1 /*
2 * Performance events:
3 *
4 * Copyright (C) 2008-2009, Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2011, Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2011, Red Hat, Inc., Peter Zijlstra
7 *
8 * Data type definitions, declarations, prototypes.
9 *
10 * Started by: Thomas Gleixner and Ingo Molnar
11 *
12 * For licencing details see kernel-base/COPYING
13 */
14 #ifndef _LINUX_PERF_EVENT_H
15 #define _LINUX_PERF_EVENT_H
16
17 #include <uapi/linux/perf_event.h>
18 #include <uapi/linux/bpf_perf_event.h>
19
20 /*
21 * Kernel-internal data types and definitions:
22 */
23
24 #ifdef CONFIG_PERF_EVENTS
25 # include <asm/perf_event.h>
26 # include <asm/local64.h>
27 #endif
28
29 struct perf_guest_info_callbacks {
30 int (*is_in_guest)(void);
31 int (*is_user_mode)(void);
32 unsigned long (*get_guest_ip)(void);
33 void (*handle_intel_pt_intr)(void);
34 };
35
36 #ifdef CONFIG_HAVE_HW_BREAKPOINT
37 #include <asm/hw_breakpoint.h>
38 #endif
39
40 #include <linux/list.h>
41 #include <linux/mutex.h>
42 #include <linux/rculist.h>
43 #include <linux/rcupdate.h>
44 #include <linux/spinlock.h>
45 #include <linux/hrtimer.h>
46 #include <linux/fs.h>
47 #include <linux/pid_namespace.h>
48 #include <linux/workqueue.h>
49 #include <linux/ftrace.h>
50 #include <linux/cpu.h>
51 #include <linux/irq_work.h>
52 #include <linux/static_key.h>
53 #include <linux/jump_label_ratelimit.h>
54 #include <linux/atomic.h>
55 #include <linux/sysfs.h>
56 #include <linux/perf_regs.h>
57 #include <linux/cgroup.h>
58 #include <linux/refcount.h>
59 #include <linux/security.h>
60 #include <asm/local.h>
61
62 struct perf_callchain_entry {
63 __u64 nr;
64 __u64 ip[]; /* /proc/sys/kernel/perf_event_max_stack */
65 };
66
67 struct perf_callchain_entry_ctx {
68 struct perf_callchain_entry *entry;
69 u32 max_stack;
70 u32 nr;
71 short contexts;
72 bool contexts_maxed;
73 };
74
75 typedef unsigned long (*perf_copy_f)(void *dst, const void *src,
76 unsigned long off, unsigned long len);
77
78 struct perf_raw_frag {
79 union {
80 struct perf_raw_frag *next;
81 unsigned long pad;
82 };
83 perf_copy_f copy;
84 void *data;
85 u32 size;
86 } __packed;
87
88 struct perf_raw_record {
89 struct perf_raw_frag frag;
90 u32 size;
91 };
92
93 /*
94 * branch stack layout:
95 * nr: number of taken branches stored in entries[]
96 * hw_idx: The low level index of raw branch records
97 * for the most recent branch.
98 * -1ULL means invalid/unknown.
99 *
100 * Note that nr can vary from sample to sample
101 * branches (to, from) are stored from most recent
102 * to least recent, i.e., entries[0] contains the most
103 * recent branch.
104 * The entries[] is an abstraction of raw branch records,
105 * which may not be stored in age order in HW, e.g. Intel LBR.
106 * The hw_idx is to expose the low level index of raw
107 * branch record for the most recent branch aka entries[0].
108 * The hw_idx index is between -1 (unknown) and max depth,
109 * which can be retrieved in /sys/devices/cpu/caps/branches.
110 * For the architectures whose raw branch records are
111 * already stored in age order, the hw_idx should be 0.
112 */
113 struct perf_branch_stack {
114 __u64 nr;
115 __u64 hw_idx;
116 struct perf_branch_entry entries[];
117 };
118
119 struct task_struct;
120
121 /*
122 * extra PMU register associated with an event
123 */
124 struct hw_perf_event_extra {
125 u64 config; /* register value */
126 unsigned int reg; /* register address or index */
127 int alloc; /* extra register already allocated */
128 int idx; /* index in shared_regs->regs[] */
129 };
130
131 /**
132 * struct hw_perf_event - performance event hardware details:
133 */
134 struct hw_perf_event {
135 #ifdef CONFIG_PERF_EVENTS
136 union {
137 struct { /* hardware */
138 u64 config;
139 u64 last_tag;
140 unsigned long config_base;
141 unsigned long event_base;
142 int event_base_rdpmc;
143 int idx;
144 int last_cpu;
145 int flags;
146
147 struct hw_perf_event_extra extra_reg;
148 struct hw_perf_event_extra branch_reg;
149 };
150 struct { /* software */
151 struct hrtimer hrtimer;
152 };
153 struct { /* tracepoint */
154 /* for tp_event->class */
155 struct list_head tp_list;
156 };
157 struct { /* amd_power */
158 u64 pwr_acc;
159 u64 ptsc;
160 };
161 #ifdef CONFIG_HAVE_HW_BREAKPOINT
162 struct { /* breakpoint */
163 /*
164 * Crufty hack to avoid the chicken and egg
165 * problem hw_breakpoint has with context
166 * creation and event initalization.
167 */
168 struct arch_hw_breakpoint info;
169 struct list_head bp_list;
170 };
171 #endif
172 struct { /* amd_iommu */
173 u8 iommu_bank;
174 u8 iommu_cntr;
175 u16 padding;
176 u64 conf;
177 u64 conf1;
178 };
179 };
180 /*
181 * If the event is a per task event, this will point to the task in
182 * question. See the comment in perf_event_alloc().
183 */
184 struct task_struct *target;
185
186 /*
187 * PMU would store hardware filter configuration
188 * here.
189 */
190 void *addr_filters;
191
192 /* Last sync'ed generation of filters */
193 unsigned long addr_filters_gen;
194
195 /*
196 * hw_perf_event::state flags; used to track the PERF_EF_* state.
197 */
198 #define PERF_HES_STOPPED 0x01 /* the counter is stopped */
199 #define PERF_HES_UPTODATE 0x02 /* event->count up-to-date */
200 #define PERF_HES_ARCH 0x04
201
202 int state;
203
204 /*
205 * The last observed hardware counter value, updated with a
206 * local64_cmpxchg() such that pmu::read() can be called nested.
207 */
208 local64_t prev_count;
209
210 /*
211 * The period to start the next sample with.
212 */
213 u64 sample_period;
214
215 union {
216 struct { /* Sampling */
217 /*
218 * The period we started this sample with.
219 */
220 u64 last_period;
221
222 /*
223 * However much is left of the current period;
224 * note that this is a full 64bit value and
225 * allows for generation of periods longer
226 * than hardware might allow.
227 */
228 local64_t period_left;
229 };
230 struct { /* Topdown events counting for context switch */
231 u64 saved_metric;
232 u64 saved_slots;
233 };
234 };
235
236 /*
237 * State for throttling the event, see __perf_event_overflow() and
238 * perf_adjust_freq_unthr_context().
239 */
240 u64 interrupts_seq;
241 u64 interrupts;
242
243 /*
244 * State for freq target events, see __perf_event_overflow() and
245 * perf_adjust_freq_unthr_context().
246 */
247 u64 freq_time_stamp;
248 u64 freq_count_stamp;
249 #endif
250 };
251
252 struct perf_event;
253
254 /*
255 * Common implementation detail of pmu::{start,commit,cancel}_txn
256 */
257 #define PERF_PMU_TXN_ADD 0x1 /* txn to add/schedule event on PMU */
258 #define PERF_PMU_TXN_READ 0x2 /* txn to read event group from PMU */
259
260 /**
261 * pmu::capabilities flags
262 */
263 #define PERF_PMU_CAP_NO_INTERRUPT 0x01
264 #define PERF_PMU_CAP_NO_NMI 0x02
265 #define PERF_PMU_CAP_AUX_NO_SG 0x04
266 #define PERF_PMU_CAP_EXTENDED_REGS 0x08
267 #define PERF_PMU_CAP_EXCLUSIVE 0x10
268 #define PERF_PMU_CAP_ITRACE 0x20
269 #define PERF_PMU_CAP_HETEROGENEOUS_CPUS 0x40
270 #define PERF_PMU_CAP_NO_EXCLUDE 0x80
271 #define PERF_PMU_CAP_AUX_OUTPUT 0x100
272
273 struct perf_output_handle;
274
275 /**
276 * struct pmu - generic performance monitoring unit
277 */
278 struct pmu {
279 struct list_head entry;
280
281 struct module *module;
282 struct device *dev;
283 const struct attribute_group **attr_groups;
284 const struct attribute_group **attr_update;
285 const char *name;
286 int type;
287
288 /*
289 * various common per-pmu feature flags
290 */
291 int capabilities;
292
293 int __percpu *pmu_disable_count;
294 struct perf_cpu_context __percpu *pmu_cpu_context;
295 atomic_t exclusive_cnt; /* < 0: cpu; > 0: tsk */
296 int task_ctx_nr;
297 int hrtimer_interval_ms;
298
299 /* number of address filters this PMU can do */
300 unsigned int nr_addr_filters;
301
302 /*
303 * Fully disable/enable this PMU, can be used to protect from the PMI
304 * as well as for lazy/batch writing of the MSRs.
305 */
306 void (*pmu_enable) (struct pmu *pmu); /* optional */
307 void (*pmu_disable) (struct pmu *pmu); /* optional */
308
309 /*
310 * Try and initialize the event for this PMU.
311 *
312 * Returns:
313 * -ENOENT -- @event is not for this PMU
314 *
315 * -ENODEV -- @event is for this PMU but PMU not present
316 * -EBUSY -- @event is for this PMU but PMU temporarily unavailable
317 * -EINVAL -- @event is for this PMU but @event is not valid
318 * -EOPNOTSUPP -- @event is for this PMU, @event is valid, but not supported
319 * -EACCES -- @event is for this PMU, @event is valid, but no privileges
320 *
321 * 0 -- @event is for this PMU and valid
322 *
323 * Other error return values are allowed.
324 */
325 int (*event_init) (struct perf_event *event);
326
327 /*
328 * Notification that the event was mapped or unmapped. Called
329 * in the context of the mapping task.
330 */
331 void (*event_mapped) (struct perf_event *event, struct mm_struct *mm); /* optional */
332 void (*event_unmapped) (struct perf_event *event, struct mm_struct *mm); /* optional */
333
334 /*
335 * Flags for ->add()/->del()/ ->start()/->stop(). There are
336 * matching hw_perf_event::state flags.
337 */
338 #define PERF_EF_START 0x01 /* start the counter when adding */
339 #define PERF_EF_RELOAD 0x02 /* reload the counter when starting */
340 #define PERF_EF_UPDATE 0x04 /* update the counter when stopping */
341
342 /*
343 * Adds/Removes a counter to/from the PMU, can be done inside a
344 * transaction, see the ->*_txn() methods.
345 *
346 * The add/del callbacks will reserve all hardware resources required
347 * to service the event, this includes any counter constraint
348 * scheduling etc.
349 *
350 * Called with IRQs disabled and the PMU disabled on the CPU the event
351 * is on.
352 *
353 * ->add() called without PERF_EF_START should result in the same state
354 * as ->add() followed by ->stop().
355 *
356 * ->del() must always PERF_EF_UPDATE stop an event. If it calls
357 * ->stop() that must deal with already being stopped without
358 * PERF_EF_UPDATE.
359 */
360 int (*add) (struct perf_event *event, int flags);
361 void (*del) (struct perf_event *event, int flags);
362
363 /*
364 * Starts/Stops a counter present on the PMU.
365 *
366 * The PMI handler should stop the counter when perf_event_overflow()
367 * returns !0. ->start() will be used to continue.
368 *
369 * Also used to change the sample period.
370 *
371 * Called with IRQs disabled and the PMU disabled on the CPU the event
372 * is on -- will be called from NMI context with the PMU generates
373 * NMIs.
374 *
375 * ->stop() with PERF_EF_UPDATE will read the counter and update
376 * period/count values like ->read() would.
377 *
378 * ->start() with PERF_EF_RELOAD will reprogram the counter
379 * value, must be preceded by a ->stop() with PERF_EF_UPDATE.
380 */
381 void (*start) (struct perf_event *event, int flags);
382 void (*stop) (struct perf_event *event, int flags);
383
384 /*
385 * Updates the counter value of the event.
386 *
387 * For sampling capable PMUs this will also update the software period
388 * hw_perf_event::period_left field.
389 */
390 void (*read) (struct perf_event *event);
391
392 /*
393 * Group events scheduling is treated as a transaction, add
394 * group events as a whole and perform one schedulability test.
395 * If the test fails, roll back the whole group
396 *
397 * Start the transaction, after this ->add() doesn't need to
398 * do schedulability tests.
399 *
400 * Optional.
401 */
402 void (*start_txn) (struct pmu *pmu, unsigned int txn_flags);
403 /*
404 * If ->start_txn() disabled the ->add() schedulability test
405 * then ->commit_txn() is required to perform one. On success
406 * the transaction is closed. On error the transaction is kept
407 * open until ->cancel_txn() is called.
408 *
409 * Optional.
410 */
411 int (*commit_txn) (struct pmu *pmu);
412 /*
413 * Will cancel the transaction, assumes ->del() is called
414 * for each successful ->add() during the transaction.
415 *
416 * Optional.
417 */
418 void (*cancel_txn) (struct pmu *pmu);
419
420 /*
421 * Will return the value for perf_event_mmap_page::index for this event,
422 * if no implementation is provided it will default to: event->hw.idx + 1.
423 */
424 int (*event_idx) (struct perf_event *event); /*optional */
425
426 /*
427 * context-switches callback
428 */
429 void (*sched_task) (struct perf_event_context *ctx,
430 bool sched_in);
431
432 /*
433 * Kmem cache of PMU specific data
434 */
435 struct kmem_cache *task_ctx_cache;
436
437 /*
438 * PMU specific parts of task perf event context (i.e. ctx->task_ctx_data)
439 * can be synchronized using this function. See Intel LBR callstack support
440 * implementation and Perf core context switch handling callbacks for usage
441 * examples.
442 */
443 void (*swap_task_ctx) (struct perf_event_context *prev,
444 struct perf_event_context *next);
445 /* optional */
446
447 /*
448 * Set up pmu-private data structures for an AUX area
449 */
450 void *(*setup_aux) (struct perf_event *event, void **pages,
451 int nr_pages, bool overwrite);
452 /* optional */
453
454 /*
455 * Free pmu-private AUX data structures
456 */
457 void (*free_aux) (void *aux); /* optional */
458
459 /*
460 * Take a snapshot of the AUX buffer without touching the event
461 * state, so that preempting ->start()/->stop() callbacks does
462 * not interfere with their logic. Called in PMI context.
463 *
464 * Returns the size of AUX data copied to the output handle.
465 *
466 * Optional.
467 */
468 long (*snapshot_aux) (struct perf_event *event,
469 struct perf_output_handle *handle,
470 unsigned long size);
471
472 /*
473 * Validate address range filters: make sure the HW supports the
474 * requested configuration and number of filters; return 0 if the
475 * supplied filters are valid, -errno otherwise.
476 *
477 * Runs in the context of the ioctl()ing process and is not serialized
478 * with the rest of the PMU callbacks.
479 */
480 int (*addr_filters_validate) (struct list_head *filters);
481 /* optional */
482
483 /*
484 * Synchronize address range filter configuration:
485 * translate hw-agnostic filters into hardware configuration in
486 * event::hw::addr_filters.
487 *
488 * Runs as a part of filter sync sequence that is done in ->start()
489 * callback by calling perf_event_addr_filters_sync().
490 *
491 * May (and should) traverse event::addr_filters::list, for which its
492 * caller provides necessary serialization.
493 */
494 void (*addr_filters_sync) (struct perf_event *event);
495 /* optional */
496
497 /*
498 * Check if event can be used for aux_output purposes for
499 * events of this PMU.
500 *
501 * Runs from perf_event_open(). Should return 0 for "no match"
502 * or non-zero for "match".
503 */
504 int (*aux_output_match) (struct perf_event *event);
505 /* optional */
506
507 /*
508 * Filter events for PMU-specific reasons.
509 */
510 int (*filter_match) (struct perf_event *event); /* optional */
511
512 /*
513 * Check period value for PERF_EVENT_IOC_PERIOD ioctl.
514 */
515 int (*check_period) (struct perf_event *event, u64 value); /* optional */
516 };
517
518 enum perf_addr_filter_action_t {
519 PERF_ADDR_FILTER_ACTION_STOP = 0,
520 PERF_ADDR_FILTER_ACTION_START,
521 PERF_ADDR_FILTER_ACTION_FILTER,
522 };
523
524 /**
525 * struct perf_addr_filter - address range filter definition
526 * @entry: event's filter list linkage
527 * @path: object file's path for file-based filters
528 * @offset: filter range offset
529 * @size: filter range size (size==0 means single address trigger)
530 * @action: filter/start/stop
531 *
532 * This is a hardware-agnostic filter configuration as specified by the user.
533 */
534 struct perf_addr_filter {
535 struct list_head entry;
536 struct path path;
537 unsigned long offset;
538 unsigned long size;
539 enum perf_addr_filter_action_t action;
540 };
541
542 /**
543 * struct perf_addr_filters_head - container for address range filters
544 * @list: list of filters for this event
545 * @lock: spinlock that serializes accesses to the @list and event's
546 * (and its children's) filter generations.
547 * @nr_file_filters: number of file-based filters
548 *
549 * A child event will use parent's @list (and therefore @lock), so they are
550 * bundled together; see perf_event_addr_filters().
551 */
552 struct perf_addr_filters_head {
553 struct list_head list;
554 raw_spinlock_t lock;
555 unsigned int nr_file_filters;
556 };
557
558 struct perf_addr_filter_range {
559 unsigned long start;
560 unsigned long size;
561 };
562
563 /**
564 * enum perf_event_state - the states of an event:
565 */
566 enum perf_event_state {
567 PERF_EVENT_STATE_DEAD = -4,
568 PERF_EVENT_STATE_EXIT = -3,
569 PERF_EVENT_STATE_ERROR = -2,
570 PERF_EVENT_STATE_OFF = -1,
571 PERF_EVENT_STATE_INACTIVE = 0,
572 PERF_EVENT_STATE_ACTIVE = 1,
573 };
574
575 struct file;
576 struct perf_sample_data;
577
578 typedef void (*perf_overflow_handler_t)(struct perf_event *,
579 struct perf_sample_data *,
580 struct pt_regs *regs);
581
582 /*
583 * Event capabilities. For event_caps and groups caps.
584 *
585 * PERF_EV_CAP_SOFTWARE: Is a software event.
586 * PERF_EV_CAP_READ_ACTIVE_PKG: A CPU event (or cgroup event) that can be read
587 * from any CPU in the package where it is active.
588 * PERF_EV_CAP_SIBLING: An event with this flag must be a group sibling and
589 * cannot be a group leader. If an event with this flag is detached from the
590 * group it is scheduled out and moved into an unrecoverable ERROR state.
591 */
592 #define PERF_EV_CAP_SOFTWARE BIT(0)
593 #define PERF_EV_CAP_READ_ACTIVE_PKG BIT(1)
594 #define PERF_EV_CAP_SIBLING BIT(2)
595
596 #define SWEVENT_HLIST_BITS 8
597 #define SWEVENT_HLIST_SIZE (1 << SWEVENT_HLIST_BITS)
598
599 struct swevent_hlist {
600 struct hlist_head heads[SWEVENT_HLIST_SIZE];
601 struct rcu_head rcu_head;
602 };
603
604 #define PERF_ATTACH_CONTEXT 0x01
605 #define PERF_ATTACH_GROUP 0x02
606 #define PERF_ATTACH_TASK 0x04
607 #define PERF_ATTACH_TASK_DATA 0x08
608 #define PERF_ATTACH_ITRACE 0x10
609 #define PERF_ATTACH_SCHED_CB 0x20
610
611 struct perf_cgroup;
612 struct perf_buffer;
613
614 struct pmu_event_list {
615 raw_spinlock_t lock;
616 struct list_head list;
617 };
618
619 #define for_each_sibling_event(sibling, event) \
620 if ((event)->group_leader == (event)) \
621 list_for_each_entry((sibling), &(event)->sibling_list, sibling_list)
622
623 /**
624 * struct perf_event - performance event kernel representation:
625 */
626 struct perf_event {
627 #ifdef CONFIG_PERF_EVENTS
628 /*
629 * entry onto perf_event_context::event_list;
630 * modifications require ctx->lock
631 * RCU safe iterations.
632 */
633 struct list_head event_entry;
634
635 /*
636 * Locked for modification by both ctx->mutex and ctx->lock; holding
637 * either sufficies for read.
638 */
639 struct list_head sibling_list;
640 struct list_head active_list;
641 /*
642 * Node on the pinned or flexible tree located at the event context;
643 */
644 struct rb_node group_node;
645 u64 group_index;
646 /*
647 * We need storage to track the entries in perf_pmu_migrate_context; we
648 * cannot use the event_entry because of RCU and we want to keep the
649 * group in tact which avoids us using the other two entries.
650 */
651 struct list_head migrate_entry;
652
653 struct hlist_node hlist_entry;
654 struct list_head active_entry;
655 int nr_siblings;
656
657 /* Not serialized. Only written during event initialization. */
658 int event_caps;
659 /* The cumulative AND of all event_caps for events in this group. */
660 int group_caps;
661
662 struct perf_event *group_leader;
663 struct pmu *pmu;
664 void *pmu_private;
665
666 enum perf_event_state state;
667 unsigned int attach_state;
668 local64_t count;
669 atomic64_t child_count;
670
671 /*
672 * These are the total time in nanoseconds that the event
673 * has been enabled (i.e. eligible to run, and the task has
674 * been scheduled in, if this is a per-task event)
675 * and running (scheduled onto the CPU), respectively.
676 */
677 u64 total_time_enabled;
678 u64 total_time_running;
679 u64 tstamp;
680
681 struct perf_event_attr attr;
682 u16 header_size;
683 u16 id_header_size;
684 u16 read_size;
685 struct hw_perf_event hw;
686
687 struct perf_event_context *ctx;
688 atomic_long_t refcount;
689
690 /*
691 * These accumulate total time (in nanoseconds) that children
692 * events have been enabled and running, respectively.
693 */
694 atomic64_t child_total_time_enabled;
695 atomic64_t child_total_time_running;
696
697 /*
698 * Protect attach/detach and child_list:
699 */
700 struct mutex child_mutex;
701 struct list_head child_list;
702 struct perf_event *parent;
703
704 int oncpu;
705 int cpu;
706
707 struct list_head owner_entry;
708 struct task_struct *owner;
709
710 /* mmap bits */
711 struct mutex mmap_mutex;
712 atomic_t mmap_count;
713
714 struct perf_buffer *rb;
715 struct list_head rb_entry;
716 unsigned long rcu_batches;
717 int rcu_pending;
718
719 /* poll related */
720 wait_queue_head_t waitq;
721 struct fasync_struct *fasync;
722
723 /* delayed work for NMIs and such */
724 int pending_wakeup;
725 int pending_kill;
726 int pending_disable;
727 struct irq_work pending;
728
729 atomic_t event_limit;
730
731 /* address range filters */
732 struct perf_addr_filters_head addr_filters;
733 /* vma address array for file-based filders */
734 struct perf_addr_filter_range *addr_filter_ranges;
735 unsigned long addr_filters_gen;
736
737 /* for aux_output events */
738 struct perf_event *aux_event;
739
740 void (*destroy)(struct perf_event *);
741 struct rcu_head rcu_head;
742
743 struct pid_namespace *ns;
744 u64 id;
745
746 u64 (*clock)(void);
747 perf_overflow_handler_t overflow_handler;
748 void *overflow_handler_context;
749 #ifdef CONFIG_BPF_SYSCALL
750 perf_overflow_handler_t orig_overflow_handler;
751 struct bpf_prog *prog;
752 #endif
753
754 #ifdef CONFIG_EVENT_TRACING
755 struct trace_event_call *tp_event;
756 struct event_filter *filter;
757 #ifdef CONFIG_FUNCTION_TRACER
758 struct ftrace_ops ftrace_ops;
759 #endif
760 #endif
761
762 #ifdef CONFIG_CGROUP_PERF
763 struct perf_cgroup *cgrp; /* cgroup event is attach to */
764 #endif
765
766 #ifdef CONFIG_SECURITY
767 void *security;
768 #endif
769 struct list_head sb_list;
770 #endif /* CONFIG_PERF_EVENTS */
771 };
772
773
774 struct perf_event_groups {
775 struct rb_root tree;
776 u64 index;
777 };
778
779 /**
780 * struct perf_event_context - event context structure
781 *
782 * Used as a container for task events and CPU events as well:
783 */
784 struct perf_event_context {
785 struct pmu *pmu;
786 /*
787 * Protect the states of the events in the list,
788 * nr_active, and the list:
789 */
790 raw_spinlock_t lock;
791 /*
792 * Protect the list of events. Locking either mutex or lock
793 * is sufficient to ensure the list doesn't change; to change
794 * the list you need to lock both the mutex and the spinlock.
795 */
796 struct mutex mutex;
797
798 struct list_head active_ctx_list;
799 struct perf_event_groups pinned_groups;
800 struct perf_event_groups flexible_groups;
801 struct list_head event_list;
802
803 struct list_head pinned_active;
804 struct list_head flexible_active;
805
806 int nr_events;
807 int nr_active;
808 int is_active;
809 int nr_stat;
810 int nr_freq;
811 int rotate_disable;
812 /*
813 * Set when nr_events != nr_active, except tolerant to events not
814 * necessary to be active due to scheduling constraints, such as cgroups.
815 */
816 int rotate_necessary;
817 refcount_t refcount;
818 struct task_struct *task;
819
820 /*
821 * Context clock, runs when context enabled.
822 */
823 u64 time;
824 u64 timestamp;
825 u64 timeoffset;
826
827 /*
828 * These fields let us detect when two contexts have both
829 * been cloned (inherited) from a common ancestor.
830 */
831 struct perf_event_context *parent_ctx;
832 u64 parent_gen;
833 u64 generation;
834 int pin_count;
835 #ifdef CONFIG_CGROUP_PERF
836 int nr_cgroups; /* cgroup evts */
837 #endif
838 void *task_ctx_data; /* pmu specific data */
839 struct rcu_head rcu_head;
840 };
841
842 /*
843 * Number of contexts where an event can trigger:
844 * task, softirq, hardirq, nmi.
845 */
846 #define PERF_NR_CONTEXTS 4
847
848 /**
849 * struct perf_event_cpu_context - per cpu event context structure
850 */
851 struct perf_cpu_context {
852 struct perf_event_context ctx;
853 struct perf_event_context *task_ctx;
854 int active_oncpu;
855 int exclusive;
856
857 raw_spinlock_t hrtimer_lock;
858 struct hrtimer hrtimer;
859 ktime_t hrtimer_interval;
860 unsigned int hrtimer_active;
861
862 #ifdef CONFIG_CGROUP_PERF
863 struct perf_cgroup *cgrp;
864 struct list_head cgrp_cpuctx_entry;
865 #endif
866
867 struct list_head sched_cb_entry;
868 int sched_cb_usage;
869
870 int online;
871 /*
872 * Per-CPU storage for iterators used in visit_groups_merge. The default
873 * storage is of size 2 to hold the CPU and any CPU event iterators.
874 */
875 int heap_size;
876 struct perf_event **heap;
877 struct perf_event *heap_default[2];
878 };
879
880 struct perf_output_handle {
881 struct perf_event *event;
882 struct perf_buffer *rb;
883 unsigned long wakeup;
884 unsigned long size;
885 u64 aux_flags;
886 union {
887 void *addr;
888 unsigned long head;
889 };
890 int page;
891 };
892
893 struct bpf_perf_event_data_kern {
894 bpf_user_pt_regs_t *regs;
895 struct perf_sample_data *data;
896 struct perf_event *event;
897 };
898
899 #ifdef CONFIG_CGROUP_PERF
900
901 /*
902 * perf_cgroup_info keeps track of time_enabled for a cgroup.
903 * This is a per-cpu dynamically allocated data structure.
904 */
905 struct perf_cgroup_info {
906 u64 time;
907 u64 timestamp;
908 u64 timeoffset;
909 int active;
910 };
911
912 struct perf_cgroup {
913 struct cgroup_subsys_state css;
914 struct perf_cgroup_info __percpu *info;
915 };
916
917 /*
918 * Must ensure cgroup is pinned (css_get) before calling
919 * this function. In other words, we cannot call this function
920 * if there is no cgroup event for the current CPU context.
921 */
922 static inline struct perf_cgroup *
perf_cgroup_from_task(struct task_struct * task,struct perf_event_context * ctx)923 perf_cgroup_from_task(struct task_struct *task, struct perf_event_context *ctx)
924 {
925 return container_of(task_css_check(task, perf_event_cgrp_id,
926 ctx ? lockdep_is_held(&ctx->lock)
927 : true),
928 struct perf_cgroup, css);
929 }
930 #endif /* CONFIG_CGROUP_PERF */
931
932 #ifdef CONFIG_PERF_EVENTS
933
934 extern void *perf_aux_output_begin(struct perf_output_handle *handle,
935 struct perf_event *event);
936 extern void perf_aux_output_end(struct perf_output_handle *handle,
937 unsigned long size);
938 extern int perf_aux_output_skip(struct perf_output_handle *handle,
939 unsigned long size);
940 extern void *perf_get_aux(struct perf_output_handle *handle);
941 extern void perf_aux_output_flag(struct perf_output_handle *handle, u64 flags);
942 extern void perf_event_itrace_started(struct perf_event *event);
943
944 extern int perf_pmu_register(struct pmu *pmu, const char *name, int type);
945 extern void perf_pmu_unregister(struct pmu *pmu);
946
947 extern int perf_num_counters(void);
948 extern const char *perf_pmu_name(void);
949 extern void __perf_event_task_sched_in(struct task_struct *prev,
950 struct task_struct *task);
951 extern void __perf_event_task_sched_out(struct task_struct *prev,
952 struct task_struct *next);
953 extern int perf_event_init_task(struct task_struct *child);
954 extern void perf_event_exit_task(struct task_struct *child);
955 extern void perf_event_free_task(struct task_struct *task);
956 extern void perf_event_delayed_put(struct task_struct *task);
957 extern struct file *perf_event_get(unsigned int fd);
958 extern const struct perf_event *perf_get_event(struct file *file);
959 extern const struct perf_event_attr *perf_event_attrs(struct perf_event *event);
960 extern void perf_event_print_debug(void);
961 extern void perf_pmu_disable(struct pmu *pmu);
962 extern void perf_pmu_enable(struct pmu *pmu);
963 extern void perf_sched_cb_dec(struct pmu *pmu);
964 extern void perf_sched_cb_inc(struct pmu *pmu);
965 extern int perf_event_task_disable(void);
966 extern int perf_event_task_enable(void);
967
968 extern void perf_pmu_resched(struct pmu *pmu);
969
970 extern int perf_event_refresh(struct perf_event *event, int refresh);
971 extern void perf_event_update_userpage(struct perf_event *event);
972 extern int perf_event_release_kernel(struct perf_event *event);
973 extern struct perf_event *
974 perf_event_create_kernel_counter(struct perf_event_attr *attr,
975 int cpu,
976 struct task_struct *task,
977 perf_overflow_handler_t callback,
978 void *context);
979 extern void perf_pmu_migrate_context(struct pmu *pmu,
980 int src_cpu, int dst_cpu);
981 int perf_event_read_local(struct perf_event *event, u64 *value,
982 u64 *enabled, u64 *running);
983 extern u64 perf_event_read_value(struct perf_event *event,
984 u64 *enabled, u64 *running);
985
986
987 struct perf_sample_data {
988 /*
989 * Fields set by perf_sample_data_init(), group so as to
990 * minimize the cachelines touched.
991 */
992 u64 addr;
993 struct perf_raw_record *raw;
994 struct perf_branch_stack *br_stack;
995 u64 period;
996 u64 weight;
997 u64 txn;
998 union perf_mem_data_src data_src;
999
1000 /*
1001 * The other fields, optionally {set,used} by
1002 * perf_{prepare,output}_sample().
1003 */
1004 u64 type;
1005 u64 ip;
1006 struct {
1007 u32 pid;
1008 u32 tid;
1009 } tid_entry;
1010 u64 time;
1011 u64 id;
1012 u64 stream_id;
1013 struct {
1014 u32 cpu;
1015 u32 reserved;
1016 } cpu_entry;
1017 struct perf_callchain_entry *callchain;
1018 u64 aux_size;
1019
1020 struct perf_regs regs_user;
1021 struct perf_regs regs_intr;
1022 u64 stack_user_size;
1023
1024 u64 phys_addr;
1025 u64 cgroup;
1026 } ____cacheline_aligned;
1027
1028 /* default value for data source */
1029 #define PERF_MEM_NA (PERF_MEM_S(OP, NA) |\
1030 PERF_MEM_S(LVL, NA) |\
1031 PERF_MEM_S(SNOOP, NA) |\
1032 PERF_MEM_S(LOCK, NA) |\
1033 PERF_MEM_S(TLB, NA))
1034
perf_sample_data_init(struct perf_sample_data * data,u64 addr,u64 period)1035 static inline void perf_sample_data_init(struct perf_sample_data *data,
1036 u64 addr, u64 period)
1037 {
1038 /* remaining struct members initialized in perf_prepare_sample() */
1039 data->addr = addr;
1040 data->raw = NULL;
1041 data->br_stack = NULL;
1042 data->period = period;
1043 data->weight = 0;
1044 data->data_src.val = PERF_MEM_NA;
1045 data->txn = 0;
1046 }
1047
1048 extern void perf_output_sample(struct perf_output_handle *handle,
1049 struct perf_event_header *header,
1050 struct perf_sample_data *data,
1051 struct perf_event *event);
1052 extern void perf_prepare_sample(struct perf_event_header *header,
1053 struct perf_sample_data *data,
1054 struct perf_event *event,
1055 struct pt_regs *regs);
1056
1057 extern int perf_event_overflow(struct perf_event *event,
1058 struct perf_sample_data *data,
1059 struct pt_regs *regs);
1060
1061 extern void perf_event_output_forward(struct perf_event *event,
1062 struct perf_sample_data *data,
1063 struct pt_regs *regs);
1064 extern void perf_event_output_backward(struct perf_event *event,
1065 struct perf_sample_data *data,
1066 struct pt_regs *regs);
1067 extern int perf_event_output(struct perf_event *event,
1068 struct perf_sample_data *data,
1069 struct pt_regs *regs);
1070
1071 static inline bool
is_default_overflow_handler(struct perf_event * event)1072 is_default_overflow_handler(struct perf_event *event)
1073 {
1074 if (likely(event->overflow_handler == perf_event_output_forward))
1075 return true;
1076 if (unlikely(event->overflow_handler == perf_event_output_backward))
1077 return true;
1078 return false;
1079 }
1080
1081 extern void
1082 perf_event_header__init_id(struct perf_event_header *header,
1083 struct perf_sample_data *data,
1084 struct perf_event *event);
1085 extern void
1086 perf_event__output_id_sample(struct perf_event *event,
1087 struct perf_output_handle *handle,
1088 struct perf_sample_data *sample);
1089
1090 extern void
1091 perf_log_lost_samples(struct perf_event *event, u64 lost);
1092
event_has_any_exclude_flag(struct perf_event * event)1093 static inline bool event_has_any_exclude_flag(struct perf_event *event)
1094 {
1095 struct perf_event_attr *attr = &event->attr;
1096
1097 return attr->exclude_idle || attr->exclude_user ||
1098 attr->exclude_kernel || attr->exclude_hv ||
1099 attr->exclude_guest || attr->exclude_host;
1100 }
1101
is_sampling_event(struct perf_event * event)1102 static inline bool is_sampling_event(struct perf_event *event)
1103 {
1104 return event->attr.sample_period != 0;
1105 }
1106
1107 /*
1108 * Return 1 for a software event, 0 for a hardware event
1109 */
is_software_event(struct perf_event * event)1110 static inline int is_software_event(struct perf_event *event)
1111 {
1112 return event->event_caps & PERF_EV_CAP_SOFTWARE;
1113 }
1114
1115 /*
1116 * Return 1 for event in sw context, 0 for event in hw context
1117 */
in_software_context(struct perf_event * event)1118 static inline int in_software_context(struct perf_event *event)
1119 {
1120 return event->ctx->pmu->task_ctx_nr == perf_sw_context;
1121 }
1122
is_exclusive_pmu(struct pmu * pmu)1123 static inline int is_exclusive_pmu(struct pmu *pmu)
1124 {
1125 return pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE;
1126 }
1127
1128 extern struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
1129
1130 extern void ___perf_sw_event(u32, u64, struct pt_regs *, u64);
1131 extern void __perf_sw_event(u32, u64, struct pt_regs *, u64);
1132
1133 #ifndef perf_arch_fetch_caller_regs
perf_arch_fetch_caller_regs(struct pt_regs * regs,unsigned long ip)1134 static inline void perf_arch_fetch_caller_regs(struct pt_regs *regs, unsigned long ip) { }
1135 #endif
1136
1137 /*
1138 * When generating a perf sample in-line, instead of from an interrupt /
1139 * exception, we lack a pt_regs. This is typically used from software events
1140 * like: SW_CONTEXT_SWITCHES, SW_MIGRATIONS and the tie-in with tracepoints.
1141 *
1142 * We typically don't need a full set, but (for x86) do require:
1143 * - ip for PERF_SAMPLE_IP
1144 * - cs for user_mode() tests
1145 * - sp for PERF_SAMPLE_CALLCHAIN
1146 * - eflags for MISC bits and CALLCHAIN (see: perf_hw_regs())
1147 *
1148 * NOTE: assumes @regs is otherwise already 0 filled; this is important for
1149 * things like PERF_SAMPLE_REGS_INTR.
1150 */
perf_fetch_caller_regs(struct pt_regs * regs)1151 static inline void perf_fetch_caller_regs(struct pt_regs *regs)
1152 {
1153 perf_arch_fetch_caller_regs(regs, CALLER_ADDR0);
1154 }
1155
1156 static __always_inline void
perf_sw_event(u32 event_id,u64 nr,struct pt_regs * regs,u64 addr)1157 perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
1158 {
1159 if (static_key_false(&perf_swevent_enabled[event_id]))
1160 __perf_sw_event(event_id, nr, regs, addr);
1161 }
1162
1163 DECLARE_PER_CPU(struct pt_regs, __perf_regs[4]);
1164
1165 /*
1166 * 'Special' version for the scheduler, it hard assumes no recursion,
1167 * which is guaranteed by us not actually scheduling inside other swevents
1168 * because those disable preemption.
1169 */
1170 static __always_inline void
perf_sw_event_sched(u32 event_id,u64 nr,u64 addr)1171 perf_sw_event_sched(u32 event_id, u64 nr, u64 addr)
1172 {
1173 if (static_key_false(&perf_swevent_enabled[event_id])) {
1174 struct pt_regs *regs = this_cpu_ptr(&__perf_regs[0]);
1175
1176 perf_fetch_caller_regs(regs);
1177 ___perf_sw_event(event_id, nr, regs, addr);
1178 }
1179 }
1180
1181 extern struct static_key_false perf_sched_events;
1182
1183 static __always_inline bool
perf_sw_migrate_enabled(void)1184 perf_sw_migrate_enabled(void)
1185 {
1186 if (static_key_false(&perf_swevent_enabled[PERF_COUNT_SW_CPU_MIGRATIONS]))
1187 return true;
1188 return false;
1189 }
1190
perf_event_task_migrate(struct task_struct * task)1191 static inline void perf_event_task_migrate(struct task_struct *task)
1192 {
1193 if (perf_sw_migrate_enabled())
1194 task->sched_migrated = 1;
1195 }
1196
perf_event_task_sched_in(struct task_struct * prev,struct task_struct * task)1197 static inline void perf_event_task_sched_in(struct task_struct *prev,
1198 struct task_struct *task)
1199 {
1200 if (static_branch_unlikely(&perf_sched_events))
1201 __perf_event_task_sched_in(prev, task);
1202
1203 if (perf_sw_migrate_enabled() && task->sched_migrated) {
1204 struct pt_regs *regs = this_cpu_ptr(&__perf_regs[0]);
1205
1206 perf_fetch_caller_regs(regs);
1207 ___perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, regs, 0);
1208 task->sched_migrated = 0;
1209 }
1210 }
1211
perf_event_task_sched_out(struct task_struct * prev,struct task_struct * next)1212 static inline void perf_event_task_sched_out(struct task_struct *prev,
1213 struct task_struct *next)
1214 {
1215 perf_sw_event_sched(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 0);
1216
1217 if (static_branch_unlikely(&perf_sched_events))
1218 __perf_event_task_sched_out(prev, next);
1219 }
1220
1221 extern void perf_event_mmap(struct vm_area_struct *vma);
1222
1223 extern void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len,
1224 bool unregister, const char *sym);
1225 extern void perf_event_bpf_event(struct bpf_prog *prog,
1226 enum perf_bpf_event_type type,
1227 u16 flags);
1228
1229 extern struct perf_guest_info_callbacks __rcu *perf_guest_cbs;
perf_get_guest_cbs(void)1230 static inline struct perf_guest_info_callbacks *perf_get_guest_cbs(void)
1231 {
1232 /*
1233 * Callbacks are RCU-protected and must be READ_ONCE to avoid reloading
1234 * the callbacks between a !NULL check and dereferences, to ensure
1235 * pending stores/changes to the callback pointers are visible before a
1236 * non-NULL perf_guest_cbs is visible to readers, and to prevent a
1237 * module from unloading callbacks while readers are active.
1238 */
1239 return rcu_dereference(perf_guest_cbs);
1240 }
1241 extern int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks);
1242 extern int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks);
1243
1244 extern void perf_event_exec(void);
1245 extern void perf_event_comm(struct task_struct *tsk, bool exec);
1246 extern void perf_event_namespaces(struct task_struct *tsk);
1247 extern void perf_event_fork(struct task_struct *tsk);
1248 extern void perf_event_text_poke(const void *addr,
1249 const void *old_bytes, size_t old_len,
1250 const void *new_bytes, size_t new_len);
1251
1252 /* Callchains */
1253 DECLARE_PER_CPU(struct perf_callchain_entry, perf_callchain_entry);
1254
1255 extern void perf_callchain_user(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs);
1256 extern void perf_callchain_kernel(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs);
1257 extern struct perf_callchain_entry *
1258 get_perf_callchain(struct pt_regs *regs, u32 init_nr, bool kernel, bool user,
1259 u32 max_stack, bool crosstask, bool add_mark);
1260 extern struct perf_callchain_entry *perf_callchain(struct perf_event *event, struct pt_regs *regs);
1261 extern int get_callchain_buffers(int max_stack);
1262 extern void put_callchain_buffers(void);
1263 extern struct perf_callchain_entry *get_callchain_entry(int *rctx);
1264 extern void put_callchain_entry(int rctx);
1265
1266 extern int sysctl_perf_event_max_stack;
1267 extern int sysctl_perf_event_max_contexts_per_stack;
1268
perf_callchain_store_context(struct perf_callchain_entry_ctx * ctx,u64 ip)1269 static inline int perf_callchain_store_context(struct perf_callchain_entry_ctx *ctx, u64 ip)
1270 {
1271 if (ctx->contexts < sysctl_perf_event_max_contexts_per_stack) {
1272 struct perf_callchain_entry *entry = ctx->entry;
1273 entry->ip[entry->nr++] = ip;
1274 ++ctx->contexts;
1275 return 0;
1276 } else {
1277 ctx->contexts_maxed = true;
1278 return -1; /* no more room, stop walking the stack */
1279 }
1280 }
1281
perf_callchain_store(struct perf_callchain_entry_ctx * ctx,u64 ip)1282 static inline int perf_callchain_store(struct perf_callchain_entry_ctx *ctx, u64 ip)
1283 {
1284 if (ctx->nr < ctx->max_stack && !ctx->contexts_maxed) {
1285 struct perf_callchain_entry *entry = ctx->entry;
1286 entry->ip[entry->nr++] = ip;
1287 ++ctx->nr;
1288 return 0;
1289 } else {
1290 return -1; /* no more room, stop walking the stack */
1291 }
1292 }
1293
1294 extern int sysctl_perf_event_paranoid;
1295 extern int sysctl_perf_event_mlock;
1296 extern int sysctl_perf_event_sample_rate;
1297 extern int sysctl_perf_cpu_time_max_percent;
1298
1299 extern void perf_sample_event_took(u64 sample_len_ns);
1300
1301 int perf_proc_update_handler(struct ctl_table *table, int write,
1302 void *buffer, size_t *lenp, loff_t *ppos);
1303 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
1304 void *buffer, size_t *lenp, loff_t *ppos);
1305 int perf_event_max_stack_handler(struct ctl_table *table, int write,
1306 void *buffer, size_t *lenp, loff_t *ppos);
1307
1308 /* Access to perf_event_open(2) syscall. */
1309 #define PERF_SECURITY_OPEN 0
1310
1311 /* Finer grained perf_event_open(2) access control. */
1312 #define PERF_SECURITY_CPU 1
1313 #define PERF_SECURITY_KERNEL 2
1314 #define PERF_SECURITY_TRACEPOINT 3
1315
perf_is_paranoid(void)1316 static inline int perf_is_paranoid(void)
1317 {
1318 return sysctl_perf_event_paranoid > -1;
1319 }
1320
perf_allow_kernel(struct perf_event_attr * attr)1321 static inline int perf_allow_kernel(struct perf_event_attr *attr)
1322 {
1323 if (sysctl_perf_event_paranoid > 1 && !perfmon_capable())
1324 return -EACCES;
1325
1326 return security_perf_event_open(attr, PERF_SECURITY_KERNEL);
1327 }
1328
perf_allow_cpu(struct perf_event_attr * attr)1329 static inline int perf_allow_cpu(struct perf_event_attr *attr)
1330 {
1331 if (sysctl_perf_event_paranoid > 0 && !perfmon_capable())
1332 return -EACCES;
1333
1334 return security_perf_event_open(attr, PERF_SECURITY_CPU);
1335 }
1336
perf_allow_tracepoint(struct perf_event_attr * attr)1337 static inline int perf_allow_tracepoint(struct perf_event_attr *attr)
1338 {
1339 if (sysctl_perf_event_paranoid > -1 && !perfmon_capable())
1340 return -EPERM;
1341
1342 return security_perf_event_open(attr, PERF_SECURITY_TRACEPOINT);
1343 }
1344
1345 extern void perf_event_init(void);
1346 extern void perf_tp_event(u16 event_type, u64 count, void *record,
1347 int entry_size, struct pt_regs *regs,
1348 struct hlist_head *head, int rctx,
1349 struct task_struct *task);
1350 extern void perf_bp_event(struct perf_event *event, void *data);
1351
1352 #ifndef perf_misc_flags
1353 # define perf_misc_flags(regs) \
1354 (user_mode(regs) ? PERF_RECORD_MISC_USER : PERF_RECORD_MISC_KERNEL)
1355 # define perf_instruction_pointer(regs) instruction_pointer(regs)
1356 #endif
1357 #ifndef perf_arch_bpf_user_pt_regs
1358 # define perf_arch_bpf_user_pt_regs(regs) regs
1359 #endif
1360
has_branch_stack(struct perf_event * event)1361 static inline bool has_branch_stack(struct perf_event *event)
1362 {
1363 return event->attr.sample_type & PERF_SAMPLE_BRANCH_STACK;
1364 }
1365
needs_branch_stack(struct perf_event * event)1366 static inline bool needs_branch_stack(struct perf_event *event)
1367 {
1368 return event->attr.branch_sample_type != 0;
1369 }
1370
has_aux(struct perf_event * event)1371 static inline bool has_aux(struct perf_event *event)
1372 {
1373 return event->pmu->setup_aux;
1374 }
1375
is_write_backward(struct perf_event * event)1376 static inline bool is_write_backward(struct perf_event *event)
1377 {
1378 return !!event->attr.write_backward;
1379 }
1380
has_addr_filter(struct perf_event * event)1381 static inline bool has_addr_filter(struct perf_event *event)
1382 {
1383 return event->pmu->nr_addr_filters;
1384 }
1385
1386 /*
1387 * An inherited event uses parent's filters
1388 */
1389 static inline struct perf_addr_filters_head *
perf_event_addr_filters(struct perf_event * event)1390 perf_event_addr_filters(struct perf_event *event)
1391 {
1392 struct perf_addr_filters_head *ifh = &event->addr_filters;
1393
1394 if (event->parent)
1395 ifh = &event->parent->addr_filters;
1396
1397 return ifh;
1398 }
1399
1400 extern void perf_event_addr_filters_sync(struct perf_event *event);
1401
1402 extern int perf_output_begin(struct perf_output_handle *handle,
1403 struct perf_sample_data *data,
1404 struct perf_event *event, unsigned int size);
1405 extern int perf_output_begin_forward(struct perf_output_handle *handle,
1406 struct perf_sample_data *data,
1407 struct perf_event *event,
1408 unsigned int size);
1409 extern int perf_output_begin_backward(struct perf_output_handle *handle,
1410 struct perf_sample_data *data,
1411 struct perf_event *event,
1412 unsigned int size);
1413
1414 extern void perf_output_end(struct perf_output_handle *handle);
1415 extern unsigned int perf_output_copy(struct perf_output_handle *handle,
1416 const void *buf, unsigned int len);
1417 extern unsigned int perf_output_skip(struct perf_output_handle *handle,
1418 unsigned int len);
1419 extern long perf_output_copy_aux(struct perf_output_handle *aux_handle,
1420 struct perf_output_handle *handle,
1421 unsigned long from, unsigned long to);
1422 extern int perf_swevent_get_recursion_context(void);
1423 extern void perf_swevent_put_recursion_context(int rctx);
1424 extern u64 perf_swevent_set_period(struct perf_event *event);
1425 extern void perf_event_enable(struct perf_event *event);
1426 extern void perf_event_disable(struct perf_event *event);
1427 extern void perf_event_disable_local(struct perf_event *event);
1428 extern void perf_event_disable_inatomic(struct perf_event *event);
1429 extern void perf_event_task_tick(void);
1430 extern int perf_event_account_interrupt(struct perf_event *event);
1431 extern int perf_event_period(struct perf_event *event, u64 value);
1432 extern u64 perf_event_pause(struct perf_event *event, bool reset);
1433 #else /* !CONFIG_PERF_EVENTS: */
1434 static inline void *
perf_aux_output_begin(struct perf_output_handle * handle,struct perf_event * event)1435 perf_aux_output_begin(struct perf_output_handle *handle,
1436 struct perf_event *event) { return NULL; }
1437 static inline void
perf_aux_output_end(struct perf_output_handle * handle,unsigned long size)1438 perf_aux_output_end(struct perf_output_handle *handle, unsigned long size)
1439 { }
1440 static inline int
perf_aux_output_skip(struct perf_output_handle * handle,unsigned long size)1441 perf_aux_output_skip(struct perf_output_handle *handle,
1442 unsigned long size) { return -EINVAL; }
1443 static inline void *
perf_get_aux(struct perf_output_handle * handle)1444 perf_get_aux(struct perf_output_handle *handle) { return NULL; }
1445 static inline void
perf_event_task_migrate(struct task_struct * task)1446 perf_event_task_migrate(struct task_struct *task) { }
1447 static inline void
perf_event_task_sched_in(struct task_struct * prev,struct task_struct * task)1448 perf_event_task_sched_in(struct task_struct *prev,
1449 struct task_struct *task) { }
1450 static inline void
perf_event_task_sched_out(struct task_struct * prev,struct task_struct * next)1451 perf_event_task_sched_out(struct task_struct *prev,
1452 struct task_struct *next) { }
perf_event_init_task(struct task_struct * child)1453 static inline int perf_event_init_task(struct task_struct *child) { return 0; }
perf_event_exit_task(struct task_struct * child)1454 static inline void perf_event_exit_task(struct task_struct *child) { }
perf_event_free_task(struct task_struct * task)1455 static inline void perf_event_free_task(struct task_struct *task) { }
perf_event_delayed_put(struct task_struct * task)1456 static inline void perf_event_delayed_put(struct task_struct *task) { }
perf_event_get(unsigned int fd)1457 static inline struct file *perf_event_get(unsigned int fd) { return ERR_PTR(-EINVAL); }
perf_get_event(struct file * file)1458 static inline const struct perf_event *perf_get_event(struct file *file)
1459 {
1460 return ERR_PTR(-EINVAL);
1461 }
perf_event_attrs(struct perf_event * event)1462 static inline const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
1463 {
1464 return ERR_PTR(-EINVAL);
1465 }
perf_event_read_local(struct perf_event * event,u64 * value,u64 * enabled,u64 * running)1466 static inline int perf_event_read_local(struct perf_event *event, u64 *value,
1467 u64 *enabled, u64 *running)
1468 {
1469 return -EINVAL;
1470 }
perf_event_print_debug(void)1471 static inline void perf_event_print_debug(void) { }
perf_event_task_disable(void)1472 static inline int perf_event_task_disable(void) { return -EINVAL; }
perf_event_task_enable(void)1473 static inline int perf_event_task_enable(void) { return -EINVAL; }
perf_event_refresh(struct perf_event * event,int refresh)1474 static inline int perf_event_refresh(struct perf_event *event, int refresh)
1475 {
1476 return -EINVAL;
1477 }
1478
1479 static inline void
perf_sw_event(u32 event_id,u64 nr,struct pt_regs * regs,u64 addr)1480 perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) { }
1481 static inline void
perf_sw_event_sched(u32 event_id,u64 nr,u64 addr)1482 perf_sw_event_sched(u32 event_id, u64 nr, u64 addr) { }
1483 static inline void
perf_bp_event(struct perf_event * event,void * data)1484 perf_bp_event(struct perf_event *event, void *data) { }
1485
perf_register_guest_info_callbacks(struct perf_guest_info_callbacks * callbacks)1486 static inline int perf_register_guest_info_callbacks
1487 (struct perf_guest_info_callbacks *callbacks) { return 0; }
perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks * callbacks)1488 static inline int perf_unregister_guest_info_callbacks
1489 (struct perf_guest_info_callbacks *callbacks) { return 0; }
1490
perf_event_mmap(struct vm_area_struct * vma)1491 static inline void perf_event_mmap(struct vm_area_struct *vma) { }
1492
1493 typedef int (perf_ksymbol_get_name_f)(char *name, int name_len, void *data);
perf_event_ksymbol(u16 ksym_type,u64 addr,u32 len,bool unregister,const char * sym)1494 static inline void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len,
1495 bool unregister, const char *sym) { }
perf_event_bpf_event(struct bpf_prog * prog,enum perf_bpf_event_type type,u16 flags)1496 static inline void perf_event_bpf_event(struct bpf_prog *prog,
1497 enum perf_bpf_event_type type,
1498 u16 flags) { }
perf_event_exec(void)1499 static inline void perf_event_exec(void) { }
perf_event_comm(struct task_struct * tsk,bool exec)1500 static inline void perf_event_comm(struct task_struct *tsk, bool exec) { }
perf_event_namespaces(struct task_struct * tsk)1501 static inline void perf_event_namespaces(struct task_struct *tsk) { }
perf_event_fork(struct task_struct * tsk)1502 static inline void perf_event_fork(struct task_struct *tsk) { }
perf_event_text_poke(const void * addr,const void * old_bytes,size_t old_len,const void * new_bytes,size_t new_len)1503 static inline void perf_event_text_poke(const void *addr,
1504 const void *old_bytes,
1505 size_t old_len,
1506 const void *new_bytes,
1507 size_t new_len) { }
perf_event_init(void)1508 static inline void perf_event_init(void) { }
perf_swevent_get_recursion_context(void)1509 static inline int perf_swevent_get_recursion_context(void) { return -1; }
perf_swevent_put_recursion_context(int rctx)1510 static inline void perf_swevent_put_recursion_context(int rctx) { }
perf_swevent_set_period(struct perf_event * event)1511 static inline u64 perf_swevent_set_period(struct perf_event *event) { return 0; }
perf_event_enable(struct perf_event * event)1512 static inline void perf_event_enable(struct perf_event *event) { }
perf_event_disable(struct perf_event * event)1513 static inline void perf_event_disable(struct perf_event *event) { }
__perf_event_disable(void * info)1514 static inline int __perf_event_disable(void *info) { return -1; }
perf_event_task_tick(void)1515 static inline void perf_event_task_tick(void) { }
perf_event_release_kernel(struct perf_event * event)1516 static inline int perf_event_release_kernel(struct perf_event *event) { return 0; }
perf_event_period(struct perf_event * event,u64 value)1517 static inline int perf_event_period(struct perf_event *event, u64 value)
1518 {
1519 return -EINVAL;
1520 }
perf_event_pause(struct perf_event * event,bool reset)1521 static inline u64 perf_event_pause(struct perf_event *event, bool reset)
1522 {
1523 return 0;
1524 }
1525 #endif
1526
1527 #if defined(CONFIG_PERF_EVENTS) && defined(CONFIG_CPU_SUP_INTEL)
1528 extern void perf_restore_debug_store(void);
1529 #else
perf_restore_debug_store(void)1530 static inline void perf_restore_debug_store(void) { }
1531 #endif
1532
perf_raw_frag_last(const struct perf_raw_frag * frag)1533 static __always_inline bool perf_raw_frag_last(const struct perf_raw_frag *frag)
1534 {
1535 return frag->pad < sizeof(u64);
1536 }
1537
1538 #define perf_output_put(handle, x) perf_output_copy((handle), &(x), sizeof(x))
1539
1540 struct perf_pmu_events_attr {
1541 struct device_attribute attr;
1542 u64 id;
1543 const char *event_str;
1544 };
1545
1546 struct perf_pmu_events_ht_attr {
1547 struct device_attribute attr;
1548 u64 id;
1549 const char *event_str_ht;
1550 const char *event_str_noht;
1551 };
1552
1553 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
1554 char *page);
1555
1556 #define PMU_EVENT_ATTR(_name, _var, _id, _show) \
1557 static struct perf_pmu_events_attr _var = { \
1558 .attr = __ATTR(_name, 0444, _show, NULL), \
1559 .id = _id, \
1560 };
1561
1562 #define PMU_EVENT_ATTR_STRING(_name, _var, _str) \
1563 static struct perf_pmu_events_attr _var = { \
1564 .attr = __ATTR(_name, 0444, perf_event_sysfs_show, NULL), \
1565 .id = 0, \
1566 .event_str = _str, \
1567 };
1568
1569 #define PMU_FORMAT_ATTR(_name, _format) \
1570 static ssize_t \
1571 _name##_show(struct device *dev, \
1572 struct device_attribute *attr, \
1573 char *page) \
1574 { \
1575 BUILD_BUG_ON(sizeof(_format) >= PAGE_SIZE); \
1576 return sprintf(page, _format "\n"); \
1577 } \
1578 \
1579 static struct device_attribute format_attr_##_name = __ATTR_RO(_name)
1580
1581 /* Performance counter hotplug functions */
1582 #ifdef CONFIG_PERF_EVENTS
1583 int perf_event_init_cpu(unsigned int cpu);
1584 int perf_event_exit_cpu(unsigned int cpu);
1585 #else
1586 #define perf_event_init_cpu NULL
1587 #define perf_event_exit_cpu NULL
1588 #endif
1589
1590 extern void __weak arch_perf_update_userpage(struct perf_event *event,
1591 struct perf_event_mmap_page *userpg,
1592 u64 now);
1593
1594 #endif /* _LINUX_PERF_EVENT_H */
1595