1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/pagewalk.h>
3 #include <linux/vmacache.h>
4 #include <linux/mm_inline.h>
5 #include <linux/hugetlb.h>
6 #include <linux/huge_mm.h>
7 #include <linux/mount.h>
8 #include <linux/seq_file.h>
9 #include <linux/highmem.h>
10 #include <linux/ptrace.h>
11 #include <linux/slab.h>
12 #include <linux/pagemap.h>
13 #include <linux/mempolicy.h>
14 #include <linux/rmap.h>
15 #include <linux/swap.h>
16 #include <linux/sched/mm.h>
17 #include <linux/swapops.h>
18 #include <linux/mmu_notifier.h>
19 #include <linux/page_idle.h>
20 #include <linux/shmem_fs.h>
21 #include <linux/uaccess.h>
22 #include <linux/pkeys.h>
23 #ifdef CONFIG_MEM_PURGEABLE
24 #include <linux/mm_purgeable.h>
25 #endif
26
27 #include <asm/elf.h>
28 #include <asm/tlb.h>
29 #include <asm/tlbflush.h>
30 #include "internal.h"
31
32 #define SEQ_PUT_DEC(str, val) \
33 seq_put_decimal_ull_width(m, str, (val) << (PAGE_SHIFT-10), 8)
task_mem(struct seq_file * m,struct mm_struct * mm)34 void task_mem(struct seq_file *m, struct mm_struct *mm)
35 {
36 unsigned long text, lib, swap, anon, file, shmem;
37 unsigned long hiwater_vm, total_vm, hiwater_rss, total_rss;
38 #ifdef CONFIG_MEM_PURGEABLE
39 unsigned long nr_purg_sum = 0, nr_purg_pin = 0;
40
41 mm_purg_pages_info(mm, &nr_purg_sum, &nr_purg_pin);
42 #endif
43
44 anon = get_mm_counter(mm, MM_ANONPAGES);
45 file = get_mm_counter(mm, MM_FILEPAGES);
46 shmem = get_mm_counter(mm, MM_SHMEMPAGES);
47
48 /*
49 * Note: to minimize their overhead, mm maintains hiwater_vm and
50 * hiwater_rss only when about to *lower* total_vm or rss. Any
51 * collector of these hiwater stats must therefore get total_vm
52 * and rss too, which will usually be the higher. Barriers? not
53 * worth the effort, such snapshots can always be inconsistent.
54 */
55 hiwater_vm = total_vm = mm->total_vm;
56 if (hiwater_vm < mm->hiwater_vm)
57 hiwater_vm = mm->hiwater_vm;
58 hiwater_rss = total_rss = anon + file + shmem;
59 if (hiwater_rss < mm->hiwater_rss)
60 hiwater_rss = mm->hiwater_rss;
61
62 /* split executable areas between text and lib */
63 text = PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK);
64 text = min(text, mm->exec_vm << PAGE_SHIFT);
65 lib = (mm->exec_vm << PAGE_SHIFT) - text;
66
67 swap = get_mm_counter(mm, MM_SWAPENTS);
68 SEQ_PUT_DEC("VmPeak:\t", hiwater_vm);
69 SEQ_PUT_DEC(" kB\nVmSize:\t", total_vm);
70 SEQ_PUT_DEC(" kB\nVmLck:\t", mm->locked_vm);
71 SEQ_PUT_DEC(" kB\nVmPin:\t", atomic64_read(&mm->pinned_vm));
72 SEQ_PUT_DEC(" kB\nVmHWM:\t", hiwater_rss);
73 SEQ_PUT_DEC(" kB\nVmRSS:\t", total_rss);
74 SEQ_PUT_DEC(" kB\nRssAnon:\t", anon);
75 SEQ_PUT_DEC(" kB\nRssFile:\t", file);
76 SEQ_PUT_DEC(" kB\nRssShmem:\t", shmem);
77 SEQ_PUT_DEC(" kB\nVmData:\t", mm->data_vm);
78 SEQ_PUT_DEC(" kB\nVmStk:\t", mm->stack_vm);
79 seq_put_decimal_ull_width(m,
80 " kB\nVmExe:\t", text >> 10, 8);
81 seq_put_decimal_ull_width(m,
82 " kB\nVmLib:\t", lib >> 10, 8);
83 seq_put_decimal_ull_width(m,
84 " kB\nVmPTE:\t", mm_pgtables_bytes(mm) >> 10, 8);
85 SEQ_PUT_DEC(" kB\nVmSwap:\t", swap);
86 #ifdef CONFIG_MEM_PURGEABLE
87 SEQ_PUT_DEC(" kB\nPurgSum:\t", nr_purg_sum);
88 SEQ_PUT_DEC(" kB\nPurgPin:\t", nr_purg_pin);
89 #endif
90 seq_puts(m, " kB\n");
91 hugetlb_report_usage(m, mm);
92 }
93 #undef SEQ_PUT_DEC
94
task_vsize(struct mm_struct * mm)95 unsigned long task_vsize(struct mm_struct *mm)
96 {
97 return PAGE_SIZE * mm->total_vm;
98 }
99
task_statm(struct mm_struct * mm,unsigned long * shared,unsigned long * text,unsigned long * data,unsigned long * resident)100 unsigned long task_statm(struct mm_struct *mm,
101 unsigned long *shared, unsigned long *text,
102 unsigned long *data, unsigned long *resident)
103 {
104 *shared = get_mm_counter(mm, MM_FILEPAGES) +
105 get_mm_counter(mm, MM_SHMEMPAGES);
106 *text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK))
107 >> PAGE_SHIFT;
108 *data = mm->data_vm + mm->stack_vm;
109 *resident = *shared + get_mm_counter(mm, MM_ANONPAGES);
110 return mm->total_vm;
111 }
112
113 #ifdef CONFIG_NUMA
114 /*
115 * Save get_task_policy() for show_numa_map().
116 */
hold_task_mempolicy(struct proc_maps_private * priv)117 static void hold_task_mempolicy(struct proc_maps_private *priv)
118 {
119 struct task_struct *task = priv->task;
120
121 task_lock(task);
122 priv->task_mempolicy = get_task_policy(task);
123 mpol_get(priv->task_mempolicy);
124 task_unlock(task);
125 }
release_task_mempolicy(struct proc_maps_private * priv)126 static void release_task_mempolicy(struct proc_maps_private *priv)
127 {
128 mpol_put(priv->task_mempolicy);
129 }
130 #else
hold_task_mempolicy(struct proc_maps_private * priv)131 static void hold_task_mempolicy(struct proc_maps_private *priv)
132 {
133 }
release_task_mempolicy(struct proc_maps_private * priv)134 static void release_task_mempolicy(struct proc_maps_private *priv)
135 {
136 }
137 #endif
138
m_start(struct seq_file * m,loff_t * ppos)139 static void *m_start(struct seq_file *m, loff_t *ppos)
140 {
141 struct proc_maps_private *priv = m->private;
142 unsigned long last_addr = *ppos;
143 struct mm_struct *mm;
144 struct vm_area_struct *vma;
145
146 /* See m_next(). Zero at the start or after lseek. */
147 if (last_addr == -1UL)
148 return NULL;
149
150 priv->task = get_proc_task(priv->inode);
151 if (!priv->task)
152 return ERR_PTR(-ESRCH);
153
154 mm = priv->mm;
155 if (!mm || !mmget_not_zero(mm)) {
156 put_task_struct(priv->task);
157 priv->task = NULL;
158 return NULL;
159 }
160
161 if (mmap_read_lock_killable(mm)) {
162 mmput(mm);
163 put_task_struct(priv->task);
164 priv->task = NULL;
165 return ERR_PTR(-EINTR);
166 }
167
168 hold_task_mempolicy(priv);
169 priv->tail_vma = get_gate_vma(mm);
170
171 vma = find_vma(mm, last_addr);
172 if (vma)
173 return vma;
174
175 return priv->tail_vma;
176 }
177
m_next(struct seq_file * m,void * v,loff_t * ppos)178 static void *m_next(struct seq_file *m, void *v, loff_t *ppos)
179 {
180 struct proc_maps_private *priv = m->private;
181 struct vm_area_struct *next, *vma = v;
182
183 if (vma == priv->tail_vma)
184 next = NULL;
185 else if (vma->vm_next)
186 next = vma->vm_next;
187 else
188 next = priv->tail_vma;
189
190 *ppos = next ? next->vm_start : -1UL;
191
192 return next;
193 }
194
m_stop(struct seq_file * m,void * v)195 static void m_stop(struct seq_file *m, void *v)
196 {
197 struct proc_maps_private *priv = m->private;
198 struct mm_struct *mm = priv->mm;
199
200 if (!priv->task)
201 return;
202
203 release_task_mempolicy(priv);
204 mmap_read_unlock(mm);
205 mmput(mm);
206 put_task_struct(priv->task);
207 priv->task = NULL;
208 }
209
proc_maps_open(struct inode * inode,struct file * file,const struct seq_operations * ops,int psize)210 static int proc_maps_open(struct inode *inode, struct file *file,
211 const struct seq_operations *ops, int psize)
212 {
213 struct proc_maps_private *priv = __seq_open_private(file, ops, psize);
214
215 if (!priv)
216 return -ENOMEM;
217
218 priv->inode = inode;
219 priv->mm = proc_mem_open(inode, PTRACE_MODE_READ);
220 if (IS_ERR(priv->mm)) {
221 int err = PTR_ERR(priv->mm);
222
223 seq_release_private(inode, file);
224 return err;
225 }
226
227 return 0;
228 }
229
proc_map_release(struct inode * inode,struct file * file)230 static int proc_map_release(struct inode *inode, struct file *file)
231 {
232 struct seq_file *seq = file->private_data;
233 struct proc_maps_private *priv = seq->private;
234
235 if (priv->mm)
236 mmdrop(priv->mm);
237
238 return seq_release_private(inode, file);
239 }
240
do_maps_open(struct inode * inode,struct file * file,const struct seq_operations * ops)241 static int do_maps_open(struct inode *inode, struct file *file,
242 const struct seq_operations *ops)
243 {
244 return proc_maps_open(inode, file, ops,
245 sizeof(struct proc_maps_private));
246 }
247
248 /*
249 * Indicate if the VMA is a stack for the given task; for
250 * /proc/PID/maps that is the stack of the main task.
251 */
is_stack(struct vm_area_struct * vma)252 static int is_stack(struct vm_area_struct *vma)
253 {
254 /*
255 * We make no effort to guess what a given thread considers to be
256 * its "stack". It's not even well-defined for programs written
257 * languages like Go.
258 */
259 return vma->vm_start <= vma->vm_mm->start_stack &&
260 vma->vm_end >= vma->vm_mm->start_stack;
261 }
262
show_vma_header_prefix(struct seq_file * m,unsigned long start,unsigned long end,vm_flags_t flags,unsigned long long pgoff,dev_t dev,unsigned long ino)263 static void show_vma_header_prefix(struct seq_file *m,
264 unsigned long start, unsigned long end,
265 vm_flags_t flags, unsigned long long pgoff,
266 dev_t dev, unsigned long ino)
267 {
268 seq_setwidth(m, 25 + sizeof(void *) * 6 - 1);
269 seq_put_hex_ll(m, NULL, start, 8);
270 seq_put_hex_ll(m, "-", end, 8);
271 seq_putc(m, ' ');
272 seq_putc(m, flags & VM_READ ? 'r' : '-');
273 seq_putc(m, flags & VM_WRITE ? 'w' : '-');
274 seq_putc(m, flags & VM_EXEC ? 'x' : '-');
275 seq_putc(m, flags & VM_MAYSHARE ? 's' : 'p');
276 seq_put_hex_ll(m, " ", pgoff, 8);
277 seq_put_hex_ll(m, " ", MAJOR(dev), 2);
278 seq_put_hex_ll(m, ":", MINOR(dev), 2);
279 seq_put_decimal_ull(m, " ", ino);
280 seq_putc(m, ' ');
281 }
282
283 static void
show_map_vma(struct seq_file * m,struct vm_area_struct * vma)284 show_map_vma(struct seq_file *m, struct vm_area_struct *vma)
285 {
286 struct mm_struct *mm = vma->vm_mm;
287 struct file *file = vma->vm_file;
288 vm_flags_t flags = vma->vm_flags;
289 unsigned long ino = 0;
290 unsigned long long pgoff = 0;
291 unsigned long start, end;
292 dev_t dev = 0;
293 const char *name = NULL;
294
295 if (file) {
296 struct inode *inode = file_inode(vma->vm_file);
297 dev = inode->i_sb->s_dev;
298 ino = inode->i_ino;
299 pgoff = ((loff_t)vma->vm_pgoff) << PAGE_SHIFT;
300 }
301
302 start = vma->vm_start;
303 end = vma->vm_end;
304 show_vma_header_prefix(m, start, end, flags, pgoff, dev, ino);
305
306 /*
307 * Print the dentry name for named mappings, and a
308 * special [heap] marker for the heap:
309 */
310 if (file) {
311 seq_pad(m, ' ');
312 seq_file_path(m, file, "\n");
313 goto done;
314 }
315
316 if (vma->vm_ops && vma->vm_ops->name) {
317 name = vma->vm_ops->name(vma);
318 if (name)
319 goto done;
320 }
321
322 name = arch_vma_name(vma);
323 if (!name) {
324 struct anon_vma_name *anon_name;
325
326 if (!mm) {
327 name = "[vdso]";
328 goto done;
329 }
330
331 if (vma->vm_start <= mm->brk &&
332 vma->vm_end >= mm->start_brk) {
333 name = "[heap]";
334 goto done;
335 }
336
337 if (is_stack(vma)) {
338 name = "[stack]";
339 goto done;
340 }
341
342 anon_name = anon_vma_name(vma);
343 if (anon_name) {
344 seq_pad(m, ' ');
345 seq_printf(m, "[anon:%s]", anon_name->name);
346 }
347 }
348
349 done:
350 if (name) {
351 seq_pad(m, ' ');
352 seq_puts(m, name);
353 }
354 seq_putc(m, '\n');
355 }
356
show_map(struct seq_file * m,void * v)357 static int show_map(struct seq_file *m, void *v)
358 {
359 show_map_vma(m, v);
360 return 0;
361 }
362
363 static const struct seq_operations proc_pid_maps_op = {
364 .start = m_start,
365 .next = m_next,
366 .stop = m_stop,
367 .show = show_map
368 };
369
pid_maps_open(struct inode * inode,struct file * file)370 static int pid_maps_open(struct inode *inode, struct file *file)
371 {
372 return do_maps_open(inode, file, &proc_pid_maps_op);
373 }
374
375 const struct file_operations proc_pid_maps_operations = {
376 .open = pid_maps_open,
377 .read = seq_read,
378 .llseek = seq_lseek,
379 .release = proc_map_release,
380 };
381
382 /*
383 * Proportional Set Size(PSS): my share of RSS.
384 *
385 * PSS of a process is the count of pages it has in memory, where each
386 * page is divided by the number of processes sharing it. So if a
387 * process has 1000 pages all to itself, and 1000 shared with one other
388 * process, its PSS will be 1500.
389 *
390 * To keep (accumulated) division errors low, we adopt a 64bit
391 * fixed-point pss counter to minimize division errors. So (pss >>
392 * PSS_SHIFT) would be the real byte count.
393 *
394 * A shift of 12 before division means (assuming 4K page size):
395 * - 1M 3-user-pages add up to 8KB errors;
396 * - supports mapcount up to 2^24, or 16M;
397 * - supports PSS up to 2^52 bytes, or 4PB.
398 */
399 #define PSS_SHIFT 12
400
401 #ifdef CONFIG_PROC_PAGE_MONITOR
402 struct mem_size_stats {
403 unsigned long resident;
404 unsigned long shared_clean;
405 unsigned long shared_dirty;
406 unsigned long private_clean;
407 unsigned long private_dirty;
408 unsigned long referenced;
409 unsigned long anonymous;
410 unsigned long lazyfree;
411 unsigned long anonymous_thp;
412 unsigned long shmem_thp;
413 unsigned long file_thp;
414 unsigned long swap;
415 unsigned long shared_hugetlb;
416 unsigned long private_hugetlb;
417 u64 pss;
418 u64 pss_anon;
419 u64 pss_file;
420 u64 pss_shmem;
421 u64 pss_locked;
422 u64 swap_pss;
423 bool check_shmem_swap;
424 };
425
smaps_page_accumulate(struct mem_size_stats * mss,struct page * page,unsigned long size,unsigned long pss,bool dirty,bool locked,bool private)426 static void smaps_page_accumulate(struct mem_size_stats *mss,
427 struct page *page, unsigned long size, unsigned long pss,
428 bool dirty, bool locked, bool private)
429 {
430 mss->pss += pss;
431
432 if (PageAnon(page))
433 mss->pss_anon += pss;
434 else if (PageSwapBacked(page))
435 mss->pss_shmem += pss;
436 else
437 mss->pss_file += pss;
438
439 if (locked)
440 mss->pss_locked += pss;
441
442 if (dirty || PageDirty(page)) {
443 if (private)
444 mss->private_dirty += size;
445 else
446 mss->shared_dirty += size;
447 } else {
448 if (private)
449 mss->private_clean += size;
450 else
451 mss->shared_clean += size;
452 }
453 }
454
smaps_account(struct mem_size_stats * mss,struct page * page,bool compound,bool young,bool dirty,bool locked,bool migration)455 static void smaps_account(struct mem_size_stats *mss, struct page *page,
456 bool compound, bool young, bool dirty, bool locked,
457 bool migration)
458 {
459 int i, nr = compound ? compound_nr(page) : 1;
460 unsigned long size = nr * PAGE_SIZE;
461
462 /*
463 * First accumulate quantities that depend only on |size| and the type
464 * of the compound page.
465 */
466 if (PageAnon(page)) {
467 mss->anonymous += size;
468 if (!PageSwapBacked(page) && !dirty && !PageDirty(page))
469 mss->lazyfree += size;
470 }
471
472 mss->resident += size;
473 /* Accumulate the size in pages that have been accessed. */
474 if (young || page_is_young(page) || PageReferenced(page))
475 mss->referenced += size;
476
477 /*
478 * Then accumulate quantities that may depend on sharing, or that may
479 * differ page-by-page.
480 *
481 * page_count(page) == 1 guarantees the page is mapped exactly once.
482 * If any subpage of the compound page mapped with PTE it would elevate
483 * page_count().
484 *
485 * The page_mapcount() is called to get a snapshot of the mapcount.
486 * Without holding the page lock this snapshot can be slightly wrong as
487 * we cannot always read the mapcount atomically. It is not safe to
488 * call page_mapcount() even with PTL held if the page is not mapped,
489 * especially for migration entries. Treat regular migration entries
490 * as mapcount == 1.
491 */
492 if ((page_count(page) == 1) || migration) {
493 smaps_page_accumulate(mss, page, size, size << PSS_SHIFT, dirty,
494 locked, true);
495 return;
496 }
497 for (i = 0; i < nr; i++, page++) {
498 int mapcount = page_mapcount(page);
499 unsigned long pss = PAGE_SIZE << PSS_SHIFT;
500 if (mapcount >= 2)
501 pss /= mapcount;
502 smaps_page_accumulate(mss, page, PAGE_SIZE, pss, dirty, locked,
503 mapcount < 2);
504 }
505 }
506
507 #ifdef CONFIG_SHMEM
smaps_pte_hole(unsigned long addr,unsigned long end,__always_unused int depth,struct mm_walk * walk)508 static int smaps_pte_hole(unsigned long addr, unsigned long end,
509 __always_unused int depth, struct mm_walk *walk)
510 {
511 struct mem_size_stats *mss = walk->private;
512
513 mss->swap += shmem_partial_swap_usage(
514 walk->vma->vm_file->f_mapping, addr, end);
515
516 return 0;
517 }
518 #else
519 #define smaps_pte_hole NULL
520 #endif /* CONFIG_SHMEM */
521
smaps_pte_entry(pte_t * pte,unsigned long addr,struct mm_walk * walk)522 static void smaps_pte_entry(pte_t *pte, unsigned long addr,
523 struct mm_walk *walk)
524 {
525 struct mem_size_stats *mss = walk->private;
526 struct vm_area_struct *vma = walk->vma;
527 bool locked = !!(vma->vm_flags & VM_LOCKED);
528 struct page *page = NULL;
529 bool migration = false;
530
531 if (pte_present(*pte)) {
532 page = vm_normal_page(vma, addr, *pte);
533 } else if (is_swap_pte(*pte)) {
534 swp_entry_t swpent = pte_to_swp_entry(*pte);
535
536 if (!non_swap_entry(swpent)) {
537 int mapcount;
538
539 mss->swap += PAGE_SIZE;
540 mapcount = swp_swapcount(swpent);
541 if (mapcount >= 2) {
542 u64 pss_delta = (u64)PAGE_SIZE << PSS_SHIFT;
543
544 do_div(pss_delta, mapcount);
545 mss->swap_pss += pss_delta;
546 } else {
547 mss->swap_pss += (u64)PAGE_SIZE << PSS_SHIFT;
548 }
549 } else if (is_migration_entry(swpent)) {
550 migration = true;
551 page = migration_entry_to_page(swpent);
552 } else if (is_device_private_entry(swpent))
553 page = device_private_entry_to_page(swpent);
554 } else if (unlikely(IS_ENABLED(CONFIG_SHMEM) && mss->check_shmem_swap
555 && pte_none(*pte))) {
556 page = xa_load(&vma->vm_file->f_mapping->i_pages,
557 linear_page_index(vma, addr));
558 if (xa_is_value(page))
559 mss->swap += PAGE_SIZE;
560 return;
561 }
562
563 if (!page)
564 return;
565
566 smaps_account(mss, page, false, pte_young(*pte), pte_dirty(*pte),
567 locked, migration);
568 }
569
570 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
smaps_pmd_entry(pmd_t * pmd,unsigned long addr,struct mm_walk * walk)571 static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr,
572 struct mm_walk *walk)
573 {
574 struct mem_size_stats *mss = walk->private;
575 struct vm_area_struct *vma = walk->vma;
576 bool locked = !!(vma->vm_flags & VM_LOCKED);
577 struct page *page = NULL;
578 bool migration = false;
579
580 if (pmd_present(*pmd)) {
581 /* FOLL_DUMP will return -EFAULT on huge zero page */
582 page = follow_trans_huge_pmd(vma, addr, pmd, FOLL_DUMP);
583 } else if (unlikely(thp_migration_supported() && is_swap_pmd(*pmd))) {
584 swp_entry_t entry = pmd_to_swp_entry(*pmd);
585
586 if (is_migration_entry(entry)) {
587 migration = true;
588 page = migration_entry_to_page(entry);
589 }
590 }
591 if (IS_ERR_OR_NULL(page))
592 return;
593 if (PageAnon(page))
594 mss->anonymous_thp += HPAGE_PMD_SIZE;
595 else if (PageSwapBacked(page))
596 mss->shmem_thp += HPAGE_PMD_SIZE;
597 else if (is_zone_device_page(page))
598 /* pass */;
599 else
600 mss->file_thp += HPAGE_PMD_SIZE;
601
602 smaps_account(mss, page, true, pmd_young(*pmd), pmd_dirty(*pmd),
603 locked, migration);
604 }
605 #else
smaps_pmd_entry(pmd_t * pmd,unsigned long addr,struct mm_walk * walk)606 static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr,
607 struct mm_walk *walk)
608 {
609 }
610 #endif
611
smaps_pte_range(pmd_t * pmd,unsigned long addr,unsigned long end,struct mm_walk * walk)612 static int smaps_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
613 struct mm_walk *walk)
614 {
615 struct vm_area_struct *vma = walk->vma;
616 pte_t *pte;
617 spinlock_t *ptl;
618
619 ptl = pmd_trans_huge_lock(pmd, vma);
620 if (ptl) {
621 smaps_pmd_entry(pmd, addr, walk);
622 spin_unlock(ptl);
623 goto out;
624 }
625
626 if (pmd_trans_unstable(pmd))
627 goto out;
628 /*
629 * The mmap_lock held all the way back in m_start() is what
630 * keeps khugepaged out of here and from collapsing things
631 * in here.
632 */
633 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
634 for (; addr != end; pte++, addr += PAGE_SIZE)
635 smaps_pte_entry(pte, addr, walk);
636 pte_unmap_unlock(pte - 1, ptl);
637 out:
638 cond_resched();
639 return 0;
640 }
641
show_smap_vma_flags(struct seq_file * m,struct vm_area_struct * vma)642 static void show_smap_vma_flags(struct seq_file *m, struct vm_area_struct *vma)
643 {
644 /*
645 * Don't forget to update Documentation/ on changes.
646 */
647 static const char mnemonics[BITS_PER_LONG][2] = {
648 /*
649 * In case if we meet a flag we don't know about.
650 */
651 [0 ... (BITS_PER_LONG-1)] = "??",
652
653 [ilog2(VM_READ)] = "rd",
654 [ilog2(VM_WRITE)] = "wr",
655 [ilog2(VM_EXEC)] = "ex",
656 [ilog2(VM_SHARED)] = "sh",
657 [ilog2(VM_MAYREAD)] = "mr",
658 [ilog2(VM_MAYWRITE)] = "mw",
659 [ilog2(VM_MAYEXEC)] = "me",
660 [ilog2(VM_MAYSHARE)] = "ms",
661 [ilog2(VM_GROWSDOWN)] = "gd",
662 [ilog2(VM_PFNMAP)] = "pf",
663 [ilog2(VM_DENYWRITE)] = "dw",
664 [ilog2(VM_LOCKED)] = "lo",
665 [ilog2(VM_IO)] = "io",
666 [ilog2(VM_SEQ_READ)] = "sr",
667 [ilog2(VM_RAND_READ)] = "rr",
668 [ilog2(VM_DONTCOPY)] = "dc",
669 [ilog2(VM_DONTEXPAND)] = "de",
670 [ilog2(VM_ACCOUNT)] = "ac",
671 [ilog2(VM_NORESERVE)] = "nr",
672 [ilog2(VM_HUGETLB)] = "ht",
673 [ilog2(VM_SYNC)] = "sf",
674 [ilog2(VM_ARCH_1)] = "ar",
675 [ilog2(VM_WIPEONFORK)] = "wf",
676 [ilog2(VM_DONTDUMP)] = "dd",
677 #ifdef CONFIG_ARM64_BTI
678 [ilog2(VM_ARM64_BTI)] = "bt",
679 #endif
680 #ifdef CONFIG_MEM_SOFT_DIRTY
681 [ilog2(VM_SOFTDIRTY)] = "sd",
682 #endif
683 [ilog2(VM_MIXEDMAP)] = "mm",
684 [ilog2(VM_HUGEPAGE)] = "hg",
685 [ilog2(VM_NOHUGEPAGE)] = "nh",
686 [ilog2(VM_MERGEABLE)] = "mg",
687 [ilog2(VM_UFFD_MISSING)]= "um",
688 [ilog2(VM_UFFD_WP)] = "uw",
689 #ifdef CONFIG_ARM64_MTE
690 [ilog2(VM_MTE)] = "mt",
691 [ilog2(VM_MTE_ALLOWED)] = "",
692 #endif
693 #ifdef CONFIG_ARCH_HAS_PKEYS
694 /* These come out via ProtectionKey: */
695 [ilog2(VM_PKEY_BIT0)] = "",
696 [ilog2(VM_PKEY_BIT1)] = "",
697 [ilog2(VM_PKEY_BIT2)] = "",
698 [ilog2(VM_PKEY_BIT3)] = "",
699 #if VM_PKEY_BIT4
700 [ilog2(VM_PKEY_BIT4)] = "",
701 #endif
702 #endif /* CONFIG_ARCH_HAS_PKEYS */
703 };
704 size_t i;
705
706 seq_puts(m, "VmFlags: ");
707 for (i = 0; i < BITS_PER_LONG; i++) {
708 if (!mnemonics[i][0])
709 continue;
710 if (vma->vm_flags & (1UL << i)) {
711 seq_putc(m, mnemonics[i][0]);
712 seq_putc(m, mnemonics[i][1]);
713 seq_putc(m, ' ');
714 }
715 }
716 seq_putc(m, '\n');
717 }
718
719 #ifdef CONFIG_HUGETLB_PAGE
smaps_hugetlb_range(pte_t * pte,unsigned long hmask,unsigned long addr,unsigned long end,struct mm_walk * walk)720 static int smaps_hugetlb_range(pte_t *pte, unsigned long hmask,
721 unsigned long addr, unsigned long end,
722 struct mm_walk *walk)
723 {
724 struct mem_size_stats *mss = walk->private;
725 struct vm_area_struct *vma = walk->vma;
726 struct page *page = NULL;
727
728 if (pte_present(*pte)) {
729 page = vm_normal_page(vma, addr, *pte);
730 } else if (is_swap_pte(*pte)) {
731 swp_entry_t swpent = pte_to_swp_entry(*pte);
732
733 if (is_migration_entry(swpent))
734 page = migration_entry_to_page(swpent);
735 else if (is_device_private_entry(swpent))
736 page = device_private_entry_to_page(swpent);
737 }
738 if (page) {
739 int mapcount = page_mapcount(page);
740
741 if (mapcount >= 2)
742 mss->shared_hugetlb += huge_page_size(hstate_vma(vma));
743 else
744 mss->private_hugetlb += huge_page_size(hstate_vma(vma));
745 }
746 return 0;
747 }
748 #else
749 #define smaps_hugetlb_range NULL
750 #endif /* HUGETLB_PAGE */
751
752 static const struct mm_walk_ops smaps_walk_ops = {
753 .pmd_entry = smaps_pte_range,
754 .hugetlb_entry = smaps_hugetlb_range,
755 };
756
757 static const struct mm_walk_ops smaps_shmem_walk_ops = {
758 .pmd_entry = smaps_pte_range,
759 .hugetlb_entry = smaps_hugetlb_range,
760 .pte_hole = smaps_pte_hole,
761 };
762
763 /*
764 * Gather mem stats from @vma with the indicated beginning
765 * address @start, and keep them in @mss.
766 *
767 * Use vm_start of @vma as the beginning address if @start is 0.
768 */
smap_gather_stats(struct vm_area_struct * vma,struct mem_size_stats * mss,unsigned long start)769 static void smap_gather_stats(struct vm_area_struct *vma,
770 struct mem_size_stats *mss, unsigned long start)
771 {
772 const struct mm_walk_ops *ops = &smaps_walk_ops;
773
774 /* Invalid start */
775 if (start >= vma->vm_end)
776 return;
777
778 #ifdef CONFIG_SHMEM
779 /* In case of smaps_rollup, reset the value from previous vma */
780 mss->check_shmem_swap = false;
781 if (vma->vm_file && shmem_mapping(vma->vm_file->f_mapping)) {
782 /*
783 * For shared or readonly shmem mappings we know that all
784 * swapped out pages belong to the shmem object, and we can
785 * obtain the swap value much more efficiently. For private
786 * writable mappings, we might have COW pages that are
787 * not affected by the parent swapped out pages of the shmem
788 * object, so we have to distinguish them during the page walk.
789 * Unless we know that the shmem object (or the part mapped by
790 * our VMA) has no swapped out pages at all.
791 */
792 unsigned long shmem_swapped = shmem_swap_usage(vma);
793
794 if (!start && (!shmem_swapped || (vma->vm_flags & VM_SHARED) ||
795 !(vma->vm_flags & VM_WRITE))) {
796 mss->swap += shmem_swapped;
797 } else {
798 mss->check_shmem_swap = true;
799 ops = &smaps_shmem_walk_ops;
800 }
801 }
802 #endif
803 /* mmap_lock is held in m_start */
804 if (!start)
805 walk_page_vma(vma, ops, mss);
806 else
807 walk_page_range(vma->vm_mm, start, vma->vm_end, ops, mss);
808 }
809
810 #define SEQ_PUT_DEC(str, val) \
811 seq_put_decimal_ull_width(m, str, (val) >> 10, 8)
812
813 /* Show the contents common for smaps and smaps_rollup */
__show_smap(struct seq_file * m,const struct mem_size_stats * mss,bool rollup_mode)814 static void __show_smap(struct seq_file *m, const struct mem_size_stats *mss,
815 bool rollup_mode)
816 {
817 SEQ_PUT_DEC("Rss: ", mss->resident);
818 SEQ_PUT_DEC(" kB\nPss: ", mss->pss >> PSS_SHIFT);
819 if (rollup_mode) {
820 /*
821 * These are meaningful only for smaps_rollup, otherwise two of
822 * them are zero, and the other one is the same as Pss.
823 */
824 SEQ_PUT_DEC(" kB\nPss_Anon: ",
825 mss->pss_anon >> PSS_SHIFT);
826 SEQ_PUT_DEC(" kB\nPss_File: ",
827 mss->pss_file >> PSS_SHIFT);
828 SEQ_PUT_DEC(" kB\nPss_Shmem: ",
829 mss->pss_shmem >> PSS_SHIFT);
830 }
831 SEQ_PUT_DEC(" kB\nShared_Clean: ", mss->shared_clean);
832 SEQ_PUT_DEC(" kB\nShared_Dirty: ", mss->shared_dirty);
833 SEQ_PUT_DEC(" kB\nPrivate_Clean: ", mss->private_clean);
834 SEQ_PUT_DEC(" kB\nPrivate_Dirty: ", mss->private_dirty);
835 SEQ_PUT_DEC(" kB\nReferenced: ", mss->referenced);
836 SEQ_PUT_DEC(" kB\nAnonymous: ", mss->anonymous);
837 SEQ_PUT_DEC(" kB\nLazyFree: ", mss->lazyfree);
838 SEQ_PUT_DEC(" kB\nAnonHugePages: ", mss->anonymous_thp);
839 SEQ_PUT_DEC(" kB\nShmemPmdMapped: ", mss->shmem_thp);
840 SEQ_PUT_DEC(" kB\nFilePmdMapped: ", mss->file_thp);
841 SEQ_PUT_DEC(" kB\nShared_Hugetlb: ", mss->shared_hugetlb);
842 seq_put_decimal_ull_width(m, " kB\nPrivate_Hugetlb: ",
843 mss->private_hugetlb >> 10, 7);
844 SEQ_PUT_DEC(" kB\nSwap: ", mss->swap);
845 SEQ_PUT_DEC(" kB\nSwapPss: ",
846 mss->swap_pss >> PSS_SHIFT);
847 SEQ_PUT_DEC(" kB\nLocked: ",
848 mss->pss_locked >> PSS_SHIFT);
849 seq_puts(m, " kB\n");
850 }
851
show_smap(struct seq_file * m,void * v)852 static int show_smap(struct seq_file *m, void *v)
853 {
854 struct vm_area_struct *vma = v;
855 struct mem_size_stats mss;
856
857 memset(&mss, 0, sizeof(mss));
858
859 smap_gather_stats(vma, &mss, 0);
860
861 show_map_vma(m, vma);
862
863 SEQ_PUT_DEC("Size: ", vma->vm_end - vma->vm_start);
864 SEQ_PUT_DEC(" kB\nKernelPageSize: ", vma_kernel_pagesize(vma));
865 SEQ_PUT_DEC(" kB\nMMUPageSize: ", vma_mmu_pagesize(vma));
866 seq_puts(m, " kB\n");
867
868 __show_smap(m, &mss, false);
869
870 seq_printf(m, "THPeligible: %d\n",
871 transparent_hugepage_active(vma));
872
873 if (arch_pkeys_enabled())
874 seq_printf(m, "ProtectionKey: %8u\n", vma_pkey(vma));
875 show_smap_vma_flags(m, vma);
876
877 return 0;
878 }
879
show_smaps_rollup(struct seq_file * m,void * v)880 static int show_smaps_rollup(struct seq_file *m, void *v)
881 {
882 struct proc_maps_private *priv = m->private;
883 struct mem_size_stats mss;
884 struct mm_struct *mm;
885 struct vm_area_struct *vma;
886 unsigned long last_vma_end = 0;
887 int ret = 0;
888
889 priv->task = get_proc_task(priv->inode);
890 if (!priv->task)
891 return -ESRCH;
892
893 mm = priv->mm;
894 if (!mm || !mmget_not_zero(mm)) {
895 ret = -ESRCH;
896 goto out_put_task;
897 }
898
899 memset(&mss, 0, sizeof(mss));
900
901 ret = mmap_read_lock_killable(mm);
902 if (ret)
903 goto out_put_mm;
904
905 hold_task_mempolicy(priv);
906
907 for (vma = priv->mm->mmap; vma;) {
908 smap_gather_stats(vma, &mss, 0);
909 last_vma_end = vma->vm_end;
910
911 /*
912 * Release mmap_lock temporarily if someone wants to
913 * access it for write request.
914 */
915 if (mmap_lock_is_contended(mm)) {
916 mmap_read_unlock(mm);
917 ret = mmap_read_lock_killable(mm);
918 if (ret) {
919 release_task_mempolicy(priv);
920 goto out_put_mm;
921 }
922
923 /*
924 * After dropping the lock, there are four cases to
925 * consider. See the following example for explanation.
926 *
927 * +------+------+-----------+
928 * | VMA1 | VMA2 | VMA3 |
929 * +------+------+-----------+
930 * | | | |
931 * 4k 8k 16k 400k
932 *
933 * Suppose we drop the lock after reading VMA2 due to
934 * contention, then we get:
935 *
936 * last_vma_end = 16k
937 *
938 * 1) VMA2 is freed, but VMA3 exists:
939 *
940 * find_vma(mm, 16k - 1) will return VMA3.
941 * In this case, just continue from VMA3.
942 *
943 * 2) VMA2 still exists:
944 *
945 * find_vma(mm, 16k - 1) will return VMA2.
946 * Iterate the loop like the original one.
947 *
948 * 3) No more VMAs can be found:
949 *
950 * find_vma(mm, 16k - 1) will return NULL.
951 * No more things to do, just break.
952 *
953 * 4) (last_vma_end - 1) is the middle of a vma (VMA'):
954 *
955 * find_vma(mm, 16k - 1) will return VMA' whose range
956 * contains last_vma_end.
957 * Iterate VMA' from last_vma_end.
958 */
959 vma = find_vma(mm, last_vma_end - 1);
960 /* Case 3 above */
961 if (!vma)
962 break;
963
964 /* Case 1 above */
965 if (vma->vm_start >= last_vma_end)
966 continue;
967
968 /* Case 4 above */
969 if (vma->vm_end > last_vma_end)
970 smap_gather_stats(vma, &mss, last_vma_end);
971 }
972 /* Case 2 above */
973 vma = vma->vm_next;
974 }
975
976 show_vma_header_prefix(m, priv->mm->mmap->vm_start,
977 last_vma_end, 0, 0, 0, 0);
978 seq_pad(m, ' ');
979 seq_puts(m, "[rollup]\n");
980
981 __show_smap(m, &mss, true);
982
983 release_task_mempolicy(priv);
984 mmap_read_unlock(mm);
985
986 out_put_mm:
987 mmput(mm);
988 out_put_task:
989 put_task_struct(priv->task);
990 priv->task = NULL;
991
992 return ret;
993 }
994 #undef SEQ_PUT_DEC
995
996 static const struct seq_operations proc_pid_smaps_op = {
997 .start = m_start,
998 .next = m_next,
999 .stop = m_stop,
1000 .show = show_smap
1001 };
1002
pid_smaps_open(struct inode * inode,struct file * file)1003 static int pid_smaps_open(struct inode *inode, struct file *file)
1004 {
1005 return do_maps_open(inode, file, &proc_pid_smaps_op);
1006 }
1007
smaps_rollup_open(struct inode * inode,struct file * file)1008 static int smaps_rollup_open(struct inode *inode, struct file *file)
1009 {
1010 int ret;
1011 struct proc_maps_private *priv;
1012
1013 priv = kzalloc(sizeof(*priv), GFP_KERNEL_ACCOUNT);
1014 if (!priv)
1015 return -ENOMEM;
1016
1017 ret = single_open(file, show_smaps_rollup, priv);
1018 if (ret)
1019 goto out_free;
1020
1021 priv->inode = inode;
1022 priv->mm = proc_mem_open(inode, PTRACE_MODE_READ);
1023 if (IS_ERR(priv->mm)) {
1024 ret = PTR_ERR(priv->mm);
1025
1026 single_release(inode, file);
1027 goto out_free;
1028 }
1029
1030 return 0;
1031
1032 out_free:
1033 kfree(priv);
1034 return ret;
1035 }
1036
smaps_rollup_release(struct inode * inode,struct file * file)1037 static int smaps_rollup_release(struct inode *inode, struct file *file)
1038 {
1039 struct seq_file *seq = file->private_data;
1040 struct proc_maps_private *priv = seq->private;
1041
1042 if (priv->mm)
1043 mmdrop(priv->mm);
1044
1045 kfree(priv);
1046 return single_release(inode, file);
1047 }
1048
1049 const struct file_operations proc_pid_smaps_operations = {
1050 .open = pid_smaps_open,
1051 .read = seq_read,
1052 .llseek = seq_lseek,
1053 .release = proc_map_release,
1054 };
1055
1056 const struct file_operations proc_pid_smaps_rollup_operations = {
1057 .open = smaps_rollup_open,
1058 .read = seq_read,
1059 .llseek = seq_lseek,
1060 .release = smaps_rollup_release,
1061 };
1062
1063 enum clear_refs_types {
1064 CLEAR_REFS_ALL = 1,
1065 CLEAR_REFS_ANON,
1066 CLEAR_REFS_MAPPED,
1067 CLEAR_REFS_SOFT_DIRTY,
1068 CLEAR_REFS_MM_HIWATER_RSS,
1069 CLEAR_REFS_LAST,
1070 };
1071
1072 struct clear_refs_private {
1073 enum clear_refs_types type;
1074 };
1075
1076 #ifdef CONFIG_MEM_SOFT_DIRTY
1077
1078 #define is_cow_mapping(flags) (((flags) & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE)
1079
pte_is_pinned(struct vm_area_struct * vma,unsigned long addr,pte_t pte)1080 static inline bool pte_is_pinned(struct vm_area_struct *vma, unsigned long addr, pte_t pte)
1081 {
1082 struct page *page;
1083
1084 if (!pte_write(pte))
1085 return false;
1086 if (!is_cow_mapping(vma->vm_flags))
1087 return false;
1088 if (likely(!atomic_read(&vma->vm_mm->has_pinned)))
1089 return false;
1090 page = vm_normal_page(vma, addr, pte);
1091 if (!page)
1092 return false;
1093 return page_maybe_dma_pinned(page);
1094 }
1095
clear_soft_dirty(struct vm_area_struct * vma,unsigned long addr,pte_t * pte)1096 static inline void clear_soft_dirty(struct vm_area_struct *vma,
1097 unsigned long addr, pte_t *pte)
1098 {
1099 /*
1100 * The soft-dirty tracker uses #PF-s to catch writes
1101 * to pages, so write-protect the pte as well. See the
1102 * Documentation/admin-guide/mm/soft-dirty.rst for full description
1103 * of how soft-dirty works.
1104 */
1105 pte_t ptent = *pte;
1106
1107 if (pte_present(ptent)) {
1108 pte_t old_pte;
1109
1110 if (pte_is_pinned(vma, addr, ptent))
1111 return;
1112 old_pte = ptep_modify_prot_start(vma, addr, pte);
1113 ptent = pte_wrprotect(old_pte);
1114 ptent = pte_clear_soft_dirty(ptent);
1115 ptep_modify_prot_commit(vma, addr, pte, old_pte, ptent);
1116 } else if (is_swap_pte(ptent)) {
1117 ptent = pte_swp_clear_soft_dirty(ptent);
1118 set_pte_at(vma->vm_mm, addr, pte, ptent);
1119 }
1120 }
1121 #else
clear_soft_dirty(struct vm_area_struct * vma,unsigned long addr,pte_t * pte)1122 static inline void clear_soft_dirty(struct vm_area_struct *vma,
1123 unsigned long addr, pte_t *pte)
1124 {
1125 }
1126 #endif
1127
1128 #if defined(CONFIG_MEM_SOFT_DIRTY) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
clear_soft_dirty_pmd(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmdp)1129 static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma,
1130 unsigned long addr, pmd_t *pmdp)
1131 {
1132 pmd_t old, pmd = *pmdp;
1133
1134 if (pmd_present(pmd)) {
1135 /* See comment in change_huge_pmd() */
1136 old = pmdp_invalidate(vma, addr, pmdp);
1137 if (pmd_dirty(old))
1138 pmd = pmd_mkdirty(pmd);
1139 if (pmd_young(old))
1140 pmd = pmd_mkyoung(pmd);
1141
1142 pmd = pmd_wrprotect(pmd);
1143 pmd = pmd_clear_soft_dirty(pmd);
1144
1145 set_pmd_at(vma->vm_mm, addr, pmdp, pmd);
1146 } else if (is_migration_entry(pmd_to_swp_entry(pmd))) {
1147 pmd = pmd_swp_clear_soft_dirty(pmd);
1148 set_pmd_at(vma->vm_mm, addr, pmdp, pmd);
1149 }
1150 }
1151 #else
clear_soft_dirty_pmd(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmdp)1152 static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma,
1153 unsigned long addr, pmd_t *pmdp)
1154 {
1155 }
1156 #endif
1157
clear_refs_pte_range(pmd_t * pmd,unsigned long addr,unsigned long end,struct mm_walk * walk)1158 static int clear_refs_pte_range(pmd_t *pmd, unsigned long addr,
1159 unsigned long end, struct mm_walk *walk)
1160 {
1161 struct clear_refs_private *cp = walk->private;
1162 struct vm_area_struct *vma = walk->vma;
1163 pte_t *pte, ptent;
1164 spinlock_t *ptl;
1165 struct page *page;
1166
1167 ptl = pmd_trans_huge_lock(pmd, vma);
1168 if (ptl) {
1169 if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
1170 clear_soft_dirty_pmd(vma, addr, pmd);
1171 goto out;
1172 }
1173
1174 if (!pmd_present(*pmd))
1175 goto out;
1176
1177 page = pmd_page(*pmd);
1178
1179 /* Clear accessed and referenced bits. */
1180 pmdp_test_and_clear_young(vma, addr, pmd);
1181 test_and_clear_page_young(page);
1182 ClearPageReferenced(page);
1183 out:
1184 spin_unlock(ptl);
1185 return 0;
1186 }
1187
1188 if (pmd_trans_unstable(pmd))
1189 return 0;
1190
1191 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1192 for (; addr != end; pte++, addr += PAGE_SIZE) {
1193 ptent = *pte;
1194
1195 if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
1196 clear_soft_dirty(vma, addr, pte);
1197 continue;
1198 }
1199
1200 if (!pte_present(ptent))
1201 continue;
1202
1203 page = vm_normal_page(vma, addr, ptent);
1204 if (!page)
1205 continue;
1206
1207 /* Clear accessed and referenced bits. */
1208 ptep_test_and_clear_young(vma, addr, pte);
1209 test_and_clear_page_young(page);
1210 ClearPageReferenced(page);
1211 }
1212 pte_unmap_unlock(pte - 1, ptl);
1213 cond_resched();
1214 return 0;
1215 }
1216
clear_refs_test_walk(unsigned long start,unsigned long end,struct mm_walk * walk)1217 static int clear_refs_test_walk(unsigned long start, unsigned long end,
1218 struct mm_walk *walk)
1219 {
1220 struct clear_refs_private *cp = walk->private;
1221 struct vm_area_struct *vma = walk->vma;
1222
1223 if (vma->vm_flags & VM_PFNMAP)
1224 return 1;
1225
1226 /*
1227 * Writing 1 to /proc/pid/clear_refs affects all pages.
1228 * Writing 2 to /proc/pid/clear_refs only affects anonymous pages.
1229 * Writing 3 to /proc/pid/clear_refs only affects file mapped pages.
1230 * Writing 4 to /proc/pid/clear_refs affects all pages.
1231 */
1232 if (cp->type == CLEAR_REFS_ANON && vma->vm_file)
1233 return 1;
1234 if (cp->type == CLEAR_REFS_MAPPED && !vma->vm_file)
1235 return 1;
1236 return 0;
1237 }
1238
1239 static const struct mm_walk_ops clear_refs_walk_ops = {
1240 .pmd_entry = clear_refs_pte_range,
1241 .test_walk = clear_refs_test_walk,
1242 };
1243
clear_refs_write(struct file * file,const char __user * buf,size_t count,loff_t * ppos)1244 static ssize_t clear_refs_write(struct file *file, const char __user *buf,
1245 size_t count, loff_t *ppos)
1246 {
1247 struct task_struct *task;
1248 char buffer[PROC_NUMBUF];
1249 struct mm_struct *mm;
1250 struct vm_area_struct *vma;
1251 enum clear_refs_types type;
1252 int itype;
1253 int rv;
1254
1255 memset(buffer, 0, sizeof(buffer));
1256 if (count > sizeof(buffer) - 1)
1257 count = sizeof(buffer) - 1;
1258 if (copy_from_user(buffer, buf, count))
1259 return -EFAULT;
1260 rv = kstrtoint(strstrip(buffer), 10, &itype);
1261 if (rv < 0)
1262 return rv;
1263 type = (enum clear_refs_types)itype;
1264 if (type < CLEAR_REFS_ALL || type >= CLEAR_REFS_LAST)
1265 return -EINVAL;
1266
1267 task = get_proc_task(file_inode(file));
1268 if (!task)
1269 return -ESRCH;
1270 mm = get_task_mm(task);
1271 if (mm) {
1272 struct mmu_notifier_range range;
1273 struct clear_refs_private cp = {
1274 .type = type,
1275 };
1276
1277 if (mmap_write_lock_killable(mm)) {
1278 count = -EINTR;
1279 goto out_mm;
1280 }
1281 if (type == CLEAR_REFS_MM_HIWATER_RSS) {
1282 /*
1283 * Writing 5 to /proc/pid/clear_refs resets the peak
1284 * resident set size to this mm's current rss value.
1285 */
1286 reset_mm_hiwater_rss(mm);
1287 goto out_unlock;
1288 }
1289
1290 if (type == CLEAR_REFS_SOFT_DIRTY) {
1291 for (vma = mm->mmap; vma; vma = vma->vm_next) {
1292 if (!(vma->vm_flags & VM_SOFTDIRTY))
1293 continue;
1294 vma->vm_flags &= ~VM_SOFTDIRTY;
1295 vma_set_page_prot(vma);
1296 }
1297
1298 inc_tlb_flush_pending(mm);
1299 mmu_notifier_range_init(&range, MMU_NOTIFY_SOFT_DIRTY,
1300 0, NULL, mm, 0, -1UL);
1301 mmu_notifier_invalidate_range_start(&range);
1302 }
1303 walk_page_range(mm, 0, mm->highest_vm_end, &clear_refs_walk_ops,
1304 &cp);
1305 if (type == CLEAR_REFS_SOFT_DIRTY) {
1306 mmu_notifier_invalidate_range_end(&range);
1307 flush_tlb_mm(mm);
1308 dec_tlb_flush_pending(mm);
1309 }
1310 out_unlock:
1311 mmap_write_unlock(mm);
1312 out_mm:
1313 mmput(mm);
1314 }
1315 put_task_struct(task);
1316
1317 return count;
1318 }
1319
1320 const struct file_operations proc_clear_refs_operations = {
1321 .write = clear_refs_write,
1322 .llseek = noop_llseek,
1323 };
1324
1325 typedef struct {
1326 u64 pme;
1327 } pagemap_entry_t;
1328
1329 struct pagemapread {
1330 int pos, len; /* units: PM_ENTRY_BYTES, not bytes */
1331 pagemap_entry_t *buffer;
1332 bool show_pfn;
1333 };
1334
1335 #define PAGEMAP_WALK_SIZE (PMD_SIZE)
1336 #define PAGEMAP_WALK_MASK (PMD_MASK)
1337
1338 #define PM_ENTRY_BYTES sizeof(pagemap_entry_t)
1339 #define PM_PFRAME_BITS 55
1340 #define PM_PFRAME_MASK GENMASK_ULL(PM_PFRAME_BITS - 1, 0)
1341 #define PM_SOFT_DIRTY BIT_ULL(55)
1342 #define PM_MMAP_EXCLUSIVE BIT_ULL(56)
1343 #define PM_FILE BIT_ULL(61)
1344 #define PM_SWAP BIT_ULL(62)
1345 #define PM_PRESENT BIT_ULL(63)
1346
1347 #define PM_END_OF_BUFFER 1
1348
make_pme(u64 frame,u64 flags)1349 static inline pagemap_entry_t make_pme(u64 frame, u64 flags)
1350 {
1351 return (pagemap_entry_t) { .pme = (frame & PM_PFRAME_MASK) | flags };
1352 }
1353
add_to_pagemap(unsigned long addr,pagemap_entry_t * pme,struct pagemapread * pm)1354 static int add_to_pagemap(unsigned long addr, pagemap_entry_t *pme,
1355 struct pagemapread *pm)
1356 {
1357 pm->buffer[pm->pos++] = *pme;
1358 if (pm->pos >= pm->len)
1359 return PM_END_OF_BUFFER;
1360 return 0;
1361 }
1362
pagemap_pte_hole(unsigned long start,unsigned long end,__always_unused int depth,struct mm_walk * walk)1363 static int pagemap_pte_hole(unsigned long start, unsigned long end,
1364 __always_unused int depth, struct mm_walk *walk)
1365 {
1366 struct pagemapread *pm = walk->private;
1367 unsigned long addr = start;
1368 int err = 0;
1369
1370 while (addr < end) {
1371 struct vm_area_struct *vma = find_vma(walk->mm, addr);
1372 pagemap_entry_t pme = make_pme(0, 0);
1373 /* End of address space hole, which we mark as non-present. */
1374 unsigned long hole_end;
1375
1376 if (vma)
1377 hole_end = min(end, vma->vm_start);
1378 else
1379 hole_end = end;
1380
1381 for (; addr < hole_end; addr += PAGE_SIZE) {
1382 err = add_to_pagemap(addr, &pme, pm);
1383 if (err)
1384 goto out;
1385 }
1386
1387 if (!vma)
1388 break;
1389
1390 /* Addresses in the VMA. */
1391 if (vma->vm_flags & VM_SOFTDIRTY)
1392 pme = make_pme(0, PM_SOFT_DIRTY);
1393 for (; addr < min(end, vma->vm_end); addr += PAGE_SIZE) {
1394 err = add_to_pagemap(addr, &pme, pm);
1395 if (err)
1396 goto out;
1397 }
1398 }
1399 out:
1400 return err;
1401 }
1402
pte_to_pagemap_entry(struct pagemapread * pm,struct vm_area_struct * vma,unsigned long addr,pte_t pte)1403 static pagemap_entry_t pte_to_pagemap_entry(struct pagemapread *pm,
1404 struct vm_area_struct *vma, unsigned long addr, pte_t pte)
1405 {
1406 u64 frame = 0, flags = 0;
1407 struct page *page = NULL;
1408 bool migration = false;
1409
1410 if (pte_present(pte)) {
1411 if (pm->show_pfn)
1412 frame = pte_pfn(pte);
1413 flags |= PM_PRESENT;
1414 page = vm_normal_page(vma, addr, pte);
1415 if (pte_soft_dirty(pte))
1416 flags |= PM_SOFT_DIRTY;
1417 } else if (is_swap_pte(pte)) {
1418 swp_entry_t entry;
1419 if (pte_swp_soft_dirty(pte))
1420 flags |= PM_SOFT_DIRTY;
1421 entry = pte_to_swp_entry(pte);
1422 if (pm->show_pfn)
1423 frame = swp_type(entry) |
1424 (swp_offset(entry) << MAX_SWAPFILES_SHIFT);
1425 flags |= PM_SWAP;
1426 if (is_migration_entry(entry)) {
1427 migration = true;
1428 page = migration_entry_to_page(entry);
1429 }
1430
1431 if (is_device_private_entry(entry))
1432 page = device_private_entry_to_page(entry);
1433 }
1434
1435 if (page && !PageAnon(page))
1436 flags |= PM_FILE;
1437 if (page && !migration && page_mapcount(page) == 1)
1438 flags |= PM_MMAP_EXCLUSIVE;
1439 if (vma->vm_flags & VM_SOFTDIRTY)
1440 flags |= PM_SOFT_DIRTY;
1441
1442 return make_pme(frame, flags);
1443 }
1444
pagemap_pmd_range(pmd_t * pmdp,unsigned long addr,unsigned long end,struct mm_walk * walk)1445 static int pagemap_pmd_range(pmd_t *pmdp, unsigned long addr, unsigned long end,
1446 struct mm_walk *walk)
1447 {
1448 struct vm_area_struct *vma = walk->vma;
1449 struct pagemapread *pm = walk->private;
1450 spinlock_t *ptl;
1451 pte_t *pte, *orig_pte;
1452 int err = 0;
1453 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1454 bool migration = false;
1455
1456 ptl = pmd_trans_huge_lock(pmdp, vma);
1457 if (ptl) {
1458 u64 flags = 0, frame = 0;
1459 pmd_t pmd = *pmdp;
1460 struct page *page = NULL;
1461
1462 if (vma->vm_flags & VM_SOFTDIRTY)
1463 flags |= PM_SOFT_DIRTY;
1464
1465 if (pmd_present(pmd)) {
1466 page = pmd_page(pmd);
1467
1468 flags |= PM_PRESENT;
1469 if (pmd_soft_dirty(pmd))
1470 flags |= PM_SOFT_DIRTY;
1471 if (pm->show_pfn)
1472 frame = pmd_pfn(pmd) +
1473 ((addr & ~PMD_MASK) >> PAGE_SHIFT);
1474 }
1475 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1476 else if (is_swap_pmd(pmd)) {
1477 swp_entry_t entry = pmd_to_swp_entry(pmd);
1478 unsigned long offset;
1479
1480 if (pm->show_pfn) {
1481 offset = swp_offset(entry) +
1482 ((addr & ~PMD_MASK) >> PAGE_SHIFT);
1483 frame = swp_type(entry) |
1484 (offset << MAX_SWAPFILES_SHIFT);
1485 }
1486 flags |= PM_SWAP;
1487 if (pmd_swp_soft_dirty(pmd))
1488 flags |= PM_SOFT_DIRTY;
1489 VM_BUG_ON(!is_pmd_migration_entry(pmd));
1490 migration = is_migration_entry(entry);
1491 page = migration_entry_to_page(entry);
1492 }
1493 #endif
1494
1495 if (page && !migration && page_mapcount(page) == 1)
1496 flags |= PM_MMAP_EXCLUSIVE;
1497
1498 for (; addr != end; addr += PAGE_SIZE) {
1499 pagemap_entry_t pme = make_pme(frame, flags);
1500
1501 err = add_to_pagemap(addr, &pme, pm);
1502 if (err)
1503 break;
1504 if (pm->show_pfn) {
1505 if (flags & PM_PRESENT)
1506 frame++;
1507 else if (flags & PM_SWAP)
1508 frame += (1 << MAX_SWAPFILES_SHIFT);
1509 }
1510 }
1511 spin_unlock(ptl);
1512 return err;
1513 }
1514
1515 if (pmd_trans_unstable(pmdp))
1516 return 0;
1517 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1518
1519 /*
1520 * We can assume that @vma always points to a valid one and @end never
1521 * goes beyond vma->vm_end.
1522 */
1523 orig_pte = pte = pte_offset_map_lock(walk->mm, pmdp, addr, &ptl);
1524 for (; addr < end; pte++, addr += PAGE_SIZE) {
1525 pagemap_entry_t pme;
1526
1527 pme = pte_to_pagemap_entry(pm, vma, addr, *pte);
1528 err = add_to_pagemap(addr, &pme, pm);
1529 if (err)
1530 break;
1531 }
1532 pte_unmap_unlock(orig_pte, ptl);
1533
1534 cond_resched();
1535
1536 return err;
1537 }
1538
1539 #ifdef CONFIG_HUGETLB_PAGE
1540 /* This function walks within one hugetlb entry in the single call */
pagemap_hugetlb_range(pte_t * ptep,unsigned long hmask,unsigned long addr,unsigned long end,struct mm_walk * walk)1541 static int pagemap_hugetlb_range(pte_t *ptep, unsigned long hmask,
1542 unsigned long addr, unsigned long end,
1543 struct mm_walk *walk)
1544 {
1545 struct pagemapread *pm = walk->private;
1546 struct vm_area_struct *vma = walk->vma;
1547 u64 flags = 0, frame = 0;
1548 int err = 0;
1549 pte_t pte;
1550
1551 if (vma->vm_flags & VM_SOFTDIRTY)
1552 flags |= PM_SOFT_DIRTY;
1553
1554 pte = huge_ptep_get(ptep);
1555 if (pte_present(pte)) {
1556 struct page *page = pte_page(pte);
1557
1558 if (!PageAnon(page))
1559 flags |= PM_FILE;
1560
1561 if (page_mapcount(page) == 1)
1562 flags |= PM_MMAP_EXCLUSIVE;
1563
1564 flags |= PM_PRESENT;
1565 if (pm->show_pfn)
1566 frame = pte_pfn(pte) +
1567 ((addr & ~hmask) >> PAGE_SHIFT);
1568 }
1569
1570 for (; addr != end; addr += PAGE_SIZE) {
1571 pagemap_entry_t pme = make_pme(frame, flags);
1572
1573 err = add_to_pagemap(addr, &pme, pm);
1574 if (err)
1575 return err;
1576 if (pm->show_pfn && (flags & PM_PRESENT))
1577 frame++;
1578 }
1579
1580 cond_resched();
1581
1582 return err;
1583 }
1584 #else
1585 #define pagemap_hugetlb_range NULL
1586 #endif /* HUGETLB_PAGE */
1587
1588 static const struct mm_walk_ops pagemap_ops = {
1589 .pmd_entry = pagemap_pmd_range,
1590 .pte_hole = pagemap_pte_hole,
1591 .hugetlb_entry = pagemap_hugetlb_range,
1592 };
1593
1594 /*
1595 * /proc/pid/pagemap - an array mapping virtual pages to pfns
1596 *
1597 * For each page in the address space, this file contains one 64-bit entry
1598 * consisting of the following:
1599 *
1600 * Bits 0-54 page frame number (PFN) if present
1601 * Bits 0-4 swap type if swapped
1602 * Bits 5-54 swap offset if swapped
1603 * Bit 55 pte is soft-dirty (see Documentation/admin-guide/mm/soft-dirty.rst)
1604 * Bit 56 page exclusively mapped
1605 * Bits 57-60 zero
1606 * Bit 61 page is file-page or shared-anon
1607 * Bit 62 page swapped
1608 * Bit 63 page present
1609 *
1610 * If the page is not present but in swap, then the PFN contains an
1611 * encoding of the swap file number and the page's offset into the
1612 * swap. Unmapped pages return a null PFN. This allows determining
1613 * precisely which pages are mapped (or in swap) and comparing mapped
1614 * pages between processes.
1615 *
1616 * Efficient users of this interface will use /proc/pid/maps to
1617 * determine which areas of memory are actually mapped and llseek to
1618 * skip over unmapped regions.
1619 */
pagemap_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)1620 static ssize_t pagemap_read(struct file *file, char __user *buf,
1621 size_t count, loff_t *ppos)
1622 {
1623 struct mm_struct *mm = file->private_data;
1624 struct pagemapread pm;
1625 unsigned long src;
1626 unsigned long svpfn;
1627 unsigned long start_vaddr;
1628 unsigned long end_vaddr;
1629 int ret = 0, copied = 0;
1630
1631 if (!mm || !mmget_not_zero(mm))
1632 goto out;
1633
1634 ret = -EINVAL;
1635 /* file position must be aligned */
1636 if ((*ppos % PM_ENTRY_BYTES) || (count % PM_ENTRY_BYTES))
1637 goto out_mm;
1638
1639 ret = 0;
1640 if (!count)
1641 goto out_mm;
1642
1643 /* do not disclose physical addresses: attack vector */
1644 pm.show_pfn = file_ns_capable(file, &init_user_ns, CAP_SYS_ADMIN);
1645
1646 pm.len = (PAGEMAP_WALK_SIZE >> PAGE_SHIFT);
1647 pm.buffer = kmalloc_array(pm.len, PM_ENTRY_BYTES, GFP_KERNEL);
1648 ret = -ENOMEM;
1649 if (!pm.buffer)
1650 goto out_mm;
1651
1652 src = *ppos;
1653 svpfn = src / PM_ENTRY_BYTES;
1654 end_vaddr = mm->task_size;
1655
1656 /* watch out for wraparound */
1657 start_vaddr = end_vaddr;
1658 if (svpfn <= (ULONG_MAX >> PAGE_SHIFT))
1659 start_vaddr = untagged_addr(svpfn << PAGE_SHIFT);
1660
1661 /* Ensure the address is inside the task */
1662 if (start_vaddr > mm->task_size)
1663 start_vaddr = end_vaddr;
1664
1665 /*
1666 * The odds are that this will stop walking way
1667 * before end_vaddr, because the length of the
1668 * user buffer is tracked in "pm", and the walk
1669 * will stop when we hit the end of the buffer.
1670 */
1671 ret = 0;
1672 while (count && (start_vaddr < end_vaddr)) {
1673 int len;
1674 unsigned long end;
1675
1676 pm.pos = 0;
1677 end = (start_vaddr + PAGEMAP_WALK_SIZE) & PAGEMAP_WALK_MASK;
1678 /* overflow ? */
1679 if (end < start_vaddr || end > end_vaddr)
1680 end = end_vaddr;
1681 ret = mmap_read_lock_killable(mm);
1682 if (ret)
1683 goto out_free;
1684 ret = walk_page_range(mm, start_vaddr, end, &pagemap_ops, &pm);
1685 mmap_read_unlock(mm);
1686 start_vaddr = end;
1687
1688 len = min(count, PM_ENTRY_BYTES * pm.pos);
1689 if (copy_to_user(buf, pm.buffer, len)) {
1690 ret = -EFAULT;
1691 goto out_free;
1692 }
1693 copied += len;
1694 buf += len;
1695 count -= len;
1696 }
1697 *ppos += copied;
1698 if (!ret || ret == PM_END_OF_BUFFER)
1699 ret = copied;
1700
1701 out_free:
1702 kfree(pm.buffer);
1703 out_mm:
1704 mmput(mm);
1705 out:
1706 return ret;
1707 }
1708
pagemap_open(struct inode * inode,struct file * file)1709 static int pagemap_open(struct inode *inode, struct file *file)
1710 {
1711 struct mm_struct *mm;
1712
1713 mm = proc_mem_open(inode, PTRACE_MODE_READ);
1714 if (IS_ERR(mm))
1715 return PTR_ERR(mm);
1716 file->private_data = mm;
1717 return 0;
1718 }
1719
pagemap_release(struct inode * inode,struct file * file)1720 static int pagemap_release(struct inode *inode, struct file *file)
1721 {
1722 struct mm_struct *mm = file->private_data;
1723
1724 if (mm)
1725 mmdrop(mm);
1726 return 0;
1727 }
1728
1729 const struct file_operations proc_pagemap_operations = {
1730 .llseek = mem_lseek, /* borrow this */
1731 .read = pagemap_read,
1732 .open = pagemap_open,
1733 .release = pagemap_release,
1734 };
1735 #endif /* CONFIG_PROC_PAGE_MONITOR */
1736
1737 #ifdef CONFIG_NUMA
1738
1739 struct numa_maps {
1740 unsigned long pages;
1741 unsigned long anon;
1742 unsigned long active;
1743 unsigned long writeback;
1744 unsigned long mapcount_max;
1745 unsigned long dirty;
1746 unsigned long swapcache;
1747 unsigned long node[MAX_NUMNODES];
1748 };
1749
1750 struct numa_maps_private {
1751 struct proc_maps_private proc_maps;
1752 struct numa_maps md;
1753 };
1754
gather_stats(struct page * page,struct numa_maps * md,int pte_dirty,unsigned long nr_pages)1755 static void gather_stats(struct page *page, struct numa_maps *md, int pte_dirty,
1756 unsigned long nr_pages)
1757 {
1758 int count = page_mapcount(page);
1759
1760 md->pages += nr_pages;
1761 if (pte_dirty || PageDirty(page))
1762 md->dirty += nr_pages;
1763
1764 if (PageSwapCache(page))
1765 md->swapcache += nr_pages;
1766
1767 if (PageActive(page) || PageUnevictable(page))
1768 md->active += nr_pages;
1769
1770 if (PageWriteback(page))
1771 md->writeback += nr_pages;
1772
1773 if (PageAnon(page))
1774 md->anon += nr_pages;
1775
1776 if (count > md->mapcount_max)
1777 md->mapcount_max = count;
1778
1779 md->node[page_to_nid(page)] += nr_pages;
1780 }
1781
can_gather_numa_stats(pte_t pte,struct vm_area_struct * vma,unsigned long addr)1782 static struct page *can_gather_numa_stats(pte_t pte, struct vm_area_struct *vma,
1783 unsigned long addr)
1784 {
1785 struct page *page;
1786 int nid;
1787
1788 if (!pte_present(pte))
1789 return NULL;
1790
1791 page = vm_normal_page(vma, addr, pte);
1792 if (!page)
1793 return NULL;
1794
1795 if (PageReserved(page))
1796 return NULL;
1797
1798 nid = page_to_nid(page);
1799 if (!node_isset(nid, node_states[N_MEMORY]))
1800 return NULL;
1801
1802 return page;
1803 }
1804
1805 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
can_gather_numa_stats_pmd(pmd_t pmd,struct vm_area_struct * vma,unsigned long addr)1806 static struct page *can_gather_numa_stats_pmd(pmd_t pmd,
1807 struct vm_area_struct *vma,
1808 unsigned long addr)
1809 {
1810 struct page *page;
1811 int nid;
1812
1813 if (!pmd_present(pmd))
1814 return NULL;
1815
1816 page = vm_normal_page_pmd(vma, addr, pmd);
1817 if (!page)
1818 return NULL;
1819
1820 if (PageReserved(page))
1821 return NULL;
1822
1823 nid = page_to_nid(page);
1824 if (!node_isset(nid, node_states[N_MEMORY]))
1825 return NULL;
1826
1827 return page;
1828 }
1829 #endif
1830
gather_pte_stats(pmd_t * pmd,unsigned long addr,unsigned long end,struct mm_walk * walk)1831 static int gather_pte_stats(pmd_t *pmd, unsigned long addr,
1832 unsigned long end, struct mm_walk *walk)
1833 {
1834 struct numa_maps *md = walk->private;
1835 struct vm_area_struct *vma = walk->vma;
1836 spinlock_t *ptl;
1837 pte_t *orig_pte;
1838 pte_t *pte;
1839
1840 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1841 ptl = pmd_trans_huge_lock(pmd, vma);
1842 if (ptl) {
1843 struct page *page;
1844
1845 page = can_gather_numa_stats_pmd(*pmd, vma, addr);
1846 if (page)
1847 gather_stats(page, md, pmd_dirty(*pmd),
1848 HPAGE_PMD_SIZE/PAGE_SIZE);
1849 spin_unlock(ptl);
1850 return 0;
1851 }
1852
1853 if (pmd_trans_unstable(pmd))
1854 return 0;
1855 #endif
1856 orig_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
1857 do {
1858 struct page *page = can_gather_numa_stats(*pte, vma, addr);
1859 if (!page)
1860 continue;
1861 gather_stats(page, md, pte_dirty(*pte), 1);
1862
1863 } while (pte++, addr += PAGE_SIZE, addr != end);
1864 pte_unmap_unlock(orig_pte, ptl);
1865 cond_resched();
1866 return 0;
1867 }
1868 #ifdef CONFIG_HUGETLB_PAGE
gather_hugetlb_stats(pte_t * pte,unsigned long hmask,unsigned long addr,unsigned long end,struct mm_walk * walk)1869 static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask,
1870 unsigned long addr, unsigned long end, struct mm_walk *walk)
1871 {
1872 pte_t huge_pte = huge_ptep_get(pte);
1873 struct numa_maps *md;
1874 struct page *page;
1875
1876 if (!pte_present(huge_pte))
1877 return 0;
1878
1879 page = pte_page(huge_pte);
1880 if (!page)
1881 return 0;
1882
1883 md = walk->private;
1884 gather_stats(page, md, pte_dirty(huge_pte), 1);
1885 return 0;
1886 }
1887
1888 #else
gather_hugetlb_stats(pte_t * pte,unsigned long hmask,unsigned long addr,unsigned long end,struct mm_walk * walk)1889 static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask,
1890 unsigned long addr, unsigned long end, struct mm_walk *walk)
1891 {
1892 return 0;
1893 }
1894 #endif
1895
1896 static const struct mm_walk_ops show_numa_ops = {
1897 .hugetlb_entry = gather_hugetlb_stats,
1898 .pmd_entry = gather_pte_stats,
1899 };
1900
1901 /*
1902 * Display pages allocated per node and memory policy via /proc.
1903 */
show_numa_map(struct seq_file * m,void * v)1904 static int show_numa_map(struct seq_file *m, void *v)
1905 {
1906 struct numa_maps_private *numa_priv = m->private;
1907 struct proc_maps_private *proc_priv = &numa_priv->proc_maps;
1908 struct vm_area_struct *vma = v;
1909 struct numa_maps *md = &numa_priv->md;
1910 struct file *file = vma->vm_file;
1911 struct mm_struct *mm = vma->vm_mm;
1912 struct mempolicy *pol;
1913 char buffer[64];
1914 int nid;
1915
1916 if (!mm)
1917 return 0;
1918
1919 /* Ensure we start with an empty set of numa_maps statistics. */
1920 memset(md, 0, sizeof(*md));
1921
1922 pol = __get_vma_policy(vma, vma->vm_start);
1923 if (pol) {
1924 mpol_to_str(buffer, sizeof(buffer), pol);
1925 mpol_cond_put(pol);
1926 } else {
1927 mpol_to_str(buffer, sizeof(buffer), proc_priv->task_mempolicy);
1928 }
1929
1930 seq_printf(m, "%08lx %s", vma->vm_start, buffer);
1931
1932 if (file) {
1933 seq_puts(m, " file=");
1934 seq_file_path(m, file, "\n\t= ");
1935 } else if (vma->vm_start <= mm->brk && vma->vm_end >= mm->start_brk) {
1936 seq_puts(m, " heap");
1937 } else if (is_stack(vma)) {
1938 seq_puts(m, " stack");
1939 }
1940
1941 if (is_vm_hugetlb_page(vma))
1942 seq_puts(m, " huge");
1943
1944 /* mmap_lock is held by m_start */
1945 walk_page_vma(vma, &show_numa_ops, md);
1946
1947 if (!md->pages)
1948 goto out;
1949
1950 if (md->anon)
1951 seq_printf(m, " anon=%lu", md->anon);
1952
1953 if (md->dirty)
1954 seq_printf(m, " dirty=%lu", md->dirty);
1955
1956 if (md->pages != md->anon && md->pages != md->dirty)
1957 seq_printf(m, " mapped=%lu", md->pages);
1958
1959 if (md->mapcount_max > 1)
1960 seq_printf(m, " mapmax=%lu", md->mapcount_max);
1961
1962 if (md->swapcache)
1963 seq_printf(m, " swapcache=%lu", md->swapcache);
1964
1965 if (md->active < md->pages && !is_vm_hugetlb_page(vma))
1966 seq_printf(m, " active=%lu", md->active);
1967
1968 if (md->writeback)
1969 seq_printf(m, " writeback=%lu", md->writeback);
1970
1971 for_each_node_state(nid, N_MEMORY)
1972 if (md->node[nid])
1973 seq_printf(m, " N%d=%lu", nid, md->node[nid]);
1974
1975 seq_printf(m, " kernelpagesize_kB=%lu", vma_kernel_pagesize(vma) >> 10);
1976 out:
1977 seq_putc(m, '\n');
1978 return 0;
1979 }
1980
1981 static const struct seq_operations proc_pid_numa_maps_op = {
1982 .start = m_start,
1983 .next = m_next,
1984 .stop = m_stop,
1985 .show = show_numa_map,
1986 };
1987
pid_numa_maps_open(struct inode * inode,struct file * file)1988 static int pid_numa_maps_open(struct inode *inode, struct file *file)
1989 {
1990 return proc_maps_open(inode, file, &proc_pid_numa_maps_op,
1991 sizeof(struct numa_maps_private));
1992 }
1993
1994 const struct file_operations proc_pid_numa_maps_operations = {
1995 .open = pid_numa_maps_open,
1996 .read = seq_read,
1997 .llseek = seq_lseek,
1998 .release = proc_map_release,
1999 };
2000
2001 #endif /* CONFIG_NUMA */
2002