1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * gendisk handling
4 */
5
6 #include <linux/module.h>
7 #include <linux/ctype.h>
8 #include <linux/fs.h>
9 #include <linux/genhd.h>
10 #include <linux/kdev_t.h>
11 #include <linux/kernel.h>
12 #include <linux/blkdev.h>
13 #include <linux/backing-dev.h>
14 #include <linux/init.h>
15 #include <linux/spinlock.h>
16 #include <linux/proc_fs.h>
17 #include <linux/seq_file.h>
18 #include <linux/slab.h>
19 #include <linux/kmod.h>
20 #include <linux/kobj_map.h>
21 #include <linux/mutex.h>
22 #include <linux/idr.h>
23 #include <linux/log2.h>
24 #include <linux/pm_runtime.h>
25 #include <linux/badblocks.h>
26
27 #include "blk.h"
28
29 static DEFINE_MUTEX(block_class_lock);
30 static struct kobject *block_depr;
31
32 /* for extended dynamic devt allocation, currently only one major is used */
33 #define NR_EXT_DEVT (1 << MINORBITS)
34
35 /* For extended devt allocation. ext_devt_lock prevents look up
36 * results from going away underneath its user.
37 */
38 static DEFINE_SPINLOCK(ext_devt_lock);
39 static DEFINE_IDR(ext_devt_idr);
40
41 static void disk_check_events(struct disk_events *ev,
42 unsigned int *clearing_ptr);
43 static void disk_alloc_events(struct gendisk *disk);
44 static void disk_add_events(struct gendisk *disk);
45 static void disk_del_events(struct gendisk *disk);
46 static void disk_release_events(struct gendisk *disk);
47
48 /*
49 * Set disk capacity and notify if the size is not currently
50 * zero and will not be set to zero
51 */
set_capacity_revalidate_and_notify(struct gendisk * disk,sector_t size,bool update_bdev)52 bool set_capacity_revalidate_and_notify(struct gendisk *disk, sector_t size,
53 bool update_bdev)
54 {
55 sector_t capacity = get_capacity(disk);
56
57 set_capacity(disk, size);
58 if (update_bdev)
59 revalidate_disk_size(disk, true);
60
61 if (capacity != size && capacity != 0 && size != 0) {
62 char *envp[] = { "RESIZE=1", NULL };
63
64 kobject_uevent_env(&disk_to_dev(disk)->kobj, KOBJ_CHANGE, envp);
65 return true;
66 }
67
68 return false;
69 }
70
71 EXPORT_SYMBOL_GPL(set_capacity_revalidate_and_notify);
72
73 /*
74 * Format the device name of the indicated disk into the supplied buffer and
75 * return a pointer to that same buffer for convenience.
76 */
disk_name(struct gendisk * hd,int partno,char * buf)77 char *disk_name(struct gendisk *hd, int partno, char *buf)
78 {
79 if (!partno)
80 snprintf(buf, BDEVNAME_SIZE, "%s", hd->disk_name);
81 else if (isdigit(hd->disk_name[strlen(hd->disk_name)-1]))
82 snprintf(buf, BDEVNAME_SIZE, "%sp%d", hd->disk_name, partno);
83 else
84 snprintf(buf, BDEVNAME_SIZE, "%s%d", hd->disk_name, partno);
85
86 return buf;
87 }
88
bdevname(struct block_device * bdev,char * buf)89 const char *bdevname(struct block_device *bdev, char *buf)
90 {
91 return disk_name(bdev->bd_disk, bdev->bd_partno, buf);
92 }
93 EXPORT_SYMBOL(bdevname);
94
part_stat_read_all(struct hd_struct * part,struct disk_stats * stat)95 static void part_stat_read_all(struct hd_struct *part, struct disk_stats *stat)
96 {
97 int cpu;
98
99 memset(stat, 0, sizeof(struct disk_stats));
100 for_each_possible_cpu(cpu) {
101 struct disk_stats *ptr = per_cpu_ptr(part->dkstats, cpu);
102 int group;
103
104 for (group = 0; group < NR_STAT_GROUPS; group++) {
105 stat->nsecs[group] += ptr->nsecs[group];
106 stat->sectors[group] += ptr->sectors[group];
107 stat->ios[group] += ptr->ios[group];
108 stat->merges[group] += ptr->merges[group];
109 }
110
111 stat->io_ticks += ptr->io_ticks;
112 }
113 }
114
part_in_flight(struct hd_struct * part)115 static unsigned int part_in_flight(struct hd_struct *part)
116 {
117 unsigned int inflight = 0;
118 int cpu;
119
120 for_each_possible_cpu(cpu) {
121 inflight += part_stat_local_read_cpu(part, in_flight[0], cpu) +
122 part_stat_local_read_cpu(part, in_flight[1], cpu);
123 }
124 if ((int)inflight < 0)
125 inflight = 0;
126
127 return inflight;
128 }
129
part_in_flight_rw(struct hd_struct * part,unsigned int inflight[2])130 static void part_in_flight_rw(struct hd_struct *part, unsigned int inflight[2])
131 {
132 int cpu;
133
134 inflight[0] = 0;
135 inflight[1] = 0;
136 for_each_possible_cpu(cpu) {
137 inflight[0] += part_stat_local_read_cpu(part, in_flight[0], cpu);
138 inflight[1] += part_stat_local_read_cpu(part, in_flight[1], cpu);
139 }
140 if ((int)inflight[0] < 0)
141 inflight[0] = 0;
142 if ((int)inflight[1] < 0)
143 inflight[1] = 0;
144 }
145
__disk_get_part(struct gendisk * disk,int partno)146 struct hd_struct *__disk_get_part(struct gendisk *disk, int partno)
147 {
148 struct disk_part_tbl *ptbl = rcu_dereference(disk->part_tbl);
149
150 if (unlikely(partno < 0 || partno >= ptbl->len))
151 return NULL;
152 return rcu_dereference(ptbl->part[partno]);
153 }
154
155 /**
156 * disk_get_part - get partition
157 * @disk: disk to look partition from
158 * @partno: partition number
159 *
160 * Look for partition @partno from @disk. If found, increment
161 * reference count and return it.
162 *
163 * CONTEXT:
164 * Don't care.
165 *
166 * RETURNS:
167 * Pointer to the found partition on success, NULL if not found.
168 */
disk_get_part(struct gendisk * disk,int partno)169 struct hd_struct *disk_get_part(struct gendisk *disk, int partno)
170 {
171 struct hd_struct *part;
172
173 rcu_read_lock();
174 part = __disk_get_part(disk, partno);
175 if (part)
176 get_device(part_to_dev(part));
177 rcu_read_unlock();
178
179 return part;
180 }
181
182 /**
183 * disk_part_iter_init - initialize partition iterator
184 * @piter: iterator to initialize
185 * @disk: disk to iterate over
186 * @flags: DISK_PITER_* flags
187 *
188 * Initialize @piter so that it iterates over partitions of @disk.
189 *
190 * CONTEXT:
191 * Don't care.
192 */
disk_part_iter_init(struct disk_part_iter * piter,struct gendisk * disk,unsigned int flags)193 void disk_part_iter_init(struct disk_part_iter *piter, struct gendisk *disk,
194 unsigned int flags)
195 {
196 struct disk_part_tbl *ptbl;
197
198 rcu_read_lock();
199 ptbl = rcu_dereference(disk->part_tbl);
200
201 piter->disk = disk;
202 piter->part = NULL;
203
204 if (flags & DISK_PITER_REVERSE)
205 piter->idx = ptbl->len - 1;
206 else if (flags & (DISK_PITER_INCL_PART0 | DISK_PITER_INCL_EMPTY_PART0))
207 piter->idx = 0;
208 else
209 piter->idx = 1;
210
211 piter->flags = flags;
212
213 rcu_read_unlock();
214 }
215 EXPORT_SYMBOL_GPL(disk_part_iter_init);
216
217 /**
218 * disk_part_iter_next - proceed iterator to the next partition and return it
219 * @piter: iterator of interest
220 *
221 * Proceed @piter to the next partition and return it.
222 *
223 * CONTEXT:
224 * Don't care.
225 */
disk_part_iter_next(struct disk_part_iter * piter)226 struct hd_struct *disk_part_iter_next(struct disk_part_iter *piter)
227 {
228 struct disk_part_tbl *ptbl;
229 int inc, end;
230
231 /* put the last partition */
232 disk_put_part(piter->part);
233 piter->part = NULL;
234
235 /* get part_tbl */
236 rcu_read_lock();
237 ptbl = rcu_dereference(piter->disk->part_tbl);
238
239 /* determine iteration parameters */
240 if (piter->flags & DISK_PITER_REVERSE) {
241 inc = -1;
242 if (piter->flags & (DISK_PITER_INCL_PART0 |
243 DISK_PITER_INCL_EMPTY_PART0))
244 end = -1;
245 else
246 end = 0;
247 } else {
248 inc = 1;
249 end = ptbl->len;
250 }
251
252 /* iterate to the next partition */
253 for (; piter->idx != end; piter->idx += inc) {
254 struct hd_struct *part;
255
256 part = rcu_dereference(ptbl->part[piter->idx]);
257 if (!part)
258 continue;
259 get_device(part_to_dev(part));
260 piter->part = part;
261 if (!part_nr_sects_read(part) &&
262 !(piter->flags & DISK_PITER_INCL_EMPTY) &&
263 !(piter->flags & DISK_PITER_INCL_EMPTY_PART0 &&
264 piter->idx == 0)) {
265 put_device(part_to_dev(part));
266 piter->part = NULL;
267 continue;
268 }
269
270 piter->idx += inc;
271 break;
272 }
273
274 rcu_read_unlock();
275
276 return piter->part;
277 }
278 EXPORT_SYMBOL_GPL(disk_part_iter_next);
279
280 /**
281 * disk_part_iter_exit - finish up partition iteration
282 * @piter: iter of interest
283 *
284 * Called when iteration is over. Cleans up @piter.
285 *
286 * CONTEXT:
287 * Don't care.
288 */
disk_part_iter_exit(struct disk_part_iter * piter)289 void disk_part_iter_exit(struct disk_part_iter *piter)
290 {
291 disk_put_part(piter->part);
292 piter->part = NULL;
293 }
294 EXPORT_SYMBOL_GPL(disk_part_iter_exit);
295
sector_in_part(struct hd_struct * part,sector_t sector)296 static inline int sector_in_part(struct hd_struct *part, sector_t sector)
297 {
298 return part->start_sect <= sector &&
299 sector < part->start_sect + part_nr_sects_read(part);
300 }
301
302 /**
303 * disk_map_sector_rcu - map sector to partition
304 * @disk: gendisk of interest
305 * @sector: sector to map
306 *
307 * Find out which partition @sector maps to on @disk. This is
308 * primarily used for stats accounting.
309 *
310 * CONTEXT:
311 * RCU read locked. The returned partition pointer is always valid
312 * because its refcount is grabbed except for part0, which lifetime
313 * is same with the disk.
314 *
315 * RETURNS:
316 * Found partition on success, part0 is returned if no partition matches
317 * or the matched partition is being deleted.
318 */
disk_map_sector_rcu(struct gendisk * disk,sector_t sector)319 struct hd_struct *disk_map_sector_rcu(struct gendisk *disk, sector_t sector)
320 {
321 struct disk_part_tbl *ptbl;
322 struct hd_struct *part;
323 int i;
324
325 rcu_read_lock();
326 ptbl = rcu_dereference(disk->part_tbl);
327
328 part = rcu_dereference(ptbl->last_lookup);
329 if (part && sector_in_part(part, sector) && hd_struct_try_get(part))
330 goto out_unlock;
331
332 for (i = 1; i < ptbl->len; i++) {
333 part = rcu_dereference(ptbl->part[i]);
334
335 if (part && sector_in_part(part, sector)) {
336 /*
337 * only live partition can be cached for lookup,
338 * so use-after-free on cached & deleting partition
339 * can be avoided
340 */
341 if (!hd_struct_try_get(part))
342 break;
343 rcu_assign_pointer(ptbl->last_lookup, part);
344 goto out_unlock;
345 }
346 }
347
348 part = &disk->part0;
349 out_unlock:
350 rcu_read_unlock();
351 return part;
352 }
353
354 /**
355 * disk_has_partitions
356 * @disk: gendisk of interest
357 *
358 * Walk through the partition table and check if valid partition exists.
359 *
360 * CONTEXT:
361 * Don't care.
362 *
363 * RETURNS:
364 * True if the gendisk has at least one valid non-zero size partition.
365 * Otherwise false.
366 */
disk_has_partitions(struct gendisk * disk)367 bool disk_has_partitions(struct gendisk *disk)
368 {
369 struct disk_part_tbl *ptbl;
370 int i;
371 bool ret = false;
372
373 rcu_read_lock();
374 ptbl = rcu_dereference(disk->part_tbl);
375
376 /* Iterate partitions skipping the whole device at index 0 */
377 for (i = 1; i < ptbl->len; i++) {
378 if (rcu_dereference(ptbl->part[i])) {
379 ret = true;
380 break;
381 }
382 }
383
384 rcu_read_unlock();
385
386 return ret;
387 }
388 EXPORT_SYMBOL_GPL(disk_has_partitions);
389
390 /*
391 * Can be deleted altogether. Later.
392 *
393 */
394 #define BLKDEV_MAJOR_HASH_SIZE 255
395 static struct blk_major_name {
396 struct blk_major_name *next;
397 int major;
398 char name[16];
399 } *major_names[BLKDEV_MAJOR_HASH_SIZE];
400
401 /* index in the above - for now: assume no multimajor ranges */
major_to_index(unsigned major)402 static inline int major_to_index(unsigned major)
403 {
404 return major % BLKDEV_MAJOR_HASH_SIZE;
405 }
406
407 #ifdef CONFIG_PROC_FS
blkdev_show(struct seq_file * seqf,off_t offset)408 void blkdev_show(struct seq_file *seqf, off_t offset)
409 {
410 struct blk_major_name *dp;
411
412 mutex_lock(&block_class_lock);
413 for (dp = major_names[major_to_index(offset)]; dp; dp = dp->next)
414 if (dp->major == offset)
415 seq_printf(seqf, "%3d %s\n", dp->major, dp->name);
416 mutex_unlock(&block_class_lock);
417 }
418 #endif /* CONFIG_PROC_FS */
419
420 /**
421 * register_blkdev - register a new block device
422 *
423 * @major: the requested major device number [1..BLKDEV_MAJOR_MAX-1]. If
424 * @major = 0, try to allocate any unused major number.
425 * @name: the name of the new block device as a zero terminated string
426 *
427 * The @name must be unique within the system.
428 *
429 * The return value depends on the @major input parameter:
430 *
431 * - if a major device number was requested in range [1..BLKDEV_MAJOR_MAX-1]
432 * then the function returns zero on success, or a negative error code
433 * - if any unused major number was requested with @major = 0 parameter
434 * then the return value is the allocated major number in range
435 * [1..BLKDEV_MAJOR_MAX-1] or a negative error code otherwise
436 *
437 * See Documentation/admin-guide/devices.txt for the list of allocated
438 * major numbers.
439 */
register_blkdev(unsigned int major,const char * name)440 int register_blkdev(unsigned int major, const char *name)
441 {
442 struct blk_major_name **n, *p;
443 int index, ret = 0;
444
445 mutex_lock(&block_class_lock);
446
447 /* temporary */
448 if (major == 0) {
449 for (index = ARRAY_SIZE(major_names)-1; index > 0; index--) {
450 if (major_names[index] == NULL)
451 break;
452 }
453
454 if (index == 0) {
455 printk("%s: failed to get major for %s\n",
456 __func__, name);
457 ret = -EBUSY;
458 goto out;
459 }
460 major = index;
461 ret = major;
462 }
463
464 if (major >= BLKDEV_MAJOR_MAX) {
465 pr_err("%s: major requested (%u) is greater than the maximum (%u) for %s\n",
466 __func__, major, BLKDEV_MAJOR_MAX-1, name);
467
468 ret = -EINVAL;
469 goto out;
470 }
471
472 p = kmalloc(sizeof(struct blk_major_name), GFP_KERNEL);
473 if (p == NULL) {
474 ret = -ENOMEM;
475 goto out;
476 }
477
478 p->major = major;
479 strlcpy(p->name, name, sizeof(p->name));
480 p->next = NULL;
481 index = major_to_index(major);
482
483 for (n = &major_names[index]; *n; n = &(*n)->next) {
484 if ((*n)->major == major)
485 break;
486 }
487 if (!*n)
488 *n = p;
489 else
490 ret = -EBUSY;
491
492 if (ret < 0) {
493 printk("register_blkdev: cannot get major %u for %s\n",
494 major, name);
495 kfree(p);
496 }
497 out:
498 mutex_unlock(&block_class_lock);
499 return ret;
500 }
501
502 EXPORT_SYMBOL(register_blkdev);
503
unregister_blkdev(unsigned int major,const char * name)504 void unregister_blkdev(unsigned int major, const char *name)
505 {
506 struct blk_major_name **n;
507 struct blk_major_name *p = NULL;
508 int index = major_to_index(major);
509
510 mutex_lock(&block_class_lock);
511 for (n = &major_names[index]; *n; n = &(*n)->next)
512 if ((*n)->major == major)
513 break;
514 if (!*n || strcmp((*n)->name, name)) {
515 WARN_ON(1);
516 } else {
517 p = *n;
518 *n = p->next;
519 }
520 mutex_unlock(&block_class_lock);
521 kfree(p);
522 }
523
524 EXPORT_SYMBOL(unregister_blkdev);
525
526 static struct kobj_map *bdev_map;
527
528 /**
529 * blk_mangle_minor - scatter minor numbers apart
530 * @minor: minor number to mangle
531 *
532 * Scatter consecutively allocated @minor number apart if MANGLE_DEVT
533 * is enabled. Mangling twice gives the original value.
534 *
535 * RETURNS:
536 * Mangled value.
537 *
538 * CONTEXT:
539 * Don't care.
540 */
blk_mangle_minor(int minor)541 static int blk_mangle_minor(int minor)
542 {
543 #ifdef CONFIG_DEBUG_BLOCK_EXT_DEVT
544 int i;
545
546 for (i = 0; i < MINORBITS / 2; i++) {
547 int low = minor & (1 << i);
548 int high = minor & (1 << (MINORBITS - 1 - i));
549 int distance = MINORBITS - 1 - 2 * i;
550
551 minor ^= low | high; /* clear both bits */
552 low <<= distance; /* swap the positions */
553 high >>= distance;
554 minor |= low | high; /* and set */
555 }
556 #endif
557 return minor;
558 }
559
560 /**
561 * blk_alloc_devt - allocate a dev_t for a partition
562 * @part: partition to allocate dev_t for
563 * @devt: out parameter for resulting dev_t
564 *
565 * Allocate a dev_t for block device.
566 *
567 * RETURNS:
568 * 0 on success, allocated dev_t is returned in *@devt. -errno on
569 * failure.
570 *
571 * CONTEXT:
572 * Might sleep.
573 */
blk_alloc_devt(struct hd_struct * part,dev_t * devt)574 int blk_alloc_devt(struct hd_struct *part, dev_t *devt)
575 {
576 struct gendisk *disk = part_to_disk(part);
577 int idx;
578
579 /* in consecutive minor range? */
580 if (part->partno < disk->minors) {
581 *devt = MKDEV(disk->major, disk->first_minor + part->partno);
582 return 0;
583 }
584
585 /* allocate ext devt */
586 idr_preload(GFP_KERNEL);
587
588 spin_lock_bh(&ext_devt_lock);
589 idx = idr_alloc(&ext_devt_idr, part, 0, NR_EXT_DEVT, GFP_NOWAIT);
590 spin_unlock_bh(&ext_devt_lock);
591
592 idr_preload_end();
593 if (idx < 0)
594 return idx == -ENOSPC ? -EBUSY : idx;
595
596 *devt = MKDEV(BLOCK_EXT_MAJOR, blk_mangle_minor(idx));
597 return 0;
598 }
599
600 /**
601 * blk_free_devt - free a dev_t
602 * @devt: dev_t to free
603 *
604 * Free @devt which was allocated using blk_alloc_devt().
605 *
606 * CONTEXT:
607 * Might sleep.
608 */
blk_free_devt(dev_t devt)609 void blk_free_devt(dev_t devt)
610 {
611 if (devt == MKDEV(0, 0))
612 return;
613
614 if (MAJOR(devt) == BLOCK_EXT_MAJOR) {
615 spin_lock_bh(&ext_devt_lock);
616 idr_remove(&ext_devt_idr, blk_mangle_minor(MINOR(devt)));
617 spin_unlock_bh(&ext_devt_lock);
618 }
619 }
620
621 /*
622 * We invalidate devt by assigning NULL pointer for devt in idr.
623 */
blk_invalidate_devt(dev_t devt)624 void blk_invalidate_devt(dev_t devt)
625 {
626 if (MAJOR(devt) == BLOCK_EXT_MAJOR) {
627 spin_lock_bh(&ext_devt_lock);
628 idr_replace(&ext_devt_idr, NULL, blk_mangle_minor(MINOR(devt)));
629 spin_unlock_bh(&ext_devt_lock);
630 }
631 }
632
bdevt_str(dev_t devt,char * buf)633 static char *bdevt_str(dev_t devt, char *buf)
634 {
635 if (MAJOR(devt) <= 0xff && MINOR(devt) <= 0xff) {
636 char tbuf[BDEVT_SIZE];
637 snprintf(tbuf, BDEVT_SIZE, "%02x%02x", MAJOR(devt), MINOR(devt));
638 snprintf(buf, BDEVT_SIZE, "%-9s", tbuf);
639 } else
640 snprintf(buf, BDEVT_SIZE, "%03x:%05x", MAJOR(devt), MINOR(devt));
641
642 return buf;
643 }
644
645 /*
646 * Register device numbers dev..(dev+range-1)
647 * range must be nonzero
648 * The hash chain is sorted on range, so that subranges can override.
649 */
blk_register_region(dev_t devt,unsigned long range,struct module * module,struct kobject * (* probe)(dev_t,int *,void *),int (* lock)(dev_t,void *),void * data)650 void blk_register_region(dev_t devt, unsigned long range, struct module *module,
651 struct kobject *(*probe)(dev_t, int *, void *),
652 int (*lock)(dev_t, void *), void *data)
653 {
654 kobj_map(bdev_map, devt, range, module, probe, lock, data);
655 }
656
657 EXPORT_SYMBOL(blk_register_region);
658
blk_unregister_region(dev_t devt,unsigned long range)659 void blk_unregister_region(dev_t devt, unsigned long range)
660 {
661 kobj_unmap(bdev_map, devt, range);
662 }
663
664 EXPORT_SYMBOL(blk_unregister_region);
665
blk_delete_region(dev_t devt,unsigned long range,struct kobject * (* probe)(dev_t,int *,void *))666 void blk_delete_region(dev_t devt, unsigned long range,
667 struct kobject *(*probe)(dev_t, int *, void *))
668 {
669 kobj_delete(bdev_map, devt, range, probe);
670 }
671
672 EXPORT_SYMBOL(blk_delete_region);
673
exact_match(dev_t devt,int * partno,void * data)674 static struct kobject *exact_match(dev_t devt, int *partno, void *data)
675 {
676 struct gendisk *p = data;
677
678 return &disk_to_dev(p)->kobj;
679 }
680
exact_lock(dev_t devt,void * data)681 static int exact_lock(dev_t devt, void *data)
682 {
683 struct gendisk *p = data;
684
685 if (!get_disk_and_module(p))
686 return -1;
687 return 0;
688 }
689
disk_scan_partitions(struct gendisk * disk)690 static void disk_scan_partitions(struct gendisk *disk)
691 {
692 struct block_device *bdev;
693
694 if (!get_capacity(disk) || !disk_part_scan_enabled(disk))
695 return;
696
697 set_bit(GD_NEED_PART_SCAN, &disk->state);
698 bdev = blkdev_get_by_dev(disk_devt(disk), FMODE_READ, NULL);
699 if (!IS_ERR(bdev))
700 blkdev_put(bdev, FMODE_READ);
701 }
702
register_disk(struct device * parent,struct gendisk * disk,const struct attribute_group ** groups)703 static void register_disk(struct device *parent, struct gendisk *disk,
704 const struct attribute_group **groups)
705 {
706 struct device *ddev = disk_to_dev(disk);
707 struct disk_part_iter piter;
708 struct hd_struct *part;
709 int err;
710
711 ddev->parent = parent;
712
713 dev_set_name(ddev, "%s", disk->disk_name);
714
715 /* delay uevents, until we scanned partition table */
716 dev_set_uevent_suppress(ddev, 1);
717
718 if (groups) {
719 WARN_ON(ddev->groups);
720 ddev->groups = groups;
721 }
722 if (device_add(ddev))
723 return;
724 if (!sysfs_deprecated) {
725 err = sysfs_create_link(block_depr, &ddev->kobj,
726 kobject_name(&ddev->kobj));
727 if (err) {
728 device_del(ddev);
729 return;
730 }
731 }
732
733 /*
734 * avoid probable deadlock caused by allocating memory with
735 * GFP_KERNEL in runtime_resume callback of its all ancestor
736 * devices
737 */
738 pm_runtime_set_memalloc_noio(ddev, true);
739
740 disk->part0.holder_dir = kobject_create_and_add("holders", &ddev->kobj);
741 disk->slave_dir = kobject_create_and_add("slaves", &ddev->kobj);
742
743 if (disk->flags & GENHD_FL_HIDDEN)
744 return;
745
746 disk_scan_partitions(disk);
747
748 /* announce disk after possible partitions are created */
749 dev_set_uevent_suppress(ddev, 0);
750 kobject_uevent(&ddev->kobj, KOBJ_ADD);
751
752 /* announce possible partitions */
753 disk_part_iter_init(&piter, disk, 0);
754 while ((part = disk_part_iter_next(&piter)))
755 kobject_uevent(&part_to_dev(part)->kobj, KOBJ_ADD);
756 disk_part_iter_exit(&piter);
757
758 if (disk->queue->backing_dev_info->dev) {
759 err = sysfs_create_link(&ddev->kobj,
760 &disk->queue->backing_dev_info->dev->kobj,
761 "bdi");
762 WARN_ON(err);
763 }
764 }
765
766 /**
767 * __device_add_disk - add disk information to kernel list
768 * @parent: parent device for the disk
769 * @disk: per-device partitioning information
770 * @groups: Additional per-device sysfs groups
771 * @register_queue: register the queue if set to true
772 *
773 * This function registers the partitioning information in @disk
774 * with the kernel.
775 *
776 * FIXME: error handling
777 */
__device_add_disk(struct device * parent,struct gendisk * disk,const struct attribute_group ** groups,bool register_queue)778 static void __device_add_disk(struct device *parent, struct gendisk *disk,
779 const struct attribute_group **groups,
780 bool register_queue)
781 {
782 dev_t devt;
783 int retval;
784
785 /*
786 * The disk queue should now be all set with enough information about
787 * the device for the elevator code to pick an adequate default
788 * elevator if one is needed, that is, for devices requesting queue
789 * registration.
790 */
791 if (register_queue)
792 elevator_init_mq(disk->queue);
793
794 /* minors == 0 indicates to use ext devt from part0 and should
795 * be accompanied with EXT_DEVT flag. Make sure all
796 * parameters make sense.
797 */
798 WARN_ON(disk->minors && !(disk->major || disk->first_minor));
799 WARN_ON(!disk->minors &&
800 !(disk->flags & (GENHD_FL_EXT_DEVT | GENHD_FL_HIDDEN)));
801
802 disk->flags |= GENHD_FL_UP;
803
804 retval = blk_alloc_devt(&disk->part0, &devt);
805 if (retval) {
806 WARN_ON(1);
807 return;
808 }
809 disk->major = MAJOR(devt);
810 disk->first_minor = MINOR(devt);
811
812 disk_alloc_events(disk);
813
814 if (disk->flags & GENHD_FL_HIDDEN) {
815 /*
816 * Don't let hidden disks show up in /proc/partitions,
817 * and don't bother scanning for partitions either.
818 */
819 disk->flags |= GENHD_FL_SUPPRESS_PARTITION_INFO;
820 disk->flags |= GENHD_FL_NO_PART_SCAN;
821 } else {
822 struct backing_dev_info *bdi = disk->queue->backing_dev_info;
823 struct device *dev = disk_to_dev(disk);
824 int ret;
825
826 /* Register BDI before referencing it from bdev */
827 dev->devt = devt;
828 ret = bdi_register(bdi, "%u:%u", MAJOR(devt), MINOR(devt));
829 WARN_ON(ret);
830 bdi_set_owner(bdi, dev);
831 blk_register_region(disk_devt(disk), disk->minors, NULL,
832 exact_match, exact_lock, disk);
833 }
834 register_disk(parent, disk, groups);
835 if (register_queue)
836 blk_register_queue(disk);
837
838 /*
839 * Take an extra ref on queue which will be put on disk_release()
840 * so that it sticks around as long as @disk is there.
841 */
842 WARN_ON_ONCE(!blk_get_queue(disk->queue));
843
844 disk_add_events(disk);
845 blk_integrity_add(disk);
846 }
847
device_add_disk(struct device * parent,struct gendisk * disk,const struct attribute_group ** groups)848 void device_add_disk(struct device *parent, struct gendisk *disk,
849 const struct attribute_group **groups)
850
851 {
852 __device_add_disk(parent, disk, groups, true);
853 }
854 EXPORT_SYMBOL(device_add_disk);
855
device_add_disk_no_queue_reg(struct device * parent,struct gendisk * disk)856 void device_add_disk_no_queue_reg(struct device *parent, struct gendisk *disk)
857 {
858 __device_add_disk(parent, disk, NULL, false);
859 }
860 EXPORT_SYMBOL(device_add_disk_no_queue_reg);
861
invalidate_partition(struct gendisk * disk,int partno)862 static void invalidate_partition(struct gendisk *disk, int partno)
863 {
864 struct block_device *bdev;
865
866 bdev = bdget_disk(disk, partno);
867 if (!bdev)
868 return;
869
870 fsync_bdev(bdev);
871 __invalidate_device(bdev, true);
872
873 /*
874 * Unhash the bdev inode for this device so that it gets evicted as soon
875 * as last inode reference is dropped.
876 */
877 remove_inode_hash(bdev->bd_inode);
878 bdput(bdev);
879 }
880
881 /**
882 * del_gendisk - remove the gendisk
883 * @disk: the struct gendisk to remove
884 *
885 * Removes the gendisk and all its associated resources. This deletes the
886 * partitions associated with the gendisk, and unregisters the associated
887 * request_queue.
888 *
889 * This is the counter to the respective __device_add_disk() call.
890 *
891 * The final removal of the struct gendisk happens when its refcount reaches 0
892 * with put_disk(), which should be called after del_gendisk(), if
893 * __device_add_disk() was used.
894 *
895 * Drivers exist which depend on the release of the gendisk to be synchronous,
896 * it should not be deferred.
897 *
898 * Context: can sleep
899 */
del_gendisk(struct gendisk * disk)900 void del_gendisk(struct gendisk *disk)
901 {
902 struct disk_part_iter piter;
903 struct hd_struct *part;
904
905 might_sleep();
906
907 blk_integrity_del(disk);
908 disk_del_events(disk);
909
910 /*
911 * Block lookups of the disk until all bdevs are unhashed and the
912 * disk is marked as dead (GENHD_FL_UP cleared).
913 */
914 down_write(&disk->lookup_sem);
915 /* invalidate stuff */
916 disk_part_iter_init(&piter, disk,
917 DISK_PITER_INCL_EMPTY | DISK_PITER_REVERSE);
918 while ((part = disk_part_iter_next(&piter))) {
919 invalidate_partition(disk, part->partno);
920 delete_partition(part);
921 }
922 disk_part_iter_exit(&piter);
923
924 invalidate_partition(disk, 0);
925 set_capacity(disk, 0);
926 disk->flags &= ~GENHD_FL_UP;
927 up_write(&disk->lookup_sem);
928
929 if (!(disk->flags & GENHD_FL_HIDDEN))
930 sysfs_remove_link(&disk_to_dev(disk)->kobj, "bdi");
931 if (disk->queue) {
932 /*
933 * Unregister bdi before releasing device numbers (as they can
934 * get reused and we'd get clashes in sysfs).
935 */
936 if (!(disk->flags & GENHD_FL_HIDDEN))
937 bdi_unregister(disk->queue->backing_dev_info);
938 blk_unregister_queue(disk);
939 } else {
940 WARN_ON(1);
941 }
942
943 if (!(disk->flags & GENHD_FL_HIDDEN))
944 blk_unregister_region(disk_devt(disk), disk->minors);
945 /*
946 * Remove gendisk pointer from idr so that it cannot be looked up
947 * while RCU period before freeing gendisk is running to prevent
948 * use-after-free issues. Note that the device number stays
949 * "in-use" until we really free the gendisk.
950 */
951 blk_invalidate_devt(disk_devt(disk));
952
953 kobject_put(disk->part0.holder_dir);
954 kobject_put(disk->slave_dir);
955
956 part_stat_set_all(&disk->part0, 0);
957 disk->part0.stamp = 0;
958 if (!sysfs_deprecated)
959 sysfs_remove_link(block_depr, dev_name(disk_to_dev(disk)));
960 pm_runtime_set_memalloc_noio(disk_to_dev(disk), false);
961 device_del(disk_to_dev(disk));
962 }
963 EXPORT_SYMBOL(del_gendisk);
964
965 /* sysfs access to bad-blocks list. */
disk_badblocks_show(struct device * dev,struct device_attribute * attr,char * page)966 static ssize_t disk_badblocks_show(struct device *dev,
967 struct device_attribute *attr,
968 char *page)
969 {
970 struct gendisk *disk = dev_to_disk(dev);
971
972 if (!disk->bb)
973 return sprintf(page, "\n");
974
975 return badblocks_show(disk->bb, page, 0);
976 }
977
disk_badblocks_store(struct device * dev,struct device_attribute * attr,const char * page,size_t len)978 static ssize_t disk_badblocks_store(struct device *dev,
979 struct device_attribute *attr,
980 const char *page, size_t len)
981 {
982 struct gendisk *disk = dev_to_disk(dev);
983
984 if (!disk->bb)
985 return -ENXIO;
986
987 return badblocks_store(disk->bb, page, len, 0);
988 }
989
990 /**
991 * get_gendisk - get partitioning information for a given device
992 * @devt: device to get partitioning information for
993 * @partno: returned partition index
994 *
995 * This function gets the structure containing partitioning
996 * information for the given device @devt.
997 *
998 * Context: can sleep
999 */
get_gendisk(dev_t devt,int * partno)1000 struct gendisk *get_gendisk(dev_t devt, int *partno)
1001 {
1002 struct gendisk *disk = NULL;
1003
1004 might_sleep();
1005
1006 if (MAJOR(devt) != BLOCK_EXT_MAJOR) {
1007 struct kobject *kobj;
1008
1009 kobj = kobj_lookup(bdev_map, devt, partno);
1010 if (kobj)
1011 disk = dev_to_disk(kobj_to_dev(kobj));
1012 } else {
1013 struct hd_struct *part;
1014
1015 spin_lock_bh(&ext_devt_lock);
1016 part = idr_find(&ext_devt_idr, blk_mangle_minor(MINOR(devt)));
1017 if (part && get_disk_and_module(part_to_disk(part))) {
1018 *partno = part->partno;
1019 disk = part_to_disk(part);
1020 }
1021 spin_unlock_bh(&ext_devt_lock);
1022 }
1023
1024 if (!disk)
1025 return NULL;
1026
1027 /*
1028 * Synchronize with del_gendisk() to not return disk that is being
1029 * destroyed.
1030 */
1031 down_read(&disk->lookup_sem);
1032 if (unlikely((disk->flags & GENHD_FL_HIDDEN) ||
1033 !(disk->flags & GENHD_FL_UP))) {
1034 up_read(&disk->lookup_sem);
1035 put_disk_and_module(disk);
1036 disk = NULL;
1037 } else {
1038 up_read(&disk->lookup_sem);
1039 }
1040 return disk;
1041 }
1042
1043 /**
1044 * bdget_disk - do bdget() by gendisk and partition number
1045 * @disk: gendisk of interest
1046 * @partno: partition number
1047 *
1048 * Find partition @partno from @disk, do bdget() on it.
1049 *
1050 * CONTEXT:
1051 * Don't care.
1052 *
1053 * RETURNS:
1054 * Resulting block_device on success, NULL on failure.
1055 */
bdget_disk(struct gendisk * disk,int partno)1056 struct block_device *bdget_disk(struct gendisk *disk, int partno)
1057 {
1058 struct hd_struct *part;
1059 struct block_device *bdev = NULL;
1060
1061 part = disk_get_part(disk, partno);
1062 if (part)
1063 bdev = bdget_part(part);
1064 disk_put_part(part);
1065
1066 return bdev;
1067 }
1068 EXPORT_SYMBOL(bdget_disk);
1069
1070 /*
1071 * print a full list of all partitions - intended for places where the root
1072 * filesystem can't be mounted and thus to give the victim some idea of what
1073 * went wrong
1074 */
printk_all_partitions(void)1075 void __init printk_all_partitions(void)
1076 {
1077 struct class_dev_iter iter;
1078 struct device *dev;
1079
1080 class_dev_iter_init(&iter, &block_class, NULL, &disk_type);
1081 while ((dev = class_dev_iter_next(&iter))) {
1082 struct gendisk *disk = dev_to_disk(dev);
1083 struct disk_part_iter piter;
1084 struct hd_struct *part;
1085 char name_buf[BDEVNAME_SIZE];
1086 char devt_buf[BDEVT_SIZE];
1087
1088 /*
1089 * Don't show empty devices or things that have been
1090 * suppressed
1091 */
1092 if (get_capacity(disk) == 0 ||
1093 (disk->flags & GENHD_FL_SUPPRESS_PARTITION_INFO))
1094 continue;
1095
1096 /*
1097 * Note, unlike /proc/partitions, I am showing the
1098 * numbers in hex - the same format as the root=
1099 * option takes.
1100 */
1101 disk_part_iter_init(&piter, disk, DISK_PITER_INCL_PART0);
1102 while ((part = disk_part_iter_next(&piter))) {
1103 bool is_part0 = part == &disk->part0;
1104
1105 printk("%s%s %10llu %s %s", is_part0 ? "" : " ",
1106 bdevt_str(part_devt(part), devt_buf),
1107 (unsigned long long)part_nr_sects_read(part) >> 1
1108 , disk_name(disk, part->partno, name_buf),
1109 part->info ? part->info->uuid : "");
1110 if (is_part0) {
1111 if (dev->parent && dev->parent->driver)
1112 printk(" driver: %s\n",
1113 dev->parent->driver->name);
1114 else
1115 printk(" (driver?)\n");
1116 } else
1117 printk("\n");
1118 }
1119 disk_part_iter_exit(&piter);
1120 }
1121 class_dev_iter_exit(&iter);
1122 }
1123
1124 #ifdef CONFIG_PROC_FS
1125 /* iterator */
disk_seqf_start(struct seq_file * seqf,loff_t * pos)1126 static void *disk_seqf_start(struct seq_file *seqf, loff_t *pos)
1127 {
1128 loff_t skip = *pos;
1129 struct class_dev_iter *iter;
1130 struct device *dev;
1131
1132 iter = kmalloc(sizeof(*iter), GFP_KERNEL);
1133 if (!iter)
1134 return ERR_PTR(-ENOMEM);
1135
1136 seqf->private = iter;
1137 class_dev_iter_init(iter, &block_class, NULL, &disk_type);
1138 do {
1139 dev = class_dev_iter_next(iter);
1140 if (!dev)
1141 return NULL;
1142 } while (skip--);
1143
1144 return dev_to_disk(dev);
1145 }
1146
disk_seqf_next(struct seq_file * seqf,void * v,loff_t * pos)1147 static void *disk_seqf_next(struct seq_file *seqf, void *v, loff_t *pos)
1148 {
1149 struct device *dev;
1150
1151 (*pos)++;
1152 dev = class_dev_iter_next(seqf->private);
1153 if (dev)
1154 return dev_to_disk(dev);
1155
1156 return NULL;
1157 }
1158
disk_seqf_stop(struct seq_file * seqf,void * v)1159 static void disk_seqf_stop(struct seq_file *seqf, void *v)
1160 {
1161 struct class_dev_iter *iter = seqf->private;
1162
1163 /* stop is called even after start failed :-( */
1164 if (iter) {
1165 class_dev_iter_exit(iter);
1166 kfree(iter);
1167 seqf->private = NULL;
1168 }
1169 }
1170
show_partition_start(struct seq_file * seqf,loff_t * pos)1171 static void *show_partition_start(struct seq_file *seqf, loff_t *pos)
1172 {
1173 void *p;
1174
1175 p = disk_seqf_start(seqf, pos);
1176 if (!IS_ERR_OR_NULL(p) && !*pos)
1177 seq_puts(seqf, "major minor #blocks name\n\n");
1178 return p;
1179 }
1180
show_partition(struct seq_file * seqf,void * v)1181 static int show_partition(struct seq_file *seqf, void *v)
1182 {
1183 struct gendisk *sgp = v;
1184 struct disk_part_iter piter;
1185 struct hd_struct *part;
1186 char buf[BDEVNAME_SIZE];
1187
1188 /* Don't show non-partitionable removeable devices or empty devices */
1189 if (!get_capacity(sgp) || (!disk_max_parts(sgp) &&
1190 (sgp->flags & GENHD_FL_REMOVABLE)))
1191 return 0;
1192 if (sgp->flags & GENHD_FL_SUPPRESS_PARTITION_INFO)
1193 return 0;
1194
1195 /* show the full disk and all non-0 size partitions of it */
1196 disk_part_iter_init(&piter, sgp, DISK_PITER_INCL_PART0);
1197 while ((part = disk_part_iter_next(&piter)))
1198 seq_printf(seqf, "%4d %7d %10llu %s\n",
1199 MAJOR(part_devt(part)), MINOR(part_devt(part)),
1200 (unsigned long long)part_nr_sects_read(part) >> 1,
1201 disk_name(sgp, part->partno, buf));
1202 disk_part_iter_exit(&piter);
1203
1204 return 0;
1205 }
1206
1207 static const struct seq_operations partitions_op = {
1208 .start = show_partition_start,
1209 .next = disk_seqf_next,
1210 .stop = disk_seqf_stop,
1211 .show = show_partition
1212 };
1213 #endif
1214
1215
base_probe(dev_t devt,int * partno,void * data)1216 static struct kobject *base_probe(dev_t devt, int *partno, void *data)
1217 {
1218 if (request_module("block-major-%d-%d", MAJOR(devt), MINOR(devt)) > 0)
1219 /* Make old-style 2.4 aliases work */
1220 request_module("block-major-%d", MAJOR(devt));
1221 return NULL;
1222 }
1223
genhd_device_init(void)1224 static int __init genhd_device_init(void)
1225 {
1226 int error;
1227
1228 block_class.dev_kobj = sysfs_dev_block_kobj;
1229 error = class_register(&block_class);
1230 if (unlikely(error))
1231 return error;
1232 bdev_map = kobj_map_init(base_probe, &block_class_lock);
1233 blk_dev_init();
1234
1235 register_blkdev(BLOCK_EXT_MAJOR, "blkext");
1236
1237 /* create top-level block dir */
1238 if (!sysfs_deprecated)
1239 block_depr = kobject_create_and_add("block", NULL);
1240 return 0;
1241 }
1242
1243 subsys_initcall(genhd_device_init);
1244
disk_range_show(struct device * dev,struct device_attribute * attr,char * buf)1245 static ssize_t disk_range_show(struct device *dev,
1246 struct device_attribute *attr, char *buf)
1247 {
1248 struct gendisk *disk = dev_to_disk(dev);
1249
1250 return sprintf(buf, "%d\n", disk->minors);
1251 }
1252
disk_ext_range_show(struct device * dev,struct device_attribute * attr,char * buf)1253 static ssize_t disk_ext_range_show(struct device *dev,
1254 struct device_attribute *attr, char *buf)
1255 {
1256 struct gendisk *disk = dev_to_disk(dev);
1257
1258 return sprintf(buf, "%d\n", disk_max_parts(disk));
1259 }
1260
disk_removable_show(struct device * dev,struct device_attribute * attr,char * buf)1261 static ssize_t disk_removable_show(struct device *dev,
1262 struct device_attribute *attr, char *buf)
1263 {
1264 struct gendisk *disk = dev_to_disk(dev);
1265
1266 return sprintf(buf, "%d\n",
1267 (disk->flags & GENHD_FL_REMOVABLE ? 1 : 0));
1268 }
1269
disk_hidden_show(struct device * dev,struct device_attribute * attr,char * buf)1270 static ssize_t disk_hidden_show(struct device *dev,
1271 struct device_attribute *attr, char *buf)
1272 {
1273 struct gendisk *disk = dev_to_disk(dev);
1274
1275 return sprintf(buf, "%d\n",
1276 (disk->flags & GENHD_FL_HIDDEN ? 1 : 0));
1277 }
1278
disk_ro_show(struct device * dev,struct device_attribute * attr,char * buf)1279 static ssize_t disk_ro_show(struct device *dev,
1280 struct device_attribute *attr, char *buf)
1281 {
1282 struct gendisk *disk = dev_to_disk(dev);
1283
1284 return sprintf(buf, "%d\n", get_disk_ro(disk) ? 1 : 0);
1285 }
1286
part_size_show(struct device * dev,struct device_attribute * attr,char * buf)1287 ssize_t part_size_show(struct device *dev,
1288 struct device_attribute *attr, char *buf)
1289 {
1290 struct hd_struct *p = dev_to_part(dev);
1291
1292 return sprintf(buf, "%llu\n",
1293 (unsigned long long)part_nr_sects_read(p));
1294 }
1295
part_stat_show(struct device * dev,struct device_attribute * attr,char * buf)1296 ssize_t part_stat_show(struct device *dev,
1297 struct device_attribute *attr, char *buf)
1298 {
1299 struct hd_struct *p = dev_to_part(dev);
1300 struct request_queue *q = part_to_disk(p)->queue;
1301 struct disk_stats stat;
1302 unsigned int inflight;
1303
1304 part_stat_read_all(p, &stat);
1305 if (queue_is_mq(q))
1306 inflight = blk_mq_in_flight(q, p);
1307 else
1308 inflight = part_in_flight(p);
1309
1310 return sprintf(buf,
1311 "%8lu %8lu %8llu %8u "
1312 "%8lu %8lu %8llu %8u "
1313 "%8u %8u %8u "
1314 "%8lu %8lu %8llu %8u "
1315 "%8lu %8u"
1316 "\n",
1317 stat.ios[STAT_READ],
1318 stat.merges[STAT_READ],
1319 (unsigned long long)stat.sectors[STAT_READ],
1320 (unsigned int)div_u64(stat.nsecs[STAT_READ], NSEC_PER_MSEC),
1321 stat.ios[STAT_WRITE],
1322 stat.merges[STAT_WRITE],
1323 (unsigned long long)stat.sectors[STAT_WRITE],
1324 (unsigned int)div_u64(stat.nsecs[STAT_WRITE], NSEC_PER_MSEC),
1325 inflight,
1326 jiffies_to_msecs(stat.io_ticks),
1327 (unsigned int)div_u64(stat.nsecs[STAT_READ] +
1328 stat.nsecs[STAT_WRITE] +
1329 stat.nsecs[STAT_DISCARD] +
1330 stat.nsecs[STAT_FLUSH],
1331 NSEC_PER_MSEC),
1332 stat.ios[STAT_DISCARD],
1333 stat.merges[STAT_DISCARD],
1334 (unsigned long long)stat.sectors[STAT_DISCARD],
1335 (unsigned int)div_u64(stat.nsecs[STAT_DISCARD], NSEC_PER_MSEC),
1336 stat.ios[STAT_FLUSH],
1337 (unsigned int)div_u64(stat.nsecs[STAT_FLUSH], NSEC_PER_MSEC));
1338 }
1339
part_inflight_show(struct device * dev,struct device_attribute * attr,char * buf)1340 ssize_t part_inflight_show(struct device *dev, struct device_attribute *attr,
1341 char *buf)
1342 {
1343 struct hd_struct *p = dev_to_part(dev);
1344 struct request_queue *q = part_to_disk(p)->queue;
1345 unsigned int inflight[2];
1346
1347 if (queue_is_mq(q))
1348 blk_mq_in_flight_rw(q, p, inflight);
1349 else
1350 part_in_flight_rw(p, inflight);
1351
1352 return sprintf(buf, "%8u %8u\n", inflight[0], inflight[1]);
1353 }
1354
disk_capability_show(struct device * dev,struct device_attribute * attr,char * buf)1355 static ssize_t disk_capability_show(struct device *dev,
1356 struct device_attribute *attr, char *buf)
1357 {
1358 struct gendisk *disk = dev_to_disk(dev);
1359
1360 return sprintf(buf, "%x\n", disk->flags);
1361 }
1362
disk_alignment_offset_show(struct device * dev,struct device_attribute * attr,char * buf)1363 static ssize_t disk_alignment_offset_show(struct device *dev,
1364 struct device_attribute *attr,
1365 char *buf)
1366 {
1367 struct gendisk *disk = dev_to_disk(dev);
1368
1369 return sprintf(buf, "%d\n", queue_alignment_offset(disk->queue));
1370 }
1371
disk_discard_alignment_show(struct device * dev,struct device_attribute * attr,char * buf)1372 static ssize_t disk_discard_alignment_show(struct device *dev,
1373 struct device_attribute *attr,
1374 char *buf)
1375 {
1376 struct gendisk *disk = dev_to_disk(dev);
1377
1378 return sprintf(buf, "%d\n", queue_discard_alignment(disk->queue));
1379 }
1380
1381 static DEVICE_ATTR(range, 0444, disk_range_show, NULL);
1382 static DEVICE_ATTR(ext_range, 0444, disk_ext_range_show, NULL);
1383 static DEVICE_ATTR(removable, 0444, disk_removable_show, NULL);
1384 static DEVICE_ATTR(hidden, 0444, disk_hidden_show, NULL);
1385 static DEVICE_ATTR(ro, 0444, disk_ro_show, NULL);
1386 static DEVICE_ATTR(size, 0444, part_size_show, NULL);
1387 static DEVICE_ATTR(alignment_offset, 0444, disk_alignment_offset_show, NULL);
1388 static DEVICE_ATTR(discard_alignment, 0444, disk_discard_alignment_show, NULL);
1389 static DEVICE_ATTR(capability, 0444, disk_capability_show, NULL);
1390 static DEVICE_ATTR(stat, 0444, part_stat_show, NULL);
1391 static DEVICE_ATTR(inflight, 0444, part_inflight_show, NULL);
1392 static DEVICE_ATTR(badblocks, 0644, disk_badblocks_show, disk_badblocks_store);
1393
1394 #ifdef CONFIG_FAIL_MAKE_REQUEST
part_fail_show(struct device * dev,struct device_attribute * attr,char * buf)1395 ssize_t part_fail_show(struct device *dev,
1396 struct device_attribute *attr, char *buf)
1397 {
1398 struct hd_struct *p = dev_to_part(dev);
1399
1400 return sprintf(buf, "%d\n", p->make_it_fail);
1401 }
1402
part_fail_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)1403 ssize_t part_fail_store(struct device *dev,
1404 struct device_attribute *attr,
1405 const char *buf, size_t count)
1406 {
1407 struct hd_struct *p = dev_to_part(dev);
1408 int i;
1409
1410 if (count > 0 && sscanf(buf, "%d", &i) > 0)
1411 p->make_it_fail = (i == 0) ? 0 : 1;
1412
1413 return count;
1414 }
1415
1416 static struct device_attribute dev_attr_fail =
1417 __ATTR(make-it-fail, 0644, part_fail_show, part_fail_store);
1418 #endif /* CONFIG_FAIL_MAKE_REQUEST */
1419
1420 #ifdef CONFIG_FAIL_IO_TIMEOUT
1421 static struct device_attribute dev_attr_fail_timeout =
1422 __ATTR(io-timeout-fail, 0644, part_timeout_show, part_timeout_store);
1423 #endif
1424
1425 static struct attribute *disk_attrs[] = {
1426 &dev_attr_range.attr,
1427 &dev_attr_ext_range.attr,
1428 &dev_attr_removable.attr,
1429 &dev_attr_hidden.attr,
1430 &dev_attr_ro.attr,
1431 &dev_attr_size.attr,
1432 &dev_attr_alignment_offset.attr,
1433 &dev_attr_discard_alignment.attr,
1434 &dev_attr_capability.attr,
1435 &dev_attr_stat.attr,
1436 &dev_attr_inflight.attr,
1437 &dev_attr_badblocks.attr,
1438 #ifdef CONFIG_FAIL_MAKE_REQUEST
1439 &dev_attr_fail.attr,
1440 #endif
1441 #ifdef CONFIG_FAIL_IO_TIMEOUT
1442 &dev_attr_fail_timeout.attr,
1443 #endif
1444 NULL
1445 };
1446
disk_visible(struct kobject * kobj,struct attribute * a,int n)1447 static umode_t disk_visible(struct kobject *kobj, struct attribute *a, int n)
1448 {
1449 struct device *dev = container_of(kobj, typeof(*dev), kobj);
1450 struct gendisk *disk = dev_to_disk(dev);
1451
1452 if (a == &dev_attr_badblocks.attr && !disk->bb)
1453 return 0;
1454 return a->mode;
1455 }
1456
1457 static struct attribute_group disk_attr_group = {
1458 .attrs = disk_attrs,
1459 .is_visible = disk_visible,
1460 };
1461
1462 static const struct attribute_group *disk_attr_groups[] = {
1463 &disk_attr_group,
1464 NULL
1465 };
1466
1467 /**
1468 * disk_replace_part_tbl - replace disk->part_tbl in RCU-safe way
1469 * @disk: disk to replace part_tbl for
1470 * @new_ptbl: new part_tbl to install
1471 *
1472 * Replace disk->part_tbl with @new_ptbl in RCU-safe way. The
1473 * original ptbl is freed using RCU callback.
1474 *
1475 * LOCKING:
1476 * Matching bd_mutex locked or the caller is the only user of @disk.
1477 */
disk_replace_part_tbl(struct gendisk * disk,struct disk_part_tbl * new_ptbl)1478 static void disk_replace_part_tbl(struct gendisk *disk,
1479 struct disk_part_tbl *new_ptbl)
1480 {
1481 struct disk_part_tbl *old_ptbl =
1482 rcu_dereference_protected(disk->part_tbl, 1);
1483
1484 rcu_assign_pointer(disk->part_tbl, new_ptbl);
1485
1486 if (old_ptbl) {
1487 rcu_assign_pointer(old_ptbl->last_lookup, NULL);
1488 kfree_rcu(old_ptbl, rcu_head);
1489 }
1490 }
1491
1492 /**
1493 * disk_expand_part_tbl - expand disk->part_tbl
1494 * @disk: disk to expand part_tbl for
1495 * @partno: expand such that this partno can fit in
1496 *
1497 * Expand disk->part_tbl such that @partno can fit in. disk->part_tbl
1498 * uses RCU to allow unlocked dereferencing for stats and other stuff.
1499 *
1500 * LOCKING:
1501 * Matching bd_mutex locked or the caller is the only user of @disk.
1502 * Might sleep.
1503 *
1504 * RETURNS:
1505 * 0 on success, -errno on failure.
1506 */
disk_expand_part_tbl(struct gendisk * disk,int partno)1507 int disk_expand_part_tbl(struct gendisk *disk, int partno)
1508 {
1509 struct disk_part_tbl *old_ptbl =
1510 rcu_dereference_protected(disk->part_tbl, 1);
1511 struct disk_part_tbl *new_ptbl;
1512 int len = old_ptbl ? old_ptbl->len : 0;
1513 int i, target;
1514
1515 /*
1516 * check for int overflow, since we can get here from blkpg_ioctl()
1517 * with a user passed 'partno'.
1518 */
1519 target = partno + 1;
1520 if (target < 0)
1521 return -EINVAL;
1522
1523 /* disk_max_parts() is zero during initialization, ignore if so */
1524 if (disk_max_parts(disk) && target > disk_max_parts(disk))
1525 return -EINVAL;
1526
1527 if (target <= len)
1528 return 0;
1529
1530 new_ptbl = kzalloc_node(struct_size(new_ptbl, part, target), GFP_KERNEL,
1531 disk->node_id);
1532 if (!new_ptbl)
1533 return -ENOMEM;
1534
1535 new_ptbl->len = target;
1536
1537 for (i = 0; i < len; i++)
1538 rcu_assign_pointer(new_ptbl->part[i], old_ptbl->part[i]);
1539
1540 disk_replace_part_tbl(disk, new_ptbl);
1541 return 0;
1542 }
1543
1544 /**
1545 * disk_release - releases all allocated resources of the gendisk
1546 * @dev: the device representing this disk
1547 *
1548 * This function releases all allocated resources of the gendisk.
1549 *
1550 * The struct gendisk refcount is incremented with get_gendisk() or
1551 * get_disk_and_module(), and its refcount is decremented with
1552 * put_disk_and_module() or put_disk(). Once the refcount reaches 0 this
1553 * function is called.
1554 *
1555 * Drivers which used __device_add_disk() have a gendisk with a request_queue
1556 * assigned. Since the request_queue sits on top of the gendisk for these
1557 * drivers we also call blk_put_queue() for them, and we expect the
1558 * request_queue refcount to reach 0 at this point, and so the request_queue
1559 * will also be freed prior to the disk.
1560 *
1561 * Context: can sleep
1562 */
disk_release(struct device * dev)1563 static void disk_release(struct device *dev)
1564 {
1565 struct gendisk *disk = dev_to_disk(dev);
1566
1567 might_sleep();
1568
1569 blk_free_devt(dev->devt);
1570 disk_release_events(disk);
1571 kfree(disk->random);
1572 disk_replace_part_tbl(disk, NULL);
1573 hd_free_part(&disk->part0);
1574 if (disk->queue)
1575 blk_put_queue(disk->queue);
1576 kfree(disk);
1577 }
1578 struct class block_class = {
1579 .name = "block",
1580 };
1581
block_devnode(struct device * dev,umode_t * mode,kuid_t * uid,kgid_t * gid)1582 static char *block_devnode(struct device *dev, umode_t *mode,
1583 kuid_t *uid, kgid_t *gid)
1584 {
1585 struct gendisk *disk = dev_to_disk(dev);
1586
1587 if (disk->fops->devnode)
1588 return disk->fops->devnode(disk, mode);
1589 return NULL;
1590 }
1591
1592 const struct device_type disk_type = {
1593 .name = "disk",
1594 .groups = disk_attr_groups,
1595 .release = disk_release,
1596 .devnode = block_devnode,
1597 };
1598
1599 #ifdef CONFIG_PROC_FS
1600 /*
1601 * aggregate disk stat collector. Uses the same stats that the sysfs
1602 * entries do, above, but makes them available through one seq_file.
1603 *
1604 * The output looks suspiciously like /proc/partitions with a bunch of
1605 * extra fields.
1606 */
diskstats_show(struct seq_file * seqf,void * v)1607 static int diskstats_show(struct seq_file *seqf, void *v)
1608 {
1609 struct gendisk *gp = v;
1610 struct disk_part_iter piter;
1611 struct hd_struct *hd;
1612 char buf[BDEVNAME_SIZE];
1613 unsigned int inflight;
1614 struct disk_stats stat;
1615
1616 /*
1617 if (&disk_to_dev(gp)->kobj.entry == block_class.devices.next)
1618 seq_puts(seqf, "major minor name"
1619 " rio rmerge rsect ruse wio wmerge "
1620 "wsect wuse running use aveq"
1621 "\n\n");
1622 */
1623
1624 disk_part_iter_init(&piter, gp, DISK_PITER_INCL_EMPTY_PART0);
1625 while ((hd = disk_part_iter_next(&piter))) {
1626 part_stat_read_all(hd, &stat);
1627 if (queue_is_mq(gp->queue))
1628 inflight = blk_mq_in_flight(gp->queue, hd);
1629 else
1630 inflight = part_in_flight(hd);
1631
1632 seq_printf(seqf, "%4d %7d %s "
1633 "%lu %lu %lu %u "
1634 "%lu %lu %lu %u "
1635 "%u %u %u "
1636 "%lu %lu %lu %u "
1637 "%lu %u"
1638 "\n",
1639 MAJOR(part_devt(hd)), MINOR(part_devt(hd)),
1640 disk_name(gp, hd->partno, buf),
1641 stat.ios[STAT_READ],
1642 stat.merges[STAT_READ],
1643 stat.sectors[STAT_READ],
1644 (unsigned int)div_u64(stat.nsecs[STAT_READ],
1645 NSEC_PER_MSEC),
1646 stat.ios[STAT_WRITE],
1647 stat.merges[STAT_WRITE],
1648 stat.sectors[STAT_WRITE],
1649 (unsigned int)div_u64(stat.nsecs[STAT_WRITE],
1650 NSEC_PER_MSEC),
1651 inflight,
1652 jiffies_to_msecs(stat.io_ticks),
1653 (unsigned int)div_u64(stat.nsecs[STAT_READ] +
1654 stat.nsecs[STAT_WRITE] +
1655 stat.nsecs[STAT_DISCARD] +
1656 stat.nsecs[STAT_FLUSH],
1657 NSEC_PER_MSEC),
1658 stat.ios[STAT_DISCARD],
1659 stat.merges[STAT_DISCARD],
1660 stat.sectors[STAT_DISCARD],
1661 (unsigned int)div_u64(stat.nsecs[STAT_DISCARD],
1662 NSEC_PER_MSEC),
1663 stat.ios[STAT_FLUSH],
1664 (unsigned int)div_u64(stat.nsecs[STAT_FLUSH],
1665 NSEC_PER_MSEC)
1666 );
1667 }
1668 disk_part_iter_exit(&piter);
1669
1670 return 0;
1671 }
1672
1673 static const struct seq_operations diskstats_op = {
1674 .start = disk_seqf_start,
1675 .next = disk_seqf_next,
1676 .stop = disk_seqf_stop,
1677 .show = diskstats_show
1678 };
1679
proc_genhd_init(void)1680 static int __init proc_genhd_init(void)
1681 {
1682 proc_create_seq("diskstats", 0, NULL, &diskstats_op);
1683 proc_create_seq("partitions", 0, NULL, &partitions_op);
1684 return 0;
1685 }
1686 module_init(proc_genhd_init);
1687 #endif /* CONFIG_PROC_FS */
1688
blk_lookup_devt(const char * name,int partno)1689 dev_t blk_lookup_devt(const char *name, int partno)
1690 {
1691 dev_t devt = MKDEV(0, 0);
1692 struct class_dev_iter iter;
1693 struct device *dev;
1694
1695 class_dev_iter_init(&iter, &block_class, NULL, &disk_type);
1696 while ((dev = class_dev_iter_next(&iter))) {
1697 struct gendisk *disk = dev_to_disk(dev);
1698 struct hd_struct *part;
1699
1700 if (strcmp(dev_name(dev), name))
1701 continue;
1702
1703 if (partno < disk->minors) {
1704 /* We need to return the right devno, even
1705 * if the partition doesn't exist yet.
1706 */
1707 devt = MKDEV(MAJOR(dev->devt),
1708 MINOR(dev->devt) + partno);
1709 break;
1710 }
1711 part = disk_get_part(disk, partno);
1712 if (part) {
1713 devt = part_devt(part);
1714 disk_put_part(part);
1715 break;
1716 }
1717 disk_put_part(part);
1718 }
1719 class_dev_iter_exit(&iter);
1720 return devt;
1721 }
1722
__alloc_disk_node(int minors,int node_id)1723 struct gendisk *__alloc_disk_node(int minors, int node_id)
1724 {
1725 struct gendisk *disk;
1726 struct disk_part_tbl *ptbl;
1727
1728 if (minors > DISK_MAX_PARTS) {
1729 printk(KERN_ERR
1730 "block: can't allocate more than %d partitions\n",
1731 DISK_MAX_PARTS);
1732 minors = DISK_MAX_PARTS;
1733 }
1734
1735 disk = kzalloc_node(sizeof(struct gendisk), GFP_KERNEL, node_id);
1736 if (!disk)
1737 return NULL;
1738
1739 disk->part0.dkstats = alloc_percpu(struct disk_stats);
1740 if (!disk->part0.dkstats)
1741 goto out_free_disk;
1742
1743 init_rwsem(&disk->lookup_sem);
1744 disk->node_id = node_id;
1745 if (disk_expand_part_tbl(disk, 0)) {
1746 free_percpu(disk->part0.dkstats);
1747 goto out_free_disk;
1748 }
1749
1750 ptbl = rcu_dereference_protected(disk->part_tbl, 1);
1751 rcu_assign_pointer(ptbl->part[0], &disk->part0);
1752
1753 /*
1754 * set_capacity() and get_capacity() currently don't use
1755 * seqcounter to read/update the part0->nr_sects. Still init
1756 * the counter as we can read the sectors in IO submission
1757 * patch using seqence counters.
1758 *
1759 * TODO: Ideally set_capacity() and get_capacity() should be
1760 * converted to make use of bd_mutex and sequence counters.
1761 */
1762 hd_sects_seq_init(&disk->part0);
1763 if (hd_ref_init(&disk->part0))
1764 goto out_free_part0;
1765
1766 disk->minors = minors;
1767 rand_initialize_disk(disk);
1768 disk_to_dev(disk)->class = &block_class;
1769 disk_to_dev(disk)->type = &disk_type;
1770 device_initialize(disk_to_dev(disk));
1771 return disk;
1772
1773 out_free_part0:
1774 hd_free_part(&disk->part0);
1775 out_free_disk:
1776 kfree(disk);
1777 return NULL;
1778 }
1779 EXPORT_SYMBOL(__alloc_disk_node);
1780
1781 /**
1782 * get_disk_and_module - increments the gendisk and gendisk fops module refcount
1783 * @disk: the struct gendisk to increment the refcount for
1784 *
1785 * This increments the refcount for the struct gendisk, and the gendisk's
1786 * fops module owner.
1787 *
1788 * Context: Any context.
1789 */
get_disk_and_module(struct gendisk * disk)1790 struct kobject *get_disk_and_module(struct gendisk *disk)
1791 {
1792 struct module *owner;
1793 struct kobject *kobj;
1794
1795 if (!disk->fops)
1796 return NULL;
1797 owner = disk->fops->owner;
1798 if (owner && !try_module_get(owner))
1799 return NULL;
1800 kobj = kobject_get_unless_zero(&disk_to_dev(disk)->kobj);
1801 if (kobj == NULL) {
1802 module_put(owner);
1803 return NULL;
1804 }
1805 return kobj;
1806
1807 }
1808 EXPORT_SYMBOL(get_disk_and_module);
1809
1810 /**
1811 * put_disk - decrements the gendisk refcount
1812 * @disk: the struct gendisk to decrement the refcount for
1813 *
1814 * This decrements the refcount for the struct gendisk. When this reaches 0
1815 * we'll have disk_release() called.
1816 *
1817 * Context: Any context, but the last reference must not be dropped from
1818 * atomic context.
1819 */
put_disk(struct gendisk * disk)1820 void put_disk(struct gendisk *disk)
1821 {
1822 if (disk)
1823 kobject_put(&disk_to_dev(disk)->kobj);
1824 }
1825 EXPORT_SYMBOL(put_disk);
1826
1827 /**
1828 * put_disk_and_module - decrements the module and gendisk refcount
1829 * @disk: the struct gendisk to decrement the refcount for
1830 *
1831 * This is a counterpart of get_disk_and_module() and thus also of
1832 * get_gendisk().
1833 *
1834 * Context: Any context, but the last reference must not be dropped from
1835 * atomic context.
1836 */
put_disk_and_module(struct gendisk * disk)1837 void put_disk_and_module(struct gendisk *disk)
1838 {
1839 if (disk) {
1840 struct module *owner = disk->fops->owner;
1841
1842 put_disk(disk);
1843 module_put(owner);
1844 }
1845 }
1846 EXPORT_SYMBOL(put_disk_and_module);
1847
set_disk_ro_uevent(struct gendisk * gd,int ro)1848 static void set_disk_ro_uevent(struct gendisk *gd, int ro)
1849 {
1850 char event[] = "DISK_RO=1";
1851 char *envp[] = { event, NULL };
1852
1853 if (!ro)
1854 event[8] = '0';
1855 kobject_uevent_env(&disk_to_dev(gd)->kobj, KOBJ_CHANGE, envp);
1856 }
1857
set_device_ro(struct block_device * bdev,int flag)1858 void set_device_ro(struct block_device *bdev, int flag)
1859 {
1860 bdev->bd_part->policy = flag;
1861 }
1862
1863 EXPORT_SYMBOL(set_device_ro);
1864
set_disk_ro(struct gendisk * disk,int flag)1865 void set_disk_ro(struct gendisk *disk, int flag)
1866 {
1867 struct disk_part_iter piter;
1868 struct hd_struct *part;
1869
1870 if (disk->part0.policy != flag) {
1871 set_disk_ro_uevent(disk, flag);
1872 disk->part0.policy = flag;
1873 }
1874
1875 disk_part_iter_init(&piter, disk, DISK_PITER_INCL_EMPTY);
1876 while ((part = disk_part_iter_next(&piter)))
1877 part->policy = flag;
1878 disk_part_iter_exit(&piter);
1879 }
1880
1881 EXPORT_SYMBOL(set_disk_ro);
1882
bdev_read_only(struct block_device * bdev)1883 int bdev_read_only(struct block_device *bdev)
1884 {
1885 if (!bdev)
1886 return 0;
1887 return bdev->bd_part->policy;
1888 }
1889
1890 EXPORT_SYMBOL(bdev_read_only);
1891
1892 /*
1893 * Disk events - monitor disk events like media change and eject request.
1894 */
1895 struct disk_events {
1896 struct list_head node; /* all disk_event's */
1897 struct gendisk *disk; /* the associated disk */
1898 spinlock_t lock;
1899
1900 struct mutex block_mutex; /* protects blocking */
1901 int block; /* event blocking depth */
1902 unsigned int pending; /* events already sent out */
1903 unsigned int clearing; /* events being cleared */
1904
1905 long poll_msecs; /* interval, -1 for default */
1906 struct delayed_work dwork;
1907 };
1908
1909 static const char *disk_events_strs[] = {
1910 [ilog2(DISK_EVENT_MEDIA_CHANGE)] = "media_change",
1911 [ilog2(DISK_EVENT_EJECT_REQUEST)] = "eject_request",
1912 };
1913
1914 static char *disk_uevents[] = {
1915 [ilog2(DISK_EVENT_MEDIA_CHANGE)] = "DISK_MEDIA_CHANGE=1",
1916 [ilog2(DISK_EVENT_EJECT_REQUEST)] = "DISK_EJECT_REQUEST=1",
1917 };
1918
1919 /* list of all disk_events */
1920 static DEFINE_MUTEX(disk_events_mutex);
1921 static LIST_HEAD(disk_events);
1922
1923 /* disable in-kernel polling by default */
1924 static unsigned long disk_events_dfl_poll_msecs;
1925
disk_events_poll_jiffies(struct gendisk * disk)1926 static unsigned long disk_events_poll_jiffies(struct gendisk *disk)
1927 {
1928 struct disk_events *ev = disk->ev;
1929 long intv_msecs = 0;
1930
1931 /*
1932 * If device-specific poll interval is set, always use it. If
1933 * the default is being used, poll if the POLL flag is set.
1934 */
1935 if (ev->poll_msecs >= 0)
1936 intv_msecs = ev->poll_msecs;
1937 else if (disk->event_flags & DISK_EVENT_FLAG_POLL)
1938 intv_msecs = disk_events_dfl_poll_msecs;
1939
1940 return msecs_to_jiffies(intv_msecs);
1941 }
1942
1943 /**
1944 * disk_block_events - block and flush disk event checking
1945 * @disk: disk to block events for
1946 *
1947 * On return from this function, it is guaranteed that event checking
1948 * isn't in progress and won't happen until unblocked by
1949 * disk_unblock_events(). Events blocking is counted and the actual
1950 * unblocking happens after the matching number of unblocks are done.
1951 *
1952 * Note that this intentionally does not block event checking from
1953 * disk_clear_events().
1954 *
1955 * CONTEXT:
1956 * Might sleep.
1957 */
disk_block_events(struct gendisk * disk)1958 void disk_block_events(struct gendisk *disk)
1959 {
1960 struct disk_events *ev = disk->ev;
1961 unsigned long flags;
1962 bool cancel;
1963
1964 if (!ev)
1965 return;
1966
1967 /*
1968 * Outer mutex ensures that the first blocker completes canceling
1969 * the event work before further blockers are allowed to finish.
1970 */
1971 mutex_lock(&ev->block_mutex);
1972
1973 spin_lock_irqsave(&ev->lock, flags);
1974 cancel = !ev->block++;
1975 spin_unlock_irqrestore(&ev->lock, flags);
1976
1977 if (cancel)
1978 cancel_delayed_work_sync(&disk->ev->dwork);
1979
1980 mutex_unlock(&ev->block_mutex);
1981 }
1982
__disk_unblock_events(struct gendisk * disk,bool check_now)1983 static void __disk_unblock_events(struct gendisk *disk, bool check_now)
1984 {
1985 struct disk_events *ev = disk->ev;
1986 unsigned long intv;
1987 unsigned long flags;
1988
1989 spin_lock_irqsave(&ev->lock, flags);
1990
1991 if (WARN_ON_ONCE(ev->block <= 0))
1992 goto out_unlock;
1993
1994 if (--ev->block)
1995 goto out_unlock;
1996
1997 intv = disk_events_poll_jiffies(disk);
1998 if (check_now)
1999 queue_delayed_work(system_freezable_power_efficient_wq,
2000 &ev->dwork, 0);
2001 else if (intv)
2002 queue_delayed_work(system_freezable_power_efficient_wq,
2003 &ev->dwork, intv);
2004 out_unlock:
2005 spin_unlock_irqrestore(&ev->lock, flags);
2006 }
2007
2008 /**
2009 * disk_unblock_events - unblock disk event checking
2010 * @disk: disk to unblock events for
2011 *
2012 * Undo disk_block_events(). When the block count reaches zero, it
2013 * starts events polling if configured.
2014 *
2015 * CONTEXT:
2016 * Don't care. Safe to call from irq context.
2017 */
disk_unblock_events(struct gendisk * disk)2018 void disk_unblock_events(struct gendisk *disk)
2019 {
2020 if (disk->ev)
2021 __disk_unblock_events(disk, false);
2022 }
2023
2024 /**
2025 * disk_flush_events - schedule immediate event checking and flushing
2026 * @disk: disk to check and flush events for
2027 * @mask: events to flush
2028 *
2029 * Schedule immediate event checking on @disk if not blocked. Events in
2030 * @mask are scheduled to be cleared from the driver. Note that this
2031 * doesn't clear the events from @disk->ev.
2032 *
2033 * CONTEXT:
2034 * If @mask is non-zero must be called with bdev->bd_mutex held.
2035 */
disk_flush_events(struct gendisk * disk,unsigned int mask)2036 void disk_flush_events(struct gendisk *disk, unsigned int mask)
2037 {
2038 struct disk_events *ev = disk->ev;
2039
2040 if (!ev)
2041 return;
2042
2043 spin_lock_irq(&ev->lock);
2044 ev->clearing |= mask;
2045 if (!ev->block)
2046 mod_delayed_work(system_freezable_power_efficient_wq,
2047 &ev->dwork, 0);
2048 spin_unlock_irq(&ev->lock);
2049 }
2050
2051 /**
2052 * disk_clear_events - synchronously check, clear and return pending events
2053 * @disk: disk to fetch and clear events from
2054 * @mask: mask of events to be fetched and cleared
2055 *
2056 * Disk events are synchronously checked and pending events in @mask
2057 * are cleared and returned. This ignores the block count.
2058 *
2059 * CONTEXT:
2060 * Might sleep.
2061 */
disk_clear_events(struct gendisk * disk,unsigned int mask)2062 static unsigned int disk_clear_events(struct gendisk *disk, unsigned int mask)
2063 {
2064 struct disk_events *ev = disk->ev;
2065 unsigned int pending;
2066 unsigned int clearing = mask;
2067
2068 if (!ev)
2069 return 0;
2070
2071 disk_block_events(disk);
2072
2073 /*
2074 * store the union of mask and ev->clearing on the stack so that the
2075 * race with disk_flush_events does not cause ambiguity (ev->clearing
2076 * can still be modified even if events are blocked).
2077 */
2078 spin_lock_irq(&ev->lock);
2079 clearing |= ev->clearing;
2080 ev->clearing = 0;
2081 spin_unlock_irq(&ev->lock);
2082
2083 disk_check_events(ev, &clearing);
2084 /*
2085 * if ev->clearing is not 0, the disk_flush_events got called in the
2086 * middle of this function, so we want to run the workfn without delay.
2087 */
2088 __disk_unblock_events(disk, ev->clearing ? true : false);
2089
2090 /* then, fetch and clear pending events */
2091 spin_lock_irq(&ev->lock);
2092 pending = ev->pending & mask;
2093 ev->pending &= ~mask;
2094 spin_unlock_irq(&ev->lock);
2095 WARN_ON_ONCE(clearing & mask);
2096
2097 return pending;
2098 }
2099
2100 /**
2101 * bdev_check_media_change - check if a removable media has been changed
2102 * @bdev: block device to check
2103 *
2104 * Check whether a removable media has been changed, and attempt to free all
2105 * dentries and inodes and invalidates all block device page cache entries in
2106 * that case.
2107 *
2108 * Returns %true if the block device changed, or %false if not.
2109 */
bdev_check_media_change(struct block_device * bdev)2110 bool bdev_check_media_change(struct block_device *bdev)
2111 {
2112 unsigned int events;
2113
2114 events = disk_clear_events(bdev->bd_disk, DISK_EVENT_MEDIA_CHANGE |
2115 DISK_EVENT_EJECT_REQUEST);
2116 if (!(events & DISK_EVENT_MEDIA_CHANGE))
2117 return false;
2118
2119 if (__invalidate_device(bdev, true))
2120 pr_warn("VFS: busy inodes on changed media %s\n",
2121 bdev->bd_disk->disk_name);
2122 set_bit(GD_NEED_PART_SCAN, &bdev->bd_disk->state);
2123 return true;
2124 }
2125 EXPORT_SYMBOL(bdev_check_media_change);
2126
2127 /*
2128 * Separate this part out so that a different pointer for clearing_ptr can be
2129 * passed in for disk_clear_events.
2130 */
disk_events_workfn(struct work_struct * work)2131 static void disk_events_workfn(struct work_struct *work)
2132 {
2133 struct delayed_work *dwork = to_delayed_work(work);
2134 struct disk_events *ev = container_of(dwork, struct disk_events, dwork);
2135
2136 disk_check_events(ev, &ev->clearing);
2137 }
2138
disk_check_events(struct disk_events * ev,unsigned int * clearing_ptr)2139 static void disk_check_events(struct disk_events *ev,
2140 unsigned int *clearing_ptr)
2141 {
2142 struct gendisk *disk = ev->disk;
2143 char *envp[ARRAY_SIZE(disk_uevents) + 1] = { };
2144 unsigned int clearing = *clearing_ptr;
2145 unsigned int events;
2146 unsigned long intv;
2147 int nr_events = 0, i;
2148
2149 /* check events */
2150 events = disk->fops->check_events(disk, clearing);
2151
2152 /* accumulate pending events and schedule next poll if necessary */
2153 spin_lock_irq(&ev->lock);
2154
2155 events &= ~ev->pending;
2156 ev->pending |= events;
2157 *clearing_ptr &= ~clearing;
2158
2159 intv = disk_events_poll_jiffies(disk);
2160 if (!ev->block && intv)
2161 queue_delayed_work(system_freezable_power_efficient_wq,
2162 &ev->dwork, intv);
2163
2164 spin_unlock_irq(&ev->lock);
2165
2166 /*
2167 * Tell userland about new events. Only the events listed in
2168 * @disk->events are reported, and only if DISK_EVENT_FLAG_UEVENT
2169 * is set. Otherwise, events are processed internally but never
2170 * get reported to userland.
2171 */
2172 for (i = 0; i < ARRAY_SIZE(disk_uevents); i++)
2173 if ((events & disk->events & (1 << i)) &&
2174 (disk->event_flags & DISK_EVENT_FLAG_UEVENT))
2175 envp[nr_events++] = disk_uevents[i];
2176
2177 if (nr_events)
2178 kobject_uevent_env(&disk_to_dev(disk)->kobj, KOBJ_CHANGE, envp);
2179 }
2180
2181 /*
2182 * A disk events enabled device has the following sysfs nodes under
2183 * its /sys/block/X/ directory.
2184 *
2185 * events : list of all supported events
2186 * events_async : list of events which can be detected w/o polling
2187 * (always empty, only for backwards compatibility)
2188 * events_poll_msecs : polling interval, 0: disable, -1: system default
2189 */
__disk_events_show(unsigned int events,char * buf)2190 static ssize_t __disk_events_show(unsigned int events, char *buf)
2191 {
2192 const char *delim = "";
2193 ssize_t pos = 0;
2194 int i;
2195
2196 for (i = 0; i < ARRAY_SIZE(disk_events_strs); i++)
2197 if (events & (1 << i)) {
2198 pos += sprintf(buf + pos, "%s%s",
2199 delim, disk_events_strs[i]);
2200 delim = " ";
2201 }
2202 if (pos)
2203 pos += sprintf(buf + pos, "\n");
2204 return pos;
2205 }
2206
disk_events_show(struct device * dev,struct device_attribute * attr,char * buf)2207 static ssize_t disk_events_show(struct device *dev,
2208 struct device_attribute *attr, char *buf)
2209 {
2210 struct gendisk *disk = dev_to_disk(dev);
2211
2212 if (!(disk->event_flags & DISK_EVENT_FLAG_UEVENT))
2213 return 0;
2214
2215 return __disk_events_show(disk->events, buf);
2216 }
2217
disk_events_async_show(struct device * dev,struct device_attribute * attr,char * buf)2218 static ssize_t disk_events_async_show(struct device *dev,
2219 struct device_attribute *attr, char *buf)
2220 {
2221 return 0;
2222 }
2223
disk_events_poll_msecs_show(struct device * dev,struct device_attribute * attr,char * buf)2224 static ssize_t disk_events_poll_msecs_show(struct device *dev,
2225 struct device_attribute *attr,
2226 char *buf)
2227 {
2228 struct gendisk *disk = dev_to_disk(dev);
2229
2230 if (!disk->ev)
2231 return sprintf(buf, "-1\n");
2232
2233 return sprintf(buf, "%ld\n", disk->ev->poll_msecs);
2234 }
2235
disk_events_poll_msecs_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)2236 static ssize_t disk_events_poll_msecs_store(struct device *dev,
2237 struct device_attribute *attr,
2238 const char *buf, size_t count)
2239 {
2240 struct gendisk *disk = dev_to_disk(dev);
2241 long intv;
2242
2243 if (!count || !sscanf(buf, "%ld", &intv))
2244 return -EINVAL;
2245
2246 if (intv < 0 && intv != -1)
2247 return -EINVAL;
2248
2249 if (!disk->ev)
2250 return -ENODEV;
2251
2252 disk_block_events(disk);
2253 disk->ev->poll_msecs = intv;
2254 __disk_unblock_events(disk, true);
2255
2256 return count;
2257 }
2258
2259 static const DEVICE_ATTR(events, 0444, disk_events_show, NULL);
2260 static const DEVICE_ATTR(events_async, 0444, disk_events_async_show, NULL);
2261 static const DEVICE_ATTR(events_poll_msecs, 0644,
2262 disk_events_poll_msecs_show,
2263 disk_events_poll_msecs_store);
2264
2265 static const struct attribute *disk_events_attrs[] = {
2266 &dev_attr_events.attr,
2267 &dev_attr_events_async.attr,
2268 &dev_attr_events_poll_msecs.attr,
2269 NULL,
2270 };
2271
2272 /*
2273 * The default polling interval can be specified by the kernel
2274 * parameter block.events_dfl_poll_msecs which defaults to 0
2275 * (disable). This can also be modified runtime by writing to
2276 * /sys/module/block/parameters/events_dfl_poll_msecs.
2277 */
disk_events_set_dfl_poll_msecs(const char * val,const struct kernel_param * kp)2278 static int disk_events_set_dfl_poll_msecs(const char *val,
2279 const struct kernel_param *kp)
2280 {
2281 struct disk_events *ev;
2282 int ret;
2283
2284 ret = param_set_ulong(val, kp);
2285 if (ret < 0)
2286 return ret;
2287
2288 mutex_lock(&disk_events_mutex);
2289
2290 list_for_each_entry(ev, &disk_events, node)
2291 disk_flush_events(ev->disk, 0);
2292
2293 mutex_unlock(&disk_events_mutex);
2294
2295 return 0;
2296 }
2297
2298 static const struct kernel_param_ops disk_events_dfl_poll_msecs_param_ops = {
2299 .set = disk_events_set_dfl_poll_msecs,
2300 .get = param_get_ulong,
2301 };
2302
2303 #undef MODULE_PARAM_PREFIX
2304 #define MODULE_PARAM_PREFIX "block."
2305
2306 module_param_cb(events_dfl_poll_msecs, &disk_events_dfl_poll_msecs_param_ops,
2307 &disk_events_dfl_poll_msecs, 0644);
2308
2309 /*
2310 * disk_{alloc|add|del|release}_events - initialize and destroy disk_events.
2311 */
disk_alloc_events(struct gendisk * disk)2312 static void disk_alloc_events(struct gendisk *disk)
2313 {
2314 struct disk_events *ev;
2315
2316 if (!disk->fops->check_events || !disk->events)
2317 return;
2318
2319 ev = kzalloc(sizeof(*ev), GFP_KERNEL);
2320 if (!ev) {
2321 pr_warn("%s: failed to initialize events\n", disk->disk_name);
2322 return;
2323 }
2324
2325 INIT_LIST_HEAD(&ev->node);
2326 ev->disk = disk;
2327 spin_lock_init(&ev->lock);
2328 mutex_init(&ev->block_mutex);
2329 ev->block = 1;
2330 ev->poll_msecs = -1;
2331 INIT_DELAYED_WORK(&ev->dwork, disk_events_workfn);
2332
2333 disk->ev = ev;
2334 }
2335
disk_add_events(struct gendisk * disk)2336 static void disk_add_events(struct gendisk *disk)
2337 {
2338 /* FIXME: error handling */
2339 if (sysfs_create_files(&disk_to_dev(disk)->kobj, disk_events_attrs) < 0)
2340 pr_warn("%s: failed to create sysfs files for events\n",
2341 disk->disk_name);
2342
2343 if (!disk->ev)
2344 return;
2345
2346 mutex_lock(&disk_events_mutex);
2347 list_add_tail(&disk->ev->node, &disk_events);
2348 mutex_unlock(&disk_events_mutex);
2349
2350 /*
2351 * Block count is initialized to 1 and the following initial
2352 * unblock kicks it into action.
2353 */
2354 __disk_unblock_events(disk, true);
2355 }
2356
disk_del_events(struct gendisk * disk)2357 static void disk_del_events(struct gendisk *disk)
2358 {
2359 if (disk->ev) {
2360 disk_block_events(disk);
2361
2362 mutex_lock(&disk_events_mutex);
2363 list_del_init(&disk->ev->node);
2364 mutex_unlock(&disk_events_mutex);
2365 }
2366
2367 sysfs_remove_files(&disk_to_dev(disk)->kobj, disk_events_attrs);
2368 }
2369
disk_release_events(struct gendisk * disk)2370 static void disk_release_events(struct gendisk *disk)
2371 {
2372 /* the block count should be 1 from disk_del_events() */
2373 WARN_ON_ONCE(disk->ev && disk->ev->block != 1);
2374 kfree(disk->ev);
2375 }
2376