1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Routines having to do with the 'struct sk_buff' memory handlers.
4 *
5 * Authors: Alan Cox <alan@lxorguk.ukuu.org.uk>
6 * Florian La Roche <rzsfl@rz.uni-sb.de>
7 *
8 * Fixes:
9 * Alan Cox : Fixed the worst of the load
10 * balancer bugs.
11 * Dave Platt : Interrupt stacking fix.
12 * Richard Kooijman : Timestamp fixes.
13 * Alan Cox : Changed buffer format.
14 * Alan Cox : destructor hook for AF_UNIX etc.
15 * Linus Torvalds : Better skb_clone.
16 * Alan Cox : Added skb_copy.
17 * Alan Cox : Added all the changed routines Linus
18 * only put in the headers
19 * Ray VanTassle : Fixed --skb->lock in free
20 * Alan Cox : skb_copy copy arp field
21 * Andi Kleen : slabified it.
22 * Robert Olsson : Removed skb_head_pool
23 *
24 * NOTE:
25 * The __skb_ routines should be called with interrupts
26 * disabled, or you better be *real* sure that the operation is atomic
27 * with respect to whatever list is being frobbed (e.g. via lock_sock()
28 * or via disabling bottom half handlers, etc).
29 */
30
31 /*
32 * The functions in this file will not compile correctly with gcc 2.4.x
33 */
34
35 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
36
37 #include <linux/module.h>
38 #include <linux/types.h>
39 #include <linux/kernel.h>
40 #include <linux/mm.h>
41 #include <linux/interrupt.h>
42 #include <linux/in.h>
43 #include <linux/inet.h>
44 #include <linux/slab.h>
45 #include <linux/tcp.h>
46 #include <linux/udp.h>
47 #include <linux/sctp.h>
48 #include <linux/netdevice.h>
49 #ifdef CONFIG_NET_CLS_ACT
50 #include <net/pkt_sched.h>
51 #endif
52 #include <linux/string.h>
53 #include <linux/skbuff.h>
54 #include <linux/splice.h>
55 #include <linux/cache.h>
56 #include <linux/rtnetlink.h>
57 #include <linux/init.h>
58 #include <linux/scatterlist.h>
59 #include <linux/errqueue.h>
60 #include <linux/prefetch.h>
61 #include <linux/if_vlan.h>
62 #include <linux/mpls.h>
63
64 #include <net/protocol.h>
65 #include <net/dst.h>
66 #include <net/sock.h>
67 #include <net/checksum.h>
68 #include <net/ip6_checksum.h>
69 #include <net/xfrm.h>
70 #include <net/mpls.h>
71 #include <net/mptcp.h>
72
73 #include <linux/uaccess.h>
74 #include <trace/events/skb.h>
75 #include <linux/highmem.h>
76 #include <linux/capability.h>
77 #include <linux/user_namespace.h>
78 #include <linux/indirect_call_wrapper.h>
79
80 #include "datagram.h"
81
82 struct kmem_cache *skbuff_head_cache __ro_after_init;
83 static struct kmem_cache *skbuff_fclone_cache __ro_after_init;
84 #ifdef CONFIG_SKB_EXTENSIONS
85 static struct kmem_cache *skbuff_ext_cache __ro_after_init;
86 #endif
87 int sysctl_max_skb_frags __read_mostly = MAX_SKB_FRAGS;
88 EXPORT_SYMBOL(sysctl_max_skb_frags);
89
90 /**
91 * skb_panic - private function for out-of-line support
92 * @skb: buffer
93 * @sz: size
94 * @addr: address
95 * @msg: skb_over_panic or skb_under_panic
96 *
97 * Out-of-line support for skb_put() and skb_push().
98 * Called via the wrapper skb_over_panic() or skb_under_panic().
99 * Keep out of line to prevent kernel bloat.
100 * __builtin_return_address is not used because it is not always reliable.
101 */
skb_panic(struct sk_buff * skb,unsigned int sz,void * addr,const char msg[])102 static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr,
103 const char msg[])
104 {
105 pr_emerg("%s: text:%px len:%d put:%d head:%px data:%px tail:%#lx end:%#lx dev:%s\n",
106 msg, addr, skb->len, sz, skb->head, skb->data,
107 (unsigned long)skb->tail, (unsigned long)skb->end,
108 skb->dev ? skb->dev->name : "<NULL>");
109 BUG();
110 }
111
skb_over_panic(struct sk_buff * skb,unsigned int sz,void * addr)112 static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr)
113 {
114 skb_panic(skb, sz, addr, __func__);
115 }
116
skb_under_panic(struct sk_buff * skb,unsigned int sz,void * addr)117 static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr)
118 {
119 skb_panic(skb, sz, addr, __func__);
120 }
121
122 /*
123 * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells
124 * the caller if emergency pfmemalloc reserves are being used. If it is and
125 * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves
126 * may be used. Otherwise, the packet data may be discarded until enough
127 * memory is free
128 */
129 #define kmalloc_reserve(size, gfp, node, pfmemalloc) \
130 __kmalloc_reserve(size, gfp, node, _RET_IP_, pfmemalloc)
131
__kmalloc_reserve(size_t size,gfp_t flags,int node,unsigned long ip,bool * pfmemalloc)132 static void *__kmalloc_reserve(size_t size, gfp_t flags, int node,
133 unsigned long ip, bool *pfmemalloc)
134 {
135 void *obj;
136 bool ret_pfmemalloc = false;
137
138 /*
139 * Try a regular allocation, when that fails and we're not entitled
140 * to the reserves, fail.
141 */
142 obj = kmalloc_node_track_caller(size,
143 flags | __GFP_NOMEMALLOC | __GFP_NOWARN,
144 node);
145 if (obj || !(gfp_pfmemalloc_allowed(flags)))
146 goto out;
147
148 /* Try again but now we are using pfmemalloc reserves */
149 ret_pfmemalloc = true;
150 obj = kmalloc_node_track_caller(size, flags, node);
151
152 out:
153 if (pfmemalloc)
154 *pfmemalloc = ret_pfmemalloc;
155
156 return obj;
157 }
158
159 /* Allocate a new skbuff. We do this ourselves so we can fill in a few
160 * 'private' fields and also do memory statistics to find all the
161 * [BEEP] leaks.
162 *
163 */
164
165 /**
166 * __alloc_skb - allocate a network buffer
167 * @size: size to allocate
168 * @gfp_mask: allocation mask
169 * @flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache
170 * instead of head cache and allocate a cloned (child) skb.
171 * If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for
172 * allocations in case the data is required for writeback
173 * @node: numa node to allocate memory on
174 *
175 * Allocate a new &sk_buff. The returned buffer has no headroom and a
176 * tail room of at least size bytes. The object has a reference count
177 * of one. The return is the buffer. On a failure the return is %NULL.
178 *
179 * Buffers may only be allocated from interrupts using a @gfp_mask of
180 * %GFP_ATOMIC.
181 */
__alloc_skb(unsigned int size,gfp_t gfp_mask,int flags,int node)182 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
183 int flags, int node)
184 {
185 struct kmem_cache *cache;
186 struct skb_shared_info *shinfo;
187 struct sk_buff *skb;
188 u8 *data;
189 bool pfmemalloc;
190
191 cache = (flags & SKB_ALLOC_FCLONE)
192 ? skbuff_fclone_cache : skbuff_head_cache;
193
194 if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX))
195 gfp_mask |= __GFP_MEMALLOC;
196
197 /* Get the HEAD */
198 skb = kmem_cache_alloc_node(cache, gfp_mask & ~__GFP_DMA, node);
199 if (!skb)
200 goto out;
201 prefetchw(skb);
202
203 /* We do our best to align skb_shared_info on a separate cache
204 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives
205 * aligned memory blocks, unless SLUB/SLAB debug is enabled.
206 * Both skb->head and skb_shared_info are cache line aligned.
207 */
208 size = SKB_DATA_ALIGN(size);
209 size += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
210 data = kmalloc_reserve(size, gfp_mask, node, &pfmemalloc);
211 if (!data)
212 goto nodata;
213 /* kmalloc(size) might give us more room than requested.
214 * Put skb_shared_info exactly at the end of allocated zone,
215 * to allow max possible filling before reallocation.
216 */
217 size = SKB_WITH_OVERHEAD(ksize(data));
218 prefetchw(data + size);
219
220 /*
221 * Only clear those fields we need to clear, not those that we will
222 * actually initialise below. Hence, don't put any more fields after
223 * the tail pointer in struct sk_buff!
224 */
225 memset(skb, 0, offsetof(struct sk_buff, tail));
226 /* Account for allocated memory : skb + skb->head */
227 skb->truesize = SKB_TRUESIZE(size);
228 skb->pfmemalloc = pfmemalloc;
229 refcount_set(&skb->users, 1);
230 skb->head = data;
231 skb->data = data;
232 skb_reset_tail_pointer(skb);
233 skb->end = skb->tail + size;
234 skb->mac_header = (typeof(skb->mac_header))~0U;
235 skb->transport_header = (typeof(skb->transport_header))~0U;
236
237 /* make sure we initialize shinfo sequentially */
238 shinfo = skb_shinfo(skb);
239 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
240 atomic_set(&shinfo->dataref, 1);
241
242 if (flags & SKB_ALLOC_FCLONE) {
243 struct sk_buff_fclones *fclones;
244
245 fclones = container_of(skb, struct sk_buff_fclones, skb1);
246
247 skb->fclone = SKB_FCLONE_ORIG;
248 refcount_set(&fclones->fclone_ref, 1);
249
250 fclones->skb2.fclone = SKB_FCLONE_CLONE;
251 }
252
253 skb_set_kcov_handle(skb, kcov_common_handle());
254
255 out:
256 return skb;
257 nodata:
258 kmem_cache_free(cache, skb);
259 skb = NULL;
260 goto out;
261 }
262 EXPORT_SYMBOL(__alloc_skb);
263
264 /* Caller must provide SKB that is memset cleared */
__build_skb_around(struct sk_buff * skb,void * data,unsigned int frag_size)265 static struct sk_buff *__build_skb_around(struct sk_buff *skb,
266 void *data, unsigned int frag_size)
267 {
268 struct skb_shared_info *shinfo;
269 unsigned int size = frag_size ? : ksize(data);
270
271 size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
272
273 /* Assumes caller memset cleared SKB */
274 skb->truesize = SKB_TRUESIZE(size);
275 refcount_set(&skb->users, 1);
276 skb->head = data;
277 skb->data = data;
278 skb_reset_tail_pointer(skb);
279 skb->end = skb->tail + size;
280 skb->mac_header = (typeof(skb->mac_header))~0U;
281 skb->transport_header = (typeof(skb->transport_header))~0U;
282
283 /* make sure we initialize shinfo sequentially */
284 shinfo = skb_shinfo(skb);
285 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
286 atomic_set(&shinfo->dataref, 1);
287
288 skb_set_kcov_handle(skb, kcov_common_handle());
289
290 return skb;
291 }
292
293 /**
294 * __build_skb - build a network buffer
295 * @data: data buffer provided by caller
296 * @frag_size: size of data, or 0 if head was kmalloced
297 *
298 * Allocate a new &sk_buff. Caller provides space holding head and
299 * skb_shared_info. @data must have been allocated by kmalloc() only if
300 * @frag_size is 0, otherwise data should come from the page allocator
301 * or vmalloc()
302 * The return is the new skb buffer.
303 * On a failure the return is %NULL, and @data is not freed.
304 * Notes :
305 * Before IO, driver allocates only data buffer where NIC put incoming frame
306 * Driver should add room at head (NET_SKB_PAD) and
307 * MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info))
308 * After IO, driver calls build_skb(), to allocate sk_buff and populate it
309 * before giving packet to stack.
310 * RX rings only contains data buffers, not full skbs.
311 */
__build_skb(void * data,unsigned int frag_size)312 struct sk_buff *__build_skb(void *data, unsigned int frag_size)
313 {
314 struct sk_buff *skb;
315
316 skb = kmem_cache_alloc(skbuff_head_cache, GFP_ATOMIC);
317 if (unlikely(!skb))
318 return NULL;
319
320 memset(skb, 0, offsetof(struct sk_buff, tail));
321
322 return __build_skb_around(skb, data, frag_size);
323 }
324
325 /* build_skb() is wrapper over __build_skb(), that specifically
326 * takes care of skb->head and skb->pfmemalloc
327 * This means that if @frag_size is not zero, then @data must be backed
328 * by a page fragment, not kmalloc() or vmalloc()
329 */
build_skb(void * data,unsigned int frag_size)330 struct sk_buff *build_skb(void *data, unsigned int frag_size)
331 {
332 struct sk_buff *skb = __build_skb(data, frag_size);
333
334 if (skb && frag_size) {
335 skb->head_frag = 1;
336 if (page_is_pfmemalloc(virt_to_head_page(data)))
337 skb->pfmemalloc = 1;
338 }
339 return skb;
340 }
341 EXPORT_SYMBOL(build_skb);
342
343 /**
344 * build_skb_around - build a network buffer around provided skb
345 * @skb: sk_buff provide by caller, must be memset cleared
346 * @data: data buffer provided by caller
347 * @frag_size: size of data, or 0 if head was kmalloced
348 */
build_skb_around(struct sk_buff * skb,void * data,unsigned int frag_size)349 struct sk_buff *build_skb_around(struct sk_buff *skb,
350 void *data, unsigned int frag_size)
351 {
352 if (unlikely(!skb))
353 return NULL;
354
355 skb = __build_skb_around(skb, data, frag_size);
356
357 if (skb && frag_size) {
358 skb->head_frag = 1;
359 if (page_is_pfmemalloc(virt_to_head_page(data)))
360 skb->pfmemalloc = 1;
361 }
362 return skb;
363 }
364 EXPORT_SYMBOL(build_skb_around);
365
366 #define NAPI_SKB_CACHE_SIZE 64
367
368 struct napi_alloc_cache {
369 struct page_frag_cache page;
370 unsigned int skb_count;
371 void *skb_cache[NAPI_SKB_CACHE_SIZE];
372 };
373
374 static DEFINE_PER_CPU(struct page_frag_cache, netdev_alloc_cache);
375 static DEFINE_PER_CPU(struct napi_alloc_cache, napi_alloc_cache);
376
__napi_alloc_frag(unsigned int fragsz,gfp_t gfp_mask)377 static void *__napi_alloc_frag(unsigned int fragsz, gfp_t gfp_mask)
378 {
379 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
380
381 return page_frag_alloc(&nc->page, fragsz, gfp_mask);
382 }
383
napi_alloc_frag(unsigned int fragsz)384 void *napi_alloc_frag(unsigned int fragsz)
385 {
386 fragsz = SKB_DATA_ALIGN(fragsz);
387
388 return __napi_alloc_frag(fragsz, GFP_ATOMIC);
389 }
390 EXPORT_SYMBOL(napi_alloc_frag);
391
392 /**
393 * netdev_alloc_frag - allocate a page fragment
394 * @fragsz: fragment size
395 *
396 * Allocates a frag from a page for receive buffer.
397 * Uses GFP_ATOMIC allocations.
398 */
netdev_alloc_frag(unsigned int fragsz)399 void *netdev_alloc_frag(unsigned int fragsz)
400 {
401 struct page_frag_cache *nc;
402 void *data;
403
404 fragsz = SKB_DATA_ALIGN(fragsz);
405 if (in_irq() || irqs_disabled()) {
406 nc = this_cpu_ptr(&netdev_alloc_cache);
407 data = page_frag_alloc(nc, fragsz, GFP_ATOMIC);
408 } else {
409 local_bh_disable();
410 data = __napi_alloc_frag(fragsz, GFP_ATOMIC);
411 local_bh_enable();
412 }
413 return data;
414 }
415 EXPORT_SYMBOL(netdev_alloc_frag);
416
417 /**
418 * __netdev_alloc_skb - allocate an skbuff for rx on a specific device
419 * @dev: network device to receive on
420 * @len: length to allocate
421 * @gfp_mask: get_free_pages mask, passed to alloc_skb
422 *
423 * Allocate a new &sk_buff and assign it a usage count of one. The
424 * buffer has NET_SKB_PAD headroom built in. Users should allocate
425 * the headroom they think they need without accounting for the
426 * built in space. The built in space is used for optimisations.
427 *
428 * %NULL is returned if there is no free memory.
429 */
__netdev_alloc_skb(struct net_device * dev,unsigned int len,gfp_t gfp_mask)430 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int len,
431 gfp_t gfp_mask)
432 {
433 struct page_frag_cache *nc;
434 struct sk_buff *skb;
435 bool pfmemalloc;
436 void *data;
437
438 len += NET_SKB_PAD;
439
440 /* If requested length is either too small or too big,
441 * we use kmalloc() for skb->head allocation.
442 */
443 if (len <= SKB_WITH_OVERHEAD(1024) ||
444 len > SKB_WITH_OVERHEAD(PAGE_SIZE) ||
445 (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
446 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE);
447 if (!skb)
448 goto skb_fail;
449 goto skb_success;
450 }
451
452 len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
453 len = SKB_DATA_ALIGN(len);
454
455 if (sk_memalloc_socks())
456 gfp_mask |= __GFP_MEMALLOC;
457
458 if (in_irq() || irqs_disabled()) {
459 nc = this_cpu_ptr(&netdev_alloc_cache);
460 data = page_frag_alloc(nc, len, gfp_mask);
461 pfmemalloc = nc->pfmemalloc;
462 } else {
463 local_bh_disable();
464 nc = this_cpu_ptr(&napi_alloc_cache.page);
465 data = page_frag_alloc(nc, len, gfp_mask);
466 pfmemalloc = nc->pfmemalloc;
467 local_bh_enable();
468 }
469
470 if (unlikely(!data))
471 return NULL;
472
473 skb = __build_skb(data, len);
474 if (unlikely(!skb)) {
475 skb_free_frag(data);
476 return NULL;
477 }
478
479 if (pfmemalloc)
480 skb->pfmemalloc = 1;
481 skb->head_frag = 1;
482
483 skb_success:
484 skb_reserve(skb, NET_SKB_PAD);
485 skb->dev = dev;
486
487 skb_fail:
488 return skb;
489 }
490 EXPORT_SYMBOL(__netdev_alloc_skb);
491
492 /**
493 * __napi_alloc_skb - allocate skbuff for rx in a specific NAPI instance
494 * @napi: napi instance this buffer was allocated for
495 * @len: length to allocate
496 * @gfp_mask: get_free_pages mask, passed to alloc_skb and alloc_pages
497 *
498 * Allocate a new sk_buff for use in NAPI receive. This buffer will
499 * attempt to allocate the head from a special reserved region used
500 * only for NAPI Rx allocation. By doing this we can save several
501 * CPU cycles by avoiding having to disable and re-enable IRQs.
502 *
503 * %NULL is returned if there is no free memory.
504 */
__napi_alloc_skb(struct napi_struct * napi,unsigned int len,gfp_t gfp_mask)505 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi, unsigned int len,
506 gfp_t gfp_mask)
507 {
508 struct napi_alloc_cache *nc;
509 struct sk_buff *skb;
510 void *data;
511
512 len += NET_SKB_PAD + NET_IP_ALIGN;
513
514 /* If requested length is either too small or too big,
515 * we use kmalloc() for skb->head allocation.
516 */
517 if (len <= SKB_WITH_OVERHEAD(1024) ||
518 len > SKB_WITH_OVERHEAD(PAGE_SIZE) ||
519 (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
520 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE);
521 if (!skb)
522 goto skb_fail;
523 goto skb_success;
524 }
525
526 nc = this_cpu_ptr(&napi_alloc_cache);
527 len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
528 len = SKB_DATA_ALIGN(len);
529
530 if (sk_memalloc_socks())
531 gfp_mask |= __GFP_MEMALLOC;
532
533 data = page_frag_alloc(&nc->page, len, gfp_mask);
534 if (unlikely(!data))
535 return NULL;
536
537 skb = __build_skb(data, len);
538 if (unlikely(!skb)) {
539 skb_free_frag(data);
540 return NULL;
541 }
542
543 if (nc->page.pfmemalloc)
544 skb->pfmemalloc = 1;
545 skb->head_frag = 1;
546
547 skb_success:
548 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN);
549 skb->dev = napi->dev;
550
551 skb_fail:
552 return skb;
553 }
554 EXPORT_SYMBOL(__napi_alloc_skb);
555
skb_add_rx_frag(struct sk_buff * skb,int i,struct page * page,int off,int size,unsigned int truesize)556 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
557 int size, unsigned int truesize)
558 {
559 skb_fill_page_desc(skb, i, page, off, size);
560 skb->len += size;
561 skb->data_len += size;
562 skb->truesize += truesize;
563 }
564 EXPORT_SYMBOL(skb_add_rx_frag);
565
skb_coalesce_rx_frag(struct sk_buff * skb,int i,int size,unsigned int truesize)566 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
567 unsigned int truesize)
568 {
569 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
570
571 skb_frag_size_add(frag, size);
572 skb->len += size;
573 skb->data_len += size;
574 skb->truesize += truesize;
575 }
576 EXPORT_SYMBOL(skb_coalesce_rx_frag);
577
skb_drop_list(struct sk_buff ** listp)578 static void skb_drop_list(struct sk_buff **listp)
579 {
580 kfree_skb_list(*listp);
581 *listp = NULL;
582 }
583
skb_drop_fraglist(struct sk_buff * skb)584 static inline void skb_drop_fraglist(struct sk_buff *skb)
585 {
586 skb_drop_list(&skb_shinfo(skb)->frag_list);
587 }
588
skb_clone_fraglist(struct sk_buff * skb)589 static void skb_clone_fraglist(struct sk_buff *skb)
590 {
591 struct sk_buff *list;
592
593 skb_walk_frags(skb, list)
594 skb_get(list);
595 }
596
skb_free_head(struct sk_buff * skb)597 static void skb_free_head(struct sk_buff *skb)
598 {
599 unsigned char *head = skb->head;
600
601 if (skb->head_frag)
602 skb_free_frag(head);
603 else
604 kfree(head);
605 }
606
skb_release_data(struct sk_buff * skb)607 static void skb_release_data(struct sk_buff *skb)
608 {
609 struct skb_shared_info *shinfo = skb_shinfo(skb);
610 int i;
611
612 if (skb->cloned &&
613 atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1,
614 &shinfo->dataref))
615 return;
616
617 for (i = 0; i < shinfo->nr_frags; i++)
618 __skb_frag_unref(&shinfo->frags[i]);
619
620 if (shinfo->frag_list)
621 kfree_skb_list(shinfo->frag_list);
622
623 skb_zcopy_clear(skb, true);
624 skb_free_head(skb);
625 }
626
627 /*
628 * Free an skbuff by memory without cleaning the state.
629 */
kfree_skbmem(struct sk_buff * skb)630 static void kfree_skbmem(struct sk_buff *skb)
631 {
632 struct sk_buff_fclones *fclones;
633
634 switch (skb->fclone) {
635 case SKB_FCLONE_UNAVAILABLE:
636 kmem_cache_free(skbuff_head_cache, skb);
637 return;
638
639 case SKB_FCLONE_ORIG:
640 fclones = container_of(skb, struct sk_buff_fclones, skb1);
641
642 /* We usually free the clone (TX completion) before original skb
643 * This test would have no chance to be true for the clone,
644 * while here, branch prediction will be good.
645 */
646 if (refcount_read(&fclones->fclone_ref) == 1)
647 goto fastpath;
648 break;
649
650 default: /* SKB_FCLONE_CLONE */
651 fclones = container_of(skb, struct sk_buff_fclones, skb2);
652 break;
653 }
654 if (!refcount_dec_and_test(&fclones->fclone_ref))
655 return;
656 fastpath:
657 kmem_cache_free(skbuff_fclone_cache, fclones);
658 }
659
skb_release_head_state(struct sk_buff * skb)660 void skb_release_head_state(struct sk_buff *skb)
661 {
662 nf_reset_ct(skb);
663 skb_dst_drop(skb);
664 if (skb->destructor) {
665 WARN_ON(in_irq());
666 skb->destructor(skb);
667 }
668 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
669 nf_conntrack_put(skb_nfct(skb));
670 #endif
671 skb_ext_put(skb);
672 }
673
674 /* Free everything but the sk_buff shell. */
skb_release_all(struct sk_buff * skb)675 static void skb_release_all(struct sk_buff *skb)
676 {
677 skb_release_head_state(skb);
678 if (likely(skb->head))
679 skb_release_data(skb);
680 }
681
682 /**
683 * __kfree_skb - private function
684 * @skb: buffer
685 *
686 * Free an sk_buff. Release anything attached to the buffer.
687 * Clean the state. This is an internal helper function. Users should
688 * always call kfree_skb
689 */
690
__kfree_skb(struct sk_buff * skb)691 void __kfree_skb(struct sk_buff *skb)
692 {
693 skb_release_all(skb);
694 kfree_skbmem(skb);
695 }
696 EXPORT_SYMBOL(__kfree_skb);
697
698 /**
699 * kfree_skb - free an sk_buff
700 * @skb: buffer to free
701 *
702 * Drop a reference to the buffer and free it if the usage count has
703 * hit zero.
704 */
kfree_skb(struct sk_buff * skb)705 void kfree_skb(struct sk_buff *skb)
706 {
707 if (!skb_unref(skb))
708 return;
709
710 trace_kfree_skb(skb, __builtin_return_address(0));
711 __kfree_skb(skb);
712 }
713 EXPORT_SYMBOL(kfree_skb);
714
kfree_skb_list(struct sk_buff * segs)715 void kfree_skb_list(struct sk_buff *segs)
716 {
717 while (segs) {
718 struct sk_buff *next = segs->next;
719
720 kfree_skb(segs);
721 segs = next;
722 }
723 }
724 EXPORT_SYMBOL(kfree_skb_list);
725
726 /* Dump skb information and contents.
727 *
728 * Must only be called from net_ratelimit()-ed paths.
729 *
730 * Dumps whole packets if full_pkt, only headers otherwise.
731 */
skb_dump(const char * level,const struct sk_buff * skb,bool full_pkt)732 void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt)
733 {
734 struct skb_shared_info *sh = skb_shinfo(skb);
735 struct net_device *dev = skb->dev;
736 struct sock *sk = skb->sk;
737 struct sk_buff *list_skb;
738 bool has_mac, has_trans;
739 int headroom, tailroom;
740 int i, len, seg_len;
741
742 if (full_pkt)
743 len = skb->len;
744 else
745 len = min_t(int, skb->len, MAX_HEADER + 128);
746
747 headroom = skb_headroom(skb);
748 tailroom = skb_tailroom(skb);
749
750 has_mac = skb_mac_header_was_set(skb);
751 has_trans = skb_transport_header_was_set(skb);
752
753 printk("%sskb len=%u headroom=%u headlen=%u tailroom=%u\n"
754 "mac=(%d,%d) net=(%d,%d) trans=%d\n"
755 "shinfo(txflags=%u nr_frags=%u gso(size=%hu type=%u segs=%hu))\n"
756 "csum(0x%x ip_summed=%u complete_sw=%u valid=%u level=%u)\n"
757 "hash(0x%x sw=%u l4=%u) proto=0x%04x pkttype=%u iif=%d\n",
758 level, skb->len, headroom, skb_headlen(skb), tailroom,
759 has_mac ? skb->mac_header : -1,
760 has_mac ? skb_mac_header_len(skb) : -1,
761 skb->network_header,
762 has_trans ? skb_network_header_len(skb) : -1,
763 has_trans ? skb->transport_header : -1,
764 sh->tx_flags, sh->nr_frags,
765 sh->gso_size, sh->gso_type, sh->gso_segs,
766 skb->csum, skb->ip_summed, skb->csum_complete_sw,
767 skb->csum_valid, skb->csum_level,
768 skb->hash, skb->sw_hash, skb->l4_hash,
769 ntohs(skb->protocol), skb->pkt_type, skb->skb_iif);
770
771 if (dev)
772 printk("%sdev name=%s feat=%pNF\n",
773 level, dev->name, &dev->features);
774 if (sk)
775 printk("%ssk family=%hu type=%u proto=%u\n",
776 level, sk->sk_family, sk->sk_type, sk->sk_protocol);
777
778 if (full_pkt && headroom)
779 print_hex_dump(level, "skb headroom: ", DUMP_PREFIX_OFFSET,
780 16, 1, skb->head, headroom, false);
781
782 seg_len = min_t(int, skb_headlen(skb), len);
783 if (seg_len)
784 print_hex_dump(level, "skb linear: ", DUMP_PREFIX_OFFSET,
785 16, 1, skb->data, seg_len, false);
786 len -= seg_len;
787
788 if (full_pkt && tailroom)
789 print_hex_dump(level, "skb tailroom: ", DUMP_PREFIX_OFFSET,
790 16, 1, skb_tail_pointer(skb), tailroom, false);
791
792 for (i = 0; len && i < skb_shinfo(skb)->nr_frags; i++) {
793 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
794 u32 p_off, p_len, copied;
795 struct page *p;
796 u8 *vaddr;
797
798 skb_frag_foreach_page(frag, skb_frag_off(frag),
799 skb_frag_size(frag), p, p_off, p_len,
800 copied) {
801 seg_len = min_t(int, p_len, len);
802 vaddr = kmap_atomic(p);
803 print_hex_dump(level, "skb frag: ",
804 DUMP_PREFIX_OFFSET,
805 16, 1, vaddr + p_off, seg_len, false);
806 kunmap_atomic(vaddr);
807 len -= seg_len;
808 if (!len)
809 break;
810 }
811 }
812
813 if (full_pkt && skb_has_frag_list(skb)) {
814 printk("skb fraglist:\n");
815 skb_walk_frags(skb, list_skb)
816 skb_dump(level, list_skb, true);
817 }
818 }
819 EXPORT_SYMBOL(skb_dump);
820
821 /**
822 * skb_tx_error - report an sk_buff xmit error
823 * @skb: buffer that triggered an error
824 *
825 * Report xmit error if a device callback is tracking this skb.
826 * skb must be freed afterwards.
827 */
skb_tx_error(struct sk_buff * skb)828 void skb_tx_error(struct sk_buff *skb)
829 {
830 skb_zcopy_clear(skb, true);
831 }
832 EXPORT_SYMBOL(skb_tx_error);
833
834 #ifdef CONFIG_TRACEPOINTS
835 /**
836 * consume_skb - free an skbuff
837 * @skb: buffer to free
838 *
839 * Drop a ref to the buffer and free it if the usage count has hit zero
840 * Functions identically to kfree_skb, but kfree_skb assumes that the frame
841 * is being dropped after a failure and notes that
842 */
consume_skb(struct sk_buff * skb)843 void consume_skb(struct sk_buff *skb)
844 {
845 if (!skb_unref(skb))
846 return;
847
848 trace_consume_skb(skb);
849 __kfree_skb(skb);
850 }
851 EXPORT_SYMBOL(consume_skb);
852 #endif
853
854 /**
855 * consume_stateless_skb - free an skbuff, assuming it is stateless
856 * @skb: buffer to free
857 *
858 * Alike consume_skb(), but this variant assumes that this is the last
859 * skb reference and all the head states have been already dropped
860 */
__consume_stateless_skb(struct sk_buff * skb)861 void __consume_stateless_skb(struct sk_buff *skb)
862 {
863 trace_consume_skb(skb);
864 skb_release_data(skb);
865 kfree_skbmem(skb);
866 }
867
__kfree_skb_flush(void)868 void __kfree_skb_flush(void)
869 {
870 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
871
872 /* flush skb_cache if containing objects */
873 if (nc->skb_count) {
874 kmem_cache_free_bulk(skbuff_head_cache, nc->skb_count,
875 nc->skb_cache);
876 nc->skb_count = 0;
877 }
878 }
879
_kfree_skb_defer(struct sk_buff * skb)880 static inline void _kfree_skb_defer(struct sk_buff *skb)
881 {
882 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
883
884 /* drop skb->head and call any destructors for packet */
885 skb_release_all(skb);
886
887 /* record skb to CPU local list */
888 nc->skb_cache[nc->skb_count++] = skb;
889
890 #ifdef CONFIG_SLUB
891 /* SLUB writes into objects when freeing */
892 prefetchw(skb);
893 #endif
894
895 /* flush skb_cache if it is filled */
896 if (unlikely(nc->skb_count == NAPI_SKB_CACHE_SIZE)) {
897 kmem_cache_free_bulk(skbuff_head_cache, NAPI_SKB_CACHE_SIZE,
898 nc->skb_cache);
899 nc->skb_count = 0;
900 }
901 }
__kfree_skb_defer(struct sk_buff * skb)902 void __kfree_skb_defer(struct sk_buff *skb)
903 {
904 _kfree_skb_defer(skb);
905 }
906
napi_consume_skb(struct sk_buff * skb,int budget)907 void napi_consume_skb(struct sk_buff *skb, int budget)
908 {
909 /* Zero budget indicate non-NAPI context called us, like netpoll */
910 if (unlikely(!budget)) {
911 dev_consume_skb_any(skb);
912 return;
913 }
914
915 if (!skb_unref(skb))
916 return;
917
918 /* if reaching here SKB is ready to free */
919 trace_consume_skb(skb);
920
921 /* if SKB is a clone, don't handle this case */
922 if (skb->fclone != SKB_FCLONE_UNAVAILABLE) {
923 __kfree_skb(skb);
924 return;
925 }
926
927 _kfree_skb_defer(skb);
928 }
929 EXPORT_SYMBOL(napi_consume_skb);
930
931 /* Make sure a field is enclosed inside headers_start/headers_end section */
932 #define CHECK_SKB_FIELD(field) \
933 BUILD_BUG_ON(offsetof(struct sk_buff, field) < \
934 offsetof(struct sk_buff, headers_start)); \
935 BUILD_BUG_ON(offsetof(struct sk_buff, field) > \
936 offsetof(struct sk_buff, headers_end)); \
937
__copy_skb_header(struct sk_buff * new,const struct sk_buff * old)938 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
939 {
940 new->tstamp = old->tstamp;
941 /* We do not copy old->sk */
942 new->dev = old->dev;
943 memcpy(new->cb, old->cb, sizeof(old->cb));
944 skb_dst_copy(new, old);
945 __skb_ext_copy(new, old);
946 __nf_copy(new, old, false);
947
948 /* Note : this field could be in headers_start/headers_end section
949 * It is not yet because we do not want to have a 16 bit hole
950 */
951 new->queue_mapping = old->queue_mapping;
952
953 memcpy(&new->headers_start, &old->headers_start,
954 offsetof(struct sk_buff, headers_end) -
955 offsetof(struct sk_buff, headers_start));
956 CHECK_SKB_FIELD(protocol);
957 CHECK_SKB_FIELD(csum);
958 CHECK_SKB_FIELD(hash);
959 CHECK_SKB_FIELD(priority);
960 CHECK_SKB_FIELD(skb_iif);
961 CHECK_SKB_FIELD(vlan_proto);
962 CHECK_SKB_FIELD(vlan_tci);
963 CHECK_SKB_FIELD(transport_header);
964 CHECK_SKB_FIELD(network_header);
965 CHECK_SKB_FIELD(mac_header);
966 CHECK_SKB_FIELD(inner_protocol);
967 CHECK_SKB_FIELD(inner_transport_header);
968 CHECK_SKB_FIELD(inner_network_header);
969 CHECK_SKB_FIELD(inner_mac_header);
970 CHECK_SKB_FIELD(mark);
971 #ifdef CONFIG_NETWORK_SECMARK
972 CHECK_SKB_FIELD(secmark);
973 #endif
974 #ifdef CONFIG_NET_RX_BUSY_POLL
975 CHECK_SKB_FIELD(napi_id);
976 #endif
977 #ifdef CONFIG_XPS
978 CHECK_SKB_FIELD(sender_cpu);
979 #endif
980 #ifdef CONFIG_NET_SCHED
981 CHECK_SKB_FIELD(tc_index);
982 #endif
983
984 }
985
986 /*
987 * You should not add any new code to this function. Add it to
988 * __copy_skb_header above instead.
989 */
__skb_clone(struct sk_buff * n,struct sk_buff * skb)990 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb)
991 {
992 #define C(x) n->x = skb->x
993
994 n->next = n->prev = NULL;
995 n->sk = NULL;
996 __copy_skb_header(n, skb);
997
998 C(len);
999 C(data_len);
1000 C(mac_len);
1001 n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len;
1002 n->cloned = 1;
1003 n->nohdr = 0;
1004 n->peeked = 0;
1005 C(pfmemalloc);
1006 n->destructor = NULL;
1007 C(tail);
1008 C(end);
1009 C(head);
1010 C(head_frag);
1011 C(data);
1012 C(truesize);
1013 refcount_set(&n->users, 1);
1014
1015 atomic_inc(&(skb_shinfo(skb)->dataref));
1016 skb->cloned = 1;
1017
1018 return n;
1019 #undef C
1020 }
1021
1022 /**
1023 * alloc_skb_for_msg() - allocate sk_buff to wrap frag list forming a msg
1024 * @first: first sk_buff of the msg
1025 */
alloc_skb_for_msg(struct sk_buff * first)1026 struct sk_buff *alloc_skb_for_msg(struct sk_buff *first)
1027 {
1028 struct sk_buff *n;
1029
1030 n = alloc_skb(0, GFP_ATOMIC);
1031 if (!n)
1032 return NULL;
1033
1034 n->len = first->len;
1035 n->data_len = first->len;
1036 n->truesize = first->truesize;
1037
1038 skb_shinfo(n)->frag_list = first;
1039
1040 __copy_skb_header(n, first);
1041 n->destructor = NULL;
1042
1043 return n;
1044 }
1045 EXPORT_SYMBOL_GPL(alloc_skb_for_msg);
1046
1047 /**
1048 * skb_morph - morph one skb into another
1049 * @dst: the skb to receive the contents
1050 * @src: the skb to supply the contents
1051 *
1052 * This is identical to skb_clone except that the target skb is
1053 * supplied by the user.
1054 *
1055 * The target skb is returned upon exit.
1056 */
skb_morph(struct sk_buff * dst,struct sk_buff * src)1057 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src)
1058 {
1059 skb_release_all(dst);
1060 return __skb_clone(dst, src);
1061 }
1062 EXPORT_SYMBOL_GPL(skb_morph);
1063
mm_account_pinned_pages(struct mmpin * mmp,size_t size)1064 int mm_account_pinned_pages(struct mmpin *mmp, size_t size)
1065 {
1066 unsigned long max_pg, num_pg, new_pg, old_pg;
1067 struct user_struct *user;
1068
1069 if (capable(CAP_IPC_LOCK) || !size)
1070 return 0;
1071
1072 num_pg = (size >> PAGE_SHIFT) + 2; /* worst case */
1073 max_pg = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
1074 user = mmp->user ? : current_user();
1075
1076 do {
1077 old_pg = atomic_long_read(&user->locked_vm);
1078 new_pg = old_pg + num_pg;
1079 if (new_pg > max_pg)
1080 return -ENOBUFS;
1081 } while (atomic_long_cmpxchg(&user->locked_vm, old_pg, new_pg) !=
1082 old_pg);
1083
1084 if (!mmp->user) {
1085 mmp->user = get_uid(user);
1086 mmp->num_pg = num_pg;
1087 } else {
1088 mmp->num_pg += num_pg;
1089 }
1090
1091 return 0;
1092 }
1093 EXPORT_SYMBOL_GPL(mm_account_pinned_pages);
1094
mm_unaccount_pinned_pages(struct mmpin * mmp)1095 void mm_unaccount_pinned_pages(struct mmpin *mmp)
1096 {
1097 if (mmp->user) {
1098 atomic_long_sub(mmp->num_pg, &mmp->user->locked_vm);
1099 free_uid(mmp->user);
1100 }
1101 }
1102 EXPORT_SYMBOL_GPL(mm_unaccount_pinned_pages);
1103
sock_zerocopy_alloc(struct sock * sk,size_t size)1104 struct ubuf_info *sock_zerocopy_alloc(struct sock *sk, size_t size)
1105 {
1106 struct ubuf_info *uarg;
1107 struct sk_buff *skb;
1108
1109 WARN_ON_ONCE(!in_task());
1110
1111 skb = sock_omalloc(sk, 0, GFP_KERNEL);
1112 if (!skb)
1113 return NULL;
1114
1115 BUILD_BUG_ON(sizeof(*uarg) > sizeof(skb->cb));
1116 uarg = (void *)skb->cb;
1117 uarg->mmp.user = NULL;
1118
1119 if (mm_account_pinned_pages(&uarg->mmp, size)) {
1120 kfree_skb(skb);
1121 return NULL;
1122 }
1123
1124 uarg->callback = sock_zerocopy_callback;
1125 uarg->id = ((u32)atomic_inc_return(&sk->sk_zckey)) - 1;
1126 uarg->len = 1;
1127 uarg->bytelen = size;
1128 uarg->zerocopy = 1;
1129 refcount_set(&uarg->refcnt, 1);
1130 sock_hold(sk);
1131
1132 return uarg;
1133 }
1134 EXPORT_SYMBOL_GPL(sock_zerocopy_alloc);
1135
skb_from_uarg(struct ubuf_info * uarg)1136 static inline struct sk_buff *skb_from_uarg(struct ubuf_info *uarg)
1137 {
1138 return container_of((void *)uarg, struct sk_buff, cb);
1139 }
1140
sock_zerocopy_realloc(struct sock * sk,size_t size,struct ubuf_info * uarg)1141 struct ubuf_info *sock_zerocopy_realloc(struct sock *sk, size_t size,
1142 struct ubuf_info *uarg)
1143 {
1144 if (uarg) {
1145 const u32 byte_limit = 1 << 19; /* limit to a few TSO */
1146 u32 bytelen, next;
1147
1148 /* realloc only when socket is locked (TCP, UDP cork),
1149 * so uarg->len and sk_zckey access is serialized
1150 */
1151 if (!sock_owned_by_user(sk)) {
1152 WARN_ON_ONCE(1);
1153 return NULL;
1154 }
1155
1156 bytelen = uarg->bytelen + size;
1157 if (uarg->len == USHRT_MAX - 1 || bytelen > byte_limit) {
1158 /* TCP can create new skb to attach new uarg */
1159 if (sk->sk_type == SOCK_STREAM)
1160 goto new_alloc;
1161 return NULL;
1162 }
1163
1164 next = (u32)atomic_read(&sk->sk_zckey);
1165 if ((u32)(uarg->id + uarg->len) == next) {
1166 if (mm_account_pinned_pages(&uarg->mmp, size))
1167 return NULL;
1168 uarg->len++;
1169 uarg->bytelen = bytelen;
1170 atomic_set(&sk->sk_zckey, ++next);
1171
1172 /* no extra ref when appending to datagram (MSG_MORE) */
1173 if (sk->sk_type == SOCK_STREAM)
1174 sock_zerocopy_get(uarg);
1175
1176 return uarg;
1177 }
1178 }
1179
1180 new_alloc:
1181 return sock_zerocopy_alloc(sk, size);
1182 }
1183 EXPORT_SYMBOL_GPL(sock_zerocopy_realloc);
1184
skb_zerocopy_notify_extend(struct sk_buff * skb,u32 lo,u16 len)1185 static bool skb_zerocopy_notify_extend(struct sk_buff *skb, u32 lo, u16 len)
1186 {
1187 struct sock_exterr_skb *serr = SKB_EXT_ERR(skb);
1188 u32 old_lo, old_hi;
1189 u64 sum_len;
1190
1191 old_lo = serr->ee.ee_info;
1192 old_hi = serr->ee.ee_data;
1193 sum_len = old_hi - old_lo + 1ULL + len;
1194
1195 if (sum_len >= (1ULL << 32))
1196 return false;
1197
1198 if (lo != old_hi + 1)
1199 return false;
1200
1201 serr->ee.ee_data += len;
1202 return true;
1203 }
1204
sock_zerocopy_callback(struct ubuf_info * uarg,bool success)1205 void sock_zerocopy_callback(struct ubuf_info *uarg, bool success)
1206 {
1207 struct sk_buff *tail, *skb = skb_from_uarg(uarg);
1208 struct sock_exterr_skb *serr;
1209 struct sock *sk = skb->sk;
1210 struct sk_buff_head *q;
1211 unsigned long flags;
1212 u32 lo, hi;
1213 u16 len;
1214
1215 mm_unaccount_pinned_pages(&uarg->mmp);
1216
1217 /* if !len, there was only 1 call, and it was aborted
1218 * so do not queue a completion notification
1219 */
1220 if (!uarg->len || sock_flag(sk, SOCK_DEAD))
1221 goto release;
1222
1223 len = uarg->len;
1224 lo = uarg->id;
1225 hi = uarg->id + len - 1;
1226
1227 serr = SKB_EXT_ERR(skb);
1228 memset(serr, 0, sizeof(*serr));
1229 serr->ee.ee_errno = 0;
1230 serr->ee.ee_origin = SO_EE_ORIGIN_ZEROCOPY;
1231 serr->ee.ee_data = hi;
1232 serr->ee.ee_info = lo;
1233 if (!success)
1234 serr->ee.ee_code |= SO_EE_CODE_ZEROCOPY_COPIED;
1235
1236 q = &sk->sk_error_queue;
1237 spin_lock_irqsave(&q->lock, flags);
1238 tail = skb_peek_tail(q);
1239 if (!tail || SKB_EXT_ERR(tail)->ee.ee_origin != SO_EE_ORIGIN_ZEROCOPY ||
1240 !skb_zerocopy_notify_extend(tail, lo, len)) {
1241 __skb_queue_tail(q, skb);
1242 skb = NULL;
1243 }
1244 spin_unlock_irqrestore(&q->lock, flags);
1245
1246 sk->sk_error_report(sk);
1247
1248 release:
1249 consume_skb(skb);
1250 sock_put(sk);
1251 }
1252 EXPORT_SYMBOL_GPL(sock_zerocopy_callback);
1253
sock_zerocopy_put(struct ubuf_info * uarg)1254 void sock_zerocopy_put(struct ubuf_info *uarg)
1255 {
1256 if (uarg && refcount_dec_and_test(&uarg->refcnt)) {
1257 if (uarg->callback)
1258 uarg->callback(uarg, uarg->zerocopy);
1259 else
1260 consume_skb(skb_from_uarg(uarg));
1261 }
1262 }
1263 EXPORT_SYMBOL_GPL(sock_zerocopy_put);
1264
sock_zerocopy_put_abort(struct ubuf_info * uarg,bool have_uref)1265 void sock_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref)
1266 {
1267 if (uarg) {
1268 struct sock *sk = skb_from_uarg(uarg)->sk;
1269
1270 atomic_dec(&sk->sk_zckey);
1271 uarg->len--;
1272
1273 if (have_uref)
1274 sock_zerocopy_put(uarg);
1275 }
1276 }
1277 EXPORT_SYMBOL_GPL(sock_zerocopy_put_abort);
1278
skb_zerocopy_iter_dgram(struct sk_buff * skb,struct msghdr * msg,int len)1279 int skb_zerocopy_iter_dgram(struct sk_buff *skb, struct msghdr *msg, int len)
1280 {
1281 return __zerocopy_sg_from_iter(skb->sk, skb, &msg->msg_iter, len);
1282 }
1283 EXPORT_SYMBOL_GPL(skb_zerocopy_iter_dgram);
1284
skb_zerocopy_iter_stream(struct sock * sk,struct sk_buff * skb,struct msghdr * msg,int len,struct ubuf_info * uarg)1285 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
1286 struct msghdr *msg, int len,
1287 struct ubuf_info *uarg)
1288 {
1289 struct ubuf_info *orig_uarg = skb_zcopy(skb);
1290 struct iov_iter orig_iter = msg->msg_iter;
1291 int err, orig_len = skb->len;
1292
1293 /* An skb can only point to one uarg. This edge case happens when
1294 * TCP appends to an skb, but zerocopy_realloc triggered a new alloc.
1295 */
1296 if (orig_uarg && uarg != orig_uarg)
1297 return -EEXIST;
1298
1299 err = __zerocopy_sg_from_iter(sk, skb, &msg->msg_iter, len);
1300 if (err == -EFAULT || (err == -EMSGSIZE && skb->len == orig_len)) {
1301 struct sock *save_sk = skb->sk;
1302
1303 /* Streams do not free skb on error. Reset to prev state. */
1304 msg->msg_iter = orig_iter;
1305 skb->sk = sk;
1306 ___pskb_trim(skb, orig_len);
1307 skb->sk = save_sk;
1308 return err;
1309 }
1310
1311 skb_zcopy_set(skb, uarg, NULL);
1312 return skb->len - orig_len;
1313 }
1314 EXPORT_SYMBOL_GPL(skb_zerocopy_iter_stream);
1315
skb_zerocopy_clone(struct sk_buff * nskb,struct sk_buff * orig,gfp_t gfp_mask)1316 static int skb_zerocopy_clone(struct sk_buff *nskb, struct sk_buff *orig,
1317 gfp_t gfp_mask)
1318 {
1319 if (skb_zcopy(orig)) {
1320 if (skb_zcopy(nskb)) {
1321 /* !gfp_mask callers are verified to !skb_zcopy(nskb) */
1322 if (!gfp_mask) {
1323 WARN_ON_ONCE(1);
1324 return -ENOMEM;
1325 }
1326 if (skb_uarg(nskb) == skb_uarg(orig))
1327 return 0;
1328 if (skb_copy_ubufs(nskb, GFP_ATOMIC))
1329 return -EIO;
1330 }
1331 skb_zcopy_set(nskb, skb_uarg(orig), NULL);
1332 }
1333 return 0;
1334 }
1335
1336 /**
1337 * skb_copy_ubufs - copy userspace skb frags buffers to kernel
1338 * @skb: the skb to modify
1339 * @gfp_mask: allocation priority
1340 *
1341 * This must be called on SKBTX_DEV_ZEROCOPY skb.
1342 * It will copy all frags into kernel and drop the reference
1343 * to userspace pages.
1344 *
1345 * If this function is called from an interrupt gfp_mask() must be
1346 * %GFP_ATOMIC.
1347 *
1348 * Returns 0 on success or a negative error code on failure
1349 * to allocate kernel memory to copy to.
1350 */
skb_copy_ubufs(struct sk_buff * skb,gfp_t gfp_mask)1351 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask)
1352 {
1353 int num_frags = skb_shinfo(skb)->nr_frags;
1354 struct page *page, *head = NULL;
1355 int i, new_frags;
1356 u32 d_off;
1357
1358 if (skb_shared(skb) || skb_unclone(skb, gfp_mask))
1359 return -EINVAL;
1360
1361 if (!num_frags)
1362 goto release;
1363
1364 new_frags = (__skb_pagelen(skb) + PAGE_SIZE - 1) >> PAGE_SHIFT;
1365 for (i = 0; i < new_frags; i++) {
1366 page = alloc_page(gfp_mask);
1367 if (!page) {
1368 while (head) {
1369 struct page *next = (struct page *)page_private(head);
1370 put_page(head);
1371 head = next;
1372 }
1373 return -ENOMEM;
1374 }
1375 set_page_private(page, (unsigned long)head);
1376 head = page;
1377 }
1378
1379 page = head;
1380 d_off = 0;
1381 for (i = 0; i < num_frags; i++) {
1382 skb_frag_t *f = &skb_shinfo(skb)->frags[i];
1383 u32 p_off, p_len, copied;
1384 struct page *p;
1385 u8 *vaddr;
1386
1387 skb_frag_foreach_page(f, skb_frag_off(f), skb_frag_size(f),
1388 p, p_off, p_len, copied) {
1389 u32 copy, done = 0;
1390 vaddr = kmap_atomic(p);
1391
1392 while (done < p_len) {
1393 if (d_off == PAGE_SIZE) {
1394 d_off = 0;
1395 page = (struct page *)page_private(page);
1396 }
1397 copy = min_t(u32, PAGE_SIZE - d_off, p_len - done);
1398 memcpy(page_address(page) + d_off,
1399 vaddr + p_off + done, copy);
1400 done += copy;
1401 d_off += copy;
1402 }
1403 kunmap_atomic(vaddr);
1404 }
1405 }
1406
1407 /* skb frags release userspace buffers */
1408 for (i = 0; i < num_frags; i++)
1409 skb_frag_unref(skb, i);
1410
1411 /* skb frags point to kernel buffers */
1412 for (i = 0; i < new_frags - 1; i++) {
1413 __skb_fill_page_desc(skb, i, head, 0, PAGE_SIZE);
1414 head = (struct page *)page_private(head);
1415 }
1416 __skb_fill_page_desc(skb, new_frags - 1, head, 0, d_off);
1417 skb_shinfo(skb)->nr_frags = new_frags;
1418
1419 release:
1420 skb_zcopy_clear(skb, false);
1421 return 0;
1422 }
1423 EXPORT_SYMBOL_GPL(skb_copy_ubufs);
1424
1425 /**
1426 * skb_clone - duplicate an sk_buff
1427 * @skb: buffer to clone
1428 * @gfp_mask: allocation priority
1429 *
1430 * Duplicate an &sk_buff. The new one is not owned by a socket. Both
1431 * copies share the same packet data but not structure. The new
1432 * buffer has a reference count of 1. If the allocation fails the
1433 * function returns %NULL otherwise the new buffer is returned.
1434 *
1435 * If this function is called from an interrupt gfp_mask() must be
1436 * %GFP_ATOMIC.
1437 */
1438
skb_clone(struct sk_buff * skb,gfp_t gfp_mask)1439 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
1440 {
1441 struct sk_buff_fclones *fclones = container_of(skb,
1442 struct sk_buff_fclones,
1443 skb1);
1444 struct sk_buff *n;
1445
1446 if (skb_orphan_frags(skb, gfp_mask))
1447 return NULL;
1448
1449 if (skb->fclone == SKB_FCLONE_ORIG &&
1450 refcount_read(&fclones->fclone_ref) == 1) {
1451 n = &fclones->skb2;
1452 refcount_set(&fclones->fclone_ref, 2);
1453 } else {
1454 if (skb_pfmemalloc(skb))
1455 gfp_mask |= __GFP_MEMALLOC;
1456
1457 n = kmem_cache_alloc(skbuff_head_cache, gfp_mask);
1458 if (!n)
1459 return NULL;
1460
1461 n->fclone = SKB_FCLONE_UNAVAILABLE;
1462 }
1463
1464 return __skb_clone(n, skb);
1465 }
1466 EXPORT_SYMBOL(skb_clone);
1467
skb_headers_offset_update(struct sk_buff * skb,int off)1468 void skb_headers_offset_update(struct sk_buff *skb, int off)
1469 {
1470 /* Only adjust this if it actually is csum_start rather than csum */
1471 if (skb->ip_summed == CHECKSUM_PARTIAL)
1472 skb->csum_start += off;
1473 /* {transport,network,mac}_header and tail are relative to skb->head */
1474 skb->transport_header += off;
1475 skb->network_header += off;
1476 if (skb_mac_header_was_set(skb))
1477 skb->mac_header += off;
1478 skb->inner_transport_header += off;
1479 skb->inner_network_header += off;
1480 skb->inner_mac_header += off;
1481 }
1482 EXPORT_SYMBOL(skb_headers_offset_update);
1483
skb_copy_header(struct sk_buff * new,const struct sk_buff * old)1484 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old)
1485 {
1486 __copy_skb_header(new, old);
1487
1488 skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
1489 skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
1490 skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
1491 }
1492 EXPORT_SYMBOL(skb_copy_header);
1493
skb_alloc_rx_flag(const struct sk_buff * skb)1494 static inline int skb_alloc_rx_flag(const struct sk_buff *skb)
1495 {
1496 if (skb_pfmemalloc(skb))
1497 return SKB_ALLOC_RX;
1498 return 0;
1499 }
1500
1501 /**
1502 * skb_copy - create private copy of an sk_buff
1503 * @skb: buffer to copy
1504 * @gfp_mask: allocation priority
1505 *
1506 * Make a copy of both an &sk_buff and its data. This is used when the
1507 * caller wishes to modify the data and needs a private copy of the
1508 * data to alter. Returns %NULL on failure or the pointer to the buffer
1509 * on success. The returned buffer has a reference count of 1.
1510 *
1511 * As by-product this function converts non-linear &sk_buff to linear
1512 * one, so that &sk_buff becomes completely private and caller is allowed
1513 * to modify all the data of returned buffer. This means that this
1514 * function is not recommended for use in circumstances when only
1515 * header is going to be modified. Use pskb_copy() instead.
1516 */
1517
skb_copy(const struct sk_buff * skb,gfp_t gfp_mask)1518 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
1519 {
1520 int headerlen = skb_headroom(skb);
1521 unsigned int size = skb_end_offset(skb) + skb->data_len;
1522 struct sk_buff *n = __alloc_skb(size, gfp_mask,
1523 skb_alloc_rx_flag(skb), NUMA_NO_NODE);
1524
1525 if (!n)
1526 return NULL;
1527
1528 /* Set the data pointer */
1529 skb_reserve(n, headerlen);
1530 /* Set the tail pointer and length */
1531 skb_put(n, skb->len);
1532
1533 BUG_ON(skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len));
1534
1535 skb_copy_header(n, skb);
1536 return n;
1537 }
1538 EXPORT_SYMBOL(skb_copy);
1539
1540 /**
1541 * __pskb_copy_fclone - create copy of an sk_buff with private head.
1542 * @skb: buffer to copy
1543 * @headroom: headroom of new skb
1544 * @gfp_mask: allocation priority
1545 * @fclone: if true allocate the copy of the skb from the fclone
1546 * cache instead of the head cache; it is recommended to set this
1547 * to true for the cases where the copy will likely be cloned
1548 *
1549 * Make a copy of both an &sk_buff and part of its data, located
1550 * in header. Fragmented data remain shared. This is used when
1551 * the caller wishes to modify only header of &sk_buff and needs
1552 * private copy of the header to alter. Returns %NULL on failure
1553 * or the pointer to the buffer on success.
1554 * The returned buffer has a reference count of 1.
1555 */
1556
__pskb_copy_fclone(struct sk_buff * skb,int headroom,gfp_t gfp_mask,bool fclone)1557 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
1558 gfp_t gfp_mask, bool fclone)
1559 {
1560 unsigned int size = skb_headlen(skb) + headroom;
1561 int flags = skb_alloc_rx_flag(skb) | (fclone ? SKB_ALLOC_FCLONE : 0);
1562 struct sk_buff *n = __alloc_skb(size, gfp_mask, flags, NUMA_NO_NODE);
1563
1564 if (!n)
1565 goto out;
1566
1567 /* Set the data pointer */
1568 skb_reserve(n, headroom);
1569 /* Set the tail pointer and length */
1570 skb_put(n, skb_headlen(skb));
1571 /* Copy the bytes */
1572 skb_copy_from_linear_data(skb, n->data, n->len);
1573
1574 n->truesize += skb->data_len;
1575 n->data_len = skb->data_len;
1576 n->len = skb->len;
1577
1578 if (skb_shinfo(skb)->nr_frags) {
1579 int i;
1580
1581 if (skb_orphan_frags(skb, gfp_mask) ||
1582 skb_zerocopy_clone(n, skb, gfp_mask)) {
1583 kfree_skb(n);
1584 n = NULL;
1585 goto out;
1586 }
1587 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1588 skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
1589 skb_frag_ref(skb, i);
1590 }
1591 skb_shinfo(n)->nr_frags = i;
1592 }
1593
1594 if (skb_has_frag_list(skb)) {
1595 skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
1596 skb_clone_fraglist(n);
1597 }
1598
1599 skb_copy_header(n, skb);
1600 out:
1601 return n;
1602 }
1603 EXPORT_SYMBOL(__pskb_copy_fclone);
1604
1605 /**
1606 * pskb_expand_head - reallocate header of &sk_buff
1607 * @skb: buffer to reallocate
1608 * @nhead: room to add at head
1609 * @ntail: room to add at tail
1610 * @gfp_mask: allocation priority
1611 *
1612 * Expands (or creates identical copy, if @nhead and @ntail are zero)
1613 * header of @skb. &sk_buff itself is not changed. &sk_buff MUST have
1614 * reference count of 1. Returns zero in the case of success or error,
1615 * if expansion failed. In the last case, &sk_buff is not changed.
1616 *
1617 * All the pointers pointing into skb header may change and must be
1618 * reloaded after call to this function.
1619 */
1620
pskb_expand_head(struct sk_buff * skb,int nhead,int ntail,gfp_t gfp_mask)1621 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
1622 gfp_t gfp_mask)
1623 {
1624 int i, osize = skb_end_offset(skb);
1625 int size = osize + nhead + ntail;
1626 long off;
1627 u8 *data;
1628
1629 BUG_ON(nhead < 0);
1630
1631 BUG_ON(skb_shared(skb));
1632
1633 size = SKB_DATA_ALIGN(size);
1634
1635 if (skb_pfmemalloc(skb))
1636 gfp_mask |= __GFP_MEMALLOC;
1637 data = kmalloc_reserve(size + SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
1638 gfp_mask, NUMA_NO_NODE, NULL);
1639 if (!data)
1640 goto nodata;
1641 size = SKB_WITH_OVERHEAD(ksize(data));
1642
1643 /* Copy only real data... and, alas, header. This should be
1644 * optimized for the cases when header is void.
1645 */
1646 memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head);
1647
1648 memcpy((struct skb_shared_info *)(data + size),
1649 skb_shinfo(skb),
1650 offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags]));
1651
1652 /*
1653 * if shinfo is shared we must drop the old head gracefully, but if it
1654 * is not we can just drop the old head and let the existing refcount
1655 * be since all we did is relocate the values
1656 */
1657 if (skb_cloned(skb)) {
1658 if (skb_orphan_frags(skb, gfp_mask))
1659 goto nofrags;
1660 if (skb_zcopy(skb))
1661 refcount_inc(&skb_uarg(skb)->refcnt);
1662 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1663 skb_frag_ref(skb, i);
1664
1665 if (skb_has_frag_list(skb))
1666 skb_clone_fraglist(skb);
1667
1668 skb_release_data(skb);
1669 } else {
1670 skb_free_head(skb);
1671 }
1672 off = (data + nhead) - skb->head;
1673
1674 skb->head = data;
1675 skb->head_frag = 0;
1676 skb->data += off;
1677 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1678 skb->end = size;
1679 off = nhead;
1680 #else
1681 skb->end = skb->head + size;
1682 #endif
1683 skb->tail += off;
1684 skb_headers_offset_update(skb, nhead);
1685 skb->cloned = 0;
1686 skb->hdr_len = 0;
1687 skb->nohdr = 0;
1688 atomic_set(&skb_shinfo(skb)->dataref, 1);
1689
1690 skb_metadata_clear(skb);
1691
1692 /* It is not generally safe to change skb->truesize.
1693 * For the moment, we really care of rx path, or
1694 * when skb is orphaned (not attached to a socket).
1695 */
1696 if (!skb->sk || skb->destructor == sock_edemux)
1697 skb->truesize += size - osize;
1698
1699 return 0;
1700
1701 nofrags:
1702 kfree(data);
1703 nodata:
1704 return -ENOMEM;
1705 }
1706 EXPORT_SYMBOL(pskb_expand_head);
1707
1708 /* Make private copy of skb with writable head and some headroom */
1709
skb_realloc_headroom(struct sk_buff * skb,unsigned int headroom)1710 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
1711 {
1712 struct sk_buff *skb2;
1713 int delta = headroom - skb_headroom(skb);
1714
1715 if (delta <= 0)
1716 skb2 = pskb_copy(skb, GFP_ATOMIC);
1717 else {
1718 skb2 = skb_clone(skb, GFP_ATOMIC);
1719 if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
1720 GFP_ATOMIC)) {
1721 kfree_skb(skb2);
1722 skb2 = NULL;
1723 }
1724 }
1725 return skb2;
1726 }
1727 EXPORT_SYMBOL(skb_realloc_headroom);
1728
1729 /**
1730 * skb_copy_expand - copy and expand sk_buff
1731 * @skb: buffer to copy
1732 * @newheadroom: new free bytes at head
1733 * @newtailroom: new free bytes at tail
1734 * @gfp_mask: allocation priority
1735 *
1736 * Make a copy of both an &sk_buff and its data and while doing so
1737 * allocate additional space.
1738 *
1739 * This is used when the caller wishes to modify the data and needs a
1740 * private copy of the data to alter as well as more space for new fields.
1741 * Returns %NULL on failure or the pointer to the buffer
1742 * on success. The returned buffer has a reference count of 1.
1743 *
1744 * You must pass %GFP_ATOMIC as the allocation priority if this function
1745 * is called from an interrupt.
1746 */
skb_copy_expand(const struct sk_buff * skb,int newheadroom,int newtailroom,gfp_t gfp_mask)1747 struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
1748 int newheadroom, int newtailroom,
1749 gfp_t gfp_mask)
1750 {
1751 /*
1752 * Allocate the copy buffer
1753 */
1754 struct sk_buff *n = __alloc_skb(newheadroom + skb->len + newtailroom,
1755 gfp_mask, skb_alloc_rx_flag(skb),
1756 NUMA_NO_NODE);
1757 int oldheadroom = skb_headroom(skb);
1758 int head_copy_len, head_copy_off;
1759
1760 if (!n)
1761 return NULL;
1762
1763 skb_reserve(n, newheadroom);
1764
1765 /* Set the tail pointer and length */
1766 skb_put(n, skb->len);
1767
1768 head_copy_len = oldheadroom;
1769 head_copy_off = 0;
1770 if (newheadroom <= head_copy_len)
1771 head_copy_len = newheadroom;
1772 else
1773 head_copy_off = newheadroom - head_copy_len;
1774
1775 /* Copy the linear header and data. */
1776 BUG_ON(skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
1777 skb->len + head_copy_len));
1778
1779 skb_copy_header(n, skb);
1780
1781 skb_headers_offset_update(n, newheadroom - oldheadroom);
1782
1783 return n;
1784 }
1785 EXPORT_SYMBOL(skb_copy_expand);
1786
1787 /**
1788 * __skb_pad - zero pad the tail of an skb
1789 * @skb: buffer to pad
1790 * @pad: space to pad
1791 * @free_on_error: free buffer on error
1792 *
1793 * Ensure that a buffer is followed by a padding area that is zero
1794 * filled. Used by network drivers which may DMA or transfer data
1795 * beyond the buffer end onto the wire.
1796 *
1797 * May return error in out of memory cases. The skb is freed on error
1798 * if @free_on_error is true.
1799 */
1800
__skb_pad(struct sk_buff * skb,int pad,bool free_on_error)1801 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error)
1802 {
1803 int err;
1804 int ntail;
1805
1806 /* If the skbuff is non linear tailroom is always zero.. */
1807 if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
1808 memset(skb->data+skb->len, 0, pad);
1809 return 0;
1810 }
1811
1812 ntail = skb->data_len + pad - (skb->end - skb->tail);
1813 if (likely(skb_cloned(skb) || ntail > 0)) {
1814 err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
1815 if (unlikely(err))
1816 goto free_skb;
1817 }
1818
1819 /* FIXME: The use of this function with non-linear skb's really needs
1820 * to be audited.
1821 */
1822 err = skb_linearize(skb);
1823 if (unlikely(err))
1824 goto free_skb;
1825
1826 memset(skb->data + skb->len, 0, pad);
1827 return 0;
1828
1829 free_skb:
1830 if (free_on_error)
1831 kfree_skb(skb);
1832 return err;
1833 }
1834 EXPORT_SYMBOL(__skb_pad);
1835
1836 /**
1837 * pskb_put - add data to the tail of a potentially fragmented buffer
1838 * @skb: start of the buffer to use
1839 * @tail: tail fragment of the buffer to use
1840 * @len: amount of data to add
1841 *
1842 * This function extends the used data area of the potentially
1843 * fragmented buffer. @tail must be the last fragment of @skb -- or
1844 * @skb itself. If this would exceed the total buffer size the kernel
1845 * will panic. A pointer to the first byte of the extra data is
1846 * returned.
1847 */
1848
pskb_put(struct sk_buff * skb,struct sk_buff * tail,int len)1849 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len)
1850 {
1851 if (tail != skb) {
1852 skb->data_len += len;
1853 skb->len += len;
1854 }
1855 return skb_put(tail, len);
1856 }
1857 EXPORT_SYMBOL_GPL(pskb_put);
1858
1859 /**
1860 * skb_put - add data to a buffer
1861 * @skb: buffer to use
1862 * @len: amount of data to add
1863 *
1864 * This function extends the used data area of the buffer. If this would
1865 * exceed the total buffer size the kernel will panic. A pointer to the
1866 * first byte of the extra data is returned.
1867 */
skb_put(struct sk_buff * skb,unsigned int len)1868 void *skb_put(struct sk_buff *skb, unsigned int len)
1869 {
1870 void *tmp = skb_tail_pointer(skb);
1871 SKB_LINEAR_ASSERT(skb);
1872 skb->tail += len;
1873 skb->len += len;
1874 if (unlikely(skb->tail > skb->end))
1875 skb_over_panic(skb, len, __builtin_return_address(0));
1876 return tmp;
1877 }
1878 EXPORT_SYMBOL(skb_put);
1879
1880 /**
1881 * skb_push - add data to the start of a buffer
1882 * @skb: buffer to use
1883 * @len: amount of data to add
1884 *
1885 * This function extends the used data area of the buffer at the buffer
1886 * start. If this would exceed the total buffer headroom the kernel will
1887 * panic. A pointer to the first byte of the extra data is returned.
1888 */
skb_push(struct sk_buff * skb,unsigned int len)1889 void *skb_push(struct sk_buff *skb, unsigned int len)
1890 {
1891 skb->data -= len;
1892 skb->len += len;
1893 if (unlikely(skb->data < skb->head))
1894 skb_under_panic(skb, len, __builtin_return_address(0));
1895 return skb->data;
1896 }
1897 EXPORT_SYMBOL(skb_push);
1898
1899 /**
1900 * skb_pull - remove data from the start of a buffer
1901 * @skb: buffer to use
1902 * @len: amount of data to remove
1903 *
1904 * This function removes data from the start of a buffer, returning
1905 * the memory to the headroom. A pointer to the next data in the buffer
1906 * is returned. Once the data has been pulled future pushes will overwrite
1907 * the old data.
1908 */
skb_pull(struct sk_buff * skb,unsigned int len)1909 void *skb_pull(struct sk_buff *skb, unsigned int len)
1910 {
1911 return skb_pull_inline(skb, len);
1912 }
1913 EXPORT_SYMBOL(skb_pull);
1914
1915 /**
1916 * skb_trim - remove end from a buffer
1917 * @skb: buffer to alter
1918 * @len: new length
1919 *
1920 * Cut the length of a buffer down by removing data from the tail. If
1921 * the buffer is already under the length specified it is not modified.
1922 * The skb must be linear.
1923 */
skb_trim(struct sk_buff * skb,unsigned int len)1924 void skb_trim(struct sk_buff *skb, unsigned int len)
1925 {
1926 if (skb->len > len)
1927 __skb_trim(skb, len);
1928 }
1929 EXPORT_SYMBOL(skb_trim);
1930
1931 /* Trims skb to length len. It can change skb pointers.
1932 */
1933
___pskb_trim(struct sk_buff * skb,unsigned int len)1934 int ___pskb_trim(struct sk_buff *skb, unsigned int len)
1935 {
1936 struct sk_buff **fragp;
1937 struct sk_buff *frag;
1938 int offset = skb_headlen(skb);
1939 int nfrags = skb_shinfo(skb)->nr_frags;
1940 int i;
1941 int err;
1942
1943 if (skb_cloned(skb) &&
1944 unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
1945 return err;
1946
1947 i = 0;
1948 if (offset >= len)
1949 goto drop_pages;
1950
1951 for (; i < nfrags; i++) {
1952 int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]);
1953
1954 if (end < len) {
1955 offset = end;
1956 continue;
1957 }
1958
1959 skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset);
1960
1961 drop_pages:
1962 skb_shinfo(skb)->nr_frags = i;
1963
1964 for (; i < nfrags; i++)
1965 skb_frag_unref(skb, i);
1966
1967 if (skb_has_frag_list(skb))
1968 skb_drop_fraglist(skb);
1969 goto done;
1970 }
1971
1972 for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
1973 fragp = &frag->next) {
1974 int end = offset + frag->len;
1975
1976 if (skb_shared(frag)) {
1977 struct sk_buff *nfrag;
1978
1979 nfrag = skb_clone(frag, GFP_ATOMIC);
1980 if (unlikely(!nfrag))
1981 return -ENOMEM;
1982
1983 nfrag->next = frag->next;
1984 consume_skb(frag);
1985 frag = nfrag;
1986 *fragp = frag;
1987 }
1988
1989 if (end < len) {
1990 offset = end;
1991 continue;
1992 }
1993
1994 if (end > len &&
1995 unlikely((err = pskb_trim(frag, len - offset))))
1996 return err;
1997
1998 if (frag->next)
1999 skb_drop_list(&frag->next);
2000 break;
2001 }
2002
2003 done:
2004 if (len > skb_headlen(skb)) {
2005 skb->data_len -= skb->len - len;
2006 skb->len = len;
2007 } else {
2008 skb->len = len;
2009 skb->data_len = 0;
2010 skb_set_tail_pointer(skb, len);
2011 }
2012
2013 if (!skb->sk || skb->destructor == sock_edemux)
2014 skb_condense(skb);
2015 return 0;
2016 }
2017 EXPORT_SYMBOL(___pskb_trim);
2018
2019 /* Note : use pskb_trim_rcsum() instead of calling this directly
2020 */
pskb_trim_rcsum_slow(struct sk_buff * skb,unsigned int len)2021 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len)
2022 {
2023 if (skb->ip_summed == CHECKSUM_COMPLETE) {
2024 int delta = skb->len - len;
2025
2026 skb->csum = csum_block_sub(skb->csum,
2027 skb_checksum(skb, len, delta, 0),
2028 len);
2029 } else if (skb->ip_summed == CHECKSUM_PARTIAL) {
2030 int hdlen = (len > skb_headlen(skb)) ? skb_headlen(skb) : len;
2031 int offset = skb_checksum_start_offset(skb) + skb->csum_offset;
2032
2033 if (offset + sizeof(__sum16) > hdlen)
2034 return -EINVAL;
2035 }
2036 return __pskb_trim(skb, len);
2037 }
2038 EXPORT_SYMBOL(pskb_trim_rcsum_slow);
2039
2040 /**
2041 * __pskb_pull_tail - advance tail of skb header
2042 * @skb: buffer to reallocate
2043 * @delta: number of bytes to advance tail
2044 *
2045 * The function makes a sense only on a fragmented &sk_buff,
2046 * it expands header moving its tail forward and copying necessary
2047 * data from fragmented part.
2048 *
2049 * &sk_buff MUST have reference count of 1.
2050 *
2051 * Returns %NULL (and &sk_buff does not change) if pull failed
2052 * or value of new tail of skb in the case of success.
2053 *
2054 * All the pointers pointing into skb header may change and must be
2055 * reloaded after call to this function.
2056 */
2057
2058 /* Moves tail of skb head forward, copying data from fragmented part,
2059 * when it is necessary.
2060 * 1. It may fail due to malloc failure.
2061 * 2. It may change skb pointers.
2062 *
2063 * It is pretty complicated. Luckily, it is called only in exceptional cases.
2064 */
__pskb_pull_tail(struct sk_buff * skb,int delta)2065 void *__pskb_pull_tail(struct sk_buff *skb, int delta)
2066 {
2067 /* If skb has not enough free space at tail, get new one
2068 * plus 128 bytes for future expansions. If we have enough
2069 * room at tail, reallocate without expansion only if skb is cloned.
2070 */
2071 int i, k, eat = (skb->tail + delta) - skb->end;
2072
2073 if (eat > 0 || skb_cloned(skb)) {
2074 if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
2075 GFP_ATOMIC))
2076 return NULL;
2077 }
2078
2079 BUG_ON(skb_copy_bits(skb, skb_headlen(skb),
2080 skb_tail_pointer(skb), delta));
2081
2082 /* Optimization: no fragments, no reasons to preestimate
2083 * size of pulled pages. Superb.
2084 */
2085 if (!skb_has_frag_list(skb))
2086 goto pull_pages;
2087
2088 /* Estimate size of pulled pages. */
2089 eat = delta;
2090 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2091 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2092
2093 if (size >= eat)
2094 goto pull_pages;
2095 eat -= size;
2096 }
2097
2098 /* If we need update frag list, we are in troubles.
2099 * Certainly, it is possible to add an offset to skb data,
2100 * but taking into account that pulling is expected to
2101 * be very rare operation, it is worth to fight against
2102 * further bloating skb head and crucify ourselves here instead.
2103 * Pure masohism, indeed. 8)8)
2104 */
2105 if (eat) {
2106 struct sk_buff *list = skb_shinfo(skb)->frag_list;
2107 struct sk_buff *clone = NULL;
2108 struct sk_buff *insp = NULL;
2109
2110 do {
2111 if (list->len <= eat) {
2112 /* Eaten as whole. */
2113 eat -= list->len;
2114 list = list->next;
2115 insp = list;
2116 } else {
2117 /* Eaten partially. */
2118
2119 if (skb_shared(list)) {
2120 /* Sucks! We need to fork list. :-( */
2121 clone = skb_clone(list, GFP_ATOMIC);
2122 if (!clone)
2123 return NULL;
2124 insp = list->next;
2125 list = clone;
2126 } else {
2127 /* This may be pulled without
2128 * problems. */
2129 insp = list;
2130 }
2131 if (!pskb_pull(list, eat)) {
2132 kfree_skb(clone);
2133 return NULL;
2134 }
2135 break;
2136 }
2137 } while (eat);
2138
2139 /* Free pulled out fragments. */
2140 while ((list = skb_shinfo(skb)->frag_list) != insp) {
2141 skb_shinfo(skb)->frag_list = list->next;
2142 kfree_skb(list);
2143 }
2144 /* And insert new clone at head. */
2145 if (clone) {
2146 clone->next = list;
2147 skb_shinfo(skb)->frag_list = clone;
2148 }
2149 }
2150 /* Success! Now we may commit changes to skb data. */
2151
2152 pull_pages:
2153 eat = delta;
2154 k = 0;
2155 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2156 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2157
2158 if (size <= eat) {
2159 skb_frag_unref(skb, i);
2160 eat -= size;
2161 } else {
2162 skb_frag_t *frag = &skb_shinfo(skb)->frags[k];
2163
2164 *frag = skb_shinfo(skb)->frags[i];
2165 if (eat) {
2166 skb_frag_off_add(frag, eat);
2167 skb_frag_size_sub(frag, eat);
2168 if (!i)
2169 goto end;
2170 eat = 0;
2171 }
2172 k++;
2173 }
2174 }
2175 skb_shinfo(skb)->nr_frags = k;
2176
2177 end:
2178 skb->tail += delta;
2179 skb->data_len -= delta;
2180
2181 if (!skb->data_len)
2182 skb_zcopy_clear(skb, false);
2183
2184 return skb_tail_pointer(skb);
2185 }
2186 EXPORT_SYMBOL(__pskb_pull_tail);
2187
2188 /**
2189 * skb_copy_bits - copy bits from skb to kernel buffer
2190 * @skb: source skb
2191 * @offset: offset in source
2192 * @to: destination buffer
2193 * @len: number of bytes to copy
2194 *
2195 * Copy the specified number of bytes from the source skb to the
2196 * destination buffer.
2197 *
2198 * CAUTION ! :
2199 * If its prototype is ever changed,
2200 * check arch/{*}/net/{*}.S files,
2201 * since it is called from BPF assembly code.
2202 */
skb_copy_bits(const struct sk_buff * skb,int offset,void * to,int len)2203 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
2204 {
2205 int start = skb_headlen(skb);
2206 struct sk_buff *frag_iter;
2207 int i, copy;
2208
2209 if (offset > (int)skb->len - len)
2210 goto fault;
2211
2212 /* Copy header. */
2213 if ((copy = start - offset) > 0) {
2214 if (copy > len)
2215 copy = len;
2216 skb_copy_from_linear_data_offset(skb, offset, to, copy);
2217 if ((len -= copy) == 0)
2218 return 0;
2219 offset += copy;
2220 to += copy;
2221 }
2222
2223 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2224 int end;
2225 skb_frag_t *f = &skb_shinfo(skb)->frags[i];
2226
2227 WARN_ON(start > offset + len);
2228
2229 end = start + skb_frag_size(f);
2230 if ((copy = end - offset) > 0) {
2231 u32 p_off, p_len, copied;
2232 struct page *p;
2233 u8 *vaddr;
2234
2235 if (copy > len)
2236 copy = len;
2237
2238 skb_frag_foreach_page(f,
2239 skb_frag_off(f) + offset - start,
2240 copy, p, p_off, p_len, copied) {
2241 vaddr = kmap_atomic(p);
2242 memcpy(to + copied, vaddr + p_off, p_len);
2243 kunmap_atomic(vaddr);
2244 }
2245
2246 if ((len -= copy) == 0)
2247 return 0;
2248 offset += copy;
2249 to += copy;
2250 }
2251 start = end;
2252 }
2253
2254 skb_walk_frags(skb, frag_iter) {
2255 int end;
2256
2257 WARN_ON(start > offset + len);
2258
2259 end = start + frag_iter->len;
2260 if ((copy = end - offset) > 0) {
2261 if (copy > len)
2262 copy = len;
2263 if (skb_copy_bits(frag_iter, offset - start, to, copy))
2264 goto fault;
2265 if ((len -= copy) == 0)
2266 return 0;
2267 offset += copy;
2268 to += copy;
2269 }
2270 start = end;
2271 }
2272
2273 if (!len)
2274 return 0;
2275
2276 fault:
2277 return -EFAULT;
2278 }
2279 EXPORT_SYMBOL(skb_copy_bits);
2280
2281 /*
2282 * Callback from splice_to_pipe(), if we need to release some pages
2283 * at the end of the spd in case we error'ed out in filling the pipe.
2284 */
sock_spd_release(struct splice_pipe_desc * spd,unsigned int i)2285 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i)
2286 {
2287 put_page(spd->pages[i]);
2288 }
2289
linear_to_page(struct page * page,unsigned int * len,unsigned int * offset,struct sock * sk)2290 static struct page *linear_to_page(struct page *page, unsigned int *len,
2291 unsigned int *offset,
2292 struct sock *sk)
2293 {
2294 struct page_frag *pfrag = sk_page_frag(sk);
2295
2296 if (!sk_page_frag_refill(sk, pfrag))
2297 return NULL;
2298
2299 *len = min_t(unsigned int, *len, pfrag->size - pfrag->offset);
2300
2301 memcpy(page_address(pfrag->page) + pfrag->offset,
2302 page_address(page) + *offset, *len);
2303 *offset = pfrag->offset;
2304 pfrag->offset += *len;
2305
2306 return pfrag->page;
2307 }
2308
spd_can_coalesce(const struct splice_pipe_desc * spd,struct page * page,unsigned int offset)2309 static bool spd_can_coalesce(const struct splice_pipe_desc *spd,
2310 struct page *page,
2311 unsigned int offset)
2312 {
2313 return spd->nr_pages &&
2314 spd->pages[spd->nr_pages - 1] == page &&
2315 (spd->partial[spd->nr_pages - 1].offset +
2316 spd->partial[spd->nr_pages - 1].len == offset);
2317 }
2318
2319 /*
2320 * Fill page/offset/length into spd, if it can hold more pages.
2321 */
spd_fill_page(struct splice_pipe_desc * spd,struct pipe_inode_info * pipe,struct page * page,unsigned int * len,unsigned int offset,bool linear,struct sock * sk)2322 static bool spd_fill_page(struct splice_pipe_desc *spd,
2323 struct pipe_inode_info *pipe, struct page *page,
2324 unsigned int *len, unsigned int offset,
2325 bool linear,
2326 struct sock *sk)
2327 {
2328 if (unlikely(spd->nr_pages == MAX_SKB_FRAGS))
2329 return true;
2330
2331 if (linear) {
2332 page = linear_to_page(page, len, &offset, sk);
2333 if (!page)
2334 return true;
2335 }
2336 if (spd_can_coalesce(spd, page, offset)) {
2337 spd->partial[spd->nr_pages - 1].len += *len;
2338 return false;
2339 }
2340 get_page(page);
2341 spd->pages[spd->nr_pages] = page;
2342 spd->partial[spd->nr_pages].len = *len;
2343 spd->partial[spd->nr_pages].offset = offset;
2344 spd->nr_pages++;
2345
2346 return false;
2347 }
2348
__splice_segment(struct page * page,unsigned int poff,unsigned int plen,unsigned int * off,unsigned int * len,struct splice_pipe_desc * spd,bool linear,struct sock * sk,struct pipe_inode_info * pipe)2349 static bool __splice_segment(struct page *page, unsigned int poff,
2350 unsigned int plen, unsigned int *off,
2351 unsigned int *len,
2352 struct splice_pipe_desc *spd, bool linear,
2353 struct sock *sk,
2354 struct pipe_inode_info *pipe)
2355 {
2356 if (!*len)
2357 return true;
2358
2359 /* skip this segment if already processed */
2360 if (*off >= plen) {
2361 *off -= plen;
2362 return false;
2363 }
2364
2365 /* ignore any bits we already processed */
2366 poff += *off;
2367 plen -= *off;
2368 *off = 0;
2369
2370 do {
2371 unsigned int flen = min(*len, plen);
2372
2373 if (spd_fill_page(spd, pipe, page, &flen, poff,
2374 linear, sk))
2375 return true;
2376 poff += flen;
2377 plen -= flen;
2378 *len -= flen;
2379 } while (*len && plen);
2380
2381 return false;
2382 }
2383
2384 /*
2385 * Map linear and fragment data from the skb to spd. It reports true if the
2386 * pipe is full or if we already spliced the requested length.
2387 */
__skb_splice_bits(struct sk_buff * skb,struct pipe_inode_info * pipe,unsigned int * offset,unsigned int * len,struct splice_pipe_desc * spd,struct sock * sk)2388 static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe,
2389 unsigned int *offset, unsigned int *len,
2390 struct splice_pipe_desc *spd, struct sock *sk)
2391 {
2392 int seg;
2393 struct sk_buff *iter;
2394
2395 /* map the linear part :
2396 * If skb->head_frag is set, this 'linear' part is backed by a
2397 * fragment, and if the head is not shared with any clones then
2398 * we can avoid a copy since we own the head portion of this page.
2399 */
2400 if (__splice_segment(virt_to_page(skb->data),
2401 (unsigned long) skb->data & (PAGE_SIZE - 1),
2402 skb_headlen(skb),
2403 offset, len, spd,
2404 skb_head_is_locked(skb),
2405 sk, pipe))
2406 return true;
2407
2408 /*
2409 * then map the fragments
2410 */
2411 for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) {
2412 const skb_frag_t *f = &skb_shinfo(skb)->frags[seg];
2413
2414 if (__splice_segment(skb_frag_page(f),
2415 skb_frag_off(f), skb_frag_size(f),
2416 offset, len, spd, false, sk, pipe))
2417 return true;
2418 }
2419
2420 skb_walk_frags(skb, iter) {
2421 if (*offset >= iter->len) {
2422 *offset -= iter->len;
2423 continue;
2424 }
2425 /* __skb_splice_bits() only fails if the output has no room
2426 * left, so no point in going over the frag_list for the error
2427 * case.
2428 */
2429 if (__skb_splice_bits(iter, pipe, offset, len, spd, sk))
2430 return true;
2431 }
2432
2433 return false;
2434 }
2435
2436 /*
2437 * Map data from the skb to a pipe. Should handle both the linear part,
2438 * the fragments, and the frag list.
2439 */
skb_splice_bits(struct sk_buff * skb,struct sock * sk,unsigned int offset,struct pipe_inode_info * pipe,unsigned int tlen,unsigned int flags)2440 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
2441 struct pipe_inode_info *pipe, unsigned int tlen,
2442 unsigned int flags)
2443 {
2444 struct partial_page partial[MAX_SKB_FRAGS];
2445 struct page *pages[MAX_SKB_FRAGS];
2446 struct splice_pipe_desc spd = {
2447 .pages = pages,
2448 .partial = partial,
2449 .nr_pages_max = MAX_SKB_FRAGS,
2450 .ops = &nosteal_pipe_buf_ops,
2451 .spd_release = sock_spd_release,
2452 };
2453 int ret = 0;
2454
2455 __skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk);
2456
2457 if (spd.nr_pages)
2458 ret = splice_to_pipe(pipe, &spd);
2459
2460 return ret;
2461 }
2462 EXPORT_SYMBOL_GPL(skb_splice_bits);
2463
2464 /* Send skb data on a socket. Socket must be locked. */
skb_send_sock_locked(struct sock * sk,struct sk_buff * skb,int offset,int len)2465 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
2466 int len)
2467 {
2468 unsigned int orig_len = len;
2469 struct sk_buff *head = skb;
2470 unsigned short fragidx;
2471 int slen, ret;
2472
2473 do_frag_list:
2474
2475 /* Deal with head data */
2476 while (offset < skb_headlen(skb) && len) {
2477 struct kvec kv;
2478 struct msghdr msg;
2479
2480 slen = min_t(int, len, skb_headlen(skb) - offset);
2481 kv.iov_base = skb->data + offset;
2482 kv.iov_len = slen;
2483 memset(&msg, 0, sizeof(msg));
2484 msg.msg_flags = MSG_DONTWAIT;
2485
2486 ret = kernel_sendmsg_locked(sk, &msg, &kv, 1, slen);
2487 if (ret <= 0)
2488 goto error;
2489
2490 offset += ret;
2491 len -= ret;
2492 }
2493
2494 /* All the data was skb head? */
2495 if (!len)
2496 goto out;
2497
2498 /* Make offset relative to start of frags */
2499 offset -= skb_headlen(skb);
2500
2501 /* Find where we are in frag list */
2502 for (fragidx = 0; fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
2503 skb_frag_t *frag = &skb_shinfo(skb)->frags[fragidx];
2504
2505 if (offset < skb_frag_size(frag))
2506 break;
2507
2508 offset -= skb_frag_size(frag);
2509 }
2510
2511 for (; len && fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
2512 skb_frag_t *frag = &skb_shinfo(skb)->frags[fragidx];
2513
2514 slen = min_t(size_t, len, skb_frag_size(frag) - offset);
2515
2516 while (slen) {
2517 ret = kernel_sendpage_locked(sk, skb_frag_page(frag),
2518 skb_frag_off(frag) + offset,
2519 slen, MSG_DONTWAIT);
2520 if (ret <= 0)
2521 goto error;
2522
2523 len -= ret;
2524 offset += ret;
2525 slen -= ret;
2526 }
2527
2528 offset = 0;
2529 }
2530
2531 if (len) {
2532 /* Process any frag lists */
2533
2534 if (skb == head) {
2535 if (skb_has_frag_list(skb)) {
2536 skb = skb_shinfo(skb)->frag_list;
2537 goto do_frag_list;
2538 }
2539 } else if (skb->next) {
2540 skb = skb->next;
2541 goto do_frag_list;
2542 }
2543 }
2544
2545 out:
2546 return orig_len - len;
2547
2548 error:
2549 return orig_len == len ? ret : orig_len - len;
2550 }
2551 EXPORT_SYMBOL_GPL(skb_send_sock_locked);
2552
2553 /**
2554 * skb_store_bits - store bits from kernel buffer to skb
2555 * @skb: destination buffer
2556 * @offset: offset in destination
2557 * @from: source buffer
2558 * @len: number of bytes to copy
2559 *
2560 * Copy the specified number of bytes from the source buffer to the
2561 * destination skb. This function handles all the messy bits of
2562 * traversing fragment lists and such.
2563 */
2564
skb_store_bits(struct sk_buff * skb,int offset,const void * from,int len)2565 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len)
2566 {
2567 int start = skb_headlen(skb);
2568 struct sk_buff *frag_iter;
2569 int i, copy;
2570
2571 if (offset > (int)skb->len - len)
2572 goto fault;
2573
2574 if ((copy = start - offset) > 0) {
2575 if (copy > len)
2576 copy = len;
2577 skb_copy_to_linear_data_offset(skb, offset, from, copy);
2578 if ((len -= copy) == 0)
2579 return 0;
2580 offset += copy;
2581 from += copy;
2582 }
2583
2584 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2585 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2586 int end;
2587
2588 WARN_ON(start > offset + len);
2589
2590 end = start + skb_frag_size(frag);
2591 if ((copy = end - offset) > 0) {
2592 u32 p_off, p_len, copied;
2593 struct page *p;
2594 u8 *vaddr;
2595
2596 if (copy > len)
2597 copy = len;
2598
2599 skb_frag_foreach_page(frag,
2600 skb_frag_off(frag) + offset - start,
2601 copy, p, p_off, p_len, copied) {
2602 vaddr = kmap_atomic(p);
2603 memcpy(vaddr + p_off, from + copied, p_len);
2604 kunmap_atomic(vaddr);
2605 }
2606
2607 if ((len -= copy) == 0)
2608 return 0;
2609 offset += copy;
2610 from += copy;
2611 }
2612 start = end;
2613 }
2614
2615 skb_walk_frags(skb, frag_iter) {
2616 int end;
2617
2618 WARN_ON(start > offset + len);
2619
2620 end = start + frag_iter->len;
2621 if ((copy = end - offset) > 0) {
2622 if (copy > len)
2623 copy = len;
2624 if (skb_store_bits(frag_iter, offset - start,
2625 from, copy))
2626 goto fault;
2627 if ((len -= copy) == 0)
2628 return 0;
2629 offset += copy;
2630 from += copy;
2631 }
2632 start = end;
2633 }
2634 if (!len)
2635 return 0;
2636
2637 fault:
2638 return -EFAULT;
2639 }
2640 EXPORT_SYMBOL(skb_store_bits);
2641
2642 /* Checksum skb data. */
__skb_checksum(const struct sk_buff * skb,int offset,int len,__wsum csum,const struct skb_checksum_ops * ops)2643 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
2644 __wsum csum, const struct skb_checksum_ops *ops)
2645 {
2646 int start = skb_headlen(skb);
2647 int i, copy = start - offset;
2648 struct sk_buff *frag_iter;
2649 int pos = 0;
2650
2651 /* Checksum header. */
2652 if (copy > 0) {
2653 if (copy > len)
2654 copy = len;
2655 csum = INDIRECT_CALL_1(ops->update, csum_partial_ext,
2656 skb->data + offset, copy, csum);
2657 if ((len -= copy) == 0)
2658 return csum;
2659 offset += copy;
2660 pos = copy;
2661 }
2662
2663 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2664 int end;
2665 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2666
2667 WARN_ON(start > offset + len);
2668
2669 end = start + skb_frag_size(frag);
2670 if ((copy = end - offset) > 0) {
2671 u32 p_off, p_len, copied;
2672 struct page *p;
2673 __wsum csum2;
2674 u8 *vaddr;
2675
2676 if (copy > len)
2677 copy = len;
2678
2679 skb_frag_foreach_page(frag,
2680 skb_frag_off(frag) + offset - start,
2681 copy, p, p_off, p_len, copied) {
2682 vaddr = kmap_atomic(p);
2683 csum2 = INDIRECT_CALL_1(ops->update,
2684 csum_partial_ext,
2685 vaddr + p_off, p_len, 0);
2686 kunmap_atomic(vaddr);
2687 csum = INDIRECT_CALL_1(ops->combine,
2688 csum_block_add_ext, csum,
2689 csum2, pos, p_len);
2690 pos += p_len;
2691 }
2692
2693 if (!(len -= copy))
2694 return csum;
2695 offset += copy;
2696 }
2697 start = end;
2698 }
2699
2700 skb_walk_frags(skb, frag_iter) {
2701 int end;
2702
2703 WARN_ON(start > offset + len);
2704
2705 end = start + frag_iter->len;
2706 if ((copy = end - offset) > 0) {
2707 __wsum csum2;
2708 if (copy > len)
2709 copy = len;
2710 csum2 = __skb_checksum(frag_iter, offset - start,
2711 copy, 0, ops);
2712 csum = INDIRECT_CALL_1(ops->combine, csum_block_add_ext,
2713 csum, csum2, pos, copy);
2714 if ((len -= copy) == 0)
2715 return csum;
2716 offset += copy;
2717 pos += copy;
2718 }
2719 start = end;
2720 }
2721 BUG_ON(len);
2722
2723 return csum;
2724 }
2725 EXPORT_SYMBOL(__skb_checksum);
2726
skb_checksum(const struct sk_buff * skb,int offset,int len,__wsum csum)2727 __wsum skb_checksum(const struct sk_buff *skb, int offset,
2728 int len, __wsum csum)
2729 {
2730 const struct skb_checksum_ops ops = {
2731 .update = csum_partial_ext,
2732 .combine = csum_block_add_ext,
2733 };
2734
2735 return __skb_checksum(skb, offset, len, csum, &ops);
2736 }
2737 EXPORT_SYMBOL(skb_checksum);
2738
2739 /* Both of above in one bottle. */
2740
skb_copy_and_csum_bits(const struct sk_buff * skb,int offset,u8 * to,int len)2741 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
2742 u8 *to, int len)
2743 {
2744 int start = skb_headlen(skb);
2745 int i, copy = start - offset;
2746 struct sk_buff *frag_iter;
2747 int pos = 0;
2748 __wsum csum = 0;
2749
2750 /* Copy header. */
2751 if (copy > 0) {
2752 if (copy > len)
2753 copy = len;
2754 csum = csum_partial_copy_nocheck(skb->data + offset, to,
2755 copy);
2756 if ((len -= copy) == 0)
2757 return csum;
2758 offset += copy;
2759 to += copy;
2760 pos = copy;
2761 }
2762
2763 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2764 int end;
2765
2766 WARN_ON(start > offset + len);
2767
2768 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
2769 if ((copy = end - offset) > 0) {
2770 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2771 u32 p_off, p_len, copied;
2772 struct page *p;
2773 __wsum csum2;
2774 u8 *vaddr;
2775
2776 if (copy > len)
2777 copy = len;
2778
2779 skb_frag_foreach_page(frag,
2780 skb_frag_off(frag) + offset - start,
2781 copy, p, p_off, p_len, copied) {
2782 vaddr = kmap_atomic(p);
2783 csum2 = csum_partial_copy_nocheck(vaddr + p_off,
2784 to + copied,
2785 p_len);
2786 kunmap_atomic(vaddr);
2787 csum = csum_block_add(csum, csum2, pos);
2788 pos += p_len;
2789 }
2790
2791 if (!(len -= copy))
2792 return csum;
2793 offset += copy;
2794 to += copy;
2795 }
2796 start = end;
2797 }
2798
2799 skb_walk_frags(skb, frag_iter) {
2800 __wsum csum2;
2801 int end;
2802
2803 WARN_ON(start > offset + len);
2804
2805 end = start + frag_iter->len;
2806 if ((copy = end - offset) > 0) {
2807 if (copy > len)
2808 copy = len;
2809 csum2 = skb_copy_and_csum_bits(frag_iter,
2810 offset - start,
2811 to, copy);
2812 csum = csum_block_add(csum, csum2, pos);
2813 if ((len -= copy) == 0)
2814 return csum;
2815 offset += copy;
2816 to += copy;
2817 pos += copy;
2818 }
2819 start = end;
2820 }
2821 BUG_ON(len);
2822 return csum;
2823 }
2824 EXPORT_SYMBOL(skb_copy_and_csum_bits);
2825
__skb_checksum_complete_head(struct sk_buff * skb,int len)2826 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len)
2827 {
2828 __sum16 sum;
2829
2830 sum = csum_fold(skb_checksum(skb, 0, len, skb->csum));
2831 /* See comments in __skb_checksum_complete(). */
2832 if (likely(!sum)) {
2833 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
2834 !skb->csum_complete_sw)
2835 netdev_rx_csum_fault(skb->dev, skb);
2836 }
2837 if (!skb_shared(skb))
2838 skb->csum_valid = !sum;
2839 return sum;
2840 }
2841 EXPORT_SYMBOL(__skb_checksum_complete_head);
2842
2843 /* This function assumes skb->csum already holds pseudo header's checksum,
2844 * which has been changed from the hardware checksum, for example, by
2845 * __skb_checksum_validate_complete(). And, the original skb->csum must
2846 * have been validated unsuccessfully for CHECKSUM_COMPLETE case.
2847 *
2848 * It returns non-zero if the recomputed checksum is still invalid, otherwise
2849 * zero. The new checksum is stored back into skb->csum unless the skb is
2850 * shared.
2851 */
__skb_checksum_complete(struct sk_buff * skb)2852 __sum16 __skb_checksum_complete(struct sk_buff *skb)
2853 {
2854 __wsum csum;
2855 __sum16 sum;
2856
2857 csum = skb_checksum(skb, 0, skb->len, 0);
2858
2859 sum = csum_fold(csum_add(skb->csum, csum));
2860 /* This check is inverted, because we already knew the hardware
2861 * checksum is invalid before calling this function. So, if the
2862 * re-computed checksum is valid instead, then we have a mismatch
2863 * between the original skb->csum and skb_checksum(). This means either
2864 * the original hardware checksum is incorrect or we screw up skb->csum
2865 * when moving skb->data around.
2866 */
2867 if (likely(!sum)) {
2868 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
2869 !skb->csum_complete_sw)
2870 netdev_rx_csum_fault(skb->dev, skb);
2871 }
2872
2873 if (!skb_shared(skb)) {
2874 /* Save full packet checksum */
2875 skb->csum = csum;
2876 skb->ip_summed = CHECKSUM_COMPLETE;
2877 skb->csum_complete_sw = 1;
2878 skb->csum_valid = !sum;
2879 }
2880
2881 return sum;
2882 }
2883 EXPORT_SYMBOL(__skb_checksum_complete);
2884
warn_crc32c_csum_update(const void * buff,int len,__wsum sum)2885 static __wsum warn_crc32c_csum_update(const void *buff, int len, __wsum sum)
2886 {
2887 net_warn_ratelimited(
2888 "%s: attempt to compute crc32c without libcrc32c.ko\n",
2889 __func__);
2890 return 0;
2891 }
2892
warn_crc32c_csum_combine(__wsum csum,__wsum csum2,int offset,int len)2893 static __wsum warn_crc32c_csum_combine(__wsum csum, __wsum csum2,
2894 int offset, int len)
2895 {
2896 net_warn_ratelimited(
2897 "%s: attempt to compute crc32c without libcrc32c.ko\n",
2898 __func__);
2899 return 0;
2900 }
2901
2902 static const struct skb_checksum_ops default_crc32c_ops = {
2903 .update = warn_crc32c_csum_update,
2904 .combine = warn_crc32c_csum_combine,
2905 };
2906
2907 const struct skb_checksum_ops *crc32c_csum_stub __read_mostly =
2908 &default_crc32c_ops;
2909 EXPORT_SYMBOL(crc32c_csum_stub);
2910
2911 /**
2912 * skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy()
2913 * @from: source buffer
2914 *
2915 * Calculates the amount of linear headroom needed in the 'to' skb passed
2916 * into skb_zerocopy().
2917 */
2918 unsigned int
skb_zerocopy_headlen(const struct sk_buff * from)2919 skb_zerocopy_headlen(const struct sk_buff *from)
2920 {
2921 unsigned int hlen = 0;
2922
2923 if (!from->head_frag ||
2924 skb_headlen(from) < L1_CACHE_BYTES ||
2925 skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS) {
2926 hlen = skb_headlen(from);
2927 if (!hlen)
2928 hlen = from->len;
2929 }
2930
2931 if (skb_has_frag_list(from))
2932 hlen = from->len;
2933
2934 return hlen;
2935 }
2936 EXPORT_SYMBOL_GPL(skb_zerocopy_headlen);
2937
2938 /**
2939 * skb_zerocopy - Zero copy skb to skb
2940 * @to: destination buffer
2941 * @from: source buffer
2942 * @len: number of bytes to copy from source buffer
2943 * @hlen: size of linear headroom in destination buffer
2944 *
2945 * Copies up to `len` bytes from `from` to `to` by creating references
2946 * to the frags in the source buffer.
2947 *
2948 * The `hlen` as calculated by skb_zerocopy_headlen() specifies the
2949 * headroom in the `to` buffer.
2950 *
2951 * Return value:
2952 * 0: everything is OK
2953 * -ENOMEM: couldn't orphan frags of @from due to lack of memory
2954 * -EFAULT: skb_copy_bits() found some problem with skb geometry
2955 */
2956 int
skb_zerocopy(struct sk_buff * to,struct sk_buff * from,int len,int hlen)2957 skb_zerocopy(struct sk_buff *to, struct sk_buff *from, int len, int hlen)
2958 {
2959 int i, j = 0;
2960 int plen = 0; /* length of skb->head fragment */
2961 int ret;
2962 struct page *page;
2963 unsigned int offset;
2964
2965 BUG_ON(!from->head_frag && !hlen);
2966
2967 /* dont bother with small payloads */
2968 if (len <= skb_tailroom(to))
2969 return skb_copy_bits(from, 0, skb_put(to, len), len);
2970
2971 if (hlen) {
2972 ret = skb_copy_bits(from, 0, skb_put(to, hlen), hlen);
2973 if (unlikely(ret))
2974 return ret;
2975 len -= hlen;
2976 } else {
2977 plen = min_t(int, skb_headlen(from), len);
2978 if (plen) {
2979 page = virt_to_head_page(from->head);
2980 offset = from->data - (unsigned char *)page_address(page);
2981 __skb_fill_page_desc(to, 0, page, offset, plen);
2982 get_page(page);
2983 j = 1;
2984 len -= plen;
2985 }
2986 }
2987
2988 to->truesize += len + plen;
2989 to->len += len + plen;
2990 to->data_len += len + plen;
2991
2992 if (unlikely(skb_orphan_frags(from, GFP_ATOMIC))) {
2993 skb_tx_error(from);
2994 return -ENOMEM;
2995 }
2996 skb_zerocopy_clone(to, from, GFP_ATOMIC);
2997
2998 for (i = 0; i < skb_shinfo(from)->nr_frags; i++) {
2999 int size;
3000
3001 if (!len)
3002 break;
3003 skb_shinfo(to)->frags[j] = skb_shinfo(from)->frags[i];
3004 size = min_t(int, skb_frag_size(&skb_shinfo(to)->frags[j]),
3005 len);
3006 skb_frag_size_set(&skb_shinfo(to)->frags[j], size);
3007 len -= size;
3008 skb_frag_ref(to, j);
3009 j++;
3010 }
3011 skb_shinfo(to)->nr_frags = j;
3012
3013 return 0;
3014 }
3015 EXPORT_SYMBOL_GPL(skb_zerocopy);
3016
skb_copy_and_csum_dev(const struct sk_buff * skb,u8 * to)3017 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
3018 {
3019 __wsum csum;
3020 long csstart;
3021
3022 if (skb->ip_summed == CHECKSUM_PARTIAL)
3023 csstart = skb_checksum_start_offset(skb);
3024 else
3025 csstart = skb_headlen(skb);
3026
3027 BUG_ON(csstart > skb_headlen(skb));
3028
3029 skb_copy_from_linear_data(skb, to, csstart);
3030
3031 csum = 0;
3032 if (csstart != skb->len)
3033 csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
3034 skb->len - csstart);
3035
3036 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3037 long csstuff = csstart + skb->csum_offset;
3038
3039 *((__sum16 *)(to + csstuff)) = csum_fold(csum);
3040 }
3041 }
3042 EXPORT_SYMBOL(skb_copy_and_csum_dev);
3043
3044 /**
3045 * skb_dequeue - remove from the head of the queue
3046 * @list: list to dequeue from
3047 *
3048 * Remove the head of the list. The list lock is taken so the function
3049 * may be used safely with other locking list functions. The head item is
3050 * returned or %NULL if the list is empty.
3051 */
3052
skb_dequeue(struct sk_buff_head * list)3053 struct sk_buff *skb_dequeue(struct sk_buff_head *list)
3054 {
3055 unsigned long flags;
3056 struct sk_buff *result;
3057
3058 spin_lock_irqsave(&list->lock, flags);
3059 result = __skb_dequeue(list);
3060 spin_unlock_irqrestore(&list->lock, flags);
3061 return result;
3062 }
3063 EXPORT_SYMBOL(skb_dequeue);
3064
3065 /**
3066 * skb_dequeue_tail - remove from the tail of the queue
3067 * @list: list to dequeue from
3068 *
3069 * Remove the tail of the list. The list lock is taken so the function
3070 * may be used safely with other locking list functions. The tail item is
3071 * returned or %NULL if the list is empty.
3072 */
skb_dequeue_tail(struct sk_buff_head * list)3073 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
3074 {
3075 unsigned long flags;
3076 struct sk_buff *result;
3077
3078 spin_lock_irqsave(&list->lock, flags);
3079 result = __skb_dequeue_tail(list);
3080 spin_unlock_irqrestore(&list->lock, flags);
3081 return result;
3082 }
3083 EXPORT_SYMBOL(skb_dequeue_tail);
3084
3085 /**
3086 * skb_queue_purge - empty a list
3087 * @list: list to empty
3088 *
3089 * Delete all buffers on an &sk_buff list. Each buffer is removed from
3090 * the list and one reference dropped. This function takes the list
3091 * lock and is atomic with respect to other list locking functions.
3092 */
skb_queue_purge(struct sk_buff_head * list)3093 void skb_queue_purge(struct sk_buff_head *list)
3094 {
3095 struct sk_buff *skb;
3096 while ((skb = skb_dequeue(list)) != NULL)
3097 kfree_skb(skb);
3098 }
3099 EXPORT_SYMBOL(skb_queue_purge);
3100
3101 /**
3102 * skb_rbtree_purge - empty a skb rbtree
3103 * @root: root of the rbtree to empty
3104 * Return value: the sum of truesizes of all purged skbs.
3105 *
3106 * Delete all buffers on an &sk_buff rbtree. Each buffer is removed from
3107 * the list and one reference dropped. This function does not take
3108 * any lock. Synchronization should be handled by the caller (e.g., TCP
3109 * out-of-order queue is protected by the socket lock).
3110 */
skb_rbtree_purge(struct rb_root * root)3111 unsigned int skb_rbtree_purge(struct rb_root *root)
3112 {
3113 struct rb_node *p = rb_first(root);
3114 unsigned int sum = 0;
3115
3116 while (p) {
3117 struct sk_buff *skb = rb_entry(p, struct sk_buff, rbnode);
3118
3119 p = rb_next(p);
3120 rb_erase(&skb->rbnode, root);
3121 sum += skb->truesize;
3122 kfree_skb(skb);
3123 }
3124 return sum;
3125 }
3126
3127 /**
3128 * skb_queue_head - queue a buffer at the list head
3129 * @list: list to use
3130 * @newsk: buffer to queue
3131 *
3132 * Queue a buffer at the start of the list. This function takes the
3133 * list lock and can be used safely with other locking &sk_buff functions
3134 * safely.
3135 *
3136 * A buffer cannot be placed on two lists at the same time.
3137 */
skb_queue_head(struct sk_buff_head * list,struct sk_buff * newsk)3138 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
3139 {
3140 unsigned long flags;
3141
3142 spin_lock_irqsave(&list->lock, flags);
3143 __skb_queue_head(list, newsk);
3144 spin_unlock_irqrestore(&list->lock, flags);
3145 }
3146 EXPORT_SYMBOL(skb_queue_head);
3147
3148 /**
3149 * skb_queue_tail - queue a buffer at the list tail
3150 * @list: list to use
3151 * @newsk: buffer to queue
3152 *
3153 * Queue a buffer at the tail of the list. This function takes the
3154 * list lock and can be used safely with other locking &sk_buff functions
3155 * safely.
3156 *
3157 * A buffer cannot be placed on two lists at the same time.
3158 */
skb_queue_tail(struct sk_buff_head * list,struct sk_buff * newsk)3159 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
3160 {
3161 unsigned long flags;
3162
3163 spin_lock_irqsave(&list->lock, flags);
3164 __skb_queue_tail(list, newsk);
3165 spin_unlock_irqrestore(&list->lock, flags);
3166 }
3167 EXPORT_SYMBOL(skb_queue_tail);
3168
3169 /**
3170 * skb_unlink - remove a buffer from a list
3171 * @skb: buffer to remove
3172 * @list: list to use
3173 *
3174 * Remove a packet from a list. The list locks are taken and this
3175 * function is atomic with respect to other list locked calls
3176 *
3177 * You must know what list the SKB is on.
3178 */
skb_unlink(struct sk_buff * skb,struct sk_buff_head * list)3179 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
3180 {
3181 unsigned long flags;
3182
3183 spin_lock_irqsave(&list->lock, flags);
3184 __skb_unlink(skb, list);
3185 spin_unlock_irqrestore(&list->lock, flags);
3186 }
3187 EXPORT_SYMBOL(skb_unlink);
3188
3189 /**
3190 * skb_append - append a buffer
3191 * @old: buffer to insert after
3192 * @newsk: buffer to insert
3193 * @list: list to use
3194 *
3195 * Place a packet after a given packet in a list. The list locks are taken
3196 * and this function is atomic with respect to other list locked calls.
3197 * A buffer cannot be placed on two lists at the same time.
3198 */
skb_append(struct sk_buff * old,struct sk_buff * newsk,struct sk_buff_head * list)3199 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
3200 {
3201 unsigned long flags;
3202
3203 spin_lock_irqsave(&list->lock, flags);
3204 __skb_queue_after(list, old, newsk);
3205 spin_unlock_irqrestore(&list->lock, flags);
3206 }
3207 EXPORT_SYMBOL(skb_append);
3208
skb_split_inside_header(struct sk_buff * skb,struct sk_buff * skb1,const u32 len,const int pos)3209 static inline void skb_split_inside_header(struct sk_buff *skb,
3210 struct sk_buff* skb1,
3211 const u32 len, const int pos)
3212 {
3213 int i;
3214
3215 skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len),
3216 pos - len);
3217 /* And move data appendix as is. */
3218 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
3219 skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
3220
3221 skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
3222 skb_shinfo(skb)->nr_frags = 0;
3223 skb1->data_len = skb->data_len;
3224 skb1->len += skb1->data_len;
3225 skb->data_len = 0;
3226 skb->len = len;
3227 skb_set_tail_pointer(skb, len);
3228 }
3229
skb_split_no_header(struct sk_buff * skb,struct sk_buff * skb1,const u32 len,int pos)3230 static inline void skb_split_no_header(struct sk_buff *skb,
3231 struct sk_buff* skb1,
3232 const u32 len, int pos)
3233 {
3234 int i, k = 0;
3235 const int nfrags = skb_shinfo(skb)->nr_frags;
3236
3237 skb_shinfo(skb)->nr_frags = 0;
3238 skb1->len = skb1->data_len = skb->len - len;
3239 skb->len = len;
3240 skb->data_len = len - pos;
3241
3242 for (i = 0; i < nfrags; i++) {
3243 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
3244
3245 if (pos + size > len) {
3246 skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
3247
3248 if (pos < len) {
3249 /* Split frag.
3250 * We have two variants in this case:
3251 * 1. Move all the frag to the second
3252 * part, if it is possible. F.e.
3253 * this approach is mandatory for TUX,
3254 * where splitting is expensive.
3255 * 2. Split is accurately. We make this.
3256 */
3257 skb_frag_ref(skb, i);
3258 skb_frag_off_add(&skb_shinfo(skb1)->frags[0], len - pos);
3259 skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos);
3260 skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos);
3261 skb_shinfo(skb)->nr_frags++;
3262 }
3263 k++;
3264 } else
3265 skb_shinfo(skb)->nr_frags++;
3266 pos += size;
3267 }
3268 skb_shinfo(skb1)->nr_frags = k;
3269 }
3270
3271 /**
3272 * skb_split - Split fragmented skb to two parts at length len.
3273 * @skb: the buffer to split
3274 * @skb1: the buffer to receive the second part
3275 * @len: new length for skb
3276 */
skb_split(struct sk_buff * skb,struct sk_buff * skb1,const u32 len)3277 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
3278 {
3279 int pos = skb_headlen(skb);
3280
3281 skb_shinfo(skb1)->tx_flags |= skb_shinfo(skb)->tx_flags &
3282 SKBTX_SHARED_FRAG;
3283 skb_zerocopy_clone(skb1, skb, 0);
3284 if (len < pos) /* Split line is inside header. */
3285 skb_split_inside_header(skb, skb1, len, pos);
3286 else /* Second chunk has no header, nothing to copy. */
3287 skb_split_no_header(skb, skb1, len, pos);
3288 }
3289 EXPORT_SYMBOL(skb_split);
3290
3291 /* Shifting from/to a cloned skb is a no-go.
3292 *
3293 * Caller cannot keep skb_shinfo related pointers past calling here!
3294 */
skb_prepare_for_shift(struct sk_buff * skb)3295 static int skb_prepare_for_shift(struct sk_buff *skb)
3296 {
3297 int ret = 0;
3298
3299 if (skb_cloned(skb)) {
3300 /* Save and restore truesize: pskb_expand_head() may reallocate
3301 * memory where ksize(kmalloc(S)) != ksize(kmalloc(S)), but we
3302 * cannot change truesize at this point.
3303 */
3304 unsigned int save_truesize = skb->truesize;
3305
3306 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
3307 skb->truesize = save_truesize;
3308 }
3309 return ret;
3310 }
3311
3312 /**
3313 * skb_shift - Shifts paged data partially from skb to another
3314 * @tgt: buffer into which tail data gets added
3315 * @skb: buffer from which the paged data comes from
3316 * @shiftlen: shift up to this many bytes
3317 *
3318 * Attempts to shift up to shiftlen worth of bytes, which may be less than
3319 * the length of the skb, from skb to tgt. Returns number bytes shifted.
3320 * It's up to caller to free skb if everything was shifted.
3321 *
3322 * If @tgt runs out of frags, the whole operation is aborted.
3323 *
3324 * Skb cannot include anything else but paged data while tgt is allowed
3325 * to have non-paged data as well.
3326 *
3327 * TODO: full sized shift could be optimized but that would need
3328 * specialized skb free'er to handle frags without up-to-date nr_frags.
3329 */
skb_shift(struct sk_buff * tgt,struct sk_buff * skb,int shiftlen)3330 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen)
3331 {
3332 int from, to, merge, todo;
3333 skb_frag_t *fragfrom, *fragto;
3334
3335 BUG_ON(shiftlen > skb->len);
3336
3337 if (skb_headlen(skb))
3338 return 0;
3339 if (skb_zcopy(tgt) || skb_zcopy(skb))
3340 return 0;
3341
3342 todo = shiftlen;
3343 from = 0;
3344 to = skb_shinfo(tgt)->nr_frags;
3345 fragfrom = &skb_shinfo(skb)->frags[from];
3346
3347 /* Actual merge is delayed until the point when we know we can
3348 * commit all, so that we don't have to undo partial changes
3349 */
3350 if (!to ||
3351 !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom),
3352 skb_frag_off(fragfrom))) {
3353 merge = -1;
3354 } else {
3355 merge = to - 1;
3356
3357 todo -= skb_frag_size(fragfrom);
3358 if (todo < 0) {
3359 if (skb_prepare_for_shift(skb) ||
3360 skb_prepare_for_shift(tgt))
3361 return 0;
3362
3363 /* All previous frag pointers might be stale! */
3364 fragfrom = &skb_shinfo(skb)->frags[from];
3365 fragto = &skb_shinfo(tgt)->frags[merge];
3366
3367 skb_frag_size_add(fragto, shiftlen);
3368 skb_frag_size_sub(fragfrom, shiftlen);
3369 skb_frag_off_add(fragfrom, shiftlen);
3370
3371 goto onlymerged;
3372 }
3373
3374 from++;
3375 }
3376
3377 /* Skip full, not-fitting skb to avoid expensive operations */
3378 if ((shiftlen == skb->len) &&
3379 (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to))
3380 return 0;
3381
3382 if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt))
3383 return 0;
3384
3385 while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) {
3386 if (to == MAX_SKB_FRAGS)
3387 return 0;
3388
3389 fragfrom = &skb_shinfo(skb)->frags[from];
3390 fragto = &skb_shinfo(tgt)->frags[to];
3391
3392 if (todo >= skb_frag_size(fragfrom)) {
3393 *fragto = *fragfrom;
3394 todo -= skb_frag_size(fragfrom);
3395 from++;
3396 to++;
3397
3398 } else {
3399 __skb_frag_ref(fragfrom);
3400 skb_frag_page_copy(fragto, fragfrom);
3401 skb_frag_off_copy(fragto, fragfrom);
3402 skb_frag_size_set(fragto, todo);
3403
3404 skb_frag_off_add(fragfrom, todo);
3405 skb_frag_size_sub(fragfrom, todo);
3406 todo = 0;
3407
3408 to++;
3409 break;
3410 }
3411 }
3412
3413 /* Ready to "commit" this state change to tgt */
3414 skb_shinfo(tgt)->nr_frags = to;
3415
3416 if (merge >= 0) {
3417 fragfrom = &skb_shinfo(skb)->frags[0];
3418 fragto = &skb_shinfo(tgt)->frags[merge];
3419
3420 skb_frag_size_add(fragto, skb_frag_size(fragfrom));
3421 __skb_frag_unref(fragfrom);
3422 }
3423
3424 /* Reposition in the original skb */
3425 to = 0;
3426 while (from < skb_shinfo(skb)->nr_frags)
3427 skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++];
3428 skb_shinfo(skb)->nr_frags = to;
3429
3430 BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags);
3431
3432 onlymerged:
3433 /* Most likely the tgt won't ever need its checksum anymore, skb on
3434 * the other hand might need it if it needs to be resent
3435 */
3436 tgt->ip_summed = CHECKSUM_PARTIAL;
3437 skb->ip_summed = CHECKSUM_PARTIAL;
3438
3439 /* Yak, is it really working this way? Some helper please? */
3440 skb->len -= shiftlen;
3441 skb->data_len -= shiftlen;
3442 skb->truesize -= shiftlen;
3443 tgt->len += shiftlen;
3444 tgt->data_len += shiftlen;
3445 tgt->truesize += shiftlen;
3446
3447 return shiftlen;
3448 }
3449
3450 /**
3451 * skb_prepare_seq_read - Prepare a sequential read of skb data
3452 * @skb: the buffer to read
3453 * @from: lower offset of data to be read
3454 * @to: upper offset of data to be read
3455 * @st: state variable
3456 *
3457 * Initializes the specified state variable. Must be called before
3458 * invoking skb_seq_read() for the first time.
3459 */
skb_prepare_seq_read(struct sk_buff * skb,unsigned int from,unsigned int to,struct skb_seq_state * st)3460 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
3461 unsigned int to, struct skb_seq_state *st)
3462 {
3463 st->lower_offset = from;
3464 st->upper_offset = to;
3465 st->root_skb = st->cur_skb = skb;
3466 st->frag_idx = st->stepped_offset = 0;
3467 st->frag_data = NULL;
3468 }
3469 EXPORT_SYMBOL(skb_prepare_seq_read);
3470
3471 /**
3472 * skb_seq_read - Sequentially read skb data
3473 * @consumed: number of bytes consumed by the caller so far
3474 * @data: destination pointer for data to be returned
3475 * @st: state variable
3476 *
3477 * Reads a block of skb data at @consumed relative to the
3478 * lower offset specified to skb_prepare_seq_read(). Assigns
3479 * the head of the data block to @data and returns the length
3480 * of the block or 0 if the end of the skb data or the upper
3481 * offset has been reached.
3482 *
3483 * The caller is not required to consume all of the data
3484 * returned, i.e. @consumed is typically set to the number
3485 * of bytes already consumed and the next call to
3486 * skb_seq_read() will return the remaining part of the block.
3487 *
3488 * Note 1: The size of each block of data returned can be arbitrary,
3489 * this limitation is the cost for zerocopy sequential
3490 * reads of potentially non linear data.
3491 *
3492 * Note 2: Fragment lists within fragments are not implemented
3493 * at the moment, state->root_skb could be replaced with
3494 * a stack for this purpose.
3495 */
skb_seq_read(unsigned int consumed,const u8 ** data,struct skb_seq_state * st)3496 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
3497 struct skb_seq_state *st)
3498 {
3499 unsigned int block_limit, abs_offset = consumed + st->lower_offset;
3500 skb_frag_t *frag;
3501
3502 if (unlikely(abs_offset >= st->upper_offset)) {
3503 if (st->frag_data) {
3504 kunmap_atomic(st->frag_data);
3505 st->frag_data = NULL;
3506 }
3507 return 0;
3508 }
3509
3510 next_skb:
3511 block_limit = skb_headlen(st->cur_skb) + st->stepped_offset;
3512
3513 if (abs_offset < block_limit && !st->frag_data) {
3514 *data = st->cur_skb->data + (abs_offset - st->stepped_offset);
3515 return block_limit - abs_offset;
3516 }
3517
3518 if (st->frag_idx == 0 && !st->frag_data)
3519 st->stepped_offset += skb_headlen(st->cur_skb);
3520
3521 while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
3522 frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
3523 block_limit = skb_frag_size(frag) + st->stepped_offset;
3524
3525 if (abs_offset < block_limit) {
3526 if (!st->frag_data)
3527 st->frag_data = kmap_atomic(skb_frag_page(frag));
3528
3529 *data = (u8 *) st->frag_data + skb_frag_off(frag) +
3530 (abs_offset - st->stepped_offset);
3531
3532 return block_limit - abs_offset;
3533 }
3534
3535 if (st->frag_data) {
3536 kunmap_atomic(st->frag_data);
3537 st->frag_data = NULL;
3538 }
3539
3540 st->frag_idx++;
3541 st->stepped_offset += skb_frag_size(frag);
3542 }
3543
3544 if (st->frag_data) {
3545 kunmap_atomic(st->frag_data);
3546 st->frag_data = NULL;
3547 }
3548
3549 if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) {
3550 st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
3551 st->frag_idx = 0;
3552 goto next_skb;
3553 } else if (st->cur_skb->next) {
3554 st->cur_skb = st->cur_skb->next;
3555 st->frag_idx = 0;
3556 goto next_skb;
3557 }
3558
3559 return 0;
3560 }
3561 EXPORT_SYMBOL(skb_seq_read);
3562
3563 /**
3564 * skb_abort_seq_read - Abort a sequential read of skb data
3565 * @st: state variable
3566 *
3567 * Must be called if skb_seq_read() was not called until it
3568 * returned 0.
3569 */
skb_abort_seq_read(struct skb_seq_state * st)3570 void skb_abort_seq_read(struct skb_seq_state *st)
3571 {
3572 if (st->frag_data)
3573 kunmap_atomic(st->frag_data);
3574 }
3575 EXPORT_SYMBOL(skb_abort_seq_read);
3576
3577 #define TS_SKB_CB(state) ((struct skb_seq_state *) &((state)->cb))
3578
skb_ts_get_next_block(unsigned int offset,const u8 ** text,struct ts_config * conf,struct ts_state * state)3579 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
3580 struct ts_config *conf,
3581 struct ts_state *state)
3582 {
3583 return skb_seq_read(offset, text, TS_SKB_CB(state));
3584 }
3585
skb_ts_finish(struct ts_config * conf,struct ts_state * state)3586 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
3587 {
3588 skb_abort_seq_read(TS_SKB_CB(state));
3589 }
3590
3591 /**
3592 * skb_find_text - Find a text pattern in skb data
3593 * @skb: the buffer to look in
3594 * @from: search offset
3595 * @to: search limit
3596 * @config: textsearch configuration
3597 *
3598 * Finds a pattern in the skb data according to the specified
3599 * textsearch configuration. Use textsearch_next() to retrieve
3600 * subsequent occurrences of the pattern. Returns the offset
3601 * to the first occurrence or UINT_MAX if no match was found.
3602 */
skb_find_text(struct sk_buff * skb,unsigned int from,unsigned int to,struct ts_config * config)3603 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
3604 unsigned int to, struct ts_config *config)
3605 {
3606 struct ts_state state;
3607 unsigned int ret;
3608
3609 config->get_next_block = skb_ts_get_next_block;
3610 config->finish = skb_ts_finish;
3611
3612 skb_prepare_seq_read(skb, from, to, TS_SKB_CB(&state));
3613
3614 ret = textsearch_find(config, &state);
3615 return (ret <= to - from ? ret : UINT_MAX);
3616 }
3617 EXPORT_SYMBOL(skb_find_text);
3618
skb_append_pagefrags(struct sk_buff * skb,struct page * page,int offset,size_t size)3619 int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
3620 int offset, size_t size)
3621 {
3622 int i = skb_shinfo(skb)->nr_frags;
3623
3624 if (skb_can_coalesce(skb, i, page, offset)) {
3625 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], size);
3626 } else if (i < MAX_SKB_FRAGS) {
3627 get_page(page);
3628 skb_fill_page_desc(skb, i, page, offset, size);
3629 } else {
3630 return -EMSGSIZE;
3631 }
3632
3633 return 0;
3634 }
3635 EXPORT_SYMBOL_GPL(skb_append_pagefrags);
3636
3637 /**
3638 * skb_pull_rcsum - pull skb and update receive checksum
3639 * @skb: buffer to update
3640 * @len: length of data pulled
3641 *
3642 * This function performs an skb_pull on the packet and updates
3643 * the CHECKSUM_COMPLETE checksum. It should be used on
3644 * receive path processing instead of skb_pull unless you know
3645 * that the checksum difference is zero (e.g., a valid IP header)
3646 * or you are setting ip_summed to CHECKSUM_NONE.
3647 */
skb_pull_rcsum(struct sk_buff * skb,unsigned int len)3648 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
3649 {
3650 unsigned char *data = skb->data;
3651
3652 BUG_ON(len > skb->len);
3653 __skb_pull(skb, len);
3654 skb_postpull_rcsum(skb, data, len);
3655 return skb->data;
3656 }
3657 EXPORT_SYMBOL_GPL(skb_pull_rcsum);
3658
skb_head_frag_to_page_desc(struct sk_buff * frag_skb)3659 static inline skb_frag_t skb_head_frag_to_page_desc(struct sk_buff *frag_skb)
3660 {
3661 skb_frag_t head_frag;
3662 struct page *page;
3663
3664 page = virt_to_head_page(frag_skb->head);
3665 __skb_frag_set_page(&head_frag, page);
3666 skb_frag_off_set(&head_frag, frag_skb->data -
3667 (unsigned char *)page_address(page));
3668 skb_frag_size_set(&head_frag, skb_headlen(frag_skb));
3669 return head_frag;
3670 }
3671
skb_segment_list(struct sk_buff * skb,netdev_features_t features,unsigned int offset)3672 struct sk_buff *skb_segment_list(struct sk_buff *skb,
3673 netdev_features_t features,
3674 unsigned int offset)
3675 {
3676 struct sk_buff *list_skb = skb_shinfo(skb)->frag_list;
3677 unsigned int tnl_hlen = skb_tnl_header_len(skb);
3678 unsigned int delta_truesize = 0;
3679 unsigned int delta_len = 0;
3680 struct sk_buff *tail = NULL;
3681 struct sk_buff *nskb, *tmp;
3682 int err;
3683
3684 skb_push(skb, -skb_network_offset(skb) + offset);
3685
3686 skb_shinfo(skb)->frag_list = NULL;
3687
3688 do {
3689 nskb = list_skb;
3690 list_skb = list_skb->next;
3691
3692 err = 0;
3693 if (skb_shared(nskb)) {
3694 tmp = skb_clone(nskb, GFP_ATOMIC);
3695 if (tmp) {
3696 consume_skb(nskb);
3697 nskb = tmp;
3698 err = skb_unclone(nskb, GFP_ATOMIC);
3699 } else {
3700 err = -ENOMEM;
3701 }
3702 }
3703
3704 if (!tail)
3705 skb->next = nskb;
3706 else
3707 tail->next = nskb;
3708
3709 if (unlikely(err)) {
3710 nskb->next = list_skb;
3711 goto err_linearize;
3712 }
3713
3714 tail = nskb;
3715
3716 delta_len += nskb->len;
3717 delta_truesize += nskb->truesize;
3718
3719 skb_push(nskb, -skb_network_offset(nskb) + offset);
3720
3721 skb_release_head_state(nskb);
3722 __copy_skb_header(nskb, skb);
3723
3724 skb_headers_offset_update(nskb, skb_headroom(nskb) - skb_headroom(skb));
3725 skb_copy_from_linear_data_offset(skb, -tnl_hlen,
3726 nskb->data - tnl_hlen,
3727 offset + tnl_hlen);
3728
3729 if (skb_needs_linearize(nskb, features) &&
3730 __skb_linearize(nskb))
3731 goto err_linearize;
3732
3733 } while (list_skb);
3734
3735 skb->truesize = skb->truesize - delta_truesize;
3736 skb->data_len = skb->data_len - delta_len;
3737 skb->len = skb->len - delta_len;
3738
3739 skb_gso_reset(skb);
3740
3741 skb->prev = tail;
3742
3743 if (skb_needs_linearize(skb, features) &&
3744 __skb_linearize(skb))
3745 goto err_linearize;
3746
3747 skb_get(skb);
3748
3749 return skb;
3750
3751 err_linearize:
3752 kfree_skb_list(skb->next);
3753 skb->next = NULL;
3754 return ERR_PTR(-ENOMEM);
3755 }
3756 EXPORT_SYMBOL_GPL(skb_segment_list);
3757
skb_gro_receive_list(struct sk_buff * p,struct sk_buff * skb)3758 int skb_gro_receive_list(struct sk_buff *p, struct sk_buff *skb)
3759 {
3760 if (unlikely(p->len + skb->len >= 65536))
3761 return -E2BIG;
3762
3763 if (NAPI_GRO_CB(p)->last == p)
3764 skb_shinfo(p)->frag_list = skb;
3765 else
3766 NAPI_GRO_CB(p)->last->next = skb;
3767
3768 skb_pull(skb, skb_gro_offset(skb));
3769
3770 NAPI_GRO_CB(p)->last = skb;
3771 NAPI_GRO_CB(p)->count++;
3772 p->data_len += skb->len;
3773 p->truesize += skb->truesize;
3774 p->len += skb->len;
3775
3776 NAPI_GRO_CB(skb)->same_flow = 1;
3777
3778 return 0;
3779 }
3780
3781 /**
3782 * skb_segment - Perform protocol segmentation on skb.
3783 * @head_skb: buffer to segment
3784 * @features: features for the output path (see dev->features)
3785 *
3786 * This function performs segmentation on the given skb. It returns
3787 * a pointer to the first in a list of new skbs for the segments.
3788 * In case of error it returns ERR_PTR(err).
3789 */
skb_segment(struct sk_buff * head_skb,netdev_features_t features)3790 struct sk_buff *skb_segment(struct sk_buff *head_skb,
3791 netdev_features_t features)
3792 {
3793 struct sk_buff *segs = NULL;
3794 struct sk_buff *tail = NULL;
3795 struct sk_buff *list_skb = skb_shinfo(head_skb)->frag_list;
3796 skb_frag_t *frag = skb_shinfo(head_skb)->frags;
3797 unsigned int mss = skb_shinfo(head_skb)->gso_size;
3798 unsigned int doffset = head_skb->data - skb_mac_header(head_skb);
3799 struct sk_buff *frag_skb = head_skb;
3800 unsigned int offset = doffset;
3801 unsigned int tnl_hlen = skb_tnl_header_len(head_skb);
3802 unsigned int partial_segs = 0;
3803 unsigned int headroom;
3804 unsigned int len = head_skb->len;
3805 __be16 proto;
3806 bool csum, sg;
3807 int nfrags = skb_shinfo(head_skb)->nr_frags;
3808 int err = -ENOMEM;
3809 int i = 0;
3810 int pos;
3811
3812 if (list_skb && !list_skb->head_frag && skb_headlen(list_skb) &&
3813 (skb_shinfo(head_skb)->gso_type & SKB_GSO_DODGY)) {
3814 /* gso_size is untrusted, and we have a frag_list with a linear
3815 * non head_frag head.
3816 *
3817 * (we assume checking the first list_skb member suffices;
3818 * i.e if either of the list_skb members have non head_frag
3819 * head, then the first one has too).
3820 *
3821 * If head_skb's headlen does not fit requested gso_size, it
3822 * means that the frag_list members do NOT terminate on exact
3823 * gso_size boundaries. Hence we cannot perform skb_frag_t page
3824 * sharing. Therefore we must fallback to copying the frag_list
3825 * skbs; we do so by disabling SG.
3826 */
3827 if (mss != GSO_BY_FRAGS && mss != skb_headlen(head_skb))
3828 features &= ~NETIF_F_SG;
3829 }
3830
3831 __skb_push(head_skb, doffset);
3832 proto = skb_network_protocol(head_skb, NULL);
3833 if (unlikely(!proto))
3834 return ERR_PTR(-EINVAL);
3835
3836 sg = !!(features & NETIF_F_SG);
3837 csum = !!can_checksum_protocol(features, proto);
3838
3839 if (sg && csum && (mss != GSO_BY_FRAGS)) {
3840 if (!(features & NETIF_F_GSO_PARTIAL)) {
3841 struct sk_buff *iter;
3842 unsigned int frag_len;
3843
3844 if (!list_skb ||
3845 !net_gso_ok(features, skb_shinfo(head_skb)->gso_type))
3846 goto normal;
3847
3848 /* If we get here then all the required
3849 * GSO features except frag_list are supported.
3850 * Try to split the SKB to multiple GSO SKBs
3851 * with no frag_list.
3852 * Currently we can do that only when the buffers don't
3853 * have a linear part and all the buffers except
3854 * the last are of the same length.
3855 */
3856 frag_len = list_skb->len;
3857 skb_walk_frags(head_skb, iter) {
3858 if (frag_len != iter->len && iter->next)
3859 goto normal;
3860 if (skb_headlen(iter) && !iter->head_frag)
3861 goto normal;
3862
3863 len -= iter->len;
3864 }
3865
3866 if (len != frag_len)
3867 goto normal;
3868 }
3869
3870 /* GSO partial only requires that we trim off any excess that
3871 * doesn't fit into an MSS sized block, so take care of that
3872 * now.
3873 */
3874 partial_segs = len / mss;
3875 if (partial_segs > 1)
3876 mss *= partial_segs;
3877 else
3878 partial_segs = 0;
3879 }
3880
3881 normal:
3882 headroom = skb_headroom(head_skb);
3883 pos = skb_headlen(head_skb);
3884
3885 do {
3886 struct sk_buff *nskb;
3887 skb_frag_t *nskb_frag;
3888 int hsize;
3889 int size;
3890
3891 if (unlikely(mss == GSO_BY_FRAGS)) {
3892 len = list_skb->len;
3893 } else {
3894 len = head_skb->len - offset;
3895 if (len > mss)
3896 len = mss;
3897 }
3898
3899 hsize = skb_headlen(head_skb) - offset;
3900 if (hsize < 0)
3901 hsize = 0;
3902 if (hsize > len || !sg)
3903 hsize = len;
3904
3905 if (!hsize && i >= nfrags && skb_headlen(list_skb) &&
3906 (skb_headlen(list_skb) == len || sg)) {
3907 BUG_ON(skb_headlen(list_skb) > len);
3908
3909 i = 0;
3910 nfrags = skb_shinfo(list_skb)->nr_frags;
3911 frag = skb_shinfo(list_skb)->frags;
3912 frag_skb = list_skb;
3913 pos += skb_headlen(list_skb);
3914
3915 while (pos < offset + len) {
3916 BUG_ON(i >= nfrags);
3917
3918 size = skb_frag_size(frag);
3919 if (pos + size > offset + len)
3920 break;
3921
3922 i++;
3923 pos += size;
3924 frag++;
3925 }
3926
3927 nskb = skb_clone(list_skb, GFP_ATOMIC);
3928 list_skb = list_skb->next;
3929
3930 if (unlikely(!nskb))
3931 goto err;
3932
3933 if (unlikely(pskb_trim(nskb, len))) {
3934 kfree_skb(nskb);
3935 goto err;
3936 }
3937
3938 hsize = skb_end_offset(nskb);
3939 if (skb_cow_head(nskb, doffset + headroom)) {
3940 kfree_skb(nskb);
3941 goto err;
3942 }
3943
3944 nskb->truesize += skb_end_offset(nskb) - hsize;
3945 skb_release_head_state(nskb);
3946 __skb_push(nskb, doffset);
3947 } else {
3948 nskb = __alloc_skb(hsize + doffset + headroom,
3949 GFP_ATOMIC, skb_alloc_rx_flag(head_skb),
3950 NUMA_NO_NODE);
3951
3952 if (unlikely(!nskb))
3953 goto err;
3954
3955 skb_reserve(nskb, headroom);
3956 __skb_put(nskb, doffset);
3957 }
3958
3959 if (segs)
3960 tail->next = nskb;
3961 else
3962 segs = nskb;
3963 tail = nskb;
3964
3965 __copy_skb_header(nskb, head_skb);
3966
3967 skb_headers_offset_update(nskb, skb_headroom(nskb) - headroom);
3968 skb_reset_mac_len(nskb);
3969
3970 skb_copy_from_linear_data_offset(head_skb, -tnl_hlen,
3971 nskb->data - tnl_hlen,
3972 doffset + tnl_hlen);
3973
3974 if (nskb->len == len + doffset)
3975 goto perform_csum_check;
3976
3977 if (!sg) {
3978 if (!csum) {
3979 if (!nskb->remcsum_offload)
3980 nskb->ip_summed = CHECKSUM_NONE;
3981 SKB_GSO_CB(nskb)->csum =
3982 skb_copy_and_csum_bits(head_skb, offset,
3983 skb_put(nskb,
3984 len),
3985 len);
3986 SKB_GSO_CB(nskb)->csum_start =
3987 skb_headroom(nskb) + doffset;
3988 } else {
3989 skb_copy_bits(head_skb, offset,
3990 skb_put(nskb, len),
3991 len);
3992 }
3993 continue;
3994 }
3995
3996 nskb_frag = skb_shinfo(nskb)->frags;
3997
3998 skb_copy_from_linear_data_offset(head_skb, offset,
3999 skb_put(nskb, hsize), hsize);
4000
4001 skb_shinfo(nskb)->tx_flags |= skb_shinfo(head_skb)->tx_flags &
4002 SKBTX_SHARED_FRAG;
4003
4004 if (skb_orphan_frags(frag_skb, GFP_ATOMIC) ||
4005 skb_zerocopy_clone(nskb, frag_skb, GFP_ATOMIC))
4006 goto err;
4007
4008 while (pos < offset + len) {
4009 if (i >= nfrags) {
4010 i = 0;
4011 nfrags = skb_shinfo(list_skb)->nr_frags;
4012 frag = skb_shinfo(list_skb)->frags;
4013 frag_skb = list_skb;
4014 if (!skb_headlen(list_skb)) {
4015 BUG_ON(!nfrags);
4016 } else {
4017 BUG_ON(!list_skb->head_frag);
4018
4019 /* to make room for head_frag. */
4020 i--;
4021 frag--;
4022 }
4023 if (skb_orphan_frags(frag_skb, GFP_ATOMIC) ||
4024 skb_zerocopy_clone(nskb, frag_skb,
4025 GFP_ATOMIC))
4026 goto err;
4027
4028 list_skb = list_skb->next;
4029 }
4030
4031 if (unlikely(skb_shinfo(nskb)->nr_frags >=
4032 MAX_SKB_FRAGS)) {
4033 net_warn_ratelimited(
4034 "skb_segment: too many frags: %u %u\n",
4035 pos, mss);
4036 err = -EINVAL;
4037 goto err;
4038 }
4039
4040 *nskb_frag = (i < 0) ? skb_head_frag_to_page_desc(frag_skb) : *frag;
4041 __skb_frag_ref(nskb_frag);
4042 size = skb_frag_size(nskb_frag);
4043
4044 if (pos < offset) {
4045 skb_frag_off_add(nskb_frag, offset - pos);
4046 skb_frag_size_sub(nskb_frag, offset - pos);
4047 }
4048
4049 skb_shinfo(nskb)->nr_frags++;
4050
4051 if (pos + size <= offset + len) {
4052 i++;
4053 frag++;
4054 pos += size;
4055 } else {
4056 skb_frag_size_sub(nskb_frag, pos + size - (offset + len));
4057 goto skip_fraglist;
4058 }
4059
4060 nskb_frag++;
4061 }
4062
4063 skip_fraglist:
4064 nskb->data_len = len - hsize;
4065 nskb->len += nskb->data_len;
4066 nskb->truesize += nskb->data_len;
4067
4068 perform_csum_check:
4069 if (!csum) {
4070 if (skb_has_shared_frag(nskb) &&
4071 __skb_linearize(nskb))
4072 goto err;
4073
4074 if (!nskb->remcsum_offload)
4075 nskb->ip_summed = CHECKSUM_NONE;
4076 SKB_GSO_CB(nskb)->csum =
4077 skb_checksum(nskb, doffset,
4078 nskb->len - doffset, 0);
4079 SKB_GSO_CB(nskb)->csum_start =
4080 skb_headroom(nskb) + doffset;
4081 }
4082 } while ((offset += len) < head_skb->len);
4083
4084 /* Some callers want to get the end of the list.
4085 * Put it in segs->prev to avoid walking the list.
4086 * (see validate_xmit_skb_list() for example)
4087 */
4088 segs->prev = tail;
4089
4090 if (partial_segs) {
4091 struct sk_buff *iter;
4092 int type = skb_shinfo(head_skb)->gso_type;
4093 unsigned short gso_size = skb_shinfo(head_skb)->gso_size;
4094
4095 /* Update type to add partial and then remove dodgy if set */
4096 type |= (features & NETIF_F_GSO_PARTIAL) / NETIF_F_GSO_PARTIAL * SKB_GSO_PARTIAL;
4097 type &= ~SKB_GSO_DODGY;
4098
4099 /* Update GSO info and prepare to start updating headers on
4100 * our way back down the stack of protocols.
4101 */
4102 for (iter = segs; iter; iter = iter->next) {
4103 skb_shinfo(iter)->gso_size = gso_size;
4104 skb_shinfo(iter)->gso_segs = partial_segs;
4105 skb_shinfo(iter)->gso_type = type;
4106 SKB_GSO_CB(iter)->data_offset = skb_headroom(iter) + doffset;
4107 }
4108
4109 if (tail->len - doffset <= gso_size)
4110 skb_shinfo(tail)->gso_size = 0;
4111 else if (tail != segs)
4112 skb_shinfo(tail)->gso_segs = DIV_ROUND_UP(tail->len - doffset, gso_size);
4113 }
4114
4115 /* Following permits correct backpressure, for protocols
4116 * using skb_set_owner_w().
4117 * Idea is to tranfert ownership from head_skb to last segment.
4118 */
4119 if (head_skb->destructor == sock_wfree) {
4120 swap(tail->truesize, head_skb->truesize);
4121 swap(tail->destructor, head_skb->destructor);
4122 swap(tail->sk, head_skb->sk);
4123 }
4124 return segs;
4125
4126 err:
4127 kfree_skb_list(segs);
4128 return ERR_PTR(err);
4129 }
4130 EXPORT_SYMBOL_GPL(skb_segment);
4131
skb_gro_receive(struct sk_buff * p,struct sk_buff * skb)4132 int skb_gro_receive(struct sk_buff *p, struct sk_buff *skb)
4133 {
4134 struct skb_shared_info *pinfo, *skbinfo = skb_shinfo(skb);
4135 unsigned int offset = skb_gro_offset(skb);
4136 unsigned int headlen = skb_headlen(skb);
4137 unsigned int len = skb_gro_len(skb);
4138 unsigned int delta_truesize;
4139 struct sk_buff *lp;
4140
4141 if (unlikely(p->len + len >= 65536 || NAPI_GRO_CB(skb)->flush))
4142 return -E2BIG;
4143
4144 lp = NAPI_GRO_CB(p)->last;
4145 pinfo = skb_shinfo(lp);
4146
4147 if (headlen <= offset) {
4148 skb_frag_t *frag;
4149 skb_frag_t *frag2;
4150 int i = skbinfo->nr_frags;
4151 int nr_frags = pinfo->nr_frags + i;
4152
4153 if (nr_frags > MAX_SKB_FRAGS)
4154 goto merge;
4155
4156 offset -= headlen;
4157 pinfo->nr_frags = nr_frags;
4158 skbinfo->nr_frags = 0;
4159
4160 frag = pinfo->frags + nr_frags;
4161 frag2 = skbinfo->frags + i;
4162 do {
4163 *--frag = *--frag2;
4164 } while (--i);
4165
4166 skb_frag_off_add(frag, offset);
4167 skb_frag_size_sub(frag, offset);
4168
4169 /* all fragments truesize : remove (head size + sk_buff) */
4170 delta_truesize = skb->truesize -
4171 SKB_TRUESIZE(skb_end_offset(skb));
4172
4173 skb->truesize -= skb->data_len;
4174 skb->len -= skb->data_len;
4175 skb->data_len = 0;
4176
4177 NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE;
4178 goto done;
4179 } else if (skb->head_frag) {
4180 int nr_frags = pinfo->nr_frags;
4181 skb_frag_t *frag = pinfo->frags + nr_frags;
4182 struct page *page = virt_to_head_page(skb->head);
4183 unsigned int first_size = headlen - offset;
4184 unsigned int first_offset;
4185
4186 if (nr_frags + 1 + skbinfo->nr_frags > MAX_SKB_FRAGS)
4187 goto merge;
4188
4189 first_offset = skb->data -
4190 (unsigned char *)page_address(page) +
4191 offset;
4192
4193 pinfo->nr_frags = nr_frags + 1 + skbinfo->nr_frags;
4194
4195 __skb_frag_set_page(frag, page);
4196 skb_frag_off_set(frag, first_offset);
4197 skb_frag_size_set(frag, first_size);
4198
4199 memcpy(frag + 1, skbinfo->frags, sizeof(*frag) * skbinfo->nr_frags);
4200 /* We dont need to clear skbinfo->nr_frags here */
4201
4202 delta_truesize = skb->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
4203 NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE_STOLEN_HEAD;
4204 goto done;
4205 }
4206
4207 merge:
4208 delta_truesize = skb->truesize;
4209 if (offset > headlen) {
4210 unsigned int eat = offset - headlen;
4211
4212 skb_frag_off_add(&skbinfo->frags[0], eat);
4213 skb_frag_size_sub(&skbinfo->frags[0], eat);
4214 skb->data_len -= eat;
4215 skb->len -= eat;
4216 offset = headlen;
4217 }
4218
4219 __skb_pull(skb, offset);
4220
4221 if (NAPI_GRO_CB(p)->last == p)
4222 skb_shinfo(p)->frag_list = skb;
4223 else
4224 NAPI_GRO_CB(p)->last->next = skb;
4225 NAPI_GRO_CB(p)->last = skb;
4226 __skb_header_release(skb);
4227 lp = p;
4228
4229 done:
4230 NAPI_GRO_CB(p)->count++;
4231 p->data_len += len;
4232 p->truesize += delta_truesize;
4233 p->len += len;
4234 if (lp != p) {
4235 lp->data_len += len;
4236 lp->truesize += delta_truesize;
4237 lp->len += len;
4238 }
4239 NAPI_GRO_CB(skb)->same_flow = 1;
4240 return 0;
4241 }
4242
4243 #ifdef CONFIG_SKB_EXTENSIONS
4244 #define SKB_EXT_ALIGN_VALUE 8
4245 #define SKB_EXT_CHUNKSIZEOF(x) (ALIGN((sizeof(x)), SKB_EXT_ALIGN_VALUE) / SKB_EXT_ALIGN_VALUE)
4246
4247 static const u8 skb_ext_type_len[] = {
4248 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4249 [SKB_EXT_BRIDGE_NF] = SKB_EXT_CHUNKSIZEOF(struct nf_bridge_info),
4250 #endif
4251 #ifdef CONFIG_XFRM
4252 [SKB_EXT_SEC_PATH] = SKB_EXT_CHUNKSIZEOF(struct sec_path),
4253 #endif
4254 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
4255 [TC_SKB_EXT] = SKB_EXT_CHUNKSIZEOF(struct tc_skb_ext),
4256 #endif
4257 #if IS_ENABLED(CONFIG_MPTCP)
4258 [SKB_EXT_MPTCP] = SKB_EXT_CHUNKSIZEOF(struct mptcp_ext),
4259 #endif
4260 };
4261
skb_ext_total_length(void)4262 static __always_inline unsigned int skb_ext_total_length(void)
4263 {
4264 return SKB_EXT_CHUNKSIZEOF(struct skb_ext) +
4265 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4266 skb_ext_type_len[SKB_EXT_BRIDGE_NF] +
4267 #endif
4268 #ifdef CONFIG_XFRM
4269 skb_ext_type_len[SKB_EXT_SEC_PATH] +
4270 #endif
4271 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
4272 skb_ext_type_len[TC_SKB_EXT] +
4273 #endif
4274 #if IS_ENABLED(CONFIG_MPTCP)
4275 skb_ext_type_len[SKB_EXT_MPTCP] +
4276 #endif
4277 0;
4278 }
4279
skb_extensions_init(void)4280 static void skb_extensions_init(void)
4281 {
4282 BUILD_BUG_ON(SKB_EXT_NUM >= 8);
4283 BUILD_BUG_ON(skb_ext_total_length() > 255);
4284
4285 skbuff_ext_cache = kmem_cache_create("skbuff_ext_cache",
4286 SKB_EXT_ALIGN_VALUE * skb_ext_total_length(),
4287 0,
4288 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
4289 NULL);
4290 }
4291 #else
skb_extensions_init(void)4292 static void skb_extensions_init(void) {}
4293 #endif
4294
skb_init(void)4295 void __init skb_init(void)
4296 {
4297 skbuff_head_cache = kmem_cache_create_usercopy("skbuff_head_cache",
4298 sizeof(struct sk_buff),
4299 0,
4300 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
4301 offsetof(struct sk_buff, cb),
4302 sizeof_field(struct sk_buff, cb),
4303 NULL);
4304 skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
4305 sizeof(struct sk_buff_fclones),
4306 0,
4307 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
4308 NULL);
4309 skb_extensions_init();
4310 }
4311
4312 static int
__skb_to_sgvec(struct sk_buff * skb,struct scatterlist * sg,int offset,int len,unsigned int recursion_level)4313 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len,
4314 unsigned int recursion_level)
4315 {
4316 int start = skb_headlen(skb);
4317 int i, copy = start - offset;
4318 struct sk_buff *frag_iter;
4319 int elt = 0;
4320
4321 if (unlikely(recursion_level >= 24))
4322 return -EMSGSIZE;
4323
4324 if (copy > 0) {
4325 if (copy > len)
4326 copy = len;
4327 sg_set_buf(sg, skb->data + offset, copy);
4328 elt++;
4329 if ((len -= copy) == 0)
4330 return elt;
4331 offset += copy;
4332 }
4333
4334 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
4335 int end;
4336
4337 WARN_ON(start > offset + len);
4338
4339 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
4340 if ((copy = end - offset) > 0) {
4341 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
4342 if (unlikely(elt && sg_is_last(&sg[elt - 1])))
4343 return -EMSGSIZE;
4344
4345 if (copy > len)
4346 copy = len;
4347 sg_set_page(&sg[elt], skb_frag_page(frag), copy,
4348 skb_frag_off(frag) + offset - start);
4349 elt++;
4350 if (!(len -= copy))
4351 return elt;
4352 offset += copy;
4353 }
4354 start = end;
4355 }
4356
4357 skb_walk_frags(skb, frag_iter) {
4358 int end, ret;
4359
4360 WARN_ON(start > offset + len);
4361
4362 end = start + frag_iter->len;
4363 if ((copy = end - offset) > 0) {
4364 if (unlikely(elt && sg_is_last(&sg[elt - 1])))
4365 return -EMSGSIZE;
4366
4367 if (copy > len)
4368 copy = len;
4369 ret = __skb_to_sgvec(frag_iter, sg+elt, offset - start,
4370 copy, recursion_level + 1);
4371 if (unlikely(ret < 0))
4372 return ret;
4373 elt += ret;
4374 if ((len -= copy) == 0)
4375 return elt;
4376 offset += copy;
4377 }
4378 start = end;
4379 }
4380 BUG_ON(len);
4381 return elt;
4382 }
4383
4384 /**
4385 * skb_to_sgvec - Fill a scatter-gather list from a socket buffer
4386 * @skb: Socket buffer containing the buffers to be mapped
4387 * @sg: The scatter-gather list to map into
4388 * @offset: The offset into the buffer's contents to start mapping
4389 * @len: Length of buffer space to be mapped
4390 *
4391 * Fill the specified scatter-gather list with mappings/pointers into a
4392 * region of the buffer space attached to a socket buffer. Returns either
4393 * the number of scatterlist items used, or -EMSGSIZE if the contents
4394 * could not fit.
4395 */
skb_to_sgvec(struct sk_buff * skb,struct scatterlist * sg,int offset,int len)4396 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
4397 {
4398 int nsg = __skb_to_sgvec(skb, sg, offset, len, 0);
4399
4400 if (nsg <= 0)
4401 return nsg;
4402
4403 sg_mark_end(&sg[nsg - 1]);
4404
4405 return nsg;
4406 }
4407 EXPORT_SYMBOL_GPL(skb_to_sgvec);
4408
4409 /* As compared with skb_to_sgvec, skb_to_sgvec_nomark only map skb to given
4410 * sglist without mark the sg which contain last skb data as the end.
4411 * So the caller can mannipulate sg list as will when padding new data after
4412 * the first call without calling sg_unmark_end to expend sg list.
4413 *
4414 * Scenario to use skb_to_sgvec_nomark:
4415 * 1. sg_init_table
4416 * 2. skb_to_sgvec_nomark(payload1)
4417 * 3. skb_to_sgvec_nomark(payload2)
4418 *
4419 * This is equivalent to:
4420 * 1. sg_init_table
4421 * 2. skb_to_sgvec(payload1)
4422 * 3. sg_unmark_end
4423 * 4. skb_to_sgvec(payload2)
4424 *
4425 * When mapping mutilple payload conditionally, skb_to_sgvec_nomark
4426 * is more preferable.
4427 */
skb_to_sgvec_nomark(struct sk_buff * skb,struct scatterlist * sg,int offset,int len)4428 int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
4429 int offset, int len)
4430 {
4431 return __skb_to_sgvec(skb, sg, offset, len, 0);
4432 }
4433 EXPORT_SYMBOL_GPL(skb_to_sgvec_nomark);
4434
4435
4436
4437 /**
4438 * skb_cow_data - Check that a socket buffer's data buffers are writable
4439 * @skb: The socket buffer to check.
4440 * @tailbits: Amount of trailing space to be added
4441 * @trailer: Returned pointer to the skb where the @tailbits space begins
4442 *
4443 * Make sure that the data buffers attached to a socket buffer are
4444 * writable. If they are not, private copies are made of the data buffers
4445 * and the socket buffer is set to use these instead.
4446 *
4447 * If @tailbits is given, make sure that there is space to write @tailbits
4448 * bytes of data beyond current end of socket buffer. @trailer will be
4449 * set to point to the skb in which this space begins.
4450 *
4451 * The number of scatterlist elements required to completely map the
4452 * COW'd and extended socket buffer will be returned.
4453 */
skb_cow_data(struct sk_buff * skb,int tailbits,struct sk_buff ** trailer)4454 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer)
4455 {
4456 int copyflag;
4457 int elt;
4458 struct sk_buff *skb1, **skb_p;
4459
4460 /* If skb is cloned or its head is paged, reallocate
4461 * head pulling out all the pages (pages are considered not writable
4462 * at the moment even if they are anonymous).
4463 */
4464 if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) &&
4465 !__pskb_pull_tail(skb, __skb_pagelen(skb)))
4466 return -ENOMEM;
4467
4468 /* Easy case. Most of packets will go this way. */
4469 if (!skb_has_frag_list(skb)) {
4470 /* A little of trouble, not enough of space for trailer.
4471 * This should not happen, when stack is tuned to generate
4472 * good frames. OK, on miss we reallocate and reserve even more
4473 * space, 128 bytes is fair. */
4474
4475 if (skb_tailroom(skb) < tailbits &&
4476 pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC))
4477 return -ENOMEM;
4478
4479 /* Voila! */
4480 *trailer = skb;
4481 return 1;
4482 }
4483
4484 /* Misery. We are in troubles, going to mincer fragments... */
4485
4486 elt = 1;
4487 skb_p = &skb_shinfo(skb)->frag_list;
4488 copyflag = 0;
4489
4490 while ((skb1 = *skb_p) != NULL) {
4491 int ntail = 0;
4492
4493 /* The fragment is partially pulled by someone,
4494 * this can happen on input. Copy it and everything
4495 * after it. */
4496
4497 if (skb_shared(skb1))
4498 copyflag = 1;
4499
4500 /* If the skb is the last, worry about trailer. */
4501
4502 if (skb1->next == NULL && tailbits) {
4503 if (skb_shinfo(skb1)->nr_frags ||
4504 skb_has_frag_list(skb1) ||
4505 skb_tailroom(skb1) < tailbits)
4506 ntail = tailbits + 128;
4507 }
4508
4509 if (copyflag ||
4510 skb_cloned(skb1) ||
4511 ntail ||
4512 skb_shinfo(skb1)->nr_frags ||
4513 skb_has_frag_list(skb1)) {
4514 struct sk_buff *skb2;
4515
4516 /* Fuck, we are miserable poor guys... */
4517 if (ntail == 0)
4518 skb2 = skb_copy(skb1, GFP_ATOMIC);
4519 else
4520 skb2 = skb_copy_expand(skb1,
4521 skb_headroom(skb1),
4522 ntail,
4523 GFP_ATOMIC);
4524 if (unlikely(skb2 == NULL))
4525 return -ENOMEM;
4526
4527 if (skb1->sk)
4528 skb_set_owner_w(skb2, skb1->sk);
4529
4530 /* Looking around. Are we still alive?
4531 * OK, link new skb, drop old one */
4532
4533 skb2->next = skb1->next;
4534 *skb_p = skb2;
4535 kfree_skb(skb1);
4536 skb1 = skb2;
4537 }
4538 elt++;
4539 *trailer = skb1;
4540 skb_p = &skb1->next;
4541 }
4542
4543 return elt;
4544 }
4545 EXPORT_SYMBOL_GPL(skb_cow_data);
4546
sock_rmem_free(struct sk_buff * skb)4547 static void sock_rmem_free(struct sk_buff *skb)
4548 {
4549 struct sock *sk = skb->sk;
4550
4551 atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
4552 }
4553
skb_set_err_queue(struct sk_buff * skb)4554 static void skb_set_err_queue(struct sk_buff *skb)
4555 {
4556 /* pkt_type of skbs received on local sockets is never PACKET_OUTGOING.
4557 * So, it is safe to (mis)use it to mark skbs on the error queue.
4558 */
4559 skb->pkt_type = PACKET_OUTGOING;
4560 BUILD_BUG_ON(PACKET_OUTGOING == 0);
4561 }
4562
4563 /*
4564 * Note: We dont mem charge error packets (no sk_forward_alloc changes)
4565 */
sock_queue_err_skb(struct sock * sk,struct sk_buff * skb)4566 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb)
4567 {
4568 if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
4569 (unsigned int)READ_ONCE(sk->sk_rcvbuf))
4570 return -ENOMEM;
4571
4572 skb_orphan(skb);
4573 skb->sk = sk;
4574 skb->destructor = sock_rmem_free;
4575 atomic_add(skb->truesize, &sk->sk_rmem_alloc);
4576 skb_set_err_queue(skb);
4577
4578 /* before exiting rcu section, make sure dst is refcounted */
4579 skb_dst_force(skb);
4580
4581 skb_queue_tail(&sk->sk_error_queue, skb);
4582 if (!sock_flag(sk, SOCK_DEAD))
4583 sk->sk_error_report(sk);
4584 return 0;
4585 }
4586 EXPORT_SYMBOL(sock_queue_err_skb);
4587
is_icmp_err_skb(const struct sk_buff * skb)4588 static bool is_icmp_err_skb(const struct sk_buff *skb)
4589 {
4590 return skb && (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP ||
4591 SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP6);
4592 }
4593
sock_dequeue_err_skb(struct sock * sk)4594 struct sk_buff *sock_dequeue_err_skb(struct sock *sk)
4595 {
4596 struct sk_buff_head *q = &sk->sk_error_queue;
4597 struct sk_buff *skb, *skb_next = NULL;
4598 bool icmp_next = false;
4599 unsigned long flags;
4600
4601 spin_lock_irqsave(&q->lock, flags);
4602 skb = __skb_dequeue(q);
4603 if (skb && (skb_next = skb_peek(q))) {
4604 icmp_next = is_icmp_err_skb(skb_next);
4605 if (icmp_next)
4606 sk->sk_err = SKB_EXT_ERR(skb_next)->ee.ee_errno;
4607 }
4608 spin_unlock_irqrestore(&q->lock, flags);
4609
4610 if (is_icmp_err_skb(skb) && !icmp_next)
4611 sk->sk_err = 0;
4612
4613 if (skb_next)
4614 sk->sk_error_report(sk);
4615
4616 return skb;
4617 }
4618 EXPORT_SYMBOL(sock_dequeue_err_skb);
4619
4620 /**
4621 * skb_clone_sk - create clone of skb, and take reference to socket
4622 * @skb: the skb to clone
4623 *
4624 * This function creates a clone of a buffer that holds a reference on
4625 * sk_refcnt. Buffers created via this function are meant to be
4626 * returned using sock_queue_err_skb, or free via kfree_skb.
4627 *
4628 * When passing buffers allocated with this function to sock_queue_err_skb
4629 * it is necessary to wrap the call with sock_hold/sock_put in order to
4630 * prevent the socket from being released prior to being enqueued on
4631 * the sk_error_queue.
4632 */
skb_clone_sk(struct sk_buff * skb)4633 struct sk_buff *skb_clone_sk(struct sk_buff *skb)
4634 {
4635 struct sock *sk = skb->sk;
4636 struct sk_buff *clone;
4637
4638 if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt))
4639 return NULL;
4640
4641 clone = skb_clone(skb, GFP_ATOMIC);
4642 if (!clone) {
4643 sock_put(sk);
4644 return NULL;
4645 }
4646
4647 clone->sk = sk;
4648 clone->destructor = sock_efree;
4649
4650 return clone;
4651 }
4652 EXPORT_SYMBOL(skb_clone_sk);
4653
__skb_complete_tx_timestamp(struct sk_buff * skb,struct sock * sk,int tstype,bool opt_stats)4654 static void __skb_complete_tx_timestamp(struct sk_buff *skb,
4655 struct sock *sk,
4656 int tstype,
4657 bool opt_stats)
4658 {
4659 struct sock_exterr_skb *serr;
4660 int err;
4661
4662 BUILD_BUG_ON(sizeof(struct sock_exterr_skb) > sizeof(skb->cb));
4663
4664 serr = SKB_EXT_ERR(skb);
4665 memset(serr, 0, sizeof(*serr));
4666 serr->ee.ee_errno = ENOMSG;
4667 serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING;
4668 serr->ee.ee_info = tstype;
4669 serr->opt_stats = opt_stats;
4670 serr->header.h4.iif = skb->dev ? skb->dev->ifindex : 0;
4671 if (sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID) {
4672 serr->ee.ee_data = skb_shinfo(skb)->tskey;
4673 if (sk->sk_protocol == IPPROTO_TCP &&
4674 sk->sk_type == SOCK_STREAM)
4675 serr->ee.ee_data -= sk->sk_tskey;
4676 }
4677
4678 err = sock_queue_err_skb(sk, skb);
4679
4680 if (err)
4681 kfree_skb(skb);
4682 }
4683
skb_may_tx_timestamp(struct sock * sk,bool tsonly)4684 static bool skb_may_tx_timestamp(struct sock *sk, bool tsonly)
4685 {
4686 bool ret;
4687
4688 if (likely(sysctl_tstamp_allow_data || tsonly))
4689 return true;
4690
4691 read_lock_bh(&sk->sk_callback_lock);
4692 ret = sk->sk_socket && sk->sk_socket->file &&
4693 file_ns_capable(sk->sk_socket->file, &init_user_ns, CAP_NET_RAW);
4694 read_unlock_bh(&sk->sk_callback_lock);
4695 return ret;
4696 }
4697
skb_complete_tx_timestamp(struct sk_buff * skb,struct skb_shared_hwtstamps * hwtstamps)4698 void skb_complete_tx_timestamp(struct sk_buff *skb,
4699 struct skb_shared_hwtstamps *hwtstamps)
4700 {
4701 struct sock *sk = skb->sk;
4702
4703 if (!skb_may_tx_timestamp(sk, false))
4704 goto err;
4705
4706 /* Take a reference to prevent skb_orphan() from freeing the socket,
4707 * but only if the socket refcount is not zero.
4708 */
4709 if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
4710 *skb_hwtstamps(skb) = *hwtstamps;
4711 __skb_complete_tx_timestamp(skb, sk, SCM_TSTAMP_SND, false);
4712 sock_put(sk);
4713 return;
4714 }
4715
4716 err:
4717 kfree_skb(skb);
4718 }
4719 EXPORT_SYMBOL_GPL(skb_complete_tx_timestamp);
4720
__skb_tstamp_tx(struct sk_buff * orig_skb,struct skb_shared_hwtstamps * hwtstamps,struct sock * sk,int tstype)4721 void __skb_tstamp_tx(struct sk_buff *orig_skb,
4722 struct skb_shared_hwtstamps *hwtstamps,
4723 struct sock *sk, int tstype)
4724 {
4725 struct sk_buff *skb;
4726 bool tsonly, opt_stats = false;
4727
4728 if (!sk)
4729 return;
4730
4731 if (!hwtstamps && !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TX_SWHW) &&
4732 skb_shinfo(orig_skb)->tx_flags & SKBTX_IN_PROGRESS)
4733 return;
4734
4735 tsonly = sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TSONLY;
4736 if (!skb_may_tx_timestamp(sk, tsonly))
4737 return;
4738
4739 if (tsonly) {
4740 #ifdef CONFIG_INET
4741 if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_STATS) &&
4742 sk->sk_protocol == IPPROTO_TCP &&
4743 sk->sk_type == SOCK_STREAM) {
4744 skb = tcp_get_timestamping_opt_stats(sk, orig_skb);
4745 opt_stats = true;
4746 } else
4747 #endif
4748 skb = alloc_skb(0, GFP_ATOMIC);
4749 } else {
4750 skb = skb_clone(orig_skb, GFP_ATOMIC);
4751 }
4752 if (!skb)
4753 return;
4754
4755 if (tsonly) {
4756 skb_shinfo(skb)->tx_flags |= skb_shinfo(orig_skb)->tx_flags &
4757 SKBTX_ANY_TSTAMP;
4758 skb_shinfo(skb)->tskey = skb_shinfo(orig_skb)->tskey;
4759 }
4760
4761 if (hwtstamps)
4762 *skb_hwtstamps(skb) = *hwtstamps;
4763 else
4764 skb->tstamp = ktime_get_real();
4765
4766 __skb_complete_tx_timestamp(skb, sk, tstype, opt_stats);
4767 }
4768 EXPORT_SYMBOL_GPL(__skb_tstamp_tx);
4769
skb_tstamp_tx(struct sk_buff * orig_skb,struct skb_shared_hwtstamps * hwtstamps)4770 void skb_tstamp_tx(struct sk_buff *orig_skb,
4771 struct skb_shared_hwtstamps *hwtstamps)
4772 {
4773 return __skb_tstamp_tx(orig_skb, hwtstamps, orig_skb->sk,
4774 SCM_TSTAMP_SND);
4775 }
4776 EXPORT_SYMBOL_GPL(skb_tstamp_tx);
4777
skb_complete_wifi_ack(struct sk_buff * skb,bool acked)4778 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked)
4779 {
4780 struct sock *sk = skb->sk;
4781 struct sock_exterr_skb *serr;
4782 int err = 1;
4783
4784 skb->wifi_acked_valid = 1;
4785 skb->wifi_acked = acked;
4786
4787 serr = SKB_EXT_ERR(skb);
4788 memset(serr, 0, sizeof(*serr));
4789 serr->ee.ee_errno = ENOMSG;
4790 serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS;
4791
4792 /* Take a reference to prevent skb_orphan() from freeing the socket,
4793 * but only if the socket refcount is not zero.
4794 */
4795 if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
4796 err = sock_queue_err_skb(sk, skb);
4797 sock_put(sk);
4798 }
4799 if (err)
4800 kfree_skb(skb);
4801 }
4802 EXPORT_SYMBOL_GPL(skb_complete_wifi_ack);
4803
4804 /**
4805 * skb_partial_csum_set - set up and verify partial csum values for packet
4806 * @skb: the skb to set
4807 * @start: the number of bytes after skb->data to start checksumming.
4808 * @off: the offset from start to place the checksum.
4809 *
4810 * For untrusted partially-checksummed packets, we need to make sure the values
4811 * for skb->csum_start and skb->csum_offset are valid so we don't oops.
4812 *
4813 * This function checks and sets those values and skb->ip_summed: if this
4814 * returns false you should drop the packet.
4815 */
skb_partial_csum_set(struct sk_buff * skb,u16 start,u16 off)4816 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off)
4817 {
4818 u32 csum_end = (u32)start + (u32)off + sizeof(__sum16);
4819 u32 csum_start = skb_headroom(skb) + (u32)start;
4820
4821 if (unlikely(csum_start > U16_MAX || csum_end > skb_headlen(skb))) {
4822 net_warn_ratelimited("bad partial csum: csum=%u/%u headroom=%u headlen=%u\n",
4823 start, off, skb_headroom(skb), skb_headlen(skb));
4824 return false;
4825 }
4826 skb->ip_summed = CHECKSUM_PARTIAL;
4827 skb->csum_start = csum_start;
4828 skb->csum_offset = off;
4829 skb_set_transport_header(skb, start);
4830 return true;
4831 }
4832 EXPORT_SYMBOL_GPL(skb_partial_csum_set);
4833
skb_maybe_pull_tail(struct sk_buff * skb,unsigned int len,unsigned int max)4834 static int skb_maybe_pull_tail(struct sk_buff *skb, unsigned int len,
4835 unsigned int max)
4836 {
4837 if (skb_headlen(skb) >= len)
4838 return 0;
4839
4840 /* If we need to pullup then pullup to the max, so we
4841 * won't need to do it again.
4842 */
4843 if (max > skb->len)
4844 max = skb->len;
4845
4846 if (__pskb_pull_tail(skb, max - skb_headlen(skb)) == NULL)
4847 return -ENOMEM;
4848
4849 if (skb_headlen(skb) < len)
4850 return -EPROTO;
4851
4852 return 0;
4853 }
4854
4855 #define MAX_TCP_HDR_LEN (15 * 4)
4856
skb_checksum_setup_ip(struct sk_buff * skb,typeof(IPPROTO_IP) proto,unsigned int off)4857 static __sum16 *skb_checksum_setup_ip(struct sk_buff *skb,
4858 typeof(IPPROTO_IP) proto,
4859 unsigned int off)
4860 {
4861 int err;
4862
4863 switch (proto) {
4864 case IPPROTO_TCP:
4865 err = skb_maybe_pull_tail(skb, off + sizeof(struct tcphdr),
4866 off + MAX_TCP_HDR_LEN);
4867 if (!err && !skb_partial_csum_set(skb, off,
4868 offsetof(struct tcphdr,
4869 check)))
4870 err = -EPROTO;
4871 return err ? ERR_PTR(err) : &tcp_hdr(skb)->check;
4872
4873 case IPPROTO_UDP:
4874 err = skb_maybe_pull_tail(skb, off + sizeof(struct udphdr),
4875 off + sizeof(struct udphdr));
4876 if (!err && !skb_partial_csum_set(skb, off,
4877 offsetof(struct udphdr,
4878 check)))
4879 err = -EPROTO;
4880 return err ? ERR_PTR(err) : &udp_hdr(skb)->check;
4881 }
4882
4883 return ERR_PTR(-EPROTO);
4884 }
4885
4886 /* This value should be large enough to cover a tagged ethernet header plus
4887 * maximally sized IP and TCP or UDP headers.
4888 */
4889 #define MAX_IP_HDR_LEN 128
4890
skb_checksum_setup_ipv4(struct sk_buff * skb,bool recalculate)4891 static int skb_checksum_setup_ipv4(struct sk_buff *skb, bool recalculate)
4892 {
4893 unsigned int off;
4894 bool fragment;
4895 __sum16 *csum;
4896 int err;
4897
4898 fragment = false;
4899
4900 err = skb_maybe_pull_tail(skb,
4901 sizeof(struct iphdr),
4902 MAX_IP_HDR_LEN);
4903 if (err < 0)
4904 goto out;
4905
4906 if (ip_is_fragment(ip_hdr(skb)))
4907 fragment = true;
4908
4909 off = ip_hdrlen(skb);
4910
4911 err = -EPROTO;
4912
4913 if (fragment)
4914 goto out;
4915
4916 csum = skb_checksum_setup_ip(skb, ip_hdr(skb)->protocol, off);
4917 if (IS_ERR(csum))
4918 return PTR_ERR(csum);
4919
4920 if (recalculate)
4921 *csum = ~csum_tcpudp_magic(ip_hdr(skb)->saddr,
4922 ip_hdr(skb)->daddr,
4923 skb->len - off,
4924 ip_hdr(skb)->protocol, 0);
4925 err = 0;
4926
4927 out:
4928 return err;
4929 }
4930
4931 /* This value should be large enough to cover a tagged ethernet header plus
4932 * an IPv6 header, all options, and a maximal TCP or UDP header.
4933 */
4934 #define MAX_IPV6_HDR_LEN 256
4935
4936 #define OPT_HDR(type, skb, off) \
4937 (type *)(skb_network_header(skb) + (off))
4938
skb_checksum_setup_ipv6(struct sk_buff * skb,bool recalculate)4939 static int skb_checksum_setup_ipv6(struct sk_buff *skb, bool recalculate)
4940 {
4941 int err;
4942 u8 nexthdr;
4943 unsigned int off;
4944 unsigned int len;
4945 bool fragment;
4946 bool done;
4947 __sum16 *csum;
4948
4949 fragment = false;
4950 done = false;
4951
4952 off = sizeof(struct ipv6hdr);
4953
4954 err = skb_maybe_pull_tail(skb, off, MAX_IPV6_HDR_LEN);
4955 if (err < 0)
4956 goto out;
4957
4958 nexthdr = ipv6_hdr(skb)->nexthdr;
4959
4960 len = sizeof(struct ipv6hdr) + ntohs(ipv6_hdr(skb)->payload_len);
4961 while (off <= len && !done) {
4962 switch (nexthdr) {
4963 case IPPROTO_DSTOPTS:
4964 case IPPROTO_HOPOPTS:
4965 case IPPROTO_ROUTING: {
4966 struct ipv6_opt_hdr *hp;
4967
4968 err = skb_maybe_pull_tail(skb,
4969 off +
4970 sizeof(struct ipv6_opt_hdr),
4971 MAX_IPV6_HDR_LEN);
4972 if (err < 0)
4973 goto out;
4974
4975 hp = OPT_HDR(struct ipv6_opt_hdr, skb, off);
4976 nexthdr = hp->nexthdr;
4977 off += ipv6_optlen(hp);
4978 break;
4979 }
4980 case IPPROTO_AH: {
4981 struct ip_auth_hdr *hp;
4982
4983 err = skb_maybe_pull_tail(skb,
4984 off +
4985 sizeof(struct ip_auth_hdr),
4986 MAX_IPV6_HDR_LEN);
4987 if (err < 0)
4988 goto out;
4989
4990 hp = OPT_HDR(struct ip_auth_hdr, skb, off);
4991 nexthdr = hp->nexthdr;
4992 off += ipv6_authlen(hp);
4993 break;
4994 }
4995 case IPPROTO_FRAGMENT: {
4996 struct frag_hdr *hp;
4997
4998 err = skb_maybe_pull_tail(skb,
4999 off +
5000 sizeof(struct frag_hdr),
5001 MAX_IPV6_HDR_LEN);
5002 if (err < 0)
5003 goto out;
5004
5005 hp = OPT_HDR(struct frag_hdr, skb, off);
5006
5007 if (hp->frag_off & htons(IP6_OFFSET | IP6_MF))
5008 fragment = true;
5009
5010 nexthdr = hp->nexthdr;
5011 off += sizeof(struct frag_hdr);
5012 break;
5013 }
5014 default:
5015 done = true;
5016 break;
5017 }
5018 }
5019
5020 err = -EPROTO;
5021
5022 if (!done || fragment)
5023 goto out;
5024
5025 csum = skb_checksum_setup_ip(skb, nexthdr, off);
5026 if (IS_ERR(csum))
5027 return PTR_ERR(csum);
5028
5029 if (recalculate)
5030 *csum = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
5031 &ipv6_hdr(skb)->daddr,
5032 skb->len - off, nexthdr, 0);
5033 err = 0;
5034
5035 out:
5036 return err;
5037 }
5038
5039 /**
5040 * skb_checksum_setup - set up partial checksum offset
5041 * @skb: the skb to set up
5042 * @recalculate: if true the pseudo-header checksum will be recalculated
5043 */
skb_checksum_setup(struct sk_buff * skb,bool recalculate)5044 int skb_checksum_setup(struct sk_buff *skb, bool recalculate)
5045 {
5046 int err;
5047
5048 switch (skb->protocol) {
5049 case htons(ETH_P_IP):
5050 err = skb_checksum_setup_ipv4(skb, recalculate);
5051 break;
5052
5053 case htons(ETH_P_IPV6):
5054 err = skb_checksum_setup_ipv6(skb, recalculate);
5055 break;
5056
5057 default:
5058 err = -EPROTO;
5059 break;
5060 }
5061
5062 return err;
5063 }
5064 EXPORT_SYMBOL(skb_checksum_setup);
5065
5066 /**
5067 * skb_checksum_maybe_trim - maybe trims the given skb
5068 * @skb: the skb to check
5069 * @transport_len: the data length beyond the network header
5070 *
5071 * Checks whether the given skb has data beyond the given transport length.
5072 * If so, returns a cloned skb trimmed to this transport length.
5073 * Otherwise returns the provided skb. Returns NULL in error cases
5074 * (e.g. transport_len exceeds skb length or out-of-memory).
5075 *
5076 * Caller needs to set the skb transport header and free any returned skb if it
5077 * differs from the provided skb.
5078 */
skb_checksum_maybe_trim(struct sk_buff * skb,unsigned int transport_len)5079 static struct sk_buff *skb_checksum_maybe_trim(struct sk_buff *skb,
5080 unsigned int transport_len)
5081 {
5082 struct sk_buff *skb_chk;
5083 unsigned int len = skb_transport_offset(skb) + transport_len;
5084 int ret;
5085
5086 if (skb->len < len)
5087 return NULL;
5088 else if (skb->len == len)
5089 return skb;
5090
5091 skb_chk = skb_clone(skb, GFP_ATOMIC);
5092 if (!skb_chk)
5093 return NULL;
5094
5095 ret = pskb_trim_rcsum(skb_chk, len);
5096 if (ret) {
5097 kfree_skb(skb_chk);
5098 return NULL;
5099 }
5100
5101 return skb_chk;
5102 }
5103
5104 /**
5105 * skb_checksum_trimmed - validate checksum of an skb
5106 * @skb: the skb to check
5107 * @transport_len: the data length beyond the network header
5108 * @skb_chkf: checksum function to use
5109 *
5110 * Applies the given checksum function skb_chkf to the provided skb.
5111 * Returns a checked and maybe trimmed skb. Returns NULL on error.
5112 *
5113 * If the skb has data beyond the given transport length, then a
5114 * trimmed & cloned skb is checked and returned.
5115 *
5116 * Caller needs to set the skb transport header and free any returned skb if it
5117 * differs from the provided skb.
5118 */
skb_checksum_trimmed(struct sk_buff * skb,unsigned int transport_len,__sum16 (* skb_chkf)(struct sk_buff * skb))5119 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
5120 unsigned int transport_len,
5121 __sum16(*skb_chkf)(struct sk_buff *skb))
5122 {
5123 struct sk_buff *skb_chk;
5124 unsigned int offset = skb_transport_offset(skb);
5125 __sum16 ret;
5126
5127 skb_chk = skb_checksum_maybe_trim(skb, transport_len);
5128 if (!skb_chk)
5129 goto err;
5130
5131 if (!pskb_may_pull(skb_chk, offset))
5132 goto err;
5133
5134 skb_pull_rcsum(skb_chk, offset);
5135 ret = skb_chkf(skb_chk);
5136 skb_push_rcsum(skb_chk, offset);
5137
5138 if (ret)
5139 goto err;
5140
5141 return skb_chk;
5142
5143 err:
5144 if (skb_chk && skb_chk != skb)
5145 kfree_skb(skb_chk);
5146
5147 return NULL;
5148
5149 }
5150 EXPORT_SYMBOL(skb_checksum_trimmed);
5151
__skb_warn_lro_forwarding(const struct sk_buff * skb)5152 void __skb_warn_lro_forwarding(const struct sk_buff *skb)
5153 {
5154 net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n",
5155 skb->dev->name);
5156 }
5157 EXPORT_SYMBOL(__skb_warn_lro_forwarding);
5158
kfree_skb_partial(struct sk_buff * skb,bool head_stolen)5159 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen)
5160 {
5161 if (head_stolen) {
5162 skb_release_head_state(skb);
5163 kmem_cache_free(skbuff_head_cache, skb);
5164 } else {
5165 __kfree_skb(skb);
5166 }
5167 }
5168 EXPORT_SYMBOL(kfree_skb_partial);
5169
5170 /**
5171 * skb_try_coalesce - try to merge skb to prior one
5172 * @to: prior buffer
5173 * @from: buffer to add
5174 * @fragstolen: pointer to boolean
5175 * @delta_truesize: how much more was allocated than was requested
5176 */
skb_try_coalesce(struct sk_buff * to,struct sk_buff * from,bool * fragstolen,int * delta_truesize)5177 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
5178 bool *fragstolen, int *delta_truesize)
5179 {
5180 struct skb_shared_info *to_shinfo, *from_shinfo;
5181 int i, delta, len = from->len;
5182
5183 *fragstolen = false;
5184
5185 if (skb_cloned(to))
5186 return false;
5187
5188 if (len <= skb_tailroom(to)) {
5189 if (len)
5190 BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len));
5191 *delta_truesize = 0;
5192 return true;
5193 }
5194
5195 to_shinfo = skb_shinfo(to);
5196 from_shinfo = skb_shinfo(from);
5197 if (to_shinfo->frag_list || from_shinfo->frag_list)
5198 return false;
5199 if (skb_zcopy(to) || skb_zcopy(from))
5200 return false;
5201
5202 if (skb_headlen(from) != 0) {
5203 struct page *page;
5204 unsigned int offset;
5205
5206 if (to_shinfo->nr_frags +
5207 from_shinfo->nr_frags >= MAX_SKB_FRAGS)
5208 return false;
5209
5210 if (skb_head_is_locked(from))
5211 return false;
5212
5213 delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
5214
5215 page = virt_to_head_page(from->head);
5216 offset = from->data - (unsigned char *)page_address(page);
5217
5218 skb_fill_page_desc(to, to_shinfo->nr_frags,
5219 page, offset, skb_headlen(from));
5220 *fragstolen = true;
5221 } else {
5222 if (to_shinfo->nr_frags +
5223 from_shinfo->nr_frags > MAX_SKB_FRAGS)
5224 return false;
5225
5226 delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from));
5227 }
5228
5229 WARN_ON_ONCE(delta < len);
5230
5231 memcpy(to_shinfo->frags + to_shinfo->nr_frags,
5232 from_shinfo->frags,
5233 from_shinfo->nr_frags * sizeof(skb_frag_t));
5234 to_shinfo->nr_frags += from_shinfo->nr_frags;
5235
5236 if (!skb_cloned(from))
5237 from_shinfo->nr_frags = 0;
5238
5239 /* if the skb is not cloned this does nothing
5240 * since we set nr_frags to 0.
5241 */
5242 for (i = 0; i < from_shinfo->nr_frags; i++)
5243 __skb_frag_ref(&from_shinfo->frags[i]);
5244
5245 to->truesize += delta;
5246 to->len += len;
5247 to->data_len += len;
5248
5249 *delta_truesize = delta;
5250 return true;
5251 }
5252 EXPORT_SYMBOL(skb_try_coalesce);
5253
5254 /**
5255 * skb_scrub_packet - scrub an skb
5256 *
5257 * @skb: buffer to clean
5258 * @xnet: packet is crossing netns
5259 *
5260 * skb_scrub_packet can be used after encapsulating or decapsulting a packet
5261 * into/from a tunnel. Some information have to be cleared during these
5262 * operations.
5263 * skb_scrub_packet can also be used to clean a skb before injecting it in
5264 * another namespace (@xnet == true). We have to clear all information in the
5265 * skb that could impact namespace isolation.
5266 */
skb_scrub_packet(struct sk_buff * skb,bool xnet)5267 void skb_scrub_packet(struct sk_buff *skb, bool xnet)
5268 {
5269 skb->pkt_type = PACKET_HOST;
5270 skb->skb_iif = 0;
5271 skb->ignore_df = 0;
5272 skb_dst_drop(skb);
5273 skb_ext_reset(skb);
5274 nf_reset_ct(skb);
5275 nf_reset_trace(skb);
5276
5277 #ifdef CONFIG_NET_SWITCHDEV
5278 skb->offload_fwd_mark = 0;
5279 skb->offload_l3_fwd_mark = 0;
5280 #endif
5281
5282 if (!xnet)
5283 return;
5284
5285 ipvs_reset(skb);
5286 skb->mark = 0;
5287 skb->tstamp = 0;
5288 }
5289 EXPORT_SYMBOL_GPL(skb_scrub_packet);
5290
5291 /**
5292 * skb_gso_transport_seglen - Return length of individual segments of a gso packet
5293 *
5294 * @skb: GSO skb
5295 *
5296 * skb_gso_transport_seglen is used to determine the real size of the
5297 * individual segments, including Layer4 headers (TCP/UDP).
5298 *
5299 * The MAC/L2 or network (IP, IPv6) headers are not accounted for.
5300 */
skb_gso_transport_seglen(const struct sk_buff * skb)5301 static unsigned int skb_gso_transport_seglen(const struct sk_buff *skb)
5302 {
5303 const struct skb_shared_info *shinfo = skb_shinfo(skb);
5304 unsigned int thlen = 0;
5305
5306 if (skb->encapsulation) {
5307 thlen = skb_inner_transport_header(skb) -
5308 skb_transport_header(skb);
5309
5310 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
5311 thlen += inner_tcp_hdrlen(skb);
5312 } else if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
5313 thlen = tcp_hdrlen(skb);
5314 } else if (unlikely(skb_is_gso_sctp(skb))) {
5315 thlen = sizeof(struct sctphdr);
5316 } else if (shinfo->gso_type & SKB_GSO_UDP_L4) {
5317 thlen = sizeof(struct udphdr);
5318 }
5319 /* UFO sets gso_size to the size of the fragmentation
5320 * payload, i.e. the size of the L4 (UDP) header is already
5321 * accounted for.
5322 */
5323 return thlen + shinfo->gso_size;
5324 }
5325
5326 /**
5327 * skb_gso_network_seglen - Return length of individual segments of a gso packet
5328 *
5329 * @skb: GSO skb
5330 *
5331 * skb_gso_network_seglen is used to determine the real size of the
5332 * individual segments, including Layer3 (IP, IPv6) and L4 headers (TCP/UDP).
5333 *
5334 * The MAC/L2 header is not accounted for.
5335 */
skb_gso_network_seglen(const struct sk_buff * skb)5336 static unsigned int skb_gso_network_seglen(const struct sk_buff *skb)
5337 {
5338 unsigned int hdr_len = skb_transport_header(skb) -
5339 skb_network_header(skb);
5340
5341 return hdr_len + skb_gso_transport_seglen(skb);
5342 }
5343
5344 /**
5345 * skb_gso_mac_seglen - Return length of individual segments of a gso packet
5346 *
5347 * @skb: GSO skb
5348 *
5349 * skb_gso_mac_seglen is used to determine the real size of the
5350 * individual segments, including MAC/L2, Layer3 (IP, IPv6) and L4
5351 * headers (TCP/UDP).
5352 */
skb_gso_mac_seglen(const struct sk_buff * skb)5353 static unsigned int skb_gso_mac_seglen(const struct sk_buff *skb)
5354 {
5355 unsigned int hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
5356
5357 return hdr_len + skb_gso_transport_seglen(skb);
5358 }
5359
5360 /**
5361 * skb_gso_size_check - check the skb size, considering GSO_BY_FRAGS
5362 *
5363 * There are a couple of instances where we have a GSO skb, and we
5364 * want to determine what size it would be after it is segmented.
5365 *
5366 * We might want to check:
5367 * - L3+L4+payload size (e.g. IP forwarding)
5368 * - L2+L3+L4+payload size (e.g. sanity check before passing to driver)
5369 *
5370 * This is a helper to do that correctly considering GSO_BY_FRAGS.
5371 *
5372 * @skb: GSO skb
5373 *
5374 * @seg_len: The segmented length (from skb_gso_*_seglen). In the
5375 * GSO_BY_FRAGS case this will be [header sizes + GSO_BY_FRAGS].
5376 *
5377 * @max_len: The maximum permissible length.
5378 *
5379 * Returns true if the segmented length <= max length.
5380 */
skb_gso_size_check(const struct sk_buff * skb,unsigned int seg_len,unsigned int max_len)5381 static inline bool skb_gso_size_check(const struct sk_buff *skb,
5382 unsigned int seg_len,
5383 unsigned int max_len) {
5384 const struct skb_shared_info *shinfo = skb_shinfo(skb);
5385 const struct sk_buff *iter;
5386
5387 if (shinfo->gso_size != GSO_BY_FRAGS)
5388 return seg_len <= max_len;
5389
5390 /* Undo this so we can re-use header sizes */
5391 seg_len -= GSO_BY_FRAGS;
5392
5393 skb_walk_frags(skb, iter) {
5394 if (seg_len + skb_headlen(iter) > max_len)
5395 return false;
5396 }
5397
5398 return true;
5399 }
5400
5401 /**
5402 * skb_gso_validate_network_len - Will a split GSO skb fit into a given MTU?
5403 *
5404 * @skb: GSO skb
5405 * @mtu: MTU to validate against
5406 *
5407 * skb_gso_validate_network_len validates if a given skb will fit a
5408 * wanted MTU once split. It considers L3 headers, L4 headers, and the
5409 * payload.
5410 */
skb_gso_validate_network_len(const struct sk_buff * skb,unsigned int mtu)5411 bool skb_gso_validate_network_len(const struct sk_buff *skb, unsigned int mtu)
5412 {
5413 return skb_gso_size_check(skb, skb_gso_network_seglen(skb), mtu);
5414 }
5415 EXPORT_SYMBOL_GPL(skb_gso_validate_network_len);
5416
5417 /**
5418 * skb_gso_validate_mac_len - Will a split GSO skb fit in a given length?
5419 *
5420 * @skb: GSO skb
5421 * @len: length to validate against
5422 *
5423 * skb_gso_validate_mac_len validates if a given skb will fit a wanted
5424 * length once split, including L2, L3 and L4 headers and the payload.
5425 */
skb_gso_validate_mac_len(const struct sk_buff * skb,unsigned int len)5426 bool skb_gso_validate_mac_len(const struct sk_buff *skb, unsigned int len)
5427 {
5428 return skb_gso_size_check(skb, skb_gso_mac_seglen(skb), len);
5429 }
5430 EXPORT_SYMBOL_GPL(skb_gso_validate_mac_len);
5431
skb_reorder_vlan_header(struct sk_buff * skb)5432 static struct sk_buff *skb_reorder_vlan_header(struct sk_buff *skb)
5433 {
5434 int mac_len, meta_len;
5435 void *meta;
5436
5437 if (skb_cow(skb, skb_headroom(skb)) < 0) {
5438 kfree_skb(skb);
5439 return NULL;
5440 }
5441
5442 mac_len = skb->data - skb_mac_header(skb);
5443 if (likely(mac_len > VLAN_HLEN + ETH_TLEN)) {
5444 memmove(skb_mac_header(skb) + VLAN_HLEN, skb_mac_header(skb),
5445 mac_len - VLAN_HLEN - ETH_TLEN);
5446 }
5447
5448 meta_len = skb_metadata_len(skb);
5449 if (meta_len) {
5450 meta = skb_metadata_end(skb) - meta_len;
5451 memmove(meta + VLAN_HLEN, meta, meta_len);
5452 }
5453
5454 skb->mac_header += VLAN_HLEN;
5455 return skb;
5456 }
5457
skb_vlan_untag(struct sk_buff * skb)5458 struct sk_buff *skb_vlan_untag(struct sk_buff *skb)
5459 {
5460 struct vlan_hdr *vhdr;
5461 u16 vlan_tci;
5462
5463 if (unlikely(skb_vlan_tag_present(skb))) {
5464 /* vlan_tci is already set-up so leave this for another time */
5465 return skb;
5466 }
5467
5468 skb = skb_share_check(skb, GFP_ATOMIC);
5469 if (unlikely(!skb))
5470 goto err_free;
5471 /* We may access the two bytes after vlan_hdr in vlan_set_encap_proto(). */
5472 if (unlikely(!pskb_may_pull(skb, VLAN_HLEN + sizeof(unsigned short))))
5473 goto err_free;
5474
5475 vhdr = (struct vlan_hdr *)skb->data;
5476 vlan_tci = ntohs(vhdr->h_vlan_TCI);
5477 __vlan_hwaccel_put_tag(skb, skb->protocol, vlan_tci);
5478
5479 skb_pull_rcsum(skb, VLAN_HLEN);
5480 vlan_set_encap_proto(skb, vhdr);
5481
5482 skb = skb_reorder_vlan_header(skb);
5483 if (unlikely(!skb))
5484 goto err_free;
5485
5486 skb_reset_network_header(skb);
5487 skb_reset_transport_header(skb);
5488 skb_reset_mac_len(skb);
5489
5490 return skb;
5491
5492 err_free:
5493 kfree_skb(skb);
5494 return NULL;
5495 }
5496 EXPORT_SYMBOL(skb_vlan_untag);
5497
skb_ensure_writable(struct sk_buff * skb,int write_len)5498 int skb_ensure_writable(struct sk_buff *skb, int write_len)
5499 {
5500 if (!pskb_may_pull(skb, write_len))
5501 return -ENOMEM;
5502
5503 if (!skb_cloned(skb) || skb_clone_writable(skb, write_len))
5504 return 0;
5505
5506 return pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
5507 }
5508 EXPORT_SYMBOL(skb_ensure_writable);
5509
5510 /* remove VLAN header from packet and update csum accordingly.
5511 * expects a non skb_vlan_tag_present skb with a vlan tag payload
5512 */
__skb_vlan_pop(struct sk_buff * skb,u16 * vlan_tci)5513 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci)
5514 {
5515 struct vlan_hdr *vhdr;
5516 int offset = skb->data - skb_mac_header(skb);
5517 int err;
5518
5519 if (WARN_ONCE(offset,
5520 "__skb_vlan_pop got skb with skb->data not at mac header (offset %d)\n",
5521 offset)) {
5522 return -EINVAL;
5523 }
5524
5525 err = skb_ensure_writable(skb, VLAN_ETH_HLEN);
5526 if (unlikely(err))
5527 return err;
5528
5529 skb_postpull_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
5530
5531 vhdr = (struct vlan_hdr *)(skb->data + ETH_HLEN);
5532 *vlan_tci = ntohs(vhdr->h_vlan_TCI);
5533
5534 memmove(skb->data + VLAN_HLEN, skb->data, 2 * ETH_ALEN);
5535 __skb_pull(skb, VLAN_HLEN);
5536
5537 vlan_set_encap_proto(skb, vhdr);
5538 skb->mac_header += VLAN_HLEN;
5539
5540 if (skb_network_offset(skb) < ETH_HLEN)
5541 skb_set_network_header(skb, ETH_HLEN);
5542
5543 skb_reset_mac_len(skb);
5544
5545 return err;
5546 }
5547 EXPORT_SYMBOL(__skb_vlan_pop);
5548
5549 /* Pop a vlan tag either from hwaccel or from payload.
5550 * Expects skb->data at mac header.
5551 */
skb_vlan_pop(struct sk_buff * skb)5552 int skb_vlan_pop(struct sk_buff *skb)
5553 {
5554 u16 vlan_tci;
5555 __be16 vlan_proto;
5556 int err;
5557
5558 if (likely(skb_vlan_tag_present(skb))) {
5559 __vlan_hwaccel_clear_tag(skb);
5560 } else {
5561 if (unlikely(!eth_type_vlan(skb->protocol)))
5562 return 0;
5563
5564 err = __skb_vlan_pop(skb, &vlan_tci);
5565 if (err)
5566 return err;
5567 }
5568 /* move next vlan tag to hw accel tag */
5569 if (likely(!eth_type_vlan(skb->protocol)))
5570 return 0;
5571
5572 vlan_proto = skb->protocol;
5573 err = __skb_vlan_pop(skb, &vlan_tci);
5574 if (unlikely(err))
5575 return err;
5576
5577 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
5578 return 0;
5579 }
5580 EXPORT_SYMBOL(skb_vlan_pop);
5581
5582 /* Push a vlan tag either into hwaccel or into payload (if hwaccel tag present).
5583 * Expects skb->data at mac header.
5584 */
skb_vlan_push(struct sk_buff * skb,__be16 vlan_proto,u16 vlan_tci)5585 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci)
5586 {
5587 if (skb_vlan_tag_present(skb)) {
5588 int offset = skb->data - skb_mac_header(skb);
5589 int err;
5590
5591 if (WARN_ONCE(offset,
5592 "skb_vlan_push got skb with skb->data not at mac header (offset %d)\n",
5593 offset)) {
5594 return -EINVAL;
5595 }
5596
5597 err = __vlan_insert_tag(skb, skb->vlan_proto,
5598 skb_vlan_tag_get(skb));
5599 if (err)
5600 return err;
5601
5602 skb->protocol = skb->vlan_proto;
5603 skb->mac_len += VLAN_HLEN;
5604
5605 skb_postpush_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
5606 }
5607 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
5608 return 0;
5609 }
5610 EXPORT_SYMBOL(skb_vlan_push);
5611
5612 /**
5613 * skb_eth_pop() - Drop the Ethernet header at the head of a packet
5614 *
5615 * @skb: Socket buffer to modify
5616 *
5617 * Drop the Ethernet header of @skb.
5618 *
5619 * Expects that skb->data points to the mac header and that no VLAN tags are
5620 * present.
5621 *
5622 * Returns 0 on success, -errno otherwise.
5623 */
skb_eth_pop(struct sk_buff * skb)5624 int skb_eth_pop(struct sk_buff *skb)
5625 {
5626 if (!pskb_may_pull(skb, ETH_HLEN) || skb_vlan_tagged(skb) ||
5627 skb_network_offset(skb) < ETH_HLEN)
5628 return -EPROTO;
5629
5630 skb_pull_rcsum(skb, ETH_HLEN);
5631 skb_reset_mac_header(skb);
5632 skb_reset_mac_len(skb);
5633
5634 return 0;
5635 }
5636 EXPORT_SYMBOL(skb_eth_pop);
5637
5638 /**
5639 * skb_eth_push() - Add a new Ethernet header at the head of a packet
5640 *
5641 * @skb: Socket buffer to modify
5642 * @dst: Destination MAC address of the new header
5643 * @src: Source MAC address of the new header
5644 *
5645 * Prepend @skb with a new Ethernet header.
5646 *
5647 * Expects that skb->data points to the mac header, which must be empty.
5648 *
5649 * Returns 0 on success, -errno otherwise.
5650 */
skb_eth_push(struct sk_buff * skb,const unsigned char * dst,const unsigned char * src)5651 int skb_eth_push(struct sk_buff *skb, const unsigned char *dst,
5652 const unsigned char *src)
5653 {
5654 struct ethhdr *eth;
5655 int err;
5656
5657 if (skb_network_offset(skb) || skb_vlan_tag_present(skb))
5658 return -EPROTO;
5659
5660 err = skb_cow_head(skb, sizeof(*eth));
5661 if (err < 0)
5662 return err;
5663
5664 skb_push(skb, sizeof(*eth));
5665 skb_reset_mac_header(skb);
5666 skb_reset_mac_len(skb);
5667
5668 eth = eth_hdr(skb);
5669 ether_addr_copy(eth->h_dest, dst);
5670 ether_addr_copy(eth->h_source, src);
5671 eth->h_proto = skb->protocol;
5672
5673 skb_postpush_rcsum(skb, eth, sizeof(*eth));
5674
5675 return 0;
5676 }
5677 EXPORT_SYMBOL(skb_eth_push);
5678
5679 /* Update the ethertype of hdr and the skb csum value if required. */
skb_mod_eth_type(struct sk_buff * skb,struct ethhdr * hdr,__be16 ethertype)5680 static void skb_mod_eth_type(struct sk_buff *skb, struct ethhdr *hdr,
5681 __be16 ethertype)
5682 {
5683 if (skb->ip_summed == CHECKSUM_COMPLETE) {
5684 __be16 diff[] = { ~hdr->h_proto, ethertype };
5685
5686 skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum);
5687 }
5688
5689 hdr->h_proto = ethertype;
5690 }
5691
5692 /**
5693 * skb_mpls_push() - push a new MPLS header after mac_len bytes from start of
5694 * the packet
5695 *
5696 * @skb: buffer
5697 * @mpls_lse: MPLS label stack entry to push
5698 * @mpls_proto: ethertype of the new MPLS header (expects 0x8847 or 0x8848)
5699 * @mac_len: length of the MAC header
5700 * @ethernet: flag to indicate if the resulting packet after skb_mpls_push is
5701 * ethernet
5702 *
5703 * Expects skb->data at mac header.
5704 *
5705 * Returns 0 on success, -errno otherwise.
5706 */
skb_mpls_push(struct sk_buff * skb,__be32 mpls_lse,__be16 mpls_proto,int mac_len,bool ethernet)5707 int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto,
5708 int mac_len, bool ethernet)
5709 {
5710 struct mpls_shim_hdr *lse;
5711 int err;
5712
5713 if (unlikely(!eth_p_mpls(mpls_proto)))
5714 return -EINVAL;
5715
5716 /* Networking stack does not allow simultaneous Tunnel and MPLS GSO. */
5717 if (skb->encapsulation)
5718 return -EINVAL;
5719
5720 err = skb_cow_head(skb, MPLS_HLEN);
5721 if (unlikely(err))
5722 return err;
5723
5724 if (!skb->inner_protocol) {
5725 skb_set_inner_network_header(skb, skb_network_offset(skb));
5726 skb_set_inner_protocol(skb, skb->protocol);
5727 }
5728
5729 skb_push(skb, MPLS_HLEN);
5730 memmove(skb_mac_header(skb) - MPLS_HLEN, skb_mac_header(skb),
5731 mac_len);
5732 skb_reset_mac_header(skb);
5733 skb_set_network_header(skb, mac_len);
5734 skb_reset_mac_len(skb);
5735
5736 lse = mpls_hdr(skb);
5737 lse->label_stack_entry = mpls_lse;
5738 skb_postpush_rcsum(skb, lse, MPLS_HLEN);
5739
5740 if (ethernet && mac_len >= ETH_HLEN)
5741 skb_mod_eth_type(skb, eth_hdr(skb), mpls_proto);
5742 skb->protocol = mpls_proto;
5743
5744 return 0;
5745 }
5746 EXPORT_SYMBOL_GPL(skb_mpls_push);
5747
5748 /**
5749 * skb_mpls_pop() - pop the outermost MPLS header
5750 *
5751 * @skb: buffer
5752 * @next_proto: ethertype of header after popped MPLS header
5753 * @mac_len: length of the MAC header
5754 * @ethernet: flag to indicate if the packet is ethernet
5755 *
5756 * Expects skb->data at mac header.
5757 *
5758 * Returns 0 on success, -errno otherwise.
5759 */
skb_mpls_pop(struct sk_buff * skb,__be16 next_proto,int mac_len,bool ethernet)5760 int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len,
5761 bool ethernet)
5762 {
5763 int err;
5764
5765 if (unlikely(!eth_p_mpls(skb->protocol)))
5766 return 0;
5767
5768 err = skb_ensure_writable(skb, mac_len + MPLS_HLEN);
5769 if (unlikely(err))
5770 return err;
5771
5772 skb_postpull_rcsum(skb, mpls_hdr(skb), MPLS_HLEN);
5773 memmove(skb_mac_header(skb) + MPLS_HLEN, skb_mac_header(skb),
5774 mac_len);
5775
5776 __skb_pull(skb, MPLS_HLEN);
5777 skb_reset_mac_header(skb);
5778 skb_set_network_header(skb, mac_len);
5779
5780 if (ethernet && mac_len >= ETH_HLEN) {
5781 struct ethhdr *hdr;
5782
5783 /* use mpls_hdr() to get ethertype to account for VLANs. */
5784 hdr = (struct ethhdr *)((void *)mpls_hdr(skb) - ETH_HLEN);
5785 skb_mod_eth_type(skb, hdr, next_proto);
5786 }
5787 skb->protocol = next_proto;
5788
5789 return 0;
5790 }
5791 EXPORT_SYMBOL_GPL(skb_mpls_pop);
5792
5793 /**
5794 * skb_mpls_update_lse() - modify outermost MPLS header and update csum
5795 *
5796 * @skb: buffer
5797 * @mpls_lse: new MPLS label stack entry to update to
5798 *
5799 * Expects skb->data at mac header.
5800 *
5801 * Returns 0 on success, -errno otherwise.
5802 */
skb_mpls_update_lse(struct sk_buff * skb,__be32 mpls_lse)5803 int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse)
5804 {
5805 int err;
5806
5807 if (unlikely(!eth_p_mpls(skb->protocol)))
5808 return -EINVAL;
5809
5810 err = skb_ensure_writable(skb, skb->mac_len + MPLS_HLEN);
5811 if (unlikely(err))
5812 return err;
5813
5814 if (skb->ip_summed == CHECKSUM_COMPLETE) {
5815 __be32 diff[] = { ~mpls_hdr(skb)->label_stack_entry, mpls_lse };
5816
5817 skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum);
5818 }
5819
5820 mpls_hdr(skb)->label_stack_entry = mpls_lse;
5821
5822 return 0;
5823 }
5824 EXPORT_SYMBOL_GPL(skb_mpls_update_lse);
5825
5826 /**
5827 * skb_mpls_dec_ttl() - decrement the TTL of the outermost MPLS header
5828 *
5829 * @skb: buffer
5830 *
5831 * Expects skb->data at mac header.
5832 *
5833 * Returns 0 on success, -errno otherwise.
5834 */
skb_mpls_dec_ttl(struct sk_buff * skb)5835 int skb_mpls_dec_ttl(struct sk_buff *skb)
5836 {
5837 u32 lse;
5838 u8 ttl;
5839
5840 if (unlikely(!eth_p_mpls(skb->protocol)))
5841 return -EINVAL;
5842
5843 if (!pskb_may_pull(skb, skb_network_offset(skb) + MPLS_HLEN))
5844 return -ENOMEM;
5845
5846 lse = be32_to_cpu(mpls_hdr(skb)->label_stack_entry);
5847 ttl = (lse & MPLS_LS_TTL_MASK) >> MPLS_LS_TTL_SHIFT;
5848 if (!--ttl)
5849 return -EINVAL;
5850
5851 lse &= ~MPLS_LS_TTL_MASK;
5852 lse |= ttl << MPLS_LS_TTL_SHIFT;
5853
5854 return skb_mpls_update_lse(skb, cpu_to_be32(lse));
5855 }
5856 EXPORT_SYMBOL_GPL(skb_mpls_dec_ttl);
5857
5858 /**
5859 * alloc_skb_with_frags - allocate skb with page frags
5860 *
5861 * @header_len: size of linear part
5862 * @data_len: needed length in frags
5863 * @max_page_order: max page order desired.
5864 * @errcode: pointer to error code if any
5865 * @gfp_mask: allocation mask
5866 *
5867 * This can be used to allocate a paged skb, given a maximal order for frags.
5868 */
alloc_skb_with_frags(unsigned long header_len,unsigned long data_len,int max_page_order,int * errcode,gfp_t gfp_mask)5869 struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
5870 unsigned long data_len,
5871 int max_page_order,
5872 int *errcode,
5873 gfp_t gfp_mask)
5874 {
5875 int npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
5876 unsigned long chunk;
5877 struct sk_buff *skb;
5878 struct page *page;
5879 int i;
5880
5881 *errcode = -EMSGSIZE;
5882 /* Note this test could be relaxed, if we succeed to allocate
5883 * high order pages...
5884 */
5885 if (npages > MAX_SKB_FRAGS)
5886 return NULL;
5887
5888 *errcode = -ENOBUFS;
5889 skb = alloc_skb(header_len, gfp_mask);
5890 if (!skb)
5891 return NULL;
5892
5893 skb->truesize += npages << PAGE_SHIFT;
5894
5895 for (i = 0; npages > 0; i++) {
5896 int order = max_page_order;
5897
5898 while (order) {
5899 if (npages >= 1 << order) {
5900 page = alloc_pages((gfp_mask & ~__GFP_DIRECT_RECLAIM) |
5901 __GFP_COMP |
5902 __GFP_NOWARN,
5903 order);
5904 if (page)
5905 goto fill_page;
5906 /* Do not retry other high order allocations */
5907 order = 1;
5908 max_page_order = 0;
5909 }
5910 order--;
5911 }
5912 page = alloc_page(gfp_mask);
5913 if (!page)
5914 goto failure;
5915 fill_page:
5916 chunk = min_t(unsigned long, data_len,
5917 PAGE_SIZE << order);
5918 skb_fill_page_desc(skb, i, page, 0, chunk);
5919 data_len -= chunk;
5920 npages -= 1 << order;
5921 }
5922 return skb;
5923
5924 failure:
5925 kfree_skb(skb);
5926 return NULL;
5927 }
5928 EXPORT_SYMBOL(alloc_skb_with_frags);
5929
5930 /* carve out the first off bytes from skb when off < headlen */
pskb_carve_inside_header(struct sk_buff * skb,const u32 off,const int headlen,gfp_t gfp_mask)5931 static int pskb_carve_inside_header(struct sk_buff *skb, const u32 off,
5932 const int headlen, gfp_t gfp_mask)
5933 {
5934 int i;
5935 int size = skb_end_offset(skb);
5936 int new_hlen = headlen - off;
5937 u8 *data;
5938
5939 size = SKB_DATA_ALIGN(size);
5940
5941 if (skb_pfmemalloc(skb))
5942 gfp_mask |= __GFP_MEMALLOC;
5943 data = kmalloc_reserve(size +
5944 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
5945 gfp_mask, NUMA_NO_NODE, NULL);
5946 if (!data)
5947 return -ENOMEM;
5948
5949 size = SKB_WITH_OVERHEAD(ksize(data));
5950
5951 /* Copy real data, and all frags */
5952 skb_copy_from_linear_data_offset(skb, off, data, new_hlen);
5953 skb->len -= off;
5954
5955 memcpy((struct skb_shared_info *)(data + size),
5956 skb_shinfo(skb),
5957 offsetof(struct skb_shared_info,
5958 frags[skb_shinfo(skb)->nr_frags]));
5959 if (skb_cloned(skb)) {
5960 /* drop the old head gracefully */
5961 if (skb_orphan_frags(skb, gfp_mask)) {
5962 kfree(data);
5963 return -ENOMEM;
5964 }
5965 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
5966 skb_frag_ref(skb, i);
5967 if (skb_has_frag_list(skb))
5968 skb_clone_fraglist(skb);
5969 skb_release_data(skb);
5970 } else {
5971 /* we can reuse existing recount- all we did was
5972 * relocate values
5973 */
5974 skb_free_head(skb);
5975 }
5976
5977 skb->head = data;
5978 skb->data = data;
5979 skb->head_frag = 0;
5980 #ifdef NET_SKBUFF_DATA_USES_OFFSET
5981 skb->end = size;
5982 #else
5983 skb->end = skb->head + size;
5984 #endif
5985 skb_set_tail_pointer(skb, skb_headlen(skb));
5986 skb_headers_offset_update(skb, 0);
5987 skb->cloned = 0;
5988 skb->hdr_len = 0;
5989 skb->nohdr = 0;
5990 atomic_set(&skb_shinfo(skb)->dataref, 1);
5991
5992 return 0;
5993 }
5994
5995 static int pskb_carve(struct sk_buff *skb, const u32 off, gfp_t gfp);
5996
5997 /* carve out the first eat bytes from skb's frag_list. May recurse into
5998 * pskb_carve()
5999 */
pskb_carve_frag_list(struct sk_buff * skb,struct skb_shared_info * shinfo,int eat,gfp_t gfp_mask)6000 static int pskb_carve_frag_list(struct sk_buff *skb,
6001 struct skb_shared_info *shinfo, int eat,
6002 gfp_t gfp_mask)
6003 {
6004 struct sk_buff *list = shinfo->frag_list;
6005 struct sk_buff *clone = NULL;
6006 struct sk_buff *insp = NULL;
6007
6008 do {
6009 if (!list) {
6010 pr_err("Not enough bytes to eat. Want %d\n", eat);
6011 return -EFAULT;
6012 }
6013 if (list->len <= eat) {
6014 /* Eaten as whole. */
6015 eat -= list->len;
6016 list = list->next;
6017 insp = list;
6018 } else {
6019 /* Eaten partially. */
6020 if (skb_shared(list)) {
6021 clone = skb_clone(list, gfp_mask);
6022 if (!clone)
6023 return -ENOMEM;
6024 insp = list->next;
6025 list = clone;
6026 } else {
6027 /* This may be pulled without problems. */
6028 insp = list;
6029 }
6030 if (pskb_carve(list, eat, gfp_mask) < 0) {
6031 kfree_skb(clone);
6032 return -ENOMEM;
6033 }
6034 break;
6035 }
6036 } while (eat);
6037
6038 /* Free pulled out fragments. */
6039 while ((list = shinfo->frag_list) != insp) {
6040 shinfo->frag_list = list->next;
6041 kfree_skb(list);
6042 }
6043 /* And insert new clone at head. */
6044 if (clone) {
6045 clone->next = list;
6046 shinfo->frag_list = clone;
6047 }
6048 return 0;
6049 }
6050
6051 /* carve off first len bytes from skb. Split line (off) is in the
6052 * non-linear part of skb
6053 */
pskb_carve_inside_nonlinear(struct sk_buff * skb,const u32 off,int pos,gfp_t gfp_mask)6054 static int pskb_carve_inside_nonlinear(struct sk_buff *skb, const u32 off,
6055 int pos, gfp_t gfp_mask)
6056 {
6057 int i, k = 0;
6058 int size = skb_end_offset(skb);
6059 u8 *data;
6060 const int nfrags = skb_shinfo(skb)->nr_frags;
6061 struct skb_shared_info *shinfo;
6062
6063 size = SKB_DATA_ALIGN(size);
6064
6065 if (skb_pfmemalloc(skb))
6066 gfp_mask |= __GFP_MEMALLOC;
6067 data = kmalloc_reserve(size +
6068 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
6069 gfp_mask, NUMA_NO_NODE, NULL);
6070 if (!data)
6071 return -ENOMEM;
6072
6073 size = SKB_WITH_OVERHEAD(ksize(data));
6074
6075 memcpy((struct skb_shared_info *)(data + size),
6076 skb_shinfo(skb), offsetof(struct skb_shared_info, frags[0]));
6077 if (skb_orphan_frags(skb, gfp_mask)) {
6078 kfree(data);
6079 return -ENOMEM;
6080 }
6081 shinfo = (struct skb_shared_info *)(data + size);
6082 for (i = 0; i < nfrags; i++) {
6083 int fsize = skb_frag_size(&skb_shinfo(skb)->frags[i]);
6084
6085 if (pos + fsize > off) {
6086 shinfo->frags[k] = skb_shinfo(skb)->frags[i];
6087
6088 if (pos < off) {
6089 /* Split frag.
6090 * We have two variants in this case:
6091 * 1. Move all the frag to the second
6092 * part, if it is possible. F.e.
6093 * this approach is mandatory for TUX,
6094 * where splitting is expensive.
6095 * 2. Split is accurately. We make this.
6096 */
6097 skb_frag_off_add(&shinfo->frags[0], off - pos);
6098 skb_frag_size_sub(&shinfo->frags[0], off - pos);
6099 }
6100 skb_frag_ref(skb, i);
6101 k++;
6102 }
6103 pos += fsize;
6104 }
6105 shinfo->nr_frags = k;
6106 if (skb_has_frag_list(skb))
6107 skb_clone_fraglist(skb);
6108
6109 /* split line is in frag list */
6110 if (k == 0 && pskb_carve_frag_list(skb, shinfo, off - pos, gfp_mask)) {
6111 /* skb_frag_unref() is not needed here as shinfo->nr_frags = 0. */
6112 if (skb_has_frag_list(skb))
6113 kfree_skb_list(skb_shinfo(skb)->frag_list);
6114 kfree(data);
6115 return -ENOMEM;
6116 }
6117 skb_release_data(skb);
6118
6119 skb->head = data;
6120 skb->head_frag = 0;
6121 skb->data = data;
6122 #ifdef NET_SKBUFF_DATA_USES_OFFSET
6123 skb->end = size;
6124 #else
6125 skb->end = skb->head + size;
6126 #endif
6127 skb_reset_tail_pointer(skb);
6128 skb_headers_offset_update(skb, 0);
6129 skb->cloned = 0;
6130 skb->hdr_len = 0;
6131 skb->nohdr = 0;
6132 skb->len -= off;
6133 skb->data_len = skb->len;
6134 atomic_set(&skb_shinfo(skb)->dataref, 1);
6135 return 0;
6136 }
6137
6138 /* remove len bytes from the beginning of the skb */
pskb_carve(struct sk_buff * skb,const u32 len,gfp_t gfp)6139 static int pskb_carve(struct sk_buff *skb, const u32 len, gfp_t gfp)
6140 {
6141 int headlen = skb_headlen(skb);
6142
6143 if (len < headlen)
6144 return pskb_carve_inside_header(skb, len, headlen, gfp);
6145 else
6146 return pskb_carve_inside_nonlinear(skb, len, headlen, gfp);
6147 }
6148
6149 /* Extract to_copy bytes starting at off from skb, and return this in
6150 * a new skb
6151 */
pskb_extract(struct sk_buff * skb,int off,int to_copy,gfp_t gfp)6152 struct sk_buff *pskb_extract(struct sk_buff *skb, int off,
6153 int to_copy, gfp_t gfp)
6154 {
6155 struct sk_buff *clone = skb_clone(skb, gfp);
6156
6157 if (!clone)
6158 return NULL;
6159
6160 if (pskb_carve(clone, off, gfp) < 0 ||
6161 pskb_trim(clone, to_copy)) {
6162 kfree_skb(clone);
6163 return NULL;
6164 }
6165 return clone;
6166 }
6167 EXPORT_SYMBOL(pskb_extract);
6168
6169 /**
6170 * skb_condense - try to get rid of fragments/frag_list if possible
6171 * @skb: buffer
6172 *
6173 * Can be used to save memory before skb is added to a busy queue.
6174 * If packet has bytes in frags and enough tail room in skb->head,
6175 * pull all of them, so that we can free the frags right now and adjust
6176 * truesize.
6177 * Notes:
6178 * We do not reallocate skb->head thus can not fail.
6179 * Caller must re-evaluate skb->truesize if needed.
6180 */
skb_condense(struct sk_buff * skb)6181 void skb_condense(struct sk_buff *skb)
6182 {
6183 if (skb->data_len) {
6184 if (skb->data_len > skb->end - skb->tail ||
6185 skb_cloned(skb))
6186 return;
6187
6188 /* Nice, we can free page frag(s) right now */
6189 __pskb_pull_tail(skb, skb->data_len);
6190 }
6191 /* At this point, skb->truesize might be over estimated,
6192 * because skb had a fragment, and fragments do not tell
6193 * their truesize.
6194 * When we pulled its content into skb->head, fragment
6195 * was freed, but __pskb_pull_tail() could not possibly
6196 * adjust skb->truesize, not knowing the frag truesize.
6197 */
6198 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
6199 }
6200
6201 #ifdef CONFIG_SKB_EXTENSIONS
skb_ext_get_ptr(struct skb_ext * ext,enum skb_ext_id id)6202 static void *skb_ext_get_ptr(struct skb_ext *ext, enum skb_ext_id id)
6203 {
6204 return (void *)ext + (ext->offset[id] * SKB_EXT_ALIGN_VALUE);
6205 }
6206
6207 /**
6208 * __skb_ext_alloc - allocate a new skb extensions storage
6209 *
6210 * @flags: See kmalloc().
6211 *
6212 * Returns the newly allocated pointer. The pointer can later attached to a
6213 * skb via __skb_ext_set().
6214 * Note: caller must handle the skb_ext as an opaque data.
6215 */
__skb_ext_alloc(gfp_t flags)6216 struct skb_ext *__skb_ext_alloc(gfp_t flags)
6217 {
6218 struct skb_ext *new = kmem_cache_alloc(skbuff_ext_cache, flags);
6219
6220 if (new) {
6221 memset(new->offset, 0, sizeof(new->offset));
6222 refcount_set(&new->refcnt, 1);
6223 }
6224
6225 return new;
6226 }
6227
skb_ext_maybe_cow(struct skb_ext * old,unsigned int old_active)6228 static struct skb_ext *skb_ext_maybe_cow(struct skb_ext *old,
6229 unsigned int old_active)
6230 {
6231 struct skb_ext *new;
6232
6233 if (refcount_read(&old->refcnt) == 1)
6234 return old;
6235
6236 new = kmem_cache_alloc(skbuff_ext_cache, GFP_ATOMIC);
6237 if (!new)
6238 return NULL;
6239
6240 memcpy(new, old, old->chunks * SKB_EXT_ALIGN_VALUE);
6241 refcount_set(&new->refcnt, 1);
6242
6243 #ifdef CONFIG_XFRM
6244 if (old_active & (1 << SKB_EXT_SEC_PATH)) {
6245 struct sec_path *sp = skb_ext_get_ptr(old, SKB_EXT_SEC_PATH);
6246 unsigned int i;
6247
6248 for (i = 0; i < sp->len; i++)
6249 xfrm_state_hold(sp->xvec[i]);
6250 }
6251 #endif
6252 __skb_ext_put(old);
6253 return new;
6254 }
6255
6256 /**
6257 * __skb_ext_set - attach the specified extension storage to this skb
6258 * @skb: buffer
6259 * @id: extension id
6260 * @ext: extension storage previously allocated via __skb_ext_alloc()
6261 *
6262 * Existing extensions, if any, are cleared.
6263 *
6264 * Returns the pointer to the extension.
6265 */
__skb_ext_set(struct sk_buff * skb,enum skb_ext_id id,struct skb_ext * ext)6266 void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id,
6267 struct skb_ext *ext)
6268 {
6269 unsigned int newlen, newoff = SKB_EXT_CHUNKSIZEOF(*ext);
6270
6271 skb_ext_put(skb);
6272 newlen = newoff + skb_ext_type_len[id];
6273 ext->chunks = newlen;
6274 ext->offset[id] = newoff;
6275 skb->extensions = ext;
6276 skb->active_extensions = 1 << id;
6277 return skb_ext_get_ptr(ext, id);
6278 }
6279
6280 /**
6281 * skb_ext_add - allocate space for given extension, COW if needed
6282 * @skb: buffer
6283 * @id: extension to allocate space for
6284 *
6285 * Allocates enough space for the given extension.
6286 * If the extension is already present, a pointer to that extension
6287 * is returned.
6288 *
6289 * If the skb was cloned, COW applies and the returned memory can be
6290 * modified without changing the extension space of clones buffers.
6291 *
6292 * Returns pointer to the extension or NULL on allocation failure.
6293 */
skb_ext_add(struct sk_buff * skb,enum skb_ext_id id)6294 void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id)
6295 {
6296 struct skb_ext *new, *old = NULL;
6297 unsigned int newlen, newoff;
6298
6299 if (skb->active_extensions) {
6300 old = skb->extensions;
6301
6302 new = skb_ext_maybe_cow(old, skb->active_extensions);
6303 if (!new)
6304 return NULL;
6305
6306 if (__skb_ext_exist(new, id))
6307 goto set_active;
6308
6309 newoff = new->chunks;
6310 } else {
6311 newoff = SKB_EXT_CHUNKSIZEOF(*new);
6312
6313 new = __skb_ext_alloc(GFP_ATOMIC);
6314 if (!new)
6315 return NULL;
6316 }
6317
6318 newlen = newoff + skb_ext_type_len[id];
6319 new->chunks = newlen;
6320 new->offset[id] = newoff;
6321 set_active:
6322 skb->extensions = new;
6323 skb->active_extensions |= 1 << id;
6324 return skb_ext_get_ptr(new, id);
6325 }
6326 EXPORT_SYMBOL(skb_ext_add);
6327
6328 #ifdef CONFIG_XFRM
skb_ext_put_sp(struct sec_path * sp)6329 static void skb_ext_put_sp(struct sec_path *sp)
6330 {
6331 unsigned int i;
6332
6333 for (i = 0; i < sp->len; i++)
6334 xfrm_state_put(sp->xvec[i]);
6335 }
6336 #endif
6337
__skb_ext_del(struct sk_buff * skb,enum skb_ext_id id)6338 void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id)
6339 {
6340 struct skb_ext *ext = skb->extensions;
6341
6342 skb->active_extensions &= ~(1 << id);
6343 if (skb->active_extensions == 0) {
6344 skb->extensions = NULL;
6345 __skb_ext_put(ext);
6346 #ifdef CONFIG_XFRM
6347 } else if (id == SKB_EXT_SEC_PATH &&
6348 refcount_read(&ext->refcnt) == 1) {
6349 struct sec_path *sp = skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH);
6350
6351 skb_ext_put_sp(sp);
6352 sp->len = 0;
6353 #endif
6354 }
6355 }
6356 EXPORT_SYMBOL(__skb_ext_del);
6357
__skb_ext_put(struct skb_ext * ext)6358 void __skb_ext_put(struct skb_ext *ext)
6359 {
6360 /* If this is last clone, nothing can increment
6361 * it after check passes. Avoids one atomic op.
6362 */
6363 if (refcount_read(&ext->refcnt) == 1)
6364 goto free_now;
6365
6366 if (!refcount_dec_and_test(&ext->refcnt))
6367 return;
6368 free_now:
6369 #ifdef CONFIG_XFRM
6370 if (__skb_ext_exist(ext, SKB_EXT_SEC_PATH))
6371 skb_ext_put_sp(skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH));
6372 #endif
6373
6374 kmem_cache_free(skbuff_ext_cache, ext);
6375 }
6376 EXPORT_SYMBOL(__skb_ext_put);
6377 #endif /* CONFIG_SKB_EXTENSIONS */
6378