• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/pagewalk.h>
3 #include <linux/vmacache.h>
4 #include <linux/mm_inline.h>
5 #include <linux/hugetlb.h>
6 #include <linux/huge_mm.h>
7 #include <linux/mount.h>
8 #include <linux/seq_file.h>
9 #include <linux/highmem.h>
10 #include <linux/ptrace.h>
11 #include <linux/slab.h>
12 #include <linux/pagemap.h>
13 #include <linux/mempolicy.h>
14 #include <linux/rmap.h>
15 #include <linux/swap.h>
16 #include <linux/sched/mm.h>
17 #include <linux/swapops.h>
18 #include <linux/mmu_notifier.h>
19 #include <linux/page_idle.h>
20 #include <linux/shmem_fs.h>
21 #include <linux/uaccess.h>
22 #include <linux/pkeys.h>
23 #ifdef CONFIG_MEM_PURGEABLE
24 #include <linux/mm_purgeable.h>
25 #endif
26 
27 #include <asm/elf.h>
28 #include <asm/tlb.h>
29 #include <asm/tlbflush.h>
30 #include "internal.h"
31 
32 #define SEQ_PUT_DEC(str, val) \
33 		seq_put_decimal_ull_width(m, str, (val) << (PAGE_SHIFT-10), 8)
task_mem(struct seq_file * m,struct mm_struct * mm)34 void task_mem(struct seq_file *m, struct mm_struct *mm)
35 {
36 	unsigned long text, lib, swap, anon, file, shmem;
37 	unsigned long hiwater_vm, total_vm, hiwater_rss, total_rss;
38 #ifdef CONFIG_MEM_PURGEABLE
39 	unsigned long nr_purg_sum = 0, nr_purg_pin = 0;
40 
41 	mm_purg_pages_info(mm, &nr_purg_sum, &nr_purg_pin);
42 #endif
43 
44 	anon = get_mm_counter(mm, MM_ANONPAGES);
45 	file = get_mm_counter(mm, MM_FILEPAGES);
46 	shmem = get_mm_counter(mm, MM_SHMEMPAGES);
47 
48 	/*
49 	 * Note: to minimize their overhead, mm maintains hiwater_vm and
50 	 * hiwater_rss only when about to *lower* total_vm or rss.  Any
51 	 * collector of these hiwater stats must therefore get total_vm
52 	 * and rss too, which will usually be the higher.  Barriers? not
53 	 * worth the effort, such snapshots can always be inconsistent.
54 	 */
55 	hiwater_vm = total_vm = mm->total_vm;
56 	if (hiwater_vm < mm->hiwater_vm)
57 		hiwater_vm = mm->hiwater_vm;
58 	hiwater_rss = total_rss = anon + file + shmem;
59 	if (hiwater_rss < mm->hiwater_rss)
60 		hiwater_rss = mm->hiwater_rss;
61 
62 	/* split executable areas between text and lib */
63 	text = PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK);
64 	text = min(text, mm->exec_vm << PAGE_SHIFT);
65 	lib = (mm->exec_vm << PAGE_SHIFT) - text;
66 
67 	swap = get_mm_counter(mm, MM_SWAPENTS);
68 	SEQ_PUT_DEC("VmPeak:\t", hiwater_vm);
69 	SEQ_PUT_DEC(" kB\nVmSize:\t", total_vm);
70 	SEQ_PUT_DEC(" kB\nVmLck:\t", mm->locked_vm);
71 	SEQ_PUT_DEC(" kB\nVmPin:\t", atomic64_read(&mm->pinned_vm));
72 	SEQ_PUT_DEC(" kB\nVmHWM:\t", hiwater_rss);
73 	SEQ_PUT_DEC(" kB\nVmRSS:\t", total_rss);
74 	SEQ_PUT_DEC(" kB\nRssAnon:\t", anon);
75 	SEQ_PUT_DEC(" kB\nRssFile:\t", file);
76 	SEQ_PUT_DEC(" kB\nRssShmem:\t", shmem);
77 	SEQ_PUT_DEC(" kB\nVmData:\t", mm->data_vm);
78 	SEQ_PUT_DEC(" kB\nVmStk:\t", mm->stack_vm);
79 	seq_put_decimal_ull_width(m,
80 		    " kB\nVmExe:\t", text >> 10, 8);
81 	seq_put_decimal_ull_width(m,
82 		    " kB\nVmLib:\t", lib >> 10, 8);
83 	seq_put_decimal_ull_width(m,
84 		    " kB\nVmPTE:\t", mm_pgtables_bytes(mm) >> 10, 8);
85 	SEQ_PUT_DEC(" kB\nVmSwap:\t", swap);
86 #ifdef CONFIG_MEM_PURGEABLE
87 	SEQ_PUT_DEC(" kB\nPurgSum:\t", nr_purg_sum);
88 	SEQ_PUT_DEC(" kB\nPurgPin:\t", nr_purg_pin);
89 #endif
90 	seq_puts(m, " kB\n");
91 	hugetlb_report_usage(m, mm);
92 }
93 #undef SEQ_PUT_DEC
94 
task_vsize(struct mm_struct * mm)95 unsigned long task_vsize(struct mm_struct *mm)
96 {
97 	return PAGE_SIZE * mm->total_vm;
98 }
99 
task_statm(struct mm_struct * mm,unsigned long * shared,unsigned long * text,unsigned long * data,unsigned long * resident)100 unsigned long task_statm(struct mm_struct *mm,
101 			 unsigned long *shared, unsigned long *text,
102 			 unsigned long *data, unsigned long *resident)
103 {
104 	*shared = get_mm_counter(mm, MM_FILEPAGES) +
105 			get_mm_counter(mm, MM_SHMEMPAGES);
106 	*text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK))
107 								>> PAGE_SHIFT;
108 	*data = mm->data_vm + mm->stack_vm;
109 	*resident = *shared + get_mm_counter(mm, MM_ANONPAGES);
110 	return mm->total_vm;
111 }
112 
113 #ifdef CONFIG_NUMA
114 /*
115  * Save get_task_policy() for show_numa_map().
116  */
hold_task_mempolicy(struct proc_maps_private * priv)117 static void hold_task_mempolicy(struct proc_maps_private *priv)
118 {
119 	struct task_struct *task = priv->task;
120 
121 	task_lock(task);
122 	priv->task_mempolicy = get_task_policy(task);
123 	mpol_get(priv->task_mempolicy);
124 	task_unlock(task);
125 }
release_task_mempolicy(struct proc_maps_private * priv)126 static void release_task_mempolicy(struct proc_maps_private *priv)
127 {
128 	mpol_put(priv->task_mempolicy);
129 }
130 #else
hold_task_mempolicy(struct proc_maps_private * priv)131 static void hold_task_mempolicy(struct proc_maps_private *priv)
132 {
133 }
release_task_mempolicy(struct proc_maps_private * priv)134 static void release_task_mempolicy(struct proc_maps_private *priv)
135 {
136 }
137 #endif
138 
m_start(struct seq_file * m,loff_t * ppos)139 static void *m_start(struct seq_file *m, loff_t *ppos)
140 {
141 	struct proc_maps_private *priv = m->private;
142 	unsigned long last_addr = *ppos;
143 	struct mm_struct *mm;
144 	struct vm_area_struct *vma;
145 
146 	/* See m_next(). Zero at the start or after lseek. */
147 	if (last_addr == -1UL)
148 		return NULL;
149 
150 	priv->task = get_proc_task(priv->inode);
151 	if (!priv->task)
152 		return ERR_PTR(-ESRCH);
153 
154 	mm = priv->mm;
155 	if (!mm || !mmget_not_zero(mm)) {
156 		put_task_struct(priv->task);
157 		priv->task = NULL;
158 		return NULL;
159 	}
160 
161 	if (mmap_read_lock_killable(mm)) {
162 		mmput(mm);
163 		put_task_struct(priv->task);
164 		priv->task = NULL;
165 		return ERR_PTR(-EINTR);
166 	}
167 
168 	hold_task_mempolicy(priv);
169 	priv->tail_vma = get_gate_vma(mm);
170 
171 	vma = find_vma(mm, last_addr);
172 	if (vma)
173 		return vma;
174 
175 	return priv->tail_vma;
176 }
177 
m_next(struct seq_file * m,void * v,loff_t * ppos)178 static void *m_next(struct seq_file *m, void *v, loff_t *ppos)
179 {
180 	struct proc_maps_private *priv = m->private;
181 	struct vm_area_struct *next, *vma = v;
182 
183 	if (vma == priv->tail_vma)
184 		next = NULL;
185 	else if (vma->vm_next)
186 		next = vma->vm_next;
187 	else
188 		next = priv->tail_vma;
189 
190 	*ppos = next ? next->vm_start : -1UL;
191 
192 	return next;
193 }
194 
m_stop(struct seq_file * m,void * v)195 static void m_stop(struct seq_file *m, void *v)
196 {
197 	struct proc_maps_private *priv = m->private;
198 	struct mm_struct *mm = priv->mm;
199 
200 	if (!priv->task)
201 		return;
202 
203 	release_task_mempolicy(priv);
204 	mmap_read_unlock(mm);
205 	mmput(mm);
206 	put_task_struct(priv->task);
207 	priv->task = NULL;
208 }
209 
proc_maps_open(struct inode * inode,struct file * file,const struct seq_operations * ops,int psize)210 static int proc_maps_open(struct inode *inode, struct file *file,
211 			const struct seq_operations *ops, int psize)
212 {
213 	struct proc_maps_private *priv = __seq_open_private(file, ops, psize);
214 
215 	if (!priv)
216 		return -ENOMEM;
217 
218 	priv->inode = inode;
219 	priv->mm = proc_mem_open(inode, PTRACE_MODE_READ);
220 	if (IS_ERR(priv->mm)) {
221 		int err = PTR_ERR(priv->mm);
222 
223 		seq_release_private(inode, file);
224 		return err;
225 	}
226 
227 	return 0;
228 }
229 
proc_map_release(struct inode * inode,struct file * file)230 static int proc_map_release(struct inode *inode, struct file *file)
231 {
232 	struct seq_file *seq = file->private_data;
233 	struct proc_maps_private *priv = seq->private;
234 
235 	if (priv->mm)
236 		mmdrop(priv->mm);
237 
238 	return seq_release_private(inode, file);
239 }
240 
do_maps_open(struct inode * inode,struct file * file,const struct seq_operations * ops)241 static int do_maps_open(struct inode *inode, struct file *file,
242 			const struct seq_operations *ops)
243 {
244 	return proc_maps_open(inode, file, ops,
245 				sizeof(struct proc_maps_private));
246 }
247 
248 /*
249  * Indicate if the VMA is a stack for the given task; for
250  * /proc/PID/maps that is the stack of the main task.
251  */
is_stack(struct vm_area_struct * vma)252 static int is_stack(struct vm_area_struct *vma)
253 {
254 	/*
255 	 * We make no effort to guess what a given thread considers to be
256 	 * its "stack".  It's not even well-defined for programs written
257 	 * languages like Go.
258 	 */
259 	return vma->vm_start <= vma->vm_mm->start_stack &&
260 		vma->vm_end >= vma->vm_mm->start_stack;
261 }
262 
show_vma_header_prefix(struct seq_file * m,unsigned long start,unsigned long end,vm_flags_t flags,unsigned long long pgoff,dev_t dev,unsigned long ino)263 static void show_vma_header_prefix(struct seq_file *m,
264 				   unsigned long start, unsigned long end,
265 				   vm_flags_t flags, unsigned long long pgoff,
266 				   dev_t dev, unsigned long ino)
267 {
268 	seq_setwidth(m, 25 + sizeof(void *) * 6 - 1);
269 	seq_put_hex_ll(m, NULL, start, 8);
270 	seq_put_hex_ll(m, "-", end, 8);
271 	seq_putc(m, ' ');
272 	seq_putc(m, flags & VM_READ ? 'r' : '-');
273 	seq_putc(m, flags & VM_WRITE ? 'w' : '-');
274 	seq_putc(m, flags & VM_EXEC ? 'x' : '-');
275 	seq_putc(m, flags & VM_MAYSHARE ? 's' : 'p');
276 	seq_put_hex_ll(m, " ", pgoff, 8);
277 	seq_put_hex_ll(m, " ", MAJOR(dev), 2);
278 	seq_put_hex_ll(m, ":", MINOR(dev), 2);
279 	seq_put_decimal_ull(m, " ", ino);
280 	seq_putc(m, ' ');
281 }
282 
283 static void
show_map_vma(struct seq_file * m,struct vm_area_struct * vma)284 show_map_vma(struct seq_file *m, struct vm_area_struct *vma)
285 {
286 	struct mm_struct *mm = vma->vm_mm;
287 	struct file *file = vma->vm_file;
288 	vm_flags_t flags = vma->vm_flags;
289 	unsigned long ino = 0;
290 	unsigned long long pgoff = 0;
291 	unsigned long start, end;
292 	dev_t dev = 0;
293 	const char *name = NULL;
294 
295 	if (file) {
296 		struct inode *inode = file_inode(vma->vm_file);
297 		dev = inode->i_sb->s_dev;
298 		ino = inode->i_ino;
299 		pgoff = ((loff_t)vma->vm_pgoff) << PAGE_SHIFT;
300 	}
301 
302 	start = vma->vm_start;
303 	end = vma->vm_end;
304 	show_vma_header_prefix(m, start, end, flags, pgoff, dev, ino);
305 
306 	/*
307 	 * Print the dentry name for named mappings, and a
308 	 * special [heap] marker for the heap:
309 	 */
310 	if (file) {
311 		seq_pad(m, ' ');
312 		seq_file_path(m, file, "\n");
313 		goto done;
314 	}
315 
316 	if (vma->vm_ops && vma->vm_ops->name) {
317 		name = vma->vm_ops->name(vma);
318 		if (name)
319 			goto done;
320 	}
321 
322 	name = arch_vma_name(vma);
323 	if (!name) {
324 		struct anon_vma_name *anon_name;
325 
326 		if (!mm) {
327 			name = "[vdso]";
328 			goto done;
329 		}
330 
331 		if (vma->vm_start <= mm->brk &&
332 		    vma->vm_end >= mm->start_brk) {
333 			name = "[heap]";
334 			goto done;
335 		}
336 
337 		if (is_stack(vma)) {
338 			name = "[stack]";
339 			goto done;
340 		}
341 
342 		anon_name = anon_vma_name(vma);
343 		if (anon_name) {
344 			seq_pad(m, ' ');
345 			seq_printf(m, "[anon:%s]", anon_name->name);
346 		}
347 	}
348 
349 done:
350 	if (name) {
351 		seq_pad(m, ' ');
352 		seq_puts(m, name);
353 	}
354 	seq_putc(m, '\n');
355 }
356 
show_map(struct seq_file * m,void * v)357 static int show_map(struct seq_file *m, void *v)
358 {
359 	show_map_vma(m, v);
360 	return 0;
361 }
362 
363 static const struct seq_operations proc_pid_maps_op = {
364 	.start	= m_start,
365 	.next	= m_next,
366 	.stop	= m_stop,
367 	.show	= show_map
368 };
369 
pid_maps_open(struct inode * inode,struct file * file)370 static int pid_maps_open(struct inode *inode, struct file *file)
371 {
372 	return do_maps_open(inode, file, &proc_pid_maps_op);
373 }
374 
375 const struct file_operations proc_pid_maps_operations = {
376 	.open		= pid_maps_open,
377 	.read		= seq_read,
378 	.llseek		= seq_lseek,
379 	.release	= proc_map_release,
380 };
381 
382 /*
383  * Proportional Set Size(PSS): my share of RSS.
384  *
385  * PSS of a process is the count of pages it has in memory, where each
386  * page is divided by the number of processes sharing it.  So if a
387  * process has 1000 pages all to itself, and 1000 shared with one other
388  * process, its PSS will be 1500.
389  *
390  * To keep (accumulated) division errors low, we adopt a 64bit
391  * fixed-point pss counter to minimize division errors. So (pss >>
392  * PSS_SHIFT) would be the real byte count.
393  *
394  * A shift of 12 before division means (assuming 4K page size):
395  * 	- 1M 3-user-pages add up to 8KB errors;
396  * 	- supports mapcount up to 2^24, or 16M;
397  * 	- supports PSS up to 2^52 bytes, or 4PB.
398  */
399 #define PSS_SHIFT 12
400 
401 #ifdef CONFIG_PROC_PAGE_MONITOR
402 struct mem_size_stats {
403 	unsigned long resident;
404 	unsigned long shared_clean;
405 	unsigned long shared_dirty;
406 	unsigned long private_clean;
407 	unsigned long private_dirty;
408 	unsigned long referenced;
409 	unsigned long anonymous;
410 	unsigned long lazyfree;
411 	unsigned long anonymous_thp;
412 	unsigned long shmem_thp;
413 	unsigned long file_thp;
414 	unsigned long swap;
415 	unsigned long shared_hugetlb;
416 	unsigned long private_hugetlb;
417 	u64 pss;
418 	u64 pss_anon;
419 	u64 pss_file;
420 	u64 pss_shmem;
421 	u64 pss_locked;
422 	u64 swap_pss;
423 	bool check_shmem_swap;
424 };
425 
smaps_page_accumulate(struct mem_size_stats * mss,struct page * page,unsigned long size,unsigned long pss,bool dirty,bool locked,bool private)426 static void smaps_page_accumulate(struct mem_size_stats *mss,
427 		struct page *page, unsigned long size, unsigned long pss,
428 		bool dirty, bool locked, bool private)
429 {
430 	mss->pss += pss;
431 
432 	if (PageAnon(page))
433 		mss->pss_anon += pss;
434 	else if (PageSwapBacked(page))
435 		mss->pss_shmem += pss;
436 	else
437 		mss->pss_file += pss;
438 
439 	if (locked)
440 		mss->pss_locked += pss;
441 
442 	if (dirty || PageDirty(page)) {
443 		if (private)
444 			mss->private_dirty += size;
445 		else
446 			mss->shared_dirty += size;
447 	} else {
448 		if (private)
449 			mss->private_clean += size;
450 		else
451 			mss->shared_clean += size;
452 	}
453 }
454 
smaps_account(struct mem_size_stats * mss,struct page * page,bool compound,bool young,bool dirty,bool locked,bool migration)455 static void smaps_account(struct mem_size_stats *mss, struct page *page,
456 		bool compound, bool young, bool dirty, bool locked,
457 		bool migration)
458 {
459 	int i, nr = compound ? compound_nr(page) : 1;
460 	unsigned long size = nr * PAGE_SIZE;
461 
462 	/*
463 	 * First accumulate quantities that depend only on |size| and the type
464 	 * of the compound page.
465 	 */
466 	if (PageAnon(page)) {
467 		mss->anonymous += size;
468 		if (!PageSwapBacked(page) && !dirty && !PageDirty(page))
469 			mss->lazyfree += size;
470 	}
471 
472 	mss->resident += size;
473 	/* Accumulate the size in pages that have been accessed. */
474 	if (young || page_is_young(page) || PageReferenced(page))
475 		mss->referenced += size;
476 
477 	/*
478 	 * Then accumulate quantities that may depend on sharing, or that may
479 	 * differ page-by-page.
480 	 *
481 	 * page_count(page) == 1 guarantees the page is mapped exactly once.
482 	 * If any subpage of the compound page mapped with PTE it would elevate
483 	 * page_count().
484 	 *
485 	 * The page_mapcount() is called to get a snapshot of the mapcount.
486 	 * Without holding the page lock this snapshot can be slightly wrong as
487 	 * we cannot always read the mapcount atomically.  It is not safe to
488 	 * call page_mapcount() even with PTL held if the page is not mapped,
489 	 * especially for migration entries.  Treat regular migration entries
490 	 * as mapcount == 1.
491 	 */
492 	if ((page_count(page) == 1) || migration) {
493 		smaps_page_accumulate(mss, page, size, size << PSS_SHIFT, dirty,
494 			locked, true);
495 		return;
496 	}
497 	for (i = 0; i < nr; i++, page++) {
498 		int mapcount = page_mapcount(page);
499 		unsigned long pss = PAGE_SIZE << PSS_SHIFT;
500 		if (mapcount >= 2)
501 			pss /= mapcount;
502 		smaps_page_accumulate(mss, page, PAGE_SIZE, pss, dirty, locked,
503 				      mapcount < 2);
504 	}
505 }
506 
507 #ifdef CONFIG_SHMEM
smaps_pte_hole(unsigned long addr,unsigned long end,__always_unused int depth,struct mm_walk * walk)508 static int smaps_pte_hole(unsigned long addr, unsigned long end,
509 			  __always_unused int depth, struct mm_walk *walk)
510 {
511 	struct mem_size_stats *mss = walk->private;
512 
513 	mss->swap += shmem_partial_swap_usage(
514 			walk->vma->vm_file->f_mapping, addr, end);
515 
516 	return 0;
517 }
518 #else
519 #define smaps_pte_hole		NULL
520 #endif /* CONFIG_SHMEM */
521 
smaps_pte_entry(pte_t * pte,unsigned long addr,struct mm_walk * walk)522 static void smaps_pte_entry(pte_t *pte, unsigned long addr,
523 		struct mm_walk *walk)
524 {
525 	struct mem_size_stats *mss = walk->private;
526 	struct vm_area_struct *vma = walk->vma;
527 	bool locked = !!(vma->vm_flags & VM_LOCKED);
528 	struct page *page = NULL;
529 	bool migration = false;
530 
531 	if (pte_present(*pte)) {
532 		page = vm_normal_page(vma, addr, *pte);
533 	} else if (is_swap_pte(*pte)) {
534 		swp_entry_t swpent = pte_to_swp_entry(*pte);
535 
536 		if (!non_swap_entry(swpent)) {
537 			int mapcount;
538 
539 			mss->swap += PAGE_SIZE;
540 			mapcount = swp_swapcount(swpent);
541 			if (mapcount >= 2) {
542 				u64 pss_delta = (u64)PAGE_SIZE << PSS_SHIFT;
543 
544 				do_div(pss_delta, mapcount);
545 				mss->swap_pss += pss_delta;
546 			} else {
547 				mss->swap_pss += (u64)PAGE_SIZE << PSS_SHIFT;
548 			}
549 		} else if (is_migration_entry(swpent)) {
550 			migration = true;
551 			page = migration_entry_to_page(swpent);
552 		} else if (is_device_private_entry(swpent))
553 			page = device_private_entry_to_page(swpent);
554 	} else if (unlikely(IS_ENABLED(CONFIG_SHMEM) && mss->check_shmem_swap
555 							&& pte_none(*pte))) {
556 		page = xa_load(&vma->vm_file->f_mapping->i_pages,
557 						linear_page_index(vma, addr));
558 		if (xa_is_value(page))
559 			mss->swap += PAGE_SIZE;
560 		return;
561 	}
562 
563 	if (!page)
564 		return;
565 
566 	smaps_account(mss, page, false, pte_young(*pte), pte_dirty(*pte),
567 		      locked, migration);
568 }
569 
570 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
smaps_pmd_entry(pmd_t * pmd,unsigned long addr,struct mm_walk * walk)571 static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr,
572 		struct mm_walk *walk)
573 {
574 	struct mem_size_stats *mss = walk->private;
575 	struct vm_area_struct *vma = walk->vma;
576 	bool locked = !!(vma->vm_flags & VM_LOCKED);
577 	struct page *page = NULL;
578 	bool migration = false;
579 
580 	if (pmd_present(*pmd)) {
581 		/* FOLL_DUMP will return -EFAULT on huge zero page */
582 		page = follow_trans_huge_pmd(vma, addr, pmd, FOLL_DUMP);
583 	} else if (unlikely(thp_migration_supported() && is_swap_pmd(*pmd))) {
584 		swp_entry_t entry = pmd_to_swp_entry(*pmd);
585 
586 		if (is_migration_entry(entry)) {
587 			migration = true;
588 			page = migration_entry_to_page(entry);
589 		}
590 	}
591 	if (IS_ERR_OR_NULL(page))
592 		return;
593 	if (PageAnon(page))
594 		mss->anonymous_thp += HPAGE_PMD_SIZE;
595 	else if (PageSwapBacked(page))
596 		mss->shmem_thp += HPAGE_PMD_SIZE;
597 	else if (is_zone_device_page(page))
598 		/* pass */;
599 	else
600 		mss->file_thp += HPAGE_PMD_SIZE;
601 
602 	smaps_account(mss, page, true, pmd_young(*pmd), pmd_dirty(*pmd),
603 		      locked, migration);
604 }
605 #else
smaps_pmd_entry(pmd_t * pmd,unsigned long addr,struct mm_walk * walk)606 static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr,
607 		struct mm_walk *walk)
608 {
609 }
610 #endif
611 
smaps_pte_range(pmd_t * pmd,unsigned long addr,unsigned long end,struct mm_walk * walk)612 static int smaps_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
613 			   struct mm_walk *walk)
614 {
615 	struct vm_area_struct *vma = walk->vma;
616 	pte_t *pte;
617 	spinlock_t *ptl;
618 
619 	ptl = pmd_trans_huge_lock(pmd, vma);
620 	if (ptl) {
621 		smaps_pmd_entry(pmd, addr, walk);
622 		spin_unlock(ptl);
623 		goto out;
624 	}
625 
626 	if (pmd_trans_unstable(pmd))
627 		goto out;
628 	/*
629 	 * The mmap_lock held all the way back in m_start() is what
630 	 * keeps khugepaged out of here and from collapsing things
631 	 * in here.
632 	 */
633 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
634 	for (; addr != end; pte++, addr += PAGE_SIZE)
635 		smaps_pte_entry(pte, addr, walk);
636 	pte_unmap_unlock(pte - 1, ptl);
637 out:
638 	cond_resched();
639 	return 0;
640 }
641 
show_smap_vma_flags(struct seq_file * m,struct vm_area_struct * vma)642 static void show_smap_vma_flags(struct seq_file *m, struct vm_area_struct *vma)
643 {
644 	/*
645 	 * Don't forget to update Documentation/ on changes.
646 	 */
647 	static const char mnemonics[BITS_PER_LONG][2] = {
648 		/*
649 		 * In case if we meet a flag we don't know about.
650 		 */
651 		[0 ... (BITS_PER_LONG-1)] = "??",
652 
653 		[ilog2(VM_READ)]	= "rd",
654 		[ilog2(VM_WRITE)]	= "wr",
655 		[ilog2(VM_EXEC)]	= "ex",
656 		[ilog2(VM_SHARED)]	= "sh",
657 		[ilog2(VM_MAYREAD)]	= "mr",
658 		[ilog2(VM_MAYWRITE)]	= "mw",
659 		[ilog2(VM_MAYEXEC)]	= "me",
660 		[ilog2(VM_MAYSHARE)]	= "ms",
661 		[ilog2(VM_GROWSDOWN)]	= "gd",
662 		[ilog2(VM_PFNMAP)]	= "pf",
663 		[ilog2(VM_DENYWRITE)]	= "dw",
664 		[ilog2(VM_LOCKED)]	= "lo",
665 		[ilog2(VM_IO)]		= "io",
666 		[ilog2(VM_SEQ_READ)]	= "sr",
667 		[ilog2(VM_RAND_READ)]	= "rr",
668 		[ilog2(VM_DONTCOPY)]	= "dc",
669 		[ilog2(VM_DONTEXPAND)]	= "de",
670 		[ilog2(VM_ACCOUNT)]	= "ac",
671 		[ilog2(VM_NORESERVE)]	= "nr",
672 		[ilog2(VM_HUGETLB)]	= "ht",
673 		[ilog2(VM_SYNC)]	= "sf",
674 		[ilog2(VM_ARCH_1)]	= "ar",
675 		[ilog2(VM_WIPEONFORK)]	= "wf",
676 		[ilog2(VM_DONTDUMP)]	= "dd",
677 #ifdef CONFIG_ARM64_BTI
678 		[ilog2(VM_ARM64_BTI)]	= "bt",
679 #endif
680 #ifdef CONFIG_MEM_SOFT_DIRTY
681 		[ilog2(VM_SOFTDIRTY)]	= "sd",
682 #endif
683 		[ilog2(VM_MIXEDMAP)]	= "mm",
684 		[ilog2(VM_HUGEPAGE)]	= "hg",
685 		[ilog2(VM_NOHUGEPAGE)]	= "nh",
686 		[ilog2(VM_MERGEABLE)]	= "mg",
687 		[ilog2(VM_UFFD_MISSING)]= "um",
688 		[ilog2(VM_UFFD_WP)]	= "uw",
689 #ifdef CONFIG_ARM64_MTE
690 		[ilog2(VM_MTE)]		= "mt",
691 		[ilog2(VM_MTE_ALLOWED)]	= "",
692 #endif
693 #ifdef CONFIG_ARCH_HAS_PKEYS
694 		/* These come out via ProtectionKey: */
695 		[ilog2(VM_PKEY_BIT0)]	= "",
696 		[ilog2(VM_PKEY_BIT1)]	= "",
697 		[ilog2(VM_PKEY_BIT2)]	= "",
698 		[ilog2(VM_PKEY_BIT3)]	= "",
699 #if VM_PKEY_BIT4
700 		[ilog2(VM_PKEY_BIT4)]	= "",
701 #endif
702 #endif /* CONFIG_ARCH_HAS_PKEYS */
703 	};
704 	size_t i;
705 
706 	seq_puts(m, "VmFlags: ");
707 	for (i = 0; i < BITS_PER_LONG; i++) {
708 		if (!mnemonics[i][0])
709 			continue;
710 		if (vma->vm_flags & (1UL << i)) {
711 			seq_putc(m, mnemonics[i][0]);
712 			seq_putc(m, mnemonics[i][1]);
713 			seq_putc(m, ' ');
714 		}
715 	}
716 	seq_putc(m, '\n');
717 }
718 
719 #ifdef CONFIG_HUGETLB_PAGE
smaps_hugetlb_range(pte_t * pte,unsigned long hmask,unsigned long addr,unsigned long end,struct mm_walk * walk)720 static int smaps_hugetlb_range(pte_t *pte, unsigned long hmask,
721 				 unsigned long addr, unsigned long end,
722 				 struct mm_walk *walk)
723 {
724 	struct mem_size_stats *mss = walk->private;
725 	struct vm_area_struct *vma = walk->vma;
726 	struct page *page = NULL;
727 
728 	if (pte_present(*pte)) {
729 		page = vm_normal_page(vma, addr, *pte);
730 	} else if (is_swap_pte(*pte)) {
731 		swp_entry_t swpent = pte_to_swp_entry(*pte);
732 
733 		if (is_migration_entry(swpent))
734 			page = migration_entry_to_page(swpent);
735 		else if (is_device_private_entry(swpent))
736 			page = device_private_entry_to_page(swpent);
737 	}
738 	if (page) {
739 		int mapcount = page_mapcount(page);
740 
741 		if (mapcount >= 2)
742 			mss->shared_hugetlb += huge_page_size(hstate_vma(vma));
743 		else
744 			mss->private_hugetlb += huge_page_size(hstate_vma(vma));
745 	}
746 	return 0;
747 }
748 #else
749 #define smaps_hugetlb_range	NULL
750 #endif /* HUGETLB_PAGE */
751 
752 static const struct mm_walk_ops smaps_walk_ops = {
753 	.pmd_entry		= smaps_pte_range,
754 	.hugetlb_entry		= smaps_hugetlb_range,
755 };
756 
757 static const struct mm_walk_ops smaps_shmem_walk_ops = {
758 	.pmd_entry		= smaps_pte_range,
759 	.hugetlb_entry		= smaps_hugetlb_range,
760 	.pte_hole		= smaps_pte_hole,
761 };
762 
763 /*
764  * Gather mem stats from @vma with the indicated beginning
765  * address @start, and keep them in @mss.
766  *
767  * Use vm_start of @vma as the beginning address if @start is 0.
768  */
smap_gather_stats(struct vm_area_struct * vma,struct mem_size_stats * mss,unsigned long start)769 static void smap_gather_stats(struct vm_area_struct *vma,
770 		struct mem_size_stats *mss, unsigned long start)
771 {
772 	const struct mm_walk_ops *ops = &smaps_walk_ops;
773 
774 	/* Invalid start */
775 	if (start >= vma->vm_end)
776 		return;
777 
778 #ifdef CONFIG_SHMEM
779 	/* In case of smaps_rollup, reset the value from previous vma */
780 	mss->check_shmem_swap = false;
781 	if (vma->vm_file && shmem_mapping(vma->vm_file->f_mapping)) {
782 		/*
783 		 * For shared or readonly shmem mappings we know that all
784 		 * swapped out pages belong to the shmem object, and we can
785 		 * obtain the swap value much more efficiently. For private
786 		 * writable mappings, we might have COW pages that are
787 		 * not affected by the parent swapped out pages of the shmem
788 		 * object, so we have to distinguish them during the page walk.
789 		 * Unless we know that the shmem object (or the part mapped by
790 		 * our VMA) has no swapped out pages at all.
791 		 */
792 		unsigned long shmem_swapped = shmem_swap_usage(vma);
793 
794 		if (!start && (!shmem_swapped || (vma->vm_flags & VM_SHARED) ||
795 					!(vma->vm_flags & VM_WRITE))) {
796 			mss->swap += shmem_swapped;
797 		} else {
798 			mss->check_shmem_swap = true;
799 			ops = &smaps_shmem_walk_ops;
800 		}
801 	}
802 #endif
803 	/* mmap_lock is held in m_start */
804 	if (!start)
805 		walk_page_vma(vma, ops, mss);
806 	else
807 		walk_page_range(vma->vm_mm, start, vma->vm_end, ops, mss);
808 }
809 
810 #define SEQ_PUT_DEC(str, val) \
811 		seq_put_decimal_ull_width(m, str, (val) >> 10, 8)
812 
813 /* Show the contents common for smaps and smaps_rollup */
__show_smap(struct seq_file * m,const struct mem_size_stats * mss,bool rollup_mode)814 static void __show_smap(struct seq_file *m, const struct mem_size_stats *mss,
815 	bool rollup_mode)
816 {
817 	SEQ_PUT_DEC("Rss:            ", mss->resident);
818 	SEQ_PUT_DEC(" kB\nPss:            ", mss->pss >> PSS_SHIFT);
819 	if (rollup_mode) {
820 		/*
821 		 * These are meaningful only for smaps_rollup, otherwise two of
822 		 * them are zero, and the other one is the same as Pss.
823 		 */
824 		SEQ_PUT_DEC(" kB\nPss_Anon:       ",
825 			mss->pss_anon >> PSS_SHIFT);
826 		SEQ_PUT_DEC(" kB\nPss_File:       ",
827 			mss->pss_file >> PSS_SHIFT);
828 		SEQ_PUT_DEC(" kB\nPss_Shmem:      ",
829 			mss->pss_shmem >> PSS_SHIFT);
830 	}
831 	SEQ_PUT_DEC(" kB\nShared_Clean:   ", mss->shared_clean);
832 	SEQ_PUT_DEC(" kB\nShared_Dirty:   ", mss->shared_dirty);
833 	SEQ_PUT_DEC(" kB\nPrivate_Clean:  ", mss->private_clean);
834 	SEQ_PUT_DEC(" kB\nPrivate_Dirty:  ", mss->private_dirty);
835 	SEQ_PUT_DEC(" kB\nReferenced:     ", mss->referenced);
836 	SEQ_PUT_DEC(" kB\nAnonymous:      ", mss->anonymous);
837 	SEQ_PUT_DEC(" kB\nLazyFree:       ", mss->lazyfree);
838 	SEQ_PUT_DEC(" kB\nAnonHugePages:  ", mss->anonymous_thp);
839 	SEQ_PUT_DEC(" kB\nShmemPmdMapped: ", mss->shmem_thp);
840 	SEQ_PUT_DEC(" kB\nFilePmdMapped:  ", mss->file_thp);
841 	SEQ_PUT_DEC(" kB\nShared_Hugetlb: ", mss->shared_hugetlb);
842 	seq_put_decimal_ull_width(m, " kB\nPrivate_Hugetlb: ",
843 				  mss->private_hugetlb >> 10, 7);
844 	SEQ_PUT_DEC(" kB\nSwap:           ", mss->swap);
845 	SEQ_PUT_DEC(" kB\nSwapPss:        ",
846 					mss->swap_pss >> PSS_SHIFT);
847 	SEQ_PUT_DEC(" kB\nLocked:         ",
848 					mss->pss_locked >> PSS_SHIFT);
849 	seq_puts(m, " kB\n");
850 }
851 
show_smap(struct seq_file * m,void * v)852 static int show_smap(struct seq_file *m, void *v)
853 {
854 	struct vm_area_struct *vma = v;
855 	struct mem_size_stats mss;
856 
857 	memset(&mss, 0, sizeof(mss));
858 
859 	smap_gather_stats(vma, &mss, 0);
860 
861 	show_map_vma(m, vma);
862 
863 	SEQ_PUT_DEC("Size:           ", vma->vm_end - vma->vm_start);
864 	SEQ_PUT_DEC(" kB\nKernelPageSize: ", vma_kernel_pagesize(vma));
865 	SEQ_PUT_DEC(" kB\nMMUPageSize:    ", vma_mmu_pagesize(vma));
866 	seq_puts(m, " kB\n");
867 
868 	__show_smap(m, &mss, false);
869 
870 	seq_printf(m, "THPeligible:    %d\n",
871 		   transparent_hugepage_active(vma));
872 
873 	if (arch_pkeys_enabled())
874 		seq_printf(m, "ProtectionKey:  %8u\n", vma_pkey(vma));
875 	show_smap_vma_flags(m, vma);
876 
877 	return 0;
878 }
879 
show_smaps_rollup(struct seq_file * m,void * v)880 static int show_smaps_rollup(struct seq_file *m, void *v)
881 {
882 	struct proc_maps_private *priv = m->private;
883 	struct mem_size_stats mss;
884 	struct mm_struct *mm;
885 	struct vm_area_struct *vma;
886 	unsigned long last_vma_end = 0;
887 	int ret = 0;
888 
889 	priv->task = get_proc_task(priv->inode);
890 	if (!priv->task)
891 		return -ESRCH;
892 
893 	mm = priv->mm;
894 	if (!mm || !mmget_not_zero(mm)) {
895 		ret = -ESRCH;
896 		goto out_put_task;
897 	}
898 
899 	memset(&mss, 0, sizeof(mss));
900 
901 	ret = mmap_read_lock_killable(mm);
902 	if (ret)
903 		goto out_put_mm;
904 
905 	hold_task_mempolicy(priv);
906 
907 	for (vma = priv->mm->mmap; vma;) {
908 		smap_gather_stats(vma, &mss, 0);
909 		last_vma_end = vma->vm_end;
910 
911 		/*
912 		 * Release mmap_lock temporarily if someone wants to
913 		 * access it for write request.
914 		 */
915 		if (mmap_lock_is_contended(mm)) {
916 			mmap_read_unlock(mm);
917 			ret = mmap_read_lock_killable(mm);
918 			if (ret) {
919 				release_task_mempolicy(priv);
920 				goto out_put_mm;
921 			}
922 
923 			/*
924 			 * After dropping the lock, there are four cases to
925 			 * consider. See the following example for explanation.
926 			 *
927 			 *   +------+------+-----------+
928 			 *   | VMA1 | VMA2 | VMA3      |
929 			 *   +------+------+-----------+
930 			 *   |      |      |           |
931 			 *  4k     8k     16k         400k
932 			 *
933 			 * Suppose we drop the lock after reading VMA2 due to
934 			 * contention, then we get:
935 			 *
936 			 *	last_vma_end = 16k
937 			 *
938 			 * 1) VMA2 is freed, but VMA3 exists:
939 			 *
940 			 *    find_vma(mm, 16k - 1) will return VMA3.
941 			 *    In this case, just continue from VMA3.
942 			 *
943 			 * 2) VMA2 still exists:
944 			 *
945 			 *    find_vma(mm, 16k - 1) will return VMA2.
946 			 *    Iterate the loop like the original one.
947 			 *
948 			 * 3) No more VMAs can be found:
949 			 *
950 			 *    find_vma(mm, 16k - 1) will return NULL.
951 			 *    No more things to do, just break.
952 			 *
953 			 * 4) (last_vma_end - 1) is the middle of a vma (VMA'):
954 			 *
955 			 *    find_vma(mm, 16k - 1) will return VMA' whose range
956 			 *    contains last_vma_end.
957 			 *    Iterate VMA' from last_vma_end.
958 			 */
959 			vma = find_vma(mm, last_vma_end - 1);
960 			/* Case 3 above */
961 			if (!vma)
962 				break;
963 
964 			/* Case 1 above */
965 			if (vma->vm_start >= last_vma_end)
966 				continue;
967 
968 			/* Case 4 above */
969 			if (vma->vm_end > last_vma_end)
970 				smap_gather_stats(vma, &mss, last_vma_end);
971 		}
972 		/* Case 2 above */
973 		vma = vma->vm_next;
974 	}
975 
976 	show_vma_header_prefix(m, priv->mm->mmap->vm_start,
977 			       last_vma_end, 0, 0, 0, 0);
978 	seq_pad(m, ' ');
979 	seq_puts(m, "[rollup]\n");
980 
981 	__show_smap(m, &mss, true);
982 
983 	release_task_mempolicy(priv);
984 	mmap_read_unlock(mm);
985 
986 out_put_mm:
987 	mmput(mm);
988 out_put_task:
989 	put_task_struct(priv->task);
990 	priv->task = NULL;
991 
992 	return ret;
993 }
994 #undef SEQ_PUT_DEC
995 
996 static const struct seq_operations proc_pid_smaps_op = {
997 	.start	= m_start,
998 	.next	= m_next,
999 	.stop	= m_stop,
1000 	.show	= show_smap
1001 };
1002 
pid_smaps_open(struct inode * inode,struct file * file)1003 static int pid_smaps_open(struct inode *inode, struct file *file)
1004 {
1005 	return do_maps_open(inode, file, &proc_pid_smaps_op);
1006 }
1007 
smaps_rollup_open(struct inode * inode,struct file * file)1008 static int smaps_rollup_open(struct inode *inode, struct file *file)
1009 {
1010 	int ret;
1011 	struct proc_maps_private *priv;
1012 
1013 	priv = kzalloc(sizeof(*priv), GFP_KERNEL_ACCOUNT);
1014 	if (!priv)
1015 		return -ENOMEM;
1016 
1017 	ret = single_open(file, show_smaps_rollup, priv);
1018 	if (ret)
1019 		goto out_free;
1020 
1021 	priv->inode = inode;
1022 	priv->mm = proc_mem_open(inode, PTRACE_MODE_READ);
1023 	if (IS_ERR(priv->mm)) {
1024 		ret = PTR_ERR(priv->mm);
1025 
1026 		single_release(inode, file);
1027 		goto out_free;
1028 	}
1029 
1030 	return 0;
1031 
1032 out_free:
1033 	kfree(priv);
1034 	return ret;
1035 }
1036 
smaps_rollup_release(struct inode * inode,struct file * file)1037 static int smaps_rollup_release(struct inode *inode, struct file *file)
1038 {
1039 	struct seq_file *seq = file->private_data;
1040 	struct proc_maps_private *priv = seq->private;
1041 
1042 	if (priv->mm)
1043 		mmdrop(priv->mm);
1044 
1045 	kfree(priv);
1046 	return single_release(inode, file);
1047 }
1048 
1049 const struct file_operations proc_pid_smaps_operations = {
1050 	.open		= pid_smaps_open,
1051 	.read		= seq_read,
1052 	.llseek		= seq_lseek,
1053 	.release	= proc_map_release,
1054 };
1055 
1056 const struct file_operations proc_pid_smaps_rollup_operations = {
1057 	.open		= smaps_rollup_open,
1058 	.read		= seq_read,
1059 	.llseek		= seq_lseek,
1060 	.release	= smaps_rollup_release,
1061 };
1062 
1063 enum clear_refs_types {
1064 	CLEAR_REFS_ALL = 1,
1065 	CLEAR_REFS_ANON,
1066 	CLEAR_REFS_MAPPED,
1067 	CLEAR_REFS_SOFT_DIRTY,
1068 	CLEAR_REFS_MM_HIWATER_RSS,
1069 	CLEAR_REFS_LAST,
1070 };
1071 
1072 struct clear_refs_private {
1073 	enum clear_refs_types type;
1074 };
1075 
1076 #ifdef CONFIG_MEM_SOFT_DIRTY
1077 
1078 #define is_cow_mapping(flags) (((flags) & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE)
1079 
pte_is_pinned(struct vm_area_struct * vma,unsigned long addr,pte_t pte)1080 static inline bool pte_is_pinned(struct vm_area_struct *vma, unsigned long addr, pte_t pte)
1081 {
1082 	struct page *page;
1083 
1084 	if (!pte_write(pte))
1085 		return false;
1086 	if (!is_cow_mapping(vma->vm_flags))
1087 		return false;
1088 	if (likely(!atomic_read(&vma->vm_mm->has_pinned)))
1089 		return false;
1090 	page = vm_normal_page(vma, addr, pte);
1091 	if (!page)
1092 		return false;
1093 	return page_maybe_dma_pinned(page);
1094 }
1095 
clear_soft_dirty(struct vm_area_struct * vma,unsigned long addr,pte_t * pte)1096 static inline void clear_soft_dirty(struct vm_area_struct *vma,
1097 		unsigned long addr, pte_t *pte)
1098 {
1099 	/*
1100 	 * The soft-dirty tracker uses #PF-s to catch writes
1101 	 * to pages, so write-protect the pte as well. See the
1102 	 * Documentation/admin-guide/mm/soft-dirty.rst for full description
1103 	 * of how soft-dirty works.
1104 	 */
1105 	pte_t ptent = *pte;
1106 
1107 	if (pte_present(ptent)) {
1108 		pte_t old_pte;
1109 
1110 		if (pte_is_pinned(vma, addr, ptent))
1111 			return;
1112 		old_pte = ptep_modify_prot_start(vma, addr, pte);
1113 		ptent = pte_wrprotect(old_pte);
1114 		ptent = pte_clear_soft_dirty(ptent);
1115 		ptep_modify_prot_commit(vma, addr, pte, old_pte, ptent);
1116 	} else if (is_swap_pte(ptent)) {
1117 		ptent = pte_swp_clear_soft_dirty(ptent);
1118 		set_pte_at(vma->vm_mm, addr, pte, ptent);
1119 	}
1120 }
1121 #else
clear_soft_dirty(struct vm_area_struct * vma,unsigned long addr,pte_t * pte)1122 static inline void clear_soft_dirty(struct vm_area_struct *vma,
1123 		unsigned long addr, pte_t *pte)
1124 {
1125 }
1126 #endif
1127 
1128 #if defined(CONFIG_MEM_SOFT_DIRTY) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
clear_soft_dirty_pmd(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmdp)1129 static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma,
1130 		unsigned long addr, pmd_t *pmdp)
1131 {
1132 	pmd_t old, pmd = *pmdp;
1133 
1134 	if (pmd_present(pmd)) {
1135 		/* See comment in change_huge_pmd() */
1136 		old = pmdp_invalidate(vma, addr, pmdp);
1137 		if (pmd_dirty(old))
1138 			pmd = pmd_mkdirty(pmd);
1139 		if (pmd_young(old))
1140 			pmd = pmd_mkyoung(pmd);
1141 
1142 		pmd = pmd_wrprotect(pmd);
1143 		pmd = pmd_clear_soft_dirty(pmd);
1144 
1145 		set_pmd_at(vma->vm_mm, addr, pmdp, pmd);
1146 	} else if (is_migration_entry(pmd_to_swp_entry(pmd))) {
1147 		pmd = pmd_swp_clear_soft_dirty(pmd);
1148 		set_pmd_at(vma->vm_mm, addr, pmdp, pmd);
1149 	}
1150 }
1151 #else
clear_soft_dirty_pmd(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmdp)1152 static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma,
1153 		unsigned long addr, pmd_t *pmdp)
1154 {
1155 }
1156 #endif
1157 
clear_refs_pte_range(pmd_t * pmd,unsigned long addr,unsigned long end,struct mm_walk * walk)1158 static int clear_refs_pte_range(pmd_t *pmd, unsigned long addr,
1159 				unsigned long end, struct mm_walk *walk)
1160 {
1161 	struct clear_refs_private *cp = walk->private;
1162 	struct vm_area_struct *vma = walk->vma;
1163 	pte_t *pte, ptent;
1164 	spinlock_t *ptl;
1165 	struct page *page;
1166 
1167 	ptl = pmd_trans_huge_lock(pmd, vma);
1168 	if (ptl) {
1169 		if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
1170 			clear_soft_dirty_pmd(vma, addr, pmd);
1171 			goto out;
1172 		}
1173 
1174 		if (!pmd_present(*pmd))
1175 			goto out;
1176 
1177 		page = pmd_page(*pmd);
1178 
1179 		/* Clear accessed and referenced bits. */
1180 		pmdp_test_and_clear_young(vma, addr, pmd);
1181 		test_and_clear_page_young(page);
1182 		ClearPageReferenced(page);
1183 out:
1184 		spin_unlock(ptl);
1185 		return 0;
1186 	}
1187 
1188 	if (pmd_trans_unstable(pmd))
1189 		return 0;
1190 
1191 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1192 	for (; addr != end; pte++, addr += PAGE_SIZE) {
1193 		ptent = *pte;
1194 
1195 		if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
1196 			clear_soft_dirty(vma, addr, pte);
1197 			continue;
1198 		}
1199 
1200 		if (!pte_present(ptent))
1201 			continue;
1202 
1203 		page = vm_normal_page(vma, addr, ptent);
1204 		if (!page)
1205 			continue;
1206 
1207 		/* Clear accessed and referenced bits. */
1208 		ptep_test_and_clear_young(vma, addr, pte);
1209 		test_and_clear_page_young(page);
1210 		ClearPageReferenced(page);
1211 	}
1212 	pte_unmap_unlock(pte - 1, ptl);
1213 	cond_resched();
1214 	return 0;
1215 }
1216 
clear_refs_test_walk(unsigned long start,unsigned long end,struct mm_walk * walk)1217 static int clear_refs_test_walk(unsigned long start, unsigned long end,
1218 				struct mm_walk *walk)
1219 {
1220 	struct clear_refs_private *cp = walk->private;
1221 	struct vm_area_struct *vma = walk->vma;
1222 
1223 	if (vma->vm_flags & VM_PFNMAP)
1224 		return 1;
1225 
1226 	/*
1227 	 * Writing 1 to /proc/pid/clear_refs affects all pages.
1228 	 * Writing 2 to /proc/pid/clear_refs only affects anonymous pages.
1229 	 * Writing 3 to /proc/pid/clear_refs only affects file mapped pages.
1230 	 * Writing 4 to /proc/pid/clear_refs affects all pages.
1231 	 */
1232 	if (cp->type == CLEAR_REFS_ANON && vma->vm_file)
1233 		return 1;
1234 	if (cp->type == CLEAR_REFS_MAPPED && !vma->vm_file)
1235 		return 1;
1236 	return 0;
1237 }
1238 
1239 static const struct mm_walk_ops clear_refs_walk_ops = {
1240 	.pmd_entry		= clear_refs_pte_range,
1241 	.test_walk		= clear_refs_test_walk,
1242 };
1243 
clear_refs_write(struct file * file,const char __user * buf,size_t count,loff_t * ppos)1244 static ssize_t clear_refs_write(struct file *file, const char __user *buf,
1245 				size_t count, loff_t *ppos)
1246 {
1247 	struct task_struct *task;
1248 	char buffer[PROC_NUMBUF];
1249 	struct mm_struct *mm;
1250 	struct vm_area_struct *vma;
1251 	enum clear_refs_types type;
1252 	int itype;
1253 	int rv;
1254 
1255 	memset(buffer, 0, sizeof(buffer));
1256 	if (count > sizeof(buffer) - 1)
1257 		count = sizeof(buffer) - 1;
1258 	if (copy_from_user(buffer, buf, count))
1259 		return -EFAULT;
1260 	rv = kstrtoint(strstrip(buffer), 10, &itype);
1261 	if (rv < 0)
1262 		return rv;
1263 	type = (enum clear_refs_types)itype;
1264 	if (type < CLEAR_REFS_ALL || type >= CLEAR_REFS_LAST)
1265 		return -EINVAL;
1266 
1267 	task = get_proc_task(file_inode(file));
1268 	if (!task)
1269 		return -ESRCH;
1270 	mm = get_task_mm(task);
1271 	if (mm) {
1272 		struct mmu_notifier_range range;
1273 		struct clear_refs_private cp = {
1274 			.type = type,
1275 		};
1276 
1277 		if (mmap_write_lock_killable(mm)) {
1278 			count = -EINTR;
1279 			goto out_mm;
1280 		}
1281 		if (type == CLEAR_REFS_MM_HIWATER_RSS) {
1282 			/*
1283 			 * Writing 5 to /proc/pid/clear_refs resets the peak
1284 			 * resident set size to this mm's current rss value.
1285 			 */
1286 			reset_mm_hiwater_rss(mm);
1287 			goto out_unlock;
1288 		}
1289 
1290 		if (type == CLEAR_REFS_SOFT_DIRTY) {
1291 			for (vma = mm->mmap; vma; vma = vma->vm_next) {
1292 				if (!(vma->vm_flags & VM_SOFTDIRTY))
1293 					continue;
1294 				vma->vm_flags &= ~VM_SOFTDIRTY;
1295 				vma_set_page_prot(vma);
1296 			}
1297 
1298 			inc_tlb_flush_pending(mm);
1299 			mmu_notifier_range_init(&range, MMU_NOTIFY_SOFT_DIRTY,
1300 						0, NULL, mm, 0, -1UL);
1301 			mmu_notifier_invalidate_range_start(&range);
1302 		}
1303 		walk_page_range(mm, 0, mm->highest_vm_end, &clear_refs_walk_ops,
1304 				&cp);
1305 		if (type == CLEAR_REFS_SOFT_DIRTY) {
1306 			mmu_notifier_invalidate_range_end(&range);
1307 			flush_tlb_mm(mm);
1308 			dec_tlb_flush_pending(mm);
1309 		}
1310 out_unlock:
1311 		mmap_write_unlock(mm);
1312 out_mm:
1313 		mmput(mm);
1314 	}
1315 	put_task_struct(task);
1316 
1317 	return count;
1318 }
1319 
1320 const struct file_operations proc_clear_refs_operations = {
1321 	.write		= clear_refs_write,
1322 	.llseek		= noop_llseek,
1323 };
1324 
1325 typedef struct {
1326 	u64 pme;
1327 } pagemap_entry_t;
1328 
1329 struct pagemapread {
1330 	int pos, len;		/* units: PM_ENTRY_BYTES, not bytes */
1331 	pagemap_entry_t *buffer;
1332 	bool show_pfn;
1333 };
1334 
1335 #define PAGEMAP_WALK_SIZE	(PMD_SIZE)
1336 #define PAGEMAP_WALK_MASK	(PMD_MASK)
1337 
1338 #define PM_ENTRY_BYTES		sizeof(pagemap_entry_t)
1339 #define PM_PFRAME_BITS		55
1340 #define PM_PFRAME_MASK		GENMASK_ULL(PM_PFRAME_BITS - 1, 0)
1341 #define PM_SOFT_DIRTY		BIT_ULL(55)
1342 #define PM_MMAP_EXCLUSIVE	BIT_ULL(56)
1343 #define PM_FILE			BIT_ULL(61)
1344 #define PM_SWAP			BIT_ULL(62)
1345 #define PM_PRESENT		BIT_ULL(63)
1346 
1347 #define PM_END_OF_BUFFER    1
1348 
make_pme(u64 frame,u64 flags)1349 static inline pagemap_entry_t make_pme(u64 frame, u64 flags)
1350 {
1351 	return (pagemap_entry_t) { .pme = (frame & PM_PFRAME_MASK) | flags };
1352 }
1353 
add_to_pagemap(unsigned long addr,pagemap_entry_t * pme,struct pagemapread * pm)1354 static int add_to_pagemap(unsigned long addr, pagemap_entry_t *pme,
1355 			  struct pagemapread *pm)
1356 {
1357 	pm->buffer[pm->pos++] = *pme;
1358 	if (pm->pos >= pm->len)
1359 		return PM_END_OF_BUFFER;
1360 	return 0;
1361 }
1362 
pagemap_pte_hole(unsigned long start,unsigned long end,__always_unused int depth,struct mm_walk * walk)1363 static int pagemap_pte_hole(unsigned long start, unsigned long end,
1364 			    __always_unused int depth, struct mm_walk *walk)
1365 {
1366 	struct pagemapread *pm = walk->private;
1367 	unsigned long addr = start;
1368 	int err = 0;
1369 
1370 	while (addr < end) {
1371 		struct vm_area_struct *vma = find_vma(walk->mm, addr);
1372 		pagemap_entry_t pme = make_pme(0, 0);
1373 		/* End of address space hole, which we mark as non-present. */
1374 		unsigned long hole_end;
1375 
1376 		if (vma)
1377 			hole_end = min(end, vma->vm_start);
1378 		else
1379 			hole_end = end;
1380 
1381 		for (; addr < hole_end; addr += PAGE_SIZE) {
1382 			err = add_to_pagemap(addr, &pme, pm);
1383 			if (err)
1384 				goto out;
1385 		}
1386 
1387 		if (!vma)
1388 			break;
1389 
1390 		/* Addresses in the VMA. */
1391 		if (vma->vm_flags & VM_SOFTDIRTY)
1392 			pme = make_pme(0, PM_SOFT_DIRTY);
1393 		for (; addr < min(end, vma->vm_end); addr += PAGE_SIZE) {
1394 			err = add_to_pagemap(addr, &pme, pm);
1395 			if (err)
1396 				goto out;
1397 		}
1398 	}
1399 out:
1400 	return err;
1401 }
1402 
pte_to_pagemap_entry(struct pagemapread * pm,struct vm_area_struct * vma,unsigned long addr,pte_t pte)1403 static pagemap_entry_t pte_to_pagemap_entry(struct pagemapread *pm,
1404 		struct vm_area_struct *vma, unsigned long addr, pte_t pte)
1405 {
1406 	u64 frame = 0, flags = 0;
1407 	struct page *page = NULL;
1408 	bool migration = false;
1409 
1410 	if (pte_present(pte)) {
1411 		if (pm->show_pfn)
1412 			frame = pte_pfn(pte);
1413 		flags |= PM_PRESENT;
1414 		page = vm_normal_page(vma, addr, pte);
1415 		if (pte_soft_dirty(pte))
1416 			flags |= PM_SOFT_DIRTY;
1417 	} else if (is_swap_pte(pte)) {
1418 		swp_entry_t entry;
1419 		if (pte_swp_soft_dirty(pte))
1420 			flags |= PM_SOFT_DIRTY;
1421 		entry = pte_to_swp_entry(pte);
1422 		if (pm->show_pfn)
1423 			frame = swp_type(entry) |
1424 				(swp_offset(entry) << MAX_SWAPFILES_SHIFT);
1425 		flags |= PM_SWAP;
1426 		if (is_migration_entry(entry)) {
1427 			migration = true;
1428 			page = migration_entry_to_page(entry);
1429 		}
1430 
1431 		if (is_device_private_entry(entry))
1432 			page = device_private_entry_to_page(entry);
1433 	}
1434 
1435 	if (page && !PageAnon(page))
1436 		flags |= PM_FILE;
1437 	if (page && !migration && page_mapcount(page) == 1)
1438 		flags |= PM_MMAP_EXCLUSIVE;
1439 	if (vma->vm_flags & VM_SOFTDIRTY)
1440 		flags |= PM_SOFT_DIRTY;
1441 
1442 	return make_pme(frame, flags);
1443 }
1444 
pagemap_pmd_range(pmd_t * pmdp,unsigned long addr,unsigned long end,struct mm_walk * walk)1445 static int pagemap_pmd_range(pmd_t *pmdp, unsigned long addr, unsigned long end,
1446 			     struct mm_walk *walk)
1447 {
1448 	struct vm_area_struct *vma = walk->vma;
1449 	struct pagemapread *pm = walk->private;
1450 	spinlock_t *ptl;
1451 	pte_t *pte, *orig_pte;
1452 	int err = 0;
1453 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1454 	bool migration = false;
1455 
1456 	ptl = pmd_trans_huge_lock(pmdp, vma);
1457 	if (ptl) {
1458 		u64 flags = 0, frame = 0;
1459 		pmd_t pmd = *pmdp;
1460 		struct page *page = NULL;
1461 
1462 		if (vma->vm_flags & VM_SOFTDIRTY)
1463 			flags |= PM_SOFT_DIRTY;
1464 
1465 		if (pmd_present(pmd)) {
1466 			page = pmd_page(pmd);
1467 
1468 			flags |= PM_PRESENT;
1469 			if (pmd_soft_dirty(pmd))
1470 				flags |= PM_SOFT_DIRTY;
1471 			if (pm->show_pfn)
1472 				frame = pmd_pfn(pmd) +
1473 					((addr & ~PMD_MASK) >> PAGE_SHIFT);
1474 		}
1475 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1476 		else if (is_swap_pmd(pmd)) {
1477 			swp_entry_t entry = pmd_to_swp_entry(pmd);
1478 			unsigned long offset;
1479 
1480 			if (pm->show_pfn) {
1481 				offset = swp_offset(entry) +
1482 					((addr & ~PMD_MASK) >> PAGE_SHIFT);
1483 				frame = swp_type(entry) |
1484 					(offset << MAX_SWAPFILES_SHIFT);
1485 			}
1486 			flags |= PM_SWAP;
1487 			if (pmd_swp_soft_dirty(pmd))
1488 				flags |= PM_SOFT_DIRTY;
1489 			VM_BUG_ON(!is_pmd_migration_entry(pmd));
1490 			migration = is_migration_entry(entry);
1491 			page = migration_entry_to_page(entry);
1492 		}
1493 #endif
1494 
1495 		if (page && !migration && page_mapcount(page) == 1)
1496 			flags |= PM_MMAP_EXCLUSIVE;
1497 
1498 		for (; addr != end; addr += PAGE_SIZE) {
1499 			pagemap_entry_t pme = make_pme(frame, flags);
1500 
1501 			err = add_to_pagemap(addr, &pme, pm);
1502 			if (err)
1503 				break;
1504 			if (pm->show_pfn) {
1505 				if (flags & PM_PRESENT)
1506 					frame++;
1507 				else if (flags & PM_SWAP)
1508 					frame += (1 << MAX_SWAPFILES_SHIFT);
1509 			}
1510 		}
1511 		spin_unlock(ptl);
1512 		return err;
1513 	}
1514 
1515 	if (pmd_trans_unstable(pmdp))
1516 		return 0;
1517 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1518 
1519 	/*
1520 	 * We can assume that @vma always points to a valid one and @end never
1521 	 * goes beyond vma->vm_end.
1522 	 */
1523 	orig_pte = pte = pte_offset_map_lock(walk->mm, pmdp, addr, &ptl);
1524 	for (; addr < end; pte++, addr += PAGE_SIZE) {
1525 		pagemap_entry_t pme;
1526 
1527 		pme = pte_to_pagemap_entry(pm, vma, addr, *pte);
1528 		err = add_to_pagemap(addr, &pme, pm);
1529 		if (err)
1530 			break;
1531 	}
1532 	pte_unmap_unlock(orig_pte, ptl);
1533 
1534 	cond_resched();
1535 
1536 	return err;
1537 }
1538 
1539 #ifdef CONFIG_HUGETLB_PAGE
1540 /* This function walks within one hugetlb entry in the single call */
pagemap_hugetlb_range(pte_t * ptep,unsigned long hmask,unsigned long addr,unsigned long end,struct mm_walk * walk)1541 static int pagemap_hugetlb_range(pte_t *ptep, unsigned long hmask,
1542 				 unsigned long addr, unsigned long end,
1543 				 struct mm_walk *walk)
1544 {
1545 	struct pagemapread *pm = walk->private;
1546 	struct vm_area_struct *vma = walk->vma;
1547 	u64 flags = 0, frame = 0;
1548 	int err = 0;
1549 	pte_t pte;
1550 
1551 	if (vma->vm_flags & VM_SOFTDIRTY)
1552 		flags |= PM_SOFT_DIRTY;
1553 
1554 	pte = huge_ptep_get(ptep);
1555 	if (pte_present(pte)) {
1556 		struct page *page = pte_page(pte);
1557 
1558 		if (!PageAnon(page))
1559 			flags |= PM_FILE;
1560 
1561 		if (page_mapcount(page) == 1)
1562 			flags |= PM_MMAP_EXCLUSIVE;
1563 
1564 		flags |= PM_PRESENT;
1565 		if (pm->show_pfn)
1566 			frame = pte_pfn(pte) +
1567 				((addr & ~hmask) >> PAGE_SHIFT);
1568 	}
1569 
1570 	for (; addr != end; addr += PAGE_SIZE) {
1571 		pagemap_entry_t pme = make_pme(frame, flags);
1572 
1573 		err = add_to_pagemap(addr, &pme, pm);
1574 		if (err)
1575 			return err;
1576 		if (pm->show_pfn && (flags & PM_PRESENT))
1577 			frame++;
1578 	}
1579 
1580 	cond_resched();
1581 
1582 	return err;
1583 }
1584 #else
1585 #define pagemap_hugetlb_range	NULL
1586 #endif /* HUGETLB_PAGE */
1587 
1588 static const struct mm_walk_ops pagemap_ops = {
1589 	.pmd_entry	= pagemap_pmd_range,
1590 	.pte_hole	= pagemap_pte_hole,
1591 	.hugetlb_entry	= pagemap_hugetlb_range,
1592 };
1593 
1594 /*
1595  * /proc/pid/pagemap - an array mapping virtual pages to pfns
1596  *
1597  * For each page in the address space, this file contains one 64-bit entry
1598  * consisting of the following:
1599  *
1600  * Bits 0-54  page frame number (PFN) if present
1601  * Bits 0-4   swap type if swapped
1602  * Bits 5-54  swap offset if swapped
1603  * Bit  55    pte is soft-dirty (see Documentation/admin-guide/mm/soft-dirty.rst)
1604  * Bit  56    page exclusively mapped
1605  * Bits 57-60 zero
1606  * Bit  61    page is file-page or shared-anon
1607  * Bit  62    page swapped
1608  * Bit  63    page present
1609  *
1610  * If the page is not present but in swap, then the PFN contains an
1611  * encoding of the swap file number and the page's offset into the
1612  * swap. Unmapped pages return a null PFN. This allows determining
1613  * precisely which pages are mapped (or in swap) and comparing mapped
1614  * pages between processes.
1615  *
1616  * Efficient users of this interface will use /proc/pid/maps to
1617  * determine which areas of memory are actually mapped and llseek to
1618  * skip over unmapped regions.
1619  */
pagemap_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)1620 static ssize_t pagemap_read(struct file *file, char __user *buf,
1621 			    size_t count, loff_t *ppos)
1622 {
1623 	struct mm_struct *mm = file->private_data;
1624 	struct pagemapread pm;
1625 	unsigned long src;
1626 	unsigned long svpfn;
1627 	unsigned long start_vaddr;
1628 	unsigned long end_vaddr;
1629 	int ret = 0, copied = 0;
1630 
1631 	if (!mm || !mmget_not_zero(mm))
1632 		goto out;
1633 
1634 	ret = -EINVAL;
1635 	/* file position must be aligned */
1636 	if ((*ppos % PM_ENTRY_BYTES) || (count % PM_ENTRY_BYTES))
1637 		goto out_mm;
1638 
1639 	ret = 0;
1640 	if (!count)
1641 		goto out_mm;
1642 
1643 	/* do not disclose physical addresses: attack vector */
1644 	pm.show_pfn = file_ns_capable(file, &init_user_ns, CAP_SYS_ADMIN);
1645 
1646 	pm.len = (PAGEMAP_WALK_SIZE >> PAGE_SHIFT);
1647 	pm.buffer = kmalloc_array(pm.len, PM_ENTRY_BYTES, GFP_KERNEL);
1648 	ret = -ENOMEM;
1649 	if (!pm.buffer)
1650 		goto out_mm;
1651 
1652 	src = *ppos;
1653 	svpfn = src / PM_ENTRY_BYTES;
1654 	end_vaddr = mm->task_size;
1655 
1656 	/* watch out for wraparound */
1657 	start_vaddr = end_vaddr;
1658 	if (svpfn <= (ULONG_MAX >> PAGE_SHIFT))
1659 		start_vaddr = untagged_addr(svpfn << PAGE_SHIFT);
1660 
1661 	/* Ensure the address is inside the task */
1662 	if (start_vaddr > mm->task_size)
1663 		start_vaddr = end_vaddr;
1664 
1665 	/*
1666 	 * The odds are that this will stop walking way
1667 	 * before end_vaddr, because the length of the
1668 	 * user buffer is tracked in "pm", and the walk
1669 	 * will stop when we hit the end of the buffer.
1670 	 */
1671 	ret = 0;
1672 	while (count && (start_vaddr < end_vaddr)) {
1673 		int len;
1674 		unsigned long end;
1675 
1676 		pm.pos = 0;
1677 		end = (start_vaddr + PAGEMAP_WALK_SIZE) & PAGEMAP_WALK_MASK;
1678 		/* overflow ? */
1679 		if (end < start_vaddr || end > end_vaddr)
1680 			end = end_vaddr;
1681 		ret = mmap_read_lock_killable(mm);
1682 		if (ret)
1683 			goto out_free;
1684 		ret = walk_page_range(mm, start_vaddr, end, &pagemap_ops, &pm);
1685 		mmap_read_unlock(mm);
1686 		start_vaddr = end;
1687 
1688 		len = min(count, PM_ENTRY_BYTES * pm.pos);
1689 		if (copy_to_user(buf, pm.buffer, len)) {
1690 			ret = -EFAULT;
1691 			goto out_free;
1692 		}
1693 		copied += len;
1694 		buf += len;
1695 		count -= len;
1696 	}
1697 	*ppos += copied;
1698 	if (!ret || ret == PM_END_OF_BUFFER)
1699 		ret = copied;
1700 
1701 out_free:
1702 	kfree(pm.buffer);
1703 out_mm:
1704 	mmput(mm);
1705 out:
1706 	return ret;
1707 }
1708 
pagemap_open(struct inode * inode,struct file * file)1709 static int pagemap_open(struct inode *inode, struct file *file)
1710 {
1711 	struct mm_struct *mm;
1712 
1713 	mm = proc_mem_open(inode, PTRACE_MODE_READ);
1714 	if (IS_ERR(mm))
1715 		return PTR_ERR(mm);
1716 	file->private_data = mm;
1717 	return 0;
1718 }
1719 
pagemap_release(struct inode * inode,struct file * file)1720 static int pagemap_release(struct inode *inode, struct file *file)
1721 {
1722 	struct mm_struct *mm = file->private_data;
1723 
1724 	if (mm)
1725 		mmdrop(mm);
1726 	return 0;
1727 }
1728 
1729 const struct file_operations proc_pagemap_operations = {
1730 	.llseek		= mem_lseek, /* borrow this */
1731 	.read		= pagemap_read,
1732 	.open		= pagemap_open,
1733 	.release	= pagemap_release,
1734 };
1735 #endif /* CONFIG_PROC_PAGE_MONITOR */
1736 
1737 #ifdef CONFIG_NUMA
1738 
1739 struct numa_maps {
1740 	unsigned long pages;
1741 	unsigned long anon;
1742 	unsigned long active;
1743 	unsigned long writeback;
1744 	unsigned long mapcount_max;
1745 	unsigned long dirty;
1746 	unsigned long swapcache;
1747 	unsigned long node[MAX_NUMNODES];
1748 };
1749 
1750 struct numa_maps_private {
1751 	struct proc_maps_private proc_maps;
1752 	struct numa_maps md;
1753 };
1754 
gather_stats(struct page * page,struct numa_maps * md,int pte_dirty,unsigned long nr_pages)1755 static void gather_stats(struct page *page, struct numa_maps *md, int pte_dirty,
1756 			unsigned long nr_pages)
1757 {
1758 	int count = page_mapcount(page);
1759 
1760 	md->pages += nr_pages;
1761 	if (pte_dirty || PageDirty(page))
1762 		md->dirty += nr_pages;
1763 
1764 	if (PageSwapCache(page))
1765 		md->swapcache += nr_pages;
1766 
1767 	if (PageActive(page) || PageUnevictable(page))
1768 		md->active += nr_pages;
1769 
1770 	if (PageWriteback(page))
1771 		md->writeback += nr_pages;
1772 
1773 	if (PageAnon(page))
1774 		md->anon += nr_pages;
1775 
1776 	if (count > md->mapcount_max)
1777 		md->mapcount_max = count;
1778 
1779 	md->node[page_to_nid(page)] += nr_pages;
1780 }
1781 
can_gather_numa_stats(pte_t pte,struct vm_area_struct * vma,unsigned long addr)1782 static struct page *can_gather_numa_stats(pte_t pte, struct vm_area_struct *vma,
1783 		unsigned long addr)
1784 {
1785 	struct page *page;
1786 	int nid;
1787 
1788 	if (!pte_present(pte))
1789 		return NULL;
1790 
1791 	page = vm_normal_page(vma, addr, pte);
1792 	if (!page)
1793 		return NULL;
1794 
1795 	if (PageReserved(page))
1796 		return NULL;
1797 
1798 	nid = page_to_nid(page);
1799 	if (!node_isset(nid, node_states[N_MEMORY]))
1800 		return NULL;
1801 
1802 	return page;
1803 }
1804 
1805 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
can_gather_numa_stats_pmd(pmd_t pmd,struct vm_area_struct * vma,unsigned long addr)1806 static struct page *can_gather_numa_stats_pmd(pmd_t pmd,
1807 					      struct vm_area_struct *vma,
1808 					      unsigned long addr)
1809 {
1810 	struct page *page;
1811 	int nid;
1812 
1813 	if (!pmd_present(pmd))
1814 		return NULL;
1815 
1816 	page = vm_normal_page_pmd(vma, addr, pmd);
1817 	if (!page)
1818 		return NULL;
1819 
1820 	if (PageReserved(page))
1821 		return NULL;
1822 
1823 	nid = page_to_nid(page);
1824 	if (!node_isset(nid, node_states[N_MEMORY]))
1825 		return NULL;
1826 
1827 	return page;
1828 }
1829 #endif
1830 
gather_pte_stats(pmd_t * pmd,unsigned long addr,unsigned long end,struct mm_walk * walk)1831 static int gather_pte_stats(pmd_t *pmd, unsigned long addr,
1832 		unsigned long end, struct mm_walk *walk)
1833 {
1834 	struct numa_maps *md = walk->private;
1835 	struct vm_area_struct *vma = walk->vma;
1836 	spinlock_t *ptl;
1837 	pte_t *orig_pte;
1838 	pte_t *pte;
1839 
1840 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1841 	ptl = pmd_trans_huge_lock(pmd, vma);
1842 	if (ptl) {
1843 		struct page *page;
1844 
1845 		page = can_gather_numa_stats_pmd(*pmd, vma, addr);
1846 		if (page)
1847 			gather_stats(page, md, pmd_dirty(*pmd),
1848 				     HPAGE_PMD_SIZE/PAGE_SIZE);
1849 		spin_unlock(ptl);
1850 		return 0;
1851 	}
1852 
1853 	if (pmd_trans_unstable(pmd))
1854 		return 0;
1855 #endif
1856 	orig_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
1857 	do {
1858 		struct page *page = can_gather_numa_stats(*pte, vma, addr);
1859 		if (!page)
1860 			continue;
1861 		gather_stats(page, md, pte_dirty(*pte), 1);
1862 
1863 	} while (pte++, addr += PAGE_SIZE, addr != end);
1864 	pte_unmap_unlock(orig_pte, ptl);
1865 	cond_resched();
1866 	return 0;
1867 }
1868 #ifdef CONFIG_HUGETLB_PAGE
gather_hugetlb_stats(pte_t * pte,unsigned long hmask,unsigned long addr,unsigned long end,struct mm_walk * walk)1869 static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask,
1870 		unsigned long addr, unsigned long end, struct mm_walk *walk)
1871 {
1872 	pte_t huge_pte = huge_ptep_get(pte);
1873 	struct numa_maps *md;
1874 	struct page *page;
1875 
1876 	if (!pte_present(huge_pte))
1877 		return 0;
1878 
1879 	page = pte_page(huge_pte);
1880 	if (!page)
1881 		return 0;
1882 
1883 	md = walk->private;
1884 	gather_stats(page, md, pte_dirty(huge_pte), 1);
1885 	return 0;
1886 }
1887 
1888 #else
gather_hugetlb_stats(pte_t * pte,unsigned long hmask,unsigned long addr,unsigned long end,struct mm_walk * walk)1889 static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask,
1890 		unsigned long addr, unsigned long end, struct mm_walk *walk)
1891 {
1892 	return 0;
1893 }
1894 #endif
1895 
1896 static const struct mm_walk_ops show_numa_ops = {
1897 	.hugetlb_entry = gather_hugetlb_stats,
1898 	.pmd_entry = gather_pte_stats,
1899 };
1900 
1901 /*
1902  * Display pages allocated per node and memory policy via /proc.
1903  */
show_numa_map(struct seq_file * m,void * v)1904 static int show_numa_map(struct seq_file *m, void *v)
1905 {
1906 	struct numa_maps_private *numa_priv = m->private;
1907 	struct proc_maps_private *proc_priv = &numa_priv->proc_maps;
1908 	struct vm_area_struct *vma = v;
1909 	struct numa_maps *md = &numa_priv->md;
1910 	struct file *file = vma->vm_file;
1911 	struct mm_struct *mm = vma->vm_mm;
1912 	struct mempolicy *pol;
1913 	char buffer[64];
1914 	int nid;
1915 
1916 	if (!mm)
1917 		return 0;
1918 
1919 	/* Ensure we start with an empty set of numa_maps statistics. */
1920 	memset(md, 0, sizeof(*md));
1921 
1922 	pol = __get_vma_policy(vma, vma->vm_start);
1923 	if (pol) {
1924 		mpol_to_str(buffer, sizeof(buffer), pol);
1925 		mpol_cond_put(pol);
1926 	} else {
1927 		mpol_to_str(buffer, sizeof(buffer), proc_priv->task_mempolicy);
1928 	}
1929 
1930 	seq_printf(m, "%08lx %s", vma->vm_start, buffer);
1931 
1932 	if (file) {
1933 		seq_puts(m, " file=");
1934 		seq_file_path(m, file, "\n\t= ");
1935 	} else if (vma->vm_start <= mm->brk && vma->vm_end >= mm->start_brk) {
1936 		seq_puts(m, " heap");
1937 	} else if (is_stack(vma)) {
1938 		seq_puts(m, " stack");
1939 	}
1940 
1941 	if (is_vm_hugetlb_page(vma))
1942 		seq_puts(m, " huge");
1943 
1944 	/* mmap_lock is held by m_start */
1945 	walk_page_vma(vma, &show_numa_ops, md);
1946 
1947 	if (!md->pages)
1948 		goto out;
1949 
1950 	if (md->anon)
1951 		seq_printf(m, " anon=%lu", md->anon);
1952 
1953 	if (md->dirty)
1954 		seq_printf(m, " dirty=%lu", md->dirty);
1955 
1956 	if (md->pages != md->anon && md->pages != md->dirty)
1957 		seq_printf(m, " mapped=%lu", md->pages);
1958 
1959 	if (md->mapcount_max > 1)
1960 		seq_printf(m, " mapmax=%lu", md->mapcount_max);
1961 
1962 	if (md->swapcache)
1963 		seq_printf(m, " swapcache=%lu", md->swapcache);
1964 
1965 	if (md->active < md->pages && !is_vm_hugetlb_page(vma))
1966 		seq_printf(m, " active=%lu", md->active);
1967 
1968 	if (md->writeback)
1969 		seq_printf(m, " writeback=%lu", md->writeback);
1970 
1971 	for_each_node_state(nid, N_MEMORY)
1972 		if (md->node[nid])
1973 			seq_printf(m, " N%d=%lu", nid, md->node[nid]);
1974 
1975 	seq_printf(m, " kernelpagesize_kB=%lu", vma_kernel_pagesize(vma) >> 10);
1976 out:
1977 	seq_putc(m, '\n');
1978 	return 0;
1979 }
1980 
1981 static const struct seq_operations proc_pid_numa_maps_op = {
1982 	.start  = m_start,
1983 	.next   = m_next,
1984 	.stop   = m_stop,
1985 	.show   = show_numa_map,
1986 };
1987 
pid_numa_maps_open(struct inode * inode,struct file * file)1988 static int pid_numa_maps_open(struct inode *inode, struct file *file)
1989 {
1990 	return proc_maps_open(inode, file, &proc_pid_numa_maps_op,
1991 				sizeof(struct numa_maps_private));
1992 }
1993 
1994 const struct file_operations proc_pid_numa_maps_operations = {
1995 	.open		= pid_numa_maps_open,
1996 	.read		= seq_read,
1997 	.llseek		= seq_lseek,
1998 	.release	= proc_map_release,
1999 };
2000 
2001 #endif /* CONFIG_NUMA */
2002