!rc)
1873 of_property_notify(OF_RECONFIG_REMOVE_PROPERTY, np, prop, NULL);
1874
1875 return rc;
1876 }
1877 EXPORT_SYMBOL_GPL(of_remove_property);
1878
__of_update_property(struct device_node * np,struct property * newprop,struct property ** oldpropp)1879 int __of_update_property(struct device_node *np, struct property *newprop,
1880 struct property **oldpropp)
1881 {
1882 struct property **next, *oldprop;
1883
1884 for (next = &np->properties; *next; next = &(*next)->next) {
1885 if (of_prop_cmp((*next)->name, newprop->name) == 0)
1886 break;
1887 }
1888 *oldpropp = oldprop = *next;
1889
1890 if (oldprop) {
1891 /* replace the node */
1892 newprop->next = oldprop->next;
1893 *next = newprop;
1894 oldprop->next = np->deadprops;
1895 np->deadprops = oldprop;
1896 } else {
1897 /* new node */
1898 newprop->next = NULL;
1899 *next = newprop;
1900 }
1901
1902 return 0;
1903 }
1904
1905 /*
1906 * of_update_property - Update a property in a node, if the property does
1907 * not exist, add it.
1908 *
1909 * Note that we don't actually remove it, since we have given out
1910 * who-knows-how-many pointers to the data using get-property.
1911 * Instead we just move the property to the "dead properties" list,
1912 * and add the new property to the property list
1913 */
of_update_property(struct device_node * np,struct property * newprop)1914 int of_update_property(struct device_node *np, struct property *newprop)
1915 {
1916 struct property *oldprop;
1917 unsigned long flags;
1918 int rc;
1919
1920 if (!newprop->name)
1921 return -EINVAL;
1922
1923 mutex_lock(&of_mutex);
1924
1925 raw_spin_lock_irqsave(&devtree_lock, flags);
1926 rc = __of_update_property(np, newprop, &oldprop);
1927 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1928
1929 if (!rc)
1930 __of_update_property_sysfs(np, newprop, oldprop);
1931
1932 mutex_unlock(&of_mutex);
1933
1934 if (!rc)
1935 of_property_notify(OF_RECONFIG_UPDATE_PROPERTY, np, newprop, oldprop);
1936
1937 return rc;
1938 }
1939
of_alias_add(struct alias_prop * ap,struct device_node * np,int id,const char * stem,int stem_len)1940 static void of_alias_add(struct alias_prop *ap, struct device_node *np,
1941 int id, const char *stem, int stem_len)
1942 {
1943 ap->np = np;
1944 ap->id = id;
1945 strncpy(ap->stem, stem, stem_len);
1946 ap->stem[stem_len] = 0;
1947 list_add_tail(&ap->link, &aliases_lookup);
1948 pr_debug("adding DT alias:%s: stem=%s id=%i node=%pOF\n",
1949 ap->alias, ap->stem, ap->id, np);
1950 }
1951
1952 /**
1953 * of_alias_scan - Scan all properties of the 'aliases' node
1954 *
1955 * The function scans all the properties of the 'aliases' node and populates
1956 * the global lookup table with the properties. It returns the
1957 * number of alias properties found, or an error code in case of failure.
1958 *
1959 * @dt_alloc: An allocator that provides a virtual address to memory
1960 * for storing the resulting tree
1961 */
of_alias_scan(void * (* dt_alloc)(u64 size,u64 align))1962 void of_alias_scan(void * (*dt_alloc)(u64 size, u64 align))
1963 {
1964 struct property *pp;
1965
1966 of_aliases = of_find_node_by_path("/aliases");
1967 of_chosen = of_find_node_by_path("/chosen");
1968 if (of_chosen == NULL)
1969 of_chosen = of_find_node_by_path("/chosen@0");
1970
1971 if (of_chosen) {
1972 /* linux,stdout-path and /aliases/stdout are for legacy compatibility */
1973 const char *name = NULL;
1974
1975 if (of_property_read_string(of_chosen, "stdout-path", &name))
1976 of_property_read_string(of_chosen, "linux,stdout-path",
1977 &name);
1978 if (IS_ENABLED(CONFIG_PPC) && !name)
1979 of_property_read_string(of_aliases, "stdout", &name);
1980 if (name)
1981 of_stdout = of_find_node_opts_by_path(name, &of_stdout_options);
1982 }
1983
1984 if (!of_aliases)
1985 return;
1986
1987 for_each_property_of_node(of_aliases, pp) {
1988 const char *start = pp->name;
1989 const char *end = start + strlen(start);
1990 struct device_node *np;
1991 struct alias_prop *ap;
1992 int id, len;
1993
1994 /* Skip those we do not want to proceed */
1995 if (!strcmp(pp->name, "name") ||
1996 !strcmp(pp->name, "phandle") ||
1997 !strcmp(pp->name, "linux,phandle"))
1998 continue;
1999
2000 np = of_find_node_by_path(pp->value);
2001 if (!np)
2002 continue;
2003
2004 /* walk the alias backwards to extract the id and work out
2005 * the 'stem' string */
2006 while (isdigit(*(end-1)) && end > start)
2007 end--;
2008 len = end - start;
2009
2010 if (kstrtoint(end, 10, &id) < 0)
2011 continue;
2012
2013 /* Allocate an alias_prop with enough space for the stem */
2014 ap = dt_alloc(sizeof(*ap) + len + 1, __alignof__(*ap));
2015 if (!ap)
2016 continue;
2017 memset(ap, 0, sizeof(*ap) + len + 1);
2018 ap->alias = start;
2019 of_alias_add(ap, np, id, start, len);
2020 }
2021 }
2022
2023 /**
2024 * of_alias_get_id - Get alias id for the given device_node
2025 * @np: Pointer to the given device_node
2026 * @stem: Alias stem of the given device_node
2027 *
2028 * The function travels the lookup table to get the alias id for the given
2029 * device_node and alias stem. It returns the alias id if found.
2030 */
of_alias_get_id(struct device_node * np,const char * stem)2031 int of_alias_get_id(struct device_node *np, const char *stem)
2032 {
2033 struct alias_prop *app;
2034 int id = -ENODEV;
2035
2036 mutex_lock(&of_mutex);
2037 list_for_each_entry(app, &aliases_lookup, link) {
2038 if (strcmp(app->stem, stem) != 0)
2039 continue;
2040
2041 if (np == app->np) {
2042 id = app->id;
2043 break;
2044 }
2045 }
2046 mutex_unlock(&of_mutex);
2047
2048 return id;
2049 }
2050 EXPORT_SYMBOL_GPL(of_alias_get_id);
2051
2052 /**
2053 * of_alias_get_alias_list - Get alias list for the given device driver
2054 * @matches: Array of OF device match structures to search in
2055 * @stem: Alias stem of the given device_node
2056 * @bitmap: Bitmap field pointer
2057 * @nbits: Maximum number of alias IDs which can be recorded in bitmap
2058 *
2059 * The function travels the lookup table to record alias ids for the given
2060 * device match structures and alias stem.
2061 *
2062 * Return: 0 or -ENOSYS when !CONFIG_OF or
2063 * -EOVERFLOW if alias ID is greater then allocated nbits
2064 */
of_alias_get_alias_list(const struct of_device_id * matches,const char * stem,unsigned long * bitmap,unsigned int nbits)2065 int of_alias_get_alias_list(const struct of_device_id *matches,
2066 const char *stem, unsigned long *bitmap,
2067 unsigned int nbits)
2068 {
2069 struct alias_prop *app;
2070 int ret = 0;
2071
2072 /* Zero bitmap field to make sure that all the time it is clean */
2073 bitmap_zero(bitmap, nbits);
2074
2075 mutex_lock(&of_mutex);
2076 pr_debug("%s: Looking for stem: %s\n", __func__, stem);
2077 list_for_each_entry(app, &aliases_lookup, link) {
2078 pr_debug("%s: stem: %s, id: %d\n",
2079 __func__, app->stem, app->id);
2080
2081 if (strcmp(app->stem, stem) != 0) {
2082 pr_debug("%s: stem comparison didn't pass %s\n",
2083 __func__, app->stem);
2084 continue;
2085 }
2086
2087 if (of_match_node(matches, app->np)) {
2088 pr_debug("%s: Allocated ID %d\n", __func__, app->id);
2089
2090 if (app->id >= nbits) {
2091 pr_warn("%s: ID %d >= than bitmap field %d\n",
2092 __func__, app->id, nbits);
2093 ret = -EOVERFLOW;
2094 } else {
2095 set_bit(app->id, bitmap);
2096 }
2097 }
2098 }
2099 mutex_unlock(&of_mutex);
2100
2101 return ret;
2102 }
2103 EXPORT_SYMBOL_GPL(of_alias_get_alias_list);
2104
2105 /**
2106 * of_alias_get_highest_id - Get highest alias id for the given stem
2107 * @stem: Alias stem to be examined
2108 *
2109 * The function travels the lookup table to get the highest alias id for the
2110 * given alias stem. It returns the alias id if found.
2111 */
of_alias_get_highest_id(const char * stem)2112 int of_alias_get_highest_id(const char *stem)
2113 {
2114 struct alias_prop *app;
2115 int id = -ENODEV;
2116
2117 mutex_lock(&of_mutex);
2118 list_for_each_entry(app, &aliases_lookup, link) {
2119 if (strcmp(app->stem, stem) != 0)
2120 continue;
2121
2122 if (app->id > id)
2123 id = app->id;
2124 }
2125 mutex_unlock(&of_mutex);
2126
2127 return id;
2128 }
2129 EXPORT_SYMBOL_GPL(of_alias_get_highest_id);
2130
2131 /**
2132 * of_console_check() - Test and setup console for DT setup
2133 * @dn - Pointer to device node
2134 * @name - Name to use for preferred console without index. ex. "ttyS"
2135 * @index - Index to use for preferred console.
2136 *
2137 * Check if the given device node matches the stdout-path property in the
2138 * /chosen node. If it does then register it as the preferred console and return
2139 * TRUE. Otherwise return FALSE.
2140 */
of_console_check(struct device_node * dn,char * name,int index)2141 bool of_console_check(struct device_node *dn, char *name, int index)
2142 {
2143 if (!dn || dn != of_stdout || console_set_on_cmdline)
2144 return false;
2145
2146 /*
2147 * XXX: cast `options' to char pointer to suppress complication
2148 * warnings: printk, UART and console drivers expect char pointer.
2149 */
2150 return !add_preferred_console(name, index, (char *)of_stdout_options);
2151 }
2152 EXPORT_SYMBOL_GPL(of_console_check);
2153
2154 /**
2155 * of_find_next_cache_node - Find a node's subsidiary cache
2156 * @np: node of type "cpu" or "cache"
2157 *
2158 * Returns a node pointer with refcount incremented, use
2159 * of_node_put() on it when done. Caller should hold a reference
2160 * to np.
2161 */
of_find_next_cache_node(const struct device_node * np)2162 struct device_node *of_find_next_cache_node(const struct device_node *np)
2163 {
2164 struct device_node *child, *cache_node;
2165
2166 cache_node = of_parse_phandle(np, "l2-cache", 0);
2167 if (!cache_node)
2168 cache_node = of_parse_phandle(np, "next-level-cache", 0);
2169
2170 if (cache_node)
2171 return cache_node;
2172
2173 /* OF on pmac has nodes instead of properties named "l2-cache"
2174 * beneath CPU nodes.
2175 */
2176 if (IS_ENABLED(CONFIG_PPC_PMAC) && of_node_is_type(np, "cpu"))
2177 for_each_child_of_node(np, child)
2178 if (of_node_is_type(child, "cache"))
2179 return child;
2180
2181 return NULL;
2182 }
2183
2184 /**
2185 * of_find_last_cache_level - Find the level at which the last cache is
2186 * present for the given logical cpu
2187 *
2188 * @cpu: cpu number(logical index) for which the last cache level is needed
2189 *
2190 * Returns the the level at which the last cache is present. It is exactly
2191 * same as the total number of cache levels for the given logical cpu.
2192 */
of_find_last_cache_level(unsigned int cpu)2193 int of_find_last_cache_level(unsigned int cpu)
2194 {
2195 u32 cache_level = 0;
2196 struct device_node *prev = NULL, *np = of_cpu_device_node_get(cpu);
2197
2198 while (np) {
2199 prev = np;
2200 of_node_put(np);
2201 np = of_find_next_cache_node(np);
2202 }
2203
2204 of_property_read_u32(prev, "cache-level", &cache_level);
2205
2206 return cache_level;
2207 }
2208
2209 /**
2210 * of_map_id - Translate an ID through a downstream mapping.
2211 * @np: root complex device node.
2212 * @id: device ID to map.
2213 * @map_name: property name of the map to use.
2214 * @map_mask_name: optional property name of the mask to use.
2215 * @target: optional pointer to a target device node.
2216 * @id_out: optional pointer to receive the translated ID.
2217 *
2218 * Given a device ID, look up the appropriate implementation-defined
2219 * platform ID and/or the target device which receives transactions on that
2220 * ID, as per the "iommu-map" and "msi-map" bindings. Either of @target or
2221 * @id_out may be NULL if only the other is required. If @target points to
2222 * a non-NULL device node pointer, only entries targeting that node will be
2223 * matched; if it points to a NULL value, it will receive the device node of
2224 * the first matching target phandle, with a reference held.
2225 *
2226 * Return: 0 on success or a standard error code on failure.
2227 */
of_map_id(struct device_node * np,u32 id,const char * map_name,const char * map_mask_name,struct device_node ** target,u32 * id_out)2228 int of_map_id(struct device_node *np, u32 id,
2229 const char *map_name, const char *map_mask_name,
2230 struct device_node **target, u32 *id_out)
2231 {
2232 u32 map_mask, masked_id;
2233 int map_len;
2234 const __be32 *map = NULL;
2235
2236 if (!np || !map_name || (!target && !id_out))
2237 return -EINVAL;
2238
2239 map = of_get_property(np, map_name, &map_len);
2240 if (!map) {
2241 if (target)
2242 return -ENODEV;
2243 /* Otherwise, no map implies no translation */
2244 *id_out = id;
2245 return 0;
2246 }
2247
2248 if (!map_len || map_len % (4 * sizeof(*map))) {
2249 pr_err("%pOF: Error: Bad %s length: %d\n", np,
2250 map_name, map_len);
2251 return -EINVAL;
2252 }
2253
2254 /* The default is to select all bits. */
2255 map_mask = 0xffffffff;
2256
2257 /*
2258 * Can be overridden by "{iommu,msi}-map-mask" property.
2259 * If of_property_read_u32() fails, the default is used.
2260 */
2261 if (map_mask_name)
2262 of_property_read_u32(np, map_mask_name, &map_mask);
2263
2264 masked_id = map_mask & id;
2265 for ( ; map_len > 0; map_len -= 4 * sizeof(*map), map += 4) {
2266 struct device_node *phandle_node;
2267 u32 id_base = be32_to_cpup(map + 0);
2268 u32 phandle = be32_to_cpup(map + 1);
2269 u32 out_base = be32_to_cpup(map + 2);
2270 u32 id_len = be32_to_cpup(map + 3);
2271
2272 if (id_base & ~map_mask) {
2273 pr_err("%pOF: Invalid %s translation - %s-mask (0x%x) ignores id-base (0x%x)\n",
2274 np, map_name, map_name,
2275 map_mask, id_base);
2276 return -EFAULT;
2277 }
2278
2279 if (masked_id < id_base || masked_id >= id_base + id_len)
2280 continue;
2281
2282 phandle_node = of_find_node_by_phandle(phandle);
2283 if (!phandle_node)
2284 return -ENODEV;
2285
2286 if (target) {
2287 if (*target)
2288 of_node_put(phandle_node);
2289 else
2290 *target = phandle_node;
2291
2292 if (*target != phandle_node)
2293 continue;
2294 }
2295
2296 if (id_out)
2297 *id_out = masked_id - id_base + out_base;
2298
2299 pr_debug("%pOF: %s, using mask %08x, id-base: %08x, out-base: %08x, length: %08x, id: %08x -> %08x\n",
2300 np, map_name, map_mask, id_base, out_base,
2301 id_len, id, masked_id - id_base + out_base);
2302 return 0;
2303 }
2304
2305 pr_info("%pOF: no %s translation for id 0x%x on %pOF\n", np, map_name,
2306 id, target && *target ? *target : NULL);
2307
2308 /* Bypasses translation */
2309 if (id_out)
2310 *id_out = id;
2311 return 0;
2312 }
2313 EXPORT_SYMBOL_GPL(of_map_id);
2314