• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright 2012 Advanced Micro Devices, Inc.
3  * All Rights Reserved.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the "Software"),
7  * to deal in the Software without restriction, including without limitation
8  * on the rights to use, copy, modify, merge, publish, distribute, sub
9  * license, and/or sell copies of the Software, and to permit persons to whom
10  * the Software is furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice (including the next
13  * paragraph) shall be included in all copies or substantial portions of the
14  * Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHOR(S) AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM,
20  * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
21  * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
22  * USE OR OTHER DEALINGS IN THE SOFTWARE.
23  */
24 
25 #include "ac_exp_param.h"
26 #include "ac_shader_util.h"
27 #include "compiler/nir/nir_serialize.h"
28 #include "nir/tgsi_to_nir.h"
29 #include "si_build_pm4.h"
30 #include "sid.h"
31 #include "util/crc32.h"
32 #include "util/disk_cache.h"
33 #include "util/hash_table.h"
34 #include "util/mesa-sha1.h"
35 #include "util/u_async_debug.h"
36 #include "util/u_memory.h"
37 #include "util/u_prim.h"
38 #include "tgsi/tgsi_from_mesa.h"
39 
40 /* SHADER_CACHE */
41 
42 /**
43  * Return the IR key for the shader cache.
44  */
si_get_ir_cache_key(struct si_shader_selector * sel,bool ngg,bool es,unsigned char ir_sha1_cache_key[20])45 void si_get_ir_cache_key(struct si_shader_selector *sel, bool ngg, bool es,
46                          unsigned char ir_sha1_cache_key[20])
47 {
48    struct blob blob = {};
49    unsigned ir_size;
50    void *ir_binary;
51 
52    if (sel->nir_binary) {
53       ir_binary = sel->nir_binary;
54       ir_size = sel->nir_size;
55    } else {
56       assert(sel->nir);
57 
58       blob_init(&blob);
59       nir_serialize(&blob, sel->nir, true);
60       ir_binary = blob.data;
61       ir_size = blob.size;
62    }
63 
64    /* These settings affect the compilation, but they are not derived
65     * from the input shader IR.
66     */
67    unsigned shader_variant_flags = 0;
68 
69    if (ngg)
70       shader_variant_flags |= 1 << 0;
71    if (sel->nir)
72       shader_variant_flags |= 1 << 1;
73    if (si_get_wave_size(sel->screen, sel->info.stage, ngg, es) == 32)
74       shader_variant_flags |= 1 << 2;
75    if (sel->info.stage == MESA_SHADER_FRAGMENT &&
76        /* Derivatives imply helper invocations so check for needs_quad_helper_invocations. */
77        sel->info.base.fs.needs_quad_helper_invocations &&
78        sel->info.base.fs.uses_discard &&
79        sel->screen->debug_flags & DBG(FS_CORRECT_DERIVS_AFTER_KILL))
80       shader_variant_flags |= 1 << 3;
81    /* use_ngg_culling disables NGG passthrough for non-culling shaders to reduce context
82     * rolls, which can be changed with AMD_DEBUG=nonggc or AMD_DEBUG=nggc.
83     */
84    if (sel->screen->use_ngg_culling)
85       shader_variant_flags |= 1 << 4;
86 
87    /* bit gap */
88 
89    if (sel->screen->options.no_infinite_interp)
90       shader_variant_flags |= 1 << 7;
91    if (sel->screen->options.clamp_div_by_zero)
92       shader_variant_flags |= 1 << 8;
93    if (sel->screen->debug_flags & DBG(GISEL))
94       shader_variant_flags |= 1 << 9;
95    if ((sel->info.stage == MESA_SHADER_VERTEX ||
96         sel->info.stage == MESA_SHADER_TESS_EVAL ||
97         sel->info.stage == MESA_SHADER_GEOMETRY) &&
98        !es &&
99        sel->screen->options.vrs2x2)
100       shader_variant_flags |= 1 << 10;
101    if (sel->screen->options.inline_uniforms)
102       shader_variant_flags |= 1 << 11;
103 
104    struct mesa_sha1 ctx;
105    _mesa_sha1_init(&ctx);
106    _mesa_sha1_update(&ctx, &shader_variant_flags, 4);
107    _mesa_sha1_update(&ctx, ir_binary, ir_size);
108    if (sel->info.stage == MESA_SHADER_VERTEX || sel->info.stage == MESA_SHADER_TESS_EVAL ||
109        sel->info.stage == MESA_SHADER_GEOMETRY)
110       _mesa_sha1_update(&ctx, &sel->so, sizeof(sel->so));
111    _mesa_sha1_final(&ctx, ir_sha1_cache_key);
112 
113    if (ir_binary == blob.data)
114       blob_finish(&blob);
115 }
116 
117 /** Copy "data" to "ptr" and return the next dword following copied data. */
write_data(uint32_t * ptr,const void * data,unsigned size)118 static uint32_t *write_data(uint32_t *ptr, const void *data, unsigned size)
119 {
120    /* data may be NULL if size == 0 */
121    if (size)
122       memcpy(ptr, data, size);
123    ptr += DIV_ROUND_UP(size, 4);
124    return ptr;
125 }
126 
127 /** Read data from "ptr". Return the next dword following the data. */
read_data(uint32_t * ptr,void * data,unsigned size)128 static uint32_t *read_data(uint32_t *ptr, void *data, unsigned size)
129 {
130    memcpy(data, ptr, size);
131    ptr += DIV_ROUND_UP(size, 4);
132    return ptr;
133 }
134 
135 /**
136  * Write the size as uint followed by the data. Return the next dword
137  * following the copied data.
138  */
write_chunk(uint32_t * ptr,const void * data,unsigned size)139 static uint32_t *write_chunk(uint32_t *ptr, const void *data, unsigned size)
140 {
141    *ptr++ = size;
142    return write_data(ptr, data, size);
143 }
144 
145 /**
146  * Read the size as uint followed by the data. Return both via parameters.
147  * Return the next dword following the data.
148  */
read_chunk(uint32_t * ptr,void ** data,unsigned * size)149 static uint32_t *read_chunk(uint32_t *ptr, void **data, unsigned *size)
150 {
151    *size = *ptr++;
152    assert(*data == NULL);
153    if (!*size)
154       return ptr;
155    *data = malloc(*size);
156    return read_data(ptr, *data, *size);
157 }
158 
159 /**
160  * Return the shader binary in a buffer. The first 4 bytes contain its size
161  * as integer.
162  */
si_get_shader_binary(struct si_shader * shader)163 static void *si_get_shader_binary(struct si_shader *shader)
164 {
165    /* There is always a size of data followed by the data itself. */
166    unsigned llvm_ir_size =
167       shader->binary.llvm_ir_string ? strlen(shader->binary.llvm_ir_string) + 1 : 0;
168 
169    /* Refuse to allocate overly large buffers and guard against integer
170     * overflow. */
171    if (shader->binary.elf_size > UINT_MAX / 4 || llvm_ir_size > UINT_MAX / 4)
172       return NULL;
173 
174    unsigned size = 4 + /* total size */
175                    4 + /* CRC32 of the data below */
176                    align(sizeof(shader->config), 4) + align(sizeof(shader->info), 4) + 4 +
177                    align(shader->binary.elf_size, 4) + 4 + align(llvm_ir_size, 4);
178    void *buffer = CALLOC(1, size);
179    uint32_t *ptr = (uint32_t *)buffer;
180 
181    if (!buffer)
182       return NULL;
183 
184    *ptr++ = size;
185    ptr++; /* CRC32 is calculated at the end. */
186 
187    ptr = write_data(ptr, &shader->config, sizeof(shader->config));
188    ptr = write_data(ptr, &shader->info, sizeof(shader->info));
189    ptr = write_chunk(ptr, shader->binary.elf_buffer, shader->binary.elf_size);
190    ptr = write_chunk(ptr, shader->binary.llvm_ir_string, llvm_ir_size);
191    assert((char *)ptr - (char *)buffer == size);
192 
193    /* Compute CRC32. */
194    ptr = (uint32_t *)buffer;
195    ptr++;
196    *ptr = util_hash_crc32(ptr + 1, size - 8);
197 
198    return buffer;
199 }
200 
si_load_shader_binary(struct si_shader * shader,void * binary)201 static bool si_load_shader_binary(struct si_shader *shader, void *binary)
202 {
203    uint32_t *ptr = (uint32_t *)binary;
204    uint32_t size = *ptr++;
205    uint32_t crc32 = *ptr++;
206    unsigned chunk_size;
207    unsigned elf_size;
208 
209    if (util_hash_crc32(ptr, size - 8) != crc32) {
210       fprintf(stderr, "radeonsi: binary shader has invalid CRC32\n");
211       return false;
212    }
213 
214    ptr = read_data(ptr, &shader->config, sizeof(shader->config));
215    ptr = read_data(ptr, &shader->info, sizeof(shader->info));
216    ptr = read_chunk(ptr, (void **)&shader->binary.elf_buffer, &elf_size);
217    shader->binary.elf_size = elf_size;
218    ptr = read_chunk(ptr, (void **)&shader->binary.llvm_ir_string, &chunk_size);
219 
220    return true;
221 }
222 
223 /**
224  * Insert a shader into the cache. It's assumed the shader is not in the cache.
225  * Use si_shader_cache_load_shader before calling this.
226  */
si_shader_cache_insert_shader(struct si_screen * sscreen,unsigned char ir_sha1_cache_key[20],struct si_shader * shader,bool insert_into_disk_cache)227 void si_shader_cache_insert_shader(struct si_screen *sscreen, unsigned char ir_sha1_cache_key[20],
228                                    struct si_shader *shader, bool insert_into_disk_cache)
229 {
230    void *hw_binary;
231    struct hash_entry *entry;
232    uint8_t key[CACHE_KEY_SIZE];
233    bool memory_cache_full = sscreen->shader_cache_size >= sscreen->shader_cache_max_size;
234 
235    if (!insert_into_disk_cache && memory_cache_full)
236       return;
237 
238    entry = _mesa_hash_table_search(sscreen->shader_cache, ir_sha1_cache_key);
239    if (entry)
240       return; /* already added */
241 
242    hw_binary = si_get_shader_binary(shader);
243    if (!hw_binary)
244       return;
245 
246    if (!memory_cache_full) {
247       if (_mesa_hash_table_insert(sscreen->shader_cache,
248                                   mem_dup(ir_sha1_cache_key, 20),
249                                   hw_binary) == NULL) {
250           FREE(hw_binary);
251           return;
252       }
253       /* The size is stored at the start of the binary */
254       sscreen->shader_cache_size += *(uint32_t*)hw_binary;
255    }
256 
257    if (sscreen->disk_shader_cache && insert_into_disk_cache) {
258       disk_cache_compute_key(sscreen->disk_shader_cache, ir_sha1_cache_key, 20, key);
259       disk_cache_put(sscreen->disk_shader_cache, key, hw_binary, *((uint32_t *)hw_binary), NULL);
260    }
261 
262    if (memory_cache_full)
263       FREE(hw_binary);
264 }
265 
si_shader_cache_load_shader(struct si_screen * sscreen,unsigned char ir_sha1_cache_key[20],struct si_shader * shader)266 bool si_shader_cache_load_shader(struct si_screen *sscreen, unsigned char ir_sha1_cache_key[20],
267                                  struct si_shader *shader)
268 {
269    struct hash_entry *entry = _mesa_hash_table_search(sscreen->shader_cache, ir_sha1_cache_key);
270 
271    if (entry) {
272       if (si_load_shader_binary(shader, entry->data)) {
273          p_atomic_inc(&sscreen->num_memory_shader_cache_hits);
274          return true;
275       }
276    }
277    p_atomic_inc(&sscreen->num_memory_shader_cache_misses);
278 
279    if (!sscreen->disk_shader_cache)
280       return false;
281 
282    unsigned char sha1[CACHE_KEY_SIZE];
283    disk_cache_compute_key(sscreen->disk_shader_cache, ir_sha1_cache_key, 20, sha1);
284 
285    size_t binary_size;
286    uint8_t *buffer = disk_cache_get(sscreen->disk_shader_cache, sha1, &binary_size);
287    if (buffer) {
288       if (binary_size >= sizeof(uint32_t) && *((uint32_t *)buffer) == binary_size) {
289          if (si_load_shader_binary(shader, buffer)) {
290             free(buffer);
291             si_shader_cache_insert_shader(sscreen, ir_sha1_cache_key, shader, false);
292             p_atomic_inc(&sscreen->num_disk_shader_cache_hits);
293             return true;
294          }
295       } else {
296          /* Something has gone wrong discard the item from the cache and
297           * rebuild/link from source.
298           */
299          assert(!"Invalid radeonsi shader disk cache item!");
300          disk_cache_remove(sscreen->disk_shader_cache, sha1);
301       }
302    }
303 
304    free(buffer);
305    p_atomic_inc(&sscreen->num_disk_shader_cache_misses);
306    return false;
307 }
308 
si_shader_cache_key_hash(const void * key)309 static uint32_t si_shader_cache_key_hash(const void *key)
310 {
311    /* Take the first dword of SHA1. */
312    return *(uint32_t *)key;
313 }
314 
si_shader_cache_key_equals(const void * a,const void * b)315 static bool si_shader_cache_key_equals(const void *a, const void *b)
316 {
317    /* Compare SHA1s. */
318    return memcmp(a, b, 20) == 0;
319 }
320 
si_destroy_shader_cache_entry(struct hash_entry * entry)321 static void si_destroy_shader_cache_entry(struct hash_entry *entry)
322 {
323    FREE((void *)entry->key);
324    FREE(entry->data);
325 }
326 
si_init_shader_cache(struct si_screen * sscreen)327 bool si_init_shader_cache(struct si_screen *sscreen)
328 {
329    (void)simple_mtx_init(&sscreen->shader_cache_mutex, mtx_plain);
330    sscreen->shader_cache =
331       _mesa_hash_table_create(NULL, si_shader_cache_key_hash, si_shader_cache_key_equals);
332    sscreen->shader_cache_size = 0;
333    /* Maximum size: 64MB on 32 bits, 1GB else */
334    sscreen->shader_cache_max_size = ((sizeof(void *) == 4) ? 64 : 1024) * 1024 * 1024;
335 
336    return sscreen->shader_cache != NULL;
337 }
338 
si_destroy_shader_cache(struct si_screen * sscreen)339 void si_destroy_shader_cache(struct si_screen *sscreen)
340 {
341    if (sscreen->shader_cache)
342       _mesa_hash_table_destroy(sscreen->shader_cache, si_destroy_shader_cache_entry);
343    simple_mtx_destroy(&sscreen->shader_cache_mutex);
344 }
345 
346 /* SHADER STATES */
347 
si_shader_mem_ordered(struct si_shader * shader)348 bool si_shader_mem_ordered(struct si_shader *shader)
349 {
350    if (shader->selector->screen->info.chip_class < GFX10)
351       return false;
352 
353    const struct si_shader_info *info = &shader->selector->info;
354    const struct si_shader_info *prev_info =
355       shader->previous_stage_sel ? &shader->previous_stage_sel->info : NULL;
356 
357    bool sampler_or_bvh = info->uses_vmem_return_type_sampler_or_bvh;
358    bool other = info->uses_vmem_return_type_other ||
359                 info->uses_indirect_descriptor ||
360                 shader->config.scratch_bytes_per_wave ||
361                 (info->stage == MESA_SHADER_FRAGMENT &&
362                  (info->base.fs.uses_fbfetch_output ||
363                   shader->key.part.ps.prolog.poly_stipple));
364 
365    if (prev_info) {
366       sampler_or_bvh |= prev_info->uses_vmem_return_type_sampler_or_bvh;
367       other |= prev_info->uses_vmem_return_type_other ||
368                prev_info->uses_indirect_descriptor;
369    }
370 
371    /* Return true if both types of VMEM that return something are used. */
372    return sampler_or_bvh && other;
373 }
374 
si_set_tesseval_regs(struct si_screen * sscreen,const struct si_shader_selector * tes,struct si_shader * shader)375 static void si_set_tesseval_regs(struct si_screen *sscreen, const struct si_shader_selector *tes,
376                                  struct si_shader *shader)
377 {
378    const struct si_shader_info *info = &tes->info;
379    unsigned tes_prim_mode = info->base.tess.primitive_mode;
380    unsigned tes_spacing = info->base.tess.spacing;
381    bool tes_vertex_order_cw = !info->base.tess.ccw;
382    bool tes_point_mode = info->base.tess.point_mode;
383    unsigned type, partitioning, topology, distribution_mode;
384 
385    switch (tes_prim_mode) {
386    case GL_LINES:
387       type = V_028B6C_TESS_ISOLINE;
388       break;
389    case GL_TRIANGLES:
390       type = V_028B6C_TESS_TRIANGLE;
391       break;
392    case GL_QUADS:
393       type = V_028B6C_TESS_QUAD;
394       break;
395    default:
396       assert(0);
397       return;
398    }
399 
400    switch (tes_spacing) {
401    case TESS_SPACING_FRACTIONAL_ODD:
402       partitioning = V_028B6C_PART_FRAC_ODD;
403       break;
404    case TESS_SPACING_FRACTIONAL_EVEN:
405       partitioning = V_028B6C_PART_FRAC_EVEN;
406       break;
407    case TESS_SPACING_EQUAL:
408       partitioning = V_028B6C_PART_INTEGER;
409       break;
410    default:
411       assert(0);
412       return;
413    }
414 
415    if (tes_point_mode)
416       topology = V_028B6C_OUTPUT_POINT;
417    else if (tes_prim_mode == GL_LINES)
418       topology = V_028B6C_OUTPUT_LINE;
419    else if (tes_vertex_order_cw)
420       /* for some reason, this must be the other way around */
421       topology = V_028B6C_OUTPUT_TRIANGLE_CCW;
422    else
423       topology = V_028B6C_OUTPUT_TRIANGLE_CW;
424 
425    if (sscreen->info.has_distributed_tess) {
426       if (sscreen->info.family == CHIP_FIJI || sscreen->info.family >= CHIP_POLARIS10)
427          distribution_mode = V_028B6C_TRAPEZOIDS;
428       else
429          distribution_mode = V_028B6C_DONUTS;
430    } else
431       distribution_mode = V_028B6C_NO_DIST;
432 
433    shader->vgt_tf_param = S_028B6C_TYPE(type) | S_028B6C_PARTITIONING(partitioning) |
434                           S_028B6C_TOPOLOGY(topology) |
435                           S_028B6C_DISTRIBUTION_MODE(distribution_mode);
436 }
437 
438 /* Polaris needs different VTX_REUSE_DEPTH settings depending on
439  * whether the "fractional odd" tessellation spacing is used.
440  *
441  * Possible VGT configurations and which state should set the register:
442  *
443  *   Reg set in | VGT shader configuration   | Value
444  * ------------------------------------------------------
445  *     VS as VS | VS                         | 30
446  *     VS as ES | ES -> GS -> VS             | 30
447  *    TES as VS | LS -> HS -> VS             | 14 or 30
448  *    TES as ES | LS -> HS -> ES -> GS -> VS | 14 or 30
449  */
polaris_set_vgt_vertex_reuse(struct si_screen * sscreen,struct si_shader_selector * sel,struct si_shader * shader)450 static void polaris_set_vgt_vertex_reuse(struct si_screen *sscreen, struct si_shader_selector *sel,
451                                          struct si_shader *shader)
452 {
453    if (sscreen->info.family < CHIP_POLARIS10 || sscreen->info.chip_class >= GFX10)
454       return;
455 
456    /* VS as VS, or VS as ES: */
457    if ((sel->info.stage == MESA_SHADER_VERTEX &&
458         (!shader->key.as_ls && !shader->is_gs_copy_shader)) ||
459        /* TES as VS, or TES as ES: */
460        sel->info.stage == MESA_SHADER_TESS_EVAL) {
461       unsigned vtx_reuse_depth = 30;
462 
463       if (sel->info.stage == MESA_SHADER_TESS_EVAL &&
464           sel->info.base.tess.spacing == TESS_SPACING_FRACTIONAL_ODD)
465          vtx_reuse_depth = 14;
466 
467       shader->vgt_vertex_reuse_block_cntl = vtx_reuse_depth;
468    }
469 }
470 
si_get_shader_pm4_state(struct si_shader * shader)471 static struct si_pm4_state *si_get_shader_pm4_state(struct si_shader *shader)
472 {
473    si_pm4_clear_state(&shader->pm4);
474    shader->pm4.is_shader = true;
475    return &shader->pm4;
476 }
477 
si_get_num_vs_user_sgprs(struct si_shader * shader,unsigned num_always_on_user_sgprs)478 static unsigned si_get_num_vs_user_sgprs(struct si_shader *shader,
479                                          unsigned num_always_on_user_sgprs)
480 {
481    struct si_shader_selector *vs =
482       shader->previous_stage_sel ? shader->previous_stage_sel : shader->selector;
483    unsigned num_vbos_in_user_sgprs = vs->num_vbos_in_user_sgprs;
484 
485    /* 1 SGPR is reserved for the vertex buffer pointer. */
486    assert(num_always_on_user_sgprs <= SI_SGPR_VS_VB_DESCRIPTOR_FIRST - 1);
487 
488    if (num_vbos_in_user_sgprs)
489       return SI_SGPR_VS_VB_DESCRIPTOR_FIRST + num_vbos_in_user_sgprs * 4;
490 
491    /* Add the pointer to VBO descriptors. */
492    return num_always_on_user_sgprs + 1;
493 }
494 
495 /* Return VGPR_COMP_CNT for the API vertex shader. This can be hw LS, LSHS, ES, ESGS, VS. */
si_get_vs_vgpr_comp_cnt(struct si_screen * sscreen,struct si_shader * shader,bool legacy_vs_prim_id)496 static unsigned si_get_vs_vgpr_comp_cnt(struct si_screen *sscreen, struct si_shader *shader,
497                                         bool legacy_vs_prim_id)
498 {
499    assert(shader->selector->info.stage == MESA_SHADER_VERTEX ||
500           (shader->previous_stage_sel && shader->previous_stage_sel->info.stage == MESA_SHADER_VERTEX));
501 
502    /* GFX6-9   LS    (VertexID, RelAutoIndex,           InstanceID / StepRate0, InstanceID)
503     * GFX6-9   ES,VS (VertexID, InstanceID / StepRate0, VSPrimID,               InstanceID)
504     * GFX10    LS    (VertexID, RelAutoIndex,           UserVGPR1,              UserVGPR2 or InstanceID)
505     * GFX10    ES,VS (VertexID, UserVGPR1,              UserVGPR2 or VSPrimID,  UserVGPR3 or InstanceID)
506     */
507    bool is_ls = shader->selector->info.stage == MESA_SHADER_TESS_CTRL || shader->key.as_ls;
508    unsigned max = 0;
509 
510    if (shader->info.uses_instanceid) {
511       if (sscreen->info.chip_class >= GFX10)
512          max = MAX2(max, 3);
513       else if (is_ls)
514          max = MAX2(max, 2); /* use (InstanceID / StepRate0) because StepRate0 == 1 */
515       else
516          max = MAX2(max, 1); /* use (InstanceID / StepRate0) because StepRate0 == 1 */
517    }
518 
519    if (legacy_vs_prim_id)
520       max = MAX2(max, 2); /* VSPrimID */
521 
522    if (is_ls)
523       max = MAX2(max, 1); /* RelAutoIndex */
524 
525    return max;
526 }
527 
si_shader_ls(struct si_screen * sscreen,struct si_shader * shader)528 static void si_shader_ls(struct si_screen *sscreen, struct si_shader *shader)
529 {
530    struct si_pm4_state *pm4;
531    uint64_t va;
532 
533    assert(sscreen->info.chip_class <= GFX8);
534 
535    pm4 = si_get_shader_pm4_state(shader);
536    if (!pm4)
537       return;
538 
539    va = shader->bo->gpu_address;
540    si_pm4_set_reg(pm4, R_00B520_SPI_SHADER_PGM_LO_LS, va >> 8);
541 
542    shader->config.rsrc1 = S_00B528_VGPRS((shader->config.num_vgprs - 1) / 4) |
543                           S_00B528_SGPRS((shader->config.num_sgprs - 1) / 8) |
544                           S_00B528_VGPR_COMP_CNT(si_get_vs_vgpr_comp_cnt(sscreen, shader, false)) |
545                           S_00B528_DX10_CLAMP(1) | S_00B528_FLOAT_MODE(shader->config.float_mode);
546    shader->config.rsrc2 =
547       S_00B52C_USER_SGPR(si_get_num_vs_user_sgprs(shader, SI_VS_NUM_USER_SGPR)) |
548       S_00B52C_SCRATCH_EN(shader->config.scratch_bytes_per_wave > 0);
549 }
550 
si_shader_hs(struct si_screen * sscreen,struct si_shader * shader)551 static void si_shader_hs(struct si_screen *sscreen, struct si_shader *shader)
552 {
553    struct si_pm4_state *pm4;
554    uint64_t va;
555 
556    pm4 = si_get_shader_pm4_state(shader);
557    if (!pm4)
558       return;
559 
560    va = shader->bo->gpu_address;
561 
562    if (sscreen->info.chip_class >= GFX9) {
563       if (sscreen->info.chip_class >= GFX10) {
564          si_pm4_set_reg(pm4, R_00B520_SPI_SHADER_PGM_LO_LS, va >> 8);
565       } else {
566          si_pm4_set_reg(pm4, R_00B410_SPI_SHADER_PGM_LO_LS, va >> 8);
567       }
568 
569       unsigned num_user_sgprs = si_get_num_vs_user_sgprs(shader, GFX9_TCS_NUM_USER_SGPR);
570 
571       shader->config.rsrc2 = S_00B42C_USER_SGPR(num_user_sgprs) |
572                              S_00B42C_SCRATCH_EN(shader->config.scratch_bytes_per_wave > 0);
573 
574       if (sscreen->info.chip_class >= GFX10)
575          shader->config.rsrc2 |= S_00B42C_USER_SGPR_MSB_GFX10(num_user_sgprs >> 5);
576       else
577          shader->config.rsrc2 |= S_00B42C_USER_SGPR_MSB_GFX9(num_user_sgprs >> 5);
578    } else {
579       si_pm4_set_reg(pm4, R_00B420_SPI_SHADER_PGM_LO_HS, va >> 8);
580       si_pm4_set_reg(pm4, R_00B424_SPI_SHADER_PGM_HI_HS,
581                      S_00B424_MEM_BASE(sscreen->info.address32_hi >> 8));
582 
583       shader->config.rsrc2 = S_00B42C_USER_SGPR(GFX6_TCS_NUM_USER_SGPR) | S_00B42C_OC_LDS_EN(1) |
584                              S_00B42C_SCRATCH_EN(shader->config.scratch_bytes_per_wave > 0);
585    }
586 
587    si_pm4_set_reg(
588       pm4, R_00B428_SPI_SHADER_PGM_RSRC1_HS,
589       S_00B428_VGPRS((shader->config.num_vgprs - 1) / (sscreen->ge_wave_size == 32 ? 8 : 4)) |
590          (sscreen->info.chip_class <= GFX9 ? S_00B428_SGPRS((shader->config.num_sgprs - 1) / 8)
591                                            : 0) |
592          S_00B428_DX10_CLAMP(1) | S_00B428_MEM_ORDERED(si_shader_mem_ordered(shader)) |
593          S_00B428_WGP_MODE(sscreen->info.chip_class >= GFX10) |
594          S_00B428_FLOAT_MODE(shader->config.float_mode) |
595          S_00B428_LS_VGPR_COMP_CNT(sscreen->info.chip_class >= GFX9
596                                       ? si_get_vs_vgpr_comp_cnt(sscreen, shader, false)
597                                       : 0));
598 
599    if (sscreen->info.chip_class <= GFX8) {
600       si_pm4_set_reg(pm4, R_00B42C_SPI_SHADER_PGM_RSRC2_HS, shader->config.rsrc2);
601    }
602 }
603 
si_emit_shader_es(struct si_context * sctx)604 static void si_emit_shader_es(struct si_context *sctx)
605 {
606    struct si_shader *shader = sctx->queued.named.es;
607    if (!shader)
608       return;
609 
610    radeon_begin(&sctx->gfx_cs);
611    radeon_opt_set_context_reg(sctx, R_028AAC_VGT_ESGS_RING_ITEMSIZE,
612                               SI_TRACKED_VGT_ESGS_RING_ITEMSIZE,
613                               shader->selector->esgs_itemsize / 4);
614 
615    if (shader->selector->info.stage == MESA_SHADER_TESS_EVAL)
616       radeon_opt_set_context_reg(sctx, R_028B6C_VGT_TF_PARAM, SI_TRACKED_VGT_TF_PARAM,
617                                  shader->vgt_tf_param);
618 
619    if (shader->vgt_vertex_reuse_block_cntl)
620       radeon_opt_set_context_reg(sctx, R_028C58_VGT_VERTEX_REUSE_BLOCK_CNTL,
621                                  SI_TRACKED_VGT_VERTEX_REUSE_BLOCK_CNTL,
622                                  shader->vgt_vertex_reuse_block_cntl);
623    radeon_end_update_context_roll(sctx);
624 }
625 
si_shader_es(struct si_screen * sscreen,struct si_shader * shader)626 static void si_shader_es(struct si_screen *sscreen, struct si_shader *shader)
627 {
628    struct si_pm4_state *pm4;
629    unsigned num_user_sgprs;
630    unsigned vgpr_comp_cnt;
631    uint64_t va;
632    unsigned oc_lds_en;
633 
634    assert(sscreen->info.chip_class <= GFX8);
635 
636    pm4 = si_get_shader_pm4_state(shader);
637    if (!pm4)
638       return;
639 
640    pm4->atom.emit = si_emit_shader_es;
641    va = shader->bo->gpu_address;
642 
643    if (shader->selector->info.stage == MESA_SHADER_VERTEX) {
644       vgpr_comp_cnt = si_get_vs_vgpr_comp_cnt(sscreen, shader, false);
645       num_user_sgprs = si_get_num_vs_user_sgprs(shader, SI_VS_NUM_USER_SGPR);
646    } else if (shader->selector->info.stage == MESA_SHADER_TESS_EVAL) {
647       vgpr_comp_cnt = shader->selector->info.uses_primid ? 3 : 2;
648       num_user_sgprs = SI_TES_NUM_USER_SGPR;
649    } else
650       unreachable("invalid shader selector type");
651 
652    oc_lds_en = shader->selector->info.stage == MESA_SHADER_TESS_EVAL ? 1 : 0;
653 
654    si_pm4_set_reg(pm4, R_00B320_SPI_SHADER_PGM_LO_ES, va >> 8);
655    si_pm4_set_reg(pm4, R_00B324_SPI_SHADER_PGM_HI_ES,
656                   S_00B324_MEM_BASE(sscreen->info.address32_hi >> 8));
657    si_pm4_set_reg(pm4, R_00B328_SPI_SHADER_PGM_RSRC1_ES,
658                   S_00B328_VGPRS((shader->config.num_vgprs - 1) / 4) |
659                      S_00B328_SGPRS((shader->config.num_sgprs - 1) / 8) |
660                      S_00B328_VGPR_COMP_CNT(vgpr_comp_cnt) | S_00B328_DX10_CLAMP(1) |
661                      S_00B328_FLOAT_MODE(shader->config.float_mode));
662    si_pm4_set_reg(pm4, R_00B32C_SPI_SHADER_PGM_RSRC2_ES,
663                   S_00B32C_USER_SGPR(num_user_sgprs) | S_00B32C_OC_LDS_EN(oc_lds_en) |
664                      S_00B32C_SCRATCH_EN(shader->config.scratch_bytes_per_wave > 0));
665 
666    if (shader->selector->info.stage == MESA_SHADER_TESS_EVAL)
667       si_set_tesseval_regs(sscreen, shader->selector, shader);
668 
669    polaris_set_vgt_vertex_reuse(sscreen, shader->selector, shader);
670 }
671 
gfx9_get_gs_info(struct si_shader_selector * es,struct si_shader_selector * gs,struct gfx9_gs_info * out)672 void gfx9_get_gs_info(struct si_shader_selector *es, struct si_shader_selector *gs,
673                       struct gfx9_gs_info *out)
674 {
675    unsigned gs_num_invocations = MAX2(gs->info.base.gs.invocations, 1);
676    unsigned input_prim = gs->info.base.gs.input_primitive;
677    bool uses_adjacency =
678       input_prim >= PIPE_PRIM_LINES_ADJACENCY && input_prim <= PIPE_PRIM_TRIANGLE_STRIP_ADJACENCY;
679 
680    /* All these are in dwords: */
681    /* We can't allow using the whole LDS, because GS waves compete with
682     * other shader stages for LDS space. */
683    const unsigned max_lds_size = 8 * 1024;
684    const unsigned esgs_itemsize = es->esgs_itemsize / 4;
685    unsigned esgs_lds_size;
686 
687    /* All these are per subgroup: */
688    const unsigned max_out_prims = 32 * 1024;
689    const unsigned max_es_verts = 255;
690    const unsigned ideal_gs_prims = 64;
691    unsigned max_gs_prims, gs_prims;
692    unsigned min_es_verts, es_verts, worst_case_es_verts;
693 
694    if (uses_adjacency || gs_num_invocations > 1)
695       max_gs_prims = 127 / gs_num_invocations;
696    else
697       max_gs_prims = 255;
698 
699    /* MAX_PRIMS_PER_SUBGROUP = gs_prims * max_vert_out * gs_invocations.
700     * Make sure we don't go over the maximum value.
701     */
702    if (gs->info.base.gs.vertices_out > 0) {
703       max_gs_prims =
704          MIN2(max_gs_prims, max_out_prims / (gs->info.base.gs.vertices_out * gs_num_invocations));
705    }
706    assert(max_gs_prims > 0);
707 
708    /* If the primitive has adjacency, halve the number of vertices
709     * that will be reused in multiple primitives.
710     */
711    min_es_verts = gs->gs_input_verts_per_prim / (uses_adjacency ? 2 : 1);
712 
713    gs_prims = MIN2(ideal_gs_prims, max_gs_prims);
714    worst_case_es_verts = MIN2(min_es_verts * gs_prims, max_es_verts);
715 
716    /* Compute ESGS LDS size based on the worst case number of ES vertices
717     * needed to create the target number of GS prims per subgroup.
718     */
719    esgs_lds_size = esgs_itemsize * worst_case_es_verts;
720 
721    /* If total LDS usage is too big, refactor partitions based on ratio
722     * of ESGS item sizes.
723     */
724    if (esgs_lds_size > max_lds_size) {
725       /* Our target GS Prims Per Subgroup was too large. Calculate
726        * the maximum number of GS Prims Per Subgroup that will fit
727        * into LDS, capped by the maximum that the hardware can support.
728        */
729       gs_prims = MIN2((max_lds_size / (esgs_itemsize * min_es_verts)), max_gs_prims);
730       assert(gs_prims > 0);
731       worst_case_es_verts = MIN2(min_es_verts * gs_prims, max_es_verts);
732 
733       esgs_lds_size = esgs_itemsize * worst_case_es_verts;
734       assert(esgs_lds_size <= max_lds_size);
735    }
736 
737    /* Now calculate remaining ESGS information. */
738    if (esgs_lds_size)
739       es_verts = MIN2(esgs_lds_size / esgs_itemsize, max_es_verts);
740    else
741       es_verts = max_es_verts;
742 
743    /* Vertices for adjacency primitives are not always reused, so restore
744     * it for ES_VERTS_PER_SUBGRP.
745     */
746    min_es_verts = gs->gs_input_verts_per_prim;
747 
748    /* For normal primitives, the VGT only checks if they are past the ES
749     * verts per subgroup after allocating a full GS primitive and if they
750     * are, kick off a new subgroup.  But if those additional ES verts are
751     * unique (e.g. not reused) we need to make sure there is enough LDS
752     * space to account for those ES verts beyond ES_VERTS_PER_SUBGRP.
753     */
754    es_verts -= min_es_verts - 1;
755 
756    out->es_verts_per_subgroup = es_verts;
757    out->gs_prims_per_subgroup = gs_prims;
758    out->gs_inst_prims_in_subgroup = gs_prims * gs_num_invocations;
759    out->max_prims_per_subgroup = out->gs_inst_prims_in_subgroup * gs->info.base.gs.vertices_out;
760    out->esgs_ring_size = esgs_lds_size;
761 
762    assert(out->max_prims_per_subgroup <= max_out_prims);
763 }
764 
si_emit_shader_gs(struct si_context * sctx)765 static void si_emit_shader_gs(struct si_context *sctx)
766 {
767    struct si_shader *shader = sctx->queued.named.gs;
768    if (!shader)
769       return;
770 
771    radeon_begin(&sctx->gfx_cs);
772 
773    /* R_028A60_VGT_GSVS_RING_OFFSET_1, R_028A64_VGT_GSVS_RING_OFFSET_2
774     * R_028A68_VGT_GSVS_RING_OFFSET_3 */
775    radeon_opt_set_context_reg3(
776       sctx, R_028A60_VGT_GSVS_RING_OFFSET_1, SI_TRACKED_VGT_GSVS_RING_OFFSET_1,
777       shader->ctx_reg.gs.vgt_gsvs_ring_offset_1, shader->ctx_reg.gs.vgt_gsvs_ring_offset_2,
778       shader->ctx_reg.gs.vgt_gsvs_ring_offset_3);
779 
780    /* R_028AB0_VGT_GSVS_RING_ITEMSIZE */
781    radeon_opt_set_context_reg(sctx, R_028AB0_VGT_GSVS_RING_ITEMSIZE,
782                               SI_TRACKED_VGT_GSVS_RING_ITEMSIZE,
783                               shader->ctx_reg.gs.vgt_gsvs_ring_itemsize);
784 
785    /* R_028B38_VGT_GS_MAX_VERT_OUT */
786    radeon_opt_set_context_reg(sctx, R_028B38_VGT_GS_MAX_VERT_OUT, SI_TRACKED_VGT_GS_MAX_VERT_OUT,
787                               shader->ctx_reg.gs.vgt_gs_max_vert_out);
788 
789    /* R_028B5C_VGT_GS_VERT_ITEMSIZE, R_028B60_VGT_GS_VERT_ITEMSIZE_1
790     * R_028B64_VGT_GS_VERT_ITEMSIZE_2, R_028B68_VGT_GS_VERT_ITEMSIZE_3 */
791    radeon_opt_set_context_reg4(
792       sctx, R_028B5C_VGT_GS_VERT_ITEMSIZE, SI_TRACKED_VGT_GS_VERT_ITEMSIZE,
793       shader->ctx_reg.gs.vgt_gs_vert_itemsize, shader->ctx_reg.gs.vgt_gs_vert_itemsize_1,
794       shader->ctx_reg.gs.vgt_gs_vert_itemsize_2, shader->ctx_reg.gs.vgt_gs_vert_itemsize_3);
795 
796    /* R_028B90_VGT_GS_INSTANCE_CNT */
797    radeon_opt_set_context_reg(sctx, R_028B90_VGT_GS_INSTANCE_CNT, SI_TRACKED_VGT_GS_INSTANCE_CNT,
798                               shader->ctx_reg.gs.vgt_gs_instance_cnt);
799 
800    if (sctx->chip_class >= GFX9) {
801       /* R_028A44_VGT_GS_ONCHIP_CNTL */
802       radeon_opt_set_context_reg(sctx, R_028A44_VGT_GS_ONCHIP_CNTL, SI_TRACKED_VGT_GS_ONCHIP_CNTL,
803                                  shader->ctx_reg.gs.vgt_gs_onchip_cntl);
804       /* R_028A94_VGT_GS_MAX_PRIMS_PER_SUBGROUP */
805       radeon_opt_set_context_reg(sctx, R_028A94_VGT_GS_MAX_PRIMS_PER_SUBGROUP,
806                                  SI_TRACKED_VGT_GS_MAX_PRIMS_PER_SUBGROUP,
807                                  shader->ctx_reg.gs.vgt_gs_max_prims_per_subgroup);
808       /* R_028AAC_VGT_ESGS_RING_ITEMSIZE */
809       radeon_opt_set_context_reg(sctx, R_028AAC_VGT_ESGS_RING_ITEMSIZE,
810                                  SI_TRACKED_VGT_ESGS_RING_ITEMSIZE,
811                                  shader->ctx_reg.gs.vgt_esgs_ring_itemsize);
812 
813       if (shader->key.part.gs.es->info.stage == MESA_SHADER_TESS_EVAL)
814          radeon_opt_set_context_reg(sctx, R_028B6C_VGT_TF_PARAM, SI_TRACKED_VGT_TF_PARAM,
815                                     shader->vgt_tf_param);
816       if (shader->vgt_vertex_reuse_block_cntl)
817          radeon_opt_set_context_reg(sctx, R_028C58_VGT_VERTEX_REUSE_BLOCK_CNTL,
818                                     SI_TRACKED_VGT_VERTEX_REUSE_BLOCK_CNTL,
819                                     shader->vgt_vertex_reuse_block_cntl);
820    }
821    radeon_end_update_context_roll(sctx);
822 
823    /* These don't cause any context rolls. */
824    radeon_begin_again(&sctx->gfx_cs);
825    if (sctx->chip_class >= GFX7) {
826       radeon_opt_set_sh_reg(sctx, R_00B21C_SPI_SHADER_PGM_RSRC3_GS,
827                             SI_TRACKED_SPI_SHADER_PGM_RSRC3_GS,
828                             shader->ctx_reg.gs.spi_shader_pgm_rsrc3_gs);
829    }
830    if (sctx->chip_class >= GFX10) {
831       radeon_opt_set_sh_reg(sctx, R_00B204_SPI_SHADER_PGM_RSRC4_GS,
832                             SI_TRACKED_SPI_SHADER_PGM_RSRC4_GS,
833                             shader->ctx_reg.gs.spi_shader_pgm_rsrc4_gs);
834    }
835    radeon_end();
836 }
837 
si_shader_gs(struct si_screen * sscreen,struct si_shader * shader)838 static void si_shader_gs(struct si_screen *sscreen, struct si_shader *shader)
839 {
840    struct si_shader_selector *sel = shader->selector;
841    const ubyte *num_components = sel->info.num_stream_output_components;
842    unsigned gs_num_invocations = sel->info.base.gs.invocations;
843    struct si_pm4_state *pm4;
844    uint64_t va;
845    unsigned max_stream = util_last_bit(sel->info.base.gs.active_stream_mask);
846    unsigned offset;
847 
848    pm4 = si_get_shader_pm4_state(shader);
849    if (!pm4)
850       return;
851 
852    pm4->atom.emit = si_emit_shader_gs;
853 
854    offset = num_components[0] * sel->info.base.gs.vertices_out;
855    shader->ctx_reg.gs.vgt_gsvs_ring_offset_1 = offset;
856 
857    if (max_stream >= 2)
858       offset += num_components[1] * sel->info.base.gs.vertices_out;
859    shader->ctx_reg.gs.vgt_gsvs_ring_offset_2 = offset;
860 
861    if (max_stream >= 3)
862       offset += num_components[2] * sel->info.base.gs.vertices_out;
863    shader->ctx_reg.gs.vgt_gsvs_ring_offset_3 = offset;
864 
865    if (max_stream >= 4)
866       offset += num_components[3] * sel->info.base.gs.vertices_out;
867    shader->ctx_reg.gs.vgt_gsvs_ring_itemsize = offset;
868 
869    /* The GSVS_RING_ITEMSIZE register takes 15 bits */
870    assert(offset < (1 << 15));
871 
872    shader->ctx_reg.gs.vgt_gs_max_vert_out = sel->info.base.gs.vertices_out;
873 
874    shader->ctx_reg.gs.vgt_gs_vert_itemsize = num_components[0];
875    shader->ctx_reg.gs.vgt_gs_vert_itemsize_1 = (max_stream >= 2) ? num_components[1] : 0;
876    shader->ctx_reg.gs.vgt_gs_vert_itemsize_2 = (max_stream >= 3) ? num_components[2] : 0;
877    shader->ctx_reg.gs.vgt_gs_vert_itemsize_3 = (max_stream >= 4) ? num_components[3] : 0;
878 
879    shader->ctx_reg.gs.vgt_gs_instance_cnt =
880       S_028B90_CNT(MIN2(gs_num_invocations, 127)) | S_028B90_ENABLE(gs_num_invocations > 0);
881 
882    /* Copy over fields from the GS copy shader to make them easily accessible from GS. */
883    shader->pa_cl_vs_out_cntl = sel->gs_copy_shader->pa_cl_vs_out_cntl;
884 
885    va = shader->bo->gpu_address;
886 
887    if (sscreen->info.chip_class >= GFX9) {
888       unsigned input_prim = sel->info.base.gs.input_primitive;
889       gl_shader_stage es_stage = shader->key.part.gs.es->info.stage;
890       unsigned es_vgpr_comp_cnt, gs_vgpr_comp_cnt;
891 
892       if (es_stage == MESA_SHADER_VERTEX) {
893          es_vgpr_comp_cnt = si_get_vs_vgpr_comp_cnt(sscreen, shader, false);
894       } else if (es_stage == MESA_SHADER_TESS_EVAL)
895          es_vgpr_comp_cnt = shader->key.part.gs.es->info.uses_primid ? 3 : 2;
896       else
897          unreachable("invalid shader selector type");
898 
899       /* If offsets 4, 5 are used, GS_VGPR_COMP_CNT is ignored and
900        * VGPR[0:4] are always loaded.
901        */
902       if (sel->info.uses_invocationid)
903          gs_vgpr_comp_cnt = 3; /* VGPR3 contains InvocationID. */
904       else if (sel->info.uses_primid)
905          gs_vgpr_comp_cnt = 2; /* VGPR2 contains PrimitiveID. */
906       else if (input_prim >= PIPE_PRIM_TRIANGLES)
907          gs_vgpr_comp_cnt = 1; /* VGPR1 contains offsets 2, 3 */
908       else
909          gs_vgpr_comp_cnt = 0; /* VGPR0 contains offsets 0, 1 */
910 
911       unsigned num_user_sgprs;
912       if (es_stage == MESA_SHADER_VERTEX)
913          num_user_sgprs = si_get_num_vs_user_sgprs(shader, GFX9_VSGS_NUM_USER_SGPR);
914       else
915          num_user_sgprs = GFX9_TESGS_NUM_USER_SGPR;
916 
917       if (sscreen->info.chip_class >= GFX10) {
918          si_pm4_set_reg(pm4, R_00B320_SPI_SHADER_PGM_LO_ES, va >> 8);
919       } else {
920          si_pm4_set_reg(pm4, R_00B210_SPI_SHADER_PGM_LO_ES, va >> 8);
921       }
922 
923       uint32_t rsrc1 = S_00B228_VGPRS((shader->config.num_vgprs - 1) / 4) | S_00B228_DX10_CLAMP(1) |
924                        S_00B228_MEM_ORDERED(si_shader_mem_ordered(shader)) |
925                        S_00B228_WGP_MODE(sscreen->info.chip_class >= GFX10) |
926                        S_00B228_FLOAT_MODE(shader->config.float_mode) |
927                        S_00B228_GS_VGPR_COMP_CNT(gs_vgpr_comp_cnt);
928       uint32_t rsrc2 = S_00B22C_USER_SGPR(num_user_sgprs) |
929                        S_00B22C_ES_VGPR_COMP_CNT(es_vgpr_comp_cnt) |
930                        S_00B22C_OC_LDS_EN(es_stage == MESA_SHADER_TESS_EVAL) |
931                        S_00B22C_LDS_SIZE(shader->config.lds_size) |
932                        S_00B22C_SCRATCH_EN(shader->config.scratch_bytes_per_wave > 0);
933 
934       if (sscreen->info.chip_class >= GFX10) {
935          rsrc2 |= S_00B22C_USER_SGPR_MSB_GFX10(num_user_sgprs >> 5);
936       } else {
937          rsrc1 |= S_00B228_SGPRS((shader->config.num_sgprs - 1) / 8);
938          rsrc2 |= S_00B22C_USER_SGPR_MSB_GFX9(num_user_sgprs >> 5);
939       }
940 
941       si_pm4_set_reg(pm4, R_00B228_SPI_SHADER_PGM_RSRC1_GS, rsrc1);
942       si_pm4_set_reg(pm4, R_00B22C_SPI_SHADER_PGM_RSRC2_GS, rsrc2);
943 
944       shader->ctx_reg.gs.spi_shader_pgm_rsrc3_gs = S_00B21C_CU_EN(0xffff) |
945                                                    S_00B21C_WAVE_LIMIT(0x3F);
946       shader->ctx_reg.gs.spi_shader_pgm_rsrc4_gs =
947          S_00B204_CU_EN(0xffff) | S_00B204_SPI_SHADER_LATE_ALLOC_GS_GFX10(0);
948 
949       shader->ctx_reg.gs.vgt_gs_onchip_cntl =
950          S_028A44_ES_VERTS_PER_SUBGRP(shader->gs_info.es_verts_per_subgroup) |
951          S_028A44_GS_PRIMS_PER_SUBGRP(shader->gs_info.gs_prims_per_subgroup) |
952          S_028A44_GS_INST_PRIMS_IN_SUBGRP(shader->gs_info.gs_inst_prims_in_subgroup);
953       shader->ctx_reg.gs.vgt_gs_max_prims_per_subgroup =
954          S_028A94_MAX_PRIMS_PER_SUBGROUP(shader->gs_info.max_prims_per_subgroup);
955       shader->ctx_reg.gs.vgt_esgs_ring_itemsize = shader->key.part.gs.es->esgs_itemsize / 4;
956 
957       if (es_stage == MESA_SHADER_TESS_EVAL)
958          si_set_tesseval_regs(sscreen, shader->key.part.gs.es, shader);
959 
960       polaris_set_vgt_vertex_reuse(sscreen, shader->key.part.gs.es, shader);
961    } else {
962       shader->ctx_reg.gs.spi_shader_pgm_rsrc3_gs = S_00B21C_CU_EN(0xffff) |
963                                                    S_00B21C_WAVE_LIMIT(0x3F);
964 
965       si_pm4_set_reg(pm4, R_00B220_SPI_SHADER_PGM_LO_GS, va >> 8);
966       si_pm4_set_reg(pm4, R_00B224_SPI_SHADER_PGM_HI_GS,
967                      S_00B224_MEM_BASE(sscreen->info.address32_hi >> 8));
968 
969       si_pm4_set_reg(pm4, R_00B228_SPI_SHADER_PGM_RSRC1_GS,
970                      S_00B228_VGPRS((shader->config.num_vgprs - 1) / 4) |
971                         S_00B228_SGPRS((shader->config.num_sgprs - 1) / 8) |
972                         S_00B228_DX10_CLAMP(1) | S_00B228_FLOAT_MODE(shader->config.float_mode));
973       si_pm4_set_reg(pm4, R_00B22C_SPI_SHADER_PGM_RSRC2_GS,
974                      S_00B22C_USER_SGPR(GFX6_GS_NUM_USER_SGPR) |
975                         S_00B22C_SCRATCH_EN(shader->config.scratch_bytes_per_wave > 0));
976    }
977 }
978 
gfx10_is_ngg_passthrough(struct si_shader * shader)979 bool gfx10_is_ngg_passthrough(struct si_shader *shader)
980 {
981    struct si_shader_selector *sel = shader->selector;
982 
983    /* Never use NGG passthrough if culling is possible even when it's not used by this shader,
984     * so that we don't get context rolls when enabling and disabling NGG passthrough.
985     */
986    if (sel->screen->use_ngg_culling)
987       return false;
988 
989    /* The definition of NGG passthrough is:
990     * - user GS is turned off (no amplification, no GS instancing, and no culling)
991     * - VGT_ESGS_RING_ITEMSIZE is ignored (behaving as if it was equal to 1)
992     * - vertex indices are packed into 1 VGPR
993     * - Dimgrey and later chips can optionally skip the gs_alloc_req message
994     *
995     * NGG passthrough still allows the use of LDS.
996     */
997    return sel->info.stage != MESA_SHADER_GEOMETRY && !shader->key.opt.ngg_culling;
998 }
999 
1000 /* Common tail code for NGG primitive shaders. */
gfx10_emit_shader_ngg_tail(struct si_context * sctx,struct si_shader * shader)1001 static void gfx10_emit_shader_ngg_tail(struct si_context *sctx, struct si_shader *shader)
1002 {
1003    radeon_begin(&sctx->gfx_cs);
1004    radeon_opt_set_context_reg(sctx, R_0287FC_GE_MAX_OUTPUT_PER_SUBGROUP,
1005                               SI_TRACKED_GE_MAX_OUTPUT_PER_SUBGROUP,
1006                               shader->ctx_reg.ngg.ge_max_output_per_subgroup);
1007    radeon_opt_set_context_reg(sctx, R_028B4C_GE_NGG_SUBGRP_CNTL, SI_TRACKED_GE_NGG_SUBGRP_CNTL,
1008                               shader->ctx_reg.ngg.ge_ngg_subgrp_cntl);
1009    radeon_opt_set_context_reg(sctx, R_028A84_VGT_PRIMITIVEID_EN, SI_TRACKED_VGT_PRIMITIVEID_EN,
1010                               shader->ctx_reg.ngg.vgt_primitiveid_en);
1011    radeon_opt_set_context_reg(sctx, R_028A44_VGT_GS_ONCHIP_CNTL, SI_TRACKED_VGT_GS_ONCHIP_CNTL,
1012                               shader->ctx_reg.ngg.vgt_gs_onchip_cntl);
1013    radeon_opt_set_context_reg(sctx, R_028B90_VGT_GS_INSTANCE_CNT, SI_TRACKED_VGT_GS_INSTANCE_CNT,
1014                               shader->ctx_reg.ngg.vgt_gs_instance_cnt);
1015    radeon_opt_set_context_reg(sctx, R_028AAC_VGT_ESGS_RING_ITEMSIZE,
1016                               SI_TRACKED_VGT_ESGS_RING_ITEMSIZE,
1017                               shader->ctx_reg.ngg.vgt_esgs_ring_itemsize);
1018    radeon_opt_set_context_reg(sctx, R_0286C4_SPI_VS_OUT_CONFIG, SI_TRACKED_SPI_VS_OUT_CONFIG,
1019                               shader->ctx_reg.ngg.spi_vs_out_config);
1020    radeon_opt_set_context_reg2(
1021       sctx, R_028708_SPI_SHADER_IDX_FORMAT, SI_TRACKED_SPI_SHADER_IDX_FORMAT,
1022       shader->ctx_reg.ngg.spi_shader_idx_format, shader->ctx_reg.ngg.spi_shader_pos_format);
1023    radeon_opt_set_context_reg(sctx, R_028818_PA_CL_VTE_CNTL, SI_TRACKED_PA_CL_VTE_CNTL,
1024                               shader->ctx_reg.ngg.pa_cl_vte_cntl);
1025    radeon_opt_set_context_reg(sctx, R_028838_PA_CL_NGG_CNTL, SI_TRACKED_PA_CL_NGG_CNTL,
1026                               shader->ctx_reg.ngg.pa_cl_ngg_cntl);
1027 
1028    radeon_end_update_context_roll(sctx);
1029 
1030    /* These don't cause a context roll. */
1031    radeon_begin_again(&sctx->gfx_cs);
1032    radeon_opt_set_uconfig_reg(sctx, R_030980_GE_PC_ALLOC, SI_TRACKED_GE_PC_ALLOC,
1033                               shader->ctx_reg.ngg.ge_pc_alloc);
1034    radeon_opt_set_sh_reg(sctx, R_00B21C_SPI_SHADER_PGM_RSRC3_GS,
1035                          SI_TRACKED_SPI_SHADER_PGM_RSRC3_GS,
1036                          shader->ctx_reg.ngg.spi_shader_pgm_rsrc3_gs);
1037    radeon_opt_set_sh_reg(sctx, R_00B204_SPI_SHADER_PGM_RSRC4_GS,
1038                          SI_TRACKED_SPI_SHADER_PGM_RSRC4_GS,
1039                          shader->ctx_reg.ngg.spi_shader_pgm_rsrc4_gs);
1040    radeon_end();
1041 }
1042 
gfx10_emit_shader_ngg_notess_nogs(struct si_context * sctx)1043 static void gfx10_emit_shader_ngg_notess_nogs(struct si_context *sctx)
1044 {
1045    struct si_shader *shader = sctx->queued.named.gs;
1046    if (!shader)
1047       return;
1048 
1049    gfx10_emit_shader_ngg_tail(sctx, shader);
1050 }
1051 
gfx10_emit_shader_ngg_tess_nogs(struct si_context * sctx)1052 static void gfx10_emit_shader_ngg_tess_nogs(struct si_context *sctx)
1053 {
1054    struct si_shader *shader = sctx->queued.named.gs;
1055    if (!shader)
1056       return;
1057 
1058    radeon_begin(&sctx->gfx_cs);
1059    radeon_opt_set_context_reg(sctx, R_028B6C_VGT_TF_PARAM, SI_TRACKED_VGT_TF_PARAM,
1060                               shader->vgt_tf_param);
1061    radeon_end_update_context_roll(sctx);
1062 
1063    gfx10_emit_shader_ngg_tail(sctx, shader);
1064 }
1065 
gfx10_emit_shader_ngg_notess_gs(struct si_context * sctx)1066 static void gfx10_emit_shader_ngg_notess_gs(struct si_context *sctx)
1067 {
1068    struct si_shader *shader = sctx->queued.named.gs;
1069    if (!shader)
1070       return;
1071 
1072    radeon_begin(&sctx->gfx_cs);
1073    radeon_opt_set_context_reg(sctx, R_028B38_VGT_GS_MAX_VERT_OUT, SI_TRACKED_VGT_GS_MAX_VERT_OUT,
1074                               shader->ctx_reg.ngg.vgt_gs_max_vert_out);
1075    radeon_end_update_context_roll(sctx);
1076 
1077    gfx10_emit_shader_ngg_tail(sctx, shader);
1078 }
1079 
gfx10_emit_shader_ngg_tess_gs(struct si_context * sctx)1080 static void gfx10_emit_shader_ngg_tess_gs(struct si_context *sctx)
1081 {
1082    struct si_shader *shader = sctx->queued.named.gs;
1083 
1084    if (!shader)
1085       return;
1086 
1087    radeon_begin(&sctx->gfx_cs);
1088    radeon_opt_set_context_reg(sctx, R_028B38_VGT_GS_MAX_VERT_OUT, SI_TRACKED_VGT_GS_MAX_VERT_OUT,
1089                               shader->ctx_reg.ngg.vgt_gs_max_vert_out);
1090    radeon_opt_set_context_reg(sctx, R_028B6C_VGT_TF_PARAM, SI_TRACKED_VGT_TF_PARAM,
1091                               shader->vgt_tf_param);
1092    radeon_end_update_context_roll(sctx);
1093 
1094    gfx10_emit_shader_ngg_tail(sctx, shader);
1095 }
1096 
si_get_input_prim(const struct si_shader_selector * gs,const struct si_shader_key * key)1097 unsigned si_get_input_prim(const struct si_shader_selector *gs, const struct si_shader_key *key)
1098 {
1099    if (gs->info.stage == MESA_SHADER_GEOMETRY)
1100       return gs->info.base.gs.input_primitive;
1101 
1102    if (gs->info.stage == MESA_SHADER_TESS_EVAL) {
1103       if (gs->info.base.tess.point_mode)
1104          return PIPE_PRIM_POINTS;
1105       if (gs->info.base.tess.primitive_mode == GL_LINES)
1106          return PIPE_PRIM_LINES;
1107       return PIPE_PRIM_TRIANGLES;
1108    }
1109 
1110    if (key->opt.ngg_culling & SI_NGG_CULL_LINES)
1111       return PIPE_PRIM_LINES;
1112 
1113    return PIPE_PRIM_TRIANGLES; /* worst case for all callers */
1114 }
1115 
si_get_vs_out_cntl(const struct si_shader_selector * sel,const struct si_shader * shader,bool ngg)1116 static unsigned si_get_vs_out_cntl(const struct si_shader_selector *sel,
1117                                    const struct si_shader *shader, bool ngg)
1118 {
1119    /* Clip distances can be killed, but cull distances can't. */
1120    unsigned clipcull_mask = (sel->clipdist_mask & ~shader->key.opt.kill_clip_distances) |
1121                             sel->culldist_mask;
1122    bool writes_psize = sel->info.writes_psize && !shader->key.opt.kill_pointsize;
1123    bool misc_vec_ena = writes_psize || (sel->info.writes_edgeflag && !ngg) ||
1124                        sel->screen->options.vrs2x2 ||
1125                        sel->info.writes_layer || sel->info.writes_viewport_index;
1126 
1127    return S_02881C_VS_OUT_CCDIST0_VEC_ENA((clipcull_mask & 0x0F) != 0) |
1128           S_02881C_VS_OUT_CCDIST1_VEC_ENA((clipcull_mask & 0xF0) != 0) |
1129           S_02881C_USE_VTX_POINT_SIZE(writes_psize) |
1130           S_02881C_USE_VTX_EDGE_FLAG(sel->info.writes_edgeflag && !ngg) |
1131           S_02881C_USE_VTX_VRS_RATE(sel->screen->options.vrs2x2) |
1132           S_02881C_USE_VTX_RENDER_TARGET_INDX(sel->info.writes_layer) |
1133           S_02881C_USE_VTX_VIEWPORT_INDX(sel->info.writes_viewport_index) |
1134           S_02881C_VS_OUT_MISC_VEC_ENA(misc_vec_ena) |
1135           S_02881C_VS_OUT_MISC_SIDE_BUS_ENA(misc_vec_ena);
1136 }
1137 
1138 /**
1139  * Prepare the PM4 image for \p shader, which will run as a merged ESGS shader
1140  * in NGG mode.
1141  */
gfx10_shader_ngg(struct si_screen * sscreen,struct si_shader * shader)1142 static void gfx10_shader_ngg(struct si_screen *sscreen, struct si_shader *shader)
1143 {
1144    const struct si_shader_selector *gs_sel = shader->selector;
1145    const struct si_shader_info *gs_info = &gs_sel->info;
1146    const gl_shader_stage gs_stage = shader->selector->info.stage;
1147    const struct si_shader_selector *es_sel =
1148       shader->previous_stage_sel ? shader->previous_stage_sel : shader->selector;
1149    const struct si_shader_info *es_info = &es_sel->info;
1150    const gl_shader_stage es_stage = es_sel->info.stage;
1151    unsigned num_user_sgprs;
1152    unsigned nparams, es_vgpr_comp_cnt, gs_vgpr_comp_cnt;
1153    uint64_t va;
1154    bool window_space = gs_info->stage == MESA_SHADER_VERTEX ?
1155                           gs_info->base.vs.window_space_position : 0;
1156    bool es_enable_prim_id = shader->key.mono.u.vs_export_prim_id || es_info->uses_primid;
1157    unsigned gs_num_invocations = MAX2(gs_sel->info.base.gs.invocations, 1);
1158    unsigned input_prim = si_get_input_prim(gs_sel, &shader->key);
1159    bool break_wave_at_eoi = false;
1160    struct si_pm4_state *pm4 = si_get_shader_pm4_state(shader);
1161    if (!pm4)
1162       return;
1163 
1164    if (es_stage == MESA_SHADER_TESS_EVAL) {
1165       pm4->atom.emit = gs_stage == MESA_SHADER_GEOMETRY ? gfx10_emit_shader_ngg_tess_gs
1166                                                        : gfx10_emit_shader_ngg_tess_nogs;
1167    } else {
1168       pm4->atom.emit = gs_stage == MESA_SHADER_GEOMETRY ? gfx10_emit_shader_ngg_notess_gs
1169                                                        : gfx10_emit_shader_ngg_notess_nogs;
1170    }
1171 
1172    va = shader->bo->gpu_address;
1173 
1174    if (es_stage == MESA_SHADER_VERTEX) {
1175       es_vgpr_comp_cnt = si_get_vs_vgpr_comp_cnt(sscreen, shader, false);
1176 
1177       if (es_info->base.vs.blit_sgprs_amd) {
1178          num_user_sgprs =
1179             SI_SGPR_VS_BLIT_DATA + es_info->base.vs.blit_sgprs_amd;
1180       } else {
1181          num_user_sgprs = si_get_num_vs_user_sgprs(shader, GFX9_VSGS_NUM_USER_SGPR);
1182       }
1183    } else {
1184       assert(es_stage == MESA_SHADER_TESS_EVAL);
1185       es_vgpr_comp_cnt = es_enable_prim_id ? 3 : 2;
1186       num_user_sgprs = GFX9_TESGS_NUM_USER_SGPR;
1187 
1188       if (es_enable_prim_id || gs_info->uses_primid)
1189          break_wave_at_eoi = true;
1190    }
1191 
1192    /* If offsets 4, 5 are used, GS_VGPR_COMP_CNT is ignored and
1193     * VGPR[0:4] are always loaded.
1194     *
1195     * Vertex shaders always need to load VGPR3, because they need to
1196     * pass edge flags for decomposed primitives (such as quads) to the PA
1197     * for the GL_LINE polygon mode to skip rendering lines on inner edges.
1198     */
1199    if (gs_info->uses_invocationid ||
1200        (gfx10_edgeflags_have_effect(shader) && !gfx10_is_ngg_passthrough(shader)))
1201       gs_vgpr_comp_cnt = 3; /* VGPR3 contains InvocationID, edge flags. */
1202    else if ((gs_stage == MESA_SHADER_GEOMETRY && gs_info->uses_primid) ||
1203             (gs_stage == MESA_SHADER_VERTEX && shader->key.mono.u.vs_export_prim_id))
1204       gs_vgpr_comp_cnt = 2; /* VGPR2 contains PrimitiveID. */
1205    else if (input_prim >= PIPE_PRIM_TRIANGLES && !gfx10_is_ngg_passthrough(shader))
1206       gs_vgpr_comp_cnt = 1; /* VGPR1 contains offsets 2, 3 */
1207    else
1208       gs_vgpr_comp_cnt = 0; /* VGPR0 contains offsets 0, 1 */
1209 
1210    unsigned wave_size = si_get_shader_wave_size(shader);
1211    unsigned late_alloc_wave64, cu_mask;
1212 
1213    ac_compute_late_alloc(&sscreen->info, true, shader->key.opt.ngg_culling,
1214                          shader->config.scratch_bytes_per_wave > 0,
1215                          &late_alloc_wave64, &cu_mask);
1216 
1217    si_pm4_set_reg(pm4, R_00B320_SPI_SHADER_PGM_LO_ES, va >> 8);
1218    si_pm4_set_reg(
1219       pm4, R_00B228_SPI_SHADER_PGM_RSRC1_GS,
1220       S_00B228_VGPRS((shader->config.num_vgprs - 1) / (wave_size == 32 ? 8 : 4)) |
1221          S_00B228_FLOAT_MODE(shader->config.float_mode) | S_00B228_DX10_CLAMP(1) |
1222          S_00B228_MEM_ORDERED(si_shader_mem_ordered(shader)) |
1223          /* Disable the WGP mode on gfx10.3 because it can hang. (it happened on VanGogh)
1224           * Let's disable it on all chips that disable exactly 1 CU per SA for GS. */
1225          S_00B228_WGP_MODE(sscreen->info.chip_class == GFX10) |
1226          S_00B228_GS_VGPR_COMP_CNT(gs_vgpr_comp_cnt));
1227    si_pm4_set_reg(pm4, R_00B22C_SPI_SHADER_PGM_RSRC2_GS,
1228                   S_00B22C_SCRATCH_EN(shader->config.scratch_bytes_per_wave > 0) |
1229                      S_00B22C_USER_SGPR(num_user_sgprs) |
1230                      S_00B22C_ES_VGPR_COMP_CNT(es_vgpr_comp_cnt) |
1231                      S_00B22C_USER_SGPR_MSB_GFX10(num_user_sgprs >> 5) |
1232                      S_00B22C_OC_LDS_EN(es_stage == MESA_SHADER_TESS_EVAL) |
1233                      S_00B22C_LDS_SIZE(shader->config.lds_size));
1234 
1235    shader->ctx_reg.ngg.spi_shader_pgm_rsrc3_gs = S_00B21C_CU_EN(cu_mask) |
1236                                                  S_00B21C_WAVE_LIMIT(0x3F);
1237    shader->ctx_reg.ngg.spi_shader_pgm_rsrc4_gs =
1238       S_00B204_CU_EN(0xffff) | S_00B204_SPI_SHADER_LATE_ALLOC_GS_GFX10(late_alloc_wave64);
1239 
1240    nparams = MAX2(shader->info.nr_param_exports, 1);
1241    shader->ctx_reg.ngg.spi_vs_out_config =
1242       S_0286C4_VS_EXPORT_COUNT(nparams - 1) |
1243       S_0286C4_NO_PC_EXPORT(shader->info.nr_param_exports == 0);
1244 
1245    shader->ctx_reg.ngg.spi_shader_idx_format =
1246       S_028708_IDX0_EXPORT_FORMAT(V_028708_SPI_SHADER_1COMP);
1247    shader->ctx_reg.ngg.spi_shader_pos_format =
1248       S_02870C_POS0_EXPORT_FORMAT(V_02870C_SPI_SHADER_4COMP) |
1249       S_02870C_POS1_EXPORT_FORMAT(shader->info.nr_pos_exports > 1 ? V_02870C_SPI_SHADER_4COMP
1250                                                                   : V_02870C_SPI_SHADER_NONE) |
1251       S_02870C_POS2_EXPORT_FORMAT(shader->info.nr_pos_exports > 2 ? V_02870C_SPI_SHADER_4COMP
1252                                                                   : V_02870C_SPI_SHADER_NONE) |
1253       S_02870C_POS3_EXPORT_FORMAT(shader->info.nr_pos_exports > 3 ? V_02870C_SPI_SHADER_4COMP
1254                                                                   : V_02870C_SPI_SHADER_NONE);
1255 
1256    shader->ctx_reg.ngg.vgt_primitiveid_en =
1257       S_028A84_PRIMITIVEID_EN(es_enable_prim_id) |
1258       S_028A84_NGG_DISABLE_PROVOK_REUSE(shader->key.mono.u.vs_export_prim_id ||
1259                                         gs_sel->info.writes_primid);
1260 
1261    if (gs_stage == MESA_SHADER_GEOMETRY) {
1262       shader->ctx_reg.ngg.vgt_esgs_ring_itemsize = es_sel->esgs_itemsize / 4;
1263       shader->ctx_reg.ngg.vgt_gs_max_vert_out = gs_sel->info.base.gs.vertices_out;
1264    } else {
1265       shader->ctx_reg.ngg.vgt_esgs_ring_itemsize = 1;
1266    }
1267 
1268    if (es_stage == MESA_SHADER_TESS_EVAL)
1269       si_set_tesseval_regs(sscreen, es_sel, shader);
1270 
1271    shader->ctx_reg.ngg.vgt_gs_onchip_cntl =
1272       S_028A44_ES_VERTS_PER_SUBGRP(shader->ngg.hw_max_esverts) |
1273       S_028A44_GS_PRIMS_PER_SUBGRP(shader->ngg.max_gsprims) |
1274       S_028A44_GS_INST_PRIMS_IN_SUBGRP(shader->ngg.max_gsprims * gs_num_invocations);
1275    shader->ctx_reg.ngg.ge_max_output_per_subgroup =
1276       S_0287FC_MAX_VERTS_PER_SUBGROUP(shader->ngg.max_out_verts);
1277    shader->ctx_reg.ngg.ge_ngg_subgrp_cntl = S_028B4C_PRIM_AMP_FACTOR(shader->ngg.prim_amp_factor) |
1278                                             S_028B4C_THDS_PER_SUBGRP(0); /* for fast launch */
1279    shader->ctx_reg.ngg.vgt_gs_instance_cnt =
1280       S_028B90_CNT(gs_num_invocations) | S_028B90_ENABLE(gs_num_invocations > 1) |
1281       S_028B90_EN_MAX_VERT_OUT_PER_GS_INSTANCE(shader->ngg.max_vert_out_per_gs_instance);
1282 
1283    /* Output hw-generated edge flags if needed and pass them via the prim
1284     * export to prevent drawing lines on internal edges of decomposed
1285     * primitives (such as quads) with polygon mode = lines.
1286     */
1287    shader->ctx_reg.ngg.pa_cl_ngg_cntl =
1288       S_028838_INDEX_BUF_EDGE_FLAG_ENA(gfx10_edgeflags_have_effect(shader)) |
1289       /* Reuse for NGG. */
1290       S_028838_VERTEX_REUSE_DEPTH(sscreen->info.chip_class >= GFX10_3 ? 30 : 0);
1291    shader->pa_cl_vs_out_cntl = si_get_vs_out_cntl(shader->selector, shader, true);
1292 
1293    /* Oversubscribe PC. This improves performance when there are too many varyings. */
1294    unsigned oversub_pc_factor = 1;
1295 
1296    if (shader->key.opt.ngg_culling) {
1297       /* Be more aggressive with NGG culling. */
1298       if (shader->info.nr_param_exports > 4)
1299          oversub_pc_factor = 4;
1300       else if (shader->info.nr_param_exports > 2)
1301          oversub_pc_factor = 3;
1302       else
1303          oversub_pc_factor = 2;
1304    }
1305 
1306    unsigned oversub_pc_lines =
1307       late_alloc_wave64 ? (sscreen->info.pc_lines / 4) * oversub_pc_factor : 0;
1308    shader->ctx_reg.ngg.ge_pc_alloc = S_030980_OVERSUB_EN(oversub_pc_lines > 0) |
1309                                      S_030980_NUM_PC_LINES(oversub_pc_lines - 1);
1310 
1311    shader->ge_cntl = S_03096C_PRIM_GRP_SIZE(shader->ngg.max_gsprims) |
1312                      S_03096C_VERT_GRP_SIZE(shader->ngg.hw_max_esverts) |
1313                      S_03096C_BREAK_WAVE_AT_EOI(break_wave_at_eoi);
1314 
1315    /* On gfx10, the GE only checks against the maximum number of ES verts after
1316     * allocating a full GS primitive. So we need to ensure that whenever
1317     * this check passes, there is enough space for a full primitive without
1318     * vertex reuse. VERT_GRP_SIZE=256 doesn't need this. We should always get 256
1319     * if we have enough LDS.
1320     *
1321     * Tessellation is unaffected because it always sets GE_CNTL.VERT_GRP_SIZE = 0.
1322     */
1323    if ((sscreen->info.chip_class == GFX10) &&
1324        (es_stage == MESA_SHADER_VERTEX || gs_stage == MESA_SHADER_VERTEX) && /* = no tess */
1325        shader->ngg.hw_max_esverts != 256 &&
1326        shader->ngg.hw_max_esverts > 5) {
1327       /* This could be based on the input primitive type. 5 is the worst case
1328        * for primitive types with adjacency.
1329        */
1330       shader->ge_cntl &= C_03096C_VERT_GRP_SIZE;
1331       shader->ge_cntl |= S_03096C_VERT_GRP_SIZE(shader->ngg.hw_max_esverts - 5);
1332    }
1333 
1334    if (window_space) {
1335       shader->ctx_reg.ngg.pa_cl_vte_cntl = S_028818_VTX_XY_FMT(1) | S_028818_VTX_Z_FMT(1);
1336    } else {
1337       shader->ctx_reg.ngg.pa_cl_vte_cntl =
1338          S_028818_VTX_W0_FMT(1) | S_028818_VPORT_X_SCALE_ENA(1) | S_028818_VPORT_X_OFFSET_ENA(1) |
1339          S_028818_VPORT_Y_SCALE_ENA(1) | S_028818_VPORT_Y_OFFSET_ENA(1) |
1340          S_028818_VPORT_Z_SCALE_ENA(1) | S_028818_VPORT_Z_OFFSET_ENA(1);
1341    }
1342 
1343    shader->ctx_reg.ngg.vgt_stages.u.ngg = 1;
1344    shader->ctx_reg.ngg.vgt_stages.u.streamout = gs_sel->so.num_outputs;
1345    shader->ctx_reg.ngg.vgt_stages.u.ngg_passthrough = gfx10_is_ngg_passthrough(shader);
1346 }
1347 
si_emit_shader_vs(struct si_context * sctx)1348 static void si_emit_shader_vs(struct si_context *sctx)
1349 {
1350    struct si_shader *shader = sctx->queued.named.vs;
1351    if (!shader)
1352       return;
1353 
1354    radeon_begin(&sctx->gfx_cs);
1355    radeon_opt_set_context_reg(sctx, R_028A40_VGT_GS_MODE, SI_TRACKED_VGT_GS_MODE,
1356                               shader->ctx_reg.vs.vgt_gs_mode);
1357    radeon_opt_set_context_reg(sctx, R_028A84_VGT_PRIMITIVEID_EN, SI_TRACKED_VGT_PRIMITIVEID_EN,
1358                               shader->ctx_reg.vs.vgt_primitiveid_en);
1359 
1360    if (sctx->chip_class <= GFX8) {
1361       radeon_opt_set_context_reg(sctx, R_028AB4_VGT_REUSE_OFF, SI_TRACKED_VGT_REUSE_OFF,
1362                                  shader->ctx_reg.vs.vgt_reuse_off);
1363    }
1364 
1365    radeon_opt_set_context_reg(sctx, R_0286C4_SPI_VS_OUT_CONFIG, SI_TRACKED_SPI_VS_OUT_CONFIG,
1366                               shader->ctx_reg.vs.spi_vs_out_config);
1367 
1368    radeon_opt_set_context_reg(sctx, R_02870C_SPI_SHADER_POS_FORMAT,
1369                               SI_TRACKED_SPI_SHADER_POS_FORMAT,
1370                               shader->ctx_reg.vs.spi_shader_pos_format);
1371 
1372    radeon_opt_set_context_reg(sctx, R_028818_PA_CL_VTE_CNTL, SI_TRACKED_PA_CL_VTE_CNTL,
1373                               shader->ctx_reg.vs.pa_cl_vte_cntl);
1374 
1375    if (shader->selector->info.stage == MESA_SHADER_TESS_EVAL)
1376       radeon_opt_set_context_reg(sctx, R_028B6C_VGT_TF_PARAM, SI_TRACKED_VGT_TF_PARAM,
1377                                  shader->vgt_tf_param);
1378 
1379    if (shader->vgt_vertex_reuse_block_cntl)
1380       radeon_opt_set_context_reg(sctx, R_028C58_VGT_VERTEX_REUSE_BLOCK_CNTL,
1381                                  SI_TRACKED_VGT_VERTEX_REUSE_BLOCK_CNTL,
1382                                  shader->vgt_vertex_reuse_block_cntl);
1383 
1384    /* Required programming for tessellation. (legacy pipeline only) */
1385    if (sctx->chip_class >= GFX10 && shader->selector->info.stage == MESA_SHADER_TESS_EVAL) {
1386       radeon_opt_set_context_reg(sctx, R_028A44_VGT_GS_ONCHIP_CNTL,
1387                                  SI_TRACKED_VGT_GS_ONCHIP_CNTL,
1388                                  S_028A44_ES_VERTS_PER_SUBGRP(250) |
1389                                  S_028A44_GS_PRIMS_PER_SUBGRP(126) |
1390                                  S_028A44_GS_INST_PRIMS_IN_SUBGRP(126));
1391    }
1392 
1393    radeon_end_update_context_roll(sctx);
1394 
1395    /* GE_PC_ALLOC is not a context register, so it doesn't cause a context roll. */
1396    if (sctx->chip_class >= GFX10) {
1397       radeon_begin_again(&sctx->gfx_cs);
1398       radeon_opt_set_uconfig_reg(sctx, R_030980_GE_PC_ALLOC, SI_TRACKED_GE_PC_ALLOC,
1399                                  shader->ctx_reg.vs.ge_pc_alloc);
1400       radeon_end();
1401    }
1402 }
1403 
1404 /**
1405  * Compute the state for \p shader, which will run as a vertex shader on the
1406  * hardware.
1407  *
1408  * If \p gs is non-NULL, it points to the geometry shader for which this shader
1409  * is the copy shader.
1410  */
si_shader_vs(struct si_screen * sscreen,struct si_shader * shader,struct si_shader_selector * gs)1411 static void si_shader_vs(struct si_screen *sscreen, struct si_shader *shader,
1412                          struct si_shader_selector *gs)
1413 {
1414    const struct si_shader_info *info = &shader->selector->info;
1415    struct si_pm4_state *pm4;
1416    unsigned num_user_sgprs, vgpr_comp_cnt;
1417    uint64_t va;
1418    unsigned nparams, oc_lds_en;
1419    bool window_space = info->stage == MESA_SHADER_VERTEX ?
1420                           info->base.vs.window_space_position : 0;
1421    bool enable_prim_id = shader->key.mono.u.vs_export_prim_id || info->uses_primid;
1422 
1423    pm4 = si_get_shader_pm4_state(shader);
1424    if (!pm4)
1425       return;
1426 
1427    pm4->atom.emit = si_emit_shader_vs;
1428 
1429    /* We always write VGT_GS_MODE in the VS state, because every switch
1430     * between different shader pipelines involving a different GS or no
1431     * GS at all involves a switch of the VS (different GS use different
1432     * copy shaders). On the other hand, when the API switches from a GS to
1433     * no GS and then back to the same GS used originally, the GS state is
1434     * not sent again.
1435     */
1436    if (!gs) {
1437       unsigned mode = V_028A40_GS_OFF;
1438 
1439       /* PrimID needs GS scenario A. */
1440       if (enable_prim_id)
1441          mode = V_028A40_GS_SCENARIO_A;
1442 
1443       shader->ctx_reg.vs.vgt_gs_mode = S_028A40_MODE(mode);
1444       shader->ctx_reg.vs.vgt_primitiveid_en = enable_prim_id;
1445    } else {
1446       shader->ctx_reg.vs.vgt_gs_mode =
1447          ac_vgt_gs_mode(gs->info.base.gs.vertices_out, sscreen->info.chip_class);
1448       shader->ctx_reg.vs.vgt_primitiveid_en = 0;
1449    }
1450 
1451    if (sscreen->info.chip_class <= GFX8) {
1452       /* Reuse needs to be set off if we write oViewport. */
1453       shader->ctx_reg.vs.vgt_reuse_off = S_028AB4_REUSE_OFF(info->writes_viewport_index);
1454    }
1455 
1456    va = shader->bo->gpu_address;
1457 
1458    if (gs) {
1459       vgpr_comp_cnt = 0; /* only VertexID is needed for GS-COPY. */
1460       num_user_sgprs = SI_GSCOPY_NUM_USER_SGPR;
1461    } else if (shader->selector->info.stage == MESA_SHADER_VERTEX) {
1462       vgpr_comp_cnt = si_get_vs_vgpr_comp_cnt(sscreen, shader, enable_prim_id);
1463 
1464       if (info->base.vs.blit_sgprs_amd) {
1465          num_user_sgprs = SI_SGPR_VS_BLIT_DATA + info->base.vs.blit_sgprs_amd;
1466       } else {
1467          num_user_sgprs = si_get_num_vs_user_sgprs(shader, SI_VS_NUM_USER_SGPR);
1468       }
1469    } else if (shader->selector->info.stage == MESA_SHADER_TESS_EVAL) {
1470       vgpr_comp_cnt = enable_prim_id ? 3 : 2;
1471       num_user_sgprs = SI_TES_NUM_USER_SGPR;
1472    } else
1473       unreachable("invalid shader selector type");
1474 
1475    /* VS is required to export at least one param. */
1476    nparams = MAX2(shader->info.nr_param_exports, 1);
1477    shader->ctx_reg.vs.spi_vs_out_config = S_0286C4_VS_EXPORT_COUNT(nparams - 1);
1478 
1479    if (sscreen->info.chip_class >= GFX10) {
1480       shader->ctx_reg.vs.spi_vs_out_config |=
1481          S_0286C4_NO_PC_EXPORT(shader->info.nr_param_exports == 0);
1482    }
1483 
1484    shader->ctx_reg.vs.spi_shader_pos_format =
1485       S_02870C_POS0_EXPORT_FORMAT(V_02870C_SPI_SHADER_4COMP) |
1486       S_02870C_POS1_EXPORT_FORMAT(shader->info.nr_pos_exports > 1 ? V_02870C_SPI_SHADER_4COMP
1487                                                                   : V_02870C_SPI_SHADER_NONE) |
1488       S_02870C_POS2_EXPORT_FORMAT(shader->info.nr_pos_exports > 2 ? V_02870C_SPI_SHADER_4COMP
1489                                                                   : V_02870C_SPI_SHADER_NONE) |
1490       S_02870C_POS3_EXPORT_FORMAT(shader->info.nr_pos_exports > 3 ? V_02870C_SPI_SHADER_4COMP
1491                                                                   : V_02870C_SPI_SHADER_NONE);
1492    unsigned late_alloc_wave64, cu_mask;
1493    ac_compute_late_alloc(&sscreen->info, false, false,
1494                          shader->config.scratch_bytes_per_wave > 0,
1495                          &late_alloc_wave64, &cu_mask);
1496 
1497    shader->ctx_reg.vs.ge_pc_alloc = S_030980_OVERSUB_EN(late_alloc_wave64 > 0) |
1498                                     S_030980_NUM_PC_LINES(sscreen->info.pc_lines / 4 - 1);
1499    shader->pa_cl_vs_out_cntl = si_get_vs_out_cntl(shader->selector, shader, false);
1500 
1501    oc_lds_en = shader->selector->info.stage == MESA_SHADER_TESS_EVAL ? 1 : 0;
1502 
1503    if (sscreen->info.chip_class >= GFX7) {
1504       si_pm4_set_reg(pm4, R_00B118_SPI_SHADER_PGM_RSRC3_VS,
1505                      S_00B118_CU_EN(cu_mask) | S_00B118_WAVE_LIMIT(0x3F));
1506       si_pm4_set_reg(pm4, R_00B11C_SPI_SHADER_LATE_ALLOC_VS, S_00B11C_LIMIT(late_alloc_wave64));
1507    }
1508 
1509    si_pm4_set_reg(pm4, R_00B120_SPI_SHADER_PGM_LO_VS, va >> 8);
1510    si_pm4_set_reg(pm4, R_00B124_SPI_SHADER_PGM_HI_VS,
1511                   S_00B124_MEM_BASE(sscreen->info.address32_hi >> 8));
1512 
1513    uint32_t rsrc1 =
1514       S_00B128_VGPRS((shader->config.num_vgprs - 1) / (sscreen->ge_wave_size == 32 ? 8 : 4)) |
1515       S_00B128_VGPR_COMP_CNT(vgpr_comp_cnt) | S_00B128_DX10_CLAMP(1) |
1516       S_00B128_MEM_ORDERED(si_shader_mem_ordered(shader)) |
1517       S_00B128_FLOAT_MODE(shader->config.float_mode);
1518    uint32_t rsrc2 = S_00B12C_USER_SGPR(num_user_sgprs) | S_00B12C_OC_LDS_EN(oc_lds_en) |
1519                     S_00B12C_SCRATCH_EN(shader->config.scratch_bytes_per_wave > 0);
1520 
1521    if (sscreen->info.chip_class >= GFX10)
1522       rsrc2 |= S_00B12C_USER_SGPR_MSB_GFX10(num_user_sgprs >> 5);
1523    else if (sscreen->info.chip_class == GFX9)
1524       rsrc2 |= S_00B12C_USER_SGPR_MSB_GFX9(num_user_sgprs >> 5);
1525 
1526    if (sscreen->info.chip_class <= GFX9)
1527       rsrc1 |= S_00B128_SGPRS((shader->config.num_sgprs - 1) / 8);
1528 
1529    if (!sscreen->use_ngg_streamout) {
1530       rsrc2 |= S_00B12C_SO_BASE0_EN(!!shader->selector->so.stride[0]) |
1531                S_00B12C_SO_BASE1_EN(!!shader->selector->so.stride[1]) |
1532                S_00B12C_SO_BASE2_EN(!!shader->selector->so.stride[2]) |
1533                S_00B12C_SO_BASE3_EN(!!shader->selector->so.stride[3]) |
1534                S_00B12C_SO_EN(!!shader->selector->so.num_outputs);
1535    }
1536 
1537    si_pm4_set_reg(pm4, R_00B128_SPI_SHADER_PGM_RSRC1_VS, rsrc1);
1538    si_pm4_set_reg(pm4, R_00B12C_SPI_SHADER_PGM_RSRC2_VS, rsrc2);
1539 
1540    if (window_space)
1541       shader->ctx_reg.vs.pa_cl_vte_cntl = S_028818_VTX_XY_FMT(1) | S_028818_VTX_Z_FMT(1);
1542    else
1543       shader->ctx_reg.vs.pa_cl_vte_cntl =
1544          S_028818_VTX_W0_FMT(1) | S_028818_VPORT_X_SCALE_ENA(1) | S_028818_VPORT_X_OFFSET_ENA(1) |
1545          S_028818_VPORT_Y_SCALE_ENA(1) | S_028818_VPORT_Y_OFFSET_ENA(1) |
1546          S_028818_VPORT_Z_SCALE_ENA(1) | S_028818_VPORT_Z_OFFSET_ENA(1);
1547 
1548    if (shader->selector->info.stage == MESA_SHADER_TESS_EVAL)
1549       si_set_tesseval_regs(sscreen, shader->selector, shader);
1550 
1551    polaris_set_vgt_vertex_reuse(sscreen, shader->selector, shader);
1552 }
1553 
si_get_ps_num_interp(struct si_shader * ps)1554 static unsigned si_get_ps_num_interp(struct si_shader *ps)
1555 {
1556    struct si_shader_info *info = &ps->selector->info;
1557    unsigned num_colors = !!(info->colors_read & 0x0f) + !!(info->colors_read & 0xf0);
1558    unsigned num_interp =
1559       ps->selector->info.num_inputs + (ps->key.part.ps.prolog.color_two_side ? num_colors : 0);
1560 
1561    assert(num_interp <= 32);
1562    return MIN2(num_interp, 32);
1563 }
1564 
si_get_spi_shader_col_format(struct si_shader * shader)1565 static unsigned si_get_spi_shader_col_format(struct si_shader *shader)
1566 {
1567    unsigned spi_shader_col_format = shader->key.part.ps.epilog.spi_shader_col_format;
1568    unsigned value = 0, num_mrts = 0;
1569    unsigned i, num_targets = (util_last_bit(spi_shader_col_format) + 3) / 4;
1570 
1571    /* Remove holes in spi_shader_col_format. */
1572    for (i = 0; i < num_targets; i++) {
1573       unsigned spi_format = (spi_shader_col_format >> (i * 4)) & 0xf;
1574 
1575       if (spi_format) {
1576          value |= spi_format << (num_mrts * 4);
1577          num_mrts++;
1578       }
1579    }
1580 
1581    return value;
1582 }
1583 
si_emit_shader_ps(struct si_context * sctx)1584 static void si_emit_shader_ps(struct si_context *sctx)
1585 {
1586    struct si_shader *shader = sctx->queued.named.ps;
1587    if (!shader)
1588       return;
1589 
1590    radeon_begin(&sctx->gfx_cs);
1591    /* R_0286CC_SPI_PS_INPUT_ENA, R_0286D0_SPI_PS_INPUT_ADDR*/
1592    radeon_opt_set_context_reg2(sctx, R_0286CC_SPI_PS_INPUT_ENA, SI_TRACKED_SPI_PS_INPUT_ENA,
1593                                shader->ctx_reg.ps.spi_ps_input_ena,
1594                                shader->ctx_reg.ps.spi_ps_input_addr);
1595 
1596    radeon_opt_set_context_reg(sctx, R_0286E0_SPI_BARYC_CNTL, SI_TRACKED_SPI_BARYC_CNTL,
1597                               shader->ctx_reg.ps.spi_baryc_cntl);
1598    radeon_opt_set_context_reg(sctx, R_0286D8_SPI_PS_IN_CONTROL, SI_TRACKED_SPI_PS_IN_CONTROL,
1599                               shader->ctx_reg.ps.spi_ps_in_control);
1600 
1601    /* R_028710_SPI_SHADER_Z_FORMAT, R_028714_SPI_SHADER_COL_FORMAT */
1602    radeon_opt_set_context_reg2(sctx, R_028710_SPI_SHADER_Z_FORMAT, SI_TRACKED_SPI_SHADER_Z_FORMAT,
1603                                shader->ctx_reg.ps.spi_shader_z_format,
1604                                shader->ctx_reg.ps.spi_shader_col_format);
1605 
1606    radeon_opt_set_context_reg(sctx, R_02823C_CB_SHADER_MASK, SI_TRACKED_CB_SHADER_MASK,
1607                               shader->ctx_reg.ps.cb_shader_mask);
1608    radeon_end_update_context_roll(sctx);
1609 }
1610 
si_shader_ps(struct si_screen * sscreen,struct si_shader * shader)1611 static void si_shader_ps(struct si_screen *sscreen, struct si_shader *shader)
1612 {
1613    struct si_shader_info *info = &shader->selector->info;
1614    struct si_pm4_state *pm4;
1615    unsigned spi_ps_in_control, spi_shader_col_format, cb_shader_mask;
1616    unsigned spi_baryc_cntl = S_0286E0_FRONT_FACE_ALL_BITS(1);
1617    uint64_t va;
1618    unsigned input_ena = shader->config.spi_ps_input_ena;
1619 
1620    /* we need to enable at least one of them, otherwise we hang the GPU */
1621    assert(G_0286CC_PERSP_SAMPLE_ENA(input_ena) || G_0286CC_PERSP_CENTER_ENA(input_ena) ||
1622           G_0286CC_PERSP_CENTROID_ENA(input_ena) || G_0286CC_PERSP_PULL_MODEL_ENA(input_ena) ||
1623           G_0286CC_LINEAR_SAMPLE_ENA(input_ena) || G_0286CC_LINEAR_CENTER_ENA(input_ena) ||
1624           G_0286CC_LINEAR_CENTROID_ENA(input_ena) || G_0286CC_LINE_STIPPLE_TEX_ENA(input_ena));
1625    /* POS_W_FLOAT_ENA requires one of the perspective weights. */
1626    assert(!G_0286CC_POS_W_FLOAT_ENA(input_ena) || G_0286CC_PERSP_SAMPLE_ENA(input_ena) ||
1627           G_0286CC_PERSP_CENTER_ENA(input_ena) || G_0286CC_PERSP_CENTROID_ENA(input_ena) ||
1628           G_0286CC_PERSP_PULL_MODEL_ENA(input_ena));
1629 
1630    /* Validate interpolation optimization flags (read as implications). */
1631    assert(!shader->key.part.ps.prolog.bc_optimize_for_persp ||
1632           (G_0286CC_PERSP_CENTER_ENA(input_ena) && G_0286CC_PERSP_CENTROID_ENA(input_ena)));
1633    assert(!shader->key.part.ps.prolog.bc_optimize_for_linear ||
1634           (G_0286CC_LINEAR_CENTER_ENA(input_ena) && G_0286CC_LINEAR_CENTROID_ENA(input_ena)));
1635    assert(!shader->key.part.ps.prolog.force_persp_center_interp ||
1636           (!G_0286CC_PERSP_SAMPLE_ENA(input_ena) && !G_0286CC_PERSP_CENTROID_ENA(input_ena)));
1637    assert(!shader->key.part.ps.prolog.force_linear_center_interp ||
1638           (!G_0286CC_LINEAR_SAMPLE_ENA(input_ena) && !G_0286CC_LINEAR_CENTROID_ENA(input_ena)));
1639    assert(!shader->key.part.ps.prolog.force_persp_sample_interp ||
1640           (!G_0286CC_PERSP_CENTER_ENA(input_ena) && !G_0286CC_PERSP_CENTROID_ENA(input_ena)));
1641    assert(!shader->key.part.ps.prolog.force_linear_sample_interp ||
1642           (!G_0286CC_LINEAR_CENTER_ENA(input_ena) && !G_0286CC_LINEAR_CENTROID_ENA(input_ena)));
1643 
1644    /* Validate cases when the optimizations are off (read as implications). */
1645    assert(shader->key.part.ps.prolog.bc_optimize_for_persp ||
1646           !G_0286CC_PERSP_CENTER_ENA(input_ena) || !G_0286CC_PERSP_CENTROID_ENA(input_ena));
1647    assert(shader->key.part.ps.prolog.bc_optimize_for_linear ||
1648           !G_0286CC_LINEAR_CENTER_ENA(input_ena) || !G_0286CC_LINEAR_CENTROID_ENA(input_ena));
1649 
1650    pm4 = si_get_shader_pm4_state(shader);
1651    if (!pm4)
1652       return;
1653 
1654    /* If multiple state sets are allowed to be in a bin, break the batch on a new PS. */
1655    if (sscreen->dpbb_allowed &&
1656        (sscreen->pbb_context_states_per_bin > 1 ||
1657         sscreen->pbb_persistent_states_per_bin > 1)) {
1658       si_pm4_cmd_add(pm4, PKT3(PKT3_EVENT_WRITE, 0, 0));
1659       si_pm4_cmd_add(pm4, EVENT_TYPE(V_028A90_BREAK_BATCH) | EVENT_INDEX(0));
1660    }
1661 
1662    pm4->atom.emit = si_emit_shader_ps;
1663 
1664    /* SPI_BARYC_CNTL.POS_FLOAT_LOCATION
1665     * Possible vaules:
1666     * 0 -> Position = pixel center
1667     * 1 -> Position = pixel centroid
1668     * 2 -> Position = at sample position
1669     *
1670     * From GLSL 4.5 specification, section 7.1:
1671     *   "The variable gl_FragCoord is available as an input variable from
1672     *    within fragment shaders and it holds the window relative coordinates
1673     *    (x, y, z, 1/w) values for the fragment. If multi-sampling, this
1674     *    value can be for any location within the pixel, or one of the
1675     *    fragment samples. The use of centroid does not further restrict
1676     *    this value to be inside the current primitive."
1677     *
1678     * Meaning that centroid has no effect and we can return anything within
1679     * the pixel. Thus, return the value at sample position, because that's
1680     * the most accurate one shaders can get.
1681     */
1682    spi_baryc_cntl |= S_0286E0_POS_FLOAT_LOCATION(2);
1683 
1684    if (info->base.fs.pixel_center_integer)
1685       spi_baryc_cntl |= S_0286E0_POS_FLOAT_ULC(1);
1686 
1687    spi_shader_col_format = si_get_spi_shader_col_format(shader);
1688    cb_shader_mask = ac_get_cb_shader_mask(shader->key.part.ps.epilog.spi_shader_col_format);
1689 
1690    /* Ensure that some export memory is always allocated, for two reasons:
1691     *
1692     * 1) Correctness: The hardware ignores the EXEC mask if no export
1693     *    memory is allocated, so KILL and alpha test do not work correctly
1694     *    without this.
1695     * 2) Performance: Every shader needs at least a NULL export, even when
1696     *    it writes no color/depth output. The NULL export instruction
1697     *    stalls without this setting.
1698     *
1699     * Don't add this to CB_SHADER_MASK.
1700     *
1701     * GFX10 supports pixel shaders without exports by setting both
1702     * the color and Z formats to SPI_SHADER_ZERO. The hw will skip export
1703     * instructions if any are present.
1704     */
1705    if ((sscreen->info.chip_class <= GFX9 || info->base.fs.uses_discard ||
1706         shader->key.part.ps.epilog.alpha_func != PIPE_FUNC_ALWAYS) &&
1707        !spi_shader_col_format && !info->writes_z && !info->writes_stencil &&
1708        !info->writes_samplemask)
1709       spi_shader_col_format = V_028714_SPI_SHADER_32_R;
1710 
1711    shader->ctx_reg.ps.spi_ps_input_ena = input_ena;
1712    shader->ctx_reg.ps.spi_ps_input_addr = shader->config.spi_ps_input_addr;
1713 
1714    unsigned num_interp = si_get_ps_num_interp(shader);
1715 
1716    /* Set interpolation controls. */
1717    spi_ps_in_control = S_0286D8_NUM_INTERP(num_interp) |
1718                        S_0286D8_PS_W32_EN(sscreen->ps_wave_size == 32);
1719 
1720    shader->ctx_reg.ps.num_interp = num_interp;
1721    shader->ctx_reg.ps.spi_baryc_cntl = spi_baryc_cntl;
1722    shader->ctx_reg.ps.spi_ps_in_control = spi_ps_in_control;
1723    shader->ctx_reg.ps.spi_shader_z_format =
1724       ac_get_spi_shader_z_format(info->writes_z, info->writes_stencil, info->writes_samplemask);
1725    shader->ctx_reg.ps.spi_shader_col_format = spi_shader_col_format;
1726    shader->ctx_reg.ps.cb_shader_mask = cb_shader_mask;
1727 
1728    va = shader->bo->gpu_address;
1729    si_pm4_set_reg(pm4, R_00B020_SPI_SHADER_PGM_LO_PS, va >> 8);
1730    si_pm4_set_reg(pm4, R_00B024_SPI_SHADER_PGM_HI_PS,
1731                   S_00B024_MEM_BASE(sscreen->info.address32_hi >> 8));
1732 
1733    uint32_t rsrc1 =
1734       S_00B028_VGPRS((shader->config.num_vgprs - 1) / (sscreen->ps_wave_size == 32 ? 8 : 4)) |
1735       S_00B028_DX10_CLAMP(1) | S_00B028_MEM_ORDERED(si_shader_mem_ordered(shader)) |
1736       S_00B028_FLOAT_MODE(shader->config.float_mode);
1737 
1738    if (sscreen->info.chip_class < GFX10) {
1739       rsrc1 |= S_00B028_SGPRS((shader->config.num_sgprs - 1) / 8);
1740    }
1741 
1742    si_pm4_set_reg(pm4, R_00B028_SPI_SHADER_PGM_RSRC1_PS, rsrc1);
1743    si_pm4_set_reg(pm4, R_00B02C_SPI_SHADER_PGM_RSRC2_PS,
1744                   S_00B02C_EXTRA_LDS_SIZE(shader->config.lds_size) |
1745                      S_00B02C_USER_SGPR(SI_PS_NUM_USER_SGPR) |
1746                      S_00B32C_SCRATCH_EN(shader->config.scratch_bytes_per_wave > 0));
1747 }
1748 
si_shader_init_pm4_state(struct si_screen * sscreen,struct si_shader * shader)1749 static void si_shader_init_pm4_state(struct si_screen *sscreen, struct si_shader *shader)
1750 {
1751    switch (shader->selector->info.stage) {
1752    case MESA_SHADER_VERTEX:
1753       if (shader->key.as_ls)
1754          si_shader_ls(sscreen, shader);
1755       else if (shader->key.as_es)
1756          si_shader_es(sscreen, shader);
1757       else if (shader->key.as_ngg)
1758          gfx10_shader_ngg(sscreen, shader);
1759       else
1760          si_shader_vs(sscreen, shader, NULL);
1761       break;
1762    case MESA_SHADER_TESS_CTRL:
1763       si_shader_hs(sscreen, shader);
1764       break;
1765    case MESA_SHADER_TESS_EVAL:
1766       if (shader->key.as_es)
1767          si_shader_es(sscreen, shader);
1768       else if (shader->key.as_ngg)
1769          gfx10_shader_ngg(sscreen, shader);
1770       else
1771          si_shader_vs(sscreen, shader, NULL);
1772       break;
1773    case MESA_SHADER_GEOMETRY:
1774       if (shader->key.as_ngg)
1775          gfx10_shader_ngg(sscreen, shader);
1776       else
1777          si_shader_gs(sscreen, shader);
1778       break;
1779    case MESA_SHADER_FRAGMENT:
1780       si_shader_ps(sscreen, shader);
1781       break;
1782    default:
1783       assert(0);
1784    }
1785 }
1786 
si_clear_vs_key_inputs(struct si_context * sctx,struct si_shader_key * key,struct si_vs_prolog_bits * prolog_key)1787 static void si_clear_vs_key_inputs(struct si_context *sctx, struct si_shader_key *key,
1788                                    struct si_vs_prolog_bits *prolog_key)
1789 {
1790    prolog_key->instance_divisor_is_one = 0;
1791    prolog_key->instance_divisor_is_fetched = 0;
1792    key->mono.vs_fetch_opencode = 0;
1793    memset(key->mono.vs_fix_fetch, 0, sizeof(key->mono.vs_fix_fetch));
1794 }
1795 
si_vs_key_update_inputs(struct si_context * sctx)1796 void si_vs_key_update_inputs(struct si_context *sctx)
1797 {
1798    struct si_shader_selector *vs = sctx->shader.vs.cso;
1799    struct si_vertex_elements *elts = sctx->vertex_elements;
1800    struct si_shader_key *key = &sctx->shader.vs.key;
1801 
1802    if (!vs)
1803       return;
1804 
1805    if (vs->info.base.vs.blit_sgprs_amd) {
1806       si_clear_vs_key_inputs(sctx, key, &key->part.vs.prolog);
1807       key->opt.prefer_mono = 0;
1808       sctx->uses_nontrivial_vs_prolog = false;
1809       return;
1810    }
1811 
1812    bool uses_nontrivial_vs_prolog = false;
1813 
1814    if (elts->instance_divisor_is_one || elts->instance_divisor_is_fetched)
1815       uses_nontrivial_vs_prolog = true;
1816 
1817    key->part.vs.prolog.instance_divisor_is_one = elts->instance_divisor_is_one;
1818    key->part.vs.prolog.instance_divisor_is_fetched = elts->instance_divisor_is_fetched;
1819    key->opt.prefer_mono = elts->instance_divisor_is_fetched;
1820 
1821    unsigned count_mask = (1 << vs->info.num_inputs) - 1;
1822    unsigned fix = elts->fix_fetch_always & count_mask;
1823    unsigned opencode = elts->fix_fetch_opencode & count_mask;
1824 
1825    if (sctx->vertex_buffer_unaligned & elts->vb_alignment_check_mask) {
1826       uint32_t mask = elts->fix_fetch_unaligned & count_mask;
1827       while (mask) {
1828          unsigned i = u_bit_scan(&mask);
1829          unsigned log_hw_load_size = 1 + ((elts->hw_load_is_dword >> i) & 1);
1830          unsigned vbidx = elts->vertex_buffer_index[i];
1831          struct pipe_vertex_buffer *vb = &sctx->vertex_buffer[vbidx];
1832          unsigned align_mask = (1 << log_hw_load_size) - 1;
1833          if (vb->buffer_offset & align_mask || vb->stride & align_mask) {
1834             fix |= 1 << i;
1835             opencode |= 1 << i;
1836          }
1837       }
1838    }
1839 
1840    memset(key->mono.vs_fix_fetch, 0, sizeof(key->mono.vs_fix_fetch));
1841 
1842    while (fix) {
1843       unsigned i = u_bit_scan(&fix);
1844       uint8_t fix_fetch = elts->fix_fetch[i];
1845 
1846       key->mono.vs_fix_fetch[i].bits = fix_fetch;
1847       if (fix_fetch)
1848          uses_nontrivial_vs_prolog = true;
1849    }
1850    key->mono.vs_fetch_opencode = opencode;
1851    if (opencode)
1852       uses_nontrivial_vs_prolog = true;
1853 
1854    sctx->uses_nontrivial_vs_prolog = uses_nontrivial_vs_prolog;
1855 
1856    /* draw_vertex_state (display lists) requires a trivial VS prolog that ignores
1857     * the current vertex buffers and vertex elements.
1858     *
1859     * We just computed the prolog key because we needed to set uses_nontrivial_vs_prolog,
1860     * so that we know whether the VS prolog should be updated when we switch from
1861     * draw_vertex_state to draw_vbo. Now clear the VS prolog for draw_vertex_state.
1862     * This should happen rarely because the VS prolog should be trivial in most
1863     * cases.
1864     */
1865    if (uses_nontrivial_vs_prolog && sctx->force_trivial_vs_prolog)
1866       si_clear_vs_key_inputs(sctx, key, &key->part.vs.prolog);
1867 }
1868 
si_get_vs_key_inputs(struct si_context * sctx,struct si_shader_key * key,struct si_vs_prolog_bits * prolog_key)1869 void si_get_vs_key_inputs(struct si_context *sctx, struct si_shader_key *key,
1870                           struct si_vs_prolog_bits *prolog_key)
1871 {
1872    prolog_key->instance_divisor_is_one = sctx->shader.vs.key.part.vs.prolog.instance_divisor_is_one;
1873    prolog_key->instance_divisor_is_fetched = sctx->shader.vs.key.part.vs.prolog.instance_divisor_is_fetched;
1874 
1875    key->mono.vs_fetch_opencode = sctx->shader.vs.key.mono.vs_fetch_opencode;
1876    memcpy(key->mono.vs_fix_fetch, sctx->shader.vs.key.mono.vs_fix_fetch,
1877           sizeof(key->mono.vs_fix_fetch));
1878 }
1879 
si_update_ps_inputs_read_or_disabled(struct si_context * sctx)1880 void si_update_ps_inputs_read_or_disabled(struct si_context *sctx)
1881 {
1882    struct si_shader_selector *ps = sctx->shader.ps.cso;
1883 
1884    /* Find out if PS is disabled. */
1885    bool ps_disabled = true;
1886    if (ps) {
1887       bool ps_modifies_zs = ps->info.base.fs.uses_discard || ps->info.writes_z || ps->info.writes_stencil ||
1888                             ps->info.writes_samplemask ||
1889                             sctx->queued.named.blend->alpha_to_coverage ||
1890                             sctx->queued.named.dsa->alpha_func != PIPE_FUNC_ALWAYS;
1891       unsigned ps_colormask = si_get_total_colormask(sctx);
1892 
1893       ps_disabled = sctx->queued.named.rasterizer->rasterizer_discard ||
1894                     (!ps_colormask && !ps_modifies_zs && !ps->info.base.writes_memory);
1895    }
1896 
1897    sctx->ps_inputs_read_or_disabled = ps_disabled ? 0 : ps->inputs_read;
1898 }
1899 
si_get_vs_key_outputs(struct si_context * sctx,struct si_shader_selector * vs,struct si_shader_key * key)1900 static void si_get_vs_key_outputs(struct si_context *sctx, struct si_shader_selector *vs,
1901                                   struct si_shader_key *key)
1902 {
1903 
1904    key->opt.kill_clip_distances = vs->clipdist_mask & ~sctx->queued.named.rasterizer->clip_plane_enable;
1905 
1906    /* Find out which VS outputs aren't used by the PS. */
1907    uint64_t outputs_written = vs->outputs_written_before_ps;
1908    uint64_t linked = outputs_written & sctx->ps_inputs_read_or_disabled;
1909 
1910    key->opt.kill_outputs = ~linked & outputs_written;
1911 
1912    if (vs->info.stage != MESA_SHADER_GEOMETRY) {
1913       key->opt.ngg_culling = sctx->ngg_culling;
1914       key->mono.u.vs_export_prim_id = sctx->shader.ps.cso && sctx->shader.ps.cso->info.uses_primid;
1915    } else {
1916       key->opt.ngg_culling = 0;
1917       key->mono.u.vs_export_prim_id = 0;
1918    }
1919 
1920    key->opt.kill_pointsize = vs->info.writes_psize &&
1921                              sctx->current_rast_prim != PIPE_PRIM_POINTS &&
1922                              !sctx->queued.named.rasterizer->polygon_mode_is_points;
1923 }
1924 
si_clear_vs_key_outputs(struct si_context * sctx,struct si_shader_selector * vs,struct si_shader_key * key)1925 static void si_clear_vs_key_outputs(struct si_context *sctx, struct si_shader_selector *vs,
1926                                     struct si_shader_key *key)
1927 {
1928    key->opt.kill_clip_distances = 0;
1929    key->opt.kill_outputs = 0;
1930    key->opt.ngg_culling = 0;
1931    key->mono.u.vs_export_prim_id = 0;
1932    key->opt.kill_pointsize = 0;
1933 }
1934 
si_ps_key_update_framebuffer(struct si_context * sctx)1935 void si_ps_key_update_framebuffer(struct si_context *sctx)
1936 {
1937    struct si_shader_selector *sel = sctx->shader.ps.cso;
1938    struct si_shader_key *key = &sctx->shader.ps.key;
1939 
1940    if (!sel)
1941       return;
1942 
1943    if (sel->info.color0_writes_all_cbufs &&
1944        sel->info.colors_written == 0x1)
1945       key->part.ps.epilog.last_cbuf = MAX2(sctx->framebuffer.state.nr_cbufs, 1) - 1;
1946    else
1947       key->part.ps.epilog.last_cbuf = 0;
1948 
1949    /* ps_uses_fbfetch is true only if the color buffer is bound. */
1950    if (sctx->ps_uses_fbfetch) {
1951       struct pipe_surface *cb0 = sctx->framebuffer.state.cbufs[0];
1952       struct pipe_resource *tex = cb0->texture;
1953 
1954       /* 1D textures are allocated and used as 2D on GFX9. */
1955       key->mono.u.ps.fbfetch_msaa = sctx->framebuffer.nr_samples > 1;
1956       key->mono.u.ps.fbfetch_is_1D =
1957          sctx->chip_class != GFX9 &&
1958          (tex->target == PIPE_TEXTURE_1D || tex->target == PIPE_TEXTURE_1D_ARRAY);
1959       key->mono.u.ps.fbfetch_layered =
1960          tex->target == PIPE_TEXTURE_1D_ARRAY || tex->target == PIPE_TEXTURE_2D_ARRAY ||
1961          tex->target == PIPE_TEXTURE_CUBE || tex->target == PIPE_TEXTURE_CUBE_ARRAY ||
1962          tex->target == PIPE_TEXTURE_3D;
1963    } else {
1964       key->mono.u.ps.fbfetch_msaa = 0;
1965       key->mono.u.ps.fbfetch_is_1D = 0;
1966       key->mono.u.ps.fbfetch_layered = 0;
1967    }
1968 }
1969 
si_ps_key_update_framebuffer_blend(struct si_context * sctx)1970 void si_ps_key_update_framebuffer_blend(struct si_context *sctx)
1971 {
1972    struct si_shader_selector *sel = sctx->shader.ps.cso;
1973    struct si_shader_key *key = &sctx->shader.ps.key;
1974    struct si_state_blend *blend = sctx->queued.named.blend;
1975 
1976    if (!sel)
1977       return;
1978 
1979    /* Select the shader color format based on whether
1980     * blending or alpha are needed.
1981     */
1982    key->part.ps.epilog.spi_shader_col_format =
1983       (blend->blend_enable_4bit & blend->need_src_alpha_4bit &
1984        sctx->framebuffer.spi_shader_col_format_blend_alpha) |
1985       (blend->blend_enable_4bit & ~blend->need_src_alpha_4bit &
1986        sctx->framebuffer.spi_shader_col_format_blend) |
1987       (~blend->blend_enable_4bit & blend->need_src_alpha_4bit &
1988        sctx->framebuffer.spi_shader_col_format_alpha) |
1989       (~blend->blend_enable_4bit & ~blend->need_src_alpha_4bit &
1990        sctx->framebuffer.spi_shader_col_format);
1991    key->part.ps.epilog.spi_shader_col_format &= blend->cb_target_enabled_4bit;
1992 
1993    /* The output for dual source blending should have
1994     * the same format as the first output.
1995     */
1996    if (blend->dual_src_blend) {
1997       key->part.ps.epilog.spi_shader_col_format |=
1998          (key->part.ps.epilog.spi_shader_col_format & 0xf) << 4;
1999    }
2000 
2001    /* If alpha-to-coverage is enabled, we have to export alpha
2002     * even if there is no color buffer.
2003     */
2004    if (!(key->part.ps.epilog.spi_shader_col_format & 0xf) && blend->alpha_to_coverage)
2005       key->part.ps.epilog.spi_shader_col_format |= V_028710_SPI_SHADER_32_AR;
2006 
2007    /* On GFX6 and GFX7 except Hawaii, the CB doesn't clamp outputs
2008     * to the range supported by the type if a channel has less
2009     * than 16 bits and the export format is 16_ABGR.
2010     */
2011    if (sctx->chip_class <= GFX7 && sctx->family != CHIP_HAWAII) {
2012       key->part.ps.epilog.color_is_int8 = sctx->framebuffer.color_is_int8;
2013       key->part.ps.epilog.color_is_int10 = sctx->framebuffer.color_is_int10;
2014    }
2015 
2016    /* Disable unwritten outputs (if WRITE_ALL_CBUFS isn't enabled). */
2017    if (!key->part.ps.epilog.last_cbuf) {
2018       key->part.ps.epilog.spi_shader_col_format &= sel->colors_written_4bit;
2019       key->part.ps.epilog.color_is_int8 &= sel->info.colors_written;
2020       key->part.ps.epilog.color_is_int10 &= sel->info.colors_written;
2021    }
2022 
2023    /* Eliminate shader code computing output values that are unused.
2024     * This enables dead code elimination between shader parts.
2025     * Check if any output is eliminated.
2026     */
2027    if (sel->colors_written_4bit &
2028        ~(sctx->framebuffer.colorbuf_enabled_4bit & blend->cb_target_enabled_4bit))
2029       key->opt.prefer_mono = 1;
2030    else
2031       key->opt.prefer_mono = 0;
2032 }
2033 
si_ps_key_update_blend_rasterizer(struct si_context * sctx)2034 void si_ps_key_update_blend_rasterizer(struct si_context *sctx)
2035 {
2036    struct si_shader_key *key = &sctx->shader.ps.key;
2037    struct si_state_blend *blend = sctx->queued.named.blend;
2038    struct si_state_rasterizer *rs = sctx->queued.named.rasterizer;
2039 
2040    key->part.ps.epilog.alpha_to_one = blend->alpha_to_one && rs->multisample_enable;
2041 }
2042 
si_ps_key_update_rasterizer(struct si_context * sctx)2043 void si_ps_key_update_rasterizer(struct si_context *sctx)
2044 {
2045    struct si_shader_selector *sel = sctx->shader.ps.cso;
2046    struct si_shader_key *key = &sctx->shader.ps.key;
2047    struct si_state_rasterizer *rs = sctx->queued.named.rasterizer;
2048 
2049    if (!sel)
2050       return;
2051 
2052    key->part.ps.prolog.color_two_side = rs->two_side && sel->info.colors_read;
2053    key->part.ps.prolog.flatshade_colors = rs->flatshade && sel->info.uses_interp_color;
2054    key->part.ps.epilog.clamp_color = rs->clamp_fragment_color;
2055 }
2056 
si_ps_key_update_dsa(struct si_context * sctx)2057 void si_ps_key_update_dsa(struct si_context *sctx)
2058 {
2059    struct si_shader_key *key = &sctx->shader.ps.key;
2060 
2061    key->part.ps.epilog.alpha_func = sctx->queued.named.dsa->alpha_func;
2062 }
2063 
si_ps_key_update_primtype_shader_rasterizer_framebuffer(struct si_context * sctx)2064 static void si_ps_key_update_primtype_shader_rasterizer_framebuffer(struct si_context *sctx)
2065 {
2066    struct si_shader_key *key = &sctx->shader.ps.key;
2067    struct si_state_rasterizer *rs = sctx->queued.named.rasterizer;
2068 
2069    bool is_poly = !util_prim_is_points_or_lines(sctx->current_rast_prim);
2070    bool is_line = util_prim_is_lines(sctx->current_rast_prim);
2071 
2072    key->part.ps.prolog.poly_stipple = rs->poly_stipple_enable && is_poly;
2073    key->part.ps.epilog.poly_line_smoothing =
2074       ((is_poly && rs->poly_smooth) || (is_line && rs->line_smooth)) &&
2075       sctx->framebuffer.nr_samples <= 1;
2076 }
2077 
si_ps_key_update_sample_shading(struct si_context * sctx)2078 void si_ps_key_update_sample_shading(struct si_context *sctx)
2079 {
2080    struct si_shader_selector *sel = sctx->shader.ps.cso;
2081    struct si_shader_key *key = &sctx->shader.ps.key;
2082 
2083    if (!sel)
2084       return;
2085 
2086    if (sctx->ps_iter_samples > 1 && sel->info.reads_samplemask)
2087       key->part.ps.prolog.samplemask_log_ps_iter = util_logbase2(sctx->ps_iter_samples);
2088    else
2089       key->part.ps.prolog.samplemask_log_ps_iter = 0;
2090 }
2091 
si_ps_key_update_framebuffer_rasterizer_sample_shading(struct si_context * sctx)2092 void si_ps_key_update_framebuffer_rasterizer_sample_shading(struct si_context *sctx)
2093 {
2094    struct si_shader_selector *sel = sctx->shader.ps.cso;
2095    struct si_shader_key *key = &sctx->shader.ps.key;
2096    struct si_state_rasterizer *rs = sctx->queued.named.rasterizer;
2097 
2098    if (!sel)
2099       return;
2100 
2101    bool uses_persp_center = sel->info.uses_persp_center ||
2102                             (!rs->flatshade && sel->info.uses_persp_center_color);
2103    bool uses_persp_centroid = sel->info.uses_persp_centroid ||
2104                               (!rs->flatshade && sel->info.uses_persp_centroid_color);
2105    bool uses_persp_sample = sel->info.uses_persp_sample ||
2106                             (!rs->flatshade && sel->info.uses_persp_sample_color);
2107 
2108    if (rs->force_persample_interp && rs->multisample_enable &&
2109        sctx->framebuffer.nr_samples > 1 && sctx->ps_iter_samples > 1) {
2110       key->part.ps.prolog.force_persp_sample_interp =
2111          uses_persp_center || uses_persp_centroid;
2112 
2113       key->part.ps.prolog.force_linear_sample_interp =
2114          sel->info.uses_linear_center || sel->info.uses_linear_centroid;
2115 
2116       key->part.ps.prolog.force_persp_center_interp = 0;
2117       key->part.ps.prolog.force_linear_center_interp = 0;
2118       key->part.ps.prolog.bc_optimize_for_persp = 0;
2119       key->part.ps.prolog.bc_optimize_for_linear = 0;
2120       key->mono.u.ps.interpolate_at_sample_force_center = 0;
2121    } else if (rs->multisample_enable && sctx->framebuffer.nr_samples > 1) {
2122       key->part.ps.prolog.force_persp_sample_interp = 0;
2123       key->part.ps.prolog.force_linear_sample_interp = 0;
2124       key->part.ps.prolog.force_persp_center_interp = 0;
2125       key->part.ps.prolog.force_linear_center_interp = 0;
2126       key->part.ps.prolog.bc_optimize_for_persp =
2127          uses_persp_center && uses_persp_centroid;
2128       key->part.ps.prolog.bc_optimize_for_linear =
2129          sel->info.uses_linear_center && sel->info.uses_linear_centroid;
2130       key->mono.u.ps.interpolate_at_sample_force_center = 0;
2131    } else {
2132       key->part.ps.prolog.force_persp_sample_interp = 0;
2133       key->part.ps.prolog.force_linear_sample_interp = 0;
2134 
2135       /* Make sure SPI doesn't compute more than 1 pair
2136        * of (i,j), which is the optimization here. */
2137       key->part.ps.prolog.force_persp_center_interp = uses_persp_center +
2138                                                       uses_persp_centroid +
2139                                                       uses_persp_sample > 1;
2140 
2141       key->part.ps.prolog.force_linear_center_interp = sel->info.uses_linear_center +
2142                                                        sel->info.uses_linear_centroid +
2143                                                        sel->info.uses_linear_sample > 1;
2144       key->part.ps.prolog.bc_optimize_for_persp = 0;
2145       key->part.ps.prolog.bc_optimize_for_linear = 0;
2146       key->mono.u.ps.interpolate_at_sample_force_center = sel->info.uses_interp_at_sample;
2147    }
2148 }
2149 
2150 /* Compute the key for the hw shader variant */
si_shader_selector_key(struct pipe_context * ctx,struct si_shader_selector * sel,struct si_shader_key * key)2151 static inline void si_shader_selector_key(struct pipe_context *ctx, struct si_shader_selector *sel,
2152                                           struct si_shader_key *key)
2153 {
2154    struct si_context *sctx = (struct si_context *)ctx;
2155 
2156    switch (sel->info.stage) {
2157    case MESA_SHADER_VERTEX:
2158       if (!sctx->shader.tes.cso && !sctx->shader.gs.cso)
2159          si_get_vs_key_outputs(sctx, sel, key);
2160       else
2161          si_clear_vs_key_outputs(sctx, sel, key);
2162       break;
2163    case MESA_SHADER_TESS_CTRL:
2164       if (sctx->chip_class >= GFX9) {
2165          si_get_vs_key_inputs(sctx, key, &key->part.tcs.ls_prolog);
2166          key->part.tcs.ls = sctx->shader.vs.cso;
2167       }
2168       break;
2169    case MESA_SHADER_TESS_EVAL:
2170       if (!sctx->shader.gs.cso)
2171          si_get_vs_key_outputs(sctx, sel, key);
2172       else
2173          si_clear_vs_key_outputs(sctx, sel, key);
2174       break;
2175    case MESA_SHADER_GEOMETRY:
2176       if (sctx->chip_class >= GFX9) {
2177          if (sctx->shader.tes.cso) {
2178             si_clear_vs_key_inputs(sctx, key, &key->part.gs.vs_prolog);
2179             key->part.gs.es = sctx->shader.tes.cso;
2180          } else {
2181             si_get_vs_key_inputs(sctx, key, &key->part.gs.vs_prolog);
2182             key->part.gs.es = sctx->shader.vs.cso;
2183          }
2184 
2185          /* Only NGG can eliminate GS outputs, because the code is shared with VS. */
2186          if (sctx->ngg)
2187             si_get_vs_key_outputs(sctx, sel, key);
2188          else
2189             si_clear_vs_key_outputs(sctx, sel, key);
2190       }
2191       break;
2192    case MESA_SHADER_FRAGMENT:
2193       si_ps_key_update_primtype_shader_rasterizer_framebuffer(sctx);
2194       break;
2195    default:
2196       assert(0);
2197    }
2198 }
2199 
si_build_shader_variant(struct si_shader * shader,int thread_index,bool low_priority)2200 static void si_build_shader_variant(struct si_shader *shader, int thread_index, bool low_priority)
2201 {
2202    struct si_shader_selector *sel = shader->selector;
2203    struct si_screen *sscreen = sel->screen;
2204    struct ac_llvm_compiler *compiler;
2205    struct pipe_debug_callback *debug = &shader->compiler_ctx_state.debug;
2206 
2207    if (thread_index >= 0) {
2208       if (low_priority) {
2209          assert(thread_index < ARRAY_SIZE(sscreen->compiler_lowp));
2210          compiler = &sscreen->compiler_lowp[thread_index];
2211       } else {
2212          assert(thread_index < ARRAY_SIZE(sscreen->compiler));
2213          compiler = &sscreen->compiler[thread_index];
2214       }
2215       if (!debug->async)
2216          debug = NULL;
2217    } else {
2218       assert(!low_priority);
2219       compiler = shader->compiler_ctx_state.compiler;
2220    }
2221 
2222    if (!compiler->passes)
2223       si_init_compiler(sscreen, compiler);
2224 
2225    if (unlikely(!si_create_shader_variant(sscreen, compiler, shader, debug))) {
2226       PRINT_ERR("Failed to build shader variant (type=%u)\n", sel->info.stage);
2227       shader->compilation_failed = true;
2228       return;
2229    }
2230 
2231    if (shader->compiler_ctx_state.is_debug_context) {
2232       FILE *f = open_memstream(&shader->shader_log, &shader->shader_log_size);
2233       if (f) {
2234          si_shader_dump(sscreen, shader, NULL, f, false);
2235          fclose(f);
2236       }
2237    }
2238 
2239    si_shader_init_pm4_state(sscreen, shader);
2240 }
2241 
si_build_shader_variant_low_priority(void * job,void * gdata,int thread_index)2242 static void si_build_shader_variant_low_priority(void *job, void *gdata, int thread_index)
2243 {
2244    struct si_shader *shader = (struct si_shader *)job;
2245 
2246    assert(thread_index >= 0);
2247 
2248    si_build_shader_variant(shader, thread_index, true);
2249 }
2250 
2251 static const struct si_shader_key zeroed;
2252 
si_check_missing_main_part(struct si_screen * sscreen,struct si_shader_selector * sel,struct si_compiler_ctx_state * compiler_state,const struct si_shader_key * key)2253 static bool si_check_missing_main_part(struct si_screen *sscreen, struct si_shader_selector *sel,
2254                                        struct si_compiler_ctx_state *compiler_state,
2255                                        const struct si_shader_key *key)
2256 {
2257    struct si_shader **mainp = si_get_main_shader_part(sel, key);
2258 
2259    if (!*mainp) {
2260       struct si_shader *main_part = CALLOC_STRUCT(si_shader);
2261 
2262       if (!main_part)
2263          return false;
2264 
2265       /* We can leave the fence as permanently signaled because the
2266        * main part becomes visible globally only after it has been
2267        * compiled. */
2268       util_queue_fence_init(&main_part->ready);
2269 
2270       main_part->selector = sel;
2271       main_part->key.as_es = key->as_es;
2272       main_part->key.as_ls = key->as_ls;
2273       main_part->key.as_ngg = key->as_ngg;
2274       main_part->is_monolithic = false;
2275 
2276       if (!si_compile_shader(sscreen, compiler_state->compiler, main_part,
2277                              &compiler_state->debug)) {
2278          FREE(main_part);
2279          return false;
2280       }
2281       *mainp = main_part;
2282    }
2283    return true;
2284 }
2285 
2286 /* A helper to copy *key to *local_key and return local_key. */
2287 static const struct si_shader_key *
use_local_key_copy(const struct si_shader_key * key,struct si_shader_key * local_key)2288 use_local_key_copy(const struct si_shader_key *key, struct si_shader_key *local_key)
2289 {
2290    if (key != local_key)
2291       memcpy(local_key, key, sizeof(*key));
2292 
2293    return local_key;
2294 }
2295 
2296 /**
2297  * Select a shader variant according to the shader key.
2298  *
2299  * \param optimized_or_none  If the key describes an optimized shader variant and
2300  *                           the compilation isn't finished, don't select any
2301  *                           shader and return an error.
2302  */
si_shader_select_with_key(struct si_context * sctx,struct si_shader_ctx_state * state,const struct si_shader_key * key,int thread_index,bool optimized_or_none)2303 int si_shader_select_with_key(struct si_context *sctx, struct si_shader_ctx_state *state,
2304                               const struct si_shader_key *key, int thread_index,
2305                               bool optimized_or_none)
2306 {
2307    struct si_screen *sscreen = sctx->screen;
2308    struct si_shader_selector *sel = state->cso;
2309    struct si_shader_selector *previous_stage_sel = NULL;
2310    struct si_shader *current = state->current;
2311    struct si_shader *iter, *shader = NULL;
2312    /* si_shader_select_with_key must not modify 'key' because it would affect future shaders.
2313     * If we need to modify it for this specific shader (eg: to disable optimizations), we
2314     * use a copy.
2315     */
2316    struct si_shader_key local_key;
2317 
2318    if (unlikely(sscreen->debug_flags & DBG(NO_OPT_VARIANT))) {
2319       /* Disable shader variant optimizations. */
2320       key = use_local_key_copy(key, &local_key);
2321       memset(&local_key.opt, 0, sizeof(key->opt));
2322    }
2323 
2324 again:
2325    /* Check if we don't need to change anything.
2326     * This path is also used for most shaders that don't need multiple
2327     * variants, it will cost just a computation of the key and this
2328     * test. */
2329    if (likely(current && memcmp(&current->key, key, sizeof(*key)) == 0)) {
2330       if (unlikely(!util_queue_fence_is_signalled(&current->ready))) {
2331          if (current->is_optimized) {
2332             if (optimized_or_none)
2333                return -1;
2334 
2335             key = use_local_key_copy(key, &local_key);
2336             memset(&local_key.opt, 0, sizeof(key->opt));
2337             goto current_not_ready;
2338          }
2339 
2340          util_queue_fence_wait(&current->ready);
2341       }
2342 
2343       return current->compilation_failed ? -1 : 0;
2344    }
2345 current_not_ready:
2346 
2347    /* This must be done before the mutex is locked, because async GS
2348     * compilation calls this function too, and therefore must enter
2349     * the mutex first.
2350     *
2351     * Only wait if we are in a draw call. Don't wait if we are
2352     * in a compiler thread.
2353     */
2354    if (thread_index < 0)
2355       util_queue_fence_wait(&sel->ready);
2356 
2357    simple_mtx_lock(&sel->mutex);
2358 
2359    /* Compute the size of the key without the uniform values. */
2360    size_t s = (void*)&key->opt.inlined_uniform_values - (void*)key;
2361    int variant_count = 0;
2362    const int max_inline_uniforms_variants = 5;
2363 
2364    /* Find the shader variant. */
2365    for (iter = sel->first_variant; iter; iter = iter->next_variant) {
2366       if (memcmp(&iter->key, key, s) == 0) {
2367          /* Check the inlined uniform values separatly, and count
2368           * the number of variants based on them.
2369           */
2370          if (key->opt.inline_uniforms &&
2371              memcmp(iter->key.opt.inlined_uniform_values,
2372                     key->opt.inlined_uniform_values,
2373                     MAX_INLINABLE_UNIFORMS * 4) != 0) {
2374             if (variant_count++ > max_inline_uniforms_variants) {
2375                key = use_local_key_copy(key, &local_key);
2376                /* Too many variants. Disable inlining for this shader. */
2377                local_key.opt.inline_uniforms = 0;
2378                memset(local_key.opt.inlined_uniform_values, 0, MAX_INLINABLE_UNIFORMS * 4);
2379                simple_mtx_unlock(&sel->mutex);
2380                goto again;
2381             }
2382             continue;
2383          }
2384 
2385          simple_mtx_unlock(&sel->mutex);
2386 
2387          if (unlikely(!util_queue_fence_is_signalled(&iter->ready))) {
2388             /* If it's an optimized shader and its compilation has
2389              * been started but isn't done, use the unoptimized
2390              * shader so as not to cause a stall due to compilation.
2391              */
2392             if (iter->is_optimized) {
2393                if (optimized_or_none)
2394                   return -1;
2395 
2396                key = use_local_key_copy(key, &local_key);
2397                memset(&local_key.opt, 0, sizeof(key->opt));
2398                goto again;
2399             }
2400 
2401             util_queue_fence_wait(&iter->ready);
2402          }
2403 
2404          if (iter->compilation_failed) {
2405             return -1; /* skip the draw call */
2406          }
2407 
2408          state->current = iter;
2409          return 0;
2410       }
2411    }
2412 
2413    /* Build a new shader. */
2414    shader = CALLOC_STRUCT(si_shader);
2415    if (!shader) {
2416       simple_mtx_unlock(&sel->mutex);
2417       return -ENOMEM;
2418    }
2419 
2420    util_queue_fence_init(&shader->ready);
2421 
2422    if (!sctx->compiler.passes)
2423       si_init_compiler(sctx->screen, &sctx->compiler);
2424 
2425    shader->selector = sel;
2426    shader->key = *key;
2427    shader->compiler_ctx_state.compiler = &sctx->compiler;
2428    shader->compiler_ctx_state.debug = sctx->debug;
2429    shader->compiler_ctx_state.is_debug_context = sctx->is_debug;
2430 
2431    /* If this is a merged shader, get the first shader's selector. */
2432    if (sscreen->info.chip_class >= GFX9) {
2433       if (sel->info.stage == MESA_SHADER_TESS_CTRL)
2434          previous_stage_sel = key->part.tcs.ls;
2435       else if (sel->info.stage == MESA_SHADER_GEOMETRY)
2436          previous_stage_sel = key->part.gs.es;
2437 
2438       /* We need to wait for the previous shader. */
2439       if (previous_stage_sel && thread_index < 0)
2440          util_queue_fence_wait(&previous_stage_sel->ready);
2441    }
2442 
2443    bool is_pure_monolithic =
2444       sscreen->use_monolithic_shaders || memcmp(&key->mono, &zeroed.mono, sizeof(key->mono)) != 0;
2445 
2446    /* Compile the main shader part if it doesn't exist. This can happen
2447     * if the initial guess was wrong.
2448     */
2449    if (!is_pure_monolithic) {
2450       bool ok = true;
2451 
2452       /* Make sure the main shader part is present. This is needed
2453        * for shaders that can be compiled as VS, LS, or ES, and only
2454        * one of them is compiled at creation.
2455        *
2456        * It is also needed for GS, which can be compiled as non-NGG
2457        * and NGG.
2458        *
2459        * For merged shaders, check that the starting shader's main
2460        * part is present.
2461        */
2462       if (previous_stage_sel) {
2463          struct si_shader_key shader1_key = zeroed;
2464 
2465          if (sel->info.stage == MESA_SHADER_TESS_CTRL) {
2466             shader1_key.as_ls = 1;
2467          } else if (sel->info.stage == MESA_SHADER_GEOMETRY) {
2468             shader1_key.as_es = 1;
2469             shader1_key.as_ngg = key->as_ngg; /* for Wave32 vs Wave64 */
2470          } else {
2471             assert(0);
2472          }
2473 
2474          simple_mtx_lock(&previous_stage_sel->mutex);
2475          ok = si_check_missing_main_part(sscreen, previous_stage_sel, &shader->compiler_ctx_state,
2476                                          &shader1_key);
2477          simple_mtx_unlock(&previous_stage_sel->mutex);
2478       }
2479 
2480       if (ok) {
2481          ok = si_check_missing_main_part(sscreen, sel, &shader->compiler_ctx_state, key);
2482       }
2483 
2484       if (!ok) {
2485          FREE(shader);
2486          simple_mtx_unlock(&sel->mutex);
2487          return -ENOMEM; /* skip the draw call */
2488       }
2489    }
2490 
2491    /* Keep the reference to the 1st shader of merged shaders, so that
2492     * Gallium can't destroy it before we destroy the 2nd shader.
2493     *
2494     * Set sctx = NULL, because it's unused if we're not releasing
2495     * the shader, and we don't have any sctx here.
2496     */
2497    si_shader_selector_reference(NULL, &shader->previous_stage_sel, previous_stage_sel);
2498 
2499    /* Monolithic-only shaders don't make a distinction between optimized
2500     * and unoptimized. */
2501    shader->is_monolithic =
2502       is_pure_monolithic || memcmp(&key->opt, &zeroed.opt, sizeof(key->opt)) != 0;
2503 
2504    shader->is_optimized = !is_pure_monolithic &&
2505                           memcmp(&key->opt, &zeroed.opt, sizeof(key->opt)) != 0;
2506 
2507    /* If it's an optimized shader, compile it asynchronously. */
2508    if (shader->is_optimized && thread_index < 0) {
2509       /* Compile it asynchronously. */
2510       util_queue_add_job(&sscreen->shader_compiler_queue_low_priority, shader, &shader->ready,
2511                          si_build_shader_variant_low_priority, NULL, 0);
2512 
2513       /* Add only after the ready fence was reset, to guard against a
2514        * race with si_bind_XX_shader. */
2515       if (!sel->last_variant) {
2516          sel->first_variant = shader;
2517          sel->last_variant = shader;
2518       } else {
2519          sel->last_variant->next_variant = shader;
2520          sel->last_variant = shader;
2521       }
2522 
2523       /* Use the default (unoptimized) shader for now. */
2524       key = use_local_key_copy(key, &local_key);
2525       memset(&local_key.opt, 0, sizeof(key->opt));
2526       simple_mtx_unlock(&sel->mutex);
2527 
2528       if (sscreen->options.sync_compile)
2529          util_queue_fence_wait(&shader->ready);
2530 
2531       if (optimized_or_none)
2532          return -1;
2533       goto again;
2534    }
2535 
2536    /* Reset the fence before adding to the variant list. */
2537    util_queue_fence_reset(&shader->ready);
2538 
2539    if (!sel->last_variant) {
2540       sel->first_variant = shader;
2541       sel->last_variant = shader;
2542    } else {
2543       sel->last_variant->next_variant = shader;
2544       sel->last_variant = shader;
2545    }
2546 
2547    simple_mtx_unlock(&sel->mutex);
2548 
2549    assert(!shader->is_optimized);
2550    si_build_shader_variant(shader, thread_index, false);
2551 
2552    util_queue_fence_signal(&shader->ready);
2553 
2554    if (!shader->compilation_failed)
2555       state->current = shader;
2556 
2557    return shader->compilation_failed ? -1 : 0;
2558 }
2559 
si_shader_select(struct pipe_context * ctx,struct si_shader_ctx_state * state)2560 int si_shader_select(struct pipe_context *ctx, struct si_shader_ctx_state *state)
2561 {
2562    struct si_context *sctx = (struct si_context *)ctx;
2563 
2564    si_shader_selector_key(ctx, state->cso, &state->key);
2565    return si_shader_select_with_key(sctx, state, &state->key, -1, false);
2566 }
2567 
si_parse_next_shader_property(const struct si_shader_info * info,bool streamout,struct si_shader_key * key)2568 static void si_parse_next_shader_property(const struct si_shader_info *info, bool streamout,
2569                                           struct si_shader_key *key)
2570 {
2571    gl_shader_stage next_shader = info->base.next_stage;
2572 
2573    switch (info->stage) {
2574    case MESA_SHADER_VERTEX:
2575       switch (next_shader) {
2576       case MESA_SHADER_GEOMETRY:
2577          key->as_es = 1;
2578          break;
2579       case MESA_SHADER_TESS_CTRL:
2580       case MESA_SHADER_TESS_EVAL:
2581          key->as_ls = 1;
2582          break;
2583       default:
2584          /* If POSITION isn't written, it can only be a HW VS
2585           * if streamout is used. If streamout isn't used,
2586           * assume that it's a HW LS. (the next shader is TCS)
2587           * This heuristic is needed for separate shader objects.
2588           */
2589          if (!info->writes_position && !streamout)
2590             key->as_ls = 1;
2591       }
2592       break;
2593 
2594    case MESA_SHADER_TESS_EVAL:
2595       if (next_shader == MESA_SHADER_GEOMETRY || !info->writes_position)
2596          key->as_es = 1;
2597       break;
2598 
2599    default:;
2600    }
2601 }
2602 
2603 /**
2604  * Compile the main shader part or the monolithic shader as part of
2605  * si_shader_selector initialization. Since it can be done asynchronously,
2606  * there is no way to report compile failures to applications.
2607  */
si_init_shader_selector_async(void * job,void * gdata,int thread_index)2608 static void si_init_shader_selector_async(void *job, void *gdata, int thread_index)
2609 {
2610    struct si_shader_selector *sel = (struct si_shader_selector *)job;
2611    struct si_screen *sscreen = sel->screen;
2612    struct ac_llvm_compiler *compiler;
2613    struct pipe_debug_callback *debug = &sel->compiler_ctx_state.debug;
2614 
2615    assert(!debug->debug_message || debug->async);
2616    assert(thread_index >= 0);
2617    assert(thread_index < ARRAY_SIZE(sscreen->compiler));
2618    compiler = &sscreen->compiler[thread_index];
2619 
2620    if (!compiler->passes)
2621       si_init_compiler(sscreen, compiler);
2622 
2623    /* The GS copy shader is always pre-compiled. */
2624    if (sel->info.stage == MESA_SHADER_GEOMETRY &&
2625        (!sscreen->use_ngg || !sscreen->use_ngg_streamout || /* also for PRIMITIVES_GENERATED */
2626         sel->tess_turns_off_ngg)) {
2627       sel->gs_copy_shader = si_generate_gs_copy_shader(sscreen, compiler, sel, debug);
2628       if (!sel->gs_copy_shader) {
2629          fprintf(stderr, "radeonsi: can't create GS copy shader\n");
2630          return;
2631       }
2632 
2633       si_shader_vs(sscreen, sel->gs_copy_shader, sel);
2634    }
2635 
2636    /* Serialize NIR to save memory. Monolithic shader variants
2637     * have to deserialize NIR before compilation.
2638     */
2639    if (sel->nir) {
2640       struct blob blob;
2641       size_t size;
2642 
2643       blob_init(&blob);
2644       /* true = remove optional debugging data to increase
2645        * the likehood of getting more shader cache hits.
2646        * It also drops variable names, so we'll save more memory.
2647        */
2648       nir_serialize(&blob, sel->nir, true);
2649       blob_finish_get_buffer(&blob, &sel->nir_binary, &size);
2650       sel->nir_size = size;
2651    }
2652 
2653    /* Compile the main shader part for use with a prolog and/or epilog.
2654     * If this fails, the driver will try to compile a monolithic shader
2655     * on demand.
2656     */
2657    if (!sscreen->use_monolithic_shaders) {
2658       struct si_shader *shader = CALLOC_STRUCT(si_shader);
2659       unsigned char ir_sha1_cache_key[20];
2660 
2661       if (!shader) {
2662          fprintf(stderr, "radeonsi: can't allocate a main shader part\n");
2663          return;
2664       }
2665 
2666       /* We can leave the fence signaled because use of the default
2667        * main part is guarded by the selector's ready fence. */
2668       util_queue_fence_init(&shader->ready);
2669 
2670       shader->selector = sel;
2671       shader->is_monolithic = false;
2672       si_parse_next_shader_property(&sel->info, sel->so.num_outputs != 0, &shader->key);
2673 
2674       if (sscreen->use_ngg && (!sel->so.num_outputs || sscreen->use_ngg_streamout) &&
2675           ((sel->info.stage == MESA_SHADER_VERTEX && !shader->key.as_ls) ||
2676            sel->info.stage == MESA_SHADER_TESS_EVAL || sel->info.stage == MESA_SHADER_GEOMETRY))
2677          shader->key.as_ngg = 1;
2678 
2679       if (sel->nir) {
2680          si_get_ir_cache_key(sel, shader->key.as_ngg, shader->key.as_es, ir_sha1_cache_key);
2681       }
2682 
2683       /* Try to load the shader from the shader cache. */
2684       simple_mtx_lock(&sscreen->shader_cache_mutex);
2685 
2686       if (si_shader_cache_load_shader(sscreen, ir_sha1_cache_key, shader)) {
2687          simple_mtx_unlock(&sscreen->shader_cache_mutex);
2688          si_shader_dump_stats_for_shader_db(sscreen, shader, debug);
2689       } else {
2690          simple_mtx_unlock(&sscreen->shader_cache_mutex);
2691 
2692          /* Compile the shader if it hasn't been loaded from the cache. */
2693          if (!si_compile_shader(sscreen, compiler, shader, debug)) {
2694             FREE(shader);
2695             fprintf(stderr, "radeonsi: can't compile a main shader part\n");
2696             return;
2697          }
2698 
2699          simple_mtx_lock(&sscreen->shader_cache_mutex);
2700          si_shader_cache_insert_shader(sscreen, ir_sha1_cache_key, shader, true);
2701          simple_mtx_unlock(&sscreen->shader_cache_mutex);
2702       }
2703 
2704       *si_get_main_shader_part(sel, &shader->key) = shader;
2705 
2706       /* Unset "outputs_written" flags for outputs converted to
2707        * DEFAULT_VAL, so that later inter-shader optimizations don't
2708        * try to eliminate outputs that don't exist in the final
2709        * shader.
2710        *
2711        * This is only done if non-monolithic shaders are enabled.
2712        */
2713       if ((sel->info.stage == MESA_SHADER_VERTEX ||
2714            sel->info.stage == MESA_SHADER_TESS_EVAL ||
2715            sel->info.stage == MESA_SHADER_GEOMETRY) &&
2716           !shader->key.as_ls && !shader->key.as_es) {
2717          unsigned i;
2718 
2719          for (i = 0; i < sel->info.num_outputs; i++) {
2720             unsigned semantic = sel->info.output_semantic[i];
2721             unsigned ps_input_cntl = shader->info.vs_output_ps_input_cntl[semantic];
2722 
2723             /* OFFSET=0x20 means DEFAULT_VAL, which means VS doesn't export it. */
2724             if (G_028644_OFFSET(ps_input_cntl) != 0x20)
2725                continue;
2726 
2727             unsigned id;
2728 
2729             /* Remove the output from the mask. */
2730             if ((semantic <= VARYING_SLOT_VAR31 || semantic >= VARYING_SLOT_VAR0_16BIT) &&
2731                 semantic != VARYING_SLOT_POS &&
2732                 semantic != VARYING_SLOT_PSIZ &&
2733                 semantic != VARYING_SLOT_CLIP_VERTEX &&
2734                 semantic != VARYING_SLOT_EDGE) {
2735                id = si_shader_io_get_unique_index(semantic, true);
2736                sel->outputs_written_before_ps &= ~(1ull << id);
2737             }
2738          }
2739       }
2740    }
2741 
2742    /* Free NIR. We only keep serialized NIR after this point. */
2743    if (sel->nir) {
2744       ralloc_free(sel->nir);
2745       sel->nir = NULL;
2746    }
2747 }
2748 
si_schedule_initial_compile(struct si_context * sctx,gl_shader_stage stage,struct util_queue_fence * ready_fence,struct si_compiler_ctx_state * compiler_ctx_state,void * job,util_queue_execute_func execute)2749 void si_schedule_initial_compile(struct si_context *sctx, gl_shader_stage stage,
2750                                  struct util_queue_fence *ready_fence,
2751                                  struct si_compiler_ctx_state *compiler_ctx_state, void *job,
2752                                  util_queue_execute_func execute)
2753 {
2754    util_queue_fence_init(ready_fence);
2755 
2756    struct util_async_debug_callback async_debug;
2757    bool debug = (sctx->debug.debug_message && !sctx->debug.async) || sctx->is_debug ||
2758                 si_can_dump_shader(sctx->screen, stage);
2759 
2760    if (debug) {
2761       u_async_debug_init(&async_debug);
2762       compiler_ctx_state->debug = async_debug.base;
2763    }
2764 
2765    util_queue_add_job(&sctx->screen->shader_compiler_queue, job, ready_fence, execute, NULL, 0);
2766 
2767    if (debug) {
2768       util_queue_fence_wait(ready_fence);
2769       u_async_debug_drain(&async_debug, &sctx->debug);
2770       u_async_debug_cleanup(&async_debug);
2771    }
2772 
2773    if (sctx->screen->options.sync_compile)
2774       util_queue_fence_wait(ready_fence);
2775 }
2776 
2777 /* Return descriptor slot usage masks from the given shader info. */
si_get_active_slot_masks(const struct si_shader_info * info,uint64_t * const_and_shader_buffers,uint64_t * samplers_and_images)2778 void si_get_active_slot_masks(const struct si_shader_info *info, uint64_t *const_and_shader_buffers,
2779                               uint64_t *samplers_and_images)
2780 {
2781    unsigned start, num_shaderbufs, num_constbufs, num_images, num_msaa_images, num_samplers;
2782 
2783    num_shaderbufs = info->base.num_ssbos;
2784    num_constbufs = info->base.num_ubos;
2785    /* two 8-byte images share one 16-byte slot */
2786    num_images = align(info->base.num_images, 2);
2787    num_msaa_images = align(util_last_bit(info->base.msaa_images), 2);
2788    num_samplers = BITSET_LAST_BIT(info->base.textures_used);
2789 
2790    /* The layout is: sb[last] ... sb[0], cb[0] ... cb[last] */
2791    start = si_get_shaderbuf_slot(num_shaderbufs - 1);
2792    *const_and_shader_buffers = u_bit_consecutive64(start, num_shaderbufs + num_constbufs);
2793 
2794    /* The layout is:
2795     *   - fmask[last] ... fmask[0]     go to [15-last .. 15]
2796     *   - image[last] ... image[0]     go to [31-last .. 31]
2797     *   - sampler[0] ... sampler[last] go to [32 .. 32+last*2]
2798     *
2799     * FMASKs for images are placed separately, because MSAA images are rare,
2800     * and so we can benefit from a better cache hit rate if we keep image
2801     * descriptors together.
2802     */
2803    if (num_msaa_images)
2804       num_images = SI_NUM_IMAGES + num_msaa_images; /* add FMASK descriptors */
2805 
2806    start = si_get_image_slot(num_images - 1) / 2;
2807    *samplers_and_images = u_bit_consecutive64(start, num_images / 2 + num_samplers);
2808 }
2809 
si_create_shader_selector(struct pipe_context * ctx,const struct pipe_shader_state * state)2810 static void *si_create_shader_selector(struct pipe_context *ctx,
2811                                        const struct pipe_shader_state *state)
2812 {
2813    struct si_screen *sscreen = (struct si_screen *)ctx->screen;
2814    struct si_context *sctx = (struct si_context *)ctx;
2815    struct si_shader_selector *sel = CALLOC_STRUCT(si_shader_selector);
2816    int i;
2817 
2818    if (!sel)
2819       return NULL;
2820 
2821    sel->screen = sscreen;
2822    sel->compiler_ctx_state.debug = sctx->debug;
2823    sel->compiler_ctx_state.is_debug_context = sctx->is_debug;
2824 
2825    sel->so = state->stream_output;
2826 
2827    if (state->type == PIPE_SHADER_IR_TGSI) {
2828       sel->nir = tgsi_to_nir(state->tokens, ctx->screen, true);
2829    } else {
2830       assert(state->type == PIPE_SHADER_IR_NIR);
2831       sel->nir = state->ir.nir;
2832    }
2833 
2834    si_nir_scan_shader(sel->nir, &sel->info);
2835 
2836    const enum pipe_shader_type type = pipe_shader_type_from_mesa(sel->info.stage);
2837    sel->pipe_shader_type = type;
2838    sel->const_and_shader_buf_descriptors_index =
2839       si_const_and_shader_buffer_descriptors_idx(type);
2840    sel->sampler_and_images_descriptors_index =
2841       si_sampler_and_image_descriptors_idx(type);
2842 
2843    p_atomic_inc(&sscreen->num_shaders_created);
2844    si_get_active_slot_masks(&sel->info, &sel->active_const_and_shader_buffers,
2845                             &sel->active_samplers_and_images);
2846 
2847    /* Record which streamout buffers are enabled. */
2848    for (i = 0; i < sel->so.num_outputs; i++) {
2849       sel->enabled_streamout_buffer_mask |= (1 << sel->so.output[i].output_buffer)
2850                                             << (sel->so.output[i].stream * 4);
2851    }
2852 
2853    sel->num_vs_inputs =
2854       sel->info.stage == MESA_SHADER_VERTEX && !sel->info.base.vs.blit_sgprs_amd
2855          ? sel->info.num_inputs
2856          : 0;
2857    unsigned num_vbos_in_sgprs = si_num_vbos_in_user_sgprs_inline(sscreen->info.chip_class);
2858    sel->num_vbos_in_user_sgprs = MIN2(sel->num_vs_inputs, num_vbos_in_sgprs);
2859 
2860    /* The prolog is a no-op if there are no inputs. */
2861    sel->vs_needs_prolog = sel->info.stage == MESA_SHADER_VERTEX && sel->info.num_inputs &&
2862                           !sel->info.base.vs.blit_sgprs_amd;
2863 
2864    if (sel->info.stage == MESA_SHADER_VERTEX ||
2865        sel->info.stage == MESA_SHADER_TESS_CTRL ||
2866        sel->info.stage == MESA_SHADER_TESS_EVAL ||
2867        sel->info.stage == MESA_SHADER_GEOMETRY) {
2868       if (sel->info.stage == MESA_SHADER_TESS_CTRL) {
2869          /* Always reserve space for these. */
2870          sel->patch_outputs_written |=
2871             (1ull << si_shader_io_get_unique_index_patch(VARYING_SLOT_TESS_LEVEL_INNER)) |
2872             (1ull << si_shader_io_get_unique_index_patch(VARYING_SLOT_TESS_LEVEL_OUTER));
2873       }
2874       for (i = 0; i < sel->info.num_outputs; i++) {
2875          unsigned semantic = sel->info.output_semantic[i];
2876 
2877          if (semantic == VARYING_SLOT_TESS_LEVEL_INNER ||
2878              semantic == VARYING_SLOT_TESS_LEVEL_OUTER ||
2879              (semantic >= VARYING_SLOT_PATCH0 && semantic < VARYING_SLOT_TESS_MAX)) {
2880             sel->patch_outputs_written |= 1ull << si_shader_io_get_unique_index_patch(semantic);
2881          } else if ((semantic <= VARYING_SLOT_VAR31 || semantic >= VARYING_SLOT_VAR0_16BIT) &&
2882                     semantic != VARYING_SLOT_EDGE) {
2883             sel->outputs_written |= 1ull << si_shader_io_get_unique_index(semantic, false);
2884 
2885             /* Ignore outputs that are not passed from VS to PS. */
2886             if (semantic != VARYING_SLOT_POS &&
2887                 semantic != VARYING_SLOT_PSIZ &&
2888                 semantic != VARYING_SLOT_CLIP_VERTEX) {
2889                sel->outputs_written_before_ps |= 1ull
2890                                                  << si_shader_io_get_unique_index(semantic, true);
2891             }
2892          }
2893       }
2894    }
2895 
2896    switch (sel->info.stage) {
2897    case MESA_SHADER_GEOMETRY:
2898       /* Only possibilities: POINTS, LINE_STRIP, TRIANGLES */
2899       sel->rast_prim = sel->info.base.gs.output_primitive;
2900       if (util_rast_prim_is_triangles(sel->rast_prim))
2901          sel->rast_prim = PIPE_PRIM_TRIANGLES;
2902 
2903       sel->gsvs_vertex_size = sel->info.num_outputs * 16;
2904       sel->max_gsvs_emit_size = sel->gsvs_vertex_size * sel->info.base.gs.vertices_out;
2905       sel->gs_input_verts_per_prim =
2906          u_vertices_per_prim(sel->info.base.gs.input_primitive);
2907 
2908       /* EN_MAX_VERT_OUT_PER_GS_INSTANCE does not work with tesselation so
2909        * we can't split workgroups. Disable ngg if any of the following conditions is true:
2910        * - num_invocations * gs.vertices_out > 256
2911        * - LDS usage is too high
2912        */
2913       sel->tess_turns_off_ngg = sscreen->info.chip_class >= GFX10 &&
2914                                 (sel->info.base.gs.invocations * sel->info.base.gs.vertices_out > 256 ||
2915                                  sel->info.base.gs.invocations * sel->info.base.gs.vertices_out *
2916                                  (sel->info.num_outputs * 4 + 1) > 6500 /* max dw per GS primitive */);
2917       break;
2918 
2919    case MESA_SHADER_VERTEX:
2920    case MESA_SHADER_TESS_CTRL:
2921    case MESA_SHADER_TESS_EVAL:
2922       sel->esgs_itemsize = util_last_bit64(sel->outputs_written) * 16;
2923       sel->lshs_vertex_stride = sel->esgs_itemsize;
2924 
2925       /* Add 1 dword to reduce LDS bank conflicts, so that each vertex
2926        * will start on a different bank. (except for the maximum 32*16).
2927        */
2928       if (sel->lshs_vertex_stride < 32 * 16)
2929          sel->lshs_vertex_stride += 4;
2930 
2931       /* For the ESGS ring in LDS, add 1 dword to reduce LDS bank
2932        * conflicts, i.e. each vertex will start at a different bank.
2933        */
2934       if (sctx->chip_class >= GFX9)
2935          sel->esgs_itemsize += 4;
2936 
2937       assert(((sel->esgs_itemsize / 4) & C_028AAC_ITEMSIZE) == 0);
2938 
2939       sel->tcs_vgpr_only_inputs = ~sel->info.base.tess.tcs_cross_invocation_inputs_read &
2940                                   ~sel->info.base.inputs_read_indirectly &
2941                                   sel->info.base.inputs_read;
2942 
2943       /* Only for TES: */
2944       if (sel->info.stage == MESA_SHADER_TESS_EVAL) {
2945          if (sel->info.base.tess.point_mode)
2946             sel->rast_prim = PIPE_PRIM_POINTS;
2947          else if (sel->info.base.tess.primitive_mode == GL_LINES)
2948             sel->rast_prim = PIPE_PRIM_LINE_STRIP;
2949          else
2950             sel->rast_prim = PIPE_PRIM_TRIANGLES;
2951       } else {
2952          sel->rast_prim = PIPE_PRIM_TRIANGLES;
2953       }
2954       break;
2955 
2956    case MESA_SHADER_FRAGMENT:
2957       for (i = 0; i < sel->info.num_inputs; i++) {
2958          unsigned semantic = sel->info.input[i].semantic;
2959 
2960          if ((semantic <= VARYING_SLOT_VAR31 || semantic >= VARYING_SLOT_VAR0_16BIT) &&
2961              semantic != VARYING_SLOT_PNTC) {
2962             sel->inputs_read |= 1ull << si_shader_io_get_unique_index(semantic, true);
2963          }
2964       }
2965 
2966       for (i = 0; i < 8; i++)
2967          if (sel->info.colors_written & (1 << i))
2968             sel->colors_written_4bit |= 0xf << (4 * i);
2969 
2970       for (i = 0; i < sel->info.num_inputs; i++) {
2971          if (sel->info.input[i].semantic == VARYING_SLOT_COL0)
2972             sel->color_attr_index[0] = i;
2973          else if (sel->info.input[i].semantic == VARYING_SLOT_COL1)
2974             sel->color_attr_index[1] = i;
2975       }
2976       break;
2977    default:;
2978    }
2979 
2980    bool ngg_culling_allowed =
2981       sscreen->info.chip_class >= GFX10 &&
2982       sscreen->use_ngg_culling &&
2983       (sel->info.stage == MESA_SHADER_VERTEX ||
2984        sel->info.stage == MESA_SHADER_TESS_EVAL) &&
2985       sel->info.writes_position &&
2986       !sel->info.writes_viewport_index && /* cull only against viewport 0 */
2987       !sel->info.base.writes_memory && !sel->so.num_outputs &&
2988       (sel->info.stage != MESA_SHADER_VERTEX ||
2989        (!sel->info.base.vs.blit_sgprs_amd &&
2990         !sel->info.base.vs.window_space_position));
2991 
2992    sel->ngg_cull_vert_threshold = UINT_MAX; /* disabled (changed below) */
2993 
2994    if (ngg_culling_allowed) {
2995       if (sel->info.stage == MESA_SHADER_VERTEX) {
2996          if (sscreen->debug_flags & DBG(ALWAYS_NGG_CULLING_ALL))
2997             sel->ngg_cull_vert_threshold = 0; /* always enabled */
2998          else if (sscreen->options.shader_culling ||
2999                   sscreen->info.chip_class == GFX10_3 ||
3000                   (sscreen->info.chip_class == GFX10 &&
3001                    sscreen->info.is_pro_graphics)) {
3002             sel->ngg_cull_vert_threshold = 128;
3003          }
3004       } else if (sel->info.stage == MESA_SHADER_TESS_EVAL) {
3005          if (sel->rast_prim != PIPE_PRIM_POINTS &&
3006              (sscreen->debug_flags & DBG(ALWAYS_NGG_CULLING_ALL) ||
3007               sscreen->debug_flags & DBG(ALWAYS_NGG_CULLING_TESS) ||
3008               sscreen->info.chip_class == GFX10_3))
3009             sel->ngg_cull_vert_threshold = 0; /* always enabled */
3010       }
3011    }
3012 
3013    sel->clipdist_mask = sel->info.writes_clipvertex ? SIX_BITS :
3014                            u_bit_consecutive(0, sel->info.base.clip_distance_array_size);
3015    sel->culldist_mask = u_bit_consecutive(0, sel->info.base.cull_distance_array_size) <<
3016                         sel->info.base.clip_distance_array_size;
3017 
3018    /* DB_SHADER_CONTROL */
3019    sel->db_shader_control = S_02880C_Z_EXPORT_ENABLE(sel->info.writes_z) |
3020                             S_02880C_STENCIL_TEST_VAL_EXPORT_ENABLE(sel->info.writes_stencil) |
3021                             S_02880C_MASK_EXPORT_ENABLE(sel->info.writes_samplemask) |
3022                             S_02880C_KILL_ENABLE(sel->info.base.fs.uses_discard);
3023 
3024    if (sel->info.stage == MESA_SHADER_FRAGMENT) {
3025       switch (sel->info.base.fs.depth_layout) {
3026       case FRAG_DEPTH_LAYOUT_GREATER:
3027          sel->db_shader_control |= S_02880C_CONSERVATIVE_Z_EXPORT(V_02880C_EXPORT_GREATER_THAN_Z);
3028          break;
3029       case FRAG_DEPTH_LAYOUT_LESS:
3030          sel->db_shader_control |= S_02880C_CONSERVATIVE_Z_EXPORT(V_02880C_EXPORT_LESS_THAN_Z);
3031          break;
3032       default:;
3033       }
3034 
3035       /* Z_ORDER, EXEC_ON_HIER_FAIL and EXEC_ON_NOOP should be set as following:
3036        *
3037        *   | early Z/S | writes_mem | allow_ReZ? |      Z_ORDER       | EXEC_ON_HIER_FAIL | EXEC_ON_NOOP
3038        * --|-----------|------------|------------|--------------------|-------------------|-------------
3039        * 1a|   false   |   false    |   true     | EarlyZ_Then_ReZ    |         0         |     0
3040        * 1b|   false   |   false    |   false    | EarlyZ_Then_LateZ  |         0         |     0
3041        * 2 |   false   |   true     |   n/a      |       LateZ        |         1         |     0
3042        * 3 |   true    |   false    |   n/a      | EarlyZ_Then_LateZ  |         0         |     0
3043        * 4 |   true    |   true     |   n/a      | EarlyZ_Then_LateZ  |         0         |     1
3044        *
3045        * In cases 3 and 4, HW will force Z_ORDER to EarlyZ regardless of what's set in the register.
3046        * In case 2, NOOP_CULL is a don't care field. In case 2, 3 and 4, ReZ doesn't make sense.
3047        *
3048        * Don't use ReZ without profiling !!!
3049        *
3050        * ReZ decreases performance by 15% in DiRT: Showdown on Ultra settings, which has pretty complex
3051        * shaders.
3052        */
3053       if (sel->info.base.fs.early_fragment_tests) {
3054          /* Cases 3, 4. */
3055          sel->db_shader_control |= S_02880C_DEPTH_BEFORE_SHADER(1) |
3056                                    S_02880C_Z_ORDER(V_02880C_EARLY_Z_THEN_LATE_Z) |
3057                                    S_02880C_EXEC_ON_NOOP(sel->info.base.writes_memory);
3058       } else if (sel->info.base.writes_memory) {
3059          /* Case 2. */
3060          sel->db_shader_control |= S_02880C_Z_ORDER(V_02880C_LATE_Z) | S_02880C_EXEC_ON_HIER_FAIL(1);
3061       } else {
3062          /* Case 1. */
3063          sel->db_shader_control |= S_02880C_Z_ORDER(V_02880C_EARLY_Z_THEN_LATE_Z);
3064       }
3065 
3066       if (sel->info.base.fs.post_depth_coverage)
3067          sel->db_shader_control |= S_02880C_PRE_SHADER_DEPTH_COVERAGE_ENABLE(1);
3068    }
3069 
3070    (void)simple_mtx_init(&sel->mutex, mtx_plain);
3071 
3072    si_schedule_initial_compile(sctx, sel->info.stage, &sel->ready, &sel->compiler_ctx_state,
3073                                sel, si_init_shader_selector_async);
3074    return sel;
3075 }
3076 
si_create_shader(struct pipe_context * ctx,const struct pipe_shader_state * state)3077 static void *si_create_shader(struct pipe_context *ctx, const struct pipe_shader_state *state)
3078 {
3079    struct si_context *sctx = (struct si_context *)ctx;
3080    struct si_screen *sscreen = (struct si_screen *)ctx->screen;
3081    bool cache_hit;
3082    struct si_shader_selector *sel = (struct si_shader_selector *)util_live_shader_cache_get(
3083       ctx, &sscreen->live_shader_cache, state, &cache_hit);
3084 
3085    if (sel && cache_hit && sctx->debug.debug_message) {
3086       if (sel->main_shader_part)
3087          si_shader_dump_stats_for_shader_db(sscreen, sel->main_shader_part, &sctx->debug);
3088       if (sel->main_shader_part_ls)
3089          si_shader_dump_stats_for_shader_db(sscreen, sel->main_shader_part_ls, &sctx->debug);
3090       if (sel->main_shader_part_es)
3091          si_shader_dump_stats_for_shader_db(sscreen, sel->main_shader_part_es, &sctx->debug);
3092       if (sel->main_shader_part_ngg)
3093          si_shader_dump_stats_for_shader_db(sscreen, sel->main_shader_part_ngg, &sctx->debug);
3094       if (sel->main_shader_part_ngg_es)
3095          si_shader_dump_stats_for_shader_db(sscreen, sel->main_shader_part_ngg_es, &sctx->debug);
3096    }
3097    return sel;
3098 }
3099 
si_update_streamout_state(struct si_context * sctx)3100 static void si_update_streamout_state(struct si_context *sctx)
3101 {
3102    struct si_shader_selector *shader_with_so = si_get_vs(sctx)->cso;
3103 
3104    if (!shader_with_so)
3105       return;
3106 
3107    sctx->streamout.enabled_stream_buffers_mask = shader_with_so->enabled_streamout_buffer_mask;
3108    sctx->streamout.stride_in_dw = shader_with_so->so.stride;
3109 }
3110 
si_update_clip_regs(struct si_context * sctx,struct si_shader_selector * old_hw_vs,struct si_shader * old_hw_vs_variant,struct si_shader_selector * next_hw_vs,struct si_shader * next_hw_vs_variant)3111 static void si_update_clip_regs(struct si_context *sctx, struct si_shader_selector *old_hw_vs,
3112                                 struct si_shader *old_hw_vs_variant,
3113                                 struct si_shader_selector *next_hw_vs,
3114                                 struct si_shader *next_hw_vs_variant)
3115 {
3116    if (next_hw_vs &&
3117        (!old_hw_vs ||
3118         (old_hw_vs->info.stage == MESA_SHADER_VERTEX && old_hw_vs->info.base.vs.window_space_position) !=
3119         (next_hw_vs->info.stage == MESA_SHADER_VERTEX && next_hw_vs->info.base.vs.window_space_position) ||
3120         old_hw_vs->clipdist_mask != next_hw_vs->clipdist_mask ||
3121         old_hw_vs->culldist_mask != next_hw_vs->culldist_mask || !old_hw_vs_variant ||
3122         !next_hw_vs_variant ||
3123         old_hw_vs_variant->pa_cl_vs_out_cntl != next_hw_vs_variant->pa_cl_vs_out_cntl))
3124       si_mark_atom_dirty(sctx, &sctx->atoms.s.clip_regs);
3125 }
3126 
si_update_rasterized_prim(struct si_context * sctx)3127 static void si_update_rasterized_prim(struct si_context *sctx)
3128 {
3129    enum pipe_prim_type rast_prim;
3130 
3131    if (sctx->shader.gs.cso) {
3132       /* Only possibilities: POINTS, LINE_STRIP, TRIANGLES */
3133       rast_prim = sctx->shader.gs.cso->rast_prim;
3134    } else if (sctx->shader.tes.cso) {
3135       /* Only possibilities: POINTS, LINE_STRIP, TRIANGLES */
3136       rast_prim = sctx->shader.tes.cso->rast_prim;
3137    } else {
3138       /* Determined by draw calls. */
3139       return;
3140    }
3141 
3142    if (rast_prim != sctx->current_rast_prim) {
3143       if (util_prim_is_points_or_lines(sctx->current_rast_prim) !=
3144           util_prim_is_points_or_lines(rast_prim))
3145          si_mark_atom_dirty(sctx, &sctx->atoms.s.guardband);
3146 
3147       sctx->current_rast_prim = rast_prim;
3148    }
3149 }
3150 
si_update_common_shader_state(struct si_context * sctx,struct si_shader_selector * sel,enum pipe_shader_type type)3151 static void si_update_common_shader_state(struct si_context *sctx, struct si_shader_selector *sel,
3152                                           enum pipe_shader_type type)
3153 {
3154    si_set_active_descriptors_for_shader(sctx, sel);
3155 
3156    sctx->uses_bindless_samplers = si_shader_uses_bindless_samplers(sctx->shader.vs.cso) ||
3157                                   si_shader_uses_bindless_samplers(sctx->shader.gs.cso) ||
3158                                   si_shader_uses_bindless_samplers(sctx->shader.ps.cso) ||
3159                                   si_shader_uses_bindless_samplers(sctx->shader.tcs.cso) ||
3160                                   si_shader_uses_bindless_samplers(sctx->shader.tes.cso);
3161    sctx->uses_bindless_images = si_shader_uses_bindless_images(sctx->shader.vs.cso) ||
3162                                 si_shader_uses_bindless_images(sctx->shader.gs.cso) ||
3163                                 si_shader_uses_bindless_images(sctx->shader.ps.cso) ||
3164                                 si_shader_uses_bindless_images(sctx->shader.tcs.cso) ||
3165                                 si_shader_uses_bindless_images(sctx->shader.tes.cso);
3166 
3167    if (type == PIPE_SHADER_VERTEX || type == PIPE_SHADER_TESS_EVAL || type == PIPE_SHADER_GEOMETRY)
3168       sctx->ngg_culling = 0; /* this will be enabled on the first draw if needed */
3169 
3170    si_invalidate_inlinable_uniforms(sctx, type);
3171    sctx->do_update_shaders = true;
3172 }
3173 
si_bind_vs_shader(struct pipe_context * ctx,void * state)3174 static void si_bind_vs_shader(struct pipe_context *ctx, void *state)
3175 {
3176    struct si_context *sctx = (struct si_context *)ctx;
3177    struct si_shader_selector *old_hw_vs = si_get_vs(sctx)->cso;
3178    struct si_shader *old_hw_vs_variant = si_get_vs(sctx)->current;
3179    struct si_shader_selector *sel = state;
3180 
3181    if (sctx->shader.vs.cso == sel)
3182       return;
3183 
3184    sctx->shader.vs.cso = sel;
3185    sctx->shader.vs.current = sel ? sel->first_variant : NULL;
3186    sctx->num_vs_blit_sgprs = sel ? sel->info.base.vs.blit_sgprs_amd : 0;
3187    sctx->vs_uses_draw_id = sel ? sel->info.uses_drawid : false;
3188    sctx->fixed_func_tcs_shader.key.mono.u.ff_tcs_inputs_to_copy = sel ? sel->outputs_written : 0;
3189 
3190    if (si_update_ngg(sctx))
3191       si_shader_change_notify(sctx);
3192 
3193    si_update_common_shader_state(sctx, sel, PIPE_SHADER_VERTEX);
3194    si_select_draw_vbo(sctx);
3195    si_update_vs_viewport_state(sctx);
3196    si_update_streamout_state(sctx);
3197    si_update_clip_regs(sctx, old_hw_vs, old_hw_vs_variant, si_get_vs(sctx)->cso,
3198                        si_get_vs(sctx)->current);
3199    si_update_rasterized_prim(sctx);
3200    si_vs_key_update_inputs(sctx);
3201 }
3202 
si_update_tess_uses_prim_id(struct si_context * sctx)3203 static void si_update_tess_uses_prim_id(struct si_context *sctx)
3204 {
3205    sctx->ia_multi_vgt_param_key.u.tess_uses_prim_id =
3206       (sctx->shader.tes.cso && sctx->shader.tes.cso->info.uses_primid) ||
3207       (sctx->shader.tcs.cso && sctx->shader.tcs.cso->info.uses_primid) ||
3208       (sctx->shader.gs.cso && sctx->shader.gs.cso->info.uses_primid) ||
3209       (sctx->shader.ps.cso && !sctx->shader.gs.cso && sctx->shader.ps.cso->info.uses_primid);
3210 }
3211 
si_update_ngg(struct si_context * sctx)3212 bool si_update_ngg(struct si_context *sctx)
3213 {
3214    if (!sctx->screen->use_ngg) {
3215       assert(!sctx->ngg);
3216       return false;
3217    }
3218 
3219    bool new_ngg = true;
3220 
3221    if (sctx->shader.gs.cso && sctx->shader.tes.cso && sctx->shader.gs.cso->tess_turns_off_ngg) {
3222       new_ngg = false;
3223    } else if (!sctx->screen->use_ngg_streamout) {
3224       struct si_shader_selector *last = si_get_vs(sctx)->cso;
3225 
3226       if ((last && last->so.num_outputs) || sctx->streamout.prims_gen_query_enabled)
3227          new_ngg = false;
3228    }
3229 
3230    if (new_ngg != sctx->ngg) {
3231       /* Transitioning from NGG to legacy GS requires VGT_FLUSH on Navi10-14.
3232        * VGT_FLUSH is also emitted at the beginning of IBs when legacy GS ring
3233        * pointers are set.
3234        */
3235       if (sctx->screen->info.has_vgt_flush_ngg_legacy_bug && !new_ngg) {
3236          sctx->flags |= SI_CONTEXT_VGT_FLUSH;
3237          if (sctx->chip_class == GFX10) {
3238             /* Workaround for https://gitlab.freedesktop.org/mesa/mesa/-/issues/2941 */
3239             si_flush_gfx_cs(sctx, RADEON_FLUSH_ASYNC_START_NEXT_GFX_IB_NOW, NULL);
3240          }
3241       }
3242 
3243       sctx->ngg = new_ngg;
3244       sctx->last_gs_out_prim = -1; /* reset this so that it gets updated */
3245       si_select_draw_vbo(sctx);
3246       return true;
3247    }
3248    return false;
3249 }
3250 
si_bind_gs_shader(struct pipe_context * ctx,void * state)3251 static void si_bind_gs_shader(struct pipe_context *ctx, void *state)
3252 {
3253    struct si_context *sctx = (struct si_context *)ctx;
3254    struct si_shader_selector *old_hw_vs = si_get_vs(sctx)->cso;
3255    struct si_shader *old_hw_vs_variant = si_get_vs(sctx)->current;
3256    struct si_shader_selector *sel = state;
3257    bool enable_changed = !!sctx->shader.gs.cso != !!sel;
3258    bool ngg_changed;
3259 
3260    if (sctx->shader.gs.cso == sel)
3261       return;
3262 
3263    sctx->shader.gs.cso = sel;
3264    sctx->shader.gs.current = sel ? sel->first_variant : NULL;
3265    sctx->ia_multi_vgt_param_key.u.uses_gs = sel != NULL;
3266 
3267    si_update_common_shader_state(sctx, sel, PIPE_SHADER_GEOMETRY);
3268    si_select_draw_vbo(sctx);
3269    sctx->last_gs_out_prim = -1; /* reset this so that it gets updated */
3270 
3271    ngg_changed = si_update_ngg(sctx);
3272    if (ngg_changed || enable_changed)
3273       si_shader_change_notify(sctx);
3274    if (enable_changed) {
3275       if (sctx->ia_multi_vgt_param_key.u.uses_tess)
3276          si_update_tess_uses_prim_id(sctx);
3277    }
3278    si_update_vs_viewport_state(sctx);
3279    si_update_streamout_state(sctx);
3280    si_update_clip_regs(sctx, old_hw_vs, old_hw_vs_variant, si_get_vs(sctx)->cso,
3281                        si_get_vs(sctx)->current);
3282    si_update_rasterized_prim(sctx);
3283 }
3284 
si_bind_tcs_shader(struct pipe_context * ctx,void * state)3285 static void si_bind_tcs_shader(struct pipe_context *ctx, void *state)
3286 {
3287    struct si_context *sctx = (struct si_context *)ctx;
3288    struct si_shader_selector *sel = state;
3289    bool enable_changed = !!sctx->shader.tcs.cso != !!sel;
3290 
3291    if (sctx->shader.tcs.cso == sel)
3292       return;
3293 
3294    sctx->shader.tcs.cso = sel;
3295    sctx->shader.tcs.current = sel ? sel->first_variant : NULL;
3296    sctx->shader.tcs.key.part.tcs.epilog.invoc0_tess_factors_are_def =
3297       sel ? sel->info.tessfactors_are_def_in_all_invocs : 0;
3298    si_update_tess_uses_prim_id(sctx);
3299 
3300    si_update_common_shader_state(sctx, sel, PIPE_SHADER_TESS_CTRL);
3301 
3302    if (enable_changed)
3303       sctx->last_tcs = NULL; /* invalidate derived tess state */
3304 }
3305 
si_bind_tes_shader(struct pipe_context * ctx,void * state)3306 static void si_bind_tes_shader(struct pipe_context *ctx, void *state)
3307 {
3308    struct si_context *sctx = (struct si_context *)ctx;
3309    struct si_shader_selector *old_hw_vs = si_get_vs(sctx)->cso;
3310    struct si_shader *old_hw_vs_variant = si_get_vs(sctx)->current;
3311    struct si_shader_selector *sel = state;
3312    bool enable_changed = !!sctx->shader.tes.cso != !!sel;
3313 
3314    if (sctx->shader.tes.cso == sel)
3315       return;
3316 
3317    sctx->shader.tes.cso = sel;
3318    sctx->shader.tes.current = sel ? sel->first_variant : NULL;
3319    sctx->ia_multi_vgt_param_key.u.uses_tess = sel != NULL;
3320    si_update_tess_uses_prim_id(sctx);
3321 
3322    sctx->shader.tcs.key.part.tcs.epilog.prim_mode =
3323    sctx->fixed_func_tcs_shader.key.part.tcs.epilog.prim_mode =
3324       sel ? sel->info.base.tess.primitive_mode : 0;
3325 
3326    sctx->shader.tcs.key.part.tcs.epilog.tes_reads_tess_factors =
3327    sctx->fixed_func_tcs_shader.key.part.tcs.epilog.tes_reads_tess_factors =
3328       sel ? sel->info.reads_tess_factors : 0;
3329 
3330    si_update_common_shader_state(sctx, sel, PIPE_SHADER_TESS_EVAL);
3331    si_select_draw_vbo(sctx);
3332    sctx->last_gs_out_prim = -1; /* reset this so that it gets updated */
3333 
3334    bool ngg_changed = si_update_ngg(sctx);
3335    if (ngg_changed || enable_changed)
3336       si_shader_change_notify(sctx);
3337    if (enable_changed)
3338       sctx->last_tes_sh_base = -1; /* invalidate derived tess state */
3339    si_update_vs_viewport_state(sctx);
3340    si_update_streamout_state(sctx);
3341    si_update_clip_regs(sctx, old_hw_vs, old_hw_vs_variant, si_get_vs(sctx)->cso,
3342                        si_get_vs(sctx)->current);
3343    si_update_rasterized_prim(sctx);
3344 }
3345 
si_update_ps_kill_enable(struct si_context * sctx)3346 void si_update_ps_kill_enable(struct si_context *sctx)
3347 {
3348    if (!sctx->shader.ps.cso)
3349       return;
3350 
3351    unsigned db_shader_control = sctx->shader.ps.cso->db_shader_control |
3352                                 S_02880C_KILL_ENABLE(sctx->queued.named.dsa->alpha_func != PIPE_FUNC_ALWAYS);
3353 
3354    if (sctx->ps_db_shader_control != db_shader_control) {
3355       sctx->ps_db_shader_control = db_shader_control;
3356       si_mark_atom_dirty(sctx, &sctx->atoms.s.db_render_state);
3357       if (sctx->screen->dpbb_allowed)
3358          si_mark_atom_dirty(sctx, &sctx->atoms.s.dpbb_state);
3359    }
3360 }
3361 
si_update_vrs_flat_shading(struct si_context * sctx)3362 void si_update_vrs_flat_shading(struct si_context *sctx)
3363 {
3364    if (sctx->chip_class >= GFX10_3 && sctx->shader.ps.cso) {
3365       struct si_state_rasterizer *rs = sctx->queued.named.rasterizer;
3366       struct si_shader_info *info = &sctx->shader.ps.cso->info;
3367       bool allow_flat_shading = info->allow_flat_shading;
3368 
3369       if (allow_flat_shading &&
3370           (rs->line_smooth || rs->poly_smooth || rs->poly_stipple_enable ||
3371            (!rs->flatshade && info->uses_interp_color)))
3372          allow_flat_shading = false;
3373 
3374       if (sctx->allow_flat_shading != allow_flat_shading) {
3375          sctx->allow_flat_shading = allow_flat_shading;
3376          si_mark_atom_dirty(sctx, &sctx->atoms.s.db_render_state);
3377       }
3378    }
3379 }
3380 
si_bind_ps_shader(struct pipe_context * ctx,void * state)3381 static void si_bind_ps_shader(struct pipe_context *ctx, void *state)
3382 {
3383    struct si_context *sctx = (struct si_context *)ctx;
3384    struct si_shader_selector *old_sel = sctx->shader.ps.cso;
3385    struct si_shader_selector *sel = state;
3386 
3387    /* skip if supplied shader is one already in use */
3388    if (old_sel == sel)
3389       return;
3390 
3391    sctx->shader.ps.cso = sel;
3392    sctx->shader.ps.current = sel ? sel->first_variant : NULL;
3393 
3394    si_update_common_shader_state(sctx, sel, PIPE_SHADER_FRAGMENT);
3395    if (sel) {
3396       if (sctx->ia_multi_vgt_param_key.u.uses_tess)
3397          si_update_tess_uses_prim_id(sctx);
3398 
3399       if (!old_sel || old_sel->info.colors_written != sel->info.colors_written)
3400          si_mark_atom_dirty(sctx, &sctx->atoms.s.cb_render_state);
3401 
3402       if (sctx->screen->has_out_of_order_rast &&
3403           (!old_sel || old_sel->info.base.writes_memory != sel->info.base.writes_memory ||
3404            old_sel->info.base.fs.early_fragment_tests !=
3405               sel->info.base.fs.early_fragment_tests))
3406          si_mark_atom_dirty(sctx, &sctx->atoms.s.msaa_config);
3407    }
3408    si_update_ps_colorbuf0_slot(sctx);
3409 
3410    si_ps_key_update_framebuffer(sctx);
3411    si_ps_key_update_framebuffer_blend(sctx);
3412    si_ps_key_update_blend_rasterizer(sctx);
3413    si_ps_key_update_rasterizer(sctx);
3414    si_ps_key_update_dsa(sctx);
3415    si_ps_key_update_sample_shading(sctx);
3416    si_ps_key_update_framebuffer_rasterizer_sample_shading(sctx);
3417    si_update_ps_inputs_read_or_disabled(sctx);
3418    si_update_ps_kill_enable(sctx);
3419    si_update_vrs_flat_shading(sctx);
3420 }
3421 
si_delete_shader(struct si_context * sctx,struct si_shader * shader)3422 static void si_delete_shader(struct si_context *sctx, struct si_shader *shader)
3423 {
3424    if (shader->is_optimized) {
3425       util_queue_drop_job(&sctx->screen->shader_compiler_queue_low_priority, &shader->ready);
3426    }
3427 
3428    util_queue_fence_destroy(&shader->ready);
3429 
3430    /* If destroyed shaders were not unbound, the next compiled
3431     * shader variant could get the same pointer address and so
3432     * binding it to the same shader stage would be considered
3433     * a no-op, causing random behavior.
3434     */
3435    int state_index = -1;
3436 
3437    switch (shader->selector->info.stage) {
3438    case MESA_SHADER_VERTEX:
3439       if (shader->key.as_ls) {
3440          if (sctx->chip_class <= GFX8)
3441             state_index = SI_STATE_IDX(ls);
3442       } else if (shader->key.as_es) {
3443          if (sctx->chip_class <= GFX8)
3444             state_index = SI_STATE_IDX(es);
3445       } else if (shader->key.as_ngg) {
3446          state_index = SI_STATE_IDX(gs);
3447       } else {
3448          state_index = SI_STATE_IDX(vs);
3449       }
3450       break;
3451    case MESA_SHADER_TESS_CTRL:
3452       state_index = SI_STATE_IDX(hs);
3453       break;
3454    case MESA_SHADER_TESS_EVAL:
3455       if (shader->key.as_es) {
3456          if (sctx->chip_class <= GFX8)
3457             state_index = SI_STATE_IDX(es);
3458       } else if (shader->key.as_ngg) {
3459          state_index = SI_STATE_IDX(gs);
3460       } else {
3461          state_index = SI_STATE_IDX(vs);
3462       }
3463       break;
3464    case MESA_SHADER_GEOMETRY:
3465       if (shader->is_gs_copy_shader)
3466          state_index = SI_STATE_IDX(vs);
3467       else
3468          state_index = SI_STATE_IDX(gs);
3469       break;
3470    case MESA_SHADER_FRAGMENT:
3471       state_index = SI_STATE_IDX(ps);
3472       break;
3473    default:;
3474    }
3475 
3476    si_shader_selector_reference(sctx, &shader->previous_stage_sel, NULL);
3477    si_shader_destroy(shader);
3478    si_pm4_free_state(sctx, &shader->pm4, state_index);
3479 }
3480 
si_destroy_shader_selector(struct pipe_context * ctx,void * cso)3481 static void si_destroy_shader_selector(struct pipe_context *ctx, void *cso)
3482 {
3483    struct si_context *sctx = (struct si_context *)ctx;
3484    struct si_shader_selector *sel = (struct si_shader_selector *)cso;
3485    struct si_shader *p = sel->first_variant, *c;
3486    enum pipe_shader_type type = pipe_shader_type_from_mesa(sel->info.stage);
3487 
3488    util_queue_drop_job(&sctx->screen->shader_compiler_queue, &sel->ready);
3489 
3490    if (sctx->shaders[type].cso == sel) {
3491       sctx->shaders[type].cso = NULL;
3492       sctx->shaders[type].current = NULL;
3493    }
3494 
3495    while (p) {
3496       c = p->next_variant;
3497       si_delete_shader(sctx, p);
3498       p = c;
3499    }
3500 
3501    if (sel->main_shader_part)
3502       si_delete_shader(sctx, sel->main_shader_part);
3503    if (sel->main_shader_part_ls)
3504       si_delete_shader(sctx, sel->main_shader_part_ls);
3505    if (sel->main_shader_part_es)
3506       si_delete_shader(sctx, sel->main_shader_part_es);
3507    if (sel->main_shader_part_ngg)
3508       si_delete_shader(sctx, sel->main_shader_part_ngg);
3509    if (sel->gs_copy_shader)
3510       si_delete_shader(sctx, sel->gs_copy_shader);
3511 
3512    util_queue_fence_destroy(&sel->ready);
3513    simple_mtx_destroy(&sel->mutex);
3514    ralloc_free(sel->nir);
3515    free(sel->nir_binary);
3516    free(sel);
3517 }
3518 
si_delete_shader_selector(struct pipe_context * ctx,void * state)3519 static void si_delete_shader_selector(struct pipe_context *ctx, void *state)
3520 {
3521    struct si_context *sctx = (struct si_context *)ctx;
3522    struct si_shader_selector *sel = (struct si_shader_selector *)state;
3523 
3524    si_shader_selector_reference(sctx, &sel, NULL);
3525 }
3526 
3527 /**
3528  * Writing CONFIG or UCONFIG VGT registers requires VGT_FLUSH before that.
3529  */
si_cs_preamble_add_vgt_flush(struct si_context * sctx)3530 static void si_cs_preamble_add_vgt_flush(struct si_context *sctx)
3531 {
3532    /* We shouldn't get here if registers are shadowed. */
3533    assert(!sctx->shadowed_regs);
3534 
3535    if (sctx->cs_preamble_has_vgt_flush)
3536       return;
3537 
3538    /* Done by Vulkan before VGT_FLUSH. */
3539    si_pm4_cmd_add(sctx->cs_preamble_state, PKT3(PKT3_EVENT_WRITE, 0, 0));
3540    si_pm4_cmd_add(sctx->cs_preamble_state, EVENT_TYPE(V_028A90_VS_PARTIAL_FLUSH) | EVENT_INDEX(4));
3541 
3542    /* VGT_FLUSH is required even if VGT is idle. It resets VGT pointers. */
3543    si_pm4_cmd_add(sctx->cs_preamble_state, PKT3(PKT3_EVENT_WRITE, 0, 0));
3544    si_pm4_cmd_add(sctx->cs_preamble_state, EVENT_TYPE(V_028A90_VGT_FLUSH) | EVENT_INDEX(0));
3545    sctx->cs_preamble_has_vgt_flush = true;
3546 }
3547 
3548 /**
3549  * Writing CONFIG or UCONFIG VGT registers requires VGT_FLUSH before that.
3550  */
si_emit_vgt_flush(struct radeon_cmdbuf * cs)3551 static void si_emit_vgt_flush(struct radeon_cmdbuf *cs)
3552 {
3553    radeon_begin(cs);
3554 
3555    /* This is required before VGT_FLUSH. */
3556    radeon_emit(PKT3(PKT3_EVENT_WRITE, 0, 0));
3557    radeon_emit(EVENT_TYPE(V_028A90_VS_PARTIAL_FLUSH) | EVENT_INDEX(4));
3558 
3559    /* VGT_FLUSH is required even if VGT is idle. It resets VGT pointers. */
3560    radeon_emit(PKT3(PKT3_EVENT_WRITE, 0, 0));
3561    radeon_emit(EVENT_TYPE(V_028A90_VGT_FLUSH) | EVENT_INDEX(0));
3562    radeon_end();
3563 }
3564 
3565 /* Initialize state related to ESGS / GSVS ring buffers */
si_update_gs_ring_buffers(struct si_context * sctx)3566 bool si_update_gs_ring_buffers(struct si_context *sctx)
3567 {
3568    struct si_shader_selector *es =
3569       sctx->shader.tes.cso ? sctx->shader.tes.cso : sctx->shader.vs.cso;
3570    struct si_shader_selector *gs = sctx->shader.gs.cso;
3571    struct si_pm4_state *pm4;
3572 
3573    /* Chip constants. */
3574    unsigned num_se = sctx->screen->info.max_se;
3575    unsigned wave_size = 64;
3576    unsigned max_gs_waves = 32 * num_se; /* max 32 per SE on GCN */
3577    /* On GFX6-GFX7, the value comes from VGT_GS_VERTEX_REUSE = 16.
3578     * On GFX8+, the value comes from VGT_VERTEX_REUSE_BLOCK_CNTL = 30 (+2).
3579     */
3580    unsigned gs_vertex_reuse = (sctx->chip_class >= GFX8 ? 32 : 16) * num_se;
3581    unsigned alignment = 256 * num_se;
3582    /* The maximum size is 63.999 MB per SE. */
3583    unsigned max_size = ((unsigned)(63.999 * 1024 * 1024) & ~255) * num_se;
3584 
3585    /* Calculate the minimum size. */
3586    unsigned min_esgs_ring_size = align(es->esgs_itemsize * gs_vertex_reuse * wave_size, alignment);
3587 
3588    /* These are recommended sizes, not minimum sizes. */
3589    unsigned esgs_ring_size =
3590       max_gs_waves * 2 * wave_size * es->esgs_itemsize * gs->gs_input_verts_per_prim;
3591    unsigned gsvs_ring_size = max_gs_waves * 2 * wave_size * gs->max_gsvs_emit_size;
3592 
3593    min_esgs_ring_size = align(min_esgs_ring_size, alignment);
3594    esgs_ring_size = align(esgs_ring_size, alignment);
3595    gsvs_ring_size = align(gsvs_ring_size, alignment);
3596 
3597    esgs_ring_size = CLAMP(esgs_ring_size, min_esgs_ring_size, max_size);
3598    gsvs_ring_size = MIN2(gsvs_ring_size, max_size);
3599 
3600    /* Some rings don't have to be allocated if shaders don't use them.
3601     * (e.g. no varyings between ES and GS or GS and VS)
3602     *
3603     * GFX9 doesn't have the ESGS ring.
3604     */
3605    bool update_esgs = sctx->chip_class <= GFX8 && esgs_ring_size &&
3606                       (!sctx->esgs_ring || sctx->esgs_ring->width0 < esgs_ring_size);
3607    bool update_gsvs =
3608       gsvs_ring_size && (!sctx->gsvs_ring || sctx->gsvs_ring->width0 < gsvs_ring_size);
3609 
3610    if (!update_esgs && !update_gsvs)
3611       return true;
3612 
3613    if (update_esgs) {
3614       pipe_resource_reference(&sctx->esgs_ring, NULL);
3615       sctx->esgs_ring =
3616          pipe_aligned_buffer_create(sctx->b.screen,
3617                                     SI_RESOURCE_FLAG_UNMAPPABLE | SI_RESOURCE_FLAG_DRIVER_INTERNAL,
3618                                     PIPE_USAGE_DEFAULT,
3619                                     esgs_ring_size, sctx->screen->info.pte_fragment_size);
3620       if (!sctx->esgs_ring)
3621          return false;
3622    }
3623 
3624    if (update_gsvs) {
3625       pipe_resource_reference(&sctx->gsvs_ring, NULL);
3626       sctx->gsvs_ring =
3627          pipe_aligned_buffer_create(sctx->b.screen,
3628                                     SI_RESOURCE_FLAG_UNMAPPABLE | SI_RESOURCE_FLAG_DRIVER_INTERNAL,
3629                                     PIPE_USAGE_DEFAULT,
3630                                     gsvs_ring_size, sctx->screen->info.pte_fragment_size);
3631       if (!sctx->gsvs_ring)
3632          return false;
3633    }
3634 
3635    /* Set ring bindings. */
3636    if (sctx->esgs_ring) {
3637       assert(sctx->chip_class <= GFX8);
3638       si_set_ring_buffer(sctx, SI_ES_RING_ESGS, sctx->esgs_ring, 0, sctx->esgs_ring->width0, true,
3639                          true, 4, 64, 0);
3640       si_set_ring_buffer(sctx, SI_GS_RING_ESGS, sctx->esgs_ring, 0, sctx->esgs_ring->width0, false,
3641                          false, 0, 0, 0);
3642    }
3643    if (sctx->gsvs_ring) {
3644       si_set_ring_buffer(sctx, SI_RING_GSVS, sctx->gsvs_ring, 0, sctx->gsvs_ring->width0, false,
3645                          false, 0, 0, 0);
3646    }
3647 
3648    if (sctx->shadowed_regs) {
3649       /* These registers will be shadowed, so set them only once. */
3650       struct radeon_cmdbuf *cs = &sctx->gfx_cs;
3651 
3652       assert(sctx->chip_class >= GFX7);
3653 
3654       si_emit_vgt_flush(cs);
3655 
3656       radeon_begin(cs);
3657 
3658       /* Set the GS registers. */
3659       if (sctx->esgs_ring) {
3660          assert(sctx->chip_class <= GFX8);
3661          radeon_set_uconfig_reg(R_030900_VGT_ESGS_RING_SIZE,
3662                                 sctx->esgs_ring->width0 / 256);
3663       }
3664       if (sctx->gsvs_ring) {
3665          radeon_set_uconfig_reg(R_030904_VGT_GSVS_RING_SIZE,
3666                                 sctx->gsvs_ring->width0 / 256);
3667       }
3668       radeon_end();
3669       return true;
3670    }
3671 
3672    /* The codepath without register shadowing. */
3673    /* Create the "cs_preamble_gs_rings" state. */
3674    pm4 = CALLOC_STRUCT(si_pm4_state);
3675    if (!pm4)
3676       return false;
3677 
3678    if (sctx->chip_class >= GFX7) {
3679       if (sctx->esgs_ring) {
3680          assert(sctx->chip_class <= GFX8);
3681          si_pm4_set_reg(pm4, R_030900_VGT_ESGS_RING_SIZE, sctx->esgs_ring->width0 / 256);
3682       }
3683       if (sctx->gsvs_ring)
3684          si_pm4_set_reg(pm4, R_030904_VGT_GSVS_RING_SIZE, sctx->gsvs_ring->width0 / 256);
3685    } else {
3686       if (sctx->esgs_ring)
3687          si_pm4_set_reg(pm4, R_0088C8_VGT_ESGS_RING_SIZE, sctx->esgs_ring->width0 / 256);
3688       if (sctx->gsvs_ring)
3689          si_pm4_set_reg(pm4, R_0088CC_VGT_GSVS_RING_SIZE, sctx->gsvs_ring->width0 / 256);
3690    }
3691 
3692    /* Set the state. */
3693    if (sctx->cs_preamble_gs_rings)
3694       si_pm4_free_state(sctx, sctx->cs_preamble_gs_rings, ~0);
3695    sctx->cs_preamble_gs_rings = pm4;
3696 
3697    si_cs_preamble_add_vgt_flush(sctx);
3698 
3699    /* Flush the context to re-emit both cs_preamble states. */
3700    sctx->initial_gfx_cs_size = 0; /* force flush */
3701    si_flush_gfx_cs(sctx, RADEON_FLUSH_ASYNC_START_NEXT_GFX_IB_NOW, NULL);
3702 
3703    return true;
3704 }
3705 
si_shader_lock(struct si_shader * shader)3706 static void si_shader_lock(struct si_shader *shader)
3707 {
3708    simple_mtx_lock(&shader->selector->mutex);
3709    if (shader->previous_stage_sel) {
3710       assert(shader->previous_stage_sel != shader->selector);
3711       simple_mtx_lock(&shader->previous_stage_sel->mutex);
3712    }
3713 }
3714 
si_shader_unlock(struct si_shader * shader)3715 static void si_shader_unlock(struct si_shader *shader)
3716 {
3717    if (shader->previous_stage_sel)
3718       simple_mtx_unlock(&shader->previous_stage_sel->mutex);
3719    simple_mtx_unlock(&shader->selector->mutex);
3720 }
3721 
3722 /**
3723  * @returns 1 if \p sel has been updated to use a new scratch buffer
3724  *          0 if not
3725  *          < 0 if there was a failure
3726  */
si_update_scratch_buffer(struct si_context * sctx,struct si_shader * shader)3727 static int si_update_scratch_buffer(struct si_context *sctx, struct si_shader *shader)
3728 {
3729    uint64_t scratch_va = sctx->scratch_buffer->gpu_address;
3730 
3731    if (!shader)
3732       return 0;
3733 
3734    /* This shader doesn't need a scratch buffer */
3735    if (shader->config.scratch_bytes_per_wave == 0)
3736       return 0;
3737 
3738    /* Prevent race conditions when updating:
3739     * - si_shader::scratch_bo
3740     * - si_shader::binary::code
3741     * - si_shader::previous_stage::binary::code.
3742     */
3743    si_shader_lock(shader);
3744 
3745    /* This shader is already configured to use the current
3746     * scratch buffer. */
3747    if (shader->scratch_bo == sctx->scratch_buffer) {
3748       si_shader_unlock(shader);
3749       return 0;
3750    }
3751 
3752    assert(sctx->scratch_buffer);
3753 
3754    /* Replace the shader bo with a new bo that has the relocs applied. */
3755    if (!si_shader_binary_upload(sctx->screen, shader, scratch_va)) {
3756       si_shader_unlock(shader);
3757       return -1;
3758    }
3759 
3760    /* Update the shader state to use the new shader bo. */
3761    si_shader_init_pm4_state(sctx->screen, shader);
3762 
3763    si_resource_reference(&shader->scratch_bo, sctx->scratch_buffer);
3764 
3765    si_shader_unlock(shader);
3766    return 1;
3767 }
3768 
si_get_tcs_current(struct si_context * sctx)3769 static struct si_shader *si_get_tcs_current(struct si_context *sctx)
3770 {
3771    if (!sctx->shader.tes.cso)
3772       return NULL; /* tessellation disabled */
3773 
3774    return sctx->shader.tcs.cso ? sctx->shader.tcs.current : sctx->fixed_func_tcs_shader.current;
3775 }
3776 
si_update_scratch_relocs(struct si_context * sctx)3777 static bool si_update_scratch_relocs(struct si_context *sctx)
3778 {
3779    struct si_shader *tcs = si_get_tcs_current(sctx);
3780    int r;
3781 
3782    /* Update the shaders, so that they are using the latest scratch.
3783     * The scratch buffer may have been changed since these shaders were
3784     * last used, so we still need to try to update them, even if they
3785     * require scratch buffers smaller than the current size.
3786     */
3787    r = si_update_scratch_buffer(sctx, sctx->shader.ps.current);
3788    if (r < 0)
3789       return false;
3790    if (r == 1)
3791       si_pm4_bind_state(sctx, ps, sctx->shader.ps.current);
3792 
3793    r = si_update_scratch_buffer(sctx, sctx->shader.gs.current);
3794    if (r < 0)
3795       return false;
3796    if (r == 1)
3797       si_pm4_bind_state(sctx, gs, sctx->shader.gs.current);
3798 
3799    r = si_update_scratch_buffer(sctx, tcs);
3800    if (r < 0)
3801       return false;
3802    if (r == 1)
3803       si_pm4_bind_state(sctx, hs, tcs);
3804 
3805    /* VS can be bound as LS, ES, or VS. */
3806    r = si_update_scratch_buffer(sctx, sctx->shader.vs.current);
3807    if (r < 0)
3808       return false;
3809    if (r == 1) {
3810       if (sctx->shader.vs.current->key.as_ls)
3811          si_pm4_bind_state(sctx, ls, sctx->shader.vs.current);
3812       else if (sctx->shader.vs.current->key.as_es)
3813          si_pm4_bind_state(sctx, es, sctx->shader.vs.current);
3814       else if (sctx->shader.vs.current->key.as_ngg)
3815          si_pm4_bind_state(sctx, gs, sctx->shader.vs.current);
3816       else
3817          si_pm4_bind_state(sctx, vs, sctx->shader.vs.current);
3818    }
3819 
3820    /* TES can be bound as ES or VS. */
3821    r = si_update_scratch_buffer(sctx, sctx->shader.tes.current);
3822    if (r < 0)
3823       return false;
3824    if (r == 1) {
3825       if (sctx->shader.tes.current->key.as_es)
3826          si_pm4_bind_state(sctx, es, sctx->shader.tes.current);
3827       else if (sctx->shader.tes.current->key.as_ngg)
3828          si_pm4_bind_state(sctx, gs, sctx->shader.tes.current);
3829       else
3830          si_pm4_bind_state(sctx, vs, sctx->shader.tes.current);
3831    }
3832 
3833    return true;
3834 }
3835 
si_update_spi_tmpring_size(struct si_context * sctx,unsigned bytes)3836 bool si_update_spi_tmpring_size(struct si_context *sctx, unsigned bytes)
3837 {
3838    /* SPI_TMPRING_SIZE.WAVESIZE must be constant for each scratch buffer.
3839     * There are 2 cases to handle:
3840     *
3841     * - If the current needed size is less than the maximum seen size,
3842     *   use the maximum seen size, so that WAVESIZE remains the same.
3843     *
3844     * - If the current needed size is greater than the maximum seen size,
3845     *   the scratch buffer is reallocated, so we can increase WAVESIZE.
3846     *
3847     * Shaders that set SCRATCH_EN=0 don't allocate scratch space.
3848     * Otherwise, the number of waves that can use scratch is
3849     * SPI_TMPRING_SIZE.WAVES.
3850     */
3851    sctx->max_seen_scratch_bytes_per_wave = MAX2(sctx->max_seen_scratch_bytes_per_wave, bytes);
3852 
3853    unsigned scratch_needed_size = sctx->max_seen_scratch_bytes_per_wave * sctx->scratch_waves;
3854    unsigned spi_tmpring_size;
3855 
3856    if (scratch_needed_size > 0) {
3857       if (!sctx->scratch_buffer || scratch_needed_size > sctx->scratch_buffer->b.b.width0) {
3858          /* Create a bigger scratch buffer */
3859          si_resource_reference(&sctx->scratch_buffer, NULL);
3860 
3861          sctx->scratch_buffer = si_aligned_buffer_create(
3862             &sctx->screen->b,
3863             SI_RESOURCE_FLAG_UNMAPPABLE | SI_RESOURCE_FLAG_DRIVER_INTERNAL,
3864             PIPE_USAGE_DEFAULT, scratch_needed_size,
3865             sctx->screen->info.pte_fragment_size);
3866          if (!sctx->scratch_buffer)
3867             return false;
3868 
3869          si_context_add_resource_size(sctx, &sctx->scratch_buffer->b.b);
3870       }
3871 
3872       if (!si_update_scratch_relocs(sctx))
3873          return false;
3874    }
3875 
3876    /* The LLVM shader backend should be reporting aligned scratch_sizes. */
3877    assert((scratch_needed_size & ~0x3FF) == scratch_needed_size &&
3878           "scratch size should already be aligned correctly.");
3879 
3880    spi_tmpring_size = S_0286E8_WAVES(sctx->scratch_waves) |
3881                       S_0286E8_WAVESIZE(sctx->max_seen_scratch_bytes_per_wave >> 10);
3882    if (spi_tmpring_size != sctx->spi_tmpring_size) {
3883       sctx->spi_tmpring_size = spi_tmpring_size;
3884       si_mark_atom_dirty(sctx, &sctx->atoms.s.scratch_state);
3885    }
3886    return true;
3887 }
3888 
si_init_tess_factor_ring(struct si_context * sctx)3889 void si_init_tess_factor_ring(struct si_context *sctx)
3890 {
3891    assert(!sctx->tess_rings);
3892    assert(((sctx->screen->tess_factor_ring_size / 4) & C_030938_SIZE) == 0);
3893 
3894    /* The address must be aligned to 2^19, because the shader only
3895     * receives the high 13 bits.
3896     */
3897    sctx->tess_rings = pipe_aligned_buffer_create(
3898       sctx->b.screen, SI_RESOURCE_FLAG_32BIT | SI_RESOURCE_FLAG_DRIVER_INTERNAL, PIPE_USAGE_DEFAULT,
3899       sctx->screen->tess_offchip_ring_size + sctx->screen->tess_factor_ring_size, 1 << 19);
3900    if (!sctx->tess_rings)
3901       return;
3902 
3903    if (sctx->screen->info.has_tmz_support) {
3904       sctx->tess_rings_tmz = pipe_aligned_buffer_create(
3905          sctx->b.screen,
3906          PIPE_RESOURCE_FLAG_ENCRYPTED | SI_RESOURCE_FLAG_32BIT | SI_RESOURCE_FLAG_DRIVER_INTERNAL,
3907          PIPE_USAGE_DEFAULT,
3908          sctx->screen->tess_offchip_ring_size + sctx->screen->tess_factor_ring_size, 1 << 19);
3909    }
3910 
3911    uint64_t factor_va =
3912       si_resource(sctx->tess_rings)->gpu_address + sctx->screen->tess_offchip_ring_size;
3913 
3914    if (sctx->shadowed_regs) {
3915       /* These registers will be shadowed, so set them only once. */
3916       /* TODO: tmz + shadowed_regs support */
3917       struct radeon_cmdbuf *cs = &sctx->gfx_cs;
3918 
3919       assert(sctx->chip_class >= GFX7);
3920 
3921       radeon_add_to_buffer_list(sctx, &sctx->gfx_cs, si_resource(sctx->tess_rings),
3922                                 RADEON_USAGE_READWRITE, RADEON_PRIO_SHADER_RINGS);
3923       si_emit_vgt_flush(cs);
3924 
3925       /* Set tessellation registers. */
3926       radeon_begin(cs);
3927       radeon_set_uconfig_reg(R_030938_VGT_TF_RING_SIZE,
3928                              S_030938_SIZE(sctx->screen->tess_factor_ring_size / 4));
3929       radeon_set_uconfig_reg(R_030940_VGT_TF_MEMORY_BASE, factor_va >> 8);
3930       if (sctx->chip_class >= GFX10) {
3931          radeon_set_uconfig_reg(R_030984_VGT_TF_MEMORY_BASE_HI_UMD,
3932                                 S_030984_BASE_HI(factor_va >> 40));
3933       } else if (sctx->chip_class == GFX9) {
3934          radeon_set_uconfig_reg(R_030944_VGT_TF_MEMORY_BASE_HI,
3935                                 S_030944_BASE_HI(factor_va >> 40));
3936       }
3937       radeon_set_uconfig_reg(R_03093C_VGT_HS_OFFCHIP_PARAM,
3938                              sctx->screen->vgt_hs_offchip_param);
3939       radeon_end();
3940       return;
3941    }
3942 
3943    /* The codepath without register shadowing. */
3944    si_cs_preamble_add_vgt_flush(sctx);
3945 
3946    /* Append these registers to the init config state. */
3947    if (sctx->chip_class >= GFX7) {
3948       si_pm4_set_reg(sctx->cs_preamble_state, R_030938_VGT_TF_RING_SIZE,
3949                      S_030938_SIZE(sctx->screen->tess_factor_ring_size / 4));
3950       si_pm4_set_reg(sctx->cs_preamble_state, R_030940_VGT_TF_MEMORY_BASE, factor_va >> 8);
3951       if (sctx->chip_class >= GFX10)
3952          si_pm4_set_reg(sctx->cs_preamble_state, R_030984_VGT_TF_MEMORY_BASE_HI_UMD,
3953                         S_030984_BASE_HI(factor_va >> 40));
3954       else if (sctx->chip_class == GFX9)
3955          si_pm4_set_reg(sctx->cs_preamble_state, R_030944_VGT_TF_MEMORY_BASE_HI,
3956                         S_030944_BASE_HI(factor_va >> 40));
3957       si_pm4_set_reg(sctx->cs_preamble_state, R_03093C_VGT_HS_OFFCHIP_PARAM,
3958                      sctx->screen->vgt_hs_offchip_param);
3959    } else {
3960       struct si_pm4_state *pm4 = CALLOC_STRUCT(si_pm4_state);
3961 
3962       si_pm4_set_reg(pm4, R_008988_VGT_TF_RING_SIZE,
3963                      S_008988_SIZE(sctx->screen->tess_factor_ring_size / 4));
3964       si_pm4_set_reg(pm4, R_0089B8_VGT_TF_MEMORY_BASE, factor_va >> 8);
3965       si_pm4_set_reg(pm4, R_0089B0_VGT_HS_OFFCHIP_PARAM,
3966                      sctx->screen->vgt_hs_offchip_param);
3967       sctx->cs_preamble_tess_rings = pm4;
3968 
3969       if (sctx->screen->info.has_tmz_support) {
3970          pm4 = CALLOC_STRUCT(si_pm4_state);
3971          uint64_t factor_va_tmz =
3972             si_resource(sctx->tess_rings_tmz)->gpu_address + sctx->screen->tess_offchip_ring_size;
3973          si_pm4_set_reg(pm4, R_008988_VGT_TF_RING_SIZE,
3974                      S_008988_SIZE(sctx->screen->tess_factor_ring_size / 4));
3975          si_pm4_set_reg(pm4, R_0089B8_VGT_TF_MEMORY_BASE, factor_va_tmz >> 8);
3976          si_pm4_set_reg(pm4, R_0089B0_VGT_HS_OFFCHIP_PARAM,
3977                         sctx->screen->vgt_hs_offchip_param);
3978          sctx->cs_preamble_tess_rings_tmz = pm4;
3979       }
3980    }
3981 
3982    /* Flush the context to re-emit the cs_preamble state.
3983     * This is done only once in a lifetime of a context.
3984     */
3985    sctx->initial_gfx_cs_size = 0; /* force flush */
3986    si_flush_gfx_cs(sctx, RADEON_FLUSH_ASYNC_START_NEXT_GFX_IB_NOW, NULL);
3987 }
3988 
si_build_vgt_shader_config(struct si_screen * screen,union si_vgt_stages_key key)3989 struct si_pm4_state *si_build_vgt_shader_config(struct si_screen *screen, union si_vgt_stages_key key)
3990 {
3991    struct si_pm4_state *pm4 = CALLOC_STRUCT(si_pm4_state);
3992    uint32_t stages = 0;
3993 
3994    if (key.u.tess) {
3995       stages |= S_028B54_LS_EN(V_028B54_LS_STAGE_ON) | S_028B54_HS_EN(1) | S_028B54_DYNAMIC_HS(1);
3996 
3997       if (key.u.gs)
3998          stages |= S_028B54_ES_EN(V_028B54_ES_STAGE_DS) | S_028B54_GS_EN(1);
3999       else if (key.u.ngg)
4000          stages |= S_028B54_ES_EN(V_028B54_ES_STAGE_DS);
4001       else
4002          stages |= S_028B54_VS_EN(V_028B54_VS_STAGE_DS);
4003    } else if (key.u.gs) {
4004       stages |= S_028B54_ES_EN(V_028B54_ES_STAGE_REAL) | S_028B54_GS_EN(1);
4005    } else if (key.u.ngg) {
4006       stages |= S_028B54_ES_EN(V_028B54_ES_STAGE_REAL);
4007    }
4008 
4009    if (key.u.ngg) {
4010       stages |= S_028B54_PRIMGEN_EN(1) |
4011                 S_028B54_NGG_WAVE_ID_EN(key.u.streamout) |
4012                 S_028B54_PRIMGEN_PASSTHRU_EN(key.u.ngg_passthrough) |
4013                 S_028B54_PRIMGEN_PASSTHRU_NO_MSG(key.u.ngg_passthrough &&
4014                                                  screen->info.family >= CHIP_DIMGREY_CAVEFISH);
4015    } else if (key.u.gs)
4016       stages |= S_028B54_VS_EN(V_028B54_VS_STAGE_COPY_SHADER);
4017 
4018    if (screen->info.chip_class >= GFX9)
4019       stages |= S_028B54_MAX_PRIMGRP_IN_WAVE(2);
4020 
4021    if (screen->info.chip_class >= GFX10 && screen->ge_wave_size == 32) {
4022       stages |= S_028B54_HS_W32_EN(1) |
4023                 S_028B54_GS_W32_EN(key.u.ngg) | /* legacy GS only supports Wave64 */
4024                 S_028B54_VS_W32_EN(1);
4025    }
4026 
4027    si_pm4_set_reg(pm4, R_028B54_VGT_SHADER_STAGES_EN, stages);
4028    return pm4;
4029 }
4030 
si_emit_scratch_state(struct si_context * sctx)4031 static void si_emit_scratch_state(struct si_context *sctx)
4032 {
4033    struct radeon_cmdbuf *cs = &sctx->gfx_cs;
4034 
4035    radeon_begin(cs);
4036    radeon_set_context_reg(R_0286E8_SPI_TMPRING_SIZE, sctx->spi_tmpring_size);
4037    radeon_end();
4038 
4039    if (sctx->scratch_buffer) {
4040       radeon_add_to_buffer_list(sctx, &sctx->gfx_cs, sctx->scratch_buffer, RADEON_USAGE_READWRITE,
4041                                 RADEON_PRIO_SCRATCH_BUFFER);
4042    }
4043 }
4044 
si_init_screen_live_shader_cache(struct si_screen * sscreen)4045 void si_init_screen_live_shader_cache(struct si_screen *sscreen)
4046 {
4047    util_live_shader_cache_init(&sscreen->live_shader_cache, si_create_shader_selector,
4048                                si_destroy_shader_selector);
4049 }
4050 
si_init_shader_functions(struct si_context * sctx)4051 void si_init_shader_functions(struct si_context *sctx)
4052 {
4053    sctx->atoms.s.scratch_state.emit = si_emit_scratch_state;
4054 
4055    sctx->b.create_vs_state = si_create_shader;
4056    sctx->b.create_tcs_state = si_create_shader;
4057    sctx->b.create_tes_state = si_create_shader;
4058    sctx->b.create_gs_state = si_create_shader;
4059    sctx->b.create_fs_state = si_create_shader;
4060 
4061    sctx->b.bind_vs_state = si_bind_vs_shader;
4062    sctx->b.bind_tcs_state = si_bind_tcs_shader;
4063    sctx->b.bind_tes_state = si_bind_tes_shader;
4064    sctx->b.bind_gs_state = si_bind_gs_shader;
4065    sctx->b.bind_fs_state = si_bind_ps_shader;
4066 
4067    sctx->b.delete_vs_state = si_delete_shader_selector;
4068    sctx->b.delete_tcs_state = si_delete_shader_selector;
4069    sctx->b.delete_tes_state = si_delete_shader_selector;
4070    sctx->b.delete_gs_state = si_delete_shader_selector;
4071    sctx->b.delete_fs_state = si_delete_shader_selector;
4072 }
4073