1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Copyright (C) 2001 Dave Engebretsen IBM Corporation
4 */
5
6 #include <linux/sched.h>
7 #include <linux/interrupt.h>
8 #include <linux/irq.h>
9 #include <linux/of.h>
10 #include <linux/fs.h>
11 #include <linux/reboot.h>
12 #include <linux/irq_work.h>
13
14 #include <asm/machdep.h>
15 #include <asm/rtas.h>
16 #include <asm/firmware.h>
17 #include <asm/mce.h>
18
19 #include "pseries.h"
20
21 static unsigned char ras_log_buf[RTAS_ERROR_LOG_MAX];
22 static DEFINE_SPINLOCK(ras_log_buf_lock);
23
24 static int ras_check_exception_token;
25
26 static void mce_process_errlog_event(struct irq_work *work);
27 static struct irq_work mce_errlog_process_work = {
28 .func = mce_process_errlog_event,
29 };
30
31 #define EPOW_SENSOR_TOKEN 9
32 #define EPOW_SENSOR_INDEX 0
33
34 /* EPOW events counter variable */
35 static int num_epow_events;
36
37 static irqreturn_t ras_hotplug_interrupt(int irq, void *dev_id);
38 static irqreturn_t ras_epow_interrupt(int irq, void *dev_id);
39 static irqreturn_t ras_error_interrupt(int irq, void *dev_id);
40
41 /* RTAS pseries MCE errorlog section. */
42 struct pseries_mc_errorlog {
43 __be32 fru_id;
44 __be32 proc_id;
45 u8 error_type;
46 /*
47 * sub_err_type (1 byte). Bit fields depends on error_type
48 *
49 * MSB0
50 * |
51 * V
52 * 01234567
53 * XXXXXXXX
54 *
55 * For error_type == MC_ERROR_TYPE_UE
56 * XXXXXXXX
57 * X 1: Permanent or Transient UE.
58 * X 1: Effective address provided.
59 * X 1: Logical address provided.
60 * XX 2: Reserved.
61 * XXX 3: Type of UE error.
62 *
63 * For error_type != MC_ERROR_TYPE_UE
64 * XXXXXXXX
65 * X 1: Effective address provided.
66 * XXXXX 5: Reserved.
67 * XX 2: Type of SLB/ERAT/TLB error.
68 */
69 u8 sub_err_type;
70 u8 reserved_1[6];
71 __be64 effective_address;
72 __be64 logical_address;
73 } __packed;
74
75 /* RTAS pseries MCE error types */
76 #define MC_ERROR_TYPE_UE 0x00
77 #define MC_ERROR_TYPE_SLB 0x01
78 #define MC_ERROR_TYPE_ERAT 0x02
79 #define MC_ERROR_TYPE_UNKNOWN 0x03
80 #define MC_ERROR_TYPE_TLB 0x04
81 #define MC_ERROR_TYPE_D_CACHE 0x05
82 #define MC_ERROR_TYPE_I_CACHE 0x07
83
84 /* RTAS pseries MCE error sub types */
85 #define MC_ERROR_UE_INDETERMINATE 0
86 #define MC_ERROR_UE_IFETCH 1
87 #define MC_ERROR_UE_PAGE_TABLE_WALK_IFETCH 2
88 #define MC_ERROR_UE_LOAD_STORE 3
89 #define MC_ERROR_UE_PAGE_TABLE_WALK_LOAD_STORE 4
90
91 #define UE_EFFECTIVE_ADDR_PROVIDED 0x40
92 #define UE_LOGICAL_ADDR_PROVIDED 0x20
93
94 #define MC_ERROR_SLB_PARITY 0
95 #define MC_ERROR_SLB_MULTIHIT 1
96 #define MC_ERROR_SLB_INDETERMINATE 2
97
98 #define MC_ERROR_ERAT_PARITY 1
99 #define MC_ERROR_ERAT_MULTIHIT 2
100 #define MC_ERROR_ERAT_INDETERMINATE 3
101
102 #define MC_ERROR_TLB_PARITY 1
103 #define MC_ERROR_TLB_MULTIHIT 2
104 #define MC_ERROR_TLB_INDETERMINATE 3
105
rtas_mc_error_sub_type(const struct pseries_mc_errorlog * mlog)106 static inline u8 rtas_mc_error_sub_type(const struct pseries_mc_errorlog *mlog)
107 {
108 switch (mlog->error_type) {
109 case MC_ERROR_TYPE_UE:
110 return (mlog->sub_err_type & 0x07);
111 case MC_ERROR_TYPE_SLB:
112 case MC_ERROR_TYPE_ERAT:
113 case MC_ERROR_TYPE_TLB:
114 return (mlog->sub_err_type & 0x03);
115 default:
116 return 0;
117 }
118 }
119
120 /*
121 * Enable the hotplug interrupt late because processing them may touch other
122 * devices or systems (e.g. hugepages) that have not been initialized at the
123 * subsys stage.
124 */
init_ras_hotplug_IRQ(void)125 int __init init_ras_hotplug_IRQ(void)
126 {
127 struct device_node *np;
128
129 /* Hotplug Events */
130 np = of_find_node_by_path("/event-sources/hot-plug-events");
131 if (np != NULL) {
132 if (dlpar_workqueue_init() == 0)
133 request_event_sources_irqs(np, ras_hotplug_interrupt,
134 "RAS_HOTPLUG");
135 of_node_put(np);
136 }
137
138 return 0;
139 }
140 machine_late_initcall(pseries, init_ras_hotplug_IRQ);
141
142 /*
143 * Initialize handlers for the set of interrupts caused by hardware errors
144 * and power system events.
145 */
init_ras_IRQ(void)146 static int __init init_ras_IRQ(void)
147 {
148 struct device_node *np;
149
150 ras_check_exception_token = rtas_token("check-exception");
151
152 /* Internal Errors */
153 np = of_find_node_by_path("/event-sources/internal-errors");
154 if (np != NULL) {
155 request_event_sources_irqs(np, ras_error_interrupt,
156 "RAS_ERROR");
157 of_node_put(np);
158 }
159
160 /* EPOW Events */
161 np = of_find_node_by_path("/event-sources/epow-events");
162 if (np != NULL) {
163 request_event_sources_irqs(np, ras_epow_interrupt, "RAS_EPOW");
164 of_node_put(np);
165 }
166
167 return 0;
168 }
169 machine_subsys_initcall(pseries, init_ras_IRQ);
170
171 #define EPOW_SHUTDOWN_NORMAL 1
172 #define EPOW_SHUTDOWN_ON_UPS 2
173 #define EPOW_SHUTDOWN_LOSS_OF_CRITICAL_FUNCTIONS 3
174 #define EPOW_SHUTDOWN_AMBIENT_TEMPERATURE_TOO_HIGH 4
175
handle_system_shutdown(char event_modifier)176 static void handle_system_shutdown(char event_modifier)
177 {
178 switch (event_modifier) {
179 case EPOW_SHUTDOWN_NORMAL:
180 pr_emerg("Power off requested\n");
181 orderly_poweroff(true);
182 break;
183
184 case EPOW_SHUTDOWN_ON_UPS:
185 pr_emerg("Loss of system power detected. System is running on"
186 " UPS/battery. Check RTAS error log for details\n");
187 break;
188
189 case EPOW_SHUTDOWN_LOSS_OF_CRITICAL_FUNCTIONS:
190 pr_emerg("Loss of system critical functions detected. Check"
191 " RTAS error log for details\n");
192 orderly_poweroff(true);
193 break;
194
195 case EPOW_SHUTDOWN_AMBIENT_TEMPERATURE_TOO_HIGH:
196 pr_emerg("High ambient temperature detected. Check RTAS"
197 " error log for details\n");
198 orderly_poweroff(true);
199 break;
200
201 default:
202 pr_err("Unknown power/cooling shutdown event (modifier = %d)\n",
203 event_modifier);
204 }
205 }
206
207 struct epow_errorlog {
208 unsigned char sensor_value;
209 unsigned char event_modifier;
210 unsigned char extended_modifier;
211 unsigned char reserved;
212 unsigned char platform_reason;
213 };
214
215 #define EPOW_RESET 0
216 #define EPOW_WARN_COOLING 1
217 #define EPOW_WARN_POWER 2
218 #define EPOW_SYSTEM_SHUTDOWN 3
219 #define EPOW_SYSTEM_HALT 4
220 #define EPOW_MAIN_ENCLOSURE 5
221 #define EPOW_POWER_OFF 7
222
rtas_parse_epow_errlog(struct rtas_error_log * log)223 static void rtas_parse_epow_errlog(struct rtas_error_log *log)
224 {
225 struct pseries_errorlog *pseries_log;
226 struct epow_errorlog *epow_log;
227 char action_code;
228 char modifier;
229
230 pseries_log = get_pseries_errorlog(log, PSERIES_ELOG_SECT_ID_EPOW);
231 if (pseries_log == NULL)
232 return;
233
234 epow_log = (struct epow_errorlog *)pseries_log->data;
235 action_code = epow_log->sensor_value & 0xF; /* bottom 4 bits */
236 modifier = epow_log->event_modifier & 0xF; /* bottom 4 bits */
237
238 switch (action_code) {
239 case EPOW_RESET:
240 if (num_epow_events) {
241 pr_info("Non critical power/cooling issue cleared\n");
242 num_epow_events--;
243 }
244 break;
245
246 case EPOW_WARN_COOLING:
247 pr_info("Non-critical cooling issue detected. Check RTAS error"
248 " log for details\n");
249 break;
250
251 case EPOW_WARN_POWER:
252 pr_info("Non-critical power issue detected. Check RTAS error"
253 " log for details\n");
254 break;
255
256 case EPOW_SYSTEM_SHUTDOWN:
257 handle_system_shutdown(modifier);
258 break;
259
260 case EPOW_SYSTEM_HALT:
261 pr_emerg("Critical power/cooling issue detected. Check RTAS"
262 " error log for details. Powering off.\n");
263 orderly_poweroff(true);
264 break;
265
266 case EPOW_MAIN_ENCLOSURE:
267 case EPOW_POWER_OFF:
268 pr_emerg("System about to lose power. Check RTAS error log "
269 " for details. Powering off immediately.\n");
270 emergency_sync();
271 kernel_power_off();
272 break;
273
274 default:
275 pr_err("Unknown power/cooling event (action code = %d)\n",
276 action_code);
277 }
278
279 /* Increment epow events counter variable */
280 if (action_code != EPOW_RESET)
281 num_epow_events++;
282 }
283
ras_hotplug_interrupt(int irq,void * dev_id)284 static irqreturn_t ras_hotplug_interrupt(int irq, void *dev_id)
285 {
286 struct pseries_errorlog *pseries_log;
287 struct pseries_hp_errorlog *hp_elog;
288
289 spin_lock(&ras_log_buf_lock);
290
291 rtas_call(ras_check_exception_token, 6, 1, NULL,
292 RTAS_VECTOR_EXTERNAL_INTERRUPT, virq_to_hw(irq),
293 RTAS_HOTPLUG_EVENTS, 0, __pa(&ras_log_buf),
294 rtas_get_error_log_max());
295
296 pseries_log = get_pseries_errorlog((struct rtas_error_log *)ras_log_buf,
297 PSERIES_ELOG_SECT_ID_HOTPLUG);
298 hp_elog = (struct pseries_hp_errorlog *)pseries_log->data;
299
300 /*
301 * Since PCI hotplug is not currently supported on pseries, put PCI
302 * hotplug events on the ras_log_buf to be handled by rtas_errd.
303 */
304 if (hp_elog->resource == PSERIES_HP_ELOG_RESOURCE_MEM ||
305 hp_elog->resource == PSERIES_HP_ELOG_RESOURCE_CPU ||
306 hp_elog->resource == PSERIES_HP_ELOG_RESOURCE_PMEM)
307 queue_hotplug_event(hp_elog);
308 else
309 log_error(ras_log_buf, ERR_TYPE_RTAS_LOG, 0);
310
311 spin_unlock(&ras_log_buf_lock);
312 return IRQ_HANDLED;
313 }
314
315 /* Handle environmental and power warning (EPOW) interrupts. */
ras_epow_interrupt(int irq,void * dev_id)316 static irqreturn_t ras_epow_interrupt(int irq, void *dev_id)
317 {
318 int status;
319 int state;
320 int critical;
321
322 status = rtas_get_sensor_fast(EPOW_SENSOR_TOKEN, EPOW_SENSOR_INDEX,
323 &state);
324
325 if (state > 3)
326 critical = 1; /* Time Critical */
327 else
328 critical = 0;
329
330 spin_lock(&ras_log_buf_lock);
331
332 status = rtas_call(ras_check_exception_token, 6, 1, NULL,
333 RTAS_VECTOR_EXTERNAL_INTERRUPT,
334 virq_to_hw(irq),
335 RTAS_EPOW_WARNING,
336 critical, __pa(&ras_log_buf),
337 rtas_get_error_log_max());
338
339 log_error(ras_log_buf, ERR_TYPE_RTAS_LOG, 0);
340
341 rtas_parse_epow_errlog((struct rtas_error_log *)ras_log_buf);
342
343 spin_unlock(&ras_log_buf_lock);
344 return IRQ_HANDLED;
345 }
346
347 /*
348 * Handle hardware error interrupts.
349 *
350 * RTAS check-exception is called to collect data on the exception. If
351 * the error is deemed recoverable, we log a warning and return.
352 * For nonrecoverable errors, an error is logged and we stop all processing
353 * as quickly as possible in order to prevent propagation of the failure.
354 */
ras_error_interrupt(int irq,void * dev_id)355 static irqreturn_t ras_error_interrupt(int irq, void *dev_id)
356 {
357 struct rtas_error_log *rtas_elog;
358 int status;
359 int fatal;
360
361 spin_lock(&ras_log_buf_lock);
362
363 status = rtas_call(ras_check_exception_token, 6, 1, NULL,
364 RTAS_VECTOR_EXTERNAL_INTERRUPT,
365 virq_to_hw(irq),
366 RTAS_INTERNAL_ERROR, 1 /* Time Critical */,
367 __pa(&ras_log_buf),
368 rtas_get_error_log_max());
369
370 rtas_elog = (struct rtas_error_log *)ras_log_buf;
371
372 if (status == 0 &&
373 rtas_error_severity(rtas_elog) >= RTAS_SEVERITY_ERROR_SYNC)
374 fatal = 1;
375 else
376 fatal = 0;
377
378 /* format and print the extended information */
379 log_error(ras_log_buf, ERR_TYPE_RTAS_LOG, fatal);
380
381 if (fatal) {
382 pr_emerg("Fatal hardware error detected. Check RTAS error"
383 " log for details. Powering off immediately\n");
384 emergency_sync();
385 kernel_power_off();
386 } else {
387 pr_err("Recoverable hardware error detected\n");
388 }
389
390 spin_unlock(&ras_log_buf_lock);
391 return IRQ_HANDLED;
392 }
393
394 /*
395 * Some versions of FWNMI place the buffer inside the 4kB page starting at
396 * 0x7000. Other versions place it inside the rtas buffer. We check both.
397 * Minimum size of the buffer is 16 bytes.
398 */
399 #define VALID_FWNMI_BUFFER(A) \
400 ((((A) >= 0x7000) && ((A) <= 0x8000 - 16)) || \
401 (((A) >= rtas.base) && ((A) <= (rtas.base + rtas.size - 16))))
402
fwnmi_get_errlog(void)403 static inline struct rtas_error_log *fwnmi_get_errlog(void)
404 {
405 return (struct rtas_error_log *)local_paca->mce_data_buf;
406 }
407
fwnmi_get_savep(struct pt_regs * regs)408 static __be64 *fwnmi_get_savep(struct pt_regs *regs)
409 {
410 unsigned long savep_ra;
411
412 /* Mask top two bits */
413 savep_ra = regs->gpr[3] & ~(0x3UL << 62);
414 if (!VALID_FWNMI_BUFFER(savep_ra)) {
415 printk(KERN_ERR "FWNMI: corrupt r3 0x%016lx\n", regs->gpr[3]);
416 return NULL;
417 }
418
419 return __va(savep_ra);
420 }
421
422 /*
423 * Get the error information for errors coming through the
424 * FWNMI vectors. The pt_regs' r3 will be updated to reflect
425 * the actual r3 if possible, and a ptr to the error log entry
426 * will be returned if found.
427 *
428 * Use one buffer mce_data_buf per cpu to store RTAS error.
429 *
430 * The mce_data_buf does not have any locks or protection around it,
431 * if a second machine check comes in, or a system reset is done
432 * before we have logged the error, then we will get corruption in the
433 * error log. This is preferable over holding off on calling
434 * ibm,nmi-interlock which would result in us checkstopping if a
435 * second machine check did come in.
436 */
fwnmi_get_errinfo(struct pt_regs * regs)437 static struct rtas_error_log *fwnmi_get_errinfo(struct pt_regs *regs)
438 {
439 struct rtas_error_log *h;
440 __be64 *savep;
441
442 savep = fwnmi_get_savep(regs);
443 if (!savep)
444 return NULL;
445
446 regs->gpr[3] = be64_to_cpu(savep[0]); /* restore original r3 */
447
448 h = (struct rtas_error_log *)&savep[1];
449 /* Use the per cpu buffer from paca to store rtas error log */
450 memset(local_paca->mce_data_buf, 0, RTAS_ERROR_LOG_MAX);
451 if (!rtas_error_extended(h)) {
452 memcpy(local_paca->mce_data_buf, h, sizeof(__u64));
453 } else {
454 int len, error_log_length;
455
456 error_log_length = 8 + rtas_error_extended_log_length(h);
457 len = min_t(int, error_log_length, RTAS_ERROR_LOG_MAX);
458 memcpy(local_paca->mce_data_buf, h, len);
459 }
460
461 return (struct rtas_error_log *)local_paca->mce_data_buf;
462 }
463
464 /* Call this when done with the data returned by FWNMI_get_errinfo.
465 * It will release the saved data area for other CPUs in the
466 * partition to receive FWNMI errors.
467 */
fwnmi_release_errinfo(void)468 static void fwnmi_release_errinfo(void)
469 {
470 struct rtas_args rtas_args;
471 int ret;
472
473 /*
474 * On pseries, the machine check stack is limited to under 4GB, so
475 * args can be on-stack.
476 */
477 rtas_call_unlocked(&rtas_args, ibm_nmi_interlock_token, 0, 1, NULL);
478 ret = be32_to_cpu(rtas_args.rets[0]);
479 if (ret != 0)
480 printk(KERN_ERR "FWNMI: nmi-interlock failed: %d\n", ret);
481 }
482
pSeries_system_reset_exception(struct pt_regs * regs)483 int pSeries_system_reset_exception(struct pt_regs *regs)
484 {
485 #ifdef __LITTLE_ENDIAN__
486 /*
487 * Some firmware byteswaps SRR registers and gives incorrect SRR1. Try
488 * to detect the bad SRR1 pattern here. Flip the NIP back to correct
489 * endian for reporting purposes. Unfortunately the MSR can't be fixed,
490 * so clear it. It will be missing MSR_RI so we won't try to recover.
491 */
492 if ((be64_to_cpu(regs->msr) &
493 (MSR_LE|MSR_RI|MSR_DR|MSR_IR|MSR_ME|MSR_PR|
494 MSR_ILE|MSR_HV|MSR_SF)) == (MSR_DR|MSR_SF)) {
495 regs->nip = be64_to_cpu((__be64)regs->nip);
496 regs->msr = 0;
497 }
498 #endif
499
500 if (fwnmi_active) {
501 __be64 *savep;
502
503 /*
504 * Firmware (PowerVM and KVM) saves r3 to a save area like
505 * machine check, which is not exactly what PAPR (2.9)
506 * suggests but there is no way to detect otherwise, so this
507 * is the interface now.
508 *
509 * System resets do not save any error log or require an
510 * "ibm,nmi-interlock" rtas call to release.
511 */
512
513 savep = fwnmi_get_savep(regs);
514 if (savep)
515 regs->gpr[3] = be64_to_cpu(savep[0]); /* restore original r3 */
516 }
517
518 if (smp_handle_nmi_ipi(regs))
519 return 1;
520
521 return 0; /* need to perform reset */
522 }
523
mce_handle_err_realmode(int disposition,u8 error_type)524 static int mce_handle_err_realmode(int disposition, u8 error_type)
525 {
526 #ifdef CONFIG_PPC_BOOK3S_64
527 if (disposition == RTAS_DISP_NOT_RECOVERED) {
528 switch (error_type) {
529 case MC_ERROR_TYPE_SLB:
530 case MC_ERROR_TYPE_ERAT:
531 /*
532 * Store the old slb content in paca before flushing.
533 * Print this when we go to virtual mode.
534 * There are chances that we may hit MCE again if there
535 * is a parity error on the SLB entry we trying to read
536 * for saving. Hence limit the slb saving to single
537 * level of recursion.
538 */
539 if (local_paca->in_mce == 1)
540 slb_save_contents(local_paca->mce_faulty_slbs);
541 flush_and_reload_slb();
542 disposition = RTAS_DISP_FULLY_RECOVERED;
543 break;
544 default:
545 break;
546 }
547 } else if (disposition == RTAS_DISP_LIMITED_RECOVERY) {
548 /* Platform corrected itself but could be degraded */
549 pr_err("MCE: limited recovery, system may be degraded\n");
550 disposition = RTAS_DISP_FULLY_RECOVERED;
551 }
552 #endif
553 return disposition;
554 }
555
mce_handle_err_virtmode(struct pt_regs * regs,struct rtas_error_log * errp,struct pseries_mc_errorlog * mce_log,int disposition)556 static int mce_handle_err_virtmode(struct pt_regs *regs,
557 struct rtas_error_log *errp,
558 struct pseries_mc_errorlog *mce_log,
559 int disposition)
560 {
561 struct mce_error_info mce_err = { 0 };
562 int initiator = rtas_error_initiator(errp);
563 int severity = rtas_error_severity(errp);
564 unsigned long eaddr = 0, paddr = 0;
565 u8 error_type, err_sub_type;
566
567 if (!mce_log)
568 goto out;
569
570 error_type = mce_log->error_type;
571 err_sub_type = rtas_mc_error_sub_type(mce_log);
572
573 if (initiator == RTAS_INITIATOR_UNKNOWN)
574 mce_err.initiator = MCE_INITIATOR_UNKNOWN;
575 else if (initiator == RTAS_INITIATOR_CPU)
576 mce_err.initiator = MCE_INITIATOR_CPU;
577 else if (initiator == RTAS_INITIATOR_PCI)
578 mce_err.initiator = MCE_INITIATOR_PCI;
579 else if (initiator == RTAS_INITIATOR_ISA)
580 mce_err.initiator = MCE_INITIATOR_ISA;
581 else if (initiator == RTAS_INITIATOR_MEMORY)
582 mce_err.initiator = MCE_INITIATOR_MEMORY;
583 else if (initiator == RTAS_INITIATOR_POWERMGM)
584 mce_err.initiator = MCE_INITIATOR_POWERMGM;
585 else
586 mce_err.initiator = MCE_INITIATOR_UNKNOWN;
587
588 if (severity == RTAS_SEVERITY_NO_ERROR)
589 mce_err.severity = MCE_SEV_NO_ERROR;
590 else if (severity == RTAS_SEVERITY_EVENT)
591 mce_err.severity = MCE_SEV_WARNING;
592 else if (severity == RTAS_SEVERITY_WARNING)
593 mce_err.severity = MCE_SEV_WARNING;
594 else if (severity == RTAS_SEVERITY_ERROR_SYNC)
595 mce_err.severity = MCE_SEV_SEVERE;
596 else if (severity == RTAS_SEVERITY_ERROR)
597 mce_err.severity = MCE_SEV_SEVERE;
598 else if (severity == RTAS_SEVERITY_FATAL)
599 mce_err.severity = MCE_SEV_FATAL;
600 else
601 mce_err.severity = MCE_SEV_FATAL;
602
603 if (severity <= RTAS_SEVERITY_ERROR_SYNC)
604 mce_err.sync_error = true;
605 else
606 mce_err.sync_error = false;
607
608 mce_err.error_type = MCE_ERROR_TYPE_UNKNOWN;
609 mce_err.error_class = MCE_ECLASS_UNKNOWN;
610
611 switch (error_type) {
612 case MC_ERROR_TYPE_UE:
613 mce_err.error_type = MCE_ERROR_TYPE_UE;
614 mce_common_process_ue(regs, &mce_err);
615 if (mce_err.ignore_event)
616 disposition = RTAS_DISP_FULLY_RECOVERED;
617 switch (err_sub_type) {
618 case MC_ERROR_UE_IFETCH:
619 mce_err.u.ue_error_type = MCE_UE_ERROR_IFETCH;
620 break;
621 case MC_ERROR_UE_PAGE_TABLE_WALK_IFETCH:
622 mce_err.u.ue_error_type = MCE_UE_ERROR_PAGE_TABLE_WALK_IFETCH;
623 break;
624 case MC_ERROR_UE_LOAD_STORE:
625 mce_err.u.ue_error_type = MCE_UE_ERROR_LOAD_STORE;
626 break;
627 case MC_ERROR_UE_PAGE_TABLE_WALK_LOAD_STORE:
628 mce_err.u.ue_error_type = MCE_UE_ERROR_PAGE_TABLE_WALK_LOAD_STORE;
629 break;
630 case MC_ERROR_UE_INDETERMINATE:
631 default:
632 mce_err.u.ue_error_type = MCE_UE_ERROR_INDETERMINATE;
633 break;
634 }
635 if (mce_log->sub_err_type & UE_EFFECTIVE_ADDR_PROVIDED)
636 eaddr = be64_to_cpu(mce_log->effective_address);
637
638 if (mce_log->sub_err_type & UE_LOGICAL_ADDR_PROVIDED) {
639 paddr = be64_to_cpu(mce_log->logical_address);
640 } else if (mce_log->sub_err_type & UE_EFFECTIVE_ADDR_PROVIDED) {
641 unsigned long pfn;
642
643 pfn = addr_to_pfn(regs, eaddr);
644 if (pfn != ULONG_MAX)
645 paddr = pfn << PAGE_SHIFT;
646 }
647
648 break;
649 case MC_ERROR_TYPE_SLB:
650 mce_err.error_type = MCE_ERROR_TYPE_SLB;
651 switch (err_sub_type) {
652 case MC_ERROR_SLB_PARITY:
653 mce_err.u.slb_error_type = MCE_SLB_ERROR_PARITY;
654 break;
655 case MC_ERROR_SLB_MULTIHIT:
656 mce_err.u.slb_error_type = MCE_SLB_ERROR_MULTIHIT;
657 break;
658 case MC_ERROR_SLB_INDETERMINATE:
659 default:
660 mce_err.u.slb_error_type = MCE_SLB_ERROR_INDETERMINATE;
661 break;
662 }
663 if (mce_log->sub_err_type & 0x80)
664 eaddr = be64_to_cpu(mce_log->effective_address);
665 break;
666 case MC_ERROR_TYPE_ERAT:
667 mce_err.error_type = MCE_ERROR_TYPE_ERAT;
668 switch (err_sub_type) {
669 case MC_ERROR_ERAT_PARITY:
670 mce_err.u.erat_error_type = MCE_ERAT_ERROR_PARITY;
671 break;
672 case MC_ERROR_ERAT_MULTIHIT:
673 mce_err.u.erat_error_type = MCE_ERAT_ERROR_MULTIHIT;
674 break;
675 case MC_ERROR_ERAT_INDETERMINATE:
676 default:
677 mce_err.u.erat_error_type = MCE_ERAT_ERROR_INDETERMINATE;
678 break;
679 }
680 if (mce_log->sub_err_type & 0x80)
681 eaddr = be64_to_cpu(mce_log->effective_address);
682 break;
683 case MC_ERROR_TYPE_TLB:
684 mce_err.error_type = MCE_ERROR_TYPE_TLB;
685 switch (err_sub_type) {
686 case MC_ERROR_TLB_PARITY:
687 mce_err.u.tlb_error_type = MCE_TLB_ERROR_PARITY;
688 break;
689 case MC_ERROR_TLB_MULTIHIT:
690 mce_err.u.tlb_error_type = MCE_TLB_ERROR_MULTIHIT;
691 break;
692 case MC_ERROR_TLB_INDETERMINATE:
693 default:
694 mce_err.u.tlb_error_type = MCE_TLB_ERROR_INDETERMINATE;
695 break;
696 }
697 if (mce_log->sub_err_type & 0x80)
698 eaddr = be64_to_cpu(mce_log->effective_address);
699 break;
700 case MC_ERROR_TYPE_D_CACHE:
701 mce_err.error_type = MCE_ERROR_TYPE_DCACHE;
702 break;
703 case MC_ERROR_TYPE_I_CACHE:
704 mce_err.error_type = MCE_ERROR_TYPE_DCACHE;
705 break;
706 case MC_ERROR_TYPE_UNKNOWN:
707 default:
708 mce_err.error_type = MCE_ERROR_TYPE_UNKNOWN;
709 break;
710 }
711 out:
712 save_mce_event(regs, disposition == RTAS_DISP_FULLY_RECOVERED,
713 &mce_err, regs->nip, eaddr, paddr);
714 return disposition;
715 }
716
mce_handle_error(struct pt_regs * regs,struct rtas_error_log * errp)717 static int mce_handle_error(struct pt_regs *regs, struct rtas_error_log *errp)
718 {
719 struct pseries_errorlog *pseries_log;
720 struct pseries_mc_errorlog *mce_log = NULL;
721 int disposition = rtas_error_disposition(errp);
722 u8 error_type;
723
724 if (!rtas_error_extended(errp))
725 goto out;
726
727 pseries_log = get_pseries_errorlog(errp, PSERIES_ELOG_SECT_ID_MCE);
728 if (!pseries_log)
729 goto out;
730
731 mce_log = (struct pseries_mc_errorlog *)pseries_log->data;
732 error_type = mce_log->error_type;
733
734 disposition = mce_handle_err_realmode(disposition, error_type);
735
736 /*
737 * Enable translation as we will be accessing per-cpu variables
738 * in save_mce_event() which may fall outside RMO region, also
739 * leave it enabled because subsequently we will be queuing work
740 * to workqueues where again per-cpu variables accessed, besides
741 * fwnmi_release_errinfo() crashes when called in realmode on
742 * pseries.
743 * Note: All the realmode handling like flushing SLB entries for
744 * SLB multihit is done by now.
745 */
746 out:
747 mtmsr(mfmsr() | MSR_IR | MSR_DR);
748 disposition = mce_handle_err_virtmode(regs, errp, mce_log,
749 disposition);
750 return disposition;
751 }
752
753 /*
754 * Process MCE rtas errlog event.
755 */
mce_process_errlog_event(struct irq_work * work)756 static void mce_process_errlog_event(struct irq_work *work)
757 {
758 struct rtas_error_log *err;
759
760 err = fwnmi_get_errlog();
761 log_error((char *)err, ERR_TYPE_RTAS_LOG, 0);
762 }
763
764 /*
765 * See if we can recover from a machine check exception.
766 * This is only called on power4 (or above) and only via
767 * the Firmware Non-Maskable Interrupts (fwnmi) handler
768 * which provides the error analysis for us.
769 *
770 * Return 1 if corrected (or delivered a signal).
771 * Return 0 if there is nothing we can do.
772 */
recover_mce(struct pt_regs * regs,struct machine_check_event * evt)773 static int recover_mce(struct pt_regs *regs, struct machine_check_event *evt)
774 {
775 int recovered = 0;
776
777 if (!(regs->msr & MSR_RI)) {
778 /* If MSR_RI isn't set, we cannot recover */
779 pr_err("Machine check interrupt unrecoverable: MSR(RI=0)\n");
780 recovered = 0;
781 } else if (evt->disposition == MCE_DISPOSITION_RECOVERED) {
782 /* Platform corrected itself */
783 recovered = 1;
784 } else if (evt->severity == MCE_SEV_FATAL) {
785 /* Fatal machine check */
786 pr_err("Machine check interrupt is fatal\n");
787 recovered = 0;
788 }
789
790 if (!recovered && evt->sync_error) {
791 /*
792 * Try to kill processes if we get a synchronous machine check
793 * (e.g., one caused by execution of this instruction). This
794 * will devolve into a panic if we try to kill init or are in
795 * an interrupt etc.
796 *
797 * TODO: Queue up this address for hwpoisioning later.
798 * TODO: This is not quite right for d-side machine
799 * checks ->nip is not necessarily the important
800 * address.
801 */
802 if ((user_mode(regs))) {
803 _exception(SIGBUS, regs, BUS_MCEERR_AR, regs->nip);
804 recovered = 1;
805 } else if (die_will_crash()) {
806 /*
807 * die() would kill the kernel, so better to go via
808 * the platform reboot code that will log the
809 * machine check.
810 */
811 recovered = 0;
812 } else {
813 die("Machine check", regs, SIGBUS);
814 recovered = 1;
815 }
816 }
817
818 return recovered;
819 }
820
821 /*
822 * Handle a machine check.
823 *
824 * Note that on Power 4 and beyond Firmware Non-Maskable Interrupts (fwnmi)
825 * should be present. If so the handler which called us tells us if the
826 * error was recovered (never true if RI=0).
827 *
828 * On hardware prior to Power 4 these exceptions were asynchronous which
829 * means we can't tell exactly where it occurred and so we can't recover.
830 */
pSeries_machine_check_exception(struct pt_regs * regs)831 int pSeries_machine_check_exception(struct pt_regs *regs)
832 {
833 struct machine_check_event evt;
834
835 if (!get_mce_event(&evt, MCE_EVENT_RELEASE))
836 return 0;
837
838 /* Print things out */
839 if (evt.version != MCE_V1) {
840 pr_err("Machine Check Exception, Unknown event version %d !\n",
841 evt.version);
842 return 0;
843 }
844 machine_check_print_event_info(&evt, user_mode(regs), false);
845
846 if (recover_mce(regs, &evt))
847 return 1;
848
849 return 0;
850 }
851
pseries_machine_check_realmode(struct pt_regs * regs)852 long pseries_machine_check_realmode(struct pt_regs *regs)
853 {
854 struct rtas_error_log *errp;
855 int disposition;
856
857 if (fwnmi_active) {
858 errp = fwnmi_get_errinfo(regs);
859 /*
860 * Call to fwnmi_release_errinfo() in real mode causes kernel
861 * to panic. Hence we will call it as soon as we go into
862 * virtual mode.
863 */
864 disposition = mce_handle_error(regs, errp);
865 fwnmi_release_errinfo();
866
867 /* Queue irq work to log this rtas event later. */
868 irq_work_queue(&mce_errlog_process_work);
869
870 if (disposition == RTAS_DISP_FULLY_RECOVERED)
871 return 1;
872 }
873
874 return 0;
875 }
876