• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *	Routines having to do with the 'struct sk_buff' memory handlers.
4  *
5  *	Authors:	Alan Cox <alan@lxorguk.ukuu.org.uk>
6  *			Florian La Roche <rzsfl@rz.uni-sb.de>
7  *
8  *	Fixes:
9  *		Alan Cox	:	Fixed the worst of the load
10  *					balancer bugs.
11  *		Dave Platt	:	Interrupt stacking fix.
12  *	Richard Kooijman	:	Timestamp fixes.
13  *		Alan Cox	:	Changed buffer format.
14  *		Alan Cox	:	destructor hook for AF_UNIX etc.
15  *		Linus Torvalds	:	Better skb_clone.
16  *		Alan Cox	:	Added skb_copy.
17  *		Alan Cox	:	Added all the changed routines Linus
18  *					only put in the headers
19  *		Ray VanTassle	:	Fixed --skb->lock in free
20  *		Alan Cox	:	skb_copy copy arp field
21  *		Andi Kleen	:	slabified it.
22  *		Robert Olsson	:	Removed skb_head_pool
23  *
24  *	NOTE:
25  *		The __skb_ routines should be called with interrupts
26  *	disabled, or you better be *real* sure that the operation is atomic
27  *	with respect to whatever list is being frobbed (e.g. via lock_sock()
28  *	or via disabling bottom half handlers, etc).
29  */
30 
31 /*
32  *	The functions in this file will not compile correctly with gcc 2.4.x
33  */
34 
35 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
36 
37 #include <linux/module.h>
38 #include <linux/types.h>
39 #include <linux/kernel.h>
40 #include <linux/mm.h>
41 #include <linux/interrupt.h>
42 #include <linux/in.h>
43 #include <linux/inet.h>
44 #include <linux/slab.h>
45 #include <linux/tcp.h>
46 #include <linux/udp.h>
47 #include <linux/sctp.h>
48 #include <linux/netdevice.h>
49 #ifdef CONFIG_NET_CLS_ACT
50 #include <net/pkt_sched.h>
51 #endif
52 #include <linux/string.h>
53 #include <linux/skbuff.h>
54 #include <linux/splice.h>
55 #include <linux/cache.h>
56 #include <linux/rtnetlink.h>
57 #include <linux/init.h>
58 #include <linux/scatterlist.h>
59 #include <linux/errqueue.h>
60 #include <linux/prefetch.h>
61 #include <linux/if_vlan.h>
62 #include <linux/mpls.h>
63 
64 #include <net/protocol.h>
65 #include <net/dst.h>
66 #include <net/sock.h>
67 #include <net/checksum.h>
68 #include <net/ip6_checksum.h>
69 #include <net/xfrm.h>
70 #include <net/mpls.h>
71 #include <net/mptcp.h>
72 
73 #include <linux/uaccess.h>
74 #include <trace/events/skb.h>
75 #include <linux/highmem.h>
76 #include <linux/capability.h>
77 #include <linux/user_namespace.h>
78 #include <linux/indirect_call_wrapper.h>
79 
80 #include "datagram.h"
81 
82 struct kmem_cache *skbuff_head_cache __ro_after_init;
83 static struct kmem_cache *skbuff_fclone_cache __ro_after_init;
84 #ifdef CONFIG_SKB_EXTENSIONS
85 static struct kmem_cache *skbuff_ext_cache __ro_after_init;
86 #endif
87 int sysctl_max_skb_frags __read_mostly = MAX_SKB_FRAGS;
88 EXPORT_SYMBOL(sysctl_max_skb_frags);
89 
90 /**
91  *	skb_panic - private function for out-of-line support
92  *	@skb:	buffer
93  *	@sz:	size
94  *	@addr:	address
95  *	@msg:	skb_over_panic or skb_under_panic
96  *
97  *	Out-of-line support for skb_put() and skb_push().
98  *	Called via the wrapper skb_over_panic() or skb_under_panic().
99  *	Keep out of line to prevent kernel bloat.
100  *	__builtin_return_address is not used because it is not always reliable.
101  */
skb_panic(struct sk_buff * skb,unsigned int sz,void * addr,const char msg[])102 static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr,
103 		      const char msg[])
104 {
105 	pr_emerg("%s: text:%px len:%d put:%d head:%px data:%px tail:%#lx end:%#lx dev:%s\n",
106 		 msg, addr, skb->len, sz, skb->head, skb->data,
107 		 (unsigned long)skb->tail, (unsigned long)skb->end,
108 		 skb->dev ? skb->dev->name : "<NULL>");
109 	BUG();
110 }
111 
skb_over_panic(struct sk_buff * skb,unsigned int sz,void * addr)112 static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr)
113 {
114 	skb_panic(skb, sz, addr, __func__);
115 }
116 
skb_under_panic(struct sk_buff * skb,unsigned int sz,void * addr)117 static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr)
118 {
119 	skb_panic(skb, sz, addr, __func__);
120 }
121 
122 /*
123  * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells
124  * the caller if emergency pfmemalloc reserves are being used. If it is and
125  * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves
126  * may be used. Otherwise, the packet data may be discarded until enough
127  * memory is free
128  */
129 #define kmalloc_reserve(size, gfp, node, pfmemalloc) \
130 	 __kmalloc_reserve(size, gfp, node, _RET_IP_, pfmemalloc)
131 
__kmalloc_reserve(size_t size,gfp_t flags,int node,unsigned long ip,bool * pfmemalloc)132 static void *__kmalloc_reserve(size_t size, gfp_t flags, int node,
133 			       unsigned long ip, bool *pfmemalloc)
134 {
135 	void *obj;
136 	bool ret_pfmemalloc = false;
137 
138 	/*
139 	 * Try a regular allocation, when that fails and we're not entitled
140 	 * to the reserves, fail.
141 	 */
142 	obj = kmalloc_node_track_caller(size,
143 					flags | __GFP_NOMEMALLOC | __GFP_NOWARN,
144 					node);
145 	if (obj || !(gfp_pfmemalloc_allowed(flags)))
146 		goto out;
147 
148 	/* Try again but now we are using pfmemalloc reserves */
149 	ret_pfmemalloc = true;
150 	obj = kmalloc_node_track_caller(size, flags, node);
151 
152 out:
153 	if (pfmemalloc)
154 		*pfmemalloc = ret_pfmemalloc;
155 
156 	return obj;
157 }
158 
159 /* 	Allocate a new skbuff. We do this ourselves so we can fill in a few
160  *	'private' fields and also do memory statistics to find all the
161  *	[BEEP] leaks.
162  *
163  */
164 
165 /**
166  *	__alloc_skb	-	allocate a network buffer
167  *	@size: size to allocate
168  *	@gfp_mask: allocation mask
169  *	@flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache
170  *		instead of head cache and allocate a cloned (child) skb.
171  *		If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for
172  *		allocations in case the data is required for writeback
173  *	@node: numa node to allocate memory on
174  *
175  *	Allocate a new &sk_buff. The returned buffer has no headroom and a
176  *	tail room of at least size bytes. The object has a reference count
177  *	of one. The return is the buffer. On a failure the return is %NULL.
178  *
179  *	Buffers may only be allocated from interrupts using a @gfp_mask of
180  *	%GFP_ATOMIC.
181  */
__alloc_skb(unsigned int size,gfp_t gfp_mask,int flags,int node)182 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
183 			    int flags, int node)
184 {
185 	struct kmem_cache *cache;
186 	struct skb_shared_info *shinfo;
187 	struct sk_buff *skb;
188 	u8 *data;
189 	bool pfmemalloc;
190 
191 	cache = (flags & SKB_ALLOC_FCLONE)
192 		? skbuff_fclone_cache : skbuff_head_cache;
193 
194 	if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX))
195 		gfp_mask |= __GFP_MEMALLOC;
196 
197 	/* Get the HEAD */
198 	skb = kmem_cache_alloc_node(cache, gfp_mask & ~__GFP_DMA, node);
199 	if (!skb)
200 		goto out;
201 	prefetchw(skb);
202 
203 	/* We do our best to align skb_shared_info on a separate cache
204 	 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives
205 	 * aligned memory blocks, unless SLUB/SLAB debug is enabled.
206 	 * Both skb->head and skb_shared_info are cache line aligned.
207 	 */
208 	size = SKB_DATA_ALIGN(size);
209 	size += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
210 	data = kmalloc_reserve(size, gfp_mask, node, &pfmemalloc);
211 	if (!data)
212 		goto nodata;
213 	/* kmalloc(size) might give us more room than requested.
214 	 * Put skb_shared_info exactly at the end of allocated zone,
215 	 * to allow max possible filling before reallocation.
216 	 */
217 	size = SKB_WITH_OVERHEAD(ksize(data));
218 	prefetchw(data + size);
219 
220 	/*
221 	 * Only clear those fields we need to clear, not those that we will
222 	 * actually initialise below. Hence, don't put any more fields after
223 	 * the tail pointer in struct sk_buff!
224 	 */
225 	memset(skb, 0, offsetof(struct sk_buff, tail));
226 	/* Account for allocated memory : skb + skb->head */
227 	skb->truesize = SKB_TRUESIZE(size);
228 	skb->pfmemalloc = pfmemalloc;
229 	refcount_set(&skb->users, 1);
230 	skb->head = data;
231 	skb->data = data;
232 	skb_reset_tail_pointer(skb);
233 	skb->end = skb->tail + size;
234 	skb->mac_header = (typeof(skb->mac_header))~0U;
235 	skb->transport_header = (typeof(skb->transport_header))~0U;
236 
237 	/* make sure we initialize shinfo sequentially */
238 	shinfo = skb_shinfo(skb);
239 	memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
240 	atomic_set(&shinfo->dataref, 1);
241 
242 	if (flags & SKB_ALLOC_FCLONE) {
243 		struct sk_buff_fclones *fclones;
244 
245 		fclones = container_of(skb, struct sk_buff_fclones, skb1);
246 
247 		skb->fclone = SKB_FCLONE_ORIG;
248 		refcount_set(&fclones->fclone_ref, 1);
249 
250 		fclones->skb2.fclone = SKB_FCLONE_CLONE;
251 	}
252 
253 	skb_set_kcov_handle(skb, kcov_common_handle());
254 
255 out:
256 	return skb;
257 nodata:
258 	kmem_cache_free(cache, skb);
259 	skb = NULL;
260 	goto out;
261 }
262 EXPORT_SYMBOL(__alloc_skb);
263 
264 /* Caller must provide SKB that is memset cleared */
__build_skb_around(struct sk_buff * skb,void * data,unsigned int frag_size)265 static struct sk_buff *__build_skb_around(struct sk_buff *skb,
266 					  void *data, unsigned int frag_size)
267 {
268 	struct skb_shared_info *shinfo;
269 	unsigned int size = frag_size ? : ksize(data);
270 
271 	size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
272 
273 	/* Assumes caller memset cleared SKB */
274 	skb->truesize = SKB_TRUESIZE(size);
275 	refcount_set(&skb->users, 1);
276 	skb->head = data;
277 	skb->data = data;
278 	skb_reset_tail_pointer(skb);
279 	skb->end = skb->tail + size;
280 	skb->mac_header = (typeof(skb->mac_header))~0U;
281 	skb->transport_header = (typeof(skb->transport_header))~0U;
282 
283 	/* make sure we initialize shinfo sequentially */
284 	shinfo = skb_shinfo(skb);
285 	memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
286 	atomic_set(&shinfo->dataref, 1);
287 
288 	skb_set_kcov_handle(skb, kcov_common_handle());
289 
290 	return skb;
291 }
292 
293 /**
294  * __build_skb - build a network buffer
295  * @data: data buffer provided by caller
296  * @frag_size: size of data, or 0 if head was kmalloced
297  *
298  * Allocate a new &sk_buff. Caller provides space holding head and
299  * skb_shared_info. @data must have been allocated by kmalloc() only if
300  * @frag_size is 0, otherwise data should come from the page allocator
301  *  or vmalloc()
302  * The return is the new skb buffer.
303  * On a failure the return is %NULL, and @data is not freed.
304  * Notes :
305  *  Before IO, driver allocates only data buffer where NIC put incoming frame
306  *  Driver should add room at head (NET_SKB_PAD) and
307  *  MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info))
308  *  After IO, driver calls build_skb(), to allocate sk_buff and populate it
309  *  before giving packet to stack.
310  *  RX rings only contains data buffers, not full skbs.
311  */
__build_skb(void * data,unsigned int frag_size)312 struct sk_buff *__build_skb(void *data, unsigned int frag_size)
313 {
314 	struct sk_buff *skb;
315 
316 	skb = kmem_cache_alloc(skbuff_head_cache, GFP_ATOMIC);
317 	if (unlikely(!skb))
318 		return NULL;
319 
320 	memset(skb, 0, offsetof(struct sk_buff, tail));
321 
322 	return __build_skb_around(skb, data, frag_size);
323 }
324 
325 /* build_skb() is wrapper over __build_skb(), that specifically
326  * takes care of skb->head and skb->pfmemalloc
327  * This means that if @frag_size is not zero, then @data must be backed
328  * by a page fragment, not kmalloc() or vmalloc()
329  */
build_skb(void * data,unsigned int frag_size)330 struct sk_buff *build_skb(void *data, unsigned int frag_size)
331 {
332 	struct sk_buff *skb = __build_skb(data, frag_size);
333 
334 	if (skb && frag_size) {
335 		skb->head_frag = 1;
336 		if (page_is_pfmemalloc(virt_to_head_page(data)))
337 			skb->pfmemalloc = 1;
338 	}
339 	return skb;
340 }
341 EXPORT_SYMBOL(build_skb);
342 
343 /**
344  * build_skb_around - build a network buffer around provided skb
345  * @skb: sk_buff provide by caller, must be memset cleared
346  * @data: data buffer provided by caller
347  * @frag_size: size of data, or 0 if head was kmalloced
348  */
build_skb_around(struct sk_buff * skb,void * data,unsigned int frag_size)349 struct sk_buff *build_skb_around(struct sk_buff *skb,
350 				 void *data, unsigned int frag_size)
351 {
352 	if (unlikely(!skb))
353 		return NULL;
354 
355 	skb = __build_skb_around(skb, data, frag_size);
356 
357 	if (skb && frag_size) {
358 		skb->head_frag = 1;
359 		if (page_is_pfmemalloc(virt_to_head_page(data)))
360 			skb->pfmemalloc = 1;
361 	}
362 	return skb;
363 }
364 EXPORT_SYMBOL(build_skb_around);
365 
366 #define NAPI_SKB_CACHE_SIZE	64
367 
368 struct napi_alloc_cache {
369 	struct page_frag_cache page;
370 	unsigned int skb_count;
371 	void *skb_cache[NAPI_SKB_CACHE_SIZE];
372 };
373 
374 static DEFINE_PER_CPU(struct page_frag_cache, netdev_alloc_cache);
375 static DEFINE_PER_CPU(struct napi_alloc_cache, napi_alloc_cache);
376 
__napi_alloc_frag(unsigned int fragsz,gfp_t gfp_mask)377 static void *__napi_alloc_frag(unsigned int fragsz, gfp_t gfp_mask)
378 {
379 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
380 
381 	return page_frag_alloc(&nc->page, fragsz, gfp_mask);
382 }
383 
napi_alloc_frag(unsigned int fragsz)384 void *napi_alloc_frag(unsigned int fragsz)
385 {
386 	fragsz = SKB_DATA_ALIGN(fragsz);
387 
388 	return __napi_alloc_frag(fragsz, GFP_ATOMIC);
389 }
390 EXPORT_SYMBOL(napi_alloc_frag);
391 
392 /**
393  * netdev_alloc_frag - allocate a page fragment
394  * @fragsz: fragment size
395  *
396  * Allocates a frag from a page for receive buffer.
397  * Uses GFP_ATOMIC allocations.
398  */
netdev_alloc_frag(unsigned int fragsz)399 void *netdev_alloc_frag(unsigned int fragsz)
400 {
401 	struct page_frag_cache *nc;
402 	void *data;
403 
404 	fragsz = SKB_DATA_ALIGN(fragsz);
405 	if (in_irq() || irqs_disabled()) {
406 		nc = this_cpu_ptr(&netdev_alloc_cache);
407 		data = page_frag_alloc(nc, fragsz, GFP_ATOMIC);
408 	} else {
409 		local_bh_disable();
410 		data = __napi_alloc_frag(fragsz, GFP_ATOMIC);
411 		local_bh_enable();
412 	}
413 	return data;
414 }
415 EXPORT_SYMBOL(netdev_alloc_frag);
416 
417 /**
418  *	__netdev_alloc_skb - allocate an skbuff for rx on a specific device
419  *	@dev: network device to receive on
420  *	@len: length to allocate
421  *	@gfp_mask: get_free_pages mask, passed to alloc_skb
422  *
423  *	Allocate a new &sk_buff and assign it a usage count of one. The
424  *	buffer has NET_SKB_PAD headroom built in. Users should allocate
425  *	the headroom they think they need without accounting for the
426  *	built in space. The built in space is used for optimisations.
427  *
428  *	%NULL is returned if there is no free memory.
429  */
__netdev_alloc_skb(struct net_device * dev,unsigned int len,gfp_t gfp_mask)430 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int len,
431 				   gfp_t gfp_mask)
432 {
433 	struct page_frag_cache *nc;
434 	struct sk_buff *skb;
435 	bool pfmemalloc;
436 	void *data;
437 
438 	len += NET_SKB_PAD;
439 
440 	/* If requested length is either too small or too big,
441 	 * we use kmalloc() for skb->head allocation.
442 	 */
443 	if (len <= SKB_WITH_OVERHEAD(1024) ||
444 	    len > SKB_WITH_OVERHEAD(PAGE_SIZE) ||
445 	    (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
446 		skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE);
447 		if (!skb)
448 			goto skb_fail;
449 		goto skb_success;
450 	}
451 
452 	len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
453 	len = SKB_DATA_ALIGN(len);
454 
455 	if (sk_memalloc_socks())
456 		gfp_mask |= __GFP_MEMALLOC;
457 
458 	if (in_irq() || irqs_disabled()) {
459 		nc = this_cpu_ptr(&netdev_alloc_cache);
460 		data = page_frag_alloc(nc, len, gfp_mask);
461 		pfmemalloc = nc->pfmemalloc;
462 	} else {
463 		local_bh_disable();
464 		nc = this_cpu_ptr(&napi_alloc_cache.page);
465 		data = page_frag_alloc(nc, len, gfp_mask);
466 		pfmemalloc = nc->pfmemalloc;
467 		local_bh_enable();
468 	}
469 
470 	if (unlikely(!data))
471 		return NULL;
472 
473 	skb = __build_skb(data, len);
474 	if (unlikely(!skb)) {
475 		skb_free_frag(data);
476 		return NULL;
477 	}
478 
479 	if (pfmemalloc)
480 		skb->pfmemalloc = 1;
481 	skb->head_frag = 1;
482 
483 skb_success:
484 	skb_reserve(skb, NET_SKB_PAD);
485 	skb->dev = dev;
486 
487 skb_fail:
488 	return skb;
489 }
490 EXPORT_SYMBOL(__netdev_alloc_skb);
491 
492 /**
493  *	__napi_alloc_skb - allocate skbuff for rx in a specific NAPI instance
494  *	@napi: napi instance this buffer was allocated for
495  *	@len: length to allocate
496  *	@gfp_mask: get_free_pages mask, passed to alloc_skb and alloc_pages
497  *
498  *	Allocate a new sk_buff for use in NAPI receive.  This buffer will
499  *	attempt to allocate the head from a special reserved region used
500  *	only for NAPI Rx allocation.  By doing this we can save several
501  *	CPU cycles by avoiding having to disable and re-enable IRQs.
502  *
503  *	%NULL is returned if there is no free memory.
504  */
__napi_alloc_skb(struct napi_struct * napi,unsigned int len,gfp_t gfp_mask)505 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi, unsigned int len,
506 				 gfp_t gfp_mask)
507 {
508 	struct napi_alloc_cache *nc;
509 	struct sk_buff *skb;
510 	void *data;
511 
512 	len += NET_SKB_PAD + NET_IP_ALIGN;
513 
514 	/* If requested length is either too small or too big,
515 	 * we use kmalloc() for skb->head allocation.
516 	 */
517 	if (len <= SKB_WITH_OVERHEAD(1024) ||
518 	    len > SKB_WITH_OVERHEAD(PAGE_SIZE) ||
519 	    (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
520 		skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE);
521 		if (!skb)
522 			goto skb_fail;
523 		goto skb_success;
524 	}
525 
526 	nc = this_cpu_ptr(&napi_alloc_cache);
527 	len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
528 	len = SKB_DATA_ALIGN(len);
529 
530 	if (sk_memalloc_socks())
531 		gfp_mask |= __GFP_MEMALLOC;
532 
533 	data = page_frag_alloc(&nc->page, len, gfp_mask);
534 	if (unlikely(!data))
535 		return NULL;
536 
537 	skb = __build_skb(data, len);
538 	if (unlikely(!skb)) {
539 		skb_free_frag(data);
540 		return NULL;
541 	}
542 
543 	if (nc->page.pfmemalloc)
544 		skb->pfmemalloc = 1;
545 	skb->head_frag = 1;
546 
547 skb_success:
548 	skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN);
549 	skb->dev = napi->dev;
550 
551 skb_fail:
552 	return skb;
553 }
554 EXPORT_SYMBOL(__napi_alloc_skb);
555 
skb_add_rx_frag(struct sk_buff * skb,int i,struct page * page,int off,int size,unsigned int truesize)556 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
557 		     int size, unsigned int truesize)
558 {
559 	skb_fill_page_desc(skb, i, page, off, size);
560 	skb->len += size;
561 	skb->data_len += size;
562 	skb->truesize += truesize;
563 }
564 EXPORT_SYMBOL(skb_add_rx_frag);
565 
skb_coalesce_rx_frag(struct sk_buff * skb,int i,int size,unsigned int truesize)566 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
567 			  unsigned int truesize)
568 {
569 	skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
570 
571 	skb_frag_size_add(frag, size);
572 	skb->len += size;
573 	skb->data_len += size;
574 	skb->truesize += truesize;
575 }
576 EXPORT_SYMBOL(skb_coalesce_rx_frag);
577 
skb_drop_list(struct sk_buff ** listp)578 static void skb_drop_list(struct sk_buff **listp)
579 {
580 	kfree_skb_list(*listp);
581 	*listp = NULL;
582 }
583 
skb_drop_fraglist(struct sk_buff * skb)584 static inline void skb_drop_fraglist(struct sk_buff *skb)
585 {
586 	skb_drop_list(&skb_shinfo(skb)->frag_list);
587 }
588 
skb_clone_fraglist(struct sk_buff * skb)589 static void skb_clone_fraglist(struct sk_buff *skb)
590 {
591 	struct sk_buff *list;
592 
593 	skb_walk_frags(skb, list)
594 		skb_get(list);
595 }
596 
skb_free_head(struct sk_buff * skb)597 static void skb_free_head(struct sk_buff *skb)
598 {
599 	unsigned char *head = skb->head;
600 
601 	if (skb->head_frag)
602 		skb_free_frag(head);
603 	else
604 		kfree(head);
605 }
606 
skb_release_data(struct sk_buff * skb)607 static void skb_release_data(struct sk_buff *skb)
608 {
609 	struct skb_shared_info *shinfo = skb_shinfo(skb);
610 	int i;
611 
612 	if (skb->cloned &&
613 	    atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1,
614 			      &shinfo->dataref))
615 		return;
616 
617 	for (i = 0; i < shinfo->nr_frags; i++)
618 		__skb_frag_unref(&shinfo->frags[i]);
619 
620 	if (shinfo->frag_list)
621 		kfree_skb_list(shinfo->frag_list);
622 
623 	skb_zcopy_clear(skb, true);
624 	skb_free_head(skb);
625 }
626 
627 /*
628  *	Free an skbuff by memory without cleaning the state.
629  */
kfree_skbmem(struct sk_buff * skb)630 static void kfree_skbmem(struct sk_buff *skb)
631 {
632 	struct sk_buff_fclones *fclones;
633 
634 	switch (skb->fclone) {
635 	case SKB_FCLONE_UNAVAILABLE:
636 		kmem_cache_free(skbuff_head_cache, skb);
637 		return;
638 
639 	case SKB_FCLONE_ORIG:
640 		fclones = container_of(skb, struct sk_buff_fclones, skb1);
641 
642 		/* We usually free the clone (TX completion) before original skb
643 		 * This test would have no chance to be true for the clone,
644 		 * while here, branch prediction will be good.
645 		 */
646 		if (refcount_read(&fclones->fclone_ref) == 1)
647 			goto fastpath;
648 		break;
649 
650 	default: /* SKB_FCLONE_CLONE */
651 		fclones = container_of(skb, struct sk_buff_fclones, skb2);
652 		break;
653 	}
654 	if (!refcount_dec_and_test(&fclones->fclone_ref))
655 		return;
656 fastpath:
657 	kmem_cache_free(skbuff_fclone_cache, fclones);
658 }
659 
skb_release_head_state(struct sk_buff * skb)660 void skb_release_head_state(struct sk_buff *skb)
661 {
662 	nf_reset_ct(skb);
663 	skb_dst_drop(skb);
664 	if (skb->destructor) {
665 		WARN_ON(in_irq());
666 		skb->destructor(skb);
667 	}
668 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
669 	nf_conntrack_put(skb_nfct(skb));
670 #endif
671 	skb_ext_put(skb);
672 }
673 
674 /* Free everything but the sk_buff shell. */
skb_release_all(struct sk_buff * skb)675 static void skb_release_all(struct sk_buff *skb)
676 {
677 	skb_release_head_state(skb);
678 	if (likely(skb->head))
679 		skb_release_data(skb);
680 }
681 
682 /**
683  *	__kfree_skb - private function
684  *	@skb: buffer
685  *
686  *	Free an sk_buff. Release anything attached to the buffer.
687  *	Clean the state. This is an internal helper function. Users should
688  *	always call kfree_skb
689  */
690 
__kfree_skb(struct sk_buff * skb)691 void __kfree_skb(struct sk_buff *skb)
692 {
693 	skb_release_all(skb);
694 	kfree_skbmem(skb);
695 }
696 EXPORT_SYMBOL(__kfree_skb);
697 
698 /**
699  *	kfree_skb - free an sk_buff
700  *	@skb: buffer to free
701  *
702  *	Drop a reference to the buffer and free it if the usage count has
703  *	hit zero.
704  */
kfree_skb(struct sk_buff * skb)705 void kfree_skb(struct sk_buff *skb)
706 {
707 	if (!skb_unref(skb))
708 		return;
709 
710 	trace_kfree_skb(skb, __builtin_return_address(0));
711 	__kfree_skb(skb);
712 }
713 EXPORT_SYMBOL(kfree_skb);
714 
kfree_skb_list(struct sk_buff * segs)715 void kfree_skb_list(struct sk_buff *segs)
716 {
717 	while (segs) {
718 		struct sk_buff *next = segs->next;
719 
720 		kfree_skb(segs);
721 		segs = next;
722 	}
723 }
724 EXPORT_SYMBOL(kfree_skb_list);
725 
726 /* Dump skb information and contents.
727  *
728  * Must only be called from net_ratelimit()-ed paths.
729  *
730  * Dumps whole packets if full_pkt, only headers otherwise.
731  */
skb_dump(const char * level,const struct sk_buff * skb,bool full_pkt)732 void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt)
733 {
734 	struct skb_shared_info *sh = skb_shinfo(skb);
735 	struct net_device *dev = skb->dev;
736 	struct sock *sk = skb->sk;
737 	struct sk_buff *list_skb;
738 	bool has_mac, has_trans;
739 	int headroom, tailroom;
740 	int i, len, seg_len;
741 
742 	if (full_pkt)
743 		len = skb->len;
744 	else
745 		len = min_t(int, skb->len, MAX_HEADER + 128);
746 
747 	headroom = skb_headroom(skb);
748 	tailroom = skb_tailroom(skb);
749 
750 	has_mac = skb_mac_header_was_set(skb);
751 	has_trans = skb_transport_header_was_set(skb);
752 
753 	printk("%sskb len=%u headroom=%u headlen=%u tailroom=%u\n"
754 	       "mac=(%d,%d) net=(%d,%d) trans=%d\n"
755 	       "shinfo(txflags=%u nr_frags=%u gso(size=%hu type=%u segs=%hu))\n"
756 	       "csum(0x%x ip_summed=%u complete_sw=%u valid=%u level=%u)\n"
757 	       "hash(0x%x sw=%u l4=%u) proto=0x%04x pkttype=%u iif=%d\n",
758 	       level, skb->len, headroom, skb_headlen(skb), tailroom,
759 	       has_mac ? skb->mac_header : -1,
760 	       has_mac ? skb_mac_header_len(skb) : -1,
761 	       skb->network_header,
762 	       has_trans ? skb_network_header_len(skb) : -1,
763 	       has_trans ? skb->transport_header : -1,
764 	       sh->tx_flags, sh->nr_frags,
765 	       sh->gso_size, sh->gso_type, sh->gso_segs,
766 	       skb->csum, skb->ip_summed, skb->csum_complete_sw,
767 	       skb->csum_valid, skb->csum_level,
768 	       skb->hash, skb->sw_hash, skb->l4_hash,
769 	       ntohs(skb->protocol), skb->pkt_type, skb->skb_iif);
770 
771 	if (dev)
772 		printk("%sdev name=%s feat=%pNF\n",
773 		       level, dev->name, &dev->features);
774 	if (sk)
775 		printk("%ssk family=%hu type=%u proto=%u\n",
776 		       level, sk->sk_family, sk->sk_type, sk->sk_protocol);
777 
778 	if (full_pkt && headroom)
779 		print_hex_dump(level, "skb headroom: ", DUMP_PREFIX_OFFSET,
780 			       16, 1, skb->head, headroom, false);
781 
782 	seg_len = min_t(int, skb_headlen(skb), len);
783 	if (seg_len)
784 		print_hex_dump(level, "skb linear:   ", DUMP_PREFIX_OFFSET,
785 			       16, 1, skb->data, seg_len, false);
786 	len -= seg_len;
787 
788 	if (full_pkt && tailroom)
789 		print_hex_dump(level, "skb tailroom: ", DUMP_PREFIX_OFFSET,
790 			       16, 1, skb_tail_pointer(skb), tailroom, false);
791 
792 	for (i = 0; len && i < skb_shinfo(skb)->nr_frags; i++) {
793 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
794 		u32 p_off, p_len, copied;
795 		struct page *p;
796 		u8 *vaddr;
797 
798 		skb_frag_foreach_page(frag, skb_frag_off(frag),
799 				      skb_frag_size(frag), p, p_off, p_len,
800 				      copied) {
801 			seg_len = min_t(int, p_len, len);
802 			vaddr = kmap_atomic(p);
803 			print_hex_dump(level, "skb frag:     ",
804 				       DUMP_PREFIX_OFFSET,
805 				       16, 1, vaddr + p_off, seg_len, false);
806 			kunmap_atomic(vaddr);
807 			len -= seg_len;
808 			if (!len)
809 				break;
810 		}
811 	}
812 
813 	if (full_pkt && skb_has_frag_list(skb)) {
814 		printk("skb fraglist:\n");
815 		skb_walk_frags(skb, list_skb)
816 			skb_dump(level, list_skb, true);
817 	}
818 }
819 EXPORT_SYMBOL(skb_dump);
820 
821 /**
822  *	skb_tx_error - report an sk_buff xmit error
823  *	@skb: buffer that triggered an error
824  *
825  *	Report xmit error if a device callback is tracking this skb.
826  *	skb must be freed afterwards.
827  */
skb_tx_error(struct sk_buff * skb)828 void skb_tx_error(struct sk_buff *skb)
829 {
830 	skb_zcopy_clear(skb, true);
831 }
832 EXPORT_SYMBOL(skb_tx_error);
833 
834 #ifdef CONFIG_TRACEPOINTS
835 /**
836  *	consume_skb - free an skbuff
837  *	@skb: buffer to free
838  *
839  *	Drop a ref to the buffer and free it if the usage count has hit zero
840  *	Functions identically to kfree_skb, but kfree_skb assumes that the frame
841  *	is being dropped after a failure and notes that
842  */
consume_skb(struct sk_buff * skb)843 void consume_skb(struct sk_buff *skb)
844 {
845 	if (!skb_unref(skb))
846 		return;
847 
848 	trace_consume_skb(skb);
849 	__kfree_skb(skb);
850 }
851 EXPORT_SYMBOL(consume_skb);
852 #endif
853 
854 /**
855  *	consume_stateless_skb - free an skbuff, assuming it is stateless
856  *	@skb: buffer to free
857  *
858  *	Alike consume_skb(), but this variant assumes that this is the last
859  *	skb reference and all the head states have been already dropped
860  */
__consume_stateless_skb(struct sk_buff * skb)861 void __consume_stateless_skb(struct sk_buff *skb)
862 {
863 	trace_consume_skb(skb);
864 	skb_release_data(skb);
865 	kfree_skbmem(skb);
866 }
867 
__kfree_skb_flush(void)868 void __kfree_skb_flush(void)
869 {
870 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
871 
872 	/* flush skb_cache if containing objects */
873 	if (nc->skb_count) {
874 		kmem_cache_free_bulk(skbuff_head_cache, nc->skb_count,
875 				     nc->skb_cache);
876 		nc->skb_count = 0;
877 	}
878 }
879 
_kfree_skb_defer(struct sk_buff * skb)880 static inline void _kfree_skb_defer(struct sk_buff *skb)
881 {
882 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
883 
884 	/* drop skb->head and call any destructors for packet */
885 	skb_release_all(skb);
886 
887 	/* record skb to CPU local list */
888 	nc->skb_cache[nc->skb_count++] = skb;
889 
890 #ifdef CONFIG_SLUB
891 	/* SLUB writes into objects when freeing */
892 	prefetchw(skb);
893 #endif
894 
895 	/* flush skb_cache if it is filled */
896 	if (unlikely(nc->skb_count == NAPI_SKB_CACHE_SIZE)) {
897 		kmem_cache_free_bulk(skbuff_head_cache, NAPI_SKB_CACHE_SIZE,
898 				     nc->skb_cache);
899 		nc->skb_count = 0;
900 	}
901 }
__kfree_skb_defer(struct sk_buff * skb)902 void __kfree_skb_defer(struct sk_buff *skb)
903 {
904 	_kfree_skb_defer(skb);
905 }
906 
napi_consume_skb(struct sk_buff * skb,int budget)907 void napi_consume_skb(struct sk_buff *skb, int budget)
908 {
909 	/* Zero budget indicate non-NAPI context called us, like netpoll */
910 	if (unlikely(!budget)) {
911 		dev_consume_skb_any(skb);
912 		return;
913 	}
914 
915 	if (!skb_unref(skb))
916 		return;
917 
918 	/* if reaching here SKB is ready to free */
919 	trace_consume_skb(skb);
920 
921 	/* if SKB is a clone, don't handle this case */
922 	if (skb->fclone != SKB_FCLONE_UNAVAILABLE) {
923 		__kfree_skb(skb);
924 		return;
925 	}
926 
927 	_kfree_skb_defer(skb);
928 }
929 EXPORT_SYMBOL(napi_consume_skb);
930 
931 /* Make sure a field is enclosed inside headers_start/headers_end section */
932 #define CHECK_SKB_FIELD(field) \
933 	BUILD_BUG_ON(offsetof(struct sk_buff, field) <		\
934 		     offsetof(struct sk_buff, headers_start));	\
935 	BUILD_BUG_ON(offsetof(struct sk_buff, field) >		\
936 		     offsetof(struct sk_buff, headers_end));	\
937 
__copy_skb_header(struct sk_buff * new,const struct sk_buff * old)938 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
939 {
940 	new->tstamp		= old->tstamp;
941 	/* We do not copy old->sk */
942 	new->dev		= old->dev;
943 	memcpy(new->cb, old->cb, sizeof(old->cb));
944 	skb_dst_copy(new, old);
945 	__skb_ext_copy(new, old);
946 	__nf_copy(new, old, false);
947 
948 	/* Note : this field could be in headers_start/headers_end section
949 	 * It is not yet because we do not want to have a 16 bit hole
950 	 */
951 	new->queue_mapping = old->queue_mapping;
952 
953 	memcpy(&new->headers_start, &old->headers_start,
954 	       offsetof(struct sk_buff, headers_end) -
955 	       offsetof(struct sk_buff, headers_start));
956 	CHECK_SKB_FIELD(protocol);
957 	CHECK_SKB_FIELD(csum);
958 	CHECK_SKB_FIELD(hash);
959 	CHECK_SKB_FIELD(priority);
960 	CHECK_SKB_FIELD(skb_iif);
961 	CHECK_SKB_FIELD(vlan_proto);
962 	CHECK_SKB_FIELD(vlan_tci);
963 	CHECK_SKB_FIELD(transport_header);
964 	CHECK_SKB_FIELD(network_header);
965 	CHECK_SKB_FIELD(mac_header);
966 	CHECK_SKB_FIELD(inner_protocol);
967 	CHECK_SKB_FIELD(inner_transport_header);
968 	CHECK_SKB_FIELD(inner_network_header);
969 	CHECK_SKB_FIELD(inner_mac_header);
970 	CHECK_SKB_FIELD(mark);
971 #ifdef CONFIG_NETWORK_SECMARK
972 	CHECK_SKB_FIELD(secmark);
973 #endif
974 #ifdef CONFIG_NET_RX_BUSY_POLL
975 	CHECK_SKB_FIELD(napi_id);
976 #endif
977 #ifdef CONFIG_XPS
978 	CHECK_SKB_FIELD(sender_cpu);
979 #endif
980 #ifdef CONFIG_NET_SCHED
981 	CHECK_SKB_FIELD(tc_index);
982 #endif
983 
984 }
985 
986 /*
987  * You should not add any new code to this function.  Add it to
988  * __copy_skb_header above instead.
989  */
__skb_clone(struct sk_buff * n,struct sk_buff * skb)990 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb)
991 {
992 #define C(x) n->x = skb->x
993 
994 	n->next = n->prev = NULL;
995 	n->sk = NULL;
996 	__copy_skb_header(n, skb);
997 
998 	C(len);
999 	C(data_len);
1000 	C(mac_len);
1001 	n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len;
1002 	n->cloned = 1;
1003 	n->nohdr = 0;
1004 	n->peeked = 0;
1005 	C(pfmemalloc);
1006 	n->destructor = NULL;
1007 	C(tail);
1008 	C(end);
1009 	C(head);
1010 	C(head_frag);
1011 	C(data);
1012 	C(truesize);
1013 	refcount_set(&n->users, 1);
1014 
1015 	atomic_inc(&(skb_shinfo(skb)->dataref));
1016 	skb->cloned = 1;
1017 
1018 	return n;
1019 #undef C
1020 }
1021 
1022 /**
1023  * alloc_skb_for_msg() - allocate sk_buff to wrap frag list forming a msg
1024  * @first: first sk_buff of the msg
1025  */
alloc_skb_for_msg(struct sk_buff * first)1026 struct sk_buff *alloc_skb_for_msg(struct sk_buff *first)
1027 {
1028 	struct sk_buff *n;
1029 
1030 	n = alloc_skb(0, GFP_ATOMIC);
1031 	if (!n)
1032 		return NULL;
1033 
1034 	n->len = first->len;
1035 	n->data_len = first->len;
1036 	n->truesize = first->truesize;
1037 
1038 	skb_shinfo(n)->frag_list = first;
1039 
1040 	__copy_skb_header(n, first);
1041 	n->destructor = NULL;
1042 
1043 	return n;
1044 }
1045 EXPORT_SYMBOL_GPL(alloc_skb_for_msg);
1046 
1047 /**
1048  *	skb_morph	-	morph one skb into another
1049  *	@dst: the skb to receive the contents
1050  *	@src: the skb to supply the contents
1051  *
1052  *	This is identical to skb_clone except that the target skb is
1053  *	supplied by the user.
1054  *
1055  *	The target skb is returned upon exit.
1056  */
skb_morph(struct sk_buff * dst,struct sk_buff * src)1057 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src)
1058 {
1059 	skb_release_all(dst);
1060 	return __skb_clone(dst, src);
1061 }
1062 EXPORT_SYMBOL_GPL(skb_morph);
1063 
mm_account_pinned_pages(struct mmpin * mmp,size_t size)1064 int mm_account_pinned_pages(struct mmpin *mmp, size_t size)
1065 {
1066 	unsigned long max_pg, num_pg, new_pg, old_pg;
1067 	struct user_struct *user;
1068 
1069 	if (capable(CAP_IPC_LOCK) || !size)
1070 		return 0;
1071 
1072 	num_pg = (size >> PAGE_SHIFT) + 2;	/* worst case */
1073 	max_pg = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
1074 	user = mmp->user ? : current_user();
1075 
1076 	do {
1077 		old_pg = atomic_long_read(&user->locked_vm);
1078 		new_pg = old_pg + num_pg;
1079 		if (new_pg > max_pg)
1080 			return -ENOBUFS;
1081 	} while (atomic_long_cmpxchg(&user->locked_vm, old_pg, new_pg) !=
1082 		 old_pg);
1083 
1084 	if (!mmp->user) {
1085 		mmp->user = get_uid(user);
1086 		mmp->num_pg = num_pg;
1087 	} else {
1088 		mmp->num_pg += num_pg;
1089 	}
1090 
1091 	return 0;
1092 }
1093 EXPORT_SYMBOL_GPL(mm_account_pinned_pages);
1094 
mm_unaccount_pinned_pages(struct mmpin * mmp)1095 void mm_unaccount_pinned_pages(struct mmpin *mmp)
1096 {
1097 	if (mmp->user) {
1098 		atomic_long_sub(mmp->num_pg, &mmp->user->locked_vm);
1099 		free_uid(mmp->user);
1100 	}
1101 }
1102 EXPORT_SYMBOL_GPL(mm_unaccount_pinned_pages);
1103 
sock_zerocopy_alloc(struct sock * sk,size_t size)1104 struct ubuf_info *sock_zerocopy_alloc(struct sock *sk, size_t size)
1105 {
1106 	struct ubuf_info *uarg;
1107 	struct sk_buff *skb;
1108 
1109 	WARN_ON_ONCE(!in_task());
1110 
1111 	skb = sock_omalloc(sk, 0, GFP_KERNEL);
1112 	if (!skb)
1113 		return NULL;
1114 
1115 	BUILD_BUG_ON(sizeof(*uarg) > sizeof(skb->cb));
1116 	uarg = (void *)skb->cb;
1117 	uarg->mmp.user = NULL;
1118 
1119 	if (mm_account_pinned_pages(&uarg->mmp, size)) {
1120 		kfree_skb(skb);
1121 		return NULL;
1122 	}
1123 
1124 	uarg->callback = sock_zerocopy_callback;
1125 	uarg->id = ((u32)atomic_inc_return(&sk->sk_zckey)) - 1;
1126 	uarg->len = 1;
1127 	uarg->bytelen = size;
1128 	uarg->zerocopy = 1;
1129 	refcount_set(&uarg->refcnt, 1);
1130 	sock_hold(sk);
1131 
1132 	return uarg;
1133 }
1134 EXPORT_SYMBOL_GPL(sock_zerocopy_alloc);
1135 
skb_from_uarg(struct ubuf_info * uarg)1136 static inline struct sk_buff *skb_from_uarg(struct ubuf_info *uarg)
1137 {
1138 	return container_of((void *)uarg, struct sk_buff, cb);
1139 }
1140 
sock_zerocopy_realloc(struct sock * sk,size_t size,struct ubuf_info * uarg)1141 struct ubuf_info *sock_zerocopy_realloc(struct sock *sk, size_t size,
1142 					struct ubuf_info *uarg)
1143 {
1144 	if (uarg) {
1145 		const u32 byte_limit = 1 << 19;		/* limit to a few TSO */
1146 		u32 bytelen, next;
1147 
1148 		/* realloc only when socket is locked (TCP, UDP cork),
1149 		 * so uarg->len and sk_zckey access is serialized
1150 		 */
1151 		if (!sock_owned_by_user(sk)) {
1152 			WARN_ON_ONCE(1);
1153 			return NULL;
1154 		}
1155 
1156 		bytelen = uarg->bytelen + size;
1157 		if (uarg->len == USHRT_MAX - 1 || bytelen > byte_limit) {
1158 			/* TCP can create new skb to attach new uarg */
1159 			if (sk->sk_type == SOCK_STREAM)
1160 				goto new_alloc;
1161 			return NULL;
1162 		}
1163 
1164 		next = (u32)atomic_read(&sk->sk_zckey);
1165 		if ((u32)(uarg->id + uarg->len) == next) {
1166 			if (mm_account_pinned_pages(&uarg->mmp, size))
1167 				return NULL;
1168 			uarg->len++;
1169 			uarg->bytelen = bytelen;
1170 			atomic_set(&sk->sk_zckey, ++next);
1171 
1172 			/* no extra ref when appending to datagram (MSG_MORE) */
1173 			if (sk->sk_type == SOCK_STREAM)
1174 				sock_zerocopy_get(uarg);
1175 
1176 			return uarg;
1177 		}
1178 	}
1179 
1180 new_alloc:
1181 	return sock_zerocopy_alloc(sk, size);
1182 }
1183 EXPORT_SYMBOL_GPL(sock_zerocopy_realloc);
1184 
skb_zerocopy_notify_extend(struct sk_buff * skb,u32 lo,u16 len)1185 static bool skb_zerocopy_notify_extend(struct sk_buff *skb, u32 lo, u16 len)
1186 {
1187 	struct sock_exterr_skb *serr = SKB_EXT_ERR(skb);
1188 	u32 old_lo, old_hi;
1189 	u64 sum_len;
1190 
1191 	old_lo = serr->ee.ee_info;
1192 	old_hi = serr->ee.ee_data;
1193 	sum_len = old_hi - old_lo + 1ULL + len;
1194 
1195 	if (sum_len >= (1ULL << 32))
1196 		return false;
1197 
1198 	if (lo != old_hi + 1)
1199 		return false;
1200 
1201 	serr->ee.ee_data += len;
1202 	return true;
1203 }
1204 
sock_zerocopy_callback(struct ubuf_info * uarg,bool success)1205 void sock_zerocopy_callback(struct ubuf_info *uarg, bool success)
1206 {
1207 	struct sk_buff *tail, *skb = skb_from_uarg(uarg);
1208 	struct sock_exterr_skb *serr;
1209 	struct sock *sk = skb->sk;
1210 	struct sk_buff_head *q;
1211 	unsigned long flags;
1212 	u32 lo, hi;
1213 	u16 len;
1214 
1215 	mm_unaccount_pinned_pages(&uarg->mmp);
1216 
1217 	/* if !len, there was only 1 call, and it was aborted
1218 	 * so do not queue a completion notification
1219 	 */
1220 	if (!uarg->len || sock_flag(sk, SOCK_DEAD))
1221 		goto release;
1222 
1223 	len = uarg->len;
1224 	lo = uarg->id;
1225 	hi = uarg->id + len - 1;
1226 
1227 	serr = SKB_EXT_ERR(skb);
1228 	memset(serr, 0, sizeof(*serr));
1229 	serr->ee.ee_errno = 0;
1230 	serr->ee.ee_origin = SO_EE_ORIGIN_ZEROCOPY;
1231 	serr->ee.ee_data = hi;
1232 	serr->ee.ee_info = lo;
1233 	if (!success)
1234 		serr->ee.ee_code |= SO_EE_CODE_ZEROCOPY_COPIED;
1235 
1236 	q = &sk->sk_error_queue;
1237 	spin_lock_irqsave(&q->lock, flags);
1238 	tail = skb_peek_tail(q);
1239 	if (!tail || SKB_EXT_ERR(tail)->ee.ee_origin != SO_EE_ORIGIN_ZEROCOPY ||
1240 	    !skb_zerocopy_notify_extend(tail, lo, len)) {
1241 		__skb_queue_tail(q, skb);
1242 		skb = NULL;
1243 	}
1244 	spin_unlock_irqrestore(&q->lock, flags);
1245 
1246 	sk->sk_error_report(sk);
1247 
1248 release:
1249 	consume_skb(skb);
1250 	sock_put(sk);
1251 }
1252 EXPORT_SYMBOL_GPL(sock_zerocopy_callback);
1253 
sock_zerocopy_put(struct ubuf_info * uarg)1254 void sock_zerocopy_put(struct ubuf_info *uarg)
1255 {
1256 	if (uarg && refcount_dec_and_test(&uarg->refcnt)) {
1257 		if (uarg->callback)
1258 			uarg->callback(uarg, uarg->zerocopy);
1259 		else
1260 			consume_skb(skb_from_uarg(uarg));
1261 	}
1262 }
1263 EXPORT_SYMBOL_GPL(sock_zerocopy_put);
1264 
sock_zerocopy_put_abort(struct ubuf_info * uarg,bool have_uref)1265 void sock_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref)
1266 {
1267 	if (uarg) {
1268 		struct sock *sk = skb_from_uarg(uarg)->sk;
1269 
1270 		atomic_dec(&sk->sk_zckey);
1271 		uarg->len--;
1272 
1273 		if (have_uref)
1274 			sock_zerocopy_put(uarg);
1275 	}
1276 }
1277 EXPORT_SYMBOL_GPL(sock_zerocopy_put_abort);
1278 
skb_zerocopy_iter_dgram(struct sk_buff * skb,struct msghdr * msg,int len)1279 int skb_zerocopy_iter_dgram(struct sk_buff *skb, struct msghdr *msg, int len)
1280 {
1281 	return __zerocopy_sg_from_iter(skb->sk, skb, &msg->msg_iter, len);
1282 }
1283 EXPORT_SYMBOL_GPL(skb_zerocopy_iter_dgram);
1284 
skb_zerocopy_iter_stream(struct sock * sk,struct sk_buff * skb,struct msghdr * msg,int len,struct ubuf_info * uarg)1285 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
1286 			     struct msghdr *msg, int len,
1287 			     struct ubuf_info *uarg)
1288 {
1289 	struct ubuf_info *orig_uarg = skb_zcopy(skb);
1290 	struct iov_iter orig_iter = msg->msg_iter;
1291 	int err, orig_len = skb->len;
1292 
1293 	/* An skb can only point to one uarg. This edge case happens when
1294 	 * TCP appends to an skb, but zerocopy_realloc triggered a new alloc.
1295 	 */
1296 	if (orig_uarg && uarg != orig_uarg)
1297 		return -EEXIST;
1298 
1299 	err = __zerocopy_sg_from_iter(sk, skb, &msg->msg_iter, len);
1300 	if (err == -EFAULT || (err == -EMSGSIZE && skb->len == orig_len)) {
1301 		struct sock *save_sk = skb->sk;
1302 
1303 		/* Streams do not free skb on error. Reset to prev state. */
1304 		msg->msg_iter = orig_iter;
1305 		skb->sk = sk;
1306 		___pskb_trim(skb, orig_len);
1307 		skb->sk = save_sk;
1308 		return err;
1309 	}
1310 
1311 	skb_zcopy_set(skb, uarg, NULL);
1312 	return skb->len - orig_len;
1313 }
1314 EXPORT_SYMBOL_GPL(skb_zerocopy_iter_stream);
1315 
skb_zerocopy_clone(struct sk_buff * nskb,struct sk_buff * orig,gfp_t gfp_mask)1316 static int skb_zerocopy_clone(struct sk_buff *nskb, struct sk_buff *orig,
1317 			      gfp_t gfp_mask)
1318 {
1319 	if (skb_zcopy(orig)) {
1320 		if (skb_zcopy(nskb)) {
1321 			/* !gfp_mask callers are verified to !skb_zcopy(nskb) */
1322 			if (!gfp_mask) {
1323 				WARN_ON_ONCE(1);
1324 				return -ENOMEM;
1325 			}
1326 			if (skb_uarg(nskb) == skb_uarg(orig))
1327 				return 0;
1328 			if (skb_copy_ubufs(nskb, GFP_ATOMIC))
1329 				return -EIO;
1330 		}
1331 		skb_zcopy_set(nskb, skb_uarg(orig), NULL);
1332 	}
1333 	return 0;
1334 }
1335 
1336 /**
1337  *	skb_copy_ubufs	-	copy userspace skb frags buffers to kernel
1338  *	@skb: the skb to modify
1339  *	@gfp_mask: allocation priority
1340  *
1341  *	This must be called on SKBTX_DEV_ZEROCOPY skb.
1342  *	It will copy all frags into kernel and drop the reference
1343  *	to userspace pages.
1344  *
1345  *	If this function is called from an interrupt gfp_mask() must be
1346  *	%GFP_ATOMIC.
1347  *
1348  *	Returns 0 on success or a negative error code on failure
1349  *	to allocate kernel memory to copy to.
1350  */
skb_copy_ubufs(struct sk_buff * skb,gfp_t gfp_mask)1351 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask)
1352 {
1353 	int num_frags = skb_shinfo(skb)->nr_frags;
1354 	struct page *page, *head = NULL;
1355 	int i, new_frags;
1356 	u32 d_off;
1357 
1358 	if (skb_shared(skb) || skb_unclone(skb, gfp_mask))
1359 		return -EINVAL;
1360 
1361 	if (!num_frags)
1362 		goto release;
1363 
1364 	new_frags = (__skb_pagelen(skb) + PAGE_SIZE - 1) >> PAGE_SHIFT;
1365 	for (i = 0; i < new_frags; i++) {
1366 		page = alloc_page(gfp_mask);
1367 		if (!page) {
1368 			while (head) {
1369 				struct page *next = (struct page *)page_private(head);
1370 				put_page(head);
1371 				head = next;
1372 			}
1373 			return -ENOMEM;
1374 		}
1375 		set_page_private(page, (unsigned long)head);
1376 		head = page;
1377 	}
1378 
1379 	page = head;
1380 	d_off = 0;
1381 	for (i = 0; i < num_frags; i++) {
1382 		skb_frag_t *f = &skb_shinfo(skb)->frags[i];
1383 		u32 p_off, p_len, copied;
1384 		struct page *p;
1385 		u8 *vaddr;
1386 
1387 		skb_frag_foreach_page(f, skb_frag_off(f), skb_frag_size(f),
1388 				      p, p_off, p_len, copied) {
1389 			u32 copy, done = 0;
1390 			vaddr = kmap_atomic(p);
1391 
1392 			while (done < p_len) {
1393 				if (d_off == PAGE_SIZE) {
1394 					d_off = 0;
1395 					page = (struct page *)page_private(page);
1396 				}
1397 				copy = min_t(u32, PAGE_SIZE - d_off, p_len - done);
1398 				memcpy(page_address(page) + d_off,
1399 				       vaddr + p_off + done, copy);
1400 				done += copy;
1401 				d_off += copy;
1402 			}
1403 			kunmap_atomic(vaddr);
1404 		}
1405 	}
1406 
1407 	/* skb frags release userspace buffers */
1408 	for (i = 0; i < num_frags; i++)
1409 		skb_frag_unref(skb, i);
1410 
1411 	/* skb frags point to kernel buffers */
1412 	for (i = 0; i < new_frags - 1; i++) {
1413 		__skb_fill_page_desc(skb, i, head, 0, PAGE_SIZE);
1414 		head = (struct page *)page_private(head);
1415 	}
1416 	__skb_fill_page_desc(skb, new_frags - 1, head, 0, d_off);
1417 	skb_shinfo(skb)->nr_frags = new_frags;
1418 
1419 release:
1420 	skb_zcopy_clear(skb, false);
1421 	return 0;
1422 }
1423 EXPORT_SYMBOL_GPL(skb_copy_ubufs);
1424 
1425 /**
1426  *	skb_clone	-	duplicate an sk_buff
1427  *	@skb: buffer to clone
1428  *	@gfp_mask: allocation priority
1429  *
1430  *	Duplicate an &sk_buff. The new one is not owned by a socket. Both
1431  *	copies share the same packet data but not structure. The new
1432  *	buffer has a reference count of 1. If the allocation fails the
1433  *	function returns %NULL otherwise the new buffer is returned.
1434  *
1435  *	If this function is called from an interrupt gfp_mask() must be
1436  *	%GFP_ATOMIC.
1437  */
1438 
skb_clone(struct sk_buff * skb,gfp_t gfp_mask)1439 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
1440 {
1441 	struct sk_buff_fclones *fclones = container_of(skb,
1442 						       struct sk_buff_fclones,
1443 						       skb1);
1444 	struct sk_buff *n;
1445 
1446 	if (skb_orphan_frags(skb, gfp_mask))
1447 		return NULL;
1448 
1449 	if (skb->fclone == SKB_FCLONE_ORIG &&
1450 	    refcount_read(&fclones->fclone_ref) == 1) {
1451 		n = &fclones->skb2;
1452 		refcount_set(&fclones->fclone_ref, 2);
1453 	} else {
1454 		if (skb_pfmemalloc(skb))
1455 			gfp_mask |= __GFP_MEMALLOC;
1456 
1457 		n = kmem_cache_alloc(skbuff_head_cache, gfp_mask);
1458 		if (!n)
1459 			return NULL;
1460 
1461 		n->fclone = SKB_FCLONE_UNAVAILABLE;
1462 	}
1463 
1464 	return __skb_clone(n, skb);
1465 }
1466 EXPORT_SYMBOL(skb_clone);
1467 
skb_headers_offset_update(struct sk_buff * skb,int off)1468 void skb_headers_offset_update(struct sk_buff *skb, int off)
1469 {
1470 	/* Only adjust this if it actually is csum_start rather than csum */
1471 	if (skb->ip_summed == CHECKSUM_PARTIAL)
1472 		skb->csum_start += off;
1473 	/* {transport,network,mac}_header and tail are relative to skb->head */
1474 	skb->transport_header += off;
1475 	skb->network_header   += off;
1476 	if (skb_mac_header_was_set(skb))
1477 		skb->mac_header += off;
1478 	skb->inner_transport_header += off;
1479 	skb->inner_network_header += off;
1480 	skb->inner_mac_header += off;
1481 }
1482 EXPORT_SYMBOL(skb_headers_offset_update);
1483 
skb_copy_header(struct sk_buff * new,const struct sk_buff * old)1484 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old)
1485 {
1486 	__copy_skb_header(new, old);
1487 
1488 	skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
1489 	skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
1490 	skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
1491 }
1492 EXPORT_SYMBOL(skb_copy_header);
1493 
skb_alloc_rx_flag(const struct sk_buff * skb)1494 static inline int skb_alloc_rx_flag(const struct sk_buff *skb)
1495 {
1496 	if (skb_pfmemalloc(skb))
1497 		return SKB_ALLOC_RX;
1498 	return 0;
1499 }
1500 
1501 /**
1502  *	skb_copy	-	create private copy of an sk_buff
1503  *	@skb: buffer to copy
1504  *	@gfp_mask: allocation priority
1505  *
1506  *	Make a copy of both an &sk_buff and its data. This is used when the
1507  *	caller wishes to modify the data and needs a private copy of the
1508  *	data to alter. Returns %NULL on failure or the pointer to the buffer
1509  *	on success. The returned buffer has a reference count of 1.
1510  *
1511  *	As by-product this function converts non-linear &sk_buff to linear
1512  *	one, so that &sk_buff becomes completely private and caller is allowed
1513  *	to modify all the data of returned buffer. This means that this
1514  *	function is not recommended for use in circumstances when only
1515  *	header is going to be modified. Use pskb_copy() instead.
1516  */
1517 
skb_copy(const struct sk_buff * skb,gfp_t gfp_mask)1518 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
1519 {
1520 	int headerlen = skb_headroom(skb);
1521 	unsigned int size = skb_end_offset(skb) + skb->data_len;
1522 	struct sk_buff *n = __alloc_skb(size, gfp_mask,
1523 					skb_alloc_rx_flag(skb), NUMA_NO_NODE);
1524 
1525 	if (!n)
1526 		return NULL;
1527 
1528 	/* Set the data pointer */
1529 	skb_reserve(n, headerlen);
1530 	/* Set the tail pointer and length */
1531 	skb_put(n, skb->len);
1532 
1533 	BUG_ON(skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len));
1534 
1535 	skb_copy_header(n, skb);
1536 	return n;
1537 }
1538 EXPORT_SYMBOL(skb_copy);
1539 
1540 /**
1541  *	__pskb_copy_fclone	-  create copy of an sk_buff with private head.
1542  *	@skb: buffer to copy
1543  *	@headroom: headroom of new skb
1544  *	@gfp_mask: allocation priority
1545  *	@fclone: if true allocate the copy of the skb from the fclone
1546  *	cache instead of the head cache; it is recommended to set this
1547  *	to true for the cases where the copy will likely be cloned
1548  *
1549  *	Make a copy of both an &sk_buff and part of its data, located
1550  *	in header. Fragmented data remain shared. This is used when
1551  *	the caller wishes to modify only header of &sk_buff and needs
1552  *	private copy of the header to alter. Returns %NULL on failure
1553  *	or the pointer to the buffer on success.
1554  *	The returned buffer has a reference count of 1.
1555  */
1556 
__pskb_copy_fclone(struct sk_buff * skb,int headroom,gfp_t gfp_mask,bool fclone)1557 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
1558 				   gfp_t gfp_mask, bool fclone)
1559 {
1560 	unsigned int size = skb_headlen(skb) + headroom;
1561 	int flags = skb_alloc_rx_flag(skb) | (fclone ? SKB_ALLOC_FCLONE : 0);
1562 	struct sk_buff *n = __alloc_skb(size, gfp_mask, flags, NUMA_NO_NODE);
1563 
1564 	if (!n)
1565 		goto out;
1566 
1567 	/* Set the data pointer */
1568 	skb_reserve(n, headroom);
1569 	/* Set the tail pointer and length */
1570 	skb_put(n, skb_headlen(skb));
1571 	/* Copy the bytes */
1572 	skb_copy_from_linear_data(skb, n->data, n->len);
1573 
1574 	n->truesize += skb->data_len;
1575 	n->data_len  = skb->data_len;
1576 	n->len	     = skb->len;
1577 
1578 	if (skb_shinfo(skb)->nr_frags) {
1579 		int i;
1580 
1581 		if (skb_orphan_frags(skb, gfp_mask) ||
1582 		    skb_zerocopy_clone(n, skb, gfp_mask)) {
1583 			kfree_skb(n);
1584 			n = NULL;
1585 			goto out;
1586 		}
1587 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1588 			skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
1589 			skb_frag_ref(skb, i);
1590 		}
1591 		skb_shinfo(n)->nr_frags = i;
1592 	}
1593 
1594 	if (skb_has_frag_list(skb)) {
1595 		skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
1596 		skb_clone_fraglist(n);
1597 	}
1598 
1599 	skb_copy_header(n, skb);
1600 out:
1601 	return n;
1602 }
1603 EXPORT_SYMBOL(__pskb_copy_fclone);
1604 
1605 /**
1606  *	pskb_expand_head - reallocate header of &sk_buff
1607  *	@skb: buffer to reallocate
1608  *	@nhead: room to add at head
1609  *	@ntail: room to add at tail
1610  *	@gfp_mask: allocation priority
1611  *
1612  *	Expands (or creates identical copy, if @nhead and @ntail are zero)
1613  *	header of @skb. &sk_buff itself is not changed. &sk_buff MUST have
1614  *	reference count of 1. Returns zero in the case of success or error,
1615  *	if expansion failed. In the last case, &sk_buff is not changed.
1616  *
1617  *	All the pointers pointing into skb header may change and must be
1618  *	reloaded after call to this function.
1619  */
1620 
pskb_expand_head(struct sk_buff * skb,int nhead,int ntail,gfp_t gfp_mask)1621 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
1622 		     gfp_t gfp_mask)
1623 {
1624 	int i, osize = skb_end_offset(skb);
1625 	int size = osize + nhead + ntail;
1626 	long off;
1627 	u8 *data;
1628 
1629 	BUG_ON(nhead < 0);
1630 
1631 	BUG_ON(skb_shared(skb));
1632 
1633 	size = SKB_DATA_ALIGN(size);
1634 
1635 	if (skb_pfmemalloc(skb))
1636 		gfp_mask |= __GFP_MEMALLOC;
1637 	data = kmalloc_reserve(size + SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
1638 			       gfp_mask, NUMA_NO_NODE, NULL);
1639 	if (!data)
1640 		goto nodata;
1641 	size = SKB_WITH_OVERHEAD(ksize(data));
1642 
1643 	/* Copy only real data... and, alas, header. This should be
1644 	 * optimized for the cases when header is void.
1645 	 */
1646 	memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head);
1647 
1648 	memcpy((struct skb_shared_info *)(data + size),
1649 	       skb_shinfo(skb),
1650 	       offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags]));
1651 
1652 	/*
1653 	 * if shinfo is shared we must drop the old head gracefully, but if it
1654 	 * is not we can just drop the old head and let the existing refcount
1655 	 * be since all we did is relocate the values
1656 	 */
1657 	if (skb_cloned(skb)) {
1658 		if (skb_orphan_frags(skb, gfp_mask))
1659 			goto nofrags;
1660 		if (skb_zcopy(skb))
1661 			refcount_inc(&skb_uarg(skb)->refcnt);
1662 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1663 			skb_frag_ref(skb, i);
1664 
1665 		if (skb_has_frag_list(skb))
1666 			skb_clone_fraglist(skb);
1667 
1668 		skb_release_data(skb);
1669 	} else {
1670 		skb_free_head(skb);
1671 	}
1672 	off = (data + nhead) - skb->head;
1673 
1674 	skb->head     = data;
1675 	skb->head_frag = 0;
1676 	skb->data    += off;
1677 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1678 	skb->end      = size;
1679 	off           = nhead;
1680 #else
1681 	skb->end      = skb->head + size;
1682 #endif
1683 	skb->tail	      += off;
1684 	skb_headers_offset_update(skb, nhead);
1685 	skb->cloned   = 0;
1686 	skb->hdr_len  = 0;
1687 	skb->nohdr    = 0;
1688 	atomic_set(&skb_shinfo(skb)->dataref, 1);
1689 
1690 	skb_metadata_clear(skb);
1691 
1692 	/* It is not generally safe to change skb->truesize.
1693 	 * For the moment, we really care of rx path, or
1694 	 * when skb is orphaned (not attached to a socket).
1695 	 */
1696 	if (!skb->sk || skb->destructor == sock_edemux)
1697 		skb->truesize += size - osize;
1698 
1699 	return 0;
1700 
1701 nofrags:
1702 	kfree(data);
1703 nodata:
1704 	return -ENOMEM;
1705 }
1706 EXPORT_SYMBOL(pskb_expand_head);
1707 
1708 /* Make private copy of skb with writable head and some headroom */
1709 
skb_realloc_headroom(struct sk_buff * skb,unsigned int headroom)1710 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
1711 {
1712 	struct sk_buff *skb2;
1713 	int delta = headroom - skb_headroom(skb);
1714 
1715 	if (delta <= 0)
1716 		skb2 = pskb_copy(skb, GFP_ATOMIC);
1717 	else {
1718 		skb2 = skb_clone(skb, GFP_ATOMIC);
1719 		if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
1720 					     GFP_ATOMIC)) {
1721 			kfree_skb(skb2);
1722 			skb2 = NULL;
1723 		}
1724 	}
1725 	return skb2;
1726 }
1727 EXPORT_SYMBOL(skb_realloc_headroom);
1728 
1729 /**
1730  *	skb_copy_expand	-	copy and expand sk_buff
1731  *	@skb: buffer to copy
1732  *	@newheadroom: new free bytes at head
1733  *	@newtailroom: new free bytes at tail
1734  *	@gfp_mask: allocation priority
1735  *
1736  *	Make a copy of both an &sk_buff and its data and while doing so
1737  *	allocate additional space.
1738  *
1739  *	This is used when the caller wishes to modify the data and needs a
1740  *	private copy of the data to alter as well as more space for new fields.
1741  *	Returns %NULL on failure or the pointer to the buffer
1742  *	on success. The returned buffer has a reference count of 1.
1743  *
1744  *	You must pass %GFP_ATOMIC as the allocation priority if this function
1745  *	is called from an interrupt.
1746  */
skb_copy_expand(const struct sk_buff * skb,int newheadroom,int newtailroom,gfp_t gfp_mask)1747 struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
1748 				int newheadroom, int newtailroom,
1749 				gfp_t gfp_mask)
1750 {
1751 	/*
1752 	 *	Allocate the copy buffer
1753 	 */
1754 	struct sk_buff *n = __alloc_skb(newheadroom + skb->len + newtailroom,
1755 					gfp_mask, skb_alloc_rx_flag(skb),
1756 					NUMA_NO_NODE);
1757 	int oldheadroom = skb_headroom(skb);
1758 	int head_copy_len, head_copy_off;
1759 
1760 	if (!n)
1761 		return NULL;
1762 
1763 	skb_reserve(n, newheadroom);
1764 
1765 	/* Set the tail pointer and length */
1766 	skb_put(n, skb->len);
1767 
1768 	head_copy_len = oldheadroom;
1769 	head_copy_off = 0;
1770 	if (newheadroom <= head_copy_len)
1771 		head_copy_len = newheadroom;
1772 	else
1773 		head_copy_off = newheadroom - head_copy_len;
1774 
1775 	/* Copy the linear header and data. */
1776 	BUG_ON(skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
1777 			     skb->len + head_copy_len));
1778 
1779 	skb_copy_header(n, skb);
1780 
1781 	skb_headers_offset_update(n, newheadroom - oldheadroom);
1782 
1783 	return n;
1784 }
1785 EXPORT_SYMBOL(skb_copy_expand);
1786 
1787 /**
1788  *	__skb_pad		-	zero pad the tail of an skb
1789  *	@skb: buffer to pad
1790  *	@pad: space to pad
1791  *	@free_on_error: free buffer on error
1792  *
1793  *	Ensure that a buffer is followed by a padding area that is zero
1794  *	filled. Used by network drivers which may DMA or transfer data
1795  *	beyond the buffer end onto the wire.
1796  *
1797  *	May return error in out of memory cases. The skb is freed on error
1798  *	if @free_on_error is true.
1799  */
1800 
__skb_pad(struct sk_buff * skb,int pad,bool free_on_error)1801 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error)
1802 {
1803 	int err;
1804 	int ntail;
1805 
1806 	/* If the skbuff is non linear tailroom is always zero.. */
1807 	if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
1808 		memset(skb->data+skb->len, 0, pad);
1809 		return 0;
1810 	}
1811 
1812 	ntail = skb->data_len + pad - (skb->end - skb->tail);
1813 	if (likely(skb_cloned(skb) || ntail > 0)) {
1814 		err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
1815 		if (unlikely(err))
1816 			goto free_skb;
1817 	}
1818 
1819 	/* FIXME: The use of this function with non-linear skb's really needs
1820 	 * to be audited.
1821 	 */
1822 	err = skb_linearize(skb);
1823 	if (unlikely(err))
1824 		goto free_skb;
1825 
1826 	memset(skb->data + skb->len, 0, pad);
1827 	return 0;
1828 
1829 free_skb:
1830 	if (free_on_error)
1831 		kfree_skb(skb);
1832 	return err;
1833 }
1834 EXPORT_SYMBOL(__skb_pad);
1835 
1836 /**
1837  *	pskb_put - add data to the tail of a potentially fragmented buffer
1838  *	@skb: start of the buffer to use
1839  *	@tail: tail fragment of the buffer to use
1840  *	@len: amount of data to add
1841  *
1842  *	This function extends the used data area of the potentially
1843  *	fragmented buffer. @tail must be the last fragment of @skb -- or
1844  *	@skb itself. If this would exceed the total buffer size the kernel
1845  *	will panic. A pointer to the first byte of the extra data is
1846  *	returned.
1847  */
1848 
pskb_put(struct sk_buff * skb,struct sk_buff * tail,int len)1849 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len)
1850 {
1851 	if (tail != skb) {
1852 		skb->data_len += len;
1853 		skb->len += len;
1854 	}
1855 	return skb_put(tail, len);
1856 }
1857 EXPORT_SYMBOL_GPL(pskb_put);
1858 
1859 /**
1860  *	skb_put - add data to a buffer
1861  *	@skb: buffer to use
1862  *	@len: amount of data to add
1863  *
1864  *	This function extends the used data area of the buffer. If this would
1865  *	exceed the total buffer size the kernel will panic. A pointer to the
1866  *	first byte of the extra data is returned.
1867  */
skb_put(struct sk_buff * skb,unsigned int len)1868 void *skb_put(struct sk_buff *skb, unsigned int len)
1869 {
1870 	void *tmp = skb_tail_pointer(skb);
1871 	SKB_LINEAR_ASSERT(skb);
1872 	skb->tail += len;
1873 	skb->len  += len;
1874 	if (unlikely(skb->tail > skb->end))
1875 		skb_over_panic(skb, len, __builtin_return_address(0));
1876 	return tmp;
1877 }
1878 EXPORT_SYMBOL(skb_put);
1879 
1880 /**
1881  *	skb_push - add data to the start of a buffer
1882  *	@skb: buffer to use
1883  *	@len: amount of data to add
1884  *
1885  *	This function extends the used data area of the buffer at the buffer
1886  *	start. If this would exceed the total buffer headroom the kernel will
1887  *	panic. A pointer to the first byte of the extra data is returned.
1888  */
skb_push(struct sk_buff * skb,unsigned int len)1889 void *skb_push(struct sk_buff *skb, unsigned int len)
1890 {
1891 	skb->data -= len;
1892 	skb->len  += len;
1893 	if (unlikely(skb->data < skb->head))
1894 		skb_under_panic(skb, len, __builtin_return_address(0));
1895 	return skb->data;
1896 }
1897 EXPORT_SYMBOL(skb_push);
1898 
1899 /**
1900  *	skb_pull - remove data from the start of a buffer
1901  *	@skb: buffer to use
1902  *	@len: amount of data to remove
1903  *
1904  *	This function removes data from the start of a buffer, returning
1905  *	the memory to the headroom. A pointer to the next data in the buffer
1906  *	is returned. Once the data has been pulled future pushes will overwrite
1907  *	the old data.
1908  */
skb_pull(struct sk_buff * skb,unsigned int len)1909 void *skb_pull(struct sk_buff *skb, unsigned int len)
1910 {
1911 	return skb_pull_inline(skb, len);
1912 }
1913 EXPORT_SYMBOL(skb_pull);
1914 
1915 /**
1916  *	skb_trim - remove end from a buffer
1917  *	@skb: buffer to alter
1918  *	@len: new length
1919  *
1920  *	Cut the length of a buffer down by removing data from the tail. If
1921  *	the buffer is already under the length specified it is not modified.
1922  *	The skb must be linear.
1923  */
skb_trim(struct sk_buff * skb,unsigned int len)1924 void skb_trim(struct sk_buff *skb, unsigned int len)
1925 {
1926 	if (skb->len > len)
1927 		__skb_trim(skb, len);
1928 }
1929 EXPORT_SYMBOL(skb_trim);
1930 
1931 /* Trims skb to length len. It can change skb pointers.
1932  */
1933 
___pskb_trim(struct sk_buff * skb,unsigned int len)1934 int ___pskb_trim(struct sk_buff *skb, unsigned int len)
1935 {
1936 	struct sk_buff **fragp;
1937 	struct sk_buff *frag;
1938 	int offset = skb_headlen(skb);
1939 	int nfrags = skb_shinfo(skb)->nr_frags;
1940 	int i;
1941 	int err;
1942 
1943 	if (skb_cloned(skb) &&
1944 	    unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
1945 		return err;
1946 
1947 	i = 0;
1948 	if (offset >= len)
1949 		goto drop_pages;
1950 
1951 	for (; i < nfrags; i++) {
1952 		int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]);
1953 
1954 		if (end < len) {
1955 			offset = end;
1956 			continue;
1957 		}
1958 
1959 		skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset);
1960 
1961 drop_pages:
1962 		skb_shinfo(skb)->nr_frags = i;
1963 
1964 		for (; i < nfrags; i++)
1965 			skb_frag_unref(skb, i);
1966 
1967 		if (skb_has_frag_list(skb))
1968 			skb_drop_fraglist(skb);
1969 		goto done;
1970 	}
1971 
1972 	for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
1973 	     fragp = &frag->next) {
1974 		int end = offset + frag->len;
1975 
1976 		if (skb_shared(frag)) {
1977 			struct sk_buff *nfrag;
1978 
1979 			nfrag = skb_clone(frag, GFP_ATOMIC);
1980 			if (unlikely(!nfrag))
1981 				return -ENOMEM;
1982 
1983 			nfrag->next = frag->next;
1984 			consume_skb(frag);
1985 			frag = nfrag;
1986 			*fragp = frag;
1987 		}
1988 
1989 		if (end < len) {
1990 			offset = end;
1991 			continue;
1992 		}
1993 
1994 		if (end > len &&
1995 		    unlikely((err = pskb_trim(frag, len - offset))))
1996 			return err;
1997 
1998 		if (frag->next)
1999 			skb_drop_list(&frag->next);
2000 		break;
2001 	}
2002 
2003 done:
2004 	if (len > skb_headlen(skb)) {
2005 		skb->data_len -= skb->len - len;
2006 		skb->len       = len;
2007 	} else {
2008 		skb->len       = len;
2009 		skb->data_len  = 0;
2010 		skb_set_tail_pointer(skb, len);
2011 	}
2012 
2013 	if (!skb->sk || skb->destructor == sock_edemux)
2014 		skb_condense(skb);
2015 	return 0;
2016 }
2017 EXPORT_SYMBOL(___pskb_trim);
2018 
2019 /* Note : use pskb_trim_rcsum() instead of calling this directly
2020  */
pskb_trim_rcsum_slow(struct sk_buff * skb,unsigned int len)2021 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len)
2022 {
2023 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
2024 		int delta = skb->len - len;
2025 
2026 		skb->csum = csum_block_sub(skb->csum,
2027 					   skb_checksum(skb, len, delta, 0),
2028 					   len);
2029 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) {
2030 		int hdlen = (len > skb_headlen(skb)) ? skb_headlen(skb) : len;
2031 		int offset = skb_checksum_start_offset(skb) + skb->csum_offset;
2032 
2033 		if (offset + sizeof(__sum16) > hdlen)
2034 			return -EINVAL;
2035 	}
2036 	return __pskb_trim(skb, len);
2037 }
2038 EXPORT_SYMBOL(pskb_trim_rcsum_slow);
2039 
2040 /**
2041  *	__pskb_pull_tail - advance tail of skb header
2042  *	@skb: buffer to reallocate
2043  *	@delta: number of bytes to advance tail
2044  *
2045  *	The function makes a sense only on a fragmented &sk_buff,
2046  *	it expands header moving its tail forward and copying necessary
2047  *	data from fragmented part.
2048  *
2049  *	&sk_buff MUST have reference count of 1.
2050  *
2051  *	Returns %NULL (and &sk_buff does not change) if pull failed
2052  *	or value of new tail of skb in the case of success.
2053  *
2054  *	All the pointers pointing into skb header may change and must be
2055  *	reloaded after call to this function.
2056  */
2057 
2058 /* Moves tail of skb head forward, copying data from fragmented part,
2059  * when it is necessary.
2060  * 1. It may fail due to malloc failure.
2061  * 2. It may change skb pointers.
2062  *
2063  * It is pretty complicated. Luckily, it is called only in exceptional cases.
2064  */
__pskb_pull_tail(struct sk_buff * skb,int delta)2065 void *__pskb_pull_tail(struct sk_buff *skb, int delta)
2066 {
2067 	/* If skb has not enough free space at tail, get new one
2068 	 * plus 128 bytes for future expansions. If we have enough
2069 	 * room at tail, reallocate without expansion only if skb is cloned.
2070 	 */
2071 	int i, k, eat = (skb->tail + delta) - skb->end;
2072 
2073 	if (eat > 0 || skb_cloned(skb)) {
2074 		if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
2075 				     GFP_ATOMIC))
2076 			return NULL;
2077 	}
2078 
2079 	BUG_ON(skb_copy_bits(skb, skb_headlen(skb),
2080 			     skb_tail_pointer(skb), delta));
2081 
2082 	/* Optimization: no fragments, no reasons to preestimate
2083 	 * size of pulled pages. Superb.
2084 	 */
2085 	if (!skb_has_frag_list(skb))
2086 		goto pull_pages;
2087 
2088 	/* Estimate size of pulled pages. */
2089 	eat = delta;
2090 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2091 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2092 
2093 		if (size >= eat)
2094 			goto pull_pages;
2095 		eat -= size;
2096 	}
2097 
2098 	/* If we need update frag list, we are in troubles.
2099 	 * Certainly, it is possible to add an offset to skb data,
2100 	 * but taking into account that pulling is expected to
2101 	 * be very rare operation, it is worth to fight against
2102 	 * further bloating skb head and crucify ourselves here instead.
2103 	 * Pure masohism, indeed. 8)8)
2104 	 */
2105 	if (eat) {
2106 		struct sk_buff *list = skb_shinfo(skb)->frag_list;
2107 		struct sk_buff *clone = NULL;
2108 		struct sk_buff *insp = NULL;
2109 
2110 		do {
2111 			if (list->len <= eat) {
2112 				/* Eaten as whole. */
2113 				eat -= list->len;
2114 				list = list->next;
2115 				insp = list;
2116 			} else {
2117 				/* Eaten partially. */
2118 
2119 				if (skb_shared(list)) {
2120 					/* Sucks! We need to fork list. :-( */
2121 					clone = skb_clone(list, GFP_ATOMIC);
2122 					if (!clone)
2123 						return NULL;
2124 					insp = list->next;
2125 					list = clone;
2126 				} else {
2127 					/* This may be pulled without
2128 					 * problems. */
2129 					insp = list;
2130 				}
2131 				if (!pskb_pull(list, eat)) {
2132 					kfree_skb(clone);
2133 					return NULL;
2134 				}
2135 				break;
2136 			}
2137 		} while (eat);
2138 
2139 		/* Free pulled out fragments. */
2140 		while ((list = skb_shinfo(skb)->frag_list) != insp) {
2141 			skb_shinfo(skb)->frag_list = list->next;
2142 			kfree_skb(list);
2143 		}
2144 		/* And insert new clone at head. */
2145 		if (clone) {
2146 			clone->next = list;
2147 			skb_shinfo(skb)->frag_list = clone;
2148 		}
2149 	}
2150 	/* Success! Now we may commit changes to skb data. */
2151 
2152 pull_pages:
2153 	eat = delta;
2154 	k = 0;
2155 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2156 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2157 
2158 		if (size <= eat) {
2159 			skb_frag_unref(skb, i);
2160 			eat -= size;
2161 		} else {
2162 			skb_frag_t *frag = &skb_shinfo(skb)->frags[k];
2163 
2164 			*frag = skb_shinfo(skb)->frags[i];
2165 			if (eat) {
2166 				skb_frag_off_add(frag, eat);
2167 				skb_frag_size_sub(frag, eat);
2168 				if (!i)
2169 					goto end;
2170 				eat = 0;
2171 			}
2172 			k++;
2173 		}
2174 	}
2175 	skb_shinfo(skb)->nr_frags = k;
2176 
2177 end:
2178 	skb->tail     += delta;
2179 	skb->data_len -= delta;
2180 
2181 	if (!skb->data_len)
2182 		skb_zcopy_clear(skb, false);
2183 
2184 	return skb_tail_pointer(skb);
2185 }
2186 EXPORT_SYMBOL(__pskb_pull_tail);
2187 
2188 /**
2189  *	skb_copy_bits - copy bits from skb to kernel buffer
2190  *	@skb: source skb
2191  *	@offset: offset in source
2192  *	@to: destination buffer
2193  *	@len: number of bytes to copy
2194  *
2195  *	Copy the specified number of bytes from the source skb to the
2196  *	destination buffer.
2197  *
2198  *	CAUTION ! :
2199  *		If its prototype is ever changed,
2200  *		check arch/{*}/net/{*}.S files,
2201  *		since it is called from BPF assembly code.
2202  */
skb_copy_bits(const struct sk_buff * skb,int offset,void * to,int len)2203 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
2204 {
2205 	int start = skb_headlen(skb);
2206 	struct sk_buff *frag_iter;
2207 	int i, copy;
2208 
2209 	if (offset > (int)skb->len - len)
2210 		goto fault;
2211 
2212 	/* Copy header. */
2213 	if ((copy = start - offset) > 0) {
2214 		if (copy > len)
2215 			copy = len;
2216 		skb_copy_from_linear_data_offset(skb, offset, to, copy);
2217 		if ((len -= copy) == 0)
2218 			return 0;
2219 		offset += copy;
2220 		to     += copy;
2221 	}
2222 
2223 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2224 		int end;
2225 		skb_frag_t *f = &skb_shinfo(skb)->frags[i];
2226 
2227 		WARN_ON(start > offset + len);
2228 
2229 		end = start + skb_frag_size(f);
2230 		if ((copy = end - offset) > 0) {
2231 			u32 p_off, p_len, copied;
2232 			struct page *p;
2233 			u8 *vaddr;
2234 
2235 			if (copy > len)
2236 				copy = len;
2237 
2238 			skb_frag_foreach_page(f,
2239 					      skb_frag_off(f) + offset - start,
2240 					      copy, p, p_off, p_len, copied) {
2241 				vaddr = kmap_atomic(p);
2242 				memcpy(to + copied, vaddr + p_off, p_len);
2243 				kunmap_atomic(vaddr);
2244 			}
2245 
2246 			if ((len -= copy) == 0)
2247 				return 0;
2248 			offset += copy;
2249 			to     += copy;
2250 		}
2251 		start = end;
2252 	}
2253 
2254 	skb_walk_frags(skb, frag_iter) {
2255 		int end;
2256 
2257 		WARN_ON(start > offset + len);
2258 
2259 		end = start + frag_iter->len;
2260 		if ((copy = end - offset) > 0) {
2261 			if (copy > len)
2262 				copy = len;
2263 			if (skb_copy_bits(frag_iter, offset - start, to, copy))
2264 				goto fault;
2265 			if ((len -= copy) == 0)
2266 				return 0;
2267 			offset += copy;
2268 			to     += copy;
2269 		}
2270 		start = end;
2271 	}
2272 
2273 	if (!len)
2274 		return 0;
2275 
2276 fault:
2277 	return -EFAULT;
2278 }
2279 EXPORT_SYMBOL(skb_copy_bits);
2280 
2281 /*
2282  * Callback from splice_to_pipe(), if we need to release some pages
2283  * at the end of the spd in case we error'ed out in filling the pipe.
2284  */
sock_spd_release(struct splice_pipe_desc * spd,unsigned int i)2285 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i)
2286 {
2287 	put_page(spd->pages[i]);
2288 }
2289 
linear_to_page(struct page * page,unsigned int * len,unsigned int * offset,struct sock * sk)2290 static struct page *linear_to_page(struct page *page, unsigned int *len,
2291 				   unsigned int *offset,
2292 				   struct sock *sk)
2293 {
2294 	struct page_frag *pfrag = sk_page_frag(sk);
2295 
2296 	if (!sk_page_frag_refill(sk, pfrag))
2297 		return NULL;
2298 
2299 	*len = min_t(unsigned int, *len, pfrag->size - pfrag->offset);
2300 
2301 	memcpy(page_address(pfrag->page) + pfrag->offset,
2302 	       page_address(page) + *offset, *len);
2303 	*offset = pfrag->offset;
2304 	pfrag->offset += *len;
2305 
2306 	return pfrag->page;
2307 }
2308 
spd_can_coalesce(const struct splice_pipe_desc * spd,struct page * page,unsigned int offset)2309 static bool spd_can_coalesce(const struct splice_pipe_desc *spd,
2310 			     struct page *page,
2311 			     unsigned int offset)
2312 {
2313 	return	spd->nr_pages &&
2314 		spd->pages[spd->nr_pages - 1] == page &&
2315 		(spd->partial[spd->nr_pages - 1].offset +
2316 		 spd->partial[spd->nr_pages - 1].len == offset);
2317 }
2318 
2319 /*
2320  * Fill page/offset/length into spd, if it can hold more pages.
2321  */
spd_fill_page(struct splice_pipe_desc * spd,struct pipe_inode_info * pipe,struct page * page,unsigned int * len,unsigned int offset,bool linear,struct sock * sk)2322 static bool spd_fill_page(struct splice_pipe_desc *spd,
2323 			  struct pipe_inode_info *pipe, struct page *page,
2324 			  unsigned int *len, unsigned int offset,
2325 			  bool linear,
2326 			  struct sock *sk)
2327 {
2328 	if (unlikely(spd->nr_pages == MAX_SKB_FRAGS))
2329 		return true;
2330 
2331 	if (linear) {
2332 		page = linear_to_page(page, len, &offset, sk);
2333 		if (!page)
2334 			return true;
2335 	}
2336 	if (spd_can_coalesce(spd, page, offset)) {
2337 		spd->partial[spd->nr_pages - 1].len += *len;
2338 		return false;
2339 	}
2340 	get_page(page);
2341 	spd->pages[spd->nr_pages] = page;
2342 	spd->partial[spd->nr_pages].len = *len;
2343 	spd->partial[spd->nr_pages].offset = offset;
2344 	spd->nr_pages++;
2345 
2346 	return false;
2347 }
2348 
__splice_segment(struct page * page,unsigned int poff,unsigned int plen,unsigned int * off,unsigned int * len,struct splice_pipe_desc * spd,bool linear,struct sock * sk,struct pipe_inode_info * pipe)2349 static bool __splice_segment(struct page *page, unsigned int poff,
2350 			     unsigned int plen, unsigned int *off,
2351 			     unsigned int *len,
2352 			     struct splice_pipe_desc *spd, bool linear,
2353 			     struct sock *sk,
2354 			     struct pipe_inode_info *pipe)
2355 {
2356 	if (!*len)
2357 		return true;
2358 
2359 	/* skip this segment if already processed */
2360 	if (*off >= plen) {
2361 		*off -= plen;
2362 		return false;
2363 	}
2364 
2365 	/* ignore any bits we already processed */
2366 	poff += *off;
2367 	plen -= *off;
2368 	*off = 0;
2369 
2370 	do {
2371 		unsigned int flen = min(*len, plen);
2372 
2373 		if (spd_fill_page(spd, pipe, page, &flen, poff,
2374 				  linear, sk))
2375 			return true;
2376 		poff += flen;
2377 		plen -= flen;
2378 		*len -= flen;
2379 	} while (*len && plen);
2380 
2381 	return false;
2382 }
2383 
2384 /*
2385  * Map linear and fragment data from the skb to spd. It reports true if the
2386  * pipe is full or if we already spliced the requested length.
2387  */
__skb_splice_bits(struct sk_buff * skb,struct pipe_inode_info * pipe,unsigned int * offset,unsigned int * len,struct splice_pipe_desc * spd,struct sock * sk)2388 static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe,
2389 			      unsigned int *offset, unsigned int *len,
2390 			      struct splice_pipe_desc *spd, struct sock *sk)
2391 {
2392 	int seg;
2393 	struct sk_buff *iter;
2394 
2395 	/* map the linear part :
2396 	 * If skb->head_frag is set, this 'linear' part is backed by a
2397 	 * fragment, and if the head is not shared with any clones then
2398 	 * we can avoid a copy since we own the head portion of this page.
2399 	 */
2400 	if (__splice_segment(virt_to_page(skb->data),
2401 			     (unsigned long) skb->data & (PAGE_SIZE - 1),
2402 			     skb_headlen(skb),
2403 			     offset, len, spd,
2404 			     skb_head_is_locked(skb),
2405 			     sk, pipe))
2406 		return true;
2407 
2408 	/*
2409 	 * then map the fragments
2410 	 */
2411 	for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) {
2412 		const skb_frag_t *f = &skb_shinfo(skb)->frags[seg];
2413 
2414 		if (__splice_segment(skb_frag_page(f),
2415 				     skb_frag_off(f), skb_frag_size(f),
2416 				     offset, len, spd, false, sk, pipe))
2417 			return true;
2418 	}
2419 
2420 	skb_walk_frags(skb, iter) {
2421 		if (*offset >= iter->len) {
2422 			*offset -= iter->len;
2423 			continue;
2424 		}
2425 		/* __skb_splice_bits() only fails if the output has no room
2426 		 * left, so no point in going over the frag_list for the error
2427 		 * case.
2428 		 */
2429 		if (__skb_splice_bits(iter, pipe, offset, len, spd, sk))
2430 			return true;
2431 	}
2432 
2433 	return false;
2434 }
2435 
2436 /*
2437  * Map data from the skb to a pipe. Should handle both the linear part,
2438  * the fragments, and the frag list.
2439  */
skb_splice_bits(struct sk_buff * skb,struct sock * sk,unsigned int offset,struct pipe_inode_info * pipe,unsigned int tlen,unsigned int flags)2440 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
2441 		    struct pipe_inode_info *pipe, unsigned int tlen,
2442 		    unsigned int flags)
2443 {
2444 	struct partial_page partial[MAX_SKB_FRAGS];
2445 	struct page *pages[MAX_SKB_FRAGS];
2446 	struct splice_pipe_desc spd = {
2447 		.pages = pages,
2448 		.partial = partial,
2449 		.nr_pages_max = MAX_SKB_FRAGS,
2450 		.ops = &nosteal_pipe_buf_ops,
2451 		.spd_release = sock_spd_release,
2452 	};
2453 	int ret = 0;
2454 
2455 	__skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk);
2456 
2457 	if (spd.nr_pages)
2458 		ret = splice_to_pipe(pipe, &spd);
2459 
2460 	return ret;
2461 }
2462 EXPORT_SYMBOL_GPL(skb_splice_bits);
2463 
2464 /* Send skb data on a socket. Socket must be locked. */
skb_send_sock_locked(struct sock * sk,struct sk_buff * skb,int offset,int len)2465 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
2466 			 int len)
2467 {
2468 	unsigned int orig_len = len;
2469 	struct sk_buff *head = skb;
2470 	unsigned short fragidx;
2471 	int slen, ret;
2472 
2473 do_frag_list:
2474 
2475 	/* Deal with head data */
2476 	while (offset < skb_headlen(skb) && len) {
2477 		struct kvec kv;
2478 		struct msghdr msg;
2479 
2480 		slen = min_t(int, len, skb_headlen(skb) - offset);
2481 		kv.iov_base = skb->data + offset;
2482 		kv.iov_len = slen;
2483 		memset(&msg, 0, sizeof(msg));
2484 		msg.msg_flags = MSG_DONTWAIT;
2485 
2486 		ret = kernel_sendmsg_locked(sk, &msg, &kv, 1, slen);
2487 		if (ret <= 0)
2488 			goto error;
2489 
2490 		offset += ret;
2491 		len -= ret;
2492 	}
2493 
2494 	/* All the data was skb head? */
2495 	if (!len)
2496 		goto out;
2497 
2498 	/* Make offset relative to start of frags */
2499 	offset -= skb_headlen(skb);
2500 
2501 	/* Find where we are in frag list */
2502 	for (fragidx = 0; fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
2503 		skb_frag_t *frag  = &skb_shinfo(skb)->frags[fragidx];
2504 
2505 		if (offset < skb_frag_size(frag))
2506 			break;
2507 
2508 		offset -= skb_frag_size(frag);
2509 	}
2510 
2511 	for (; len && fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
2512 		skb_frag_t *frag  = &skb_shinfo(skb)->frags[fragidx];
2513 
2514 		slen = min_t(size_t, len, skb_frag_size(frag) - offset);
2515 
2516 		while (slen) {
2517 			ret = kernel_sendpage_locked(sk, skb_frag_page(frag),
2518 						     skb_frag_off(frag) + offset,
2519 						     slen, MSG_DONTWAIT);
2520 			if (ret <= 0)
2521 				goto error;
2522 
2523 			len -= ret;
2524 			offset += ret;
2525 			slen -= ret;
2526 		}
2527 
2528 		offset = 0;
2529 	}
2530 
2531 	if (len) {
2532 		/* Process any frag lists */
2533 
2534 		if (skb == head) {
2535 			if (skb_has_frag_list(skb)) {
2536 				skb = skb_shinfo(skb)->frag_list;
2537 				goto do_frag_list;
2538 			}
2539 		} else if (skb->next) {
2540 			skb = skb->next;
2541 			goto do_frag_list;
2542 		}
2543 	}
2544 
2545 out:
2546 	return orig_len - len;
2547 
2548 error:
2549 	return orig_len == len ? ret : orig_len - len;
2550 }
2551 EXPORT_SYMBOL_GPL(skb_send_sock_locked);
2552 
2553 /**
2554  *	skb_store_bits - store bits from kernel buffer to skb
2555  *	@skb: destination buffer
2556  *	@offset: offset in destination
2557  *	@from: source buffer
2558  *	@len: number of bytes to copy
2559  *
2560  *	Copy the specified number of bytes from the source buffer to the
2561  *	destination skb.  This function handles all the messy bits of
2562  *	traversing fragment lists and such.
2563  */
2564 
skb_store_bits(struct sk_buff * skb,int offset,const void * from,int len)2565 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len)
2566 {
2567 	int start = skb_headlen(skb);
2568 	struct sk_buff *frag_iter;
2569 	int i, copy;
2570 
2571 	if (offset > (int)skb->len - len)
2572 		goto fault;
2573 
2574 	if ((copy = start - offset) > 0) {
2575 		if (copy > len)
2576 			copy = len;
2577 		skb_copy_to_linear_data_offset(skb, offset, from, copy);
2578 		if ((len -= copy) == 0)
2579 			return 0;
2580 		offset += copy;
2581 		from += copy;
2582 	}
2583 
2584 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2585 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2586 		int end;
2587 
2588 		WARN_ON(start > offset + len);
2589 
2590 		end = start + skb_frag_size(frag);
2591 		if ((copy = end - offset) > 0) {
2592 			u32 p_off, p_len, copied;
2593 			struct page *p;
2594 			u8 *vaddr;
2595 
2596 			if (copy > len)
2597 				copy = len;
2598 
2599 			skb_frag_foreach_page(frag,
2600 					      skb_frag_off(frag) + offset - start,
2601 					      copy, p, p_off, p_len, copied) {
2602 				vaddr = kmap_atomic(p);
2603 				memcpy(vaddr + p_off, from + copied, p_len);
2604 				kunmap_atomic(vaddr);
2605 			}
2606 
2607 			if ((len -= copy) == 0)
2608 				return 0;
2609 			offset += copy;
2610 			from += copy;
2611 		}
2612 		start = end;
2613 	}
2614 
2615 	skb_walk_frags(skb, frag_iter) {
2616 		int end;
2617 
2618 		WARN_ON(start > offset + len);
2619 
2620 		end = start + frag_iter->len;
2621 		if ((copy = end - offset) > 0) {
2622 			if (copy > len)
2623 				copy = len;
2624 			if (skb_store_bits(frag_iter, offset - start,
2625 					   from, copy))
2626 				goto fault;
2627 			if ((len -= copy) == 0)
2628 				return 0;
2629 			offset += copy;
2630 			from += copy;
2631 		}
2632 		start = end;
2633 	}
2634 	if (!len)
2635 		return 0;
2636 
2637 fault:
2638 	return -EFAULT;
2639 }
2640 EXPORT_SYMBOL(skb_store_bits);
2641 
2642 /* Checksum skb data. */
__skb_checksum(const struct sk_buff * skb,int offset,int len,__wsum csum,const struct skb_checksum_ops * ops)2643 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
2644 		      __wsum csum, const struct skb_checksum_ops *ops)
2645 {
2646 	int start = skb_headlen(skb);
2647 	int i, copy = start - offset;
2648 	struct sk_buff *frag_iter;
2649 	int pos = 0;
2650 
2651 	/* Checksum header. */
2652 	if (copy > 0) {
2653 		if (copy > len)
2654 			copy = len;
2655 		csum = INDIRECT_CALL_1(ops->update, csum_partial_ext,
2656 				       skb->data + offset, copy, csum);
2657 		if ((len -= copy) == 0)
2658 			return csum;
2659 		offset += copy;
2660 		pos	= copy;
2661 	}
2662 
2663 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2664 		int end;
2665 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2666 
2667 		WARN_ON(start > offset + len);
2668 
2669 		end = start + skb_frag_size(frag);
2670 		if ((copy = end - offset) > 0) {
2671 			u32 p_off, p_len, copied;
2672 			struct page *p;
2673 			__wsum csum2;
2674 			u8 *vaddr;
2675 
2676 			if (copy > len)
2677 				copy = len;
2678 
2679 			skb_frag_foreach_page(frag,
2680 					      skb_frag_off(frag) + offset - start,
2681 					      copy, p, p_off, p_len, copied) {
2682 				vaddr = kmap_atomic(p);
2683 				csum2 = INDIRECT_CALL_1(ops->update,
2684 							csum_partial_ext,
2685 							vaddr + p_off, p_len, 0);
2686 				kunmap_atomic(vaddr);
2687 				csum = INDIRECT_CALL_1(ops->combine,
2688 						       csum_block_add_ext, csum,
2689 						       csum2, pos, p_len);
2690 				pos += p_len;
2691 			}
2692 
2693 			if (!(len -= copy))
2694 				return csum;
2695 			offset += copy;
2696 		}
2697 		start = end;
2698 	}
2699 
2700 	skb_walk_frags(skb, frag_iter) {
2701 		int end;
2702 
2703 		WARN_ON(start > offset + len);
2704 
2705 		end = start + frag_iter->len;
2706 		if ((copy = end - offset) > 0) {
2707 			__wsum csum2;
2708 			if (copy > len)
2709 				copy = len;
2710 			csum2 = __skb_checksum(frag_iter, offset - start,
2711 					       copy, 0, ops);
2712 			csum = INDIRECT_CALL_1(ops->combine, csum_block_add_ext,
2713 					       csum, csum2, pos, copy);
2714 			if ((len -= copy) == 0)
2715 				return csum;
2716 			offset += copy;
2717 			pos    += copy;
2718 		}
2719 		start = end;
2720 	}
2721 	BUG_ON(len);
2722 
2723 	return csum;
2724 }
2725 EXPORT_SYMBOL(__skb_checksum);
2726 
skb_checksum(const struct sk_buff * skb,int offset,int len,__wsum csum)2727 __wsum skb_checksum(const struct sk_buff *skb, int offset,
2728 		    int len, __wsum csum)
2729 {
2730 	const struct skb_checksum_ops ops = {
2731 		.update  = csum_partial_ext,
2732 		.combine = csum_block_add_ext,
2733 	};
2734 
2735 	return __skb_checksum(skb, offset, len, csum, &ops);
2736 }
2737 EXPORT_SYMBOL(skb_checksum);
2738 
2739 /* Both of above in one bottle. */
2740 
skb_copy_and_csum_bits(const struct sk_buff * skb,int offset,u8 * to,int len)2741 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
2742 				    u8 *to, int len)
2743 {
2744 	int start = skb_headlen(skb);
2745 	int i, copy = start - offset;
2746 	struct sk_buff *frag_iter;
2747 	int pos = 0;
2748 	__wsum csum = 0;
2749 
2750 	/* Copy header. */
2751 	if (copy > 0) {
2752 		if (copy > len)
2753 			copy = len;
2754 		csum = csum_partial_copy_nocheck(skb->data + offset, to,
2755 						 copy);
2756 		if ((len -= copy) == 0)
2757 			return csum;
2758 		offset += copy;
2759 		to     += copy;
2760 		pos	= copy;
2761 	}
2762 
2763 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2764 		int end;
2765 
2766 		WARN_ON(start > offset + len);
2767 
2768 		end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
2769 		if ((copy = end - offset) > 0) {
2770 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2771 			u32 p_off, p_len, copied;
2772 			struct page *p;
2773 			__wsum csum2;
2774 			u8 *vaddr;
2775 
2776 			if (copy > len)
2777 				copy = len;
2778 
2779 			skb_frag_foreach_page(frag,
2780 					      skb_frag_off(frag) + offset - start,
2781 					      copy, p, p_off, p_len, copied) {
2782 				vaddr = kmap_atomic(p);
2783 				csum2 = csum_partial_copy_nocheck(vaddr + p_off,
2784 								  to + copied,
2785 								  p_len);
2786 				kunmap_atomic(vaddr);
2787 				csum = csum_block_add(csum, csum2, pos);
2788 				pos += p_len;
2789 			}
2790 
2791 			if (!(len -= copy))
2792 				return csum;
2793 			offset += copy;
2794 			to     += copy;
2795 		}
2796 		start = end;
2797 	}
2798 
2799 	skb_walk_frags(skb, frag_iter) {
2800 		__wsum csum2;
2801 		int end;
2802 
2803 		WARN_ON(start > offset + len);
2804 
2805 		end = start + frag_iter->len;
2806 		if ((copy = end - offset) > 0) {
2807 			if (copy > len)
2808 				copy = len;
2809 			csum2 = skb_copy_and_csum_bits(frag_iter,
2810 						       offset - start,
2811 						       to, copy);
2812 			csum = csum_block_add(csum, csum2, pos);
2813 			if ((len -= copy) == 0)
2814 				return csum;
2815 			offset += copy;
2816 			to     += copy;
2817 			pos    += copy;
2818 		}
2819 		start = end;
2820 	}
2821 	BUG_ON(len);
2822 	return csum;
2823 }
2824 EXPORT_SYMBOL(skb_copy_and_csum_bits);
2825 
__skb_checksum_complete_head(struct sk_buff * skb,int len)2826 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len)
2827 {
2828 	__sum16 sum;
2829 
2830 	sum = csum_fold(skb_checksum(skb, 0, len, skb->csum));
2831 	/* See comments in __skb_checksum_complete(). */
2832 	if (likely(!sum)) {
2833 		if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
2834 		    !skb->csum_complete_sw)
2835 			netdev_rx_csum_fault(skb->dev, skb);
2836 	}
2837 	if (!skb_shared(skb))
2838 		skb->csum_valid = !sum;
2839 	return sum;
2840 }
2841 EXPORT_SYMBOL(__skb_checksum_complete_head);
2842 
2843 /* This function assumes skb->csum already holds pseudo header's checksum,
2844  * which has been changed from the hardware checksum, for example, by
2845  * __skb_checksum_validate_complete(). And, the original skb->csum must
2846  * have been validated unsuccessfully for CHECKSUM_COMPLETE case.
2847  *
2848  * It returns non-zero if the recomputed checksum is still invalid, otherwise
2849  * zero. The new checksum is stored back into skb->csum unless the skb is
2850  * shared.
2851  */
__skb_checksum_complete(struct sk_buff * skb)2852 __sum16 __skb_checksum_complete(struct sk_buff *skb)
2853 {
2854 	__wsum csum;
2855 	__sum16 sum;
2856 
2857 	csum = skb_checksum(skb, 0, skb->len, 0);
2858 
2859 	sum = csum_fold(csum_add(skb->csum, csum));
2860 	/* This check is inverted, because we already knew the hardware
2861 	 * checksum is invalid before calling this function. So, if the
2862 	 * re-computed checksum is valid instead, then we have a mismatch
2863 	 * between the original skb->csum and skb_checksum(). This means either
2864 	 * the original hardware checksum is incorrect or we screw up skb->csum
2865 	 * when moving skb->data around.
2866 	 */
2867 	if (likely(!sum)) {
2868 		if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
2869 		    !skb->csum_complete_sw)
2870 			netdev_rx_csum_fault(skb->dev, skb);
2871 	}
2872 
2873 	if (!skb_shared(skb)) {
2874 		/* Save full packet checksum */
2875 		skb->csum = csum;
2876 		skb->ip_summed = CHECKSUM_COMPLETE;
2877 		skb->csum_complete_sw = 1;
2878 		skb->csum_valid = !sum;
2879 	}
2880 
2881 	return sum;
2882 }
2883 EXPORT_SYMBOL(__skb_checksum_complete);
2884 
warn_crc32c_csum_update(const void * buff,int len,__wsum sum)2885 static __wsum warn_crc32c_csum_update(const void *buff, int len, __wsum sum)
2886 {
2887 	net_warn_ratelimited(
2888 		"%s: attempt to compute crc32c without libcrc32c.ko\n",
2889 		__func__);
2890 	return 0;
2891 }
2892 
warn_crc32c_csum_combine(__wsum csum,__wsum csum2,int offset,int len)2893 static __wsum warn_crc32c_csum_combine(__wsum csum, __wsum csum2,
2894 				       int offset, int len)
2895 {
2896 	net_warn_ratelimited(
2897 		"%s: attempt to compute crc32c without libcrc32c.ko\n",
2898 		__func__);
2899 	return 0;
2900 }
2901 
2902 static const struct skb_checksum_ops default_crc32c_ops = {
2903 	.update  = warn_crc32c_csum_update,
2904 	.combine = warn_crc32c_csum_combine,
2905 };
2906 
2907 const struct skb_checksum_ops *crc32c_csum_stub __read_mostly =
2908 	&default_crc32c_ops;
2909 EXPORT_SYMBOL(crc32c_csum_stub);
2910 
2911  /**
2912  *	skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy()
2913  *	@from: source buffer
2914  *
2915  *	Calculates the amount of linear headroom needed in the 'to' skb passed
2916  *	into skb_zerocopy().
2917  */
2918 unsigned int
skb_zerocopy_headlen(const struct sk_buff * from)2919 skb_zerocopy_headlen(const struct sk_buff *from)
2920 {
2921 	unsigned int hlen = 0;
2922 
2923 	if (!from->head_frag ||
2924 	    skb_headlen(from) < L1_CACHE_BYTES ||
2925 	    skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS) {
2926 		hlen = skb_headlen(from);
2927 		if (!hlen)
2928 			hlen = from->len;
2929 	}
2930 
2931 	if (skb_has_frag_list(from))
2932 		hlen = from->len;
2933 
2934 	return hlen;
2935 }
2936 EXPORT_SYMBOL_GPL(skb_zerocopy_headlen);
2937 
2938 /**
2939  *	skb_zerocopy - Zero copy skb to skb
2940  *	@to: destination buffer
2941  *	@from: source buffer
2942  *	@len: number of bytes to copy from source buffer
2943  *	@hlen: size of linear headroom in destination buffer
2944  *
2945  *	Copies up to `len` bytes from `from` to `to` by creating references
2946  *	to the frags in the source buffer.
2947  *
2948  *	The `hlen` as calculated by skb_zerocopy_headlen() specifies the
2949  *	headroom in the `to` buffer.
2950  *
2951  *	Return value:
2952  *	0: everything is OK
2953  *	-ENOMEM: couldn't orphan frags of @from due to lack of memory
2954  *	-EFAULT: skb_copy_bits() found some problem with skb geometry
2955  */
2956 int
skb_zerocopy(struct sk_buff * to,struct sk_buff * from,int len,int hlen)2957 skb_zerocopy(struct sk_buff *to, struct sk_buff *from, int len, int hlen)
2958 {
2959 	int i, j = 0;
2960 	int plen = 0; /* length of skb->head fragment */
2961 	int ret;
2962 	struct page *page;
2963 	unsigned int offset;
2964 
2965 	BUG_ON(!from->head_frag && !hlen);
2966 
2967 	/* dont bother with small payloads */
2968 	if (len <= skb_tailroom(to))
2969 		return skb_copy_bits(from, 0, skb_put(to, len), len);
2970 
2971 	if (hlen) {
2972 		ret = skb_copy_bits(from, 0, skb_put(to, hlen), hlen);
2973 		if (unlikely(ret))
2974 			return ret;
2975 		len -= hlen;
2976 	} else {
2977 		plen = min_t(int, skb_headlen(from), len);
2978 		if (plen) {
2979 			page = virt_to_head_page(from->head);
2980 			offset = from->data - (unsigned char *)page_address(page);
2981 			__skb_fill_page_desc(to, 0, page, offset, plen);
2982 			get_page(page);
2983 			j = 1;
2984 			len -= plen;
2985 		}
2986 	}
2987 
2988 	to->truesize += len + plen;
2989 	to->len += len + plen;
2990 	to->data_len += len + plen;
2991 
2992 	if (unlikely(skb_orphan_frags(from, GFP_ATOMIC))) {
2993 		skb_tx_error(from);
2994 		return -ENOMEM;
2995 	}
2996 	skb_zerocopy_clone(to, from, GFP_ATOMIC);
2997 
2998 	for (i = 0; i < skb_shinfo(from)->nr_frags; i++) {
2999 		int size;
3000 
3001 		if (!len)
3002 			break;
3003 		skb_shinfo(to)->frags[j] = skb_shinfo(from)->frags[i];
3004 		size = min_t(int, skb_frag_size(&skb_shinfo(to)->frags[j]),
3005 					len);
3006 		skb_frag_size_set(&skb_shinfo(to)->frags[j], size);
3007 		len -= size;
3008 		skb_frag_ref(to, j);
3009 		j++;
3010 	}
3011 	skb_shinfo(to)->nr_frags = j;
3012 
3013 	return 0;
3014 }
3015 EXPORT_SYMBOL_GPL(skb_zerocopy);
3016 
skb_copy_and_csum_dev(const struct sk_buff * skb,u8 * to)3017 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
3018 {
3019 	__wsum csum;
3020 	long csstart;
3021 
3022 	if (skb->ip_summed == CHECKSUM_PARTIAL)
3023 		csstart = skb_checksum_start_offset(skb);
3024 	else
3025 		csstart = skb_headlen(skb);
3026 
3027 	BUG_ON(csstart > skb_headlen(skb));
3028 
3029 	skb_copy_from_linear_data(skb, to, csstart);
3030 
3031 	csum = 0;
3032 	if (csstart != skb->len)
3033 		csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
3034 					      skb->len - csstart);
3035 
3036 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
3037 		long csstuff = csstart + skb->csum_offset;
3038 
3039 		*((__sum16 *)(to + csstuff)) = csum_fold(csum);
3040 	}
3041 }
3042 EXPORT_SYMBOL(skb_copy_and_csum_dev);
3043 
3044 /**
3045  *	skb_dequeue - remove from the head of the queue
3046  *	@list: list to dequeue from
3047  *
3048  *	Remove the head of the list. The list lock is taken so the function
3049  *	may be used safely with other locking list functions. The head item is
3050  *	returned or %NULL if the list is empty.
3051  */
3052 
skb_dequeue(struct sk_buff_head * list)3053 struct sk_buff *skb_dequeue(struct sk_buff_head *list)
3054 {
3055 	unsigned long flags;
3056 	struct sk_buff *result;
3057 
3058 	spin_lock_irqsave(&list->lock, flags);
3059 	result = __skb_dequeue(list);
3060 	spin_unlock_irqrestore(&list->lock, flags);
3061 	return result;
3062 }
3063 EXPORT_SYMBOL(skb_dequeue);
3064 
3065 /**
3066  *	skb_dequeue_tail - remove from the tail of the queue
3067  *	@list: list to dequeue from
3068  *
3069  *	Remove the tail of the list. The list lock is taken so the function
3070  *	may be used safely with other locking list functions. The tail item is
3071  *	returned or %NULL if the list is empty.
3072  */
skb_dequeue_tail(struct sk_buff_head * list)3073 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
3074 {
3075 	unsigned long flags;
3076 	struct sk_buff *result;
3077 
3078 	spin_lock_irqsave(&list->lock, flags);
3079 	result = __skb_dequeue_tail(list);
3080 	spin_unlock_irqrestore(&list->lock, flags);
3081 	return result;
3082 }
3083 EXPORT_SYMBOL(skb_dequeue_tail);
3084 
3085 /**
3086  *	skb_queue_purge - empty a list
3087  *	@list: list to empty
3088  *
3089  *	Delete all buffers on an &sk_buff list. Each buffer is removed from
3090  *	the list and one reference dropped. This function takes the list
3091  *	lock and is atomic with respect to other list locking functions.
3092  */
skb_queue_purge(struct sk_buff_head * list)3093 void skb_queue_purge(struct sk_buff_head *list)
3094 {
3095 	struct sk_buff *skb;
3096 	while ((skb = skb_dequeue(list)) != NULL)
3097 		kfree_skb(skb);
3098 }
3099 EXPORT_SYMBOL(skb_queue_purge);
3100 
3101 /**
3102  *	skb_rbtree_purge - empty a skb rbtree
3103  *	@root: root of the rbtree to empty
3104  *	Return value: the sum of truesizes of all purged skbs.
3105  *
3106  *	Delete all buffers on an &sk_buff rbtree. Each buffer is removed from
3107  *	the list and one reference dropped. This function does not take
3108  *	any lock. Synchronization should be handled by the caller (e.g., TCP
3109  *	out-of-order queue is protected by the socket lock).
3110  */
skb_rbtree_purge(struct rb_root * root)3111 unsigned int skb_rbtree_purge(struct rb_root *root)
3112 {
3113 	struct rb_node *p = rb_first(root);
3114 	unsigned int sum = 0;
3115 
3116 	while (p) {
3117 		struct sk_buff *skb = rb_entry(p, struct sk_buff, rbnode);
3118 
3119 		p = rb_next(p);
3120 		rb_erase(&skb->rbnode, root);
3121 		sum += skb->truesize;
3122 		kfree_skb(skb);
3123 	}
3124 	return sum;
3125 }
3126 
3127 /**
3128  *	skb_queue_head - queue a buffer at the list head
3129  *	@list: list to use
3130  *	@newsk: buffer to queue
3131  *
3132  *	Queue a buffer at the start of the list. This function takes the
3133  *	list lock and can be used safely with other locking &sk_buff functions
3134  *	safely.
3135  *
3136  *	A buffer cannot be placed on two lists at the same time.
3137  */
skb_queue_head(struct sk_buff_head * list,struct sk_buff * newsk)3138 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
3139 {
3140 	unsigned long flags;
3141 
3142 	spin_lock_irqsave(&list->lock, flags);
3143 	__skb_queue_head(list, newsk);
3144 	spin_unlock_irqrestore(&list->lock, flags);
3145 }
3146 EXPORT_SYMBOL(skb_queue_head);
3147 
3148 /**
3149  *	skb_queue_tail - queue a buffer at the list tail
3150  *	@list: list to use
3151  *	@newsk: buffer to queue
3152  *
3153  *	Queue a buffer at the tail of the list. This function takes the
3154  *	list lock and can be used safely with other locking &sk_buff functions
3155  *	safely.
3156  *
3157  *	A buffer cannot be placed on two lists at the same time.
3158  */
skb_queue_tail(struct sk_buff_head * list,struct sk_buff * newsk)3159 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
3160 {
3161 	unsigned long flags;
3162 
3163 	spin_lock_irqsave(&list->lock, flags);
3164 	__skb_queue_tail(list, newsk);
3165 	spin_unlock_irqrestore(&list->lock, flags);
3166 }
3167 EXPORT_SYMBOL(skb_queue_tail);
3168 
3169 /**
3170  *	skb_unlink	-	remove a buffer from a list
3171  *	@skb: buffer to remove
3172  *	@list: list to use
3173  *
3174  *	Remove a packet from a list. The list locks are taken and this
3175  *	function is atomic with respect to other list locked calls
3176  *
3177  *	You must know what list the SKB is on.
3178  */
skb_unlink(struct sk_buff * skb,struct sk_buff_head * list)3179 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
3180 {
3181 	unsigned long flags;
3182 
3183 	spin_lock_irqsave(&list->lock, flags);
3184 	__skb_unlink(skb, list);
3185 	spin_unlock_irqrestore(&list->lock, flags);
3186 }
3187 EXPORT_SYMBOL(skb_unlink);
3188 
3189 /**
3190  *	skb_append	-	append a buffer
3191  *	@old: buffer to insert after
3192  *	@newsk: buffer to insert
3193  *	@list: list to use
3194  *
3195  *	Place a packet after a given packet in a list. The list locks are taken
3196  *	and this function is atomic with respect to other list locked calls.
3197  *	A buffer cannot be placed on two lists at the same time.
3198  */
skb_append(struct sk_buff * old,struct sk_buff * newsk,struct sk_buff_head * list)3199 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
3200 {
3201 	unsigned long flags;
3202 
3203 	spin_lock_irqsave(&list->lock, flags);
3204 	__skb_queue_after(list, old, newsk);
3205 	spin_unlock_irqrestore(&list->lock, flags);
3206 }
3207 EXPORT_SYMBOL(skb_append);
3208 
skb_split_inside_header(struct sk_buff * skb,struct sk_buff * skb1,const u32 len,const int pos)3209 static inline void skb_split_inside_header(struct sk_buff *skb,
3210 					   struct sk_buff* skb1,
3211 					   const u32 len, const int pos)
3212 {
3213 	int i;
3214 
3215 	skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len),
3216 					 pos - len);
3217 	/* And move data appendix as is. */
3218 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
3219 		skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
3220 
3221 	skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
3222 	skb_shinfo(skb)->nr_frags  = 0;
3223 	skb1->data_len		   = skb->data_len;
3224 	skb1->len		   += skb1->data_len;
3225 	skb->data_len		   = 0;
3226 	skb->len		   = len;
3227 	skb_set_tail_pointer(skb, len);
3228 }
3229 
skb_split_no_header(struct sk_buff * skb,struct sk_buff * skb1,const u32 len,int pos)3230 static inline void skb_split_no_header(struct sk_buff *skb,
3231 				       struct sk_buff* skb1,
3232 				       const u32 len, int pos)
3233 {
3234 	int i, k = 0;
3235 	const int nfrags = skb_shinfo(skb)->nr_frags;
3236 
3237 	skb_shinfo(skb)->nr_frags = 0;
3238 	skb1->len		  = skb1->data_len = skb->len - len;
3239 	skb->len		  = len;
3240 	skb->data_len		  = len - pos;
3241 
3242 	for (i = 0; i < nfrags; i++) {
3243 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
3244 
3245 		if (pos + size > len) {
3246 			skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
3247 
3248 			if (pos < len) {
3249 				/* Split frag.
3250 				 * We have two variants in this case:
3251 				 * 1. Move all the frag to the second
3252 				 *    part, if it is possible. F.e.
3253 				 *    this approach is mandatory for TUX,
3254 				 *    where splitting is expensive.
3255 				 * 2. Split is accurately. We make this.
3256 				 */
3257 				skb_frag_ref(skb, i);
3258 				skb_frag_off_add(&skb_shinfo(skb1)->frags[0], len - pos);
3259 				skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos);
3260 				skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos);
3261 				skb_shinfo(skb)->nr_frags++;
3262 			}
3263 			k++;
3264 		} else
3265 			skb_shinfo(skb)->nr_frags++;
3266 		pos += size;
3267 	}
3268 	skb_shinfo(skb1)->nr_frags = k;
3269 }
3270 
3271 /**
3272  * skb_split - Split fragmented skb to two parts at length len.
3273  * @skb: the buffer to split
3274  * @skb1: the buffer to receive the second part
3275  * @len: new length for skb
3276  */
skb_split(struct sk_buff * skb,struct sk_buff * skb1,const u32 len)3277 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
3278 {
3279 	int pos = skb_headlen(skb);
3280 
3281 	skb_shinfo(skb1)->tx_flags |= skb_shinfo(skb)->tx_flags &
3282 				      SKBTX_SHARED_FRAG;
3283 	skb_zerocopy_clone(skb1, skb, 0);
3284 	if (len < pos)	/* Split line is inside header. */
3285 		skb_split_inside_header(skb, skb1, len, pos);
3286 	else		/* Second chunk has no header, nothing to copy. */
3287 		skb_split_no_header(skb, skb1, len, pos);
3288 }
3289 EXPORT_SYMBOL(skb_split);
3290 
3291 /* Shifting from/to a cloned skb is a no-go.
3292  *
3293  * Caller cannot keep skb_shinfo related pointers past calling here!
3294  */
skb_prepare_for_shift(struct sk_buff * skb)3295 static int skb_prepare_for_shift(struct sk_buff *skb)
3296 {
3297 	int ret = 0;
3298 
3299 	if (skb_cloned(skb)) {
3300 		/* Save and restore truesize: pskb_expand_head() may reallocate
3301 		 * memory where ksize(kmalloc(S)) != ksize(kmalloc(S)), but we
3302 		 * cannot change truesize at this point.
3303 		 */
3304 		unsigned int save_truesize = skb->truesize;
3305 
3306 		ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
3307 		skb->truesize = save_truesize;
3308 	}
3309 	return ret;
3310 }
3311 
3312 /**
3313  * skb_shift - Shifts paged data partially from skb to another
3314  * @tgt: buffer into which tail data gets added
3315  * @skb: buffer from which the paged data comes from
3316  * @shiftlen: shift up to this many bytes
3317  *
3318  * Attempts to shift up to shiftlen worth of bytes, which may be less than
3319  * the length of the skb, from skb to tgt. Returns number bytes shifted.
3320  * It's up to caller to free skb if everything was shifted.
3321  *
3322  * If @tgt runs out of frags, the whole operation is aborted.
3323  *
3324  * Skb cannot include anything else but paged data while tgt is allowed
3325  * to have non-paged data as well.
3326  *
3327  * TODO: full sized shift could be optimized but that would need
3328  * specialized skb free'er to handle frags without up-to-date nr_frags.
3329  */
skb_shift(struct sk_buff * tgt,struct sk_buff * skb,int shiftlen)3330 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen)
3331 {
3332 	int from, to, merge, todo;
3333 	skb_frag_t *fragfrom, *fragto;
3334 
3335 	BUG_ON(shiftlen > skb->len);
3336 
3337 	if (skb_headlen(skb))
3338 		return 0;
3339 	if (skb_zcopy(tgt) || skb_zcopy(skb))
3340 		return 0;
3341 
3342 	todo = shiftlen;
3343 	from = 0;
3344 	to = skb_shinfo(tgt)->nr_frags;
3345 	fragfrom = &skb_shinfo(skb)->frags[from];
3346 
3347 	/* Actual merge is delayed until the point when we know we can
3348 	 * commit all, so that we don't have to undo partial changes
3349 	 */
3350 	if (!to ||
3351 	    !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom),
3352 			      skb_frag_off(fragfrom))) {
3353 		merge = -1;
3354 	} else {
3355 		merge = to - 1;
3356 
3357 		todo -= skb_frag_size(fragfrom);
3358 		if (todo < 0) {
3359 			if (skb_prepare_for_shift(skb) ||
3360 			    skb_prepare_for_shift(tgt))
3361 				return 0;
3362 
3363 			/* All previous frag pointers might be stale! */
3364 			fragfrom = &skb_shinfo(skb)->frags[from];
3365 			fragto = &skb_shinfo(tgt)->frags[merge];
3366 
3367 			skb_frag_size_add(fragto, shiftlen);
3368 			skb_frag_size_sub(fragfrom, shiftlen);
3369 			skb_frag_off_add(fragfrom, shiftlen);
3370 
3371 			goto onlymerged;
3372 		}
3373 
3374 		from++;
3375 	}
3376 
3377 	/* Skip full, not-fitting skb to avoid expensive operations */
3378 	if ((shiftlen == skb->len) &&
3379 	    (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to))
3380 		return 0;
3381 
3382 	if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt))
3383 		return 0;
3384 
3385 	while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) {
3386 		if (to == MAX_SKB_FRAGS)
3387 			return 0;
3388 
3389 		fragfrom = &skb_shinfo(skb)->frags[from];
3390 		fragto = &skb_shinfo(tgt)->frags[to];
3391 
3392 		if (todo >= skb_frag_size(fragfrom)) {
3393 			*fragto = *fragfrom;
3394 			todo -= skb_frag_size(fragfrom);
3395 			from++;
3396 			to++;
3397 
3398 		} else {
3399 			__skb_frag_ref(fragfrom);
3400 			skb_frag_page_copy(fragto, fragfrom);
3401 			skb_frag_off_copy(fragto, fragfrom);
3402 			skb_frag_size_set(fragto, todo);
3403 
3404 			skb_frag_off_add(fragfrom, todo);
3405 			skb_frag_size_sub(fragfrom, todo);
3406 			todo = 0;
3407 
3408 			to++;
3409 			break;
3410 		}
3411 	}
3412 
3413 	/* Ready to "commit" this state change to tgt */
3414 	skb_shinfo(tgt)->nr_frags = to;
3415 
3416 	if (merge >= 0) {
3417 		fragfrom = &skb_shinfo(skb)->frags[0];
3418 		fragto = &skb_shinfo(tgt)->frags[merge];
3419 
3420 		skb_frag_size_add(fragto, skb_frag_size(fragfrom));
3421 		__skb_frag_unref(fragfrom);
3422 	}
3423 
3424 	/* Reposition in the original skb */
3425 	to = 0;
3426 	while (from < skb_shinfo(skb)->nr_frags)
3427 		skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++];
3428 	skb_shinfo(skb)->nr_frags = to;
3429 
3430 	BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags);
3431 
3432 onlymerged:
3433 	/* Most likely the tgt won't ever need its checksum anymore, skb on
3434 	 * the other hand might need it if it needs to be resent
3435 	 */
3436 	tgt->ip_summed = CHECKSUM_PARTIAL;
3437 	skb->ip_summed = CHECKSUM_PARTIAL;
3438 
3439 	/* Yak, is it really working this way? Some helper please? */
3440 	skb->len -= shiftlen;
3441 	skb->data_len -= shiftlen;
3442 	skb->truesize -= shiftlen;
3443 	tgt->len += shiftlen;
3444 	tgt->data_len += shiftlen;
3445 	tgt->truesize += shiftlen;
3446 
3447 	return shiftlen;
3448 }
3449 
3450 /**
3451  * skb_prepare_seq_read - Prepare a sequential read of skb data
3452  * @skb: the buffer to read
3453  * @from: lower offset of data to be read
3454  * @to: upper offset of data to be read
3455  * @st: state variable
3456  *
3457  * Initializes the specified state variable. Must be called before
3458  * invoking skb_seq_read() for the first time.
3459  */
skb_prepare_seq_read(struct sk_buff * skb,unsigned int from,unsigned int to,struct skb_seq_state * st)3460 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
3461 			  unsigned int to, struct skb_seq_state *st)
3462 {
3463 	st->lower_offset = from;
3464 	st->upper_offset = to;
3465 	st->root_skb = st->cur_skb = skb;
3466 	st->frag_idx = st->stepped_offset = 0;
3467 	st->frag_data = NULL;
3468 }
3469 EXPORT_SYMBOL(skb_prepare_seq_read);
3470 
3471 /**
3472  * skb_seq_read - Sequentially read skb data
3473  * @consumed: number of bytes consumed by the caller so far
3474  * @data: destination pointer for data to be returned
3475  * @st: state variable
3476  *
3477  * Reads a block of skb data at @consumed relative to the
3478  * lower offset specified to skb_prepare_seq_read(). Assigns
3479  * the head of the data block to @data and returns the length
3480  * of the block or 0 if the end of the skb data or the upper
3481  * offset has been reached.
3482  *
3483  * The caller is not required to consume all of the data
3484  * returned, i.e. @consumed is typically set to the number
3485  * of bytes already consumed and the next call to
3486  * skb_seq_read() will return the remaining part of the block.
3487  *
3488  * Note 1: The size of each block of data returned can be arbitrary,
3489  *       this limitation is the cost for zerocopy sequential
3490  *       reads of potentially non linear data.
3491  *
3492  * Note 2: Fragment lists within fragments are not implemented
3493  *       at the moment, state->root_skb could be replaced with
3494  *       a stack for this purpose.
3495  */
skb_seq_read(unsigned int consumed,const u8 ** data,struct skb_seq_state * st)3496 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
3497 			  struct skb_seq_state *st)
3498 {
3499 	unsigned int block_limit, abs_offset = consumed + st->lower_offset;
3500 	skb_frag_t *frag;
3501 
3502 	if (unlikely(abs_offset >= st->upper_offset)) {
3503 		if (st->frag_data) {
3504 			kunmap_atomic(st->frag_data);
3505 			st->frag_data = NULL;
3506 		}
3507 		return 0;
3508 	}
3509 
3510 next_skb:
3511 	block_limit = skb_headlen(st->cur_skb) + st->stepped_offset;
3512 
3513 	if (abs_offset < block_limit && !st->frag_data) {
3514 		*data = st->cur_skb->data + (abs_offset - st->stepped_offset);
3515 		return block_limit - abs_offset;
3516 	}
3517 
3518 	if (st->frag_idx == 0 && !st->frag_data)
3519 		st->stepped_offset += skb_headlen(st->cur_skb);
3520 
3521 	while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
3522 		frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
3523 		block_limit = skb_frag_size(frag) + st->stepped_offset;
3524 
3525 		if (abs_offset < block_limit) {
3526 			if (!st->frag_data)
3527 				st->frag_data = kmap_atomic(skb_frag_page(frag));
3528 
3529 			*data = (u8 *) st->frag_data + skb_frag_off(frag) +
3530 				(abs_offset - st->stepped_offset);
3531 
3532 			return block_limit - abs_offset;
3533 		}
3534 
3535 		if (st->frag_data) {
3536 			kunmap_atomic(st->frag_data);
3537 			st->frag_data = NULL;
3538 		}
3539 
3540 		st->frag_idx++;
3541 		st->stepped_offset += skb_frag_size(frag);
3542 	}
3543 
3544 	if (st->frag_data) {
3545 		kunmap_atomic(st->frag_data);
3546 		st->frag_data = NULL;
3547 	}
3548 
3549 	if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) {
3550 		st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
3551 		st->frag_idx = 0;
3552 		goto next_skb;
3553 	} else if (st->cur_skb->next) {
3554 		st->cur_skb = st->cur_skb->next;
3555 		st->frag_idx = 0;
3556 		goto next_skb;
3557 	}
3558 
3559 	return 0;
3560 }
3561 EXPORT_SYMBOL(skb_seq_read);
3562 
3563 /**
3564  * skb_abort_seq_read - Abort a sequential read of skb data
3565  * @st: state variable
3566  *
3567  * Must be called if skb_seq_read() was not called until it
3568  * returned 0.
3569  */
skb_abort_seq_read(struct skb_seq_state * st)3570 void skb_abort_seq_read(struct skb_seq_state *st)
3571 {
3572 	if (st->frag_data)
3573 		kunmap_atomic(st->frag_data);
3574 }
3575 EXPORT_SYMBOL(skb_abort_seq_read);
3576 
3577 #define TS_SKB_CB(state)	((struct skb_seq_state *) &((state)->cb))
3578 
skb_ts_get_next_block(unsigned int offset,const u8 ** text,struct ts_config * conf,struct ts_state * state)3579 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
3580 					  struct ts_config *conf,
3581 					  struct ts_state *state)
3582 {
3583 	return skb_seq_read(offset, text, TS_SKB_CB(state));
3584 }
3585 
skb_ts_finish(struct ts_config * conf,struct ts_state * state)3586 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
3587 {
3588 	skb_abort_seq_read(TS_SKB_CB(state));
3589 }
3590 
3591 /**
3592  * skb_find_text - Find a text pattern in skb data
3593  * @skb: the buffer to look in
3594  * @from: search offset
3595  * @to: search limit
3596  * @config: textsearch configuration
3597  *
3598  * Finds a pattern in the skb data according to the specified
3599  * textsearch configuration. Use textsearch_next() to retrieve
3600  * subsequent occurrences of the pattern. Returns the offset
3601  * to the first occurrence or UINT_MAX if no match was found.
3602  */
skb_find_text(struct sk_buff * skb,unsigned int from,unsigned int to,struct ts_config * config)3603 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
3604 			   unsigned int to, struct ts_config *config)
3605 {
3606 	struct ts_state state;
3607 	unsigned int ret;
3608 
3609 	config->get_next_block = skb_ts_get_next_block;
3610 	config->finish = skb_ts_finish;
3611 
3612 	skb_prepare_seq_read(skb, from, to, TS_SKB_CB(&state));
3613 
3614 	ret = textsearch_find(config, &state);
3615 	return (ret <= to - from ? ret : UINT_MAX);
3616 }
3617 EXPORT_SYMBOL(skb_find_text);
3618 
skb_append_pagefrags(struct sk_buff * skb,struct page * page,int offset,size_t size)3619 int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
3620 			 int offset, size_t size)
3621 {
3622 	int i = skb_shinfo(skb)->nr_frags;
3623 
3624 	if (skb_can_coalesce(skb, i, page, offset)) {
3625 		skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], size);
3626 	} else if (i < MAX_SKB_FRAGS) {
3627 		get_page(page);
3628 		skb_fill_page_desc(skb, i, page, offset, size);
3629 	} else {
3630 		return -EMSGSIZE;
3631 	}
3632 
3633 	return 0;
3634 }
3635 EXPORT_SYMBOL_GPL(skb_append_pagefrags);
3636 
3637 /**
3638  *	skb_pull_rcsum - pull skb and update receive checksum
3639  *	@skb: buffer to update
3640  *	@len: length of data pulled
3641  *
3642  *	This function performs an skb_pull on the packet and updates
3643  *	the CHECKSUM_COMPLETE checksum.  It should be used on
3644  *	receive path processing instead of skb_pull unless you know
3645  *	that the checksum difference is zero (e.g., a valid IP header)
3646  *	or you are setting ip_summed to CHECKSUM_NONE.
3647  */
skb_pull_rcsum(struct sk_buff * skb,unsigned int len)3648 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
3649 {
3650 	unsigned char *data = skb->data;
3651 
3652 	BUG_ON(len > skb->len);
3653 	__skb_pull(skb, len);
3654 	skb_postpull_rcsum(skb, data, len);
3655 	return skb->data;
3656 }
3657 EXPORT_SYMBOL_GPL(skb_pull_rcsum);
3658 
skb_head_frag_to_page_desc(struct sk_buff * frag_skb)3659 static inline skb_frag_t skb_head_frag_to_page_desc(struct sk_buff *frag_skb)
3660 {
3661 	skb_frag_t head_frag;
3662 	struct page *page;
3663 
3664 	page = virt_to_head_page(frag_skb->head);
3665 	__skb_frag_set_page(&head_frag, page);
3666 	skb_frag_off_set(&head_frag, frag_skb->data -
3667 			 (unsigned char *)page_address(page));
3668 	skb_frag_size_set(&head_frag, skb_headlen(frag_skb));
3669 	return head_frag;
3670 }
3671 
skb_segment_list(struct sk_buff * skb,netdev_features_t features,unsigned int offset)3672 struct sk_buff *skb_segment_list(struct sk_buff *skb,
3673 				 netdev_features_t features,
3674 				 unsigned int offset)
3675 {
3676 	struct sk_buff *list_skb = skb_shinfo(skb)->frag_list;
3677 	unsigned int tnl_hlen = skb_tnl_header_len(skb);
3678 	unsigned int delta_truesize = 0;
3679 	unsigned int delta_len = 0;
3680 	struct sk_buff *tail = NULL;
3681 	struct sk_buff *nskb, *tmp;
3682 	int err;
3683 
3684 	skb_push(skb, -skb_network_offset(skb) + offset);
3685 
3686 	skb_shinfo(skb)->frag_list = NULL;
3687 
3688 	do {
3689 		nskb = list_skb;
3690 		list_skb = list_skb->next;
3691 
3692 		err = 0;
3693 		if (skb_shared(nskb)) {
3694 			tmp = skb_clone(nskb, GFP_ATOMIC);
3695 			if (tmp) {
3696 				consume_skb(nskb);
3697 				nskb = tmp;
3698 				err = skb_unclone(nskb, GFP_ATOMIC);
3699 			} else {
3700 				err = -ENOMEM;
3701 			}
3702 		}
3703 
3704 		if (!tail)
3705 			skb->next = nskb;
3706 		else
3707 			tail->next = nskb;
3708 
3709 		if (unlikely(err)) {
3710 			nskb->next = list_skb;
3711 			goto err_linearize;
3712 		}
3713 
3714 		tail = nskb;
3715 
3716 		delta_len += nskb->len;
3717 		delta_truesize += nskb->truesize;
3718 
3719 		skb_push(nskb, -skb_network_offset(nskb) + offset);
3720 
3721 		skb_release_head_state(nskb);
3722 		 __copy_skb_header(nskb, skb);
3723 
3724 		skb_headers_offset_update(nskb, skb_headroom(nskb) - skb_headroom(skb));
3725 		skb_copy_from_linear_data_offset(skb, -tnl_hlen,
3726 						 nskb->data - tnl_hlen,
3727 						 offset + tnl_hlen);
3728 
3729 		if (skb_needs_linearize(nskb, features) &&
3730 		    __skb_linearize(nskb))
3731 			goto err_linearize;
3732 
3733 	} while (list_skb);
3734 
3735 	skb->truesize = skb->truesize - delta_truesize;
3736 	skb->data_len = skb->data_len - delta_len;
3737 	skb->len = skb->len - delta_len;
3738 
3739 	skb_gso_reset(skb);
3740 
3741 	skb->prev = tail;
3742 
3743 	if (skb_needs_linearize(skb, features) &&
3744 	    __skb_linearize(skb))
3745 		goto err_linearize;
3746 
3747 	skb_get(skb);
3748 
3749 	return skb;
3750 
3751 err_linearize:
3752 	kfree_skb_list(skb->next);
3753 	skb->next = NULL;
3754 	return ERR_PTR(-ENOMEM);
3755 }
3756 EXPORT_SYMBOL_GPL(skb_segment_list);
3757 
skb_gro_receive_list(struct sk_buff * p,struct sk_buff * skb)3758 int skb_gro_receive_list(struct sk_buff *p, struct sk_buff *skb)
3759 {
3760 	if (unlikely(p->len + skb->len >= 65536))
3761 		return -E2BIG;
3762 
3763 	if (NAPI_GRO_CB(p)->last == p)
3764 		skb_shinfo(p)->frag_list = skb;
3765 	else
3766 		NAPI_GRO_CB(p)->last->next = skb;
3767 
3768 	skb_pull(skb, skb_gro_offset(skb));
3769 
3770 	NAPI_GRO_CB(p)->last = skb;
3771 	NAPI_GRO_CB(p)->count++;
3772 	p->data_len += skb->len;
3773 	p->truesize += skb->truesize;
3774 	p->len += skb->len;
3775 
3776 	NAPI_GRO_CB(skb)->same_flow = 1;
3777 
3778 	return 0;
3779 }
3780 
3781 /**
3782  *	skb_segment - Perform protocol segmentation on skb.
3783  *	@head_skb: buffer to segment
3784  *	@features: features for the output path (see dev->features)
3785  *
3786  *	This function performs segmentation on the given skb.  It returns
3787  *	a pointer to the first in a list of new skbs for the segments.
3788  *	In case of error it returns ERR_PTR(err).
3789  */
skb_segment(struct sk_buff * head_skb,netdev_features_t features)3790 struct sk_buff *skb_segment(struct sk_buff *head_skb,
3791 			    netdev_features_t features)
3792 {
3793 	struct sk_buff *segs = NULL;
3794 	struct sk_buff *tail = NULL;
3795 	struct sk_buff *list_skb = skb_shinfo(head_skb)->frag_list;
3796 	skb_frag_t *frag = skb_shinfo(head_skb)->frags;
3797 	unsigned int mss = skb_shinfo(head_skb)->gso_size;
3798 	unsigned int doffset = head_skb->data - skb_mac_header(head_skb);
3799 	struct sk_buff *frag_skb = head_skb;
3800 	unsigned int offset = doffset;
3801 	unsigned int tnl_hlen = skb_tnl_header_len(head_skb);
3802 	unsigned int partial_segs = 0;
3803 	unsigned int headroom;
3804 	unsigned int len = head_skb->len;
3805 	__be16 proto;
3806 	bool csum, sg;
3807 	int nfrags = skb_shinfo(head_skb)->nr_frags;
3808 	int err = -ENOMEM;
3809 	int i = 0;
3810 	int pos;
3811 
3812 	if (list_skb && !list_skb->head_frag && skb_headlen(list_skb) &&
3813 	    (skb_shinfo(head_skb)->gso_type & SKB_GSO_DODGY)) {
3814 		/* gso_size is untrusted, and we have a frag_list with a linear
3815 		 * non head_frag head.
3816 		 *
3817 		 * (we assume checking the first list_skb member suffices;
3818 		 * i.e if either of the list_skb members have non head_frag
3819 		 * head, then the first one has too).
3820 		 *
3821 		 * If head_skb's headlen does not fit requested gso_size, it
3822 		 * means that the frag_list members do NOT terminate on exact
3823 		 * gso_size boundaries. Hence we cannot perform skb_frag_t page
3824 		 * sharing. Therefore we must fallback to copying the frag_list
3825 		 * skbs; we do so by disabling SG.
3826 		 */
3827 		if (mss != GSO_BY_FRAGS && mss != skb_headlen(head_skb))
3828 			features &= ~NETIF_F_SG;
3829 	}
3830 
3831 	__skb_push(head_skb, doffset);
3832 	proto = skb_network_protocol(head_skb, NULL);
3833 	if (unlikely(!proto))
3834 		return ERR_PTR(-EINVAL);
3835 
3836 	sg = !!(features & NETIF_F_SG);
3837 	csum = !!can_checksum_protocol(features, proto);
3838 
3839 	if (sg && csum && (mss != GSO_BY_FRAGS))  {
3840 		if (!(features & NETIF_F_GSO_PARTIAL)) {
3841 			struct sk_buff *iter;
3842 			unsigned int frag_len;
3843 
3844 			if (!list_skb ||
3845 			    !net_gso_ok(features, skb_shinfo(head_skb)->gso_type))
3846 				goto normal;
3847 
3848 			/* If we get here then all the required
3849 			 * GSO features except frag_list are supported.
3850 			 * Try to split the SKB to multiple GSO SKBs
3851 			 * with no frag_list.
3852 			 * Currently we can do that only when the buffers don't
3853 			 * have a linear part and all the buffers except
3854 			 * the last are of the same length.
3855 			 */
3856 			frag_len = list_skb->len;
3857 			skb_walk_frags(head_skb, iter) {
3858 				if (frag_len != iter->len && iter->next)
3859 					goto normal;
3860 				if (skb_headlen(iter) && !iter->head_frag)
3861 					goto normal;
3862 
3863 				len -= iter->len;
3864 			}
3865 
3866 			if (len != frag_len)
3867 				goto normal;
3868 		}
3869 
3870 		/* GSO partial only requires that we trim off any excess that
3871 		 * doesn't fit into an MSS sized block, so take care of that
3872 		 * now.
3873 		 */
3874 		partial_segs = len / mss;
3875 		if (partial_segs > 1)
3876 			mss *= partial_segs;
3877 		else
3878 			partial_segs = 0;
3879 	}
3880 
3881 normal:
3882 	headroom = skb_headroom(head_skb);
3883 	pos = skb_headlen(head_skb);
3884 
3885 	do {
3886 		struct sk_buff *nskb;
3887 		skb_frag_t *nskb_frag;
3888 		int hsize;
3889 		int size;
3890 
3891 		if (unlikely(mss == GSO_BY_FRAGS)) {
3892 			len = list_skb->len;
3893 		} else {
3894 			len = head_skb->len - offset;
3895 			if (len > mss)
3896 				len = mss;
3897 		}
3898 
3899 		hsize = skb_headlen(head_skb) - offset;
3900 		if (hsize < 0)
3901 			hsize = 0;
3902 		if (hsize > len || !sg)
3903 			hsize = len;
3904 
3905 		if (!hsize && i >= nfrags && skb_headlen(list_skb) &&
3906 		    (skb_headlen(list_skb) == len || sg)) {
3907 			BUG_ON(skb_headlen(list_skb) > len);
3908 
3909 			i = 0;
3910 			nfrags = skb_shinfo(list_skb)->nr_frags;
3911 			frag = skb_shinfo(list_skb)->frags;
3912 			frag_skb = list_skb;
3913 			pos += skb_headlen(list_skb);
3914 
3915 			while (pos < offset + len) {
3916 				BUG_ON(i >= nfrags);
3917 
3918 				size = skb_frag_size(frag);
3919 				if (pos + size > offset + len)
3920 					break;
3921 
3922 				i++;
3923 				pos += size;
3924 				frag++;
3925 			}
3926 
3927 			nskb = skb_clone(list_skb, GFP_ATOMIC);
3928 			list_skb = list_skb->next;
3929 
3930 			if (unlikely(!nskb))
3931 				goto err;
3932 
3933 			if (unlikely(pskb_trim(nskb, len))) {
3934 				kfree_skb(nskb);
3935 				goto err;
3936 			}
3937 
3938 			hsize = skb_end_offset(nskb);
3939 			if (skb_cow_head(nskb, doffset + headroom)) {
3940 				kfree_skb(nskb);
3941 				goto err;
3942 			}
3943 
3944 			nskb->truesize += skb_end_offset(nskb) - hsize;
3945 			skb_release_head_state(nskb);
3946 			__skb_push(nskb, doffset);
3947 		} else {
3948 			nskb = __alloc_skb(hsize + doffset + headroom,
3949 					   GFP_ATOMIC, skb_alloc_rx_flag(head_skb),
3950 					   NUMA_NO_NODE);
3951 
3952 			if (unlikely(!nskb))
3953 				goto err;
3954 
3955 			skb_reserve(nskb, headroom);
3956 			__skb_put(nskb, doffset);
3957 		}
3958 
3959 		if (segs)
3960 			tail->next = nskb;
3961 		else
3962 			segs = nskb;
3963 		tail = nskb;
3964 
3965 		__copy_skb_header(nskb, head_skb);
3966 
3967 		skb_headers_offset_update(nskb, skb_headroom(nskb) - headroom);
3968 		skb_reset_mac_len(nskb);
3969 
3970 		skb_copy_from_linear_data_offset(head_skb, -tnl_hlen,
3971 						 nskb->data - tnl_hlen,
3972 						 doffset + tnl_hlen);
3973 
3974 		if (nskb->len == len + doffset)
3975 			goto perform_csum_check;
3976 
3977 		if (!sg) {
3978 			if (!csum) {
3979 				if (!nskb->remcsum_offload)
3980 					nskb->ip_summed = CHECKSUM_NONE;
3981 				SKB_GSO_CB(nskb)->csum =
3982 					skb_copy_and_csum_bits(head_skb, offset,
3983 							       skb_put(nskb,
3984 								       len),
3985 							       len);
3986 				SKB_GSO_CB(nskb)->csum_start =
3987 					skb_headroom(nskb) + doffset;
3988 			} else {
3989 				skb_copy_bits(head_skb, offset,
3990 					      skb_put(nskb, len),
3991 					      len);
3992 			}
3993 			continue;
3994 		}
3995 
3996 		nskb_frag = skb_shinfo(nskb)->frags;
3997 
3998 		skb_copy_from_linear_data_offset(head_skb, offset,
3999 						 skb_put(nskb, hsize), hsize);
4000 
4001 		skb_shinfo(nskb)->tx_flags |= skb_shinfo(head_skb)->tx_flags &
4002 					      SKBTX_SHARED_FRAG;
4003 
4004 		if (skb_orphan_frags(frag_skb, GFP_ATOMIC) ||
4005 		    skb_zerocopy_clone(nskb, frag_skb, GFP_ATOMIC))
4006 			goto err;
4007 
4008 		while (pos < offset + len) {
4009 			if (i >= nfrags) {
4010 				i = 0;
4011 				nfrags = skb_shinfo(list_skb)->nr_frags;
4012 				frag = skb_shinfo(list_skb)->frags;
4013 				frag_skb = list_skb;
4014 				if (!skb_headlen(list_skb)) {
4015 					BUG_ON(!nfrags);
4016 				} else {
4017 					BUG_ON(!list_skb->head_frag);
4018 
4019 					/* to make room for head_frag. */
4020 					i--;
4021 					frag--;
4022 				}
4023 				if (skb_orphan_frags(frag_skb, GFP_ATOMIC) ||
4024 				    skb_zerocopy_clone(nskb, frag_skb,
4025 						       GFP_ATOMIC))
4026 					goto err;
4027 
4028 				list_skb = list_skb->next;
4029 			}
4030 
4031 			if (unlikely(skb_shinfo(nskb)->nr_frags >=
4032 				     MAX_SKB_FRAGS)) {
4033 				net_warn_ratelimited(
4034 					"skb_segment: too many frags: %u %u\n",
4035 					pos, mss);
4036 				err = -EINVAL;
4037 				goto err;
4038 			}
4039 
4040 			*nskb_frag = (i < 0) ? skb_head_frag_to_page_desc(frag_skb) : *frag;
4041 			__skb_frag_ref(nskb_frag);
4042 			size = skb_frag_size(nskb_frag);
4043 
4044 			if (pos < offset) {
4045 				skb_frag_off_add(nskb_frag, offset - pos);
4046 				skb_frag_size_sub(nskb_frag, offset - pos);
4047 			}
4048 
4049 			skb_shinfo(nskb)->nr_frags++;
4050 
4051 			if (pos + size <= offset + len) {
4052 				i++;
4053 				frag++;
4054 				pos += size;
4055 			} else {
4056 				skb_frag_size_sub(nskb_frag, pos + size - (offset + len));
4057 				goto skip_fraglist;
4058 			}
4059 
4060 			nskb_frag++;
4061 		}
4062 
4063 skip_fraglist:
4064 		nskb->data_len = len - hsize;
4065 		nskb->len += nskb->data_len;
4066 		nskb->truesize += nskb->data_len;
4067 
4068 perform_csum_check:
4069 		if (!csum) {
4070 			if (skb_has_shared_frag(nskb) &&
4071 			    __skb_linearize(nskb))
4072 				goto err;
4073 
4074 			if (!nskb->remcsum_offload)
4075 				nskb->ip_summed = CHECKSUM_NONE;
4076 			SKB_GSO_CB(nskb)->csum =
4077 				skb_checksum(nskb, doffset,
4078 					     nskb->len - doffset, 0);
4079 			SKB_GSO_CB(nskb)->csum_start =
4080 				skb_headroom(nskb) + doffset;
4081 		}
4082 	} while ((offset += len) < head_skb->len);
4083 
4084 	/* Some callers want to get the end of the list.
4085 	 * Put it in segs->prev to avoid walking the list.
4086 	 * (see validate_xmit_skb_list() for example)
4087 	 */
4088 	segs->prev = tail;
4089 
4090 	if (partial_segs) {
4091 		struct sk_buff *iter;
4092 		int type = skb_shinfo(head_skb)->gso_type;
4093 		unsigned short gso_size = skb_shinfo(head_skb)->gso_size;
4094 
4095 		/* Update type to add partial and then remove dodgy if set */
4096 		type |= (features & NETIF_F_GSO_PARTIAL) / NETIF_F_GSO_PARTIAL * SKB_GSO_PARTIAL;
4097 		type &= ~SKB_GSO_DODGY;
4098 
4099 		/* Update GSO info and prepare to start updating headers on
4100 		 * our way back down the stack of protocols.
4101 		 */
4102 		for (iter = segs; iter; iter = iter->next) {
4103 			skb_shinfo(iter)->gso_size = gso_size;
4104 			skb_shinfo(iter)->gso_segs = partial_segs;
4105 			skb_shinfo(iter)->gso_type = type;
4106 			SKB_GSO_CB(iter)->data_offset = skb_headroom(iter) + doffset;
4107 		}
4108 
4109 		if (tail->len - doffset <= gso_size)
4110 			skb_shinfo(tail)->gso_size = 0;
4111 		else if (tail != segs)
4112 			skb_shinfo(tail)->gso_segs = DIV_ROUND_UP(tail->len - doffset, gso_size);
4113 	}
4114 
4115 	/* Following permits correct backpressure, for protocols
4116 	 * using skb_set_owner_w().
4117 	 * Idea is to tranfert ownership from head_skb to last segment.
4118 	 */
4119 	if (head_skb->destructor == sock_wfree) {
4120 		swap(tail->truesize, head_skb->truesize);
4121 		swap(tail->destructor, head_skb->destructor);
4122 		swap(tail->sk, head_skb->sk);
4123 	}
4124 	return segs;
4125 
4126 err:
4127 	kfree_skb_list(segs);
4128 	return ERR_PTR(err);
4129 }
4130 EXPORT_SYMBOL_GPL(skb_segment);
4131 
skb_gro_receive(struct sk_buff * p,struct sk_buff * skb)4132 int skb_gro_receive(struct sk_buff *p, struct sk_buff *skb)
4133 {
4134 	struct skb_shared_info *pinfo, *skbinfo = skb_shinfo(skb);
4135 	unsigned int offset = skb_gro_offset(skb);
4136 	unsigned int headlen = skb_headlen(skb);
4137 	unsigned int len = skb_gro_len(skb);
4138 	unsigned int delta_truesize;
4139 	struct sk_buff *lp;
4140 
4141 	if (unlikely(p->len + len >= 65536 || NAPI_GRO_CB(skb)->flush))
4142 		return -E2BIG;
4143 
4144 	lp = NAPI_GRO_CB(p)->last;
4145 	pinfo = skb_shinfo(lp);
4146 
4147 	if (headlen <= offset) {
4148 		skb_frag_t *frag;
4149 		skb_frag_t *frag2;
4150 		int i = skbinfo->nr_frags;
4151 		int nr_frags = pinfo->nr_frags + i;
4152 
4153 		if (nr_frags > MAX_SKB_FRAGS)
4154 			goto merge;
4155 
4156 		offset -= headlen;
4157 		pinfo->nr_frags = nr_frags;
4158 		skbinfo->nr_frags = 0;
4159 
4160 		frag = pinfo->frags + nr_frags;
4161 		frag2 = skbinfo->frags + i;
4162 		do {
4163 			*--frag = *--frag2;
4164 		} while (--i);
4165 
4166 		skb_frag_off_add(frag, offset);
4167 		skb_frag_size_sub(frag, offset);
4168 
4169 		/* all fragments truesize : remove (head size + sk_buff) */
4170 		delta_truesize = skb->truesize -
4171 				 SKB_TRUESIZE(skb_end_offset(skb));
4172 
4173 		skb->truesize -= skb->data_len;
4174 		skb->len -= skb->data_len;
4175 		skb->data_len = 0;
4176 
4177 		NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE;
4178 		goto done;
4179 	} else if (skb->head_frag) {
4180 		int nr_frags = pinfo->nr_frags;
4181 		skb_frag_t *frag = pinfo->frags + nr_frags;
4182 		struct page *page = virt_to_head_page(skb->head);
4183 		unsigned int first_size = headlen - offset;
4184 		unsigned int first_offset;
4185 
4186 		if (nr_frags + 1 + skbinfo->nr_frags > MAX_SKB_FRAGS)
4187 			goto merge;
4188 
4189 		first_offset = skb->data -
4190 			       (unsigned char *)page_address(page) +
4191 			       offset;
4192 
4193 		pinfo->nr_frags = nr_frags + 1 + skbinfo->nr_frags;
4194 
4195 		__skb_frag_set_page(frag, page);
4196 		skb_frag_off_set(frag, first_offset);
4197 		skb_frag_size_set(frag, first_size);
4198 
4199 		memcpy(frag + 1, skbinfo->frags, sizeof(*frag) * skbinfo->nr_frags);
4200 		/* We dont need to clear skbinfo->nr_frags here */
4201 
4202 		delta_truesize = skb->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
4203 		NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE_STOLEN_HEAD;
4204 		goto done;
4205 	}
4206 
4207 merge:
4208 	delta_truesize = skb->truesize;
4209 	if (offset > headlen) {
4210 		unsigned int eat = offset - headlen;
4211 
4212 		skb_frag_off_add(&skbinfo->frags[0], eat);
4213 		skb_frag_size_sub(&skbinfo->frags[0], eat);
4214 		skb->data_len -= eat;
4215 		skb->len -= eat;
4216 		offset = headlen;
4217 	}
4218 
4219 	__skb_pull(skb, offset);
4220 
4221 	if (NAPI_GRO_CB(p)->last == p)
4222 		skb_shinfo(p)->frag_list = skb;
4223 	else
4224 		NAPI_GRO_CB(p)->last->next = skb;
4225 	NAPI_GRO_CB(p)->last = skb;
4226 	__skb_header_release(skb);
4227 	lp = p;
4228 
4229 done:
4230 	NAPI_GRO_CB(p)->count++;
4231 	p->data_len += len;
4232 	p->truesize += delta_truesize;
4233 	p->len += len;
4234 	if (lp != p) {
4235 		lp->data_len += len;
4236 		lp->truesize += delta_truesize;
4237 		lp->len += len;
4238 	}
4239 	NAPI_GRO_CB(skb)->same_flow = 1;
4240 	return 0;
4241 }
4242 
4243 #ifdef CONFIG_SKB_EXTENSIONS
4244 #define SKB_EXT_ALIGN_VALUE	8
4245 #define SKB_EXT_CHUNKSIZEOF(x)	(ALIGN((sizeof(x)), SKB_EXT_ALIGN_VALUE) / SKB_EXT_ALIGN_VALUE)
4246 
4247 static const u8 skb_ext_type_len[] = {
4248 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4249 	[SKB_EXT_BRIDGE_NF] = SKB_EXT_CHUNKSIZEOF(struct nf_bridge_info),
4250 #endif
4251 #ifdef CONFIG_XFRM
4252 	[SKB_EXT_SEC_PATH] = SKB_EXT_CHUNKSIZEOF(struct sec_path),
4253 #endif
4254 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
4255 	[TC_SKB_EXT] = SKB_EXT_CHUNKSIZEOF(struct tc_skb_ext),
4256 #endif
4257 #if IS_ENABLED(CONFIG_MPTCP)
4258 	[SKB_EXT_MPTCP] = SKB_EXT_CHUNKSIZEOF(struct mptcp_ext),
4259 #endif
4260 };
4261 
skb_ext_total_length(void)4262 static __always_inline unsigned int skb_ext_total_length(void)
4263 {
4264 	return SKB_EXT_CHUNKSIZEOF(struct skb_ext) +
4265 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4266 		skb_ext_type_len[SKB_EXT_BRIDGE_NF] +
4267 #endif
4268 #ifdef CONFIG_XFRM
4269 		skb_ext_type_len[SKB_EXT_SEC_PATH] +
4270 #endif
4271 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
4272 		skb_ext_type_len[TC_SKB_EXT] +
4273 #endif
4274 #if IS_ENABLED(CONFIG_MPTCP)
4275 		skb_ext_type_len[SKB_EXT_MPTCP] +
4276 #endif
4277 		0;
4278 }
4279 
skb_extensions_init(void)4280 static void skb_extensions_init(void)
4281 {
4282 	BUILD_BUG_ON(SKB_EXT_NUM >= 8);
4283 	BUILD_BUG_ON(skb_ext_total_length() > 255);
4284 
4285 	skbuff_ext_cache = kmem_cache_create("skbuff_ext_cache",
4286 					     SKB_EXT_ALIGN_VALUE * skb_ext_total_length(),
4287 					     0,
4288 					     SLAB_HWCACHE_ALIGN|SLAB_PANIC,
4289 					     NULL);
4290 }
4291 #else
skb_extensions_init(void)4292 static void skb_extensions_init(void) {}
4293 #endif
4294 
skb_init(void)4295 void __init skb_init(void)
4296 {
4297 	skbuff_head_cache = kmem_cache_create_usercopy("skbuff_head_cache",
4298 					      sizeof(struct sk_buff),
4299 					      0,
4300 					      SLAB_HWCACHE_ALIGN|SLAB_PANIC,
4301 					      offsetof(struct sk_buff, cb),
4302 					      sizeof_field(struct sk_buff, cb),
4303 					      NULL);
4304 	skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
4305 						sizeof(struct sk_buff_fclones),
4306 						0,
4307 						SLAB_HWCACHE_ALIGN|SLAB_PANIC,
4308 						NULL);
4309 	skb_extensions_init();
4310 }
4311 
4312 static int
__skb_to_sgvec(struct sk_buff * skb,struct scatterlist * sg,int offset,int len,unsigned int recursion_level)4313 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len,
4314 	       unsigned int recursion_level)
4315 {
4316 	int start = skb_headlen(skb);
4317 	int i, copy = start - offset;
4318 	struct sk_buff *frag_iter;
4319 	int elt = 0;
4320 
4321 	if (unlikely(recursion_level >= 24))
4322 		return -EMSGSIZE;
4323 
4324 	if (copy > 0) {
4325 		if (copy > len)
4326 			copy = len;
4327 		sg_set_buf(sg, skb->data + offset, copy);
4328 		elt++;
4329 		if ((len -= copy) == 0)
4330 			return elt;
4331 		offset += copy;
4332 	}
4333 
4334 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
4335 		int end;
4336 
4337 		WARN_ON(start > offset + len);
4338 
4339 		end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
4340 		if ((copy = end - offset) > 0) {
4341 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
4342 			if (unlikely(elt && sg_is_last(&sg[elt - 1])))
4343 				return -EMSGSIZE;
4344 
4345 			if (copy > len)
4346 				copy = len;
4347 			sg_set_page(&sg[elt], skb_frag_page(frag), copy,
4348 				    skb_frag_off(frag) + offset - start);
4349 			elt++;
4350 			if (!(len -= copy))
4351 				return elt;
4352 			offset += copy;
4353 		}
4354 		start = end;
4355 	}
4356 
4357 	skb_walk_frags(skb, frag_iter) {
4358 		int end, ret;
4359 
4360 		WARN_ON(start > offset + len);
4361 
4362 		end = start + frag_iter->len;
4363 		if ((copy = end - offset) > 0) {
4364 			if (unlikely(elt && sg_is_last(&sg[elt - 1])))
4365 				return -EMSGSIZE;
4366 
4367 			if (copy > len)
4368 				copy = len;
4369 			ret = __skb_to_sgvec(frag_iter, sg+elt, offset - start,
4370 					      copy, recursion_level + 1);
4371 			if (unlikely(ret < 0))
4372 				return ret;
4373 			elt += ret;
4374 			if ((len -= copy) == 0)
4375 				return elt;
4376 			offset += copy;
4377 		}
4378 		start = end;
4379 	}
4380 	BUG_ON(len);
4381 	return elt;
4382 }
4383 
4384 /**
4385  *	skb_to_sgvec - Fill a scatter-gather list from a socket buffer
4386  *	@skb: Socket buffer containing the buffers to be mapped
4387  *	@sg: The scatter-gather list to map into
4388  *	@offset: The offset into the buffer's contents to start mapping
4389  *	@len: Length of buffer space to be mapped
4390  *
4391  *	Fill the specified scatter-gather list with mappings/pointers into a
4392  *	region of the buffer space attached to a socket buffer. Returns either
4393  *	the number of scatterlist items used, or -EMSGSIZE if the contents
4394  *	could not fit.
4395  */
skb_to_sgvec(struct sk_buff * skb,struct scatterlist * sg,int offset,int len)4396 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
4397 {
4398 	int nsg = __skb_to_sgvec(skb, sg, offset, len, 0);
4399 
4400 	if (nsg <= 0)
4401 		return nsg;
4402 
4403 	sg_mark_end(&sg[nsg - 1]);
4404 
4405 	return nsg;
4406 }
4407 EXPORT_SYMBOL_GPL(skb_to_sgvec);
4408 
4409 /* As compared with skb_to_sgvec, skb_to_sgvec_nomark only map skb to given
4410  * sglist without mark the sg which contain last skb data as the end.
4411  * So the caller can mannipulate sg list as will when padding new data after
4412  * the first call without calling sg_unmark_end to expend sg list.
4413  *
4414  * Scenario to use skb_to_sgvec_nomark:
4415  * 1. sg_init_table
4416  * 2. skb_to_sgvec_nomark(payload1)
4417  * 3. skb_to_sgvec_nomark(payload2)
4418  *
4419  * This is equivalent to:
4420  * 1. sg_init_table
4421  * 2. skb_to_sgvec(payload1)
4422  * 3. sg_unmark_end
4423  * 4. skb_to_sgvec(payload2)
4424  *
4425  * When mapping mutilple payload conditionally, skb_to_sgvec_nomark
4426  * is more preferable.
4427  */
skb_to_sgvec_nomark(struct sk_buff * skb,struct scatterlist * sg,int offset,int len)4428 int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
4429 			int offset, int len)
4430 {
4431 	return __skb_to_sgvec(skb, sg, offset, len, 0);
4432 }
4433 EXPORT_SYMBOL_GPL(skb_to_sgvec_nomark);
4434 
4435 
4436 
4437 /**
4438  *	skb_cow_data - Check that a socket buffer's data buffers are writable
4439  *	@skb: The socket buffer to check.
4440  *	@tailbits: Amount of trailing space to be added
4441  *	@trailer: Returned pointer to the skb where the @tailbits space begins
4442  *
4443  *	Make sure that the data buffers attached to a socket buffer are
4444  *	writable. If they are not, private copies are made of the data buffers
4445  *	and the socket buffer is set to use these instead.
4446  *
4447  *	If @tailbits is given, make sure that there is space to write @tailbits
4448  *	bytes of data beyond current end of socket buffer.  @trailer will be
4449  *	set to point to the skb in which this space begins.
4450  *
4451  *	The number of scatterlist elements required to completely map the
4452  *	COW'd and extended socket buffer will be returned.
4453  */
skb_cow_data(struct sk_buff * skb,int tailbits,struct sk_buff ** trailer)4454 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer)
4455 {
4456 	int copyflag;
4457 	int elt;
4458 	struct sk_buff *skb1, **skb_p;
4459 
4460 	/* If skb is cloned or its head is paged, reallocate
4461 	 * head pulling out all the pages (pages are considered not writable
4462 	 * at the moment even if they are anonymous).
4463 	 */
4464 	if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) &&
4465 	    !__pskb_pull_tail(skb, __skb_pagelen(skb)))
4466 		return -ENOMEM;
4467 
4468 	/* Easy case. Most of packets will go this way. */
4469 	if (!skb_has_frag_list(skb)) {
4470 		/* A little of trouble, not enough of space for trailer.
4471 		 * This should not happen, when stack is tuned to generate
4472 		 * good frames. OK, on miss we reallocate and reserve even more
4473 		 * space, 128 bytes is fair. */
4474 
4475 		if (skb_tailroom(skb) < tailbits &&
4476 		    pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC))
4477 			return -ENOMEM;
4478 
4479 		/* Voila! */
4480 		*trailer = skb;
4481 		return 1;
4482 	}
4483 
4484 	/* Misery. We are in troubles, going to mincer fragments... */
4485 
4486 	elt = 1;
4487 	skb_p = &skb_shinfo(skb)->frag_list;
4488 	copyflag = 0;
4489 
4490 	while ((skb1 = *skb_p) != NULL) {
4491 		int ntail = 0;
4492 
4493 		/* The fragment is partially pulled by someone,
4494 		 * this can happen on input. Copy it and everything
4495 		 * after it. */
4496 
4497 		if (skb_shared(skb1))
4498 			copyflag = 1;
4499 
4500 		/* If the skb is the last, worry about trailer. */
4501 
4502 		if (skb1->next == NULL && tailbits) {
4503 			if (skb_shinfo(skb1)->nr_frags ||
4504 			    skb_has_frag_list(skb1) ||
4505 			    skb_tailroom(skb1) < tailbits)
4506 				ntail = tailbits + 128;
4507 		}
4508 
4509 		if (copyflag ||
4510 		    skb_cloned(skb1) ||
4511 		    ntail ||
4512 		    skb_shinfo(skb1)->nr_frags ||
4513 		    skb_has_frag_list(skb1)) {
4514 			struct sk_buff *skb2;
4515 
4516 			/* Fuck, we are miserable poor guys... */
4517 			if (ntail == 0)
4518 				skb2 = skb_copy(skb1, GFP_ATOMIC);
4519 			else
4520 				skb2 = skb_copy_expand(skb1,
4521 						       skb_headroom(skb1),
4522 						       ntail,
4523 						       GFP_ATOMIC);
4524 			if (unlikely(skb2 == NULL))
4525 				return -ENOMEM;
4526 
4527 			if (skb1->sk)
4528 				skb_set_owner_w(skb2, skb1->sk);
4529 
4530 			/* Looking around. Are we still alive?
4531 			 * OK, link new skb, drop old one */
4532 
4533 			skb2->next = skb1->next;
4534 			*skb_p = skb2;
4535 			kfree_skb(skb1);
4536 			skb1 = skb2;
4537 		}
4538 		elt++;
4539 		*trailer = skb1;
4540 		skb_p = &skb1->next;
4541 	}
4542 
4543 	return elt;
4544 }
4545 EXPORT_SYMBOL_GPL(skb_cow_data);
4546 
sock_rmem_free(struct sk_buff * skb)4547 static void sock_rmem_free(struct sk_buff *skb)
4548 {
4549 	struct sock *sk = skb->sk;
4550 
4551 	atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
4552 }
4553 
skb_set_err_queue(struct sk_buff * skb)4554 static void skb_set_err_queue(struct sk_buff *skb)
4555 {
4556 	/* pkt_type of skbs received on local sockets is never PACKET_OUTGOING.
4557 	 * So, it is safe to (mis)use it to mark skbs on the error queue.
4558 	 */
4559 	skb->pkt_type = PACKET_OUTGOING;
4560 	BUILD_BUG_ON(PACKET_OUTGOING == 0);
4561 }
4562 
4563 /*
4564  * Note: We dont mem charge error packets (no sk_forward_alloc changes)
4565  */
sock_queue_err_skb(struct sock * sk,struct sk_buff * skb)4566 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb)
4567 {
4568 	if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
4569 	    (unsigned int)READ_ONCE(sk->sk_rcvbuf))
4570 		return -ENOMEM;
4571 
4572 	skb_orphan(skb);
4573 	skb->sk = sk;
4574 	skb->destructor = sock_rmem_free;
4575 	atomic_add(skb->truesize, &sk->sk_rmem_alloc);
4576 	skb_set_err_queue(skb);
4577 
4578 	/* before exiting rcu section, make sure dst is refcounted */
4579 	skb_dst_force(skb);
4580 
4581 	skb_queue_tail(&sk->sk_error_queue, skb);
4582 	if (!sock_flag(sk, SOCK_DEAD))
4583 		sk->sk_error_report(sk);
4584 	return 0;
4585 }
4586 EXPORT_SYMBOL(sock_queue_err_skb);
4587 
is_icmp_err_skb(const struct sk_buff * skb)4588 static bool is_icmp_err_skb(const struct sk_buff *skb)
4589 {
4590 	return skb && (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP ||
4591 		       SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP6);
4592 }
4593 
sock_dequeue_err_skb(struct sock * sk)4594 struct sk_buff *sock_dequeue_err_skb(struct sock *sk)
4595 {
4596 	struct sk_buff_head *q = &sk->sk_error_queue;
4597 	struct sk_buff *skb, *skb_next = NULL;
4598 	bool icmp_next = false;
4599 	unsigned long flags;
4600 
4601 	spin_lock_irqsave(&q->lock, flags);
4602 	skb = __skb_dequeue(q);
4603 	if (skb && (skb_next = skb_peek(q))) {
4604 		icmp_next = is_icmp_err_skb(skb_next);
4605 		if (icmp_next)
4606 			sk->sk_err = SKB_EXT_ERR(skb_next)->ee.ee_errno;
4607 	}
4608 	spin_unlock_irqrestore(&q->lock, flags);
4609 
4610 	if (is_icmp_err_skb(skb) && !icmp_next)
4611 		sk->sk_err = 0;
4612 
4613 	if (skb_next)
4614 		sk->sk_error_report(sk);
4615 
4616 	return skb;
4617 }
4618 EXPORT_SYMBOL(sock_dequeue_err_skb);
4619 
4620 /**
4621  * skb_clone_sk - create clone of skb, and take reference to socket
4622  * @skb: the skb to clone
4623  *
4624  * This function creates a clone of a buffer that holds a reference on
4625  * sk_refcnt.  Buffers created via this function are meant to be
4626  * returned using sock_queue_err_skb, or free via kfree_skb.
4627  *
4628  * When passing buffers allocated with this function to sock_queue_err_skb
4629  * it is necessary to wrap the call with sock_hold/sock_put in order to
4630  * prevent the socket from being released prior to being enqueued on
4631  * the sk_error_queue.
4632  */
skb_clone_sk(struct sk_buff * skb)4633 struct sk_buff *skb_clone_sk(struct sk_buff *skb)
4634 {
4635 	struct sock *sk = skb->sk;
4636 	struct sk_buff *clone;
4637 
4638 	if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt))
4639 		return NULL;
4640 
4641 	clone = skb_clone(skb, GFP_ATOMIC);
4642 	if (!clone) {
4643 		sock_put(sk);
4644 		return NULL;
4645 	}
4646 
4647 	clone->sk = sk;
4648 	clone->destructor = sock_efree;
4649 
4650 	return clone;
4651 }
4652 EXPORT_SYMBOL(skb_clone_sk);
4653 
__skb_complete_tx_timestamp(struct sk_buff * skb,struct sock * sk,int tstype,bool opt_stats)4654 static void __skb_complete_tx_timestamp(struct sk_buff *skb,
4655 					struct sock *sk,
4656 					int tstype,
4657 					bool opt_stats)
4658 {
4659 	struct sock_exterr_skb *serr;
4660 	int err;
4661 
4662 	BUILD_BUG_ON(sizeof(struct sock_exterr_skb) > sizeof(skb->cb));
4663 
4664 	serr = SKB_EXT_ERR(skb);
4665 	memset(serr, 0, sizeof(*serr));
4666 	serr->ee.ee_errno = ENOMSG;
4667 	serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING;
4668 	serr->ee.ee_info = tstype;
4669 	serr->opt_stats = opt_stats;
4670 	serr->header.h4.iif = skb->dev ? skb->dev->ifindex : 0;
4671 	if (sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID) {
4672 		serr->ee.ee_data = skb_shinfo(skb)->tskey;
4673 		if (sk->sk_protocol == IPPROTO_TCP &&
4674 		    sk->sk_type == SOCK_STREAM)
4675 			serr->ee.ee_data -= sk->sk_tskey;
4676 	}
4677 
4678 	err = sock_queue_err_skb(sk, skb);
4679 
4680 	if (err)
4681 		kfree_skb(skb);
4682 }
4683 
skb_may_tx_timestamp(struct sock * sk,bool tsonly)4684 static bool skb_may_tx_timestamp(struct sock *sk, bool tsonly)
4685 {
4686 	bool ret;
4687 
4688 	if (likely(sysctl_tstamp_allow_data || tsonly))
4689 		return true;
4690 
4691 	read_lock_bh(&sk->sk_callback_lock);
4692 	ret = sk->sk_socket && sk->sk_socket->file &&
4693 	      file_ns_capable(sk->sk_socket->file, &init_user_ns, CAP_NET_RAW);
4694 	read_unlock_bh(&sk->sk_callback_lock);
4695 	return ret;
4696 }
4697 
skb_complete_tx_timestamp(struct sk_buff * skb,struct skb_shared_hwtstamps * hwtstamps)4698 void skb_complete_tx_timestamp(struct sk_buff *skb,
4699 			       struct skb_shared_hwtstamps *hwtstamps)
4700 {
4701 	struct sock *sk = skb->sk;
4702 
4703 	if (!skb_may_tx_timestamp(sk, false))
4704 		goto err;
4705 
4706 	/* Take a reference to prevent skb_orphan() from freeing the socket,
4707 	 * but only if the socket refcount is not zero.
4708 	 */
4709 	if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
4710 		*skb_hwtstamps(skb) = *hwtstamps;
4711 		__skb_complete_tx_timestamp(skb, sk, SCM_TSTAMP_SND, false);
4712 		sock_put(sk);
4713 		return;
4714 	}
4715 
4716 err:
4717 	kfree_skb(skb);
4718 }
4719 EXPORT_SYMBOL_GPL(skb_complete_tx_timestamp);
4720 
__skb_tstamp_tx(struct sk_buff * orig_skb,struct skb_shared_hwtstamps * hwtstamps,struct sock * sk,int tstype)4721 void __skb_tstamp_tx(struct sk_buff *orig_skb,
4722 		     struct skb_shared_hwtstamps *hwtstamps,
4723 		     struct sock *sk, int tstype)
4724 {
4725 	struct sk_buff *skb;
4726 	bool tsonly, opt_stats = false;
4727 
4728 	if (!sk)
4729 		return;
4730 
4731 	if (!hwtstamps && !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TX_SWHW) &&
4732 	    skb_shinfo(orig_skb)->tx_flags & SKBTX_IN_PROGRESS)
4733 		return;
4734 
4735 	tsonly = sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TSONLY;
4736 	if (!skb_may_tx_timestamp(sk, tsonly))
4737 		return;
4738 
4739 	if (tsonly) {
4740 #ifdef CONFIG_INET
4741 		if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_STATS) &&
4742 		    sk->sk_protocol == IPPROTO_TCP &&
4743 		    sk->sk_type == SOCK_STREAM) {
4744 			skb = tcp_get_timestamping_opt_stats(sk, orig_skb);
4745 			opt_stats = true;
4746 		} else
4747 #endif
4748 			skb = alloc_skb(0, GFP_ATOMIC);
4749 	} else {
4750 		skb = skb_clone(orig_skb, GFP_ATOMIC);
4751 	}
4752 	if (!skb)
4753 		return;
4754 
4755 	if (tsonly) {
4756 		skb_shinfo(skb)->tx_flags |= skb_shinfo(orig_skb)->tx_flags &
4757 					     SKBTX_ANY_TSTAMP;
4758 		skb_shinfo(skb)->tskey = skb_shinfo(orig_skb)->tskey;
4759 	}
4760 
4761 	if (hwtstamps)
4762 		*skb_hwtstamps(skb) = *hwtstamps;
4763 	else
4764 		skb->tstamp = ktime_get_real();
4765 
4766 	__skb_complete_tx_timestamp(skb, sk, tstype, opt_stats);
4767 }
4768 EXPORT_SYMBOL_GPL(__skb_tstamp_tx);
4769 
skb_tstamp_tx(struct sk_buff * orig_skb,struct skb_shared_hwtstamps * hwtstamps)4770 void skb_tstamp_tx(struct sk_buff *orig_skb,
4771 		   struct skb_shared_hwtstamps *hwtstamps)
4772 {
4773 	return __skb_tstamp_tx(orig_skb, hwtstamps, orig_skb->sk,
4774 			       SCM_TSTAMP_SND);
4775 }
4776 EXPORT_SYMBOL_GPL(skb_tstamp_tx);
4777 
skb_complete_wifi_ack(struct sk_buff * skb,bool acked)4778 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked)
4779 {
4780 	struct sock *sk = skb->sk;
4781 	struct sock_exterr_skb *serr;
4782 	int err = 1;
4783 
4784 	skb->wifi_acked_valid = 1;
4785 	skb->wifi_acked = acked;
4786 
4787 	serr = SKB_EXT_ERR(skb);
4788 	memset(serr, 0, sizeof(*serr));
4789 	serr->ee.ee_errno = ENOMSG;
4790 	serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS;
4791 
4792 	/* Take a reference to prevent skb_orphan() from freeing the socket,
4793 	 * but only if the socket refcount is not zero.
4794 	 */
4795 	if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
4796 		err = sock_queue_err_skb(sk, skb);
4797 		sock_put(sk);
4798 	}
4799 	if (err)
4800 		kfree_skb(skb);
4801 }
4802 EXPORT_SYMBOL_GPL(skb_complete_wifi_ack);
4803 
4804 /**
4805  * skb_partial_csum_set - set up and verify partial csum values for packet
4806  * @skb: the skb to set
4807  * @start: the number of bytes after skb->data to start checksumming.
4808  * @off: the offset from start to place the checksum.
4809  *
4810  * For untrusted partially-checksummed packets, we need to make sure the values
4811  * for skb->csum_start and skb->csum_offset are valid so we don't oops.
4812  *
4813  * This function checks and sets those values and skb->ip_summed: if this
4814  * returns false you should drop the packet.
4815  */
skb_partial_csum_set(struct sk_buff * skb,u16 start,u16 off)4816 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off)
4817 {
4818 	u32 csum_end = (u32)start + (u32)off + sizeof(__sum16);
4819 	u32 csum_start = skb_headroom(skb) + (u32)start;
4820 
4821 	if (unlikely(csum_start > U16_MAX || csum_end > skb_headlen(skb))) {
4822 		net_warn_ratelimited("bad partial csum: csum=%u/%u headroom=%u headlen=%u\n",
4823 				     start, off, skb_headroom(skb), skb_headlen(skb));
4824 		return false;
4825 	}
4826 	skb->ip_summed = CHECKSUM_PARTIAL;
4827 	skb->csum_start = csum_start;
4828 	skb->csum_offset = off;
4829 	skb_set_transport_header(skb, start);
4830 	return true;
4831 }
4832 EXPORT_SYMBOL_GPL(skb_partial_csum_set);
4833 
skb_maybe_pull_tail(struct sk_buff * skb,unsigned int len,unsigned int max)4834 static int skb_maybe_pull_tail(struct sk_buff *skb, unsigned int len,
4835 			       unsigned int max)
4836 {
4837 	if (skb_headlen(skb) >= len)
4838 		return 0;
4839 
4840 	/* If we need to pullup then pullup to the max, so we
4841 	 * won't need to do it again.
4842 	 */
4843 	if (max > skb->len)
4844 		max = skb->len;
4845 
4846 	if (__pskb_pull_tail(skb, max - skb_headlen(skb)) == NULL)
4847 		return -ENOMEM;
4848 
4849 	if (skb_headlen(skb) < len)
4850 		return -EPROTO;
4851 
4852 	return 0;
4853 }
4854 
4855 #define MAX_TCP_HDR_LEN (15 * 4)
4856 
skb_checksum_setup_ip(struct sk_buff * skb,typeof(IPPROTO_IP) proto,unsigned int off)4857 static __sum16 *skb_checksum_setup_ip(struct sk_buff *skb,
4858 				      typeof(IPPROTO_IP) proto,
4859 				      unsigned int off)
4860 {
4861 	int err;
4862 
4863 	switch (proto) {
4864 	case IPPROTO_TCP:
4865 		err = skb_maybe_pull_tail(skb, off + sizeof(struct tcphdr),
4866 					  off + MAX_TCP_HDR_LEN);
4867 		if (!err && !skb_partial_csum_set(skb, off,
4868 						  offsetof(struct tcphdr,
4869 							   check)))
4870 			err = -EPROTO;
4871 		return err ? ERR_PTR(err) : &tcp_hdr(skb)->check;
4872 
4873 	case IPPROTO_UDP:
4874 		err = skb_maybe_pull_tail(skb, off + sizeof(struct udphdr),
4875 					  off + sizeof(struct udphdr));
4876 		if (!err && !skb_partial_csum_set(skb, off,
4877 						  offsetof(struct udphdr,
4878 							   check)))
4879 			err = -EPROTO;
4880 		return err ? ERR_PTR(err) : &udp_hdr(skb)->check;
4881 	}
4882 
4883 	return ERR_PTR(-EPROTO);
4884 }
4885 
4886 /* This value should be large enough to cover a tagged ethernet header plus
4887  * maximally sized IP and TCP or UDP headers.
4888  */
4889 #define MAX_IP_HDR_LEN 128
4890 
skb_checksum_setup_ipv4(struct sk_buff * skb,bool recalculate)4891 static int skb_checksum_setup_ipv4(struct sk_buff *skb, bool recalculate)
4892 {
4893 	unsigned int off;
4894 	bool fragment;
4895 	__sum16 *csum;
4896 	int err;
4897 
4898 	fragment = false;
4899 
4900 	err = skb_maybe_pull_tail(skb,
4901 				  sizeof(struct iphdr),
4902 				  MAX_IP_HDR_LEN);
4903 	if (err < 0)
4904 		goto out;
4905 
4906 	if (ip_is_fragment(ip_hdr(skb)))
4907 		fragment = true;
4908 
4909 	off = ip_hdrlen(skb);
4910 
4911 	err = -EPROTO;
4912 
4913 	if (fragment)
4914 		goto out;
4915 
4916 	csum = skb_checksum_setup_ip(skb, ip_hdr(skb)->protocol, off);
4917 	if (IS_ERR(csum))
4918 		return PTR_ERR(csum);
4919 
4920 	if (recalculate)
4921 		*csum = ~csum_tcpudp_magic(ip_hdr(skb)->saddr,
4922 					   ip_hdr(skb)->daddr,
4923 					   skb->len - off,
4924 					   ip_hdr(skb)->protocol, 0);
4925 	err = 0;
4926 
4927 out:
4928 	return err;
4929 }
4930 
4931 /* This value should be large enough to cover a tagged ethernet header plus
4932  * an IPv6 header, all options, and a maximal TCP or UDP header.
4933  */
4934 #define MAX_IPV6_HDR_LEN 256
4935 
4936 #define OPT_HDR(type, skb, off) \
4937 	(type *)(skb_network_header(skb) + (off))
4938 
skb_checksum_setup_ipv6(struct sk_buff * skb,bool recalculate)4939 static int skb_checksum_setup_ipv6(struct sk_buff *skb, bool recalculate)
4940 {
4941 	int err;
4942 	u8 nexthdr;
4943 	unsigned int off;
4944 	unsigned int len;
4945 	bool fragment;
4946 	bool done;
4947 	__sum16 *csum;
4948 
4949 	fragment = false;
4950 	done = false;
4951 
4952 	off = sizeof(struct ipv6hdr);
4953 
4954 	err = skb_maybe_pull_tail(skb, off, MAX_IPV6_HDR_LEN);
4955 	if (err < 0)
4956 		goto out;
4957 
4958 	nexthdr = ipv6_hdr(skb)->nexthdr;
4959 
4960 	len = sizeof(struct ipv6hdr) + ntohs(ipv6_hdr(skb)->payload_len);
4961 	while (off <= len && !done) {
4962 		switch (nexthdr) {
4963 		case IPPROTO_DSTOPTS:
4964 		case IPPROTO_HOPOPTS:
4965 		case IPPROTO_ROUTING: {
4966 			struct ipv6_opt_hdr *hp;
4967 
4968 			err = skb_maybe_pull_tail(skb,
4969 						  off +
4970 						  sizeof(struct ipv6_opt_hdr),
4971 						  MAX_IPV6_HDR_LEN);
4972 			if (err < 0)
4973 				goto out;
4974 
4975 			hp = OPT_HDR(struct ipv6_opt_hdr, skb, off);
4976 			nexthdr = hp->nexthdr;
4977 			off += ipv6_optlen(hp);
4978 			break;
4979 		}
4980 		case IPPROTO_AH: {
4981 			struct ip_auth_hdr *hp;
4982 
4983 			err = skb_maybe_pull_tail(skb,
4984 						  off +
4985 						  sizeof(struct ip_auth_hdr),
4986 						  MAX_IPV6_HDR_LEN);
4987 			if (err < 0)
4988 				goto out;
4989 
4990 			hp = OPT_HDR(struct ip_auth_hdr, skb, off);
4991 			nexthdr = hp->nexthdr;
4992 			off += ipv6_authlen(hp);
4993 			break;
4994 		}
4995 		case IPPROTO_FRAGMENT: {
4996 			struct frag_hdr *hp;
4997 
4998 			err = skb_maybe_pull_tail(skb,
4999 						  off +
5000 						  sizeof(struct frag_hdr),
5001 						  MAX_IPV6_HDR_LEN);
5002 			if (err < 0)
5003 				goto out;
5004 
5005 			hp = OPT_HDR(struct frag_hdr, skb, off);
5006 
5007 			if (hp->frag_off & htons(IP6_OFFSET | IP6_MF))
5008 				fragment = true;
5009 
5010 			nexthdr = hp->nexthdr;
5011 			off += sizeof(struct frag_hdr);
5012 			break;
5013 		}
5014 		default:
5015 			done = true;
5016 			break;
5017 		}
5018 	}
5019 
5020 	err = -EPROTO;
5021 
5022 	if (!done || fragment)
5023 		goto out;
5024 
5025 	csum = skb_checksum_setup_ip(skb, nexthdr, off);
5026 	if (IS_ERR(csum))
5027 		return PTR_ERR(csum);
5028 
5029 	if (recalculate)
5030 		*csum = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
5031 					 &ipv6_hdr(skb)->daddr,
5032 					 skb->len - off, nexthdr, 0);
5033 	err = 0;
5034 
5035 out:
5036 	return err;
5037 }
5038 
5039 /**
5040  * skb_checksum_setup - set up partial checksum offset
5041  * @skb: the skb to set up
5042  * @recalculate: if true the pseudo-header checksum will be recalculated
5043  */
skb_checksum_setup(struct sk_buff * skb,bool recalculate)5044 int skb_checksum_setup(struct sk_buff *skb, bool recalculate)
5045 {
5046 	int err;
5047 
5048 	switch (skb->protocol) {
5049 	case htons(ETH_P_IP):
5050 		err = skb_checksum_setup_ipv4(skb, recalculate);
5051 		break;
5052 
5053 	case htons(ETH_P_IPV6):
5054 		err = skb_checksum_setup_ipv6(skb, recalculate);
5055 		break;
5056 
5057 	default:
5058 		err = -EPROTO;
5059 		break;
5060 	}
5061 
5062 	return err;
5063 }
5064 EXPORT_SYMBOL(skb_checksum_setup);
5065 
5066 /**
5067  * skb_checksum_maybe_trim - maybe trims the given skb
5068  * @skb: the skb to check
5069  * @transport_len: the data length beyond the network header
5070  *
5071  * Checks whether the given skb has data beyond the given transport length.
5072  * If so, returns a cloned skb trimmed to this transport length.
5073  * Otherwise returns the provided skb. Returns NULL in error cases
5074  * (e.g. transport_len exceeds skb length or out-of-memory).
5075  *
5076  * Caller needs to set the skb transport header and free any returned skb if it
5077  * differs from the provided skb.
5078  */
skb_checksum_maybe_trim(struct sk_buff * skb,unsigned int transport_len)5079 static struct sk_buff *skb_checksum_maybe_trim(struct sk_buff *skb,
5080 					       unsigned int transport_len)
5081 {
5082 	struct sk_buff *skb_chk;
5083 	unsigned int len = skb_transport_offset(skb) + transport_len;
5084 	int ret;
5085 
5086 	if (skb->len < len)
5087 		return NULL;
5088 	else if (skb->len == len)
5089 		return skb;
5090 
5091 	skb_chk = skb_clone(skb, GFP_ATOMIC);
5092 	if (!skb_chk)
5093 		return NULL;
5094 
5095 	ret = pskb_trim_rcsum(skb_chk, len);
5096 	if (ret) {
5097 		kfree_skb(skb_chk);
5098 		return NULL;
5099 	}
5100 
5101 	return skb_chk;
5102 }
5103 
5104 /**
5105  * skb_checksum_trimmed - validate checksum of an skb
5106  * @skb: the skb to check
5107  * @transport_len: the data length beyond the network header
5108  * @skb_chkf: checksum function to use
5109  *
5110  * Applies the given checksum function skb_chkf to the provided skb.
5111  * Returns a checked and maybe trimmed skb. Returns NULL on error.
5112  *
5113  * If the skb has data beyond the given transport length, then a
5114  * trimmed & cloned skb is checked and returned.
5115  *
5116  * Caller needs to set the skb transport header and free any returned skb if it
5117  * differs from the provided skb.
5118  */
skb_checksum_trimmed(struct sk_buff * skb,unsigned int transport_len,__sum16 (* skb_chkf)(struct sk_buff * skb))5119 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
5120 				     unsigned int transport_len,
5121 				     __sum16(*skb_chkf)(struct sk_buff *skb))
5122 {
5123 	struct sk_buff *skb_chk;
5124 	unsigned int offset = skb_transport_offset(skb);
5125 	__sum16 ret;
5126 
5127 	skb_chk = skb_checksum_maybe_trim(skb, transport_len);
5128 	if (!skb_chk)
5129 		goto err;
5130 
5131 	if (!pskb_may_pull(skb_chk, offset))
5132 		goto err;
5133 
5134 	skb_pull_rcsum(skb_chk, offset);
5135 	ret = skb_chkf(skb_chk);
5136 	skb_push_rcsum(skb_chk, offset);
5137 
5138 	if (ret)
5139 		goto err;
5140 
5141 	return skb_chk;
5142 
5143 err:
5144 	if (skb_chk && skb_chk != skb)
5145 		kfree_skb(skb_chk);
5146 
5147 	return NULL;
5148 
5149 }
5150 EXPORT_SYMBOL(skb_checksum_trimmed);
5151 
__skb_warn_lro_forwarding(const struct sk_buff * skb)5152 void __skb_warn_lro_forwarding(const struct sk_buff *skb)
5153 {
5154 	net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n",
5155 			     skb->dev->name);
5156 }
5157 EXPORT_SYMBOL(__skb_warn_lro_forwarding);
5158 
kfree_skb_partial(struct sk_buff * skb,bool head_stolen)5159 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen)
5160 {
5161 	if (head_stolen) {
5162 		skb_release_head_state(skb);
5163 		kmem_cache_free(skbuff_head_cache, skb);
5164 	} else {
5165 		__kfree_skb(skb);
5166 	}
5167 }
5168 EXPORT_SYMBOL(kfree_skb_partial);
5169 
5170 /**
5171  * skb_try_coalesce - try to merge skb to prior one
5172  * @to: prior buffer
5173  * @from: buffer to add
5174  * @fragstolen: pointer to boolean
5175  * @delta_truesize: how much more was allocated than was requested
5176  */
skb_try_coalesce(struct sk_buff * to,struct sk_buff * from,bool * fragstolen,int * delta_truesize)5177 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
5178 		      bool *fragstolen, int *delta_truesize)
5179 {
5180 	struct skb_shared_info *to_shinfo, *from_shinfo;
5181 	int i, delta, len = from->len;
5182 
5183 	*fragstolen = false;
5184 
5185 	if (skb_cloned(to))
5186 		return false;
5187 
5188 	if (len <= skb_tailroom(to)) {
5189 		if (len)
5190 			BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len));
5191 		*delta_truesize = 0;
5192 		return true;
5193 	}
5194 
5195 	to_shinfo = skb_shinfo(to);
5196 	from_shinfo = skb_shinfo(from);
5197 	if (to_shinfo->frag_list || from_shinfo->frag_list)
5198 		return false;
5199 	if (skb_zcopy(to) || skb_zcopy(from))
5200 		return false;
5201 
5202 	if (skb_headlen(from) != 0) {
5203 		struct page *page;
5204 		unsigned int offset;
5205 
5206 		if (to_shinfo->nr_frags +
5207 		    from_shinfo->nr_frags >= MAX_SKB_FRAGS)
5208 			return false;
5209 
5210 		if (skb_head_is_locked(from))
5211 			return false;
5212 
5213 		delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
5214 
5215 		page = virt_to_head_page(from->head);
5216 		offset = from->data - (unsigned char *)page_address(page);
5217 
5218 		skb_fill_page_desc(to, to_shinfo->nr_frags,
5219 				   page, offset, skb_headlen(from));
5220 		*fragstolen = true;
5221 	} else {
5222 		if (to_shinfo->nr_frags +
5223 		    from_shinfo->nr_frags > MAX_SKB_FRAGS)
5224 			return false;
5225 
5226 		delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from));
5227 	}
5228 
5229 	WARN_ON_ONCE(delta < len);
5230 
5231 	memcpy(to_shinfo->frags + to_shinfo->nr_frags,
5232 	       from_shinfo->frags,
5233 	       from_shinfo->nr_frags * sizeof(skb_frag_t));
5234 	to_shinfo->nr_frags += from_shinfo->nr_frags;
5235 
5236 	if (!skb_cloned(from))
5237 		from_shinfo->nr_frags = 0;
5238 
5239 	/* if the skb is not cloned this does nothing
5240 	 * since we set nr_frags to 0.
5241 	 */
5242 	for (i = 0; i < from_shinfo->nr_frags; i++)
5243 		__skb_frag_ref(&from_shinfo->frags[i]);
5244 
5245 	to->truesize += delta;
5246 	to->len += len;
5247 	to->data_len += len;
5248 
5249 	*delta_truesize = delta;
5250 	return true;
5251 }
5252 EXPORT_SYMBOL(skb_try_coalesce);
5253 
5254 /**
5255  * skb_scrub_packet - scrub an skb
5256  *
5257  * @skb: buffer to clean
5258  * @xnet: packet is crossing netns
5259  *
5260  * skb_scrub_packet can be used after encapsulating or decapsulting a packet
5261  * into/from a tunnel. Some information have to be cleared during these
5262  * operations.
5263  * skb_scrub_packet can also be used to clean a skb before injecting it in
5264  * another namespace (@xnet == true). We have to clear all information in the
5265  * skb that could impact namespace isolation.
5266  */
skb_scrub_packet(struct sk_buff * skb,bool xnet)5267 void skb_scrub_packet(struct sk_buff *skb, bool xnet)
5268 {
5269 	skb->pkt_type = PACKET_HOST;
5270 	skb->skb_iif = 0;
5271 	skb->ignore_df = 0;
5272 	skb_dst_drop(skb);
5273 	skb_ext_reset(skb);
5274 	nf_reset_ct(skb);
5275 	nf_reset_trace(skb);
5276 
5277 #ifdef CONFIG_NET_SWITCHDEV
5278 	skb->offload_fwd_mark = 0;
5279 	skb->offload_l3_fwd_mark = 0;
5280 #endif
5281 
5282 	if (!xnet)
5283 		return;
5284 
5285 	ipvs_reset(skb);
5286 	skb->mark = 0;
5287 	skb->tstamp = 0;
5288 }
5289 EXPORT_SYMBOL_GPL(skb_scrub_packet);
5290 
5291 /**
5292  * skb_gso_transport_seglen - Return length of individual segments of a gso packet
5293  *
5294  * @skb: GSO skb
5295  *
5296  * skb_gso_transport_seglen is used to determine the real size of the
5297  * individual segments, including Layer4 headers (TCP/UDP).
5298  *
5299  * The MAC/L2 or network (IP, IPv6) headers are not accounted for.
5300  */
skb_gso_transport_seglen(const struct sk_buff * skb)5301 static unsigned int skb_gso_transport_seglen(const struct sk_buff *skb)
5302 {
5303 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
5304 	unsigned int thlen = 0;
5305 
5306 	if (skb->encapsulation) {
5307 		thlen = skb_inner_transport_header(skb) -
5308 			skb_transport_header(skb);
5309 
5310 		if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
5311 			thlen += inner_tcp_hdrlen(skb);
5312 	} else if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
5313 		thlen = tcp_hdrlen(skb);
5314 	} else if (unlikely(skb_is_gso_sctp(skb))) {
5315 		thlen = sizeof(struct sctphdr);
5316 	} else if (shinfo->gso_type & SKB_GSO_UDP_L4) {
5317 		thlen = sizeof(struct udphdr);
5318 	}
5319 	/* UFO sets gso_size to the size of the fragmentation
5320 	 * payload, i.e. the size of the L4 (UDP) header is already
5321 	 * accounted for.
5322 	 */
5323 	return thlen + shinfo->gso_size;
5324 }
5325 
5326 /**
5327  * skb_gso_network_seglen - Return length of individual segments of a gso packet
5328  *
5329  * @skb: GSO skb
5330  *
5331  * skb_gso_network_seglen is used to determine the real size of the
5332  * individual segments, including Layer3 (IP, IPv6) and L4 headers (TCP/UDP).
5333  *
5334  * The MAC/L2 header is not accounted for.
5335  */
skb_gso_network_seglen(const struct sk_buff * skb)5336 static unsigned int skb_gso_network_seglen(const struct sk_buff *skb)
5337 {
5338 	unsigned int hdr_len = skb_transport_header(skb) -
5339 			       skb_network_header(skb);
5340 
5341 	return hdr_len + skb_gso_transport_seglen(skb);
5342 }
5343 
5344 /**
5345  * skb_gso_mac_seglen - Return length of individual segments of a gso packet
5346  *
5347  * @skb: GSO skb
5348  *
5349  * skb_gso_mac_seglen is used to determine the real size of the
5350  * individual segments, including MAC/L2, Layer3 (IP, IPv6) and L4
5351  * headers (TCP/UDP).
5352  */
skb_gso_mac_seglen(const struct sk_buff * skb)5353 static unsigned int skb_gso_mac_seglen(const struct sk_buff *skb)
5354 {
5355 	unsigned int hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
5356 
5357 	return hdr_len + skb_gso_transport_seglen(skb);
5358 }
5359 
5360 /**
5361  * skb_gso_size_check - check the skb size, considering GSO_BY_FRAGS
5362  *
5363  * There are a couple of instances where we have a GSO skb, and we
5364  * want to determine what size it would be after it is segmented.
5365  *
5366  * We might want to check:
5367  * -    L3+L4+payload size (e.g. IP forwarding)
5368  * - L2+L3+L4+payload size (e.g. sanity check before passing to driver)
5369  *
5370  * This is a helper to do that correctly considering GSO_BY_FRAGS.
5371  *
5372  * @skb: GSO skb
5373  *
5374  * @seg_len: The segmented length (from skb_gso_*_seglen). In the
5375  *           GSO_BY_FRAGS case this will be [header sizes + GSO_BY_FRAGS].
5376  *
5377  * @max_len: The maximum permissible length.
5378  *
5379  * Returns true if the segmented length <= max length.
5380  */
skb_gso_size_check(const struct sk_buff * skb,unsigned int seg_len,unsigned int max_len)5381 static inline bool skb_gso_size_check(const struct sk_buff *skb,
5382 				      unsigned int seg_len,
5383 				      unsigned int max_len) {
5384 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
5385 	const struct sk_buff *iter;
5386 
5387 	if (shinfo->gso_size != GSO_BY_FRAGS)
5388 		return seg_len <= max_len;
5389 
5390 	/* Undo this so we can re-use header sizes */
5391 	seg_len -= GSO_BY_FRAGS;
5392 
5393 	skb_walk_frags(skb, iter) {
5394 		if (seg_len + skb_headlen(iter) > max_len)
5395 			return false;
5396 	}
5397 
5398 	return true;
5399 }
5400 
5401 /**
5402  * skb_gso_validate_network_len - Will a split GSO skb fit into a given MTU?
5403  *
5404  * @skb: GSO skb
5405  * @mtu: MTU to validate against
5406  *
5407  * skb_gso_validate_network_len validates if a given skb will fit a
5408  * wanted MTU once split. It considers L3 headers, L4 headers, and the
5409  * payload.
5410  */
skb_gso_validate_network_len(const struct sk_buff * skb,unsigned int mtu)5411 bool skb_gso_validate_network_len(const struct sk_buff *skb, unsigned int mtu)
5412 {
5413 	return skb_gso_size_check(skb, skb_gso_network_seglen(skb), mtu);
5414 }
5415 EXPORT_SYMBOL_GPL(skb_gso_validate_network_len);
5416 
5417 /**
5418  * skb_gso_validate_mac_len - Will a split GSO skb fit in a given length?
5419  *
5420  * @skb: GSO skb
5421  * @len: length to validate against
5422  *
5423  * skb_gso_validate_mac_len validates if a given skb will fit a wanted
5424  * length once split, including L2, L3 and L4 headers and the payload.
5425  */
skb_gso_validate_mac_len(const struct sk_buff * skb,unsigned int len)5426 bool skb_gso_validate_mac_len(const struct sk_buff *skb, unsigned int len)
5427 {
5428 	return skb_gso_size_check(skb, skb_gso_mac_seglen(skb), len);
5429 }
5430 EXPORT_SYMBOL_GPL(skb_gso_validate_mac_len);
5431 
skb_reorder_vlan_header(struct sk_buff * skb)5432 static struct sk_buff *skb_reorder_vlan_header(struct sk_buff *skb)
5433 {
5434 	int mac_len, meta_len;
5435 	void *meta;
5436 
5437 	if (skb_cow(skb, skb_headroom(skb)) < 0) {
5438 		kfree_skb(skb);
5439 		return NULL;
5440 	}
5441 
5442 	mac_len = skb->data - skb_mac_header(skb);
5443 	if (likely(mac_len > VLAN_HLEN + ETH_TLEN)) {
5444 		memmove(skb_mac_header(skb) + VLAN_HLEN, skb_mac_header(skb),
5445 			mac_len - VLAN_HLEN - ETH_TLEN);
5446 	}
5447 
5448 	meta_len = skb_metadata_len(skb);
5449 	if (meta_len) {
5450 		meta = skb_metadata_end(skb) - meta_len;
5451 		memmove(meta + VLAN_HLEN, meta, meta_len);
5452 	}
5453 
5454 	skb->mac_header += VLAN_HLEN;
5455 	return skb;
5456 }
5457 
skb_vlan_untag(struct sk_buff * skb)5458 struct sk_buff *skb_vlan_untag(struct sk_buff *skb)
5459 {
5460 	struct vlan_hdr *vhdr;
5461 	u16 vlan_tci;
5462 
5463 	if (unlikely(skb_vlan_tag_present(skb))) {
5464 		/* vlan_tci is already set-up so leave this for another time */
5465 		return skb;
5466 	}
5467 
5468 	skb = skb_share_check(skb, GFP_ATOMIC);
5469 	if (unlikely(!skb))
5470 		goto err_free;
5471 	/* We may access the two bytes after vlan_hdr in vlan_set_encap_proto(). */
5472 	if (unlikely(!pskb_may_pull(skb, VLAN_HLEN + sizeof(unsigned short))))
5473 		goto err_free;
5474 
5475 	vhdr = (struct vlan_hdr *)skb->data;
5476 	vlan_tci = ntohs(vhdr->h_vlan_TCI);
5477 	__vlan_hwaccel_put_tag(skb, skb->protocol, vlan_tci);
5478 
5479 	skb_pull_rcsum(skb, VLAN_HLEN);
5480 	vlan_set_encap_proto(skb, vhdr);
5481 
5482 	skb = skb_reorder_vlan_header(skb);
5483 	if (unlikely(!skb))
5484 		goto err_free;
5485 
5486 	skb_reset_network_header(skb);
5487 	skb_reset_transport_header(skb);
5488 	skb_reset_mac_len(skb);
5489 
5490 	return skb;
5491 
5492 err_free:
5493 	kfree_skb(skb);
5494 	return NULL;
5495 }
5496 EXPORT_SYMBOL(skb_vlan_untag);
5497 
skb_ensure_writable(struct sk_buff * skb,int write_len)5498 int skb_ensure_writable(struct sk_buff *skb, int write_len)
5499 {
5500 	if (!pskb_may_pull(skb, write_len))
5501 		return -ENOMEM;
5502 
5503 	if (!skb_cloned(skb) || skb_clone_writable(skb, write_len))
5504 		return 0;
5505 
5506 	return pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
5507 }
5508 EXPORT_SYMBOL(skb_ensure_writable);
5509 
5510 /* remove VLAN header from packet and update csum accordingly.
5511  * expects a non skb_vlan_tag_present skb with a vlan tag payload
5512  */
__skb_vlan_pop(struct sk_buff * skb,u16 * vlan_tci)5513 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci)
5514 {
5515 	struct vlan_hdr *vhdr;
5516 	int offset = skb->data - skb_mac_header(skb);
5517 	int err;
5518 
5519 	if (WARN_ONCE(offset,
5520 		      "__skb_vlan_pop got skb with skb->data not at mac header (offset %d)\n",
5521 		      offset)) {
5522 		return -EINVAL;
5523 	}
5524 
5525 	err = skb_ensure_writable(skb, VLAN_ETH_HLEN);
5526 	if (unlikely(err))
5527 		return err;
5528 
5529 	skb_postpull_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
5530 
5531 	vhdr = (struct vlan_hdr *)(skb->data + ETH_HLEN);
5532 	*vlan_tci = ntohs(vhdr->h_vlan_TCI);
5533 
5534 	memmove(skb->data + VLAN_HLEN, skb->data, 2 * ETH_ALEN);
5535 	__skb_pull(skb, VLAN_HLEN);
5536 
5537 	vlan_set_encap_proto(skb, vhdr);
5538 	skb->mac_header += VLAN_HLEN;
5539 
5540 	if (skb_network_offset(skb) < ETH_HLEN)
5541 		skb_set_network_header(skb, ETH_HLEN);
5542 
5543 	skb_reset_mac_len(skb);
5544 
5545 	return err;
5546 }
5547 EXPORT_SYMBOL(__skb_vlan_pop);
5548 
5549 /* Pop a vlan tag either from hwaccel or from payload.
5550  * Expects skb->data at mac header.
5551  */
skb_vlan_pop(struct sk_buff * skb)5552 int skb_vlan_pop(struct sk_buff *skb)
5553 {
5554 	u16 vlan_tci;
5555 	__be16 vlan_proto;
5556 	int err;
5557 
5558 	if (likely(skb_vlan_tag_present(skb))) {
5559 		__vlan_hwaccel_clear_tag(skb);
5560 	} else {
5561 		if (unlikely(!eth_type_vlan(skb->protocol)))
5562 			return 0;
5563 
5564 		err = __skb_vlan_pop(skb, &vlan_tci);
5565 		if (err)
5566 			return err;
5567 	}
5568 	/* move next vlan tag to hw accel tag */
5569 	if (likely(!eth_type_vlan(skb->protocol)))
5570 		return 0;
5571 
5572 	vlan_proto = skb->protocol;
5573 	err = __skb_vlan_pop(skb, &vlan_tci);
5574 	if (unlikely(err))
5575 		return err;
5576 
5577 	__vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
5578 	return 0;
5579 }
5580 EXPORT_SYMBOL(skb_vlan_pop);
5581 
5582 /* Push a vlan tag either into hwaccel or into payload (if hwaccel tag present).
5583  * Expects skb->data at mac header.
5584  */
skb_vlan_push(struct sk_buff * skb,__be16 vlan_proto,u16 vlan_tci)5585 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci)
5586 {
5587 	if (skb_vlan_tag_present(skb)) {
5588 		int offset = skb->data - skb_mac_header(skb);
5589 		int err;
5590 
5591 		if (WARN_ONCE(offset,
5592 			      "skb_vlan_push got skb with skb->data not at mac header (offset %d)\n",
5593 			      offset)) {
5594 			return -EINVAL;
5595 		}
5596 
5597 		err = __vlan_insert_tag(skb, skb->vlan_proto,
5598 					skb_vlan_tag_get(skb));
5599 		if (err)
5600 			return err;
5601 
5602 		skb->protocol = skb->vlan_proto;
5603 		skb->mac_len += VLAN_HLEN;
5604 
5605 		skb_postpush_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
5606 	}
5607 	__vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
5608 	return 0;
5609 }
5610 EXPORT_SYMBOL(skb_vlan_push);
5611 
5612 /**
5613  * skb_eth_pop() - Drop the Ethernet header at the head of a packet
5614  *
5615  * @skb: Socket buffer to modify
5616  *
5617  * Drop the Ethernet header of @skb.
5618  *
5619  * Expects that skb->data points to the mac header and that no VLAN tags are
5620  * present.
5621  *
5622  * Returns 0 on success, -errno otherwise.
5623  */
skb_eth_pop(struct sk_buff * skb)5624 int skb_eth_pop(struct sk_buff *skb)
5625 {
5626 	if (!pskb_may_pull(skb, ETH_HLEN) || skb_vlan_tagged(skb) ||
5627 	    skb_network_offset(skb) < ETH_HLEN)
5628 		return -EPROTO;
5629 
5630 	skb_pull_rcsum(skb, ETH_HLEN);
5631 	skb_reset_mac_header(skb);
5632 	skb_reset_mac_len(skb);
5633 
5634 	return 0;
5635 }
5636 EXPORT_SYMBOL(skb_eth_pop);
5637 
5638 /**
5639  * skb_eth_push() - Add a new Ethernet header at the head of a packet
5640  *
5641  * @skb: Socket buffer to modify
5642  * @dst: Destination MAC address of the new header
5643  * @src: Source MAC address of the new header
5644  *
5645  * Prepend @skb with a new Ethernet header.
5646  *
5647  * Expects that skb->data points to the mac header, which must be empty.
5648  *
5649  * Returns 0 on success, -errno otherwise.
5650  */
skb_eth_push(struct sk_buff * skb,const unsigned char * dst,const unsigned char * src)5651 int skb_eth_push(struct sk_buff *skb, const unsigned char *dst,
5652 		 const unsigned char *src)
5653 {
5654 	struct ethhdr *eth;
5655 	int err;
5656 
5657 	if (skb_network_offset(skb) || skb_vlan_tag_present(skb))
5658 		return -EPROTO;
5659 
5660 	err = skb_cow_head(skb, sizeof(*eth));
5661 	if (err < 0)
5662 		return err;
5663 
5664 	skb_push(skb, sizeof(*eth));
5665 	skb_reset_mac_header(skb);
5666 	skb_reset_mac_len(skb);
5667 
5668 	eth = eth_hdr(skb);
5669 	ether_addr_copy(eth->h_dest, dst);
5670 	ether_addr_copy(eth->h_source, src);
5671 	eth->h_proto = skb->protocol;
5672 
5673 	skb_postpush_rcsum(skb, eth, sizeof(*eth));
5674 
5675 	return 0;
5676 }
5677 EXPORT_SYMBOL(skb_eth_push);
5678 
5679 /* Update the ethertype of hdr and the skb csum value if required. */
skb_mod_eth_type(struct sk_buff * skb,struct ethhdr * hdr,__be16 ethertype)5680 static void skb_mod_eth_type(struct sk_buff *skb, struct ethhdr *hdr,
5681 			     __be16 ethertype)
5682 {
5683 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
5684 		__be16 diff[] = { ~hdr->h_proto, ethertype };
5685 
5686 		skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum);
5687 	}
5688 
5689 	hdr->h_proto = ethertype;
5690 }
5691 
5692 /**
5693  * skb_mpls_push() - push a new MPLS header after mac_len bytes from start of
5694  *                   the packet
5695  *
5696  * @skb: buffer
5697  * @mpls_lse: MPLS label stack entry to push
5698  * @mpls_proto: ethertype of the new MPLS header (expects 0x8847 or 0x8848)
5699  * @mac_len: length of the MAC header
5700  * @ethernet: flag to indicate if the resulting packet after skb_mpls_push is
5701  *            ethernet
5702  *
5703  * Expects skb->data at mac header.
5704  *
5705  * Returns 0 on success, -errno otherwise.
5706  */
skb_mpls_push(struct sk_buff * skb,__be32 mpls_lse,__be16 mpls_proto,int mac_len,bool ethernet)5707 int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto,
5708 		  int mac_len, bool ethernet)
5709 {
5710 	struct mpls_shim_hdr *lse;
5711 	int err;
5712 
5713 	if (unlikely(!eth_p_mpls(mpls_proto)))
5714 		return -EINVAL;
5715 
5716 	/* Networking stack does not allow simultaneous Tunnel and MPLS GSO. */
5717 	if (skb->encapsulation)
5718 		return -EINVAL;
5719 
5720 	err = skb_cow_head(skb, MPLS_HLEN);
5721 	if (unlikely(err))
5722 		return err;
5723 
5724 	if (!skb->inner_protocol) {
5725 		skb_set_inner_network_header(skb, skb_network_offset(skb));
5726 		skb_set_inner_protocol(skb, skb->protocol);
5727 	}
5728 
5729 	skb_push(skb, MPLS_HLEN);
5730 	memmove(skb_mac_header(skb) - MPLS_HLEN, skb_mac_header(skb),
5731 		mac_len);
5732 	skb_reset_mac_header(skb);
5733 	skb_set_network_header(skb, mac_len);
5734 	skb_reset_mac_len(skb);
5735 
5736 	lse = mpls_hdr(skb);
5737 	lse->label_stack_entry = mpls_lse;
5738 	skb_postpush_rcsum(skb, lse, MPLS_HLEN);
5739 
5740 	if (ethernet && mac_len >= ETH_HLEN)
5741 		skb_mod_eth_type(skb, eth_hdr(skb), mpls_proto);
5742 	skb->protocol = mpls_proto;
5743 
5744 	return 0;
5745 }
5746 EXPORT_SYMBOL_GPL(skb_mpls_push);
5747 
5748 /**
5749  * skb_mpls_pop() - pop the outermost MPLS header
5750  *
5751  * @skb: buffer
5752  * @next_proto: ethertype of header after popped MPLS header
5753  * @mac_len: length of the MAC header
5754  * @ethernet: flag to indicate if the packet is ethernet
5755  *
5756  * Expects skb->data at mac header.
5757  *
5758  * Returns 0 on success, -errno otherwise.
5759  */
skb_mpls_pop(struct sk_buff * skb,__be16 next_proto,int mac_len,bool ethernet)5760 int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len,
5761 		 bool ethernet)
5762 {
5763 	int err;
5764 
5765 	if (unlikely(!eth_p_mpls(skb->protocol)))
5766 		return 0;
5767 
5768 	err = skb_ensure_writable(skb, mac_len + MPLS_HLEN);
5769 	if (unlikely(err))
5770 		return err;
5771 
5772 	skb_postpull_rcsum(skb, mpls_hdr(skb), MPLS_HLEN);
5773 	memmove(skb_mac_header(skb) + MPLS_HLEN, skb_mac_header(skb),
5774 		mac_len);
5775 
5776 	__skb_pull(skb, MPLS_HLEN);
5777 	skb_reset_mac_header(skb);
5778 	skb_set_network_header(skb, mac_len);
5779 
5780 	if (ethernet && mac_len >= ETH_HLEN) {
5781 		struct ethhdr *hdr;
5782 
5783 		/* use mpls_hdr() to get ethertype to account for VLANs. */
5784 		hdr = (struct ethhdr *)((void *)mpls_hdr(skb) - ETH_HLEN);
5785 		skb_mod_eth_type(skb, hdr, next_proto);
5786 	}
5787 	skb->protocol = next_proto;
5788 
5789 	return 0;
5790 }
5791 EXPORT_SYMBOL_GPL(skb_mpls_pop);
5792 
5793 /**
5794  * skb_mpls_update_lse() - modify outermost MPLS header and update csum
5795  *
5796  * @skb: buffer
5797  * @mpls_lse: new MPLS label stack entry to update to
5798  *
5799  * Expects skb->data at mac header.
5800  *
5801  * Returns 0 on success, -errno otherwise.
5802  */
skb_mpls_update_lse(struct sk_buff * skb,__be32 mpls_lse)5803 int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse)
5804 {
5805 	int err;
5806 
5807 	if (unlikely(!eth_p_mpls(skb->protocol)))
5808 		return -EINVAL;
5809 
5810 	err = skb_ensure_writable(skb, skb->mac_len + MPLS_HLEN);
5811 	if (unlikely(err))
5812 		return err;
5813 
5814 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
5815 		__be32 diff[] = { ~mpls_hdr(skb)->label_stack_entry, mpls_lse };
5816 
5817 		skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum);
5818 	}
5819 
5820 	mpls_hdr(skb)->label_stack_entry = mpls_lse;
5821 
5822 	return 0;
5823 }
5824 EXPORT_SYMBOL_GPL(skb_mpls_update_lse);
5825 
5826 /**
5827  * skb_mpls_dec_ttl() - decrement the TTL of the outermost MPLS header
5828  *
5829  * @skb: buffer
5830  *
5831  * Expects skb->data at mac header.
5832  *
5833  * Returns 0 on success, -errno otherwise.
5834  */
skb_mpls_dec_ttl(struct sk_buff * skb)5835 int skb_mpls_dec_ttl(struct sk_buff *skb)
5836 {
5837 	u32 lse;
5838 	u8 ttl;
5839 
5840 	if (unlikely(!eth_p_mpls(skb->protocol)))
5841 		return -EINVAL;
5842 
5843 	if (!pskb_may_pull(skb, skb_network_offset(skb) + MPLS_HLEN))
5844 		return -ENOMEM;
5845 
5846 	lse = be32_to_cpu(mpls_hdr(skb)->label_stack_entry);
5847 	ttl = (lse & MPLS_LS_TTL_MASK) >> MPLS_LS_TTL_SHIFT;
5848 	if (!--ttl)
5849 		return -EINVAL;
5850 
5851 	lse &= ~MPLS_LS_TTL_MASK;
5852 	lse |= ttl << MPLS_LS_TTL_SHIFT;
5853 
5854 	return skb_mpls_update_lse(skb, cpu_to_be32(lse));
5855 }
5856 EXPORT_SYMBOL_GPL(skb_mpls_dec_ttl);
5857 
5858 /**
5859  * alloc_skb_with_frags - allocate skb with page frags
5860  *
5861  * @header_len: size of linear part
5862  * @data_len: needed length in frags
5863  * @max_page_order: max page order desired.
5864  * @errcode: pointer to error code if any
5865  * @gfp_mask: allocation mask
5866  *
5867  * This can be used to allocate a paged skb, given a maximal order for frags.
5868  */
alloc_skb_with_frags(unsigned long header_len,unsigned long data_len,int max_page_order,int * errcode,gfp_t gfp_mask)5869 struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
5870 				     unsigned long data_len,
5871 				     int max_page_order,
5872 				     int *errcode,
5873 				     gfp_t gfp_mask)
5874 {
5875 	int npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
5876 	unsigned long chunk;
5877 	struct sk_buff *skb;
5878 	struct page *page;
5879 	int i;
5880 
5881 	*errcode = -EMSGSIZE;
5882 	/* Note this test could be relaxed, if we succeed to allocate
5883 	 * high order pages...
5884 	 */
5885 	if (npages > MAX_SKB_FRAGS)
5886 		return NULL;
5887 
5888 	*errcode = -ENOBUFS;
5889 	skb = alloc_skb(header_len, gfp_mask);
5890 	if (!skb)
5891 		return NULL;
5892 
5893 	skb->truesize += npages << PAGE_SHIFT;
5894 
5895 	for (i = 0; npages > 0; i++) {
5896 		int order = max_page_order;
5897 
5898 		while (order) {
5899 			if (npages >= 1 << order) {
5900 				page = alloc_pages((gfp_mask & ~__GFP_DIRECT_RECLAIM) |
5901 						   __GFP_COMP |
5902 						   __GFP_NOWARN,
5903 						   order);
5904 				if (page)
5905 					goto fill_page;
5906 				/* Do not retry other high order allocations */
5907 				order = 1;
5908 				max_page_order = 0;
5909 			}
5910 			order--;
5911 		}
5912 		page = alloc_page(gfp_mask);
5913 		if (!page)
5914 			goto failure;
5915 fill_page:
5916 		chunk = min_t(unsigned long, data_len,
5917 			      PAGE_SIZE << order);
5918 		skb_fill_page_desc(skb, i, page, 0, chunk);
5919 		data_len -= chunk;
5920 		npages -= 1 << order;
5921 	}
5922 	return skb;
5923 
5924 failure:
5925 	kfree_skb(skb);
5926 	return NULL;
5927 }
5928 EXPORT_SYMBOL(alloc_skb_with_frags);
5929 
5930 /* carve out the first off bytes from skb when off < headlen */
pskb_carve_inside_header(struct sk_buff * skb,const u32 off,const int headlen,gfp_t gfp_mask)5931 static int pskb_carve_inside_header(struct sk_buff *skb, const u32 off,
5932 				    const int headlen, gfp_t gfp_mask)
5933 {
5934 	int i;
5935 	int size = skb_end_offset(skb);
5936 	int new_hlen = headlen - off;
5937 	u8 *data;
5938 
5939 	size = SKB_DATA_ALIGN(size);
5940 
5941 	if (skb_pfmemalloc(skb))
5942 		gfp_mask |= __GFP_MEMALLOC;
5943 	data = kmalloc_reserve(size +
5944 			       SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
5945 			       gfp_mask, NUMA_NO_NODE, NULL);
5946 	if (!data)
5947 		return -ENOMEM;
5948 
5949 	size = SKB_WITH_OVERHEAD(ksize(data));
5950 
5951 	/* Copy real data, and all frags */
5952 	skb_copy_from_linear_data_offset(skb, off, data, new_hlen);
5953 	skb->len -= off;
5954 
5955 	memcpy((struct skb_shared_info *)(data + size),
5956 	       skb_shinfo(skb),
5957 	       offsetof(struct skb_shared_info,
5958 			frags[skb_shinfo(skb)->nr_frags]));
5959 	if (skb_cloned(skb)) {
5960 		/* drop the old head gracefully */
5961 		if (skb_orphan_frags(skb, gfp_mask)) {
5962 			kfree(data);
5963 			return -ENOMEM;
5964 		}
5965 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
5966 			skb_frag_ref(skb, i);
5967 		if (skb_has_frag_list(skb))
5968 			skb_clone_fraglist(skb);
5969 		skb_release_data(skb);
5970 	} else {
5971 		/* we can reuse existing recount- all we did was
5972 		 * relocate values
5973 		 */
5974 		skb_free_head(skb);
5975 	}
5976 
5977 	skb->head = data;
5978 	skb->data = data;
5979 	skb->head_frag = 0;
5980 #ifdef NET_SKBUFF_DATA_USES_OFFSET
5981 	skb->end = size;
5982 #else
5983 	skb->end = skb->head + size;
5984 #endif
5985 	skb_set_tail_pointer(skb, skb_headlen(skb));
5986 	skb_headers_offset_update(skb, 0);
5987 	skb->cloned = 0;
5988 	skb->hdr_len = 0;
5989 	skb->nohdr = 0;
5990 	atomic_set(&skb_shinfo(skb)->dataref, 1);
5991 
5992 	return 0;
5993 }
5994 
5995 static int pskb_carve(struct sk_buff *skb, const u32 off, gfp_t gfp);
5996 
5997 /* carve out the first eat bytes from skb's frag_list. May recurse into
5998  * pskb_carve()
5999  */
pskb_carve_frag_list(struct sk_buff * skb,struct skb_shared_info * shinfo,int eat,gfp_t gfp_mask)6000 static int pskb_carve_frag_list(struct sk_buff *skb,
6001 				struct skb_shared_info *shinfo, int eat,
6002 				gfp_t gfp_mask)
6003 {
6004 	struct sk_buff *list = shinfo->frag_list;
6005 	struct sk_buff *clone = NULL;
6006 	struct sk_buff *insp = NULL;
6007 
6008 	do {
6009 		if (!list) {
6010 			pr_err("Not enough bytes to eat. Want %d\n", eat);
6011 			return -EFAULT;
6012 		}
6013 		if (list->len <= eat) {
6014 			/* Eaten as whole. */
6015 			eat -= list->len;
6016 			list = list->next;
6017 			insp = list;
6018 		} else {
6019 			/* Eaten partially. */
6020 			if (skb_shared(list)) {
6021 				clone = skb_clone(list, gfp_mask);
6022 				if (!clone)
6023 					return -ENOMEM;
6024 				insp = list->next;
6025 				list = clone;
6026 			} else {
6027 				/* This may be pulled without problems. */
6028 				insp = list;
6029 			}
6030 			if (pskb_carve(list, eat, gfp_mask) < 0) {
6031 				kfree_skb(clone);
6032 				return -ENOMEM;
6033 			}
6034 			break;
6035 		}
6036 	} while (eat);
6037 
6038 	/* Free pulled out fragments. */
6039 	while ((list = shinfo->frag_list) != insp) {
6040 		shinfo->frag_list = list->next;
6041 		kfree_skb(list);
6042 	}
6043 	/* And insert new clone at head. */
6044 	if (clone) {
6045 		clone->next = list;
6046 		shinfo->frag_list = clone;
6047 	}
6048 	return 0;
6049 }
6050 
6051 /* carve off first len bytes from skb. Split line (off) is in the
6052  * non-linear part of skb
6053  */
pskb_carve_inside_nonlinear(struct sk_buff * skb,const u32 off,int pos,gfp_t gfp_mask)6054 static int pskb_carve_inside_nonlinear(struct sk_buff *skb, const u32 off,
6055 				       int pos, gfp_t gfp_mask)
6056 {
6057 	int i, k = 0;
6058 	int size = skb_end_offset(skb);
6059 	u8 *data;
6060 	const int nfrags = skb_shinfo(skb)->nr_frags;
6061 	struct skb_shared_info *shinfo;
6062 
6063 	size = SKB_DATA_ALIGN(size);
6064 
6065 	if (skb_pfmemalloc(skb))
6066 		gfp_mask |= __GFP_MEMALLOC;
6067 	data = kmalloc_reserve(size +
6068 			       SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
6069 			       gfp_mask, NUMA_NO_NODE, NULL);
6070 	if (!data)
6071 		return -ENOMEM;
6072 
6073 	size = SKB_WITH_OVERHEAD(ksize(data));
6074 
6075 	memcpy((struct skb_shared_info *)(data + size),
6076 	       skb_shinfo(skb), offsetof(struct skb_shared_info, frags[0]));
6077 	if (skb_orphan_frags(skb, gfp_mask)) {
6078 		kfree(data);
6079 		return -ENOMEM;
6080 	}
6081 	shinfo = (struct skb_shared_info *)(data + size);
6082 	for (i = 0; i < nfrags; i++) {
6083 		int fsize = skb_frag_size(&skb_shinfo(skb)->frags[i]);
6084 
6085 		if (pos + fsize > off) {
6086 			shinfo->frags[k] = skb_shinfo(skb)->frags[i];
6087 
6088 			if (pos < off) {
6089 				/* Split frag.
6090 				 * We have two variants in this case:
6091 				 * 1. Move all the frag to the second
6092 				 *    part, if it is possible. F.e.
6093 				 *    this approach is mandatory for TUX,
6094 				 *    where splitting is expensive.
6095 				 * 2. Split is accurately. We make this.
6096 				 */
6097 				skb_frag_off_add(&shinfo->frags[0], off - pos);
6098 				skb_frag_size_sub(&shinfo->frags[0], off - pos);
6099 			}
6100 			skb_frag_ref(skb, i);
6101 			k++;
6102 		}
6103 		pos += fsize;
6104 	}
6105 	shinfo->nr_frags = k;
6106 	if (skb_has_frag_list(skb))
6107 		skb_clone_fraglist(skb);
6108 
6109 	/* split line is in frag list */
6110 	if (k == 0 && pskb_carve_frag_list(skb, shinfo, off - pos, gfp_mask)) {
6111 		/* skb_frag_unref() is not needed here as shinfo->nr_frags = 0. */
6112 		if (skb_has_frag_list(skb))
6113 			kfree_skb_list(skb_shinfo(skb)->frag_list);
6114 		kfree(data);
6115 		return -ENOMEM;
6116 	}
6117 	skb_release_data(skb);
6118 
6119 	skb->head = data;
6120 	skb->head_frag = 0;
6121 	skb->data = data;
6122 #ifdef NET_SKBUFF_DATA_USES_OFFSET
6123 	skb->end = size;
6124 #else
6125 	skb->end = skb->head + size;
6126 #endif
6127 	skb_reset_tail_pointer(skb);
6128 	skb_headers_offset_update(skb, 0);
6129 	skb->cloned   = 0;
6130 	skb->hdr_len  = 0;
6131 	skb->nohdr    = 0;
6132 	skb->len -= off;
6133 	skb->data_len = skb->len;
6134 	atomic_set(&skb_shinfo(skb)->dataref, 1);
6135 	return 0;
6136 }
6137 
6138 /* remove len bytes from the beginning of the skb */
pskb_carve(struct sk_buff * skb,const u32 len,gfp_t gfp)6139 static int pskb_carve(struct sk_buff *skb, const u32 len, gfp_t gfp)
6140 {
6141 	int headlen = skb_headlen(skb);
6142 
6143 	if (len < headlen)
6144 		return pskb_carve_inside_header(skb, len, headlen, gfp);
6145 	else
6146 		return pskb_carve_inside_nonlinear(skb, len, headlen, gfp);
6147 }
6148 
6149 /* Extract to_copy bytes starting at off from skb, and return this in
6150  * a new skb
6151  */
pskb_extract(struct sk_buff * skb,int off,int to_copy,gfp_t gfp)6152 struct sk_buff *pskb_extract(struct sk_buff *skb, int off,
6153 			     int to_copy, gfp_t gfp)
6154 {
6155 	struct sk_buff  *clone = skb_clone(skb, gfp);
6156 
6157 	if (!clone)
6158 		return NULL;
6159 
6160 	if (pskb_carve(clone, off, gfp) < 0 ||
6161 	    pskb_trim(clone, to_copy)) {
6162 		kfree_skb(clone);
6163 		return NULL;
6164 	}
6165 	return clone;
6166 }
6167 EXPORT_SYMBOL(pskb_extract);
6168 
6169 /**
6170  * skb_condense - try to get rid of fragments/frag_list if possible
6171  * @skb: buffer
6172  *
6173  * Can be used to save memory before skb is added to a busy queue.
6174  * If packet has bytes in frags and enough tail room in skb->head,
6175  * pull all of them, so that we can free the frags right now and adjust
6176  * truesize.
6177  * Notes:
6178  *	We do not reallocate skb->head thus can not fail.
6179  *	Caller must re-evaluate skb->truesize if needed.
6180  */
skb_condense(struct sk_buff * skb)6181 void skb_condense(struct sk_buff *skb)
6182 {
6183 	if (skb->data_len) {
6184 		if (skb->data_len > skb->end - skb->tail ||
6185 		    skb_cloned(skb))
6186 			return;
6187 
6188 		/* Nice, we can free page frag(s) right now */
6189 		__pskb_pull_tail(skb, skb->data_len);
6190 	}
6191 	/* At this point, skb->truesize might be over estimated,
6192 	 * because skb had a fragment, and fragments do not tell
6193 	 * their truesize.
6194 	 * When we pulled its content into skb->head, fragment
6195 	 * was freed, but __pskb_pull_tail() could not possibly
6196 	 * adjust skb->truesize, not knowing the frag truesize.
6197 	 */
6198 	skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
6199 }
6200 
6201 #ifdef CONFIG_SKB_EXTENSIONS
skb_ext_get_ptr(struct skb_ext * ext,enum skb_ext_id id)6202 static void *skb_ext_get_ptr(struct skb_ext *ext, enum skb_ext_id id)
6203 {
6204 	return (void *)ext + (ext->offset[id] * SKB_EXT_ALIGN_VALUE);
6205 }
6206 
6207 /**
6208  * __skb_ext_alloc - allocate a new skb extensions storage
6209  *
6210  * @flags: See kmalloc().
6211  *
6212  * Returns the newly allocated pointer. The pointer can later attached to a
6213  * skb via __skb_ext_set().
6214  * Note: caller must handle the skb_ext as an opaque data.
6215  */
__skb_ext_alloc(gfp_t flags)6216 struct skb_ext *__skb_ext_alloc(gfp_t flags)
6217 {
6218 	struct skb_ext *new = kmem_cache_alloc(skbuff_ext_cache, flags);
6219 
6220 	if (new) {
6221 		memset(new->offset, 0, sizeof(new->offset));
6222 		refcount_set(&new->refcnt, 1);
6223 	}
6224 
6225 	return new;
6226 }
6227 
skb_ext_maybe_cow(struct skb_ext * old,unsigned int old_active)6228 static struct skb_ext *skb_ext_maybe_cow(struct skb_ext *old,
6229 					 unsigned int old_active)
6230 {
6231 	struct skb_ext *new;
6232 
6233 	if (refcount_read(&old->refcnt) == 1)
6234 		return old;
6235 
6236 	new = kmem_cache_alloc(skbuff_ext_cache, GFP_ATOMIC);
6237 	if (!new)
6238 		return NULL;
6239 
6240 	memcpy(new, old, old->chunks * SKB_EXT_ALIGN_VALUE);
6241 	refcount_set(&new->refcnt, 1);
6242 
6243 #ifdef CONFIG_XFRM
6244 	if (old_active & (1 << SKB_EXT_SEC_PATH)) {
6245 		struct sec_path *sp = skb_ext_get_ptr(old, SKB_EXT_SEC_PATH);
6246 		unsigned int i;
6247 
6248 		for (i = 0; i < sp->len; i++)
6249 			xfrm_state_hold(sp->xvec[i]);
6250 	}
6251 #endif
6252 	__skb_ext_put(old);
6253 	return new;
6254 }
6255 
6256 /**
6257  * __skb_ext_set - attach the specified extension storage to this skb
6258  * @skb: buffer
6259  * @id: extension id
6260  * @ext: extension storage previously allocated via __skb_ext_alloc()
6261  *
6262  * Existing extensions, if any, are cleared.
6263  *
6264  * Returns the pointer to the extension.
6265  */
__skb_ext_set(struct sk_buff * skb,enum skb_ext_id id,struct skb_ext * ext)6266 void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id,
6267 		    struct skb_ext *ext)
6268 {
6269 	unsigned int newlen, newoff = SKB_EXT_CHUNKSIZEOF(*ext);
6270 
6271 	skb_ext_put(skb);
6272 	newlen = newoff + skb_ext_type_len[id];
6273 	ext->chunks = newlen;
6274 	ext->offset[id] = newoff;
6275 	skb->extensions = ext;
6276 	skb->active_extensions = 1 << id;
6277 	return skb_ext_get_ptr(ext, id);
6278 }
6279 
6280 /**
6281  * skb_ext_add - allocate space for given extension, COW if needed
6282  * @skb: buffer
6283  * @id: extension to allocate space for
6284  *
6285  * Allocates enough space for the given extension.
6286  * If the extension is already present, a pointer to that extension
6287  * is returned.
6288  *
6289  * If the skb was cloned, COW applies and the returned memory can be
6290  * modified without changing the extension space of clones buffers.
6291  *
6292  * Returns pointer to the extension or NULL on allocation failure.
6293  */
skb_ext_add(struct sk_buff * skb,enum skb_ext_id id)6294 void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id)
6295 {
6296 	struct skb_ext *new, *old = NULL;
6297 	unsigned int newlen, newoff;
6298 
6299 	if (skb->active_extensions) {
6300 		old = skb->extensions;
6301 
6302 		new = skb_ext_maybe_cow(old, skb->active_extensions);
6303 		if (!new)
6304 			return NULL;
6305 
6306 		if (__skb_ext_exist(new, id))
6307 			goto set_active;
6308 
6309 		newoff = new->chunks;
6310 	} else {
6311 		newoff = SKB_EXT_CHUNKSIZEOF(*new);
6312 
6313 		new = __skb_ext_alloc(GFP_ATOMIC);
6314 		if (!new)
6315 			return NULL;
6316 	}
6317 
6318 	newlen = newoff + skb_ext_type_len[id];
6319 	new->chunks = newlen;
6320 	new->offset[id] = newoff;
6321 set_active:
6322 	skb->extensions = new;
6323 	skb->active_extensions |= 1 << id;
6324 	return skb_ext_get_ptr(new, id);
6325 }
6326 EXPORT_SYMBOL(skb_ext_add);
6327 
6328 #ifdef CONFIG_XFRM
skb_ext_put_sp(struct sec_path * sp)6329 static void skb_ext_put_sp(struct sec_path *sp)
6330 {
6331 	unsigned int i;
6332 
6333 	for (i = 0; i < sp->len; i++)
6334 		xfrm_state_put(sp->xvec[i]);
6335 }
6336 #endif
6337 
__skb_ext_del(struct sk_buff * skb,enum skb_ext_id id)6338 void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id)
6339 {
6340 	struct skb_ext *ext = skb->extensions;
6341 
6342 	skb->active_extensions &= ~(1 << id);
6343 	if (skb->active_extensions == 0) {
6344 		skb->extensions = NULL;
6345 		__skb_ext_put(ext);
6346 #ifdef CONFIG_XFRM
6347 	} else if (id == SKB_EXT_SEC_PATH &&
6348 		   refcount_read(&ext->refcnt) == 1) {
6349 		struct sec_path *sp = skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH);
6350 
6351 		skb_ext_put_sp(sp);
6352 		sp->len = 0;
6353 #endif
6354 	}
6355 }
6356 EXPORT_SYMBOL(__skb_ext_del);
6357 
__skb_ext_put(struct skb_ext * ext)6358 void __skb_ext_put(struct skb_ext *ext)
6359 {
6360 	/* If this is last clone, nothing can increment
6361 	 * it after check passes.  Avoids one atomic op.
6362 	 */
6363 	if (refcount_read(&ext->refcnt) == 1)
6364 		goto free_now;
6365 
6366 	if (!refcount_dec_and_test(&ext->refcnt))
6367 		return;
6368 free_now:
6369 #ifdef CONFIG_XFRM
6370 	if (__skb_ext_exist(ext, SKB_EXT_SEC_PATH))
6371 		skb_ext_put_sp(skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH));
6372 #endif
6373 
6374 	kmem_cache_free(skbuff_ext_cache, ext);
6375 }
6376 EXPORT_SYMBOL(__skb_ext_put);
6377 #endif /* CONFIG_SKB_EXTENSIONS */
6378