1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3 * Copyright (C) 2012 ARM Ltd.
4 */
5 #ifndef __ASM_PGTABLE_H
6 #define __ASM_PGTABLE_H
7
8 #include <asm/bug.h>
9 #include <asm/proc-fns.h>
10
11 #include <asm/memory.h>
12 #include <asm/mte.h>
13 #include <asm/pgtable-hwdef.h>
14 #include <asm/pgtable-prot.h>
15 #include <asm/tlbflush.h>
16
17 /*
18 * VMALLOC range.
19 *
20 * VMALLOC_START: beginning of the kernel vmalloc space
21 * VMALLOC_END: extends to the available space below vmemmap, PCI I/O space
22 * and fixed mappings
23 */
24 #define VMALLOC_START (MODULES_END)
25 #define VMALLOC_END (- PUD_SIZE - VMEMMAP_SIZE - SZ_64K)
26
27 #define vmemmap ((struct page *)VMEMMAP_START - (memstart_addr >> PAGE_SHIFT))
28
29 #define FIRST_USER_ADDRESS 0UL
30
31 #ifndef __ASSEMBLY__
32
33 #include <asm/cmpxchg.h>
34 #include <asm/fixmap.h>
35 #include <linux/mmdebug.h>
36 #include <linux/mm_types.h>
37 #include <linux/sched.h>
38
39 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
40 #define __HAVE_ARCH_FLUSH_PMD_TLB_RANGE
41
42 /* Set stride and tlb_level in flush_*_tlb_range */
43 #define flush_pmd_tlb_range(vma, addr, end) \
44 __flush_tlb_range(vma, addr, end, PMD_SIZE, false, 2)
45 #define flush_pud_tlb_range(vma, addr, end) \
46 __flush_tlb_range(vma, addr, end, PUD_SIZE, false, 1)
47 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
48
49 /*
50 * Outside of a few very special situations (e.g. hibernation), we always
51 * use broadcast TLB invalidation instructions, therefore a spurious page
52 * fault on one CPU which has been handled concurrently by another CPU
53 * does not need to perform additional invalidation.
54 */
55 #define flush_tlb_fix_spurious_fault(vma, address) do { } while (0)
56
57 /*
58 * ZERO_PAGE is a global shared page that is always zero: used
59 * for zero-mapped memory areas etc..
60 */
61 extern unsigned long empty_zero_page[PAGE_SIZE / sizeof(unsigned long)];
62 #define ZERO_PAGE(vaddr) phys_to_page(__pa_symbol(empty_zero_page))
63
64 #define pte_ERROR(e) \
65 pr_err("%s:%d: bad pte %016llx.\n", __FILE__, __LINE__, pte_val(e))
66
67 /*
68 * Macros to convert between a physical address and its placement in a
69 * page table entry, taking care of 52-bit addresses.
70 */
71 #ifdef CONFIG_ARM64_PA_BITS_52
__pte_to_phys(pte_t pte)72 static inline phys_addr_t __pte_to_phys(pte_t pte)
73 {
74 return (pte_val(pte) & PTE_ADDR_LOW) |
75 ((pte_val(pte) & PTE_ADDR_HIGH) << 36);
76 }
__phys_to_pte_val(phys_addr_t phys)77 static inline pteval_t __phys_to_pte_val(phys_addr_t phys)
78 {
79 return (phys | (phys >> 36)) & PTE_ADDR_MASK;
80 }
81 #else
82 #define __pte_to_phys(pte) (pte_val(pte) & PTE_ADDR_MASK)
83 #define __phys_to_pte_val(phys) (phys)
84 #endif
85
86 #define pte_pfn(pte) (__pte_to_phys(pte) >> PAGE_SHIFT)
87 #define pfn_pte(pfn,prot) \
88 __pte(__phys_to_pte_val((phys_addr_t)(pfn) << PAGE_SHIFT) | pgprot_val(prot))
89
90 #define pte_none(pte) (!pte_val(pte))
91 #define pte_clear(mm,addr,ptep) set_pte(ptep, __pte(0))
92 #define pte_page(pte) (pfn_to_page(pte_pfn(pte)))
93
94 /*
95 * The following only work if pte_present(). Undefined behaviour otherwise.
96 */
97 #define pte_present(pte) (!!(pte_val(pte) & (PTE_VALID | PTE_PROT_NONE)))
98 #define pte_young(pte) (!!(pte_val(pte) & PTE_AF))
99 #define pte_special(pte) (!!(pte_val(pte) & PTE_SPECIAL))
100 #define pte_write(pte) (!!(pte_val(pte) & PTE_WRITE))
101 #define pte_user_exec(pte) (!(pte_val(pte) & PTE_UXN))
102 #define pte_cont(pte) (!!(pte_val(pte) & PTE_CONT))
103 #define pte_devmap(pte) (!!(pte_val(pte) & PTE_DEVMAP))
104 #define pte_tagged(pte) ((pte_val(pte) & PTE_ATTRINDX_MASK) == \
105 PTE_ATTRINDX(MT_NORMAL_TAGGED))
106
107 #define pte_cont_addr_end(addr, end) \
108 ({ unsigned long __boundary = ((addr) + CONT_PTE_SIZE) & CONT_PTE_MASK; \
109 (__boundary - 1 < (end) - 1) ? __boundary : (end); \
110 })
111
112 #define pmd_cont_addr_end(addr, end) \
113 ({ unsigned long __boundary = ((addr) + CONT_PMD_SIZE) & CONT_PMD_MASK; \
114 (__boundary - 1 < (end) - 1) ? __boundary : (end); \
115 })
116
117 #define pte_hw_dirty(pte) (pte_write(pte) && !(pte_val(pte) & PTE_RDONLY))
118 #define pte_sw_dirty(pte) (!!(pte_val(pte) & PTE_DIRTY))
119 #define pte_dirty(pte) (pte_sw_dirty(pte) || pte_hw_dirty(pte))
120
121 #define pte_valid(pte) (!!(pte_val(pte) & PTE_VALID))
122 #define pte_valid_not_user(pte) \
123 ((pte_val(pte) & (PTE_VALID | PTE_USER)) == PTE_VALID)
124 #define pte_valid_user(pte) \
125 ((pte_val(pte) & (PTE_VALID | PTE_USER)) == (PTE_VALID | PTE_USER))
126
127 /*
128 * Could the pte be present in the TLB? We must check mm_tlb_flush_pending
129 * so that we don't erroneously return false for pages that have been
130 * remapped as PROT_NONE but are yet to be flushed from the TLB.
131 * Note that we can't make any assumptions based on the state of the access
132 * flag, since ptep_clear_flush_young() elides a DSB when invalidating the
133 * TLB.
134 */
135 #define pte_accessible(mm, pte) \
136 (mm_tlb_flush_pending(mm) ? pte_present(pte) : pte_valid(pte))
137
138 /*
139 * p??_access_permitted() is true for valid user mappings (subject to the
140 * write permission check). PROT_NONE mappings do not have the PTE_VALID bit
141 * set.
142 */
143 #define pte_access_permitted(pte, write) \
144 (pte_valid_user(pte) && (!(write) || pte_write(pte)))
145 #define pmd_access_permitted(pmd, write) \
146 (pte_access_permitted(pmd_pte(pmd), (write)))
147 #define pud_access_permitted(pud, write) \
148 (pte_access_permitted(pud_pte(pud), (write)))
149
clear_pte_bit(pte_t pte,pgprot_t prot)150 static inline pte_t clear_pte_bit(pte_t pte, pgprot_t prot)
151 {
152 pte_val(pte) &= ~pgprot_val(prot);
153 return pte;
154 }
155
set_pte_bit(pte_t pte,pgprot_t prot)156 static inline pte_t set_pte_bit(pte_t pte, pgprot_t prot)
157 {
158 pte_val(pte) |= pgprot_val(prot);
159 return pte;
160 }
161
clear_pmd_bit(pmd_t pmd,pgprot_t prot)162 static inline pmd_t clear_pmd_bit(pmd_t pmd, pgprot_t prot)
163 {
164 pmd_val(pmd) &= ~pgprot_val(prot);
165 return pmd;
166 }
167
set_pmd_bit(pmd_t pmd,pgprot_t prot)168 static inline pmd_t set_pmd_bit(pmd_t pmd, pgprot_t prot)
169 {
170 pmd_val(pmd) |= pgprot_val(prot);
171 return pmd;
172 }
173
pte_mkwrite(pte_t pte)174 static inline pte_t pte_mkwrite(pte_t pte)
175 {
176 pte = set_pte_bit(pte, __pgprot(PTE_WRITE));
177 pte = clear_pte_bit(pte, __pgprot(PTE_RDONLY));
178 return pte;
179 }
180
pte_mkclean(pte_t pte)181 static inline pte_t pte_mkclean(pte_t pte)
182 {
183 pte = clear_pte_bit(pte, __pgprot(PTE_DIRTY));
184 pte = set_pte_bit(pte, __pgprot(PTE_RDONLY));
185
186 return pte;
187 }
188
pte_mkdirty(pte_t pte)189 static inline pte_t pte_mkdirty(pte_t pte)
190 {
191 pte = set_pte_bit(pte, __pgprot(PTE_DIRTY));
192
193 if (pte_write(pte))
194 pte = clear_pte_bit(pte, __pgprot(PTE_RDONLY));
195
196 return pte;
197 }
198
pte_wrprotect(pte_t pte)199 static inline pte_t pte_wrprotect(pte_t pte)
200 {
201 /*
202 * If hardware-dirty (PTE_WRITE/DBM bit set and PTE_RDONLY
203 * clear), set the PTE_DIRTY bit.
204 */
205 if (pte_hw_dirty(pte))
206 pte = pte_mkdirty(pte);
207
208 pte = clear_pte_bit(pte, __pgprot(PTE_WRITE));
209 pte = set_pte_bit(pte, __pgprot(PTE_RDONLY));
210 return pte;
211 }
212
pte_mkold(pte_t pte)213 static inline pte_t pte_mkold(pte_t pte)
214 {
215 return clear_pte_bit(pte, __pgprot(PTE_AF));
216 }
217
pte_mkyoung(pte_t pte)218 static inline pte_t pte_mkyoung(pte_t pte)
219 {
220 return set_pte_bit(pte, __pgprot(PTE_AF));
221 }
222
pte_mkspecial(pte_t pte)223 static inline pte_t pte_mkspecial(pte_t pte)
224 {
225 return set_pte_bit(pte, __pgprot(PTE_SPECIAL));
226 }
227
pte_mkcont(pte_t pte)228 static inline pte_t pte_mkcont(pte_t pte)
229 {
230 pte = set_pte_bit(pte, __pgprot(PTE_CONT));
231 return set_pte_bit(pte, __pgprot(PTE_TYPE_PAGE));
232 }
233
pte_mknoncont(pte_t pte)234 static inline pte_t pte_mknoncont(pte_t pte)
235 {
236 return clear_pte_bit(pte, __pgprot(PTE_CONT));
237 }
238
pte_mkpresent(pte_t pte)239 static inline pte_t pte_mkpresent(pte_t pte)
240 {
241 return set_pte_bit(pte, __pgprot(PTE_VALID));
242 }
243
pmd_mkcont(pmd_t pmd)244 static inline pmd_t pmd_mkcont(pmd_t pmd)
245 {
246 return __pmd(pmd_val(pmd) | PMD_SECT_CONT);
247 }
248
pte_mkdevmap(pte_t pte)249 static inline pte_t pte_mkdevmap(pte_t pte)
250 {
251 return set_pte_bit(pte, __pgprot(PTE_DEVMAP | PTE_SPECIAL));
252 }
253
set_pte(pte_t * ptep,pte_t pte)254 static inline void set_pte(pte_t *ptep, pte_t pte)
255 {
256 WRITE_ONCE(*ptep, pte);
257
258 /*
259 * Only if the new pte is valid and kernel, otherwise TLB maintenance
260 * or update_mmu_cache() have the necessary barriers.
261 */
262 if (pte_valid_not_user(pte)) {
263 dsb(ishst);
264 isb();
265 }
266 }
267
268 extern void __sync_icache_dcache(pte_t pteval);
269
270 /*
271 * PTE bits configuration in the presence of hardware Dirty Bit Management
272 * (PTE_WRITE == PTE_DBM):
273 *
274 * Dirty Writable | PTE_RDONLY PTE_WRITE PTE_DIRTY (sw)
275 * 0 0 | 1 0 0
276 * 0 1 | 1 1 0
277 * 1 0 | 1 0 1
278 * 1 1 | 0 1 x
279 *
280 * When hardware DBM is not present, the sofware PTE_DIRTY bit is updated via
281 * the page fault mechanism. Checking the dirty status of a pte becomes:
282 *
283 * PTE_DIRTY || (PTE_WRITE && !PTE_RDONLY)
284 */
285
__check_racy_pte_update(struct mm_struct * mm,pte_t * ptep,pte_t pte)286 static inline void __check_racy_pte_update(struct mm_struct *mm, pte_t *ptep,
287 pte_t pte)
288 {
289 pte_t old_pte;
290
291 if (!IS_ENABLED(CONFIG_DEBUG_VM))
292 return;
293
294 old_pte = READ_ONCE(*ptep);
295
296 if (!pte_valid(old_pte) || !pte_valid(pte))
297 return;
298 if (mm != current->active_mm && atomic_read(&mm->mm_users) <= 1)
299 return;
300
301 /*
302 * Check for potential race with hardware updates of the pte
303 * (ptep_set_access_flags safely changes valid ptes without going
304 * through an invalid entry).
305 */
306 VM_WARN_ONCE(!pte_young(pte),
307 "%s: racy access flag clearing: 0x%016llx -> 0x%016llx",
308 __func__, pte_val(old_pte), pte_val(pte));
309 VM_WARN_ONCE(pte_write(old_pte) && !pte_dirty(pte),
310 "%s: racy dirty state clearing: 0x%016llx -> 0x%016llx",
311 __func__, pte_val(old_pte), pte_val(pte));
312 }
313
set_pte_at(struct mm_struct * mm,unsigned long addr,pte_t * ptep,pte_t pte)314 static inline void set_pte_at(struct mm_struct *mm, unsigned long addr,
315 pte_t *ptep, pte_t pte)
316 {
317 if (pte_present(pte) && pte_user_exec(pte) && !pte_special(pte))
318 __sync_icache_dcache(pte);
319
320 if (system_supports_mte() &&
321 pte_present(pte) && pte_tagged(pte) && !pte_special(pte))
322 mte_sync_tags(ptep, pte);
323
324 __check_racy_pte_update(mm, ptep, pte);
325
326 set_pte(ptep, pte);
327 }
328
329 /*
330 * Huge pte definitions.
331 */
332 #define pte_mkhuge(pte) (__pte(pte_val(pte) & ~PTE_TABLE_BIT))
333
334 /*
335 * Hugetlb definitions.
336 */
337 #define HUGE_MAX_HSTATE 4
338 #define HPAGE_SHIFT PMD_SHIFT
339 #define HPAGE_SIZE (_AC(1, UL) << HPAGE_SHIFT)
340 #define HPAGE_MASK (~(HPAGE_SIZE - 1))
341 #define HUGETLB_PAGE_ORDER (HPAGE_SHIFT - PAGE_SHIFT)
342
pgd_pte(pgd_t pgd)343 static inline pte_t pgd_pte(pgd_t pgd)
344 {
345 return __pte(pgd_val(pgd));
346 }
347
p4d_pte(p4d_t p4d)348 static inline pte_t p4d_pte(p4d_t p4d)
349 {
350 return __pte(p4d_val(p4d));
351 }
352
pud_pte(pud_t pud)353 static inline pte_t pud_pte(pud_t pud)
354 {
355 return __pte(pud_val(pud));
356 }
357
pte_pud(pte_t pte)358 static inline pud_t pte_pud(pte_t pte)
359 {
360 return __pud(pte_val(pte));
361 }
362
pud_pmd(pud_t pud)363 static inline pmd_t pud_pmd(pud_t pud)
364 {
365 return __pmd(pud_val(pud));
366 }
367
pmd_pte(pmd_t pmd)368 static inline pte_t pmd_pte(pmd_t pmd)
369 {
370 return __pte(pmd_val(pmd));
371 }
372
pte_pmd(pte_t pte)373 static inline pmd_t pte_pmd(pte_t pte)
374 {
375 return __pmd(pte_val(pte));
376 }
377
mk_pud_sect_prot(pgprot_t prot)378 static inline pgprot_t mk_pud_sect_prot(pgprot_t prot)
379 {
380 return __pgprot((pgprot_val(prot) & ~PUD_TABLE_BIT) | PUD_TYPE_SECT);
381 }
382
mk_pmd_sect_prot(pgprot_t prot)383 static inline pgprot_t mk_pmd_sect_prot(pgprot_t prot)
384 {
385 return __pgprot((pgprot_val(prot) & ~PMD_TABLE_BIT) | PMD_TYPE_SECT);
386 }
387
388 #ifdef CONFIG_NUMA_BALANCING
389 /*
390 * See the comment in include/linux/pgtable.h
391 */
pte_protnone(pte_t pte)392 static inline int pte_protnone(pte_t pte)
393 {
394 return (pte_val(pte) & (PTE_VALID | PTE_PROT_NONE)) == PTE_PROT_NONE;
395 }
396
pmd_protnone(pmd_t pmd)397 static inline int pmd_protnone(pmd_t pmd)
398 {
399 return pte_protnone(pmd_pte(pmd));
400 }
401 #endif
402
403 #define pmd_present_invalid(pmd) (!!(pmd_val(pmd) & PMD_PRESENT_INVALID))
404
pmd_present(pmd_t pmd)405 static inline int pmd_present(pmd_t pmd)
406 {
407 return pte_present(pmd_pte(pmd)) || pmd_present_invalid(pmd);
408 }
409
410 /*
411 * THP definitions.
412 */
413
414 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
pmd_trans_huge(pmd_t pmd)415 static inline int pmd_trans_huge(pmd_t pmd)
416 {
417 return pmd_val(pmd) && pmd_present(pmd) && !(pmd_val(pmd) & PMD_TABLE_BIT);
418 }
419 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
420
421 #define pmd_dirty(pmd) pte_dirty(pmd_pte(pmd))
422 #define pmd_young(pmd) pte_young(pmd_pte(pmd))
423 #define pmd_valid(pmd) pte_valid(pmd_pte(pmd))
424 #define pmd_wrprotect(pmd) pte_pmd(pte_wrprotect(pmd_pte(pmd)))
425 #define pmd_mkold(pmd) pte_pmd(pte_mkold(pmd_pte(pmd)))
426 #define pmd_mkwrite(pmd) pte_pmd(pte_mkwrite(pmd_pte(pmd)))
427 #define pmd_mkclean(pmd) pte_pmd(pte_mkclean(pmd_pte(pmd)))
428 #define pmd_mkdirty(pmd) pte_pmd(pte_mkdirty(pmd_pte(pmd)))
429 #define pmd_mkyoung(pmd) pte_pmd(pte_mkyoung(pmd_pte(pmd)))
430
pmd_mkinvalid(pmd_t pmd)431 static inline pmd_t pmd_mkinvalid(pmd_t pmd)
432 {
433 pmd = set_pmd_bit(pmd, __pgprot(PMD_PRESENT_INVALID));
434 pmd = clear_pmd_bit(pmd, __pgprot(PMD_SECT_VALID));
435
436 return pmd;
437 }
438
439 #define pmd_thp_or_huge(pmd) (pmd_huge(pmd) || pmd_trans_huge(pmd))
440
441 #define pmd_write(pmd) pte_write(pmd_pte(pmd))
442
443 #define pmd_mkhuge(pmd) (__pmd(pmd_val(pmd) & ~PMD_TABLE_BIT))
444
445 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
446 #define pmd_devmap(pmd) pte_devmap(pmd_pte(pmd))
447 #endif
pmd_mkdevmap(pmd_t pmd)448 static inline pmd_t pmd_mkdevmap(pmd_t pmd)
449 {
450 return pte_pmd(set_pte_bit(pmd_pte(pmd), __pgprot(PTE_DEVMAP)));
451 }
452
453 #define __pmd_to_phys(pmd) __pte_to_phys(pmd_pte(pmd))
454 #define __phys_to_pmd_val(phys) __phys_to_pte_val(phys)
455 #define pmd_pfn(pmd) ((__pmd_to_phys(pmd) & PMD_MASK) >> PAGE_SHIFT)
456 #define pfn_pmd(pfn,prot) __pmd(__phys_to_pmd_val((phys_addr_t)(pfn) << PAGE_SHIFT) | pgprot_val(prot))
457 #define mk_pmd(page,prot) pfn_pmd(page_to_pfn(page),prot)
458
459 #define pud_young(pud) pte_young(pud_pte(pud))
460 #define pud_mkyoung(pud) pte_pud(pte_mkyoung(pud_pte(pud)))
461 #define pud_write(pud) pte_write(pud_pte(pud))
462
463 #define pud_mkhuge(pud) (__pud(pud_val(pud) & ~PUD_TABLE_BIT))
464
465 #define __pud_to_phys(pud) __pte_to_phys(pud_pte(pud))
466 #define __phys_to_pud_val(phys) __phys_to_pte_val(phys)
467 #define pud_pfn(pud) ((__pud_to_phys(pud) & PUD_MASK) >> PAGE_SHIFT)
468 #define pfn_pud(pfn,prot) __pud(__phys_to_pud_val((phys_addr_t)(pfn) << PAGE_SHIFT) | pgprot_val(prot))
469
470 #define set_pmd_at(mm, addr, pmdp, pmd) set_pte_at(mm, addr, (pte_t *)pmdp, pmd_pte(pmd))
471
472 #define __p4d_to_phys(p4d) __pte_to_phys(p4d_pte(p4d))
473 #define __phys_to_p4d_val(phys) __phys_to_pte_val(phys)
474
475 #define __pgd_to_phys(pgd) __pte_to_phys(pgd_pte(pgd))
476 #define __phys_to_pgd_val(phys) __phys_to_pte_val(phys)
477
478 #define __pgprot_modify(prot,mask,bits) \
479 __pgprot((pgprot_val(prot) & ~(mask)) | (bits))
480
481 #define pgprot_nx(prot) \
482 __pgprot_modify(prot, PTE_MAYBE_GP, PTE_PXN)
483
484 /*
485 * Mark the prot value as uncacheable and unbufferable.
486 */
487 #define pgprot_noncached(prot) \
488 __pgprot_modify(prot, PTE_ATTRINDX_MASK, PTE_ATTRINDX(MT_DEVICE_nGnRnE) | PTE_PXN | PTE_UXN)
489 #define pgprot_writecombine(prot) \
490 __pgprot_modify(prot, PTE_ATTRINDX_MASK, PTE_ATTRINDX(MT_NORMAL_NC) | PTE_PXN | PTE_UXN)
491 #define pgprot_device(prot) \
492 __pgprot_modify(prot, PTE_ATTRINDX_MASK, PTE_ATTRINDX(MT_DEVICE_nGnRE) | PTE_PXN | PTE_UXN)
493 #define pgprot_tagged(prot) \
494 __pgprot_modify(prot, PTE_ATTRINDX_MASK, PTE_ATTRINDX(MT_NORMAL_TAGGED))
495 #define pgprot_mhp pgprot_tagged
496 /*
497 * DMA allocations for non-coherent devices use what the Arm architecture calls
498 * "Normal non-cacheable" memory, which permits speculation, unaligned accesses
499 * and merging of writes. This is different from "Device-nGnR[nE]" memory which
500 * is intended for MMIO and thus forbids speculation, preserves access size,
501 * requires strict alignment and can also force write responses to come from the
502 * endpoint.
503 */
504 #define pgprot_dmacoherent(prot) \
505 __pgprot_modify(prot, PTE_ATTRINDX_MASK, \
506 PTE_ATTRINDX(MT_NORMAL_NC) | PTE_PXN | PTE_UXN)
507
508 #define __HAVE_PHYS_MEM_ACCESS_PROT
509 struct file;
510 extern pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
511 unsigned long size, pgprot_t vma_prot);
512
513 #define pmd_none(pmd) (!pmd_val(pmd))
514
515 #define pmd_bad(pmd) (!(pmd_val(pmd) & PMD_TABLE_BIT))
516
517 #define pmd_table(pmd) ((pmd_val(pmd) & PMD_TYPE_MASK) == \
518 PMD_TYPE_TABLE)
519 #define pmd_sect(pmd) ((pmd_val(pmd) & PMD_TYPE_MASK) == \
520 PMD_TYPE_SECT)
521 #define pmd_leaf(pmd) pmd_sect(pmd)
522
523 #if defined(CONFIG_ARM64_64K_PAGES) || CONFIG_PGTABLE_LEVELS < 3
pud_sect(pud_t pud)524 static inline bool pud_sect(pud_t pud) { return false; }
pud_table(pud_t pud)525 static inline bool pud_table(pud_t pud) { return true; }
526 #else
527 #define pud_sect(pud) ((pud_val(pud) & PUD_TYPE_MASK) == \
528 PUD_TYPE_SECT)
529 #define pud_table(pud) ((pud_val(pud) & PUD_TYPE_MASK) == \
530 PUD_TYPE_TABLE)
531 #endif
532
533 extern pgd_t init_pg_dir[PTRS_PER_PGD];
534 extern pgd_t init_pg_end[];
535 extern pgd_t swapper_pg_dir[PTRS_PER_PGD];
536 extern pgd_t idmap_pg_dir[PTRS_PER_PGD];
537 extern pgd_t idmap_pg_end[];
538 extern pgd_t tramp_pg_dir[PTRS_PER_PGD];
539 extern pgd_t reserved_pg_dir[PTRS_PER_PGD];
540
541 extern void set_swapper_pgd(pgd_t *pgdp, pgd_t pgd);
542
in_swapper_pgdir(void * addr)543 static inline bool in_swapper_pgdir(void *addr)
544 {
545 return ((unsigned long)addr & PAGE_MASK) ==
546 ((unsigned long)swapper_pg_dir & PAGE_MASK);
547 }
548
set_pmd(pmd_t * pmdp,pmd_t pmd)549 static inline void set_pmd(pmd_t *pmdp, pmd_t pmd)
550 {
551 #ifdef __PAGETABLE_PMD_FOLDED
552 if (in_swapper_pgdir(pmdp)) {
553 set_swapper_pgd((pgd_t *)pmdp, __pgd(pmd_val(pmd)));
554 return;
555 }
556 #endif /* __PAGETABLE_PMD_FOLDED */
557
558 WRITE_ONCE(*pmdp, pmd);
559
560 if (pmd_valid(pmd)) {
561 dsb(ishst);
562 isb();
563 }
564 }
565
pmd_clear(pmd_t * pmdp)566 static inline void pmd_clear(pmd_t *pmdp)
567 {
568 set_pmd(pmdp, __pmd(0));
569 }
570
pmd_page_paddr(pmd_t pmd)571 static inline phys_addr_t pmd_page_paddr(pmd_t pmd)
572 {
573 return __pmd_to_phys(pmd);
574 }
575
pmd_page_vaddr(pmd_t pmd)576 static inline unsigned long pmd_page_vaddr(pmd_t pmd)
577 {
578 return (unsigned long)__va(pmd_page_paddr(pmd));
579 }
580
581 /* Find an entry in the third-level page table. */
582 #define pte_offset_phys(dir,addr) (pmd_page_paddr(READ_ONCE(*(dir))) + pte_index(addr) * sizeof(pte_t))
583
584 #define pte_set_fixmap(addr) ((pte_t *)set_fixmap_offset(FIX_PTE, addr))
585 #define pte_set_fixmap_offset(pmd, addr) pte_set_fixmap(pte_offset_phys(pmd, addr))
586 #define pte_clear_fixmap() clear_fixmap(FIX_PTE)
587
588 #define pmd_page(pmd) phys_to_page(__pmd_to_phys(pmd))
589
590 /* use ONLY for statically allocated translation tables */
591 #define pte_offset_kimg(dir,addr) ((pte_t *)__phys_to_kimg(pte_offset_phys((dir), (addr))))
592
593 /*
594 * Conversion functions: convert a page and protection to a page entry,
595 * and a page entry and page directory to the page they refer to.
596 */
597 #define mk_pte(page,prot) pfn_pte(page_to_pfn(page),prot)
598
599 #if CONFIG_PGTABLE_LEVELS > 2
600
601 #define pmd_ERROR(e) \
602 pr_err("%s:%d: bad pmd %016llx.\n", __FILE__, __LINE__, pmd_val(e))
603
604 #define pud_none(pud) (!pud_val(pud))
605 #define pud_bad(pud) (!(pud_val(pud) & PUD_TABLE_BIT))
606 #define pud_present(pud) pte_present(pud_pte(pud))
607 #define pud_leaf(pud) pud_sect(pud)
608 #define pud_valid(pud) pte_valid(pud_pte(pud))
609
set_pud(pud_t * pudp,pud_t pud)610 static inline void set_pud(pud_t *pudp, pud_t pud)
611 {
612 #ifdef __PAGETABLE_PUD_FOLDED
613 if (in_swapper_pgdir(pudp)) {
614 set_swapper_pgd((pgd_t *)pudp, __pgd(pud_val(pud)));
615 return;
616 }
617 #endif /* __PAGETABLE_PUD_FOLDED */
618
619 WRITE_ONCE(*pudp, pud);
620
621 if (pud_valid(pud)) {
622 dsb(ishst);
623 isb();
624 }
625 }
626
pud_clear(pud_t * pudp)627 static inline void pud_clear(pud_t *pudp)
628 {
629 set_pud(pudp, __pud(0));
630 }
631
pud_page_paddr(pud_t pud)632 static inline phys_addr_t pud_page_paddr(pud_t pud)
633 {
634 return __pud_to_phys(pud);
635 }
636
pud_page_vaddr(pud_t pud)637 static inline unsigned long pud_page_vaddr(pud_t pud)
638 {
639 return (unsigned long)__va(pud_page_paddr(pud));
640 }
641
642 /* Find an entry in the second-level page table. */
643 #define pmd_offset_phys(dir, addr) (pud_page_paddr(READ_ONCE(*(dir))) + pmd_index(addr) * sizeof(pmd_t))
644
645 #define pmd_set_fixmap(addr) ((pmd_t *)set_fixmap_offset(FIX_PMD, addr))
646 #define pmd_set_fixmap_offset(pud, addr) pmd_set_fixmap(pmd_offset_phys(pud, addr))
647 #define pmd_clear_fixmap() clear_fixmap(FIX_PMD)
648
649 #define pud_page(pud) phys_to_page(__pud_to_phys(pud))
650
651 /* use ONLY for statically allocated translation tables */
652 #define pmd_offset_kimg(dir,addr) ((pmd_t *)__phys_to_kimg(pmd_offset_phys((dir), (addr))))
653
654 #else
655
656 #define pud_page_paddr(pud) ({ BUILD_BUG(); 0; })
657
658 /* Match pmd_offset folding in <asm/generic/pgtable-nopmd.h> */
659 #define pmd_set_fixmap(addr) NULL
660 #define pmd_set_fixmap_offset(pudp, addr) ((pmd_t *)pudp)
661 #define pmd_clear_fixmap()
662
663 #define pmd_offset_kimg(dir,addr) ((pmd_t *)dir)
664
665 #endif /* CONFIG_PGTABLE_LEVELS > 2 */
666
667 #if CONFIG_PGTABLE_LEVELS > 3
668
669 #define pud_ERROR(e) \
670 pr_err("%s:%d: bad pud %016llx.\n", __FILE__, __LINE__, pud_val(e))
671
672 #define p4d_none(p4d) (!p4d_val(p4d))
673 #define p4d_bad(p4d) (!(p4d_val(p4d) & 2))
674 #define p4d_present(p4d) (p4d_val(p4d))
675
set_p4d(p4d_t * p4dp,p4d_t p4d)676 static inline void set_p4d(p4d_t *p4dp, p4d_t p4d)
677 {
678 if (in_swapper_pgdir(p4dp)) {
679 set_swapper_pgd((pgd_t *)p4dp, __pgd(p4d_val(p4d)));
680 return;
681 }
682
683 WRITE_ONCE(*p4dp, p4d);
684 dsb(ishst);
685 isb();
686 }
687
p4d_clear(p4d_t * p4dp)688 static inline void p4d_clear(p4d_t *p4dp)
689 {
690 set_p4d(p4dp, __p4d(0));
691 }
692
p4d_page_paddr(p4d_t p4d)693 static inline phys_addr_t p4d_page_paddr(p4d_t p4d)
694 {
695 return __p4d_to_phys(p4d);
696 }
697
p4d_page_vaddr(p4d_t p4d)698 static inline unsigned long p4d_page_vaddr(p4d_t p4d)
699 {
700 return (unsigned long)__va(p4d_page_paddr(p4d));
701 }
702
703 /* Find an entry in the frst-level page table. */
704 #define pud_offset_phys(dir, addr) (p4d_page_paddr(READ_ONCE(*(dir))) + pud_index(addr) * sizeof(pud_t))
705
706 #define pud_set_fixmap(addr) ((pud_t *)set_fixmap_offset(FIX_PUD, addr))
707 #define pud_set_fixmap_offset(p4d, addr) pud_set_fixmap(pud_offset_phys(p4d, addr))
708 #define pud_clear_fixmap() clear_fixmap(FIX_PUD)
709
710 #define p4d_page(p4d) pfn_to_page(__phys_to_pfn(__p4d_to_phys(p4d)))
711
712 /* use ONLY for statically allocated translation tables */
713 #define pud_offset_kimg(dir,addr) ((pud_t *)__phys_to_kimg(pud_offset_phys((dir), (addr))))
714
715 #else
716
717 #define p4d_page_paddr(p4d) ({ BUILD_BUG(); 0;})
718 #define pgd_page_paddr(pgd) ({ BUILD_BUG(); 0;})
719
720 /* Match pud_offset folding in <asm/generic/pgtable-nopud.h> */
721 #define pud_set_fixmap(addr) NULL
722 #define pud_set_fixmap_offset(pgdp, addr) ((pud_t *)pgdp)
723 #define pud_clear_fixmap()
724
725 #define pud_offset_kimg(dir,addr) ((pud_t *)dir)
726
727 #endif /* CONFIG_PGTABLE_LEVELS > 3 */
728
729 #define pgd_ERROR(e) \
730 pr_err("%s:%d: bad pgd %016llx.\n", __FILE__, __LINE__, pgd_val(e))
731
732 #define pgd_set_fixmap(addr) ((pgd_t *)set_fixmap_offset(FIX_PGD, addr))
733 #define pgd_clear_fixmap() clear_fixmap(FIX_PGD)
734
pte_modify(pte_t pte,pgprot_t newprot)735 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
736 {
737 /*
738 * Normal and Normal-Tagged are two different memory types and indices
739 * in MAIR_EL1. The mask below has to include PTE_ATTRINDX_MASK.
740 */
741 const pteval_t mask = PTE_USER | PTE_PXN | PTE_UXN | PTE_RDONLY |
742 PTE_PROT_NONE | PTE_VALID | PTE_WRITE | PTE_GP |
743 PTE_ATTRINDX_MASK;
744 /* preserve the hardware dirty information */
745 if (pte_hw_dirty(pte))
746 pte = pte_mkdirty(pte);
747 pte_val(pte) = (pte_val(pte) & ~mask) | (pgprot_val(newprot) & mask);
748 return pte;
749 }
750
pmd_modify(pmd_t pmd,pgprot_t newprot)751 static inline pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot)
752 {
753 return pte_pmd(pte_modify(pmd_pte(pmd), newprot));
754 }
755
756 #define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
757 extern int ptep_set_access_flags(struct vm_area_struct *vma,
758 unsigned long address, pte_t *ptep,
759 pte_t entry, int dirty);
760
761 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
762 #define __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
pmdp_set_access_flags(struct vm_area_struct * vma,unsigned long address,pmd_t * pmdp,pmd_t entry,int dirty)763 static inline int pmdp_set_access_flags(struct vm_area_struct *vma,
764 unsigned long address, pmd_t *pmdp,
765 pmd_t entry, int dirty)
766 {
767 return ptep_set_access_flags(vma, address, (pte_t *)pmdp, pmd_pte(entry), dirty);
768 }
769
pud_devmap(pud_t pud)770 static inline int pud_devmap(pud_t pud)
771 {
772 return 0;
773 }
774
pgd_devmap(pgd_t pgd)775 static inline int pgd_devmap(pgd_t pgd)
776 {
777 return 0;
778 }
779 #endif
780
781 /*
782 * Atomic pte/pmd modifications.
783 */
784 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
__ptep_test_and_clear_young(pte_t * ptep)785 static inline int __ptep_test_and_clear_young(pte_t *ptep)
786 {
787 pte_t old_pte, pte;
788
789 pte = READ_ONCE(*ptep);
790 do {
791 old_pte = pte;
792 pte = pte_mkold(pte);
793 pte_val(pte) = cmpxchg_relaxed(&pte_val(*ptep),
794 pte_val(old_pte), pte_val(pte));
795 } while (pte_val(pte) != pte_val(old_pte));
796
797 return pte_young(pte);
798 }
799
ptep_test_and_clear_young(struct vm_area_struct * vma,unsigned long address,pte_t * ptep)800 static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
801 unsigned long address,
802 pte_t *ptep)
803 {
804 return __ptep_test_and_clear_young(ptep);
805 }
806
807 #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
ptep_clear_flush_young(struct vm_area_struct * vma,unsigned long address,pte_t * ptep)808 static inline int ptep_clear_flush_young(struct vm_area_struct *vma,
809 unsigned long address, pte_t *ptep)
810 {
811 int young = ptep_test_and_clear_young(vma, address, ptep);
812
813 if (young) {
814 /*
815 * We can elide the trailing DSB here since the worst that can
816 * happen is that a CPU continues to use the young entry in its
817 * TLB and we mistakenly reclaim the associated page. The
818 * window for such an event is bounded by the next
819 * context-switch, which provides a DSB to complete the TLB
820 * invalidation.
821 */
822 flush_tlb_page_nosync(vma, address);
823 }
824
825 return young;
826 }
827
828 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
829 #define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
pmdp_test_and_clear_young(struct vm_area_struct * vma,unsigned long address,pmd_t * pmdp)830 static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
831 unsigned long address,
832 pmd_t *pmdp)
833 {
834 return ptep_test_and_clear_young(vma, address, (pte_t *)pmdp);
835 }
836 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
837
838 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
ptep_get_and_clear(struct mm_struct * mm,unsigned long address,pte_t * ptep)839 static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
840 unsigned long address, pte_t *ptep)
841 {
842 return __pte(xchg_relaxed(&pte_val(*ptep), 0));
843 }
844
845 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
846 #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
pmdp_huge_get_and_clear(struct mm_struct * mm,unsigned long address,pmd_t * pmdp)847 static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
848 unsigned long address, pmd_t *pmdp)
849 {
850 return pte_pmd(ptep_get_and_clear(mm, address, (pte_t *)pmdp));
851 }
852 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
853
854 /*
855 * ptep_set_wrprotect - mark read-only while trasferring potential hardware
856 * dirty status (PTE_DBM && !PTE_RDONLY) to the software PTE_DIRTY bit.
857 */
858 #define __HAVE_ARCH_PTEP_SET_WRPROTECT
ptep_set_wrprotect(struct mm_struct * mm,unsigned long address,pte_t * ptep)859 static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long address, pte_t *ptep)
860 {
861 pte_t old_pte, pte;
862
863 pte = READ_ONCE(*ptep);
864 do {
865 old_pte = pte;
866 pte = pte_wrprotect(pte);
867 pte_val(pte) = cmpxchg_relaxed(&pte_val(*ptep),
868 pte_val(old_pte), pte_val(pte));
869 } while (pte_val(pte) != pte_val(old_pte));
870 }
871
872 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
873 #define __HAVE_ARCH_PMDP_SET_WRPROTECT
pmdp_set_wrprotect(struct mm_struct * mm,unsigned long address,pmd_t * pmdp)874 static inline void pmdp_set_wrprotect(struct mm_struct *mm,
875 unsigned long address, pmd_t *pmdp)
876 {
877 ptep_set_wrprotect(mm, address, (pte_t *)pmdp);
878 }
879
880 #define pmdp_establish pmdp_establish
pmdp_establish(struct vm_area_struct * vma,unsigned long address,pmd_t * pmdp,pmd_t pmd)881 static inline pmd_t pmdp_establish(struct vm_area_struct *vma,
882 unsigned long address, pmd_t *pmdp, pmd_t pmd)
883 {
884 return __pmd(xchg_relaxed(&pmd_val(*pmdp), pmd_val(pmd)));
885 }
886 #endif
887
888 /*
889 * Encode and decode a swap entry:
890 * bits 0-1: present (must be zero)
891 * bits 2-7: swap type
892 * bits 8-57: swap offset
893 * bit 58: PTE_PROT_NONE (must be zero)
894 */
895 #define __SWP_TYPE_SHIFT 2
896 #define __SWP_TYPE_BITS 6
897 #define __SWP_OFFSET_BITS 50
898 #define __SWP_TYPE_MASK ((1 << __SWP_TYPE_BITS) - 1)
899 #define __SWP_OFFSET_SHIFT (__SWP_TYPE_BITS + __SWP_TYPE_SHIFT)
900 #define __SWP_OFFSET_MASK ((1UL << __SWP_OFFSET_BITS) - 1)
901
902 #define __swp_type(x) (((x).val >> __SWP_TYPE_SHIFT) & __SWP_TYPE_MASK)
903 #define __swp_offset(x) (((x).val >> __SWP_OFFSET_SHIFT) & __SWP_OFFSET_MASK)
904 #define __swp_entry(type,offset) ((swp_entry_t) { ((type) << __SWP_TYPE_SHIFT) | ((offset) << __SWP_OFFSET_SHIFT) })
905
906 #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
907 #define __swp_entry_to_pte(swp) ((pte_t) { (swp).val })
908
909 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
910 #define __pmd_to_swp_entry(pmd) ((swp_entry_t) { pmd_val(pmd) })
911 #define __swp_entry_to_pmd(swp) __pmd((swp).val)
912 #endif /* CONFIG_ARCH_ENABLE_THP_MIGRATION */
913
914 /*
915 * Ensure that there are not more swap files than can be encoded in the kernel
916 * PTEs.
917 */
918 #define MAX_SWAPFILES_CHECK() BUILD_BUG_ON(MAX_SWAPFILES_SHIFT > __SWP_TYPE_BITS)
919
920 extern int kern_addr_valid(unsigned long addr);
921
922 #ifdef CONFIG_ARM64_MTE
923
924 #define __HAVE_ARCH_PREPARE_TO_SWAP
arch_prepare_to_swap(struct page * page)925 static inline int arch_prepare_to_swap(struct page *page)
926 {
927 if (system_supports_mte())
928 return mte_save_tags(page);
929 return 0;
930 }
931
932 #define __HAVE_ARCH_SWAP_INVALIDATE
arch_swap_invalidate_page(int type,pgoff_t offset)933 static inline void arch_swap_invalidate_page(int type, pgoff_t offset)
934 {
935 if (system_supports_mte())
936 mte_invalidate_tags(type, offset);
937 }
938
arch_swap_invalidate_area(int type)939 static inline void arch_swap_invalidate_area(int type)
940 {
941 if (system_supports_mte())
942 mte_invalidate_tags_area(type);
943 }
944
945 #define __HAVE_ARCH_SWAP_RESTORE
arch_swap_restore(swp_entry_t entry,struct page * page)946 static inline void arch_swap_restore(swp_entry_t entry, struct page *page)
947 {
948 if (system_supports_mte() && mte_restore_tags(entry, page))
949 set_bit(PG_mte_tagged, &page->flags);
950 }
951
952 #endif /* CONFIG_ARM64_MTE */
953
954 /*
955 * On AArch64, the cache coherency is handled via the set_pte_at() function.
956 */
update_mmu_cache(struct vm_area_struct * vma,unsigned long addr,pte_t * ptep)957 static inline void update_mmu_cache(struct vm_area_struct *vma,
958 unsigned long addr, pte_t *ptep)
959 {
960 /*
961 * We don't do anything here, so there's a very small chance of
962 * us retaking a user fault which we just fixed up. The alternative
963 * is doing a dsb(ishst), but that penalises the fastpath.
964 */
965 }
966
967 #define update_mmu_cache_pmd(vma, address, pmd) do { } while (0)
968
969 #ifdef CONFIG_ARM64_PA_BITS_52
970 #define phys_to_ttbr(addr) (((addr) | ((addr) >> 46)) & TTBR_BADDR_MASK_52)
971 #else
972 #define phys_to_ttbr(addr) (addr)
973 #endif
974
975 /*
976 * On arm64 without hardware Access Flag, copying from user will fail because
977 * the pte is old and cannot be marked young. So we always end up with zeroed
978 * page after fork() + CoW for pfn mappings. We don't always have a
979 * hardware-managed access flag on arm64.
980 */
arch_faults_on_old_pte(void)981 static inline bool arch_faults_on_old_pte(void)
982 {
983 WARN_ON(preemptible());
984
985 return !cpu_has_hw_af();
986 }
987 #define arch_faults_on_old_pte arch_faults_on_old_pte
988
989 #endif /* !__ASSEMBLY__ */
990
991 #endif /* __ASM_PGTABLE_H */
992