1 /**************************************************************************
2 *
3 * Copyright 2007 VMware, Inc.
4 * All Rights Reserved.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the
8 * "Software"), to deal in the Software without restriction, including
9 * without limitation the rights to use, copy, modify, merge, publish,
10 * distribute, sub license, and/or sell copies of the Software, and to
11 * permit persons to whom the Software is furnished to do so, subject to
12 * the following conditions:
13 *
14 * The above copyright notice and this permission notice (including the
15 * next paragraph) shall be included in all copies or substantial portions
16 * of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
19 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
21 * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
22 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
23 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
24 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25 *
26 **************************************************************************/
27
28 /*
29 * Binning code for triangles
30 */
31
32 #include "util/u_math.h"
33 #include "util/u_memory.h"
34 #include "util/u_rect.h"
35 #include "util/u_sse.h"
36 #include "lp_perf.h"
37 #include "lp_setup_context.h"
38 #include "lp_rast.h"
39 #include "lp_state_fs.h"
40 #include "lp_state_setup.h"
41 #include "lp_context.h"
42
43 #include <inttypes.h>
44
45 #define NUM_CHANNELS 4
46
47 #if defined(PIPE_ARCH_SSE)
48 #include <emmintrin.h>
49 #elif defined(_ARCH_PWR8) && UTIL_ARCH_LITTLE_ENDIAN
50 #include <altivec.h>
51 #include "util/u_pwr8.h"
52 #endif
53
54 #if !defined(PIPE_ARCH_SSE)
55
56 static inline int
subpixel_snap(float a)57 subpixel_snap(float a)
58 {
59 return util_iround(FIXED_ONE * a);
60 }
61
62 #endif
63
64 /* Position and area in fixed point coordinates */
65 struct fixed_position {
66 int32_t x[4];
67 int32_t y[4];
68 int32_t dx01;
69 int32_t dy01;
70 int32_t dx20;
71 int32_t dy20;
72 int64_t area;
73 };
74
75
76 /**
77 * Alloc space for a new triangle plus the input.a0/dadx/dady arrays
78 * immediately after it.
79 * The memory is allocated from the per-scene pool, not per-tile.
80 * \param tri_size returns number of bytes allocated
81 * \param num_inputs number of fragment shader inputs
82 * \return pointer to triangle space
83 */
84 struct lp_rast_triangle *
lp_setup_alloc_triangle(struct lp_scene * scene,unsigned nr_inputs,unsigned nr_planes,unsigned * tri_size)85 lp_setup_alloc_triangle(struct lp_scene *scene,
86 unsigned nr_inputs,
87 unsigned nr_planes,
88 unsigned *tri_size)
89 {
90 unsigned input_array_sz = NUM_CHANNELS * (nr_inputs + 1) * sizeof(float);
91 unsigned plane_sz = nr_planes * sizeof(struct lp_rast_plane);
92 struct lp_rast_triangle *tri;
93
94 STATIC_ASSERT(sizeof(struct lp_rast_plane) % 8 == 0);
95
96 *tri_size = (sizeof(struct lp_rast_triangle) +
97 3 * input_array_sz +
98 plane_sz);
99
100 tri = lp_scene_alloc_aligned( scene, *tri_size, 16 );
101 if (!tri)
102 return NULL;
103
104 tri->inputs.stride = input_array_sz;
105
106 {
107 ASSERTED char *a = (char *)tri;
108 ASSERTED char *b = (char *)&GET_PLANES(tri)[nr_planes];
109
110 assert(b - a == *tri_size);
111 }
112
113 return tri;
114 }
115
116 void
lp_setup_print_vertex(struct lp_setup_context * setup,const char * name,const float (* v)[4])117 lp_setup_print_vertex(struct lp_setup_context *setup,
118 const char *name,
119 const float (*v)[4])
120 {
121 const struct lp_setup_variant_key *key = &setup->setup.variant->key;
122 int i, j;
123
124 debug_printf(" wpos (%s[0]) xyzw %f %f %f %f\n",
125 name,
126 v[0][0], v[0][1], v[0][2], v[0][3]);
127
128 for (i = 0; i < key->num_inputs; i++) {
129 const float *in = v[key->inputs[i].src_index];
130
131 debug_printf(" in[%d] (%s[%d]) %s%s%s%s ",
132 i,
133 name, key->inputs[i].src_index,
134 (key->inputs[i].usage_mask & 0x1) ? "x" : " ",
135 (key->inputs[i].usage_mask & 0x2) ? "y" : " ",
136 (key->inputs[i].usage_mask & 0x4) ? "z" : " ",
137 (key->inputs[i].usage_mask & 0x8) ? "w" : " ");
138
139 for (j = 0; j < 4; j++)
140 if (key->inputs[i].usage_mask & (1<<j))
141 debug_printf("%.5f ", in[j]);
142
143 debug_printf("\n");
144 }
145 }
146
147
148 /**
149 * Print triangle vertex attribs (for debug).
150 */
151 void
lp_setup_print_triangle(struct lp_setup_context * setup,const float (* v0)[4],const float (* v1)[4],const float (* v2)[4])152 lp_setup_print_triangle(struct lp_setup_context *setup,
153 const float (*v0)[4],
154 const float (*v1)[4],
155 const float (*v2)[4])
156 {
157 debug_printf("triangle\n");
158
159 {
160 const float ex = v0[0][0] - v2[0][0];
161 const float ey = v0[0][1] - v2[0][1];
162 const float fx = v1[0][0] - v2[0][0];
163 const float fy = v1[0][1] - v2[0][1];
164
165 /* det = cross(e,f).z */
166 const float det = ex * fy - ey * fx;
167 if (det < 0.0f)
168 debug_printf(" - ccw\n");
169 else if (det > 0.0f)
170 debug_printf(" - cw\n");
171 else
172 debug_printf(" - zero area\n");
173 }
174
175 lp_setup_print_vertex(setup, "v0", v0);
176 lp_setup_print_vertex(setup, "v1", v1);
177 lp_setup_print_vertex(setup, "v2", v2);
178 }
179
180
181 #define MAX_PLANES 8
182 static unsigned
183 lp_rast_tri_tab[MAX_PLANES+1] = {
184 0, /* should be impossible */
185 LP_RAST_OP_TRIANGLE_1,
186 LP_RAST_OP_TRIANGLE_2,
187 LP_RAST_OP_TRIANGLE_3,
188 LP_RAST_OP_TRIANGLE_4,
189 LP_RAST_OP_TRIANGLE_5,
190 LP_RAST_OP_TRIANGLE_6,
191 LP_RAST_OP_TRIANGLE_7,
192 LP_RAST_OP_TRIANGLE_8
193 };
194
195 static unsigned
196 lp_rast_32_tri_tab[MAX_PLANES+1] = {
197 0, /* should be impossible */
198 LP_RAST_OP_TRIANGLE_32_1,
199 LP_RAST_OP_TRIANGLE_32_2,
200 LP_RAST_OP_TRIANGLE_32_3,
201 LP_RAST_OP_TRIANGLE_32_4,
202 LP_RAST_OP_TRIANGLE_32_5,
203 LP_RAST_OP_TRIANGLE_32_6,
204 LP_RAST_OP_TRIANGLE_32_7,
205 LP_RAST_OP_TRIANGLE_32_8
206 };
207
208
209 static unsigned
210 lp_rast_ms_tri_tab[MAX_PLANES+1] = {
211 0, /* should be impossible */
212 LP_RAST_OP_MS_TRIANGLE_1,
213 LP_RAST_OP_MS_TRIANGLE_2,
214 LP_RAST_OP_MS_TRIANGLE_3,
215 LP_RAST_OP_MS_TRIANGLE_4,
216 LP_RAST_OP_MS_TRIANGLE_5,
217 LP_RAST_OP_MS_TRIANGLE_6,
218 LP_RAST_OP_MS_TRIANGLE_7,
219 LP_RAST_OP_MS_TRIANGLE_8
220 };
221
222 /*
223 * Detect big primitives drawn with an alpha == 1.0.
224 *
225 * This is used when simulating anti-aliasing primitives in shaders, e.g.,
226 * when drawing the windows client area in Aero's flip-3d effect.
227 */
228 static boolean
check_opaque(struct lp_setup_context * setup,const float (* v1)[4],const float (* v2)[4],const float (* v3)[4])229 check_opaque(struct lp_setup_context *setup,
230 const float (*v1)[4],
231 const float (*v2)[4],
232 const float (*v3)[4])
233 {
234 const struct lp_fragment_shader_variant *variant =
235 setup->fs.current.variant;
236 const struct lp_tgsi_channel_info *alpha_info = &variant->shader->info.cbuf[0][3];
237
238 if (variant->opaque)
239 return TRUE;
240
241 if (!variant->potentially_opaque)
242 return FALSE;
243
244 if (alpha_info->file == TGSI_FILE_CONSTANT) {
245 const float *constants = setup->fs.current.jit_context.constants[0];
246 float alpha = constants[alpha_info->u.index*4 +
247 alpha_info->swizzle];
248 return alpha == 1.0f;
249 }
250
251 if (alpha_info->file == TGSI_FILE_INPUT) {
252 return (v1[1 + alpha_info->u.index][alpha_info->swizzle] == 1.0f &&
253 v2[1 + alpha_info->u.index][alpha_info->swizzle] == 1.0f &&
254 v3[1 + alpha_info->u.index][alpha_info->swizzle] == 1.0f);
255 }
256
257 return FALSE;
258 }
259
260
261
262 /**
263 * Do basic setup for triangle rasterization and determine which
264 * framebuffer tiles are touched. Put the triangle in the scene's
265 * bins for the tiles which we overlap.
266 */
267 static boolean
do_triangle_ccw(struct lp_setup_context * setup,struct fixed_position * position,const float (* v0)[4],const float (* v1)[4],const float (* v2)[4],boolean frontfacing)268 do_triangle_ccw(struct lp_setup_context *setup,
269 struct fixed_position* position,
270 const float (*v0)[4],
271 const float (*v1)[4],
272 const float (*v2)[4],
273 boolean frontfacing )
274 {
275 struct lp_scene *scene = setup->scene;
276 const struct lp_setup_variant_key *key = &setup->setup.variant->key;
277 struct lp_rast_triangle *tri;
278 struct lp_rast_plane *plane;
279 const struct u_rect *scissor = NULL;
280 struct u_rect bbox, bboxpos;
281 boolean s_planes[4];
282 unsigned tri_bytes;
283 int nr_planes = 3;
284 unsigned viewport_index = 0;
285 unsigned layer = 0;
286 const float (*pv)[4];
287
288 /* Area should always be positive here */
289 assert(position->area > 0);
290
291 if (0)
292 lp_setup_print_triangle(setup, v0, v1, v2);
293
294 if (setup->flatshade_first) {
295 pv = v0;
296 }
297 else {
298 pv = v2;
299 }
300 if (setup->viewport_index_slot > 0) {
301 unsigned *udata = (unsigned*)pv[setup->viewport_index_slot];
302 viewport_index = lp_clamp_viewport_idx(*udata);
303 }
304 if (setup->layer_slot > 0) {
305 layer = *(unsigned*)pv[setup->layer_slot];
306 layer = MIN2(layer, scene->fb_max_layer);
307 }
308
309 /* Bounding rectangle (in pixels) */
310 {
311 /* Yes this is necessary to accurately calculate bounding boxes
312 * with the two fill-conventions we support. GL (normally) ends
313 * up needing a bottom-left fill convention, which requires
314 * slightly different rounding.
315 */
316 int adj = (setup->bottom_edge_rule != 0) ? 1 : 0;
317
318 /* Inclusive x0, exclusive x1 */
319 bbox.x0 = MIN3(position->x[0], position->x[1], position->x[2]) >> FIXED_ORDER;
320 bbox.x1 = (MAX3(position->x[0], position->x[1], position->x[2]) - 1) >> FIXED_ORDER;
321
322 /* Inclusive / exclusive depending upon adj (bottom-left or top-right) */
323 bbox.y0 = (MIN3(position->y[0], position->y[1], position->y[2]) + adj) >> FIXED_ORDER;
324 bbox.y1 = (MAX3(position->y[0], position->y[1], position->y[2]) - 1 + adj) >> FIXED_ORDER;
325 }
326
327 if (!u_rect_test_intersection(&setup->draw_regions[viewport_index], &bbox)) {
328 if (0) debug_printf("no intersection\n");
329 LP_COUNT(nr_culled_tris);
330 return TRUE;
331 }
332
333 bboxpos = bbox;
334
335 /* Can safely discard negative regions, but need to keep hold of
336 * information about when the triangle extends past screen
337 * boundaries. See trimmed_box in lp_setup_bin_triangle().
338 */
339 bboxpos.x0 = MAX2(bboxpos.x0, 0);
340 bboxpos.y0 = MAX2(bboxpos.y0, 0);
341
342 nr_planes = 3;
343 /*
344 * Determine how many scissor planes we need, that is drop scissor
345 * edges if the bounding box of the tri is fully inside that edge.
346 */
347 scissor = &setup->draw_regions[viewport_index];
348 scissor_planes_needed(s_planes, &bboxpos, scissor);
349 nr_planes += s_planes[0] + s_planes[1] + s_planes[2] + s_planes[3];
350
351 tri = lp_setup_alloc_triangle(scene,
352 key->num_inputs,
353 nr_planes,
354 &tri_bytes);
355 if (!tri)
356 return FALSE;
357
358 #ifdef DEBUG
359 tri->v[0][0] = v0[0][0];
360 tri->v[1][0] = v1[0][0];
361 tri->v[2][0] = v2[0][0];
362 tri->v[0][1] = v0[0][1];
363 tri->v[1][1] = v1[0][1];
364 tri->v[2][1] = v2[0][1];
365 #endif
366
367 LP_COUNT(nr_tris);
368
369 /*
370 * Rotate the tri such that v0 is closest to the fb origin.
371 * This can give more accurate a0 value (which is at fb origin)
372 * when calculating the interpolants.
373 * It can't work when there's flat shading for instance in one
374 * of the attributes, hence restrict this to just a single attribute
375 * which is what causes some test failures.
376 * (This does not address the problem that interpolation may be
377 * inaccurate if gradients are relatively steep in small tris far
378 * away from the origin. It does however fix the (silly) wgf11rasterizer
379 * Interpolator test.)
380 * XXX This causes problems with mipgen -EmuTexture for not yet really
381 * understood reasons (if the vertices would be submitted in a different
382 * order, we'd also generate the same "wrong" results here without
383 * rotation). In any case, that we generate different values if a prim
384 * has the vertices rotated but is otherwise the same (which is due to
385 * numerical issues) is not a nice property. An additional problem by
386 * swapping the vertices here (which is possibly worse) is that
387 * the same primitive coming in twice might generate different values
388 * (in particular for z) due to the swapping potentially not happening
389 * both times, if the attributes to be interpolated are different. For now,
390 * just restrict this to not get used with dx9 (by checking pixel offset),
391 * could also restrict it further to only trigger with wgf11Interpolator
392 * Rasterizer test (the only place which needs it, with always the same
393 * vertices even).
394 */
395 if ((LP_DEBUG & DEBUG_ACCURATE_A0) &&
396 setup->pixel_offset == 0.5f &&
397 key->num_inputs == 1 &&
398 (key->inputs[0].interp == LP_INTERP_LINEAR ||
399 key->inputs[0].interp == LP_INTERP_PERSPECTIVE)) {
400 float dist0 = v0[0][0] * v0[0][0] + v0[0][1] * v0[0][1];
401 float dist1 = v1[0][0] * v1[0][0] + v1[0][1] * v1[0][1];
402 float dist2 = v2[0][0] * v2[0][0] + v2[0][1] * v2[0][1];
403 if (dist0 > dist1 && dist1 < dist2) {
404 const float (*vt)[4];
405 int x, y;
406 vt = v0;
407 v0 = v1;
408 v1 = v2;
409 v2 = vt;
410 x = position->x[0];
411 y = position->y[0];
412 position->x[0] = position->x[1];
413 position->y[0] = position->y[1];
414 position->x[1] = position->x[2];
415 position->y[1] = position->y[2];
416 position->x[2] = x;
417 position->y[2] = y;
418
419 position->dx20 = position->dx01;
420 position->dy20 = position->dy01;
421 position->dx01 = position->x[0] - position->x[1];
422 position->dy01 = position->y[0] - position->y[1];
423 }
424 else if (dist0 > dist2) {
425 const float (*vt)[4];
426 int x, y;
427 vt = v0;
428 v0 = v2;
429 v2 = v1;
430 v1 = vt;
431 x = position->x[0];
432 y = position->y[0];
433 position->x[0] = position->x[2];
434 position->y[0] = position->y[2];
435 position->x[2] = position->x[1];
436 position->y[2] = position->y[1];
437 position->x[1] = x;
438 position->y[1] = y;
439
440 position->dx01 = position->dx20;
441 position->dy01 = position->dy20;
442 position->dx20 = position->x[2] - position->x[0];
443 position->dy20 = position->y[2] - position->y[0];
444 }
445 }
446
447 /* Setup parameter interpolants:
448 */
449 setup->setup.variant->jit_function(v0, v1, v2,
450 frontfacing,
451 GET_A0(&tri->inputs),
452 GET_DADX(&tri->inputs),
453 GET_DADY(&tri->inputs),
454 &setup->setup.variant->key);
455
456 tri->inputs.frontfacing = frontfacing;
457 tri->inputs.disable = FALSE;
458 tri->inputs.is_blit = FALSE;
459 tri->inputs.opaque = check_opaque(setup, v0, v1, v2);
460 tri->inputs.layer = layer;
461 tri->inputs.viewport_index = viewport_index;
462 tri->inputs.view_index = setup->view_index;
463
464 if (0)
465 lp_dump_setup_coef(&setup->setup.variant->key,
466 (const float (*)[4])GET_A0(&tri->inputs),
467 (const float (*)[4])GET_DADX(&tri->inputs),
468 (const float (*)[4])GET_DADY(&tri->inputs));
469
470 plane = GET_PLANES(tri);
471
472 #if defined(PIPE_ARCH_SSE)
473 if (1) {
474 __m128i vertx, verty;
475 __m128i shufx, shufy;
476 __m128i dcdx, dcdy;
477 __m128i cdx02, cdx13, cdy02, cdy13, c02, c13;
478 __m128i c01, c23, unused;
479 __m128i dcdx_neg_mask;
480 __m128i dcdy_neg_mask;
481 __m128i dcdx_zero_mask;
482 __m128i top_left_flag, c_dec;
483 __m128i eo, p0, p1, p2;
484 __m128i zero = _mm_setzero_si128();
485
486 vertx = _mm_load_si128((__m128i *)position->x); /* vertex x coords */
487 verty = _mm_load_si128((__m128i *)position->y); /* vertex y coords */
488
489 shufx = _mm_shuffle_epi32(vertx, _MM_SHUFFLE(3,0,2,1));
490 shufy = _mm_shuffle_epi32(verty, _MM_SHUFFLE(3,0,2,1));
491
492 dcdx = _mm_sub_epi32(verty, shufy);
493 dcdy = _mm_sub_epi32(vertx, shufx);
494
495 dcdx_neg_mask = _mm_srai_epi32(dcdx, 31);
496 dcdx_zero_mask = _mm_cmpeq_epi32(dcdx, zero);
497 dcdy_neg_mask = _mm_srai_epi32(dcdy, 31);
498
499 top_left_flag = _mm_set1_epi32((setup->bottom_edge_rule == 0) ? ~0 : 0);
500
501 c_dec = _mm_or_si128(dcdx_neg_mask,
502 _mm_and_si128(dcdx_zero_mask,
503 _mm_xor_si128(dcdy_neg_mask,
504 top_left_flag)));
505
506 /*
507 * 64 bit arithmetic.
508 * Note we need _signed_ mul (_mm_mul_epi32) which we emulate.
509 */
510 cdx02 = mm_mullohi_epi32(dcdx, vertx, &cdx13);
511 cdy02 = mm_mullohi_epi32(dcdy, verty, &cdy13);
512 c02 = _mm_sub_epi64(cdx02, cdy02);
513 c13 = _mm_sub_epi64(cdx13, cdy13);
514 c02 = _mm_sub_epi64(c02, _mm_shuffle_epi32(c_dec,
515 _MM_SHUFFLE(2,2,0,0)));
516 c13 = _mm_sub_epi64(c13, _mm_shuffle_epi32(c_dec,
517 _MM_SHUFFLE(3,3,1,1)));
518
519 /*
520 * Useful for very small fbs/tris (or fewer subpixel bits) only:
521 * c = _mm_sub_epi32(mm_mullo_epi32(dcdx, vertx),
522 * mm_mullo_epi32(dcdy, verty));
523 *
524 * c = _mm_sub_epi32(c, c_dec);
525 */
526
527 /* Scale up to match c:
528 */
529 dcdx = _mm_slli_epi32(dcdx, FIXED_ORDER);
530 dcdy = _mm_slli_epi32(dcdy, FIXED_ORDER);
531
532 /*
533 * Calculate trivial reject values:
534 * Note eo cannot overflow even if dcdx/dcdy would already have
535 * 31 bits (which they shouldn't have). This is because eo
536 * is never negative (albeit if we rely on that need to be careful...)
537 */
538 eo = _mm_sub_epi32(_mm_andnot_si128(dcdy_neg_mask, dcdy),
539 _mm_and_si128(dcdx_neg_mask, dcdx));
540
541 /* ei = _mm_sub_epi32(_mm_sub_epi32(dcdy, dcdx), eo); */
542
543 /*
544 * Pointless transpose which gets undone immediately in
545 * rasterization.
546 * It is actually difficult to do away with it - would essentially
547 * need GET_PLANES_DX, GET_PLANES_DY etc., but the calculations
548 * for this then would need to depend on the number of planes.
549 * The transpose is quite special here due to c being 64bit...
550 * The store has to be unaligned (unless we'd make the plane size
551 * a multiple of 128), and of course storing eo separately...
552 */
553 c01 = _mm_unpacklo_epi64(c02, c13);
554 c23 = _mm_unpackhi_epi64(c02, c13);
555 transpose2_64_2_32(&c01, &c23, &dcdx, &dcdy,
556 &p0, &p1, &p2, &unused);
557 _mm_storeu_si128((__m128i *)&plane[0], p0);
558 plane[0].eo = (uint32_t)_mm_cvtsi128_si32(eo);
559 _mm_storeu_si128((__m128i *)&plane[1], p1);
560 eo = _mm_shuffle_epi32(eo, _MM_SHUFFLE(3,2,0,1));
561 plane[1].eo = (uint32_t)_mm_cvtsi128_si32(eo);
562 _mm_storeu_si128((__m128i *)&plane[2], p2);
563 eo = _mm_shuffle_epi32(eo, _MM_SHUFFLE(0,0,0,2));
564 plane[2].eo = (uint32_t)_mm_cvtsi128_si32(eo);
565 } else
566 #elif defined(_ARCH_PWR8) && UTIL_ARCH_LITTLE_ENDIAN
567 /*
568 * XXX this code is effectively disabled for all practical purposes,
569 * as the allowed fb size is tiny if FIXED_ORDER is 8.
570 */
571 if (setup->fb.width <= MAX_FIXED_LENGTH32 &&
572 setup->fb.height <= MAX_FIXED_LENGTH32 &&
573 (bbox.x1 - bbox.x0) <= MAX_FIXED_LENGTH32 &&
574 (bbox.y1 - bbox.y0) <= MAX_FIXED_LENGTH32) {
575 unsigned int bottom_edge;
576 __m128i vertx, verty;
577 __m128i shufx, shufy;
578 __m128i dcdx, dcdy, c;
579 __m128i unused;
580 __m128i dcdx_neg_mask;
581 __m128i dcdy_neg_mask;
582 __m128i dcdx_zero_mask;
583 __m128i top_left_flag;
584 __m128i c_inc_mask, c_inc;
585 __m128i eo, p0, p1, p2;
586 __m128i_union vshuf_mask;
587 __m128i zero = vec_splats((unsigned char) 0);
588 PIPE_ALIGN_VAR(16) int32_t temp_vec[4];
589
590 #if UTIL_ARCH_LITTLE_ENDIAN
591 vshuf_mask.i[0] = 0x07060504;
592 vshuf_mask.i[1] = 0x0B0A0908;
593 vshuf_mask.i[2] = 0x03020100;
594 vshuf_mask.i[3] = 0x0F0E0D0C;
595 #else
596 vshuf_mask.i[0] = 0x00010203;
597 vshuf_mask.i[1] = 0x0C0D0E0F;
598 vshuf_mask.i[2] = 0x04050607;
599 vshuf_mask.i[3] = 0x08090A0B;
600 #endif
601
602 /* vertex x coords */
603 vertx = vec_load_si128((const uint32_t *) position->x);
604 /* vertex y coords */
605 verty = vec_load_si128((const uint32_t *) position->y);
606
607 shufx = vec_perm (vertx, vertx, vshuf_mask.m128i);
608 shufy = vec_perm (verty, verty, vshuf_mask.m128i);
609
610 dcdx = vec_sub_epi32(verty, shufy);
611 dcdy = vec_sub_epi32(vertx, shufx);
612
613 dcdx_neg_mask = vec_srai_epi32(dcdx, 31);
614 dcdx_zero_mask = vec_cmpeq_epi32(dcdx, zero);
615 dcdy_neg_mask = vec_srai_epi32(dcdy, 31);
616
617 bottom_edge = (setup->bottom_edge_rule == 0) ? ~0 : 0;
618 top_left_flag = (__m128i) vec_splats(bottom_edge);
619
620 c_inc_mask = vec_or(dcdx_neg_mask,
621 vec_and(dcdx_zero_mask,
622 vec_xor(dcdy_neg_mask,
623 top_left_flag)));
624
625 c_inc = vec_srli_epi32(c_inc_mask, 31);
626
627 c = vec_sub_epi32(vec_mullo_epi32(dcdx, vertx),
628 vec_mullo_epi32(dcdy, verty));
629
630 c = vec_add_epi32(c, c_inc);
631
632 /* Scale up to match c:
633 */
634 dcdx = vec_slli_epi32(dcdx, FIXED_ORDER);
635 dcdy = vec_slli_epi32(dcdy, FIXED_ORDER);
636
637 /* Calculate trivial reject values:
638 */
639 eo = vec_sub_epi32(vec_andnot_si128(dcdy_neg_mask, dcdy),
640 vec_and(dcdx_neg_mask, dcdx));
641
642 /* ei = _mm_sub_epi32(_mm_sub_epi32(dcdy, dcdx), eo); */
643
644 /* Pointless transpose which gets undone immediately in
645 * rasterization:
646 */
647 transpose4_epi32(&c, &dcdx, &dcdy, &eo,
648 &p0, &p1, &p2, &unused);
649
650 #define STORE_PLANE(plane, vec) do { \
651 vec_store_si128((uint32_t *)&temp_vec, vec); \
652 plane.c = (int64_t)temp_vec[0]; \
653 plane.dcdx = temp_vec[1]; \
654 plane.dcdy = temp_vec[2]; \
655 plane.eo = temp_vec[3]; \
656 } while(0)
657
658 STORE_PLANE(plane[0], p0);
659 STORE_PLANE(plane[1], p1);
660 STORE_PLANE(plane[2], p2);
661 #undef STORE_PLANE
662 } else
663 #endif
664 {
665 int i;
666 plane[0].dcdy = position->dx01;
667 plane[1].dcdy = position->x[1] - position->x[2];
668 plane[2].dcdy = position->dx20;
669 plane[0].dcdx = position->dy01;
670 plane[1].dcdx = position->y[1] - position->y[2];
671 plane[2].dcdx = position->dy20;
672
673 for (i = 0; i < 3; i++) {
674 /* half-edge constants, will be iterated over the whole render
675 * target.
676 */
677 plane[i].c = IMUL64(plane[i].dcdx, position->x[i]) -
678 IMUL64(plane[i].dcdy, position->y[i]);
679
680 /* correct for top-left vs. bottom-left fill convention.
681 */
682 if (plane[i].dcdx < 0) {
683 /* both fill conventions want this - adjust for left edges */
684 plane[i].c++;
685 }
686 else if (plane[i].dcdx == 0) {
687 if (setup->bottom_edge_rule == 0){
688 /* correct for top-left fill convention:
689 */
690 if (plane[i].dcdy > 0) plane[i].c++;
691 }
692 else {
693 /* correct for bottom-left fill convention:
694 */
695 if (plane[i].dcdy < 0) plane[i].c++;
696 }
697 }
698
699 /* Scale up to match c:
700 */
701 assert((plane[i].dcdx << FIXED_ORDER) >> FIXED_ORDER == plane[i].dcdx);
702 assert((plane[i].dcdy << FIXED_ORDER) >> FIXED_ORDER == plane[i].dcdy);
703 plane[i].dcdx <<= FIXED_ORDER;
704 plane[i].dcdy <<= FIXED_ORDER;
705
706 /* find trivial reject offsets for each edge for a single-pixel
707 * sized block. These will be scaled up at each recursive level to
708 * match the active blocksize. Scaling in this way works best if
709 * the blocks are square.
710 */
711 plane[i].eo = 0;
712 if (plane[i].dcdx < 0) plane[i].eo -= plane[i].dcdx;
713 if (plane[i].dcdy > 0) plane[i].eo += plane[i].dcdy;
714 }
715 }
716
717 if (0) {
718 debug_printf("p0: %"PRIx64"/%08x/%08x/%08x\n",
719 plane[0].c,
720 plane[0].dcdx,
721 plane[0].dcdy,
722 plane[0].eo);
723
724 debug_printf("p1: %"PRIx64"/%08x/%08x/%08x\n",
725 plane[1].c,
726 plane[1].dcdx,
727 plane[1].dcdy,
728 plane[1].eo);
729
730 debug_printf("p2: %"PRIx64"/%08x/%08x/%08x\n",
731 plane[2].c,
732 plane[2].dcdx,
733 plane[2].dcdy,
734 plane[2].eo);
735 }
736
737 if (nr_planes > 3) {
738 lp_setup_add_scissor_planes(scissor, &plane[3], s_planes, setup->multisample);
739 }
740
741 return lp_setup_bin_triangle(setup, tri, &bbox, &bboxpos, nr_planes, viewport_index);
742 }
743
744 /*
745 * Round to nearest less or equal power of two of the input.
746 *
747 * Undefined if no bit set exists, so code should check against 0 first.
748 */
749 static inline uint32_t
floor_pot(uint32_t n)750 floor_pot(uint32_t n)
751 {
752 #if defined(PIPE_CC_GCC) && (defined(PIPE_ARCH_X86) || defined(PIPE_ARCH_X86_64))
753 if (n == 0)
754 return 0;
755
756 __asm__("bsr %1,%0"
757 : "=r" (n)
758 : "rm" (n)
759 : "cc");
760 return 1 << n;
761 #else
762 n |= (n >> 1);
763 n |= (n >> 2);
764 n |= (n >> 4);
765 n |= (n >> 8);
766 n |= (n >> 16);
767 return n - (n >> 1);
768 #endif
769 }
770
771
772 boolean
lp_setup_bin_triangle(struct lp_setup_context * setup,struct lp_rast_triangle * tri,const struct u_rect * bboxorig,const struct u_rect * bbox,int nr_planes,unsigned viewport_index)773 lp_setup_bin_triangle(struct lp_setup_context *setup,
774 struct lp_rast_triangle *tri,
775 const struct u_rect *bboxorig,
776 const struct u_rect *bbox,
777 int nr_planes,
778 unsigned viewport_index)
779 {
780 struct lp_scene *scene = setup->scene;
781 struct u_rect trimmed_box = *bbox;
782 int i;
783 unsigned cmd;
784
785 /* What is the largest power-of-two boundary this triangle crosses:
786 */
787 int dx = floor_pot((bbox->x0 ^ bbox->x1) |
788 (bbox->y0 ^ bbox->y1));
789
790 /* The largest dimension of the rasterized area of the triangle
791 * (aligned to a 4x4 grid), rounded down to the nearest power of two:
792 */
793 int max_sz = ((bbox->x1 - (bbox->x0 & ~3)) |
794 (bbox->y1 - (bbox->y0 & ~3)));
795 int sz = floor_pot(max_sz);
796
797 /*
798 * NOTE: It is important to use the original bounding box
799 * which might contain negative values here, because if the
800 * plane math may overflow or not with the 32bit rasterization
801 * functions depends on the original extent of the triangle.
802 */
803 int max_szorig = ((bboxorig->x1 - (bboxorig->x0 & ~3)) |
804 (bboxorig->y1 - (bboxorig->y0 & ~3)));
805 boolean use_32bits = max_szorig <= MAX_FIXED_LENGTH32;
806
807 /* Now apply scissor, etc to the bounding box. Could do this
808 * earlier, but it confuses the logic for tri-16 and would force
809 * the rasterizer to also respect scissor, etc, just for the rare
810 * cases where a small triangle extends beyond the scissor.
811 */
812 u_rect_find_intersection(&setup->draw_regions[viewport_index],
813 &trimmed_box);
814
815 /* Determine which tile(s) intersect the triangle's bounding box
816 */
817 if (dx < TILE_SIZE)
818 {
819 int ix0 = bbox->x0 / TILE_SIZE;
820 int iy0 = bbox->y0 / TILE_SIZE;
821 unsigned px = bbox->x0 & 63 & ~3;
822 unsigned py = bbox->y0 & 63 & ~3;
823
824 assert(iy0 == bbox->y1 / TILE_SIZE &&
825 ix0 == bbox->x1 / TILE_SIZE);
826
827 if (nr_planes == 3) {
828 if (sz < 4)
829 {
830 /* Triangle is contained in a single 4x4 stamp:
831 */
832 assert(px + 4 <= TILE_SIZE);
833 assert(py + 4 <= TILE_SIZE);
834 if (setup->multisample)
835 cmd = LP_RAST_OP_MS_TRIANGLE_3_4;
836 else
837 cmd = use_32bits ? LP_RAST_OP_TRIANGLE_32_3_4 : LP_RAST_OP_TRIANGLE_3_4;
838 return lp_scene_bin_cmd_with_state( scene, ix0, iy0,
839 setup->fs.stored, cmd,
840 lp_rast_arg_triangle_contained(tri, px, py) );
841 }
842
843 if (sz < 16)
844 {
845 /* Triangle is contained in a single 16x16 block:
846 */
847
848 /*
849 * The 16x16 block is only 4x4 aligned, and can exceed the tile
850 * dimensions if the triangle is 16 pixels in one dimension but 4
851 * in the other. So budge the 16x16 back inside the tile.
852 */
853 px = MIN2(px, TILE_SIZE - 16);
854 py = MIN2(py, TILE_SIZE - 16);
855
856 assert(px + 16 <= TILE_SIZE);
857 assert(py + 16 <= TILE_SIZE);
858
859 if (setup->multisample)
860 cmd = LP_RAST_OP_MS_TRIANGLE_3_16;
861 else
862 cmd = use_32bits ? LP_RAST_OP_TRIANGLE_32_3_16 : LP_RAST_OP_TRIANGLE_3_16;
863 return lp_scene_bin_cmd_with_state( scene, ix0, iy0,
864 setup->fs.stored, cmd,
865 lp_rast_arg_triangle_contained(tri, px, py) );
866 }
867 }
868 else if (nr_planes == 4 && sz < 16)
869 {
870 px = MIN2(px, TILE_SIZE - 16);
871 py = MIN2(py, TILE_SIZE - 16);
872
873 assert(px + 16 <= TILE_SIZE);
874 assert(py + 16 <= TILE_SIZE);
875
876 if (setup->multisample)
877 cmd = LP_RAST_OP_MS_TRIANGLE_4_16;
878 else
879 cmd = use_32bits ? LP_RAST_OP_TRIANGLE_32_4_16 : LP_RAST_OP_TRIANGLE_4_16;
880 return lp_scene_bin_cmd_with_state(scene, ix0, iy0,
881 setup->fs.stored, cmd,
882 lp_rast_arg_triangle_contained(tri, px, py));
883 }
884
885
886 /* Triangle is contained in a single tile:
887 */
888 if (setup->multisample)
889 cmd = lp_rast_ms_tri_tab[nr_planes];
890 else
891 cmd = use_32bits ? lp_rast_32_tri_tab[nr_planes] : lp_rast_tri_tab[nr_planes];
892 return lp_scene_bin_cmd_with_state(
893 scene, ix0, iy0, setup->fs.stored, cmd,
894 lp_rast_arg_triangle(tri, (1<<nr_planes)-1));
895 }
896 else
897 {
898 struct lp_rast_plane *plane = GET_PLANES(tri);
899 int64_t c[MAX_PLANES];
900 int64_t ei[MAX_PLANES];
901
902 int64_t eo[MAX_PLANES];
903 int64_t xstep[MAX_PLANES];
904 int64_t ystep[MAX_PLANES];
905 int x, y;
906
907 int ix0 = trimmed_box.x0 / TILE_SIZE;
908 int iy0 = trimmed_box.y0 / TILE_SIZE;
909 int ix1 = trimmed_box.x1 / TILE_SIZE;
910 int iy1 = trimmed_box.y1 / TILE_SIZE;
911
912 for (i = 0; i < nr_planes; i++) {
913 c[i] = (plane[i].c +
914 IMUL64(plane[i].dcdy, iy0) * TILE_SIZE -
915 IMUL64(plane[i].dcdx, ix0) * TILE_SIZE);
916
917 ei[i] = (plane[i].dcdy -
918 plane[i].dcdx -
919 (int64_t)plane[i].eo) << TILE_ORDER;
920
921 eo[i] = (int64_t)plane[i].eo << TILE_ORDER;
922 xstep[i] = -(((int64_t)plane[i].dcdx) << TILE_ORDER);
923 ystep[i] = ((int64_t)plane[i].dcdy) << TILE_ORDER;
924 }
925
926 tri->inputs.is_blit = lp_setup_is_blit(setup, &tri->inputs);
927
928 /* Test tile-sized blocks against the triangle.
929 * Discard blocks fully outside the tri. If the block is fully
930 * contained inside the tri, bin an lp_rast_shade_tile command.
931 * Else, bin a lp_rast_triangle command.
932 */
933 for (y = iy0; y <= iy1; y++)
934 {
935 boolean in = FALSE; /* are we inside the triangle? */
936 int64_t cx[MAX_PLANES];
937
938 for (i = 0; i < nr_planes; i++)
939 cx[i] = c[i];
940
941 for (x = ix0; x <= ix1; x++)
942 {
943 int out = 0;
944 int partial = 0;
945
946 for (i = 0; i < nr_planes; i++) {
947 int64_t planeout = cx[i] + eo[i];
948 int64_t planepartial = cx[i] + ei[i] - 1;
949 out |= (int) (planeout >> 63);
950 partial |= ((int) (planepartial >> 63)) & (1<<i);
951 }
952
953 if (out) {
954 /* do nothing */
955 if (in)
956 break; /* exiting triangle, all done with this row */
957 LP_COUNT(nr_empty_64);
958 }
959 else if (partial) {
960 /* Not trivially accepted by at least one plane -
961 * rasterize/shade partial tile
962 */
963 int count = util_bitcount(partial);
964 in = TRUE;
965
966 if (setup->multisample)
967 cmd = lp_rast_ms_tri_tab[count];
968 else
969 cmd = use_32bits ? lp_rast_32_tri_tab[count] : lp_rast_tri_tab[count];
970 if (!lp_scene_bin_cmd_with_state( scene, x, y,
971 setup->fs.stored, cmd,
972 lp_rast_arg_triangle(tri, partial) ))
973 goto fail;
974
975 LP_COUNT(nr_partially_covered_64);
976 }
977 else {
978 /* triangle covers the whole tile- shade whole tile */
979 LP_COUNT(nr_fully_covered_64);
980 in = TRUE;
981 if (!lp_setup_whole_tile(setup, &tri->inputs, x, y))
982 goto fail;
983 }
984
985 /* Iterate cx values across the region: */
986 for (i = 0; i < nr_planes; i++)
987 cx[i] += xstep[i];
988 }
989
990 /* Iterate c values down the region: */
991 for (i = 0; i < nr_planes; i++)
992 c[i] += ystep[i];
993 }
994 }
995
996 return TRUE;
997
998 fail:
999 /* Need to disable any partially binned triangle. This is easier
1000 * than trying to locate all the triangle, shade-tile, etc,
1001 * commands which may have been binned.
1002 */
1003 tri->inputs.disable = TRUE;
1004 return FALSE;
1005 }
1006
1007
1008 /**
1009 * Try to draw the triangle, restart the scene on failure.
1010 */
retry_triangle_ccw(struct lp_setup_context * setup,struct fixed_position * position,const float (* v0)[4],const float (* v1)[4],const float (* v2)[4],boolean front)1011 static void retry_triangle_ccw( struct lp_setup_context *setup,
1012 struct fixed_position* position,
1013 const float (*v0)[4],
1014 const float (*v1)[4],
1015 const float (*v2)[4],
1016 boolean front)
1017 {
1018 if (!do_triangle_ccw( setup, position, v0, v1, v2, front ))
1019 {
1020 if (!lp_setup_flush_and_restart(setup))
1021 return;
1022
1023 if (!do_triangle_ccw( setup, position, v0, v1, v2, front ))
1024 return;
1025 }
1026 }
1027
1028 /**
1029 * Calculate fixed position data for a triangle
1030 * It is unfortunate we need to do that here (as we need area
1031 * calculated in fixed point), as there's quite some code duplication
1032 * to what is done in the jit setup prog.
1033 */
1034 static inline void
calc_fixed_position(struct lp_setup_context * setup,struct fixed_position * position,const float (* v0)[4],const float (* v1)[4],const float (* v2)[4])1035 calc_fixed_position(struct lp_setup_context *setup,
1036 struct fixed_position* position,
1037 const float (*v0)[4],
1038 const float (*v1)[4],
1039 const float (*v2)[4])
1040 {
1041 float pixel_offset = setup->multisample ? 0.0 : setup->pixel_offset;
1042 /*
1043 * The rounding may not be quite the same with PIPE_ARCH_SSE
1044 * (util_iround right now only does nearest/even on x87,
1045 * otherwise nearest/away-from-zero).
1046 * Both should be acceptable, I think.
1047 */
1048 #if defined(PIPE_ARCH_SSE)
1049 __m128 v0r, v1r;
1050 __m128 vxy0xy2, vxy1xy0;
1051 __m128i vxy0xy2i, vxy1xy0i;
1052 __m128i dxdy0120, x0x2y0y2, x1x0y1y0, x0120, y0120;
1053 __m128 pix_offset = _mm_set1_ps(pixel_offset);
1054 __m128 fixed_one = _mm_set1_ps((float)FIXED_ONE);
1055 v0r = _mm_castpd_ps(_mm_load_sd((double *)v0[0]));
1056 vxy0xy2 = _mm_loadh_pi(v0r, (__m64 *)v2[0]);
1057 v1r = _mm_castpd_ps(_mm_load_sd((double *)v1[0]));
1058 vxy1xy0 = _mm_movelh_ps(v1r, vxy0xy2);
1059 vxy0xy2 = _mm_sub_ps(vxy0xy2, pix_offset);
1060 vxy1xy0 = _mm_sub_ps(vxy1xy0, pix_offset);
1061 vxy0xy2 = _mm_mul_ps(vxy0xy2, fixed_one);
1062 vxy1xy0 = _mm_mul_ps(vxy1xy0, fixed_one);
1063 vxy0xy2i = _mm_cvtps_epi32(vxy0xy2);
1064 vxy1xy0i = _mm_cvtps_epi32(vxy1xy0);
1065 dxdy0120 = _mm_sub_epi32(vxy0xy2i, vxy1xy0i);
1066 _mm_store_si128((__m128i *)&position->dx01, dxdy0120);
1067 /*
1068 * For the mul, would need some more shuffles, plus emulation
1069 * for the signed mul (without sse41), so don't bother.
1070 */
1071 x0x2y0y2 = _mm_shuffle_epi32(vxy0xy2i, _MM_SHUFFLE(3,1,2,0));
1072 x1x0y1y0 = _mm_shuffle_epi32(vxy1xy0i, _MM_SHUFFLE(3,1,2,0));
1073 x0120 = _mm_unpacklo_epi32(x0x2y0y2, x1x0y1y0);
1074 y0120 = _mm_unpackhi_epi32(x0x2y0y2, x1x0y1y0);
1075 _mm_store_si128((__m128i *)&position->x[0], x0120);
1076 _mm_store_si128((__m128i *)&position->y[0], y0120);
1077
1078 #else
1079 position->x[0] = subpixel_snap(v0[0][0] - pixel_offset);
1080 position->x[1] = subpixel_snap(v1[0][0] - pixel_offset);
1081 position->x[2] = subpixel_snap(v2[0][0] - pixel_offset);
1082 position->x[3] = 0; // should be unused
1083
1084 position->y[0] = subpixel_snap(v0[0][1] - pixel_offset);
1085 position->y[1] = subpixel_snap(v1[0][1] - pixel_offset);
1086 position->y[2] = subpixel_snap(v2[0][1] - pixel_offset);
1087 position->y[3] = 0; // should be unused
1088
1089 position->dx01 = position->x[0] - position->x[1];
1090 position->dy01 = position->y[0] - position->y[1];
1091
1092 position->dx20 = position->x[2] - position->x[0];
1093 position->dy20 = position->y[2] - position->y[0];
1094 #endif
1095
1096 position->area = IMUL64(position->dx01, position->dy20) -
1097 IMUL64(position->dx20, position->dy01);
1098 }
1099
1100
1101 /**
1102 * Rotate a triangle, flipping its clockwise direction,
1103 * Swaps values for xy[0] and xy[1]
1104 */
1105 static inline void
rotate_fixed_position_01(struct fixed_position * position)1106 rotate_fixed_position_01( struct fixed_position* position )
1107 {
1108 int x, y;
1109
1110 x = position->x[1];
1111 y = position->y[1];
1112 position->x[1] = position->x[0];
1113 position->y[1] = position->y[0];
1114 position->x[0] = x;
1115 position->y[0] = y;
1116
1117 position->dx01 = -position->dx01;
1118 position->dy01 = -position->dy01;
1119 position->dx20 = position->x[2] - position->x[0];
1120 position->dy20 = position->y[2] - position->y[0];
1121
1122 position->area = -position->area;
1123 }
1124
1125
1126 /**
1127 * Rotate a triangle, flipping its clockwise direction,
1128 * Swaps values for xy[1] and xy[2]
1129 */
1130 static inline void
rotate_fixed_position_12(struct fixed_position * position)1131 rotate_fixed_position_12( struct fixed_position* position )
1132 {
1133 int x, y;
1134
1135 x = position->x[2];
1136 y = position->y[2];
1137 position->x[2] = position->x[1];
1138 position->y[2] = position->y[1];
1139 position->x[1] = x;
1140 position->y[1] = y;
1141
1142 x = position->dx01;
1143 y = position->dy01;
1144 position->dx01 = -position->dx20;
1145 position->dy01 = -position->dy20;
1146 position->dx20 = -x;
1147 position->dy20 = -y;
1148
1149 position->area = -position->area;
1150 }
1151
1152
1153 /**
1154 * Draw triangle if it's CW, cull otherwise.
1155 */
triangle_cw(struct lp_setup_context * setup,const float (* v0)[4],const float (* v1)[4],const float (* v2)[4])1156 static void triangle_cw(struct lp_setup_context *setup,
1157 const float (*v0)[4],
1158 const float (*v1)[4],
1159 const float (*v2)[4])
1160 {
1161 PIPE_ALIGN_VAR(16) struct fixed_position position;
1162 struct llvmpipe_context *lp_context = (struct llvmpipe_context *)setup->pipe;
1163
1164 if (lp_context->active_statistics_queries) {
1165 lp_context->pipeline_statistics.c_primitives++;
1166 }
1167
1168 calc_fixed_position(setup, &position, v0, v1, v2);
1169
1170 if (position.area < 0) {
1171 if (setup->flatshade_first) {
1172 rotate_fixed_position_12(&position);
1173 retry_triangle_ccw(setup, &position, v0, v2, v1, !setup->ccw_is_frontface);
1174 } else {
1175 rotate_fixed_position_01(&position);
1176 retry_triangle_ccw(setup, &position, v1, v0, v2, !setup->ccw_is_frontface);
1177 }
1178 }
1179 }
1180
1181
triangle_ccw(struct lp_setup_context * setup,const float (* v0)[4],const float (* v1)[4],const float (* v2)[4])1182 static void triangle_ccw(struct lp_setup_context *setup,
1183 const float (*v0)[4],
1184 const float (*v1)[4],
1185 const float (*v2)[4])
1186 {
1187 PIPE_ALIGN_VAR(16) struct fixed_position position;
1188 struct llvmpipe_context *lp_context = (struct llvmpipe_context *)setup->pipe;
1189
1190 if (lp_context->active_statistics_queries) {
1191 lp_context->pipeline_statistics.c_primitives++;
1192 }
1193
1194 calc_fixed_position(setup, &position, v0, v1, v2);
1195
1196 if (position.area > 0)
1197 retry_triangle_ccw(setup, &position, v0, v1, v2, setup->ccw_is_frontface);
1198 }
1199
1200 /**
1201 * Draw triangle whether it's CW or CCW.
1202 */
triangle_both(struct lp_setup_context * setup,const float (* v0)[4],const float (* v1)[4],const float (* v2)[4])1203 static void triangle_both(struct lp_setup_context *setup,
1204 const float (*v0)[4],
1205 const float (*v1)[4],
1206 const float (*v2)[4])
1207 {
1208 PIPE_ALIGN_VAR(16) struct fixed_position position;
1209 struct llvmpipe_context *lp_context = (struct llvmpipe_context *)setup->pipe;
1210
1211 if (lp_context->active_statistics_queries) {
1212 lp_context->pipeline_statistics.c_primitives++;
1213 }
1214
1215 calc_fixed_position(setup, &position, v0, v1, v2);
1216
1217 if (0) {
1218 assert(!util_is_inf_or_nan(v0[0][0]));
1219 assert(!util_is_inf_or_nan(v0[0][1]));
1220 assert(!util_is_inf_or_nan(v1[0][0]));
1221 assert(!util_is_inf_or_nan(v1[0][1]));
1222 assert(!util_is_inf_or_nan(v2[0][0]));
1223 assert(!util_is_inf_or_nan(v2[0][1]));
1224 }
1225
1226 if (position.area > 0)
1227 retry_triangle_ccw( setup, &position, v0, v1, v2, setup->ccw_is_frontface );
1228 else if (position.area < 0) {
1229 if (setup->flatshade_first) {
1230 rotate_fixed_position_12( &position );
1231 retry_triangle_ccw( setup, &position, v0, v2, v1, !setup->ccw_is_frontface );
1232 } else {
1233 rotate_fixed_position_01( &position );
1234 retry_triangle_ccw( setup, &position, v1, v0, v2, !setup->ccw_is_frontface );
1235 }
1236 }
1237 }
1238
1239
triangle_noop(struct lp_setup_context * setup,const float (* v0)[4],const float (* v1)[4],const float (* v2)[4])1240 static void triangle_noop(struct lp_setup_context *setup,
1241 const float (*v0)[4],
1242 const float (*v1)[4],
1243 const float (*v2)[4])
1244 {
1245 }
1246
1247
1248 void
lp_setup_choose_triangle(struct lp_setup_context * setup)1249 lp_setup_choose_triangle(struct lp_setup_context *setup)
1250 {
1251 if (setup->rasterizer_discard) {
1252 setup->triangle = triangle_noop;
1253 return;
1254 }
1255 switch (setup->cullmode) {
1256 case PIPE_FACE_NONE:
1257 setup->triangle = triangle_both;
1258 break;
1259 case PIPE_FACE_BACK:
1260 setup->triangle = setup->ccw_is_frontface ? triangle_ccw : triangle_cw;
1261 break;
1262 case PIPE_FACE_FRONT:
1263 setup->triangle = setup->ccw_is_frontface ? triangle_cw : triangle_ccw;
1264 break;
1265 default:
1266 setup->triangle = triangle_noop;
1267 break;
1268 }
1269 }
1270