1 /*
2 * Copyright © 2021 Valve Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 */
24
25 #include "aco_builder.h"
26 #include "aco_ir.h"
27
28 #include <algorithm>
29 #include <array>
30 #include <bitset>
31 #include <vector>
32
33 namespace aco {
34 namespace {
35
36 constexpr const size_t max_reg_cnt = 512;
37
38 struct Idx {
operator ==aco::__anond8fec7d00111::Idx39 bool operator==(const Idx& other) const { return block == other.block && instr == other.instr; }
operator !=aco::__anond8fec7d00111::Idx40 bool operator!=(const Idx& other) const { return !operator==(other); }
41
foundaco::__anond8fec7d00111::Idx42 bool found() const { return block != UINT32_MAX; }
43
44 uint32_t block;
45 uint32_t instr;
46 };
47
48 Idx not_written_in_block{UINT32_MAX, 0};
49 Idx clobbered{UINT32_MAX, 1};
50 Idx const_or_undef{UINT32_MAX, 2};
51 Idx written_by_multiple_instrs{UINT32_MAX, 3};
52
53 struct pr_opt_ctx {
54 Program* program;
55 Block* current_block;
56 uint32_t current_instr_idx;
57 std::vector<uint16_t> uses;
58 std::vector<std::array<Idx, max_reg_cnt>> instr_idx_by_regs;
59
reset_blockaco::__anond8fec7d00111::pr_opt_ctx60 void reset_block(Block* block)
61 {
62 current_block = block;
63 current_instr_idx = 0;
64
65 if ((block->kind & block_kind_loop_header) || block->linear_preds.empty()) {
66 std::fill(instr_idx_by_regs[block->index].begin(), instr_idx_by_regs[block->index].end(),
67 not_written_in_block);
68 } else {
69 unsigned first_pred = block->linear_preds[0];
70 for (unsigned i = 0; i < max_reg_cnt; i++) {
71 bool all_same = std::all_of(
72 std::next(block->linear_preds.begin()), block->linear_preds.end(),
73 [&](unsigned pred)
74 { return instr_idx_by_regs[pred][i] == instr_idx_by_regs[first_pred][i]; });
75
76 if (all_same)
77 instr_idx_by_regs[block->index][i] = instr_idx_by_regs[first_pred][i];
78 else
79 instr_idx_by_regs[block->index][i] = not_written_in_block;
80 }
81 }
82 }
83
getaco::__anond8fec7d00111::pr_opt_ctx84 Instruction* get(Idx idx) { return program->blocks[idx.block].instructions[idx.instr].get(); }
85 };
86
87 void
save_reg_writes(pr_opt_ctx & ctx,aco_ptr<Instruction> & instr)88 save_reg_writes(pr_opt_ctx& ctx, aco_ptr<Instruction>& instr)
89 {
90 for (const Definition& def : instr->definitions) {
91 assert(def.regClass().type() != RegType::sgpr || def.physReg().reg() <= 255);
92 assert(def.regClass().type() != RegType::vgpr || def.physReg().reg() >= 256);
93
94 unsigned dw_size = DIV_ROUND_UP(def.bytes(), 4u);
95 unsigned r = def.physReg().reg();
96 Idx idx{ctx.current_block->index, ctx.current_instr_idx};
97
98 if (def.regClass().is_subdword())
99 idx = clobbered;
100
101 assert((r + dw_size) <= max_reg_cnt);
102 assert(def.size() == dw_size || def.regClass().is_subdword());
103 std::fill(ctx.instr_idx_by_regs[ctx.current_block->index].begin() + r,
104 ctx.instr_idx_by_regs[ctx.current_block->index].begin() + r + dw_size, idx);
105 }
106 }
107
108 Idx
last_writer_idx(pr_opt_ctx & ctx,PhysReg physReg,RegClass rc)109 last_writer_idx(pr_opt_ctx& ctx, PhysReg physReg, RegClass rc)
110 {
111 /* Verify that all of the operand's registers are written by the same instruction. */
112 assert(physReg.reg() < max_reg_cnt);
113 Idx instr_idx = ctx.instr_idx_by_regs[ctx.current_block->index][physReg.reg()];
114 unsigned dw_size = DIV_ROUND_UP(rc.bytes(), 4u);
115 unsigned r = physReg.reg();
116 bool all_same =
117 std::all_of(ctx.instr_idx_by_regs[ctx.current_block->index].begin() + r,
118 ctx.instr_idx_by_regs[ctx.current_block->index].begin() + r + dw_size,
119 [instr_idx](Idx i) { return i == instr_idx; });
120
121 return all_same ? instr_idx : written_by_multiple_instrs;
122 }
123
124 Idx
last_writer_idx(pr_opt_ctx & ctx,const Operand & op)125 last_writer_idx(pr_opt_ctx& ctx, const Operand& op)
126 {
127 if (op.isConstant() || op.isUndefined())
128 return const_or_undef;
129
130 assert(op.physReg().reg() < max_reg_cnt);
131 Idx instr_idx = ctx.instr_idx_by_regs[ctx.current_block->index][op.physReg().reg()];
132
133 #ifndef NDEBUG
134 /* Debug mode: */
135 instr_idx = last_writer_idx(ctx, op.physReg(), op.regClass());
136 assert(instr_idx != written_by_multiple_instrs);
137 #endif
138
139 return instr_idx;
140 }
141
142 bool
is_clobbered_since(pr_opt_ctx & ctx,PhysReg reg,RegClass rc,const Idx & idx)143 is_clobbered_since(pr_opt_ctx& ctx, PhysReg reg, RegClass rc, const Idx& idx)
144 {
145 /* If we didn't find an instruction, assume that the register is clobbered. */
146 if (!idx.found())
147 return true;
148
149 /* TODO: We currently can't keep track of subdword registers. */
150 if (rc.is_subdword())
151 return true;
152
153 unsigned begin_reg = reg.reg();
154 unsigned end_reg = begin_reg + rc.size();
155 unsigned current_block_idx = ctx.current_block->index;
156
157 for (unsigned r = begin_reg; r < end_reg; ++r) {
158 Idx& i = ctx.instr_idx_by_regs[current_block_idx][r];
159 if (i == clobbered || i == written_by_multiple_instrs)
160 return true;
161 else if (i == not_written_in_block)
162 continue;
163
164 assert(i.found());
165
166 if (i.block > idx.block || (i.block == idx.block && i.instr > idx.instr))
167 return true;
168 }
169
170 return false;
171 }
172
173 template <typename T>
174 bool
is_clobbered_since(pr_opt_ctx & ctx,const T & t,const Idx & idx)175 is_clobbered_since(pr_opt_ctx& ctx, const T& t, const Idx& idx)
176 {
177 return is_clobbered_since(ctx, t.physReg(), t.regClass(), idx);
178 }
179
180 void
try_apply_branch_vcc(pr_opt_ctx & ctx,aco_ptr<Instruction> & instr)181 try_apply_branch_vcc(pr_opt_ctx& ctx, aco_ptr<Instruction>& instr)
182 {
183 /* We are looking for the following pattern:
184 *
185 * vcc = ... ; last_vcc_wr
186 * sX, scc = s_and_bXX vcc, exec ; op0_instr
187 * (...vcc and exec must not be clobbered inbetween...)
188 * s_cbranch_XX scc ; instr
189 *
190 * If possible, the above is optimized into:
191 *
192 * vcc = ... ; last_vcc_wr
193 * s_cbranch_XX vcc ; instr modified to use vcc
194 */
195
196 /* Don't try to optimize this on GFX6-7 because SMEM may corrupt the vccz bit. */
197 if (ctx.program->chip_class < GFX8)
198 return;
199
200 if (instr->format != Format::PSEUDO_BRANCH || instr->operands.size() == 0 ||
201 instr->operands[0].physReg() != scc)
202 return;
203
204 Idx op0_instr_idx = last_writer_idx(ctx, instr->operands[0]);
205 Idx last_vcc_wr_idx = last_writer_idx(ctx, vcc, ctx.program->lane_mask);
206
207 /* We need to make sure:
208 * - the instructions that wrote the operand register and VCC are both found
209 * - the operand register used by the branch, and VCC were both written in the current block
210 * - EXEC hasn't been clobbered since the last VCC write
211 * - VCC hasn't been clobbered since the operand register was written
212 * (ie. the last VCC writer precedes the op0 writer)
213 */
214 if (!op0_instr_idx.found() || !last_vcc_wr_idx.found() ||
215 op0_instr_idx.block != ctx.current_block->index ||
216 last_vcc_wr_idx.block != ctx.current_block->index ||
217 is_clobbered_since(ctx, exec, ctx.program->lane_mask, last_vcc_wr_idx) ||
218 is_clobbered_since(ctx, vcc, ctx.program->lane_mask, op0_instr_idx))
219 return;
220
221 Instruction* op0_instr = ctx.get(op0_instr_idx);
222 Instruction* last_vcc_wr = ctx.get(last_vcc_wr_idx);
223
224 if ((op0_instr->opcode != aco_opcode::s_and_b64 /* wave64 */ &&
225 op0_instr->opcode != aco_opcode::s_and_b32 /* wave32 */) ||
226 op0_instr->operands[0].physReg() != vcc || op0_instr->operands[1].physReg() != exec ||
227 !last_vcc_wr->isVOPC())
228 return;
229
230 assert(last_vcc_wr->definitions[0].tempId() == op0_instr->operands[0].tempId());
231
232 /* Reduce the uses of the SCC def */
233 ctx.uses[instr->operands[0].tempId()]--;
234 /* Use VCC instead of SCC in the branch */
235 instr->operands[0] = op0_instr->operands[0];
236 }
237
238 void
try_optimize_scc_nocompare(pr_opt_ctx & ctx,aco_ptr<Instruction> & instr)239 try_optimize_scc_nocompare(pr_opt_ctx& ctx, aco_ptr<Instruction>& instr)
240 {
241 /* We are looking for the following pattern:
242 *
243 * s_bfe_u32 s0, s3, 0x40018 ; outputs SGPR and SCC if the SGPR != 0
244 * s_cmp_eq_i32 s0, 0 ; comparison between the SGPR and 0
245 * s_cbranch_scc0 BB3 ; use the result of the comparison, eg. branch or cselect
246 *
247 * If possible, the above is optimized into:
248 *
249 * s_bfe_u32 s0, s3, 0x40018 ; original instruction
250 * s_cbranch_scc1 BB3 ; modified to use SCC directly rather than the SGPR with comparison
251 *
252 */
253
254 if (!instr->isSALU() && !instr->isBranch())
255 return;
256
257 if (instr->isSOPC() &&
258 (instr->opcode == aco_opcode::s_cmp_eq_u32 || instr->opcode == aco_opcode::s_cmp_eq_i32 ||
259 instr->opcode == aco_opcode::s_cmp_lg_u32 || instr->opcode == aco_opcode::s_cmp_lg_i32 ||
260 instr->opcode == aco_opcode::s_cmp_eq_u64 || instr->opcode == aco_opcode::s_cmp_lg_u64) &&
261 (instr->operands[0].constantEquals(0) || instr->operands[1].constantEquals(0)) &&
262 (instr->operands[0].isTemp() || instr->operands[1].isTemp())) {
263 /* Make sure the constant is always in operand 1 */
264 if (instr->operands[0].isConstant())
265 std::swap(instr->operands[0], instr->operands[1]);
266
267 if (ctx.uses[instr->operands[0].tempId()] > 1)
268 return;
269
270 /* Make sure both SCC and Operand 0 are written by the same instruction. */
271 Idx wr_idx = last_writer_idx(ctx, instr->operands[0]);
272 Idx sccwr_idx = last_writer_idx(ctx, scc, s1);
273 if (!wr_idx.found() || wr_idx != sccwr_idx)
274 return;
275
276 Instruction* wr_instr = ctx.get(wr_idx);
277 if (!wr_instr->isSALU() || wr_instr->definitions.size() < 2 ||
278 wr_instr->definitions[1].physReg() != scc)
279 return;
280
281 /* Look for instructions which set SCC := (D != 0) */
282 switch (wr_instr->opcode) {
283 case aco_opcode::s_bfe_i32:
284 case aco_opcode::s_bfe_i64:
285 case aco_opcode::s_bfe_u32:
286 case aco_opcode::s_bfe_u64:
287 case aco_opcode::s_and_b32:
288 case aco_opcode::s_and_b64:
289 case aco_opcode::s_andn2_b32:
290 case aco_opcode::s_andn2_b64:
291 case aco_opcode::s_or_b32:
292 case aco_opcode::s_or_b64:
293 case aco_opcode::s_orn2_b32:
294 case aco_opcode::s_orn2_b64:
295 case aco_opcode::s_xor_b32:
296 case aco_opcode::s_xor_b64:
297 case aco_opcode::s_not_b32:
298 case aco_opcode::s_not_b64:
299 case aco_opcode::s_nor_b32:
300 case aco_opcode::s_nor_b64:
301 case aco_opcode::s_xnor_b32:
302 case aco_opcode::s_xnor_b64:
303 case aco_opcode::s_nand_b32:
304 case aco_opcode::s_nand_b64:
305 case aco_opcode::s_lshl_b32:
306 case aco_opcode::s_lshl_b64:
307 case aco_opcode::s_lshr_b32:
308 case aco_opcode::s_lshr_b64:
309 case aco_opcode::s_ashr_i32:
310 case aco_opcode::s_ashr_i64:
311 case aco_opcode::s_abs_i32:
312 case aco_opcode::s_absdiff_i32: break;
313 default: return;
314 }
315
316 /* Use the SCC def from wr_instr */
317 ctx.uses[instr->operands[0].tempId()]--;
318 instr->operands[0] = Operand(wr_instr->definitions[1].getTemp(), scc);
319 ctx.uses[instr->operands[0].tempId()]++;
320
321 /* Set the opcode and operand to 32-bit */
322 instr->operands[1] = Operand::zero();
323 instr->opcode =
324 (instr->opcode == aco_opcode::s_cmp_eq_u32 || instr->opcode == aco_opcode::s_cmp_eq_i32 ||
325 instr->opcode == aco_opcode::s_cmp_eq_u64)
326 ? aco_opcode::s_cmp_eq_u32
327 : aco_opcode::s_cmp_lg_u32;
328 } else if ((instr->format == Format::PSEUDO_BRANCH && instr->operands.size() == 1 &&
329 instr->operands[0].physReg() == scc) ||
330 instr->opcode == aco_opcode::s_cselect_b32) {
331
332 /* For cselect, operand 2 is the SCC condition */
333 unsigned scc_op_idx = 0;
334 if (instr->opcode == aco_opcode::s_cselect_b32) {
335 scc_op_idx = 2;
336 }
337
338 Idx wr_idx = last_writer_idx(ctx, instr->operands[scc_op_idx]);
339 if (!wr_idx.found())
340 return;
341
342 Instruction* wr_instr = ctx.get(wr_idx);
343
344 /* Check if we found the pattern above. */
345 if (wr_instr->opcode != aco_opcode::s_cmp_eq_u32 &&
346 wr_instr->opcode != aco_opcode::s_cmp_lg_u32)
347 return;
348 if (wr_instr->operands[0].physReg() != scc)
349 return;
350 if (!wr_instr->operands[1].constantEquals(0))
351 return;
352
353 /* The optimization can be unsafe when there are other users. */
354 if (ctx.uses[instr->operands[scc_op_idx].tempId()] > 1)
355 return;
356
357 if (wr_instr->opcode == aco_opcode::s_cmp_eq_u32) {
358 /* Flip the meaning of the instruction to correctly use the SCC. */
359 if (instr->format == Format::PSEUDO_BRANCH)
360 instr->opcode = instr->opcode == aco_opcode::p_cbranch_z ? aco_opcode::p_cbranch_nz
361 : aco_opcode::p_cbranch_z;
362 else if (instr->opcode == aco_opcode::s_cselect_b32)
363 std::swap(instr->operands[0], instr->operands[1]);
364 else
365 unreachable(
366 "scc_nocompare optimization is only implemented for p_cbranch and s_cselect");
367 }
368
369 /* Use the SCC def from the original instruction, not the comparison */
370 ctx.uses[instr->operands[scc_op_idx].tempId()]--;
371 instr->operands[scc_op_idx] = wr_instr->operands[0];
372 }
373 }
374
375 void
try_combine_dpp(pr_opt_ctx & ctx,aco_ptr<Instruction> & instr)376 try_combine_dpp(pr_opt_ctx& ctx, aco_ptr<Instruction>& instr)
377 {
378 /* We are looking for the following pattern:
379 *
380 * v_mov_dpp vA, vB, ... ; move instruction with DPP
381 * v_xxx vC, vA, ... ; current instr that uses the result from the move
382 *
383 * If possible, the above is optimized into:
384 *
385 * v_xxx_dpp vC, vB, ... ; current instr modified to use DPP directly
386 *
387 */
388
389 if (!instr->isVALU() || instr->isDPP() || !can_use_DPP(instr, false))
390 return;
391
392 for (unsigned i = 0; i < MIN2(2, instr->operands.size()); i++) {
393 Idx op_instr_idx = last_writer_idx(ctx, instr->operands[i]);
394 if (!op_instr_idx.found())
395 continue;
396
397 Instruction* mov = ctx.get(op_instr_idx);
398 if (mov->opcode != aco_opcode::v_mov_b32 || !mov->isDPP())
399 continue;
400
401 /* If we aren't going to remove the v_mov_b32, we have to ensure that it doesn't overwrite
402 * it's own operand before we use it.
403 */
404 if (mov->definitions[0].physReg() == mov->operands[0].physReg() &&
405 (!mov->definitions[0].tempId() || ctx.uses[mov->definitions[0].tempId()] > 1))
406 continue;
407
408 /* Don't propagate DPP if the source register is overwritten since the move. */
409 if (is_clobbered_since(ctx, mov->operands[0], op_instr_idx))
410 continue;
411
412 if (i && !can_swap_operands(instr, &instr->opcode))
413 continue;
414
415 /* anything else doesn't make sense in SSA */
416 assert(mov->dpp().row_mask == 0xf && mov->dpp().bank_mask == 0xf);
417
418 if (--ctx.uses[mov->definitions[0].tempId()])
419 ctx.uses[mov->operands[0].tempId()]++;
420
421 convert_to_DPP(instr);
422
423 DPP_instruction* dpp = &instr->dpp();
424 if (i) {
425 std::swap(dpp->operands[0], dpp->operands[1]);
426 std::swap(dpp->neg[0], dpp->neg[1]);
427 std::swap(dpp->abs[0], dpp->abs[1]);
428 }
429 dpp->operands[0] = mov->operands[0];
430 dpp->dpp_ctrl = mov->dpp().dpp_ctrl;
431 dpp->bound_ctrl = true;
432 dpp->neg[0] ^= mov->dpp().neg[0] && !dpp->abs[0];
433 dpp->abs[0] |= mov->dpp().abs[0];
434 return;
435 }
436 }
437
438 void
process_instruction(pr_opt_ctx & ctx,aco_ptr<Instruction> & instr)439 process_instruction(pr_opt_ctx& ctx, aco_ptr<Instruction>& instr)
440 {
441 try_apply_branch_vcc(ctx, instr);
442
443 try_optimize_scc_nocompare(ctx, instr);
444
445 try_combine_dpp(ctx, instr);
446
447 if (instr)
448 save_reg_writes(ctx, instr);
449
450 ctx.current_instr_idx++;
451 }
452
453 } // namespace
454
455 void
optimize_postRA(Program * program)456 optimize_postRA(Program* program)
457 {
458 pr_opt_ctx ctx;
459 ctx.program = program;
460 ctx.uses = dead_code_analysis(program);
461 ctx.instr_idx_by_regs.resize(program->blocks.size());
462
463 /* Forward pass
464 * Goes through each instruction exactly once, and can transform
465 * instructions or adjust the use counts of temps.
466 */
467 for (auto& block : program->blocks) {
468 ctx.reset_block(&block);
469
470 for (aco_ptr<Instruction>& instr : block.instructions)
471 process_instruction(ctx, instr);
472 }
473
474 /* Cleanup pass
475 * Gets rid of instructions which are manually deleted or
476 * no longer have any uses.
477 */
478 for (auto& block : program->blocks) {
479 auto new_end = std::remove_if(block.instructions.begin(), block.instructions.end(),
480 [&ctx](const aco_ptr<Instruction>& instr)
481 { return !instr || is_dead(ctx.uses, instr.get()); });
482 block.instructions.resize(new_end - block.instructions.begin());
483 }
484 }
485
486 } // namespace aco
487