• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Pressure stall information for CPU, memory and IO
3  *
4  * Copyright (c) 2018 Facebook, Inc.
5  * Author: Johannes Weiner <hannes@cmpxchg.org>
6  *
7  * Polling support by Suren Baghdasaryan <surenb@google.com>
8  * Copyright (c) 2018 Google, Inc.
9  *
10  * When CPU, memory and IO are contended, tasks experience delays that
11  * reduce throughput and introduce latencies into the workload. Memory
12  * and IO contention, in addition, can cause a full loss of forward
13  * progress in which the CPU goes idle.
14  *
15  * This code aggregates individual task delays into resource pressure
16  * metrics that indicate problems with both workload health and
17  * resource utilization.
18  *
19  *			Model
20  *
21  * The time in which a task can execute on a CPU is our baseline for
22  * productivity. Pressure expresses the amount of time in which this
23  * potential cannot be realized due to resource contention.
24  *
25  * This concept of productivity has two components: the workload and
26  * the CPU. To measure the impact of pressure on both, we define two
27  * contention states for a resource: SOME and FULL.
28  *
29  * In the SOME state of a given resource, one or more tasks are
30  * delayed on that resource. This affects the workload's ability to
31  * perform work, but the CPU may still be executing other tasks.
32  *
33  * In the FULL state of a given resource, all non-idle tasks are
34  * delayed on that resource such that nobody is advancing and the CPU
35  * goes idle. This leaves both workload and CPU unproductive.
36  *
37  * (Naturally, the FULL state doesn't exist for the CPU resource.)
38  *
39  *	SOME = nr_delayed_tasks != 0
40  *	FULL = nr_delayed_tasks != 0 && nr_running_tasks == 0
41  *
42  * The percentage of wallclock time spent in those compound stall
43  * states gives pressure numbers between 0 and 100 for each resource,
44  * where the SOME percentage indicates workload slowdowns and the FULL
45  * percentage indicates reduced CPU utilization:
46  *
47  *	%SOME = time(SOME) / period
48  *	%FULL = time(FULL) / period
49  *
50  *			Multiple CPUs
51  *
52  * The more tasks and available CPUs there are, the more work can be
53  * performed concurrently. This means that the potential that can go
54  * unrealized due to resource contention *also* scales with non-idle
55  * tasks and CPUs.
56  *
57  * Consider a scenario where 257 number crunching tasks are trying to
58  * run concurrently on 256 CPUs. If we simply aggregated the task
59  * states, we would have to conclude a CPU SOME pressure number of
60  * 100%, since *somebody* is waiting on a runqueue at all
61  * times. However, that is clearly not the amount of contention the
62  * workload is experiencing: only one out of 256 possible exceution
63  * threads will be contended at any given time, or about 0.4%.
64  *
65  * Conversely, consider a scenario of 4 tasks and 4 CPUs where at any
66  * given time *one* of the tasks is delayed due to a lack of memory.
67  * Again, looking purely at the task state would yield a memory FULL
68  * pressure number of 0%, since *somebody* is always making forward
69  * progress. But again this wouldn't capture the amount of execution
70  * potential lost, which is 1 out of 4 CPUs, or 25%.
71  *
72  * To calculate wasted potential (pressure) with multiple processors,
73  * we have to base our calculation on the number of non-idle tasks in
74  * conjunction with the number of available CPUs, which is the number
75  * of potential execution threads. SOME becomes then the proportion of
76  * delayed tasks to possibe threads, and FULL is the share of possible
77  * threads that are unproductive due to delays:
78  *
79  *	threads = min(nr_nonidle_tasks, nr_cpus)
80  *	   SOME = min(nr_delayed_tasks / threads, 1)
81  *	   FULL = (threads - min(nr_running_tasks, threads)) / threads
82  *
83  * For the 257 number crunchers on 256 CPUs, this yields:
84  *
85  *	threads = min(257, 256)
86  *	   SOME = min(1 / 256, 1)             = 0.4%
87  *	   FULL = (256 - min(257, 256)) / 256 = 0%
88  *
89  * For the 1 out of 4 memory-delayed tasks, this yields:
90  *
91  *	threads = min(4, 4)
92  *	   SOME = min(1 / 4, 1)               = 25%
93  *	   FULL = (4 - min(3, 4)) / 4         = 25%
94  *
95  * [ Substitute nr_cpus with 1, and you can see that it's a natural
96  *   extension of the single-CPU model. ]
97  *
98  *			Implementation
99  *
100  * To assess the precise time spent in each such state, we would have
101  * to freeze the system on task changes and start/stop the state
102  * clocks accordingly. Obviously that doesn't scale in practice.
103  *
104  * Because the scheduler aims to distribute the compute load evenly
105  * among the available CPUs, we can track task state locally to each
106  * CPU and, at much lower frequency, extrapolate the global state for
107  * the cumulative stall times and the running averages.
108  *
109  * For each runqueue, we track:
110  *
111  *	   tSOME[cpu] = time(nr_delayed_tasks[cpu] != 0)
112  *	   tFULL[cpu] = time(nr_delayed_tasks[cpu] && !nr_running_tasks[cpu])
113  *	tNONIDLE[cpu] = time(nr_nonidle_tasks[cpu] != 0)
114  *
115  * and then periodically aggregate:
116  *
117  *	tNONIDLE = sum(tNONIDLE[i])
118  *
119  *	   tSOME = sum(tSOME[i] * tNONIDLE[i]) / tNONIDLE
120  *	   tFULL = sum(tFULL[i] * tNONIDLE[i]) / tNONIDLE
121  *
122  *	   %SOME = tSOME / period
123  *	   %FULL = tFULL / period
124  *
125  * This gives us an approximation of pressure that is practical
126  * cost-wise, yet way more sensitive and accurate than periodic
127  * sampling of the aggregate task states would be.
128  */
129 
130 #include "../workqueue_internal.h"
131 #include <linux/sched/loadavg.h>
132 #include <linux/seq_file.h>
133 #include <linux/proc_fs.h>
134 #include <linux/seqlock.h>
135 #include <linux/uaccess.h>
136 #include <linux/cgroup.h>
137 #include <linux/module.h>
138 #include <linux/sched.h>
139 #include <linux/ctype.h>
140 #include <linux/file.h>
141 #include <linux/poll.h>
142 #include <linux/psi.h>
143 #include "sched.h"
144 
145 static int psi_bug __read_mostly;
146 
147 DEFINE_STATIC_KEY_FALSE(psi_disabled);
148 
149 #ifdef CONFIG_PSI_DEFAULT_DISABLED
150 static bool psi_enable;
151 #else
152 static bool psi_enable = true;
153 #endif
setup_psi(char * str)154 static int __init setup_psi(char *str)
155 {
156 	return kstrtobool(str, &psi_enable) == 0;
157 }
158 __setup("psi=", setup_psi);
159 
160 /* Running averages - we need to be higher-res than loadavg */
161 #define PSI_FREQ	(2*HZ+1)	/* 2 sec intervals */
162 #define EXP_10s		1677		/* 1/exp(2s/10s) as fixed-point */
163 #define EXP_60s		1981		/* 1/exp(2s/60s) */
164 #define EXP_300s	2034		/* 1/exp(2s/300s) */
165 
166 /* PSI trigger definitions */
167 #define WINDOW_MIN_US 500000	/* Min window size is 500ms */
168 #define WINDOW_MAX_US 10000000	/* Max window size is 10s */
169 #define UPDATES_PER_WINDOW 10	/* 10 updates per window */
170 
171 /* Sampling frequency in nanoseconds */
172 static u64 psi_period __read_mostly;
173 
174 /* System-level pressure and stall tracking */
175 static DEFINE_PER_CPU(struct psi_group_cpu, system_group_pcpu);
176 struct psi_group psi_system = {
177 	.pcpu = &system_group_pcpu,
178 };
179 
180 static void psi_avgs_work(struct work_struct *work);
181 
182 static void poll_timer_fn(struct timer_list *t);
183 
group_init(struct psi_group * group)184 static void group_init(struct psi_group *group)
185 {
186 	int cpu;
187 
188 	for_each_possible_cpu(cpu)
189 		seqcount_init(&per_cpu_ptr(group->pcpu, cpu)->seq);
190 	group->avg_last_update = sched_clock();
191 	group->avg_next_update = group->avg_last_update + psi_period;
192 	INIT_DELAYED_WORK(&group->avgs_work, psi_avgs_work);
193 	mutex_init(&group->avgs_lock);
194 	/* Init trigger-related members */
195 	mutex_init(&group->trigger_lock);
196 	INIT_LIST_HEAD(&group->triggers);
197 	memset(group->nr_triggers, 0, sizeof(group->nr_triggers));
198 	group->poll_states = 0;
199 	group->poll_min_period = U32_MAX;
200 	memset(group->polling_total, 0, sizeof(group->polling_total));
201 	group->polling_next_update = ULLONG_MAX;
202 	group->polling_until = 0;
203 	init_waitqueue_head(&group->poll_wait);
204 	timer_setup(&group->poll_timer, poll_timer_fn, 0);
205 	rcu_assign_pointer(group->poll_task, NULL);
206 }
207 
psi_init(void)208 void __init psi_init(void)
209 {
210 	if (!psi_enable) {
211 		static_branch_enable(&psi_disabled);
212 		return;
213 	}
214 
215 	psi_period = jiffies_to_nsecs(PSI_FREQ);
216 	group_init(&psi_system);
217 }
218 
test_state(unsigned int * tasks,enum psi_states state)219 static bool test_state(unsigned int *tasks, enum psi_states state)
220 {
221 	switch (state) {
222 	case PSI_IO_SOME:
223 		return tasks[NR_IOWAIT];
224 	case PSI_IO_FULL:
225 		return tasks[NR_IOWAIT] && !tasks[NR_RUNNING];
226 	case PSI_MEM_SOME:
227 		return tasks[NR_MEMSTALL];
228 	case PSI_MEM_FULL:
229 		return tasks[NR_MEMSTALL] && !tasks[NR_RUNNING];
230 	case PSI_CPU_SOME:
231 		return tasks[NR_RUNNING] > tasks[NR_ONCPU];
232 	case PSI_NONIDLE:
233 		return tasks[NR_IOWAIT] || tasks[NR_MEMSTALL] ||
234 			tasks[NR_RUNNING];
235 	default:
236 		return false;
237 	}
238 }
239 
get_recent_times(struct psi_group * group,int cpu,enum psi_aggregators aggregator,u32 * times,u32 * pchanged_states)240 static void get_recent_times(struct psi_group *group, int cpu,
241 			     enum psi_aggregators aggregator, u32 *times,
242 			     u32 *pchanged_states)
243 {
244 	struct psi_group_cpu *groupc = per_cpu_ptr(group->pcpu, cpu);
245 	u64 now, state_start;
246 	enum psi_states s;
247 	unsigned int seq;
248 	u32 state_mask;
249 
250 	*pchanged_states = 0;
251 
252 	/* Snapshot a coherent view of the CPU state */
253 	do {
254 		seq = read_seqcount_begin(&groupc->seq);
255 		now = cpu_clock(cpu);
256 		memcpy(times, groupc->times, sizeof(groupc->times));
257 		state_mask = groupc->state_mask;
258 		state_start = groupc->state_start;
259 	} while (read_seqcount_retry(&groupc->seq, seq));
260 
261 	/* Calculate state time deltas against the previous snapshot */
262 	for (s = 0; s < NR_PSI_STATES; s++) {
263 		u32 delta;
264 		/*
265 		 * In addition to already concluded states, we also
266 		 * incorporate currently active states on the CPU,
267 		 * since states may last for many sampling periods.
268 		 *
269 		 * This way we keep our delta sampling buckets small
270 		 * (u32) and our reported pressure close to what's
271 		 * actually happening.
272 		 */
273 		if (state_mask & (1 << s))
274 			times[s] += now - state_start;
275 
276 		delta = times[s] - groupc->times_prev[aggregator][s];
277 		groupc->times_prev[aggregator][s] = times[s];
278 
279 		times[s] = delta;
280 		if (delta)
281 			*pchanged_states |= (1 << s);
282 	}
283 }
284 
calc_avgs(unsigned long avg[3],int missed_periods,u64 time,u64 period)285 static void calc_avgs(unsigned long avg[3], int missed_periods,
286 		      u64 time, u64 period)
287 {
288 	unsigned long pct;
289 
290 	/* Fill in zeroes for periods of no activity */
291 	if (missed_periods) {
292 		avg[0] = calc_load_n(avg[0], EXP_10s, 0, missed_periods);
293 		avg[1] = calc_load_n(avg[1], EXP_60s, 0, missed_periods);
294 		avg[2] = calc_load_n(avg[2], EXP_300s, 0, missed_periods);
295 	}
296 
297 	/* Sample the most recent active period */
298 	pct = div_u64(time * 100, period);
299 	pct *= FIXED_1;
300 	avg[0] = calc_load(avg[0], EXP_10s, pct);
301 	avg[1] = calc_load(avg[1], EXP_60s, pct);
302 	avg[2] = calc_load(avg[2], EXP_300s, pct);
303 }
304 
collect_percpu_times(struct psi_group * group,enum psi_aggregators aggregator,u32 * pchanged_states)305 static void collect_percpu_times(struct psi_group *group,
306 				 enum psi_aggregators aggregator,
307 				 u32 *pchanged_states)
308 {
309 	u64 deltas[NR_PSI_STATES - 1] = { 0, };
310 	unsigned long nonidle_total = 0;
311 	u32 changed_states = 0;
312 	int cpu;
313 	int s;
314 
315 	/*
316 	 * Collect the per-cpu time buckets and average them into a
317 	 * single time sample that is normalized to wallclock time.
318 	 *
319 	 * For averaging, each CPU is weighted by its non-idle time in
320 	 * the sampling period. This eliminates artifacts from uneven
321 	 * loading, or even entirely idle CPUs.
322 	 */
323 	for_each_possible_cpu(cpu) {
324 		u32 times[NR_PSI_STATES];
325 		u32 nonidle;
326 		u32 cpu_changed_states;
327 
328 		get_recent_times(group, cpu, aggregator, times,
329 				&cpu_changed_states);
330 		changed_states |= cpu_changed_states;
331 
332 		nonidle = nsecs_to_jiffies(times[PSI_NONIDLE]);
333 		nonidle_total += nonidle;
334 
335 		for (s = 0; s < PSI_NONIDLE; s++)
336 			deltas[s] += (u64)times[s] * nonidle;
337 	}
338 
339 	/*
340 	 * Integrate the sample into the running statistics that are
341 	 * reported to userspace: the cumulative stall times and the
342 	 * decaying averages.
343 	 *
344 	 * Pressure percentages are sampled at PSI_FREQ. We might be
345 	 * called more often when the user polls more frequently than
346 	 * that; we might be called less often when there is no task
347 	 * activity, thus no data, and clock ticks are sporadic. The
348 	 * below handles both.
349 	 */
350 
351 	/* total= */
352 	for (s = 0; s < NR_PSI_STATES - 1; s++)
353 		group->total[aggregator][s] +=
354 				div_u64(deltas[s], max(nonidle_total, 1UL));
355 
356 	if (pchanged_states)
357 		*pchanged_states = changed_states;
358 }
359 
update_averages(struct psi_group * group,u64 now)360 static u64 update_averages(struct psi_group *group, u64 now)
361 {
362 	unsigned long missed_periods = 0;
363 	u64 expires, period;
364 	u64 avg_next_update;
365 	int s;
366 
367 	/* avgX= */
368 	expires = group->avg_next_update;
369 	if (now - expires >= psi_period)
370 		missed_periods = div_u64(now - expires, psi_period);
371 
372 	/*
373 	 * The periodic clock tick can get delayed for various
374 	 * reasons, especially on loaded systems. To avoid clock
375 	 * drift, we schedule the clock in fixed psi_period intervals.
376 	 * But the deltas we sample out of the per-cpu buckets above
377 	 * are based on the actual time elapsing between clock ticks.
378 	 */
379 	avg_next_update = expires + ((1 + missed_periods) * psi_period);
380 	period = now - (group->avg_last_update + (missed_periods * psi_period));
381 	group->avg_last_update = now;
382 
383 	for (s = 0; s < NR_PSI_STATES - 1; s++) {
384 		u32 sample;
385 
386 		sample = group->total[PSI_AVGS][s] - group->avg_total[s];
387 		/*
388 		 * Due to the lockless sampling of the time buckets,
389 		 * recorded time deltas can slip into the next period,
390 		 * which under full pressure can result in samples in
391 		 * excess of the period length.
392 		 *
393 		 * We don't want to report non-sensical pressures in
394 		 * excess of 100%, nor do we want to drop such events
395 		 * on the floor. Instead we punt any overage into the
396 		 * future until pressure subsides. By doing this we
397 		 * don't underreport the occurring pressure curve, we
398 		 * just report it delayed by one period length.
399 		 *
400 		 * The error isn't cumulative. As soon as another
401 		 * delta slips from a period P to P+1, by definition
402 		 * it frees up its time T in P.
403 		 */
404 		if (sample > period)
405 			sample = period;
406 		group->avg_total[s] += sample;
407 		calc_avgs(group->avg[s], missed_periods, sample, period);
408 	}
409 
410 	return avg_next_update;
411 }
412 
psi_avgs_work(struct work_struct * work)413 static void psi_avgs_work(struct work_struct *work)
414 {
415 	struct delayed_work *dwork;
416 	struct psi_group *group;
417 	u32 changed_states;
418 	bool nonidle;
419 	u64 now;
420 
421 	dwork = to_delayed_work(work);
422 	group = container_of(dwork, struct psi_group, avgs_work);
423 
424 	mutex_lock(&group->avgs_lock);
425 
426 	now = sched_clock();
427 
428 	collect_percpu_times(group, PSI_AVGS, &changed_states);
429 	nonidle = changed_states & (1 << PSI_NONIDLE);
430 	/*
431 	 * If there is task activity, periodically fold the per-cpu
432 	 * times and feed samples into the running averages. If things
433 	 * are idle and there is no data to process, stop the clock.
434 	 * Once restarted, we'll catch up the running averages in one
435 	 * go - see calc_avgs() and missed_periods.
436 	 */
437 	if (now >= group->avg_next_update)
438 		group->avg_next_update = update_averages(group, now);
439 
440 	if (nonidle) {
441 		schedule_delayed_work(dwork, nsecs_to_jiffies(
442 				group->avg_next_update - now) + 1);
443 	}
444 
445 	mutex_unlock(&group->avgs_lock);
446 }
447 
448 /* Trigger tracking window manupulations */
window_reset(struct psi_window * win,u64 now,u64 value,u64 prev_growth)449 static void window_reset(struct psi_window *win, u64 now, u64 value,
450 			 u64 prev_growth)
451 {
452 	win->start_time = now;
453 	win->start_value = value;
454 	win->prev_growth = prev_growth;
455 }
456 
457 /*
458  * PSI growth tracking window update and growth calculation routine.
459  *
460  * This approximates a sliding tracking window by interpolating
461  * partially elapsed windows using historical growth data from the
462  * previous intervals. This minimizes memory requirements (by not storing
463  * all the intermediate values in the previous window) and simplifies
464  * the calculations. It works well because PSI signal changes only in
465  * positive direction and over relatively small window sizes the growth
466  * is close to linear.
467  */
window_update(struct psi_window * win,u64 now,u64 value)468 static u64 window_update(struct psi_window *win, u64 now, u64 value)
469 {
470 	u64 elapsed;
471 	u64 growth;
472 
473 	elapsed = now - win->start_time;
474 	growth = value - win->start_value;
475 	/*
476 	 * After each tracking window passes win->start_value and
477 	 * win->start_time get reset and win->prev_growth stores
478 	 * the average per-window growth of the previous window.
479 	 * win->prev_growth is then used to interpolate additional
480 	 * growth from the previous window assuming it was linear.
481 	 */
482 	if (elapsed > win->size)
483 		window_reset(win, now, value, growth);
484 	else {
485 		u32 remaining;
486 
487 		remaining = win->size - elapsed;
488 		growth += div64_u64(win->prev_growth * remaining, win->size);
489 	}
490 
491 	return growth;
492 }
493 
init_triggers(struct psi_group * group,u64 now)494 static void init_triggers(struct psi_group *group, u64 now)
495 {
496 	struct psi_trigger *t;
497 
498 	list_for_each_entry(t, &group->triggers, node)
499 		window_reset(&t->win, now,
500 				group->total[PSI_POLL][t->state], 0);
501 	memcpy(group->polling_total, group->total[PSI_POLL],
502 		   sizeof(group->polling_total));
503 	group->polling_next_update = now + group->poll_min_period;
504 }
505 
update_triggers(struct psi_group * group,u64 now)506 static u64 update_triggers(struct psi_group *group, u64 now)
507 {
508 	struct psi_trigger *t;
509 	bool new_stall = false;
510 	u64 *total = group->total[PSI_POLL];
511 
512 	/*
513 	 * On subsequent updates, calculate growth deltas and let
514 	 * watchers know when their specified thresholds are exceeded.
515 	 */
516 	list_for_each_entry(t, &group->triggers, node) {
517 		u64 growth;
518 
519 		/* Check for stall activity */
520 		if (group->polling_total[t->state] == total[t->state])
521 			continue;
522 
523 		/*
524 		 * Multiple triggers might be looking at the same state,
525 		 * remember to update group->polling_total[] once we've
526 		 * been through all of them. Also remember to extend the
527 		 * polling time if we see new stall activity.
528 		 */
529 		new_stall = true;
530 
531 		/* Calculate growth since last update */
532 		growth = window_update(&t->win, now, total[t->state]);
533 		if (growth < t->threshold)
534 			continue;
535 
536 		/* Limit event signaling to once per window */
537 		if (now < t->last_event_time + t->win.size)
538 			continue;
539 
540 		/* Generate an event */
541 		if (cmpxchg(&t->event, 0, 1) == 0)
542 			wake_up_interruptible(&t->event_wait);
543 		t->last_event_time = now;
544 	}
545 
546 	if (new_stall)
547 		memcpy(group->polling_total, total,
548 				sizeof(group->polling_total));
549 
550 	return now + group->poll_min_period;
551 }
552 
553 /* Schedule polling if it's not already scheduled. */
psi_schedule_poll_work(struct psi_group * group,unsigned long delay)554 static void psi_schedule_poll_work(struct psi_group *group, unsigned long delay)
555 {
556 	struct task_struct *task;
557 
558 	/*
559 	 * Do not reschedule if already scheduled.
560 	 * Possible race with a timer scheduled after this check but before
561 	 * mod_timer below can be tolerated because group->polling_next_update
562 	 * will keep updates on schedule.
563 	 */
564 	if (timer_pending(&group->poll_timer))
565 		return;
566 
567 	rcu_read_lock();
568 
569 	task = rcu_dereference(group->poll_task);
570 	/*
571 	 * kworker might be NULL in case psi_trigger_destroy races with
572 	 * psi_task_change (hotpath) which can't use locks
573 	 */
574 	if (likely(task))
575 		mod_timer(&group->poll_timer, jiffies + delay);
576 
577 	rcu_read_unlock();
578 }
579 
psi_poll_work(struct psi_group * group)580 static void psi_poll_work(struct psi_group *group)
581 {
582 	u32 changed_states;
583 	u64 now;
584 
585 	mutex_lock(&group->trigger_lock);
586 
587 	now = sched_clock();
588 
589 	collect_percpu_times(group, PSI_POLL, &changed_states);
590 
591 	if (changed_states & group->poll_states) {
592 		/* Initialize trigger windows when entering polling mode */
593 		if (now > group->polling_until)
594 			init_triggers(group, now);
595 
596 		/*
597 		 * Keep the monitor active for at least the duration of the
598 		 * minimum tracking window as long as monitor states are
599 		 * changing.
600 		 */
601 		group->polling_until = now +
602 			group->poll_min_period * UPDATES_PER_WINDOW;
603 	}
604 
605 	if (now > group->polling_until) {
606 		group->polling_next_update = ULLONG_MAX;
607 		goto out;
608 	}
609 
610 	if (now >= group->polling_next_update)
611 		group->polling_next_update = update_triggers(group, now);
612 
613 	psi_schedule_poll_work(group,
614 		nsecs_to_jiffies(group->polling_next_update - now) + 1);
615 
616 out:
617 	mutex_unlock(&group->trigger_lock);
618 }
619 
psi_poll_worker(void * data)620 static int psi_poll_worker(void *data)
621 {
622 	struct psi_group *group = (struct psi_group *)data;
623 
624 	sched_set_fifo_low(current);
625 
626 	while (true) {
627 		wait_event_interruptible(group->poll_wait,
628 				atomic_cmpxchg(&group->poll_wakeup, 1, 0) ||
629 				kthread_should_stop());
630 		if (kthread_should_stop())
631 			break;
632 
633 		psi_poll_work(group);
634 	}
635 	return 0;
636 }
637 
poll_timer_fn(struct timer_list * t)638 static void poll_timer_fn(struct timer_list *t)
639 {
640 	struct psi_group *group = from_timer(group, t, poll_timer);
641 
642 	atomic_set(&group->poll_wakeup, 1);
643 	wake_up_interruptible(&group->poll_wait);
644 }
645 
record_times(struct psi_group_cpu * groupc,int cpu,bool memstall_tick)646 static void record_times(struct psi_group_cpu *groupc, int cpu,
647 			 bool memstall_tick)
648 {
649 	u32 delta;
650 	u64 now;
651 
652 	now = cpu_clock(cpu);
653 	delta = now - groupc->state_start;
654 	groupc->state_start = now;
655 
656 	if (groupc->state_mask & (1 << PSI_IO_SOME)) {
657 		groupc->times[PSI_IO_SOME] += delta;
658 		if (groupc->state_mask & (1 << PSI_IO_FULL))
659 			groupc->times[PSI_IO_FULL] += delta;
660 	}
661 
662 	if (groupc->state_mask & (1 << PSI_MEM_SOME)) {
663 		groupc->times[PSI_MEM_SOME] += delta;
664 		if (groupc->state_mask & (1 << PSI_MEM_FULL))
665 			groupc->times[PSI_MEM_FULL] += delta;
666 		else if (memstall_tick) {
667 			u32 sample;
668 			/*
669 			 * Since we care about lost potential, a
670 			 * memstall is FULL when there are no other
671 			 * working tasks, but also when the CPU is
672 			 * actively reclaiming and nothing productive
673 			 * could run even if it were runnable.
674 			 *
675 			 * When the timer tick sees a reclaiming CPU,
676 			 * regardless of runnable tasks, sample a FULL
677 			 * tick (or less if it hasn't been a full tick
678 			 * since the last state change).
679 			 */
680 			sample = min(delta, (u32)jiffies_to_nsecs(1));
681 			groupc->times[PSI_MEM_FULL] += sample;
682 		}
683 	}
684 
685 	if (groupc->state_mask & (1 << PSI_CPU_SOME))
686 		groupc->times[PSI_CPU_SOME] += delta;
687 
688 	if (groupc->state_mask & (1 << PSI_NONIDLE))
689 		groupc->times[PSI_NONIDLE] += delta;
690 }
691 
psi_group_change(struct psi_group * group,int cpu,unsigned int clear,unsigned int set,bool wake_clock)692 static void psi_group_change(struct psi_group *group, int cpu,
693 			     unsigned int clear, unsigned int set,
694 			     bool wake_clock)
695 {
696 	struct psi_group_cpu *groupc;
697 	u32 state_mask = 0;
698 	unsigned int t, m;
699 	enum psi_states s;
700 
701 	groupc = per_cpu_ptr(group->pcpu, cpu);
702 
703 	/*
704 	 * First we assess the aggregate resource states this CPU's
705 	 * tasks have been in since the last change, and account any
706 	 * SOME and FULL time these may have resulted in.
707 	 *
708 	 * Then we update the task counts according to the state
709 	 * change requested through the @clear and @set bits.
710 	 */
711 	write_seqcount_begin(&groupc->seq);
712 
713 	record_times(groupc, cpu, false);
714 
715 	for (t = 0, m = clear; m; m &= ~(1 << t), t++) {
716 		if (!(m & (1 << t)))
717 			continue;
718 		if (groupc->tasks[t]) {
719 			groupc->tasks[t]--;
720 		} else if (!psi_bug) {
721 			printk_deferred(KERN_ERR "psi: task underflow! cpu=%d t=%d tasks=[%u %u %u %u] clear=%x set=%x\n",
722 					cpu, t, groupc->tasks[0],
723 					groupc->tasks[1], groupc->tasks[2],
724 					groupc->tasks[3], clear, set);
725 			psi_bug = 1;
726 		}
727 	}
728 
729 	for (t = 0; set; set &= ~(1 << t), t++)
730 		if (set & (1 << t))
731 			groupc->tasks[t]++;
732 
733 	/* Calculate state mask representing active states */
734 	for (s = 0; s < NR_PSI_STATES; s++) {
735 		if (test_state(groupc->tasks, s))
736 			state_mask |= (1 << s);
737 	}
738 	groupc->state_mask = state_mask;
739 
740 	write_seqcount_end(&groupc->seq);
741 
742 	if (state_mask & group->poll_states)
743 		psi_schedule_poll_work(group, 1);
744 
745 	if (wake_clock && !delayed_work_pending(&group->avgs_work))
746 		schedule_delayed_work(&group->avgs_work, PSI_FREQ);
747 }
748 
iterate_groups(struct task_struct * task,void ** iter)749 static struct psi_group *iterate_groups(struct task_struct *task, void **iter)
750 {
751 #ifdef CONFIG_CGROUPS
752 	struct cgroup *cgroup = NULL;
753 
754 	if (!*iter)
755 		cgroup = task->cgroups->dfl_cgrp;
756 	else if (*iter == &psi_system)
757 		return NULL;
758 	else
759 		cgroup = cgroup_parent(*iter);
760 
761 	if (cgroup && cgroup_parent(cgroup)) {
762 		*iter = cgroup;
763 		return cgroup_psi(cgroup);
764 	}
765 #else
766 	if (*iter)
767 		return NULL;
768 #endif
769 	*iter = &psi_system;
770 	return &psi_system;
771 }
772 
psi_flags_change(struct task_struct * task,int clear,int set)773 static void psi_flags_change(struct task_struct *task, int clear, int set)
774 {
775 	if (((task->psi_flags & set) ||
776 	     (task->psi_flags & clear) != clear) &&
777 	    !psi_bug) {
778 		printk_deferred(KERN_ERR "psi: inconsistent task state! task=%d:%s cpu=%d psi_flags=%x clear=%x set=%x\n",
779 				task->pid, task->comm, task_cpu(task),
780 				task->psi_flags, clear, set);
781 		psi_bug = 1;
782 	}
783 
784 	task->psi_flags &= ~clear;
785 	task->psi_flags |= set;
786 }
787 
psi_task_change(struct task_struct * task,int clear,int set)788 void psi_task_change(struct task_struct *task, int clear, int set)
789 {
790 	int cpu = task_cpu(task);
791 	struct psi_group *group;
792 	bool wake_clock = true;
793 	void *iter = NULL;
794 
795 	if (!task->pid)
796 		return;
797 
798 	psi_flags_change(task, clear, set);
799 
800 	/*
801 	 * Periodic aggregation shuts off if there is a period of no
802 	 * task changes, so we wake it back up if necessary. However,
803 	 * don't do this if the task change is the aggregation worker
804 	 * itself going to sleep, or we'll ping-pong forever.
805 	 */
806 	if (unlikely((clear & TSK_RUNNING) &&
807 		     (task->flags & PF_WQ_WORKER) &&
808 		     wq_worker_last_func(task) == psi_avgs_work))
809 		wake_clock = false;
810 
811 	while ((group = iterate_groups(task, &iter)))
812 		psi_group_change(group, cpu, clear, set, wake_clock);
813 }
814 
psi_task_switch(struct task_struct * prev,struct task_struct * next,bool sleep)815 void psi_task_switch(struct task_struct *prev, struct task_struct *next,
816 		     bool sleep)
817 {
818 	struct psi_group *group, *common = NULL;
819 	int cpu = task_cpu(prev);
820 	void *iter;
821 
822 	if (next->pid) {
823 		psi_flags_change(next, 0, TSK_ONCPU);
824 		/*
825 		 * When moving state between tasks, the group that
826 		 * contains them both does not change: we can stop
827 		 * updating the tree once we reach the first common
828 		 * ancestor. Iterate @next's ancestors until we
829 		 * encounter @prev's state.
830 		 */
831 		iter = NULL;
832 		while ((group = iterate_groups(next, &iter))) {
833 			if (per_cpu_ptr(group->pcpu, cpu)->tasks[NR_ONCPU]) {
834 				common = group;
835 				break;
836 			}
837 
838 			psi_group_change(group, cpu, 0, TSK_ONCPU, true);
839 		}
840 	}
841 
842 	/*
843 	 * If this is a voluntary sleep, dequeue will have taken care
844 	 * of the outgoing TSK_ONCPU alongside TSK_RUNNING already. We
845 	 * only need to deal with it during preemption.
846 	 */
847 	if (sleep)
848 		return;
849 
850 	if (prev->pid) {
851 		psi_flags_change(prev, TSK_ONCPU, 0);
852 
853 		iter = NULL;
854 		while ((group = iterate_groups(prev, &iter)) && group != common)
855 			psi_group_change(group, cpu, TSK_ONCPU, 0, true);
856 	}
857 }
858 
psi_memstall_tick(struct task_struct * task,int cpu)859 void psi_memstall_tick(struct task_struct *task, int cpu)
860 {
861 	struct psi_group *group;
862 	void *iter = NULL;
863 
864 	while ((group = iterate_groups(task, &iter))) {
865 		struct psi_group_cpu *groupc;
866 
867 		groupc = per_cpu_ptr(group->pcpu, cpu);
868 		write_seqcount_begin(&groupc->seq);
869 		record_times(groupc, cpu, true);
870 		write_seqcount_end(&groupc->seq);
871 	}
872 }
873 
874 /**
875  * psi_memstall_enter - mark the beginning of a memory stall section
876  * @flags: flags to handle nested sections
877  *
878  * Marks the calling task as being stalled due to a lack of memory,
879  * such as waiting for a refault or performing reclaim.
880  */
psi_memstall_enter(unsigned long * flags)881 void psi_memstall_enter(unsigned long *flags)
882 {
883 	struct rq_flags rf;
884 	struct rq *rq;
885 
886 	if (static_branch_likely(&psi_disabled))
887 		return;
888 
889 	*flags = current->in_memstall;
890 	if (*flags)
891 		return;
892 	/*
893 	 * in_memstall setting & accounting needs to be atomic wrt
894 	 * changes to the task's scheduling state, otherwise we can
895 	 * race with CPU migration.
896 	 */
897 	rq = this_rq_lock_irq(&rf);
898 
899 	current->in_memstall = 1;
900 	psi_task_change(current, 0, TSK_MEMSTALL);
901 
902 	rq_unlock_irq(rq, &rf);
903 }
904 
905 /**
906  * psi_memstall_leave - mark the end of an memory stall section
907  * @flags: flags to handle nested memdelay sections
908  *
909  * Marks the calling task as no longer stalled due to lack of memory.
910  */
psi_memstall_leave(unsigned long * flags)911 void psi_memstall_leave(unsigned long *flags)
912 {
913 	struct rq_flags rf;
914 	struct rq *rq;
915 
916 	if (static_branch_likely(&psi_disabled))
917 		return;
918 
919 	if (*flags)
920 		return;
921 	/*
922 	 * in_memstall clearing & accounting needs to be atomic wrt
923 	 * changes to the task's scheduling state, otherwise we could
924 	 * race with CPU migration.
925 	 */
926 	rq = this_rq_lock_irq(&rf);
927 
928 	current->in_memstall = 0;
929 	psi_task_change(current, TSK_MEMSTALL, 0);
930 
931 	rq_unlock_irq(rq, &rf);
932 }
933 
934 #ifdef CONFIG_CGROUPS
psi_cgroup_alloc(struct cgroup * cgroup)935 int psi_cgroup_alloc(struct cgroup *cgroup)
936 {
937 	if (static_branch_likely(&psi_disabled))
938 		return 0;
939 
940 	cgroup->psi.pcpu = alloc_percpu(struct psi_group_cpu);
941 	if (!cgroup->psi.pcpu)
942 		return -ENOMEM;
943 	group_init(&cgroup->psi);
944 	return 0;
945 }
946 
psi_cgroup_free(struct cgroup * cgroup)947 void psi_cgroup_free(struct cgroup *cgroup)
948 {
949 	if (static_branch_likely(&psi_disabled))
950 		return;
951 
952 	cancel_delayed_work_sync(&cgroup->psi.avgs_work);
953 	free_percpu(cgroup->psi.pcpu);
954 	/* All triggers must be removed by now */
955 	WARN_ONCE(cgroup->psi.poll_states, "psi: trigger leak\n");
956 }
957 
958 /**
959  * cgroup_move_task - move task to a different cgroup
960  * @task: the task
961  * @to: the target css_set
962  *
963  * Move task to a new cgroup and safely migrate its associated stall
964  * state between the different groups.
965  *
966  * This function acquires the task's rq lock to lock out concurrent
967  * changes to the task's scheduling state and - in case the task is
968  * running - concurrent changes to its stall state.
969  */
cgroup_move_task(struct task_struct * task,struct css_set * to)970 void cgroup_move_task(struct task_struct *task, struct css_set *to)
971 {
972 	unsigned int task_flags = 0;
973 	struct rq_flags rf;
974 	struct rq *rq;
975 
976 	if (static_branch_likely(&psi_disabled)) {
977 		/*
978 		 * Lame to do this here, but the scheduler cannot be locked
979 		 * from the outside, so we move cgroups from inside sched/.
980 		 */
981 		rcu_assign_pointer(task->cgroups, to);
982 		return;
983 	}
984 
985 	rq = task_rq_lock(task, &rf);
986 
987 	if (task_on_rq_queued(task)) {
988 		task_flags = TSK_RUNNING;
989 		if (task_current(rq, task))
990 			task_flags |= TSK_ONCPU;
991 	} else if (task->in_iowait)
992 		task_flags = TSK_IOWAIT;
993 
994 	if (task->in_memstall)
995 		task_flags |= TSK_MEMSTALL;
996 
997 	if (task_flags)
998 		psi_task_change(task, task_flags, 0);
999 
1000 	/* See comment above */
1001 	rcu_assign_pointer(task->cgroups, to);
1002 
1003 	if (task_flags)
1004 		psi_task_change(task, 0, task_flags);
1005 
1006 	task_rq_unlock(rq, task, &rf);
1007 }
1008 #endif /* CONFIG_CGROUPS */
1009 
psi_show(struct seq_file * m,struct psi_group * group,enum psi_res res)1010 int psi_show(struct seq_file *m, struct psi_group *group, enum psi_res res)
1011 {
1012 	int full;
1013 	u64 now;
1014 
1015 	if (static_branch_likely(&psi_disabled))
1016 		return -EOPNOTSUPP;
1017 
1018 	/* Update averages before reporting them */
1019 	mutex_lock(&group->avgs_lock);
1020 	now = sched_clock();
1021 	collect_percpu_times(group, PSI_AVGS, NULL);
1022 	if (now >= group->avg_next_update)
1023 		group->avg_next_update = update_averages(group, now);
1024 	mutex_unlock(&group->avgs_lock);
1025 
1026 	for (full = 0; full < 2 - (res == PSI_CPU); full++) {
1027 		unsigned long avg[3];
1028 		u64 total;
1029 		int w;
1030 
1031 		for (w = 0; w < 3; w++)
1032 			avg[w] = group->avg[res * 2 + full][w];
1033 		total = div_u64(group->total[PSI_AVGS][res * 2 + full],
1034 				NSEC_PER_USEC);
1035 
1036 		seq_printf(m, "%s avg10=%lu.%02lu avg60=%lu.%02lu avg300=%lu.%02lu total=%llu\n",
1037 			   full ? "full" : "some",
1038 			   LOAD_INT(avg[0]), LOAD_FRAC(avg[0]),
1039 			   LOAD_INT(avg[1]), LOAD_FRAC(avg[1]),
1040 			   LOAD_INT(avg[2]), LOAD_FRAC(avg[2]),
1041 			   total);
1042 	}
1043 
1044 	return 0;
1045 }
1046 
psi_io_show(struct seq_file * m,void * v)1047 static int psi_io_show(struct seq_file *m, void *v)
1048 {
1049 	return psi_show(m, &psi_system, PSI_IO);
1050 }
1051 
psi_memory_show(struct seq_file * m,void * v)1052 static int psi_memory_show(struct seq_file *m, void *v)
1053 {
1054 	return psi_show(m, &psi_system, PSI_MEM);
1055 }
1056 
psi_cpu_show(struct seq_file * m,void * v)1057 static int psi_cpu_show(struct seq_file *m, void *v)
1058 {
1059 	return psi_show(m, &psi_system, PSI_CPU);
1060 }
1061 
psi_io_open(struct inode * inode,struct file * file)1062 static int psi_io_open(struct inode *inode, struct file *file)
1063 {
1064 	return single_open(file, psi_io_show, NULL);
1065 }
1066 
psi_memory_open(struct inode * inode,struct file * file)1067 static int psi_memory_open(struct inode *inode, struct file *file)
1068 {
1069 	return single_open(file, psi_memory_show, NULL);
1070 }
1071 
psi_cpu_open(struct inode * inode,struct file * file)1072 static int psi_cpu_open(struct inode *inode, struct file *file)
1073 {
1074 	return single_open(file, psi_cpu_show, NULL);
1075 }
1076 
psi_trigger_create(struct psi_group * group,char * buf,size_t nbytes,enum psi_res res)1077 struct psi_trigger *psi_trigger_create(struct psi_group *group,
1078 			char *buf, size_t nbytes, enum psi_res res)
1079 {
1080 	struct psi_trigger *t;
1081 	enum psi_states state;
1082 	u32 threshold_us;
1083 	u32 window_us;
1084 
1085 	if (static_branch_likely(&psi_disabled))
1086 		return ERR_PTR(-EOPNOTSUPP);
1087 
1088 	if (sscanf(buf, "some %u %u", &threshold_us, &window_us) == 2)
1089 		state = PSI_IO_SOME + res * 2;
1090 	else if (sscanf(buf, "full %u %u", &threshold_us, &window_us) == 2)
1091 		state = PSI_IO_FULL + res * 2;
1092 	else
1093 		return ERR_PTR(-EINVAL);
1094 
1095 	if (state >= PSI_NONIDLE)
1096 		return ERR_PTR(-EINVAL);
1097 
1098 	if (window_us < WINDOW_MIN_US ||
1099 		window_us > WINDOW_MAX_US)
1100 		return ERR_PTR(-EINVAL);
1101 
1102 	/* Check threshold */
1103 	if (threshold_us == 0 || threshold_us > window_us)
1104 		return ERR_PTR(-EINVAL);
1105 
1106 	t = kmalloc(sizeof(*t), GFP_KERNEL);
1107 	if (!t)
1108 		return ERR_PTR(-ENOMEM);
1109 
1110 	t->group = group;
1111 	t->state = state;
1112 	t->threshold = threshold_us * NSEC_PER_USEC;
1113 	t->win.size = window_us * NSEC_PER_USEC;
1114 	window_reset(&t->win, 0, 0, 0);
1115 
1116 	t->event = 0;
1117 	t->last_event_time = 0;
1118 	init_waitqueue_head(&t->event_wait);
1119 
1120 	mutex_lock(&group->trigger_lock);
1121 
1122 	if (!rcu_access_pointer(group->poll_task)) {
1123 		struct task_struct *task;
1124 
1125 		task = kthread_create(psi_poll_worker, group, "psimon");
1126 		if (IS_ERR(task)) {
1127 			kfree(t);
1128 			mutex_unlock(&group->trigger_lock);
1129 			return ERR_CAST(task);
1130 		}
1131 		atomic_set(&group->poll_wakeup, 0);
1132 		wake_up_process(task);
1133 		rcu_assign_pointer(group->poll_task, task);
1134 	}
1135 
1136 	list_add(&t->node, &group->triggers);
1137 	group->poll_min_period = min(group->poll_min_period,
1138 		div_u64(t->win.size, UPDATES_PER_WINDOW));
1139 	group->nr_triggers[t->state]++;
1140 	group->poll_states |= (1 << t->state);
1141 
1142 	mutex_unlock(&group->trigger_lock);
1143 
1144 	return t;
1145 }
1146 
psi_trigger_destroy(struct psi_trigger * t)1147 void psi_trigger_destroy(struct psi_trigger *t)
1148 {
1149 	struct psi_group *group;
1150 	struct task_struct *task_to_destroy = NULL;
1151 
1152 	/*
1153 	 * We do not check psi_disabled since it might have been disabled after
1154 	 * the trigger got created.
1155 	 */
1156 	if (!t)
1157 		return;
1158 
1159 	group = t->group;
1160 	/*
1161 	 * Wakeup waiters to stop polling. Can happen if cgroup is deleted
1162 	 * from under a polling process.
1163 	 */
1164 	wake_up_interruptible(&t->event_wait);
1165 
1166 	mutex_lock(&group->trigger_lock);
1167 
1168 	if (!list_empty(&t->node)) {
1169 		struct psi_trigger *tmp;
1170 		u64 period = ULLONG_MAX;
1171 
1172 		list_del(&t->node);
1173 		group->nr_triggers[t->state]--;
1174 		if (!group->nr_triggers[t->state])
1175 			group->poll_states &= ~(1 << t->state);
1176 		/* reset min update period for the remaining triggers */
1177 		list_for_each_entry(tmp, &group->triggers, node)
1178 			period = min(period, div_u64(tmp->win.size,
1179 					UPDATES_PER_WINDOW));
1180 		group->poll_min_period = period;
1181 		/* Destroy poll_task when the last trigger is destroyed */
1182 		if (group->poll_states == 0) {
1183 			group->polling_until = 0;
1184 			task_to_destroy = rcu_dereference_protected(
1185 					group->poll_task,
1186 					lockdep_is_held(&group->trigger_lock));
1187 			rcu_assign_pointer(group->poll_task, NULL);
1188 			del_timer(&group->poll_timer);
1189 		}
1190 	}
1191 
1192 	mutex_unlock(&group->trigger_lock);
1193 
1194 	/*
1195 	 * Wait for psi_schedule_poll_work RCU to complete its read-side
1196 	 * critical section before destroying the trigger and optionally the
1197 	 * poll_task.
1198 	 */
1199 	synchronize_rcu();
1200 	/*
1201 	 * Stop kthread 'psimon' after releasing trigger_lock to prevent a
1202 	 * deadlock while waiting for psi_poll_work to acquire trigger_lock
1203 	 */
1204 	if (task_to_destroy) {
1205 		/*
1206 		 * After the RCU grace period has expired, the worker
1207 		 * can no longer be found through group->poll_task.
1208 		 */
1209 		kthread_stop(task_to_destroy);
1210 	}
1211 	kfree(t);
1212 }
1213 
psi_trigger_poll(void ** trigger_ptr,struct file * file,poll_table * wait)1214 __poll_t psi_trigger_poll(void **trigger_ptr,
1215 				struct file *file, poll_table *wait)
1216 {
1217 	__poll_t ret = DEFAULT_POLLMASK;
1218 	struct psi_trigger *t;
1219 
1220 	if (static_branch_likely(&psi_disabled))
1221 		return DEFAULT_POLLMASK | EPOLLERR | EPOLLPRI;
1222 
1223 	t = smp_load_acquire(trigger_ptr);
1224 	if (!t)
1225 		return DEFAULT_POLLMASK | EPOLLERR | EPOLLPRI;
1226 
1227 	poll_wait(file, &t->event_wait, wait);
1228 
1229 	if (cmpxchg(&t->event, 1, 0) == 1)
1230 		ret |= EPOLLPRI;
1231 
1232 	return ret;
1233 }
1234 
psi_write(struct file * file,const char __user * user_buf,size_t nbytes,enum psi_res res)1235 static ssize_t psi_write(struct file *file, const char __user *user_buf,
1236 			 size_t nbytes, enum psi_res res)
1237 {
1238 	char buf[32];
1239 	size_t buf_size;
1240 	struct seq_file *seq;
1241 	struct psi_trigger *new;
1242 
1243 	if (static_branch_likely(&psi_disabled))
1244 		return -EOPNOTSUPP;
1245 
1246 	if (!nbytes)
1247 		return -EINVAL;
1248 
1249 	buf_size = min(nbytes, sizeof(buf));
1250 	if (copy_from_user(buf, user_buf, buf_size))
1251 		return -EFAULT;
1252 
1253 	buf[buf_size - 1] = '\0';
1254 
1255 	seq = file->private_data;
1256 
1257 	/* Take seq->lock to protect seq->private from concurrent writes */
1258 	mutex_lock(&seq->lock);
1259 
1260 	/* Allow only one trigger per file descriptor */
1261 	if (seq->private) {
1262 		mutex_unlock(&seq->lock);
1263 		return -EBUSY;
1264 	}
1265 
1266 	new = psi_trigger_create(&psi_system, buf, nbytes, res);
1267 	if (IS_ERR(new)) {
1268 		mutex_unlock(&seq->lock);
1269 		return PTR_ERR(new);
1270 	}
1271 
1272 	smp_store_release(&seq->private, new);
1273 	mutex_unlock(&seq->lock);
1274 
1275 	return nbytes;
1276 }
1277 
psi_io_write(struct file * file,const char __user * user_buf,size_t nbytes,loff_t * ppos)1278 static ssize_t psi_io_write(struct file *file, const char __user *user_buf,
1279 			    size_t nbytes, loff_t *ppos)
1280 {
1281 	return psi_write(file, user_buf, nbytes, PSI_IO);
1282 }
1283 
psi_memory_write(struct file * file,const char __user * user_buf,size_t nbytes,loff_t * ppos)1284 static ssize_t psi_memory_write(struct file *file, const char __user *user_buf,
1285 				size_t nbytes, loff_t *ppos)
1286 {
1287 	return psi_write(file, user_buf, nbytes, PSI_MEM);
1288 }
1289 
psi_cpu_write(struct file * file,const char __user * user_buf,size_t nbytes,loff_t * ppos)1290 static ssize_t psi_cpu_write(struct file *file, const char __user *user_buf,
1291 			     size_t nbytes, loff_t *ppos)
1292 {
1293 	return psi_write(file, user_buf, nbytes, PSI_CPU);
1294 }
1295 
psi_fop_poll(struct file * file,poll_table * wait)1296 static __poll_t psi_fop_poll(struct file *file, poll_table *wait)
1297 {
1298 	struct seq_file *seq = file->private_data;
1299 
1300 	return psi_trigger_poll(&seq->private, file, wait);
1301 }
1302 
psi_fop_release(struct inode * inode,struct file * file)1303 static int psi_fop_release(struct inode *inode, struct file *file)
1304 {
1305 	struct seq_file *seq = file->private_data;
1306 
1307 	psi_trigger_destroy(seq->private);
1308 	return single_release(inode, file);
1309 }
1310 
1311 static const struct proc_ops psi_io_proc_ops = {
1312 	.proc_open	= psi_io_open,
1313 	.proc_read	= seq_read,
1314 	.proc_lseek	= seq_lseek,
1315 	.proc_write	= psi_io_write,
1316 	.proc_poll	= psi_fop_poll,
1317 	.proc_release	= psi_fop_release,
1318 };
1319 
1320 static const struct proc_ops psi_memory_proc_ops = {
1321 	.proc_open	= psi_memory_open,
1322 	.proc_read	= seq_read,
1323 	.proc_lseek	= seq_lseek,
1324 	.proc_write	= psi_memory_write,
1325 	.proc_poll	= psi_fop_poll,
1326 	.proc_release	= psi_fop_release,
1327 };
1328 
1329 static const struct proc_ops psi_cpu_proc_ops = {
1330 	.proc_open	= psi_cpu_open,
1331 	.proc_read	= seq_read,
1332 	.proc_lseek	= seq_lseek,
1333 	.proc_write	= psi_cpu_write,
1334 	.proc_poll	= psi_fop_poll,
1335 	.proc_release	= psi_fop_release,
1336 };
1337 
psi_proc_init(void)1338 static int __init psi_proc_init(void)
1339 {
1340 	if (psi_enable) {
1341 		proc_mkdir("pressure", NULL);
1342 		proc_create("pressure/io", 0, NULL, &psi_io_proc_ops);
1343 		proc_create("pressure/memory", 0, NULL, &psi_memory_proc_ops);
1344 		proc_create("pressure/cpu", 0, NULL, &psi_cpu_proc_ops);
1345 	}
1346 	return 0;
1347 }
1348 module_init(psi_proc_init);
1349