1 // SPDX-License-Identifier: GPL-2.0-only
2 #include <linux/mm.h>
3 #include <linux/slab.h>
4 #include <linux/string.h>
5 #include <linux/compiler.h>
6 #include <linux/export.h>
7 #include <linux/err.h>
8 #include <linux/sched.h>
9 #include <linux/sched/mm.h>
10 #include <linux/sched/signal.h>
11 #include <linux/sched/task_stack.h>
12 #include <linux/security.h>
13 #include <linux/swap.h>
14 #include <linux/swapops.h>
15 #include <linux/mman.h>
16 #include <linux/hugetlb.h>
17 #include <linux/vmalloc.h>
18 #include <linux/userfaultfd_k.h>
19 #include <linux/elf.h>
20 #include <linux/elf-randomize.h>
21 #include <linux/personality.h>
22 #include <linux/random.h>
23 #include <linux/processor.h>
24 #include <linux/sizes.h>
25 #include <linux/compat.h>
26
27 #include <linux/uaccess.h>
28
29 #include "internal.h"
30
31 /**
32 * kfree_const - conditionally free memory
33 * @x: pointer to the memory
34 *
35 * Function calls kfree only if @x is not in .rodata section.
36 */
kfree_const(const void * x)37 void kfree_const(const void *x)
38 {
39 if (!is_kernel_rodata((unsigned long)x))
40 kfree(x);
41 }
42 EXPORT_SYMBOL(kfree_const);
43
44 /**
45 * kstrdup - allocate space for and copy an existing string
46 * @s: the string to duplicate
47 * @gfp: the GFP mask used in the kmalloc() call when allocating memory
48 *
49 * Return: newly allocated copy of @s or %NULL in case of error
50 */
kstrdup(const char * s,gfp_t gfp)51 char *kstrdup(const char *s, gfp_t gfp)
52 {
53 size_t len;
54 char *buf;
55
56 if (!s)
57 return NULL;
58
59 len = strlen(s) + 1;
60 buf = kmalloc_track_caller(len, gfp);
61 if (buf)
62 memcpy(buf, s, len);
63 return buf;
64 }
65 EXPORT_SYMBOL(kstrdup);
66
67 /**
68 * kstrdup_const - conditionally duplicate an existing const string
69 * @s: the string to duplicate
70 * @gfp: the GFP mask used in the kmalloc() call when allocating memory
71 *
72 * Note: Strings allocated by kstrdup_const should be freed by kfree_const and
73 * must not be passed to krealloc().
74 *
75 * Return: source string if it is in .rodata section otherwise
76 * fallback to kstrdup.
77 */
kstrdup_const(const char * s,gfp_t gfp)78 const char *kstrdup_const(const char *s, gfp_t gfp)
79 {
80 if (is_kernel_rodata((unsigned long)s))
81 return s;
82
83 return kstrdup(s, gfp);
84 }
85 EXPORT_SYMBOL(kstrdup_const);
86
87 /**
88 * kstrndup - allocate space for and copy an existing string
89 * @s: the string to duplicate
90 * @max: read at most @max chars from @s
91 * @gfp: the GFP mask used in the kmalloc() call when allocating memory
92 *
93 * Note: Use kmemdup_nul() instead if the size is known exactly.
94 *
95 * Return: newly allocated copy of @s or %NULL in case of error
96 */
kstrndup(const char * s,size_t max,gfp_t gfp)97 char *kstrndup(const char *s, size_t max, gfp_t gfp)
98 {
99 size_t len;
100 char *buf;
101
102 if (!s)
103 return NULL;
104
105 len = strnlen(s, max);
106 buf = kmalloc_track_caller(len+1, gfp);
107 if (buf) {
108 memcpy(buf, s, len);
109 buf[len] = '\0';
110 }
111 return buf;
112 }
113 EXPORT_SYMBOL(kstrndup);
114
115 /**
116 * kmemdup - duplicate region of memory
117 *
118 * @src: memory region to duplicate
119 * @len: memory region length
120 * @gfp: GFP mask to use
121 *
122 * Return: newly allocated copy of @src or %NULL in case of error
123 */
kmemdup(const void * src,size_t len,gfp_t gfp)124 void *kmemdup(const void *src, size_t len, gfp_t gfp)
125 {
126 void *p;
127
128 p = kmalloc_track_caller(len, gfp);
129 if (p)
130 memcpy(p, src, len);
131 return p;
132 }
133 EXPORT_SYMBOL(kmemdup);
134
135 /**
136 * kmemdup_nul - Create a NUL-terminated string from unterminated data
137 * @s: The data to stringify
138 * @len: The size of the data
139 * @gfp: the GFP mask used in the kmalloc() call when allocating memory
140 *
141 * Return: newly allocated copy of @s with NUL-termination or %NULL in
142 * case of error
143 */
kmemdup_nul(const char * s,size_t len,gfp_t gfp)144 char *kmemdup_nul(const char *s, size_t len, gfp_t gfp)
145 {
146 char *buf;
147
148 if (!s)
149 return NULL;
150
151 buf = kmalloc_track_caller(len + 1, gfp);
152 if (buf) {
153 memcpy(buf, s, len);
154 buf[len] = '\0';
155 }
156 return buf;
157 }
158 EXPORT_SYMBOL(kmemdup_nul);
159
160 /**
161 * memdup_user - duplicate memory region from user space
162 *
163 * @src: source address in user space
164 * @len: number of bytes to copy
165 *
166 * Return: an ERR_PTR() on failure. Result is physically
167 * contiguous, to be freed by kfree().
168 */
memdup_user(const void __user * src,size_t len)169 void *memdup_user(const void __user *src, size_t len)
170 {
171 void *p;
172
173 p = kmalloc_track_caller(len, GFP_USER | __GFP_NOWARN);
174 if (!p)
175 return ERR_PTR(-ENOMEM);
176
177 if (copy_from_user(p, src, len)) {
178 kfree(p);
179 return ERR_PTR(-EFAULT);
180 }
181
182 return p;
183 }
184 EXPORT_SYMBOL(memdup_user);
185
186 /**
187 * vmemdup_user - duplicate memory region from user space
188 *
189 * @src: source address in user space
190 * @len: number of bytes to copy
191 *
192 * Return: an ERR_PTR() on failure. Result may be not
193 * physically contiguous. Use kvfree() to free.
194 */
vmemdup_user(const void __user * src,size_t len)195 void *vmemdup_user(const void __user *src, size_t len)
196 {
197 void *p;
198
199 p = kvmalloc(len, GFP_USER);
200 if (!p)
201 return ERR_PTR(-ENOMEM);
202
203 if (copy_from_user(p, src, len)) {
204 kvfree(p);
205 return ERR_PTR(-EFAULT);
206 }
207
208 return p;
209 }
210 EXPORT_SYMBOL(vmemdup_user);
211
212 /**
213 * strndup_user - duplicate an existing string from user space
214 * @s: The string to duplicate
215 * @n: Maximum number of bytes to copy, including the trailing NUL.
216 *
217 * Return: newly allocated copy of @s or an ERR_PTR() in case of error
218 */
strndup_user(const char __user * s,long n)219 char *strndup_user(const char __user *s, long n)
220 {
221 char *p;
222 long length;
223
224 length = strnlen_user(s, n);
225
226 if (!length)
227 return ERR_PTR(-EFAULT);
228
229 if (length > n)
230 return ERR_PTR(-EINVAL);
231
232 p = memdup_user(s, length);
233
234 if (IS_ERR(p))
235 return p;
236
237 p[length - 1] = '\0';
238
239 return p;
240 }
241 EXPORT_SYMBOL(strndup_user);
242
243 /**
244 * memdup_user_nul - duplicate memory region from user space and NUL-terminate
245 *
246 * @src: source address in user space
247 * @len: number of bytes to copy
248 *
249 * Return: an ERR_PTR() on failure.
250 */
memdup_user_nul(const void __user * src,size_t len)251 void *memdup_user_nul(const void __user *src, size_t len)
252 {
253 char *p;
254
255 /*
256 * Always use GFP_KERNEL, since copy_from_user() can sleep and
257 * cause pagefault, which makes it pointless to use GFP_NOFS
258 * or GFP_ATOMIC.
259 */
260 p = kmalloc_track_caller(len + 1, GFP_KERNEL);
261 if (!p)
262 return ERR_PTR(-ENOMEM);
263
264 if (copy_from_user(p, src, len)) {
265 kfree(p);
266 return ERR_PTR(-EFAULT);
267 }
268 p[len] = '\0';
269
270 return p;
271 }
272 EXPORT_SYMBOL(memdup_user_nul);
273
__vma_link_list(struct mm_struct * mm,struct vm_area_struct * vma,struct vm_area_struct * prev)274 void __vma_link_list(struct mm_struct *mm, struct vm_area_struct *vma,
275 struct vm_area_struct *prev)
276 {
277 struct vm_area_struct *next;
278
279 vma->vm_prev = prev;
280 if (prev) {
281 next = prev->vm_next;
282 prev->vm_next = vma;
283 } else {
284 next = mm->mmap;
285 mm->mmap = vma;
286 }
287 vma->vm_next = next;
288 if (next)
289 next->vm_prev = vma;
290 }
291
__vma_unlink_list(struct mm_struct * mm,struct vm_area_struct * vma)292 void __vma_unlink_list(struct mm_struct *mm, struct vm_area_struct *vma)
293 {
294 struct vm_area_struct *prev, *next;
295
296 next = vma->vm_next;
297 prev = vma->vm_prev;
298 if (prev)
299 prev->vm_next = next;
300 else
301 mm->mmap = next;
302 if (next)
303 next->vm_prev = prev;
304 }
305
306 /* Check if the vma is being used as a stack by this task */
vma_is_stack_for_current(struct vm_area_struct * vma)307 int vma_is_stack_for_current(struct vm_area_struct *vma)
308 {
309 struct task_struct * __maybe_unused t = current;
310
311 return (vma->vm_start <= KSTK_ESP(t) && vma->vm_end >= KSTK_ESP(t));
312 }
313
314 #ifndef STACK_RND_MASK
315 #define STACK_RND_MASK (0x7ff >> (PAGE_SHIFT - 12)) /* 8MB of VA */
316 #endif
317
randomize_stack_top(unsigned long stack_top)318 unsigned long randomize_stack_top(unsigned long stack_top)
319 {
320 unsigned long random_variable = 0;
321
322 if (current->flags & PF_RANDOMIZE) {
323 random_variable = get_random_long();
324 random_variable &= STACK_RND_MASK;
325 random_variable <<= PAGE_SHIFT;
326 }
327 #ifdef CONFIG_STACK_GROWSUP
328 return PAGE_ALIGN(stack_top) + random_variable;
329 #else
330 return PAGE_ALIGN(stack_top) - random_variable;
331 #endif
332 }
333
334 #ifdef CONFIG_ARCH_WANT_DEFAULT_TOPDOWN_MMAP_LAYOUT
arch_randomize_brk(struct mm_struct * mm)335 unsigned long arch_randomize_brk(struct mm_struct *mm)
336 {
337 /* Is the current task 32bit ? */
338 if (!IS_ENABLED(CONFIG_64BIT) || is_compat_task())
339 return randomize_page(mm->brk, SZ_32M);
340
341 return randomize_page(mm->brk, SZ_1G);
342 }
343
arch_mmap_rnd(void)344 unsigned long arch_mmap_rnd(void)
345 {
346 unsigned long rnd;
347
348 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
349 if (is_compat_task())
350 rnd = get_random_long() & ((1UL << mmap_rnd_compat_bits) - 1);
351 else
352 #endif /* CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS */
353 rnd = get_random_long() & ((1UL << mmap_rnd_bits) - 1);
354
355 return rnd << PAGE_SHIFT;
356 }
357
mmap_is_legacy(struct rlimit * rlim_stack)358 static int mmap_is_legacy(struct rlimit *rlim_stack)
359 {
360 if (current->personality & ADDR_COMPAT_LAYOUT)
361 return 1;
362
363 if (rlim_stack->rlim_cur == RLIM_INFINITY)
364 return 1;
365
366 return sysctl_legacy_va_layout;
367 }
368
369 /*
370 * Leave enough space between the mmap area and the stack to honour ulimit in
371 * the face of randomisation.
372 */
373 #define MIN_GAP (SZ_128M)
374 #define MAX_GAP (STACK_TOP / 6 * 5)
375
mmap_base(unsigned long rnd,struct rlimit * rlim_stack)376 static unsigned long mmap_base(unsigned long rnd, struct rlimit *rlim_stack)
377 {
378 unsigned long gap = rlim_stack->rlim_cur;
379 unsigned long pad = stack_guard_gap;
380
381 /* Account for stack randomization if necessary */
382 if (current->flags & PF_RANDOMIZE)
383 pad += (STACK_RND_MASK << PAGE_SHIFT);
384
385 /* Values close to RLIM_INFINITY can overflow. */
386 if (gap + pad > gap)
387 gap += pad;
388
389 if (gap < MIN_GAP)
390 gap = MIN_GAP;
391 else if (gap > MAX_GAP)
392 gap = MAX_GAP;
393
394 return PAGE_ALIGN(STACK_TOP - gap - rnd);
395 }
396
arch_pick_mmap_layout(struct mm_struct * mm,struct rlimit * rlim_stack)397 void arch_pick_mmap_layout(struct mm_struct *mm, struct rlimit *rlim_stack)
398 {
399 unsigned long random_factor = 0UL;
400
401 if (current->flags & PF_RANDOMIZE)
402 random_factor = arch_mmap_rnd();
403
404 if (mmap_is_legacy(rlim_stack)) {
405 mm->mmap_base = TASK_UNMAPPED_BASE + random_factor;
406 mm->get_unmapped_area = arch_get_unmapped_area;
407 } else {
408 mm->mmap_base = mmap_base(random_factor, rlim_stack);
409 mm->get_unmapped_area = arch_get_unmapped_area_topdown;
410 }
411 }
412 #elif defined(CONFIG_MMU) && !defined(HAVE_ARCH_PICK_MMAP_LAYOUT)
arch_pick_mmap_layout(struct mm_struct * mm,struct rlimit * rlim_stack)413 void arch_pick_mmap_layout(struct mm_struct *mm, struct rlimit *rlim_stack)
414 {
415 mm->mmap_base = TASK_UNMAPPED_BASE;
416 mm->get_unmapped_area = arch_get_unmapped_area;
417 }
418 #endif
419
420 /**
421 * __account_locked_vm - account locked pages to an mm's locked_vm
422 * @mm: mm to account against
423 * @pages: number of pages to account
424 * @inc: %true if @pages should be considered positive, %false if not
425 * @task: task used to check RLIMIT_MEMLOCK
426 * @bypass_rlim: %true if checking RLIMIT_MEMLOCK should be skipped
427 *
428 * Assumes @task and @mm are valid (i.e. at least one reference on each), and
429 * that mmap_lock is held as writer.
430 *
431 * Return:
432 * * 0 on success
433 * * -ENOMEM if RLIMIT_MEMLOCK would be exceeded.
434 */
__account_locked_vm(struct mm_struct * mm,unsigned long pages,bool inc,struct task_struct * task,bool bypass_rlim)435 int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc,
436 struct task_struct *task, bool bypass_rlim)
437 {
438 unsigned long locked_vm, limit;
439 int ret = 0;
440
441 mmap_assert_write_locked(mm);
442
443 locked_vm = mm->locked_vm;
444 if (inc) {
445 if (!bypass_rlim) {
446 limit = task_rlimit(task, RLIMIT_MEMLOCK) >> PAGE_SHIFT;
447 if (locked_vm + pages > limit)
448 ret = -ENOMEM;
449 }
450 if (!ret)
451 mm->locked_vm = locked_vm + pages;
452 } else {
453 WARN_ON_ONCE(pages > locked_vm);
454 mm->locked_vm = locked_vm - pages;
455 }
456
457 pr_debug("%s: [%d] caller %ps %c%lu %lu/%lu%s\n", __func__, task->pid,
458 (void *)_RET_IP_, (inc) ? '+' : '-', pages << PAGE_SHIFT,
459 locked_vm << PAGE_SHIFT, task_rlimit(task, RLIMIT_MEMLOCK),
460 ret ? " - exceeded" : "");
461
462 return ret;
463 }
464 EXPORT_SYMBOL_GPL(__account_locked_vm);
465
466 /**
467 * account_locked_vm - account locked pages to an mm's locked_vm
468 * @mm: mm to account against, may be NULL
469 * @pages: number of pages to account
470 * @inc: %true if @pages should be considered positive, %false if not
471 *
472 * Assumes a non-NULL @mm is valid (i.e. at least one reference on it).
473 *
474 * Return:
475 * * 0 on success, or if mm is NULL
476 * * -ENOMEM if RLIMIT_MEMLOCK would be exceeded.
477 */
account_locked_vm(struct mm_struct * mm,unsigned long pages,bool inc)478 int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc)
479 {
480 int ret;
481
482 if (pages == 0 || !mm)
483 return 0;
484
485 mmap_write_lock(mm);
486 ret = __account_locked_vm(mm, pages, inc, current,
487 capable(CAP_IPC_LOCK));
488 mmap_write_unlock(mm);
489
490 return ret;
491 }
492 EXPORT_SYMBOL_GPL(account_locked_vm);
493
vm_mmap_pgoff(struct file * file,unsigned long addr,unsigned long len,unsigned long prot,unsigned long flag,unsigned long pgoff)494 unsigned long vm_mmap_pgoff(struct file *file, unsigned long addr,
495 unsigned long len, unsigned long prot,
496 unsigned long flag, unsigned long pgoff)
497 {
498 unsigned long ret;
499 struct mm_struct *mm = current->mm;
500 unsigned long populate;
501 LIST_HEAD(uf);
502
503 ret = security_mmap_file(file, prot, flag);
504 if (!ret) {
505 if (mmap_write_lock_killable(mm))
506 return -EINTR;
507 ret = do_mmap(file, addr, len, prot, flag, pgoff, &populate,
508 &uf);
509 mmap_write_unlock(mm);
510 userfaultfd_unmap_complete(mm, &uf);
511 if (populate)
512 mm_populate(ret, populate);
513 }
514 return ret;
515 }
516
vm_mmap(struct file * file,unsigned long addr,unsigned long len,unsigned long prot,unsigned long flag,unsigned long offset)517 unsigned long vm_mmap(struct file *file, unsigned long addr,
518 unsigned long len, unsigned long prot,
519 unsigned long flag, unsigned long offset)
520 {
521 if (unlikely(offset + PAGE_ALIGN(len) < offset))
522 return -EINVAL;
523 if (unlikely(offset_in_page(offset)))
524 return -EINVAL;
525
526 return vm_mmap_pgoff(file, addr, len, prot, flag, offset >> PAGE_SHIFT);
527 }
528 EXPORT_SYMBOL(vm_mmap);
529
530 /**
531 * kvmalloc_node - attempt to allocate physically contiguous memory, but upon
532 * failure, fall back to non-contiguous (vmalloc) allocation.
533 * @size: size of the request.
534 * @flags: gfp mask for the allocation - must be compatible (superset) with GFP_KERNEL.
535 * @node: numa node to allocate from
536 *
537 * Uses kmalloc to get the memory but if the allocation fails then falls back
538 * to the vmalloc allocator. Use kvfree for freeing the memory.
539 *
540 * Reclaim modifiers - __GFP_NORETRY and __GFP_NOFAIL are not supported.
541 * __GFP_RETRY_MAYFAIL is supported, and it should be used only if kmalloc is
542 * preferable to the vmalloc fallback, due to visible performance drawbacks.
543 *
544 * Please note that any use of gfp flags outside of GFP_KERNEL is careful to not
545 * fall back to vmalloc.
546 *
547 * Return: pointer to the allocated memory of %NULL in case of failure
548 */
kvmalloc_node(size_t size,gfp_t flags,int node)549 void *kvmalloc_node(size_t size, gfp_t flags, int node)
550 {
551 gfp_t kmalloc_flags = flags;
552 void *ret;
553
554 /*
555 * vmalloc uses GFP_KERNEL for some internal allocations (e.g page tables)
556 * so the given set of flags has to be compatible.
557 */
558 if ((flags & GFP_KERNEL) != GFP_KERNEL)
559 return kmalloc_node(size, flags, node);
560
561 /*
562 * We want to attempt a large physically contiguous block first because
563 * it is less likely to fragment multiple larger blocks and therefore
564 * contribute to a long term fragmentation less than vmalloc fallback.
565 * However make sure that larger requests are not too disruptive - no
566 * OOM killer and no allocation failure warnings as we have a fallback.
567 */
568 if (size > PAGE_SIZE) {
569 kmalloc_flags |= __GFP_NOWARN;
570
571 if (!(kmalloc_flags & __GFP_RETRY_MAYFAIL))
572 kmalloc_flags |= __GFP_NORETRY;
573 }
574
575 ret = kmalloc_node(size, kmalloc_flags, node);
576
577 /*
578 * It doesn't really make sense to fallback to vmalloc for sub page
579 * requests
580 */
581 if (ret || size <= PAGE_SIZE)
582 return ret;
583
584 /* Don't even allow crazy sizes */
585 if (WARN_ON_ONCE(size > INT_MAX))
586 return NULL;
587
588 return __vmalloc_node(size, 1, flags, node,
589 __builtin_return_address(0));
590 }
591 EXPORT_SYMBOL(kvmalloc_node);
592
593 /**
594 * kvfree() - Free memory.
595 * @addr: Pointer to allocated memory.
596 *
597 * kvfree frees memory allocated by any of vmalloc(), kmalloc() or kvmalloc().
598 * It is slightly more efficient to use kfree() or vfree() if you are certain
599 * that you know which one to use.
600 *
601 * Context: Either preemptible task context or not-NMI interrupt.
602 */
kvfree(const void * addr)603 void kvfree(const void *addr)
604 {
605 if (is_vmalloc_addr(addr))
606 vfree(addr);
607 else
608 kfree(addr);
609 }
610 EXPORT_SYMBOL(kvfree);
611
612 /**
613 * kvfree_sensitive - Free a data object containing sensitive information.
614 * @addr: address of the data object to be freed.
615 * @len: length of the data object.
616 *
617 * Use the special memzero_explicit() function to clear the content of a
618 * kvmalloc'ed object containing sensitive data to make sure that the
619 * compiler won't optimize out the data clearing.
620 */
kvfree_sensitive(const void * addr,size_t len)621 void kvfree_sensitive(const void *addr, size_t len)
622 {
623 if (likely(!ZERO_OR_NULL_PTR(addr))) {
624 memzero_explicit((void *)addr, len);
625 kvfree(addr);
626 }
627 }
628 EXPORT_SYMBOL(kvfree_sensitive);
629
__page_rmapping(struct page * page)630 static inline void *__page_rmapping(struct page *page)
631 {
632 unsigned long mapping;
633
634 mapping = (unsigned long)page->mapping;
635 mapping &= ~PAGE_MAPPING_FLAGS;
636
637 return (void *)mapping;
638 }
639
640 /* Neutral page->mapping pointer to address_space or anon_vma or other */
page_rmapping(struct page * page)641 void *page_rmapping(struct page *page)
642 {
643 page = compound_head(page);
644 return __page_rmapping(page);
645 }
646
647 /*
648 * Return true if this page is mapped into pagetables.
649 * For compound page it returns true if any subpage of compound page is mapped.
650 */
page_mapped(struct page * page)651 bool page_mapped(struct page *page)
652 {
653 int i;
654
655 if (likely(!PageCompound(page)))
656 return atomic_read(&page->_mapcount) >= 0;
657 page = compound_head(page);
658 if (atomic_read(compound_mapcount_ptr(page)) >= 0)
659 return true;
660 if (PageHuge(page))
661 return false;
662 for (i = 0; i < compound_nr(page); i++) {
663 if (atomic_read(&page[i]._mapcount) >= 0)
664 return true;
665 }
666 return false;
667 }
668 EXPORT_SYMBOL(page_mapped);
669
page_anon_vma(struct page * page)670 struct anon_vma *page_anon_vma(struct page *page)
671 {
672 unsigned long mapping;
673
674 page = compound_head(page);
675 mapping = (unsigned long)page->mapping;
676 if ((mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
677 return NULL;
678 return __page_rmapping(page);
679 }
680
page_mapping(struct page * page)681 struct address_space *page_mapping(struct page *page)
682 {
683 struct address_space *mapping;
684
685 page = compound_head(page);
686
687 /* This happens if someone calls flush_dcache_page on slab page */
688 if (unlikely(PageSlab(page)))
689 return NULL;
690
691 if (unlikely(PageSwapCache(page))) {
692 swp_entry_t entry;
693
694 entry.val = page_private(page);
695 return swap_address_space(entry);
696 }
697
698 mapping = page->mapping;
699 if ((unsigned long)mapping & PAGE_MAPPING_ANON)
700 return NULL;
701
702 return (void *)((unsigned long)mapping & ~PAGE_MAPPING_FLAGS);
703 }
704 EXPORT_SYMBOL(page_mapping);
705
706 /*
707 * For file cache pages, return the address_space, otherwise return NULL
708 */
page_mapping_file(struct page * page)709 struct address_space *page_mapping_file(struct page *page)
710 {
711 if (unlikely(PageSwapCache(page)))
712 return NULL;
713 return page_mapping(page);
714 }
715
716 /* Slow path of page_mapcount() for compound pages */
__page_mapcount(struct page * page)717 int __page_mapcount(struct page *page)
718 {
719 int ret;
720
721 ret = atomic_read(&page->_mapcount) + 1;
722 /*
723 * For file THP page->_mapcount contains total number of mapping
724 * of the page: no need to look into compound_mapcount.
725 */
726 if (!PageAnon(page) && !PageHuge(page))
727 return ret;
728 page = compound_head(page);
729 ret += atomic_read(compound_mapcount_ptr(page)) + 1;
730 if (PageDoubleMap(page))
731 ret--;
732 return ret;
733 }
734 EXPORT_SYMBOL_GPL(__page_mapcount);
735
736 int sysctl_overcommit_memory __read_mostly = OVERCOMMIT_GUESS;
737 int sysctl_overcommit_ratio __read_mostly = 50;
738 unsigned long sysctl_overcommit_kbytes __read_mostly;
739 int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT;
740 unsigned long sysctl_user_reserve_kbytes __read_mostly = 1UL << 17; /* 128MB */
741 unsigned long sysctl_admin_reserve_kbytes __read_mostly = 1UL << 13; /* 8MB */
742
overcommit_ratio_handler(struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)743 int overcommit_ratio_handler(struct ctl_table *table, int write, void *buffer,
744 size_t *lenp, loff_t *ppos)
745 {
746 int ret;
747
748 ret = proc_dointvec(table, write, buffer, lenp, ppos);
749 if (ret == 0 && write)
750 sysctl_overcommit_kbytes = 0;
751 return ret;
752 }
753
sync_overcommit_as(struct work_struct * dummy)754 static void sync_overcommit_as(struct work_struct *dummy)
755 {
756 percpu_counter_sync(&vm_committed_as);
757 }
758
overcommit_policy_handler(struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)759 int overcommit_policy_handler(struct ctl_table *table, int write, void *buffer,
760 size_t *lenp, loff_t *ppos)
761 {
762 struct ctl_table t;
763 int new_policy = -1;
764 int ret;
765
766 /*
767 * The deviation of sync_overcommit_as could be big with loose policy
768 * like OVERCOMMIT_ALWAYS/OVERCOMMIT_GUESS. When changing policy to
769 * strict OVERCOMMIT_NEVER, we need to reduce the deviation to comply
770 * with the strict "NEVER", and to avoid possible race condtion (even
771 * though user usually won't too frequently do the switching to policy
772 * OVERCOMMIT_NEVER), the switch is done in the following order:
773 * 1. changing the batch
774 * 2. sync percpu count on each CPU
775 * 3. switch the policy
776 */
777 if (write) {
778 t = *table;
779 t.data = &new_policy;
780 ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
781 if (ret || new_policy == -1)
782 return ret;
783
784 mm_compute_batch(new_policy);
785 if (new_policy == OVERCOMMIT_NEVER)
786 schedule_on_each_cpu(sync_overcommit_as);
787 sysctl_overcommit_memory = new_policy;
788 } else {
789 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
790 }
791
792 return ret;
793 }
794
overcommit_kbytes_handler(struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)795 int overcommit_kbytes_handler(struct ctl_table *table, int write, void *buffer,
796 size_t *lenp, loff_t *ppos)
797 {
798 int ret;
799
800 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
801 if (ret == 0 && write)
802 sysctl_overcommit_ratio = 0;
803 return ret;
804 }
805
806 /*
807 * Committed memory limit enforced when OVERCOMMIT_NEVER policy is used
808 */
vm_commit_limit(void)809 unsigned long vm_commit_limit(void)
810 {
811 unsigned long allowed;
812
813 if (sysctl_overcommit_kbytes)
814 allowed = sysctl_overcommit_kbytes >> (PAGE_SHIFT - 10);
815 else
816 allowed = ((totalram_pages() - hugetlb_total_pages())
817 * sysctl_overcommit_ratio / 100);
818 allowed += total_swap_pages;
819
820 return allowed;
821 }
822
823 /*
824 * Make sure vm_committed_as in one cacheline and not cacheline shared with
825 * other variables. It can be updated by several CPUs frequently.
826 */
827 struct percpu_counter vm_committed_as ____cacheline_aligned_in_smp;
828
829 /*
830 * The global memory commitment made in the system can be a metric
831 * that can be used to drive ballooning decisions when Linux is hosted
832 * as a guest. On Hyper-V, the host implements a policy engine for dynamically
833 * balancing memory across competing virtual machines that are hosted.
834 * Several metrics drive this policy engine including the guest reported
835 * memory commitment.
836 *
837 * The time cost of this is very low for small platforms, and for big
838 * platform like a 2S/36C/72T Skylake server, in worst case where
839 * vm_committed_as's spinlock is under severe contention, the time cost
840 * could be about 30~40 microseconds.
841 */
vm_memory_committed(void)842 unsigned long vm_memory_committed(void)
843 {
844 return percpu_counter_sum_positive(&vm_committed_as);
845 }
846 EXPORT_SYMBOL_GPL(vm_memory_committed);
847
848 /*
849 * Check that a process has enough memory to allocate a new virtual
850 * mapping. 0 means there is enough memory for the allocation to
851 * succeed and -ENOMEM implies there is not.
852 *
853 * We currently support three overcommit policies, which are set via the
854 * vm.overcommit_memory sysctl. See Documentation/vm/overcommit-accounting.rst
855 *
856 * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
857 * Additional code 2002 Jul 20 by Robert Love.
858 *
859 * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
860 *
861 * Note this is a helper function intended to be used by LSMs which
862 * wish to use this logic.
863 */
__vm_enough_memory(struct mm_struct * mm,long pages,int cap_sys_admin)864 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
865 {
866 long allowed;
867
868 vm_acct_memory(pages);
869
870 /*
871 * Sometimes we want to use more memory than we have
872 */
873 if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
874 return 0;
875
876 if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
877 if (pages > totalram_pages() + total_swap_pages)
878 goto error;
879 return 0;
880 }
881
882 allowed = vm_commit_limit();
883 /*
884 * Reserve some for root
885 */
886 if (!cap_sys_admin)
887 allowed -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
888
889 /*
890 * Don't let a single process grow so big a user can't recover
891 */
892 if (mm) {
893 long reserve = sysctl_user_reserve_kbytes >> (PAGE_SHIFT - 10);
894
895 allowed -= min_t(long, mm->total_vm / 32, reserve);
896 }
897
898 if (percpu_counter_read_positive(&vm_committed_as) < allowed)
899 return 0;
900 error:
901 vm_unacct_memory(pages);
902
903 return -ENOMEM;
904 }
905
906 /**
907 * get_cmdline() - copy the cmdline value to a buffer.
908 * @task: the task whose cmdline value to copy.
909 * @buffer: the buffer to copy to.
910 * @buflen: the length of the buffer. Larger cmdline values are truncated
911 * to this length.
912 *
913 * Return: the size of the cmdline field copied. Note that the copy does
914 * not guarantee an ending NULL byte.
915 */
get_cmdline(struct task_struct * task,char * buffer,int buflen)916 int get_cmdline(struct task_struct *task, char *buffer, int buflen)
917 {
918 int res = 0;
919 unsigned int len;
920 struct mm_struct *mm = get_task_mm(task);
921 unsigned long arg_start, arg_end, env_start, env_end;
922 if (!mm)
923 goto out;
924 if (!mm->arg_end)
925 goto out_mm; /* Shh! No looking before we're done */
926
927 spin_lock(&mm->arg_lock);
928 arg_start = mm->arg_start;
929 arg_end = mm->arg_end;
930 env_start = mm->env_start;
931 env_end = mm->env_end;
932 spin_unlock(&mm->arg_lock);
933
934 len = arg_end - arg_start;
935
936 if (len > buflen)
937 len = buflen;
938
939 res = access_process_vm(task, arg_start, buffer, len, FOLL_FORCE);
940
941 /*
942 * If the nul at the end of args has been overwritten, then
943 * assume application is using setproctitle(3).
944 */
945 if (res > 0 && buffer[res-1] != '\0' && len < buflen) {
946 len = strnlen(buffer, res);
947 if (len < res) {
948 res = len;
949 } else {
950 len = env_end - env_start;
951 if (len > buflen - res)
952 len = buflen - res;
953 res += access_process_vm(task, env_start,
954 buffer+res, len,
955 FOLL_FORCE);
956 res = strnlen(buffer, res);
957 }
958 }
959 out_mm:
960 mmput(mm);
961 out:
962 return res;
963 }
964
memcmp_pages(struct page * page1,struct page * page2)965 int __weak memcmp_pages(struct page *page1, struct page *page2)
966 {
967 char *addr1, *addr2;
968 int ret;
969
970 addr1 = kmap_atomic(page1);
971 addr2 = kmap_atomic(page2);
972 ret = memcmp(addr1, addr2, PAGE_SIZE);
973 kunmap_atomic(addr2);
974 kunmap_atomic(addr1);
975 return ret;
976 }
977