• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright © 2015 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  */
23 
24 #include "nir/nir_builder.h"
25 #include "radv_debug.h"
26 #include "radv_meta.h"
27 #include "radv_private.h"
28 
29 #include "util/format_rgb9e5.h"
30 #include "vk_format.h"
31 
32 enum { DEPTH_CLEAR_SLOW, DEPTH_CLEAR_FAST };
33 
34 static void
build_color_shaders(struct nir_shader ** out_vs,struct nir_shader ** out_fs,uint32_t frag_output)35 build_color_shaders(struct nir_shader **out_vs, struct nir_shader **out_fs, uint32_t frag_output)
36 {
37    nir_builder vs_b =
38       nir_builder_init_simple_shader(MESA_SHADER_VERTEX, NULL, "meta_clear_color_vs");
39    nir_builder fs_b =
40       nir_builder_init_simple_shader(MESA_SHADER_FRAGMENT, NULL, "meta_clear_color_fs");
41 
42    const struct glsl_type *position_type = glsl_vec4_type();
43    const struct glsl_type *color_type = glsl_vec4_type();
44 
45    nir_variable *vs_out_pos =
46       nir_variable_create(vs_b.shader, nir_var_shader_out, position_type, "gl_Position");
47    vs_out_pos->data.location = VARYING_SLOT_POS;
48 
49    nir_ssa_def *in_color_load =
50       nir_load_push_constant(&fs_b, 4, 32, nir_imm_int(&fs_b, 0), .range = 16);
51 
52    nir_variable *fs_out_color =
53       nir_variable_create(fs_b.shader, nir_var_shader_out, color_type, "f_color");
54    fs_out_color->data.location = FRAG_RESULT_DATA0 + frag_output;
55 
56    nir_store_var(&fs_b, fs_out_color, in_color_load, 0xf);
57 
58    nir_ssa_def *outvec = radv_meta_gen_rect_vertices(&vs_b);
59    nir_store_var(&vs_b, vs_out_pos, outvec, 0xf);
60 
61    const struct glsl_type *layer_type = glsl_int_type();
62    nir_variable *vs_out_layer =
63       nir_variable_create(vs_b.shader, nir_var_shader_out, layer_type, "v_layer");
64    vs_out_layer->data.location = VARYING_SLOT_LAYER;
65    vs_out_layer->data.interpolation = INTERP_MODE_FLAT;
66    nir_ssa_def *inst_id = nir_load_instance_id(&vs_b);
67    nir_ssa_def *base_instance = nir_load_base_instance(&vs_b);
68 
69    nir_ssa_def *layer_id = nir_iadd(&vs_b, inst_id, base_instance);
70    nir_store_var(&vs_b, vs_out_layer, layer_id, 0x1);
71 
72    *out_vs = vs_b.shader;
73    *out_fs = fs_b.shader;
74 }
75 
76 static VkResult
create_pipeline(struct radv_device * device,struct radv_render_pass * render_pass,uint32_t samples,struct nir_shader * vs_nir,struct nir_shader * fs_nir,const VkPipelineVertexInputStateCreateInfo * vi_state,const VkPipelineDepthStencilStateCreateInfo * ds_state,const VkPipelineColorBlendStateCreateInfo * cb_state,const VkPipelineLayout layout,const struct radv_graphics_pipeline_create_info * extra,const VkAllocationCallbacks * alloc,VkPipeline * pipeline)77 create_pipeline(struct radv_device *device, struct radv_render_pass *render_pass, uint32_t samples,
78                 struct nir_shader *vs_nir, struct nir_shader *fs_nir,
79                 const VkPipelineVertexInputStateCreateInfo *vi_state,
80                 const VkPipelineDepthStencilStateCreateInfo *ds_state,
81                 const VkPipelineColorBlendStateCreateInfo *cb_state, const VkPipelineLayout layout,
82                 const struct radv_graphics_pipeline_create_info *extra,
83                 const VkAllocationCallbacks *alloc, VkPipeline *pipeline)
84 {
85    VkDevice device_h = radv_device_to_handle(device);
86    VkResult result;
87 
88    result = radv_graphics_pipeline_create(
89       device_h, radv_pipeline_cache_to_handle(&device->meta_state.cache),
90       &(VkGraphicsPipelineCreateInfo){
91          .sType = VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO,
92          .stageCount = fs_nir ? 2 : 1,
93          .pStages =
94             (VkPipelineShaderStageCreateInfo[]){
95                {
96                   .sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO,
97                   .stage = VK_SHADER_STAGE_VERTEX_BIT,
98                   .module = vk_shader_module_handle_from_nir(vs_nir),
99                   .pName = "main",
100                },
101                {
102                   .sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO,
103                   .stage = VK_SHADER_STAGE_FRAGMENT_BIT,
104                   .module = vk_shader_module_handle_from_nir(fs_nir),
105                   .pName = "main",
106                },
107             },
108          .pVertexInputState = vi_state,
109          .pInputAssemblyState =
110             &(VkPipelineInputAssemblyStateCreateInfo){
111                .sType = VK_STRUCTURE_TYPE_PIPELINE_INPUT_ASSEMBLY_STATE_CREATE_INFO,
112                .topology = VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP,
113                .primitiveRestartEnable = false,
114             },
115          .pViewportState =
116             &(VkPipelineViewportStateCreateInfo){
117                .sType = VK_STRUCTURE_TYPE_PIPELINE_VIEWPORT_STATE_CREATE_INFO,
118                .viewportCount = 1,
119                .scissorCount = 1,
120             },
121          .pRasterizationState =
122             &(VkPipelineRasterizationStateCreateInfo){
123                .sType = VK_STRUCTURE_TYPE_PIPELINE_RASTERIZATION_STATE_CREATE_INFO,
124                .rasterizerDiscardEnable = false,
125                .polygonMode = VK_POLYGON_MODE_FILL,
126                .cullMode = VK_CULL_MODE_NONE,
127                .frontFace = VK_FRONT_FACE_COUNTER_CLOCKWISE,
128                .depthBiasEnable = false,
129             },
130          .pMultisampleState =
131             &(VkPipelineMultisampleStateCreateInfo){
132                .sType = VK_STRUCTURE_TYPE_PIPELINE_MULTISAMPLE_STATE_CREATE_INFO,
133                .rasterizationSamples = samples,
134                .sampleShadingEnable = false,
135                .pSampleMask = NULL,
136                .alphaToCoverageEnable = false,
137                .alphaToOneEnable = false,
138             },
139          .pDepthStencilState = ds_state,
140          .pColorBlendState = cb_state,
141          .pDynamicState =
142             &(VkPipelineDynamicStateCreateInfo){
143                /* The meta clear pipeline declares all state as dynamic.
144                 * As a consequence, vkCmdBindPipeline writes no dynamic state
145                 * to the cmd buffer. Therefore, at the end of the meta clear,
146                 * we need only restore dynamic state was vkCmdSet.
147                 */
148                .sType = VK_STRUCTURE_TYPE_PIPELINE_DYNAMIC_STATE_CREATE_INFO,
149                .dynamicStateCount = 8,
150                .pDynamicStates =
151                   (VkDynamicState[]){
152                      /* Everything except stencil write mask */
153                      VK_DYNAMIC_STATE_VIEWPORT,
154                      VK_DYNAMIC_STATE_SCISSOR,
155                      VK_DYNAMIC_STATE_LINE_WIDTH,
156                      VK_DYNAMIC_STATE_DEPTH_BIAS,
157                      VK_DYNAMIC_STATE_BLEND_CONSTANTS,
158                      VK_DYNAMIC_STATE_DEPTH_BOUNDS,
159                      VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK,
160                      VK_DYNAMIC_STATE_STENCIL_REFERENCE,
161                   },
162             },
163          .layout = layout,
164          .flags = 0,
165          .renderPass = radv_render_pass_to_handle(render_pass),
166          .subpass = 0,
167       },
168       extra, alloc, pipeline);
169 
170    ralloc_free(vs_nir);
171    ralloc_free(fs_nir);
172 
173    return result;
174 }
175 
176 static VkResult
create_color_renderpass(struct radv_device * device,VkFormat vk_format,uint32_t samples,VkRenderPass * pass)177 create_color_renderpass(struct radv_device *device, VkFormat vk_format, uint32_t samples,
178                         VkRenderPass *pass)
179 {
180    mtx_lock(&device->meta_state.mtx);
181    if (*pass) {
182       mtx_unlock(&device->meta_state.mtx);
183       return VK_SUCCESS;
184    }
185 
186    VkResult result = radv_CreateRenderPass2(
187       radv_device_to_handle(device),
188       &(VkRenderPassCreateInfo2){
189          .sType = VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO_2,
190          .attachmentCount = 1,
191          .pAttachments =
192             &(VkAttachmentDescription2){
193                .sType = VK_STRUCTURE_TYPE_ATTACHMENT_DESCRIPTION_2,
194                .format = vk_format,
195                .samples = samples,
196                .loadOp = VK_ATTACHMENT_LOAD_OP_LOAD,
197                .storeOp = VK_ATTACHMENT_STORE_OP_STORE,
198                .initialLayout = VK_IMAGE_LAYOUT_GENERAL,
199                .finalLayout = VK_IMAGE_LAYOUT_GENERAL,
200             },
201          .subpassCount = 1,
202          .pSubpasses =
203             &(VkSubpassDescription2){
204                .sType = VK_STRUCTURE_TYPE_SUBPASS_DESCRIPTION_2,
205                .pipelineBindPoint = VK_PIPELINE_BIND_POINT_GRAPHICS,
206                .inputAttachmentCount = 0,
207                .colorAttachmentCount = 1,
208                .pColorAttachments =
209                   &(VkAttachmentReference2){
210                      .sType = VK_STRUCTURE_TYPE_ATTACHMENT_REFERENCE_2,
211                      .attachment = 0,
212                      .layout = VK_IMAGE_LAYOUT_GENERAL,
213                   },
214                .pResolveAttachments = NULL,
215                .pDepthStencilAttachment =
216                   &(VkAttachmentReference2){
217                      .sType = VK_STRUCTURE_TYPE_ATTACHMENT_REFERENCE_2,
218                      .attachment = VK_ATTACHMENT_UNUSED,
219                      .layout = VK_IMAGE_LAYOUT_GENERAL,
220                   },
221                .preserveAttachmentCount = 0,
222                .pPreserveAttachments = NULL,
223             },
224          .dependencyCount = 2,
225          .pDependencies =
226             (VkSubpassDependency2[]){{.sType = VK_STRUCTURE_TYPE_SUBPASS_DEPENDENCY_2,
227                                       .srcSubpass = VK_SUBPASS_EXTERNAL,
228                                       .dstSubpass = 0,
229                                       .srcStageMask = VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT,
230                                       .dstStageMask = VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT,
231                                       .srcAccessMask = 0,
232                                       .dstAccessMask = 0,
233                                       .dependencyFlags = 0},
234                                      {.sType = VK_STRUCTURE_TYPE_SUBPASS_DEPENDENCY_2,
235                                       .srcSubpass = 0,
236                                       .dstSubpass = VK_SUBPASS_EXTERNAL,
237                                       .srcStageMask = VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT,
238                                       .dstStageMask = VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT,
239                                       .srcAccessMask = 0,
240                                       .dstAccessMask = 0,
241                                       .dependencyFlags = 0}},
242       },
243       &device->meta_state.alloc, pass);
244    mtx_unlock(&device->meta_state.mtx);
245    return result;
246 }
247 
248 static VkResult
create_color_pipeline(struct radv_device * device,uint32_t samples,uint32_t frag_output,VkPipeline * pipeline,VkRenderPass pass)249 create_color_pipeline(struct radv_device *device, uint32_t samples, uint32_t frag_output,
250                       VkPipeline *pipeline, VkRenderPass pass)
251 {
252    struct nir_shader *vs_nir;
253    struct nir_shader *fs_nir;
254    VkResult result;
255 
256    mtx_lock(&device->meta_state.mtx);
257    if (*pipeline) {
258       mtx_unlock(&device->meta_state.mtx);
259       return VK_SUCCESS;
260    }
261 
262    build_color_shaders(&vs_nir, &fs_nir, frag_output);
263 
264    const VkPipelineVertexInputStateCreateInfo vi_state = {
265       .sType = VK_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_STATE_CREATE_INFO,
266       .vertexBindingDescriptionCount = 0,
267       .vertexAttributeDescriptionCount = 0,
268    };
269 
270    const VkPipelineDepthStencilStateCreateInfo ds_state = {
271       .sType = VK_STRUCTURE_TYPE_PIPELINE_DEPTH_STENCIL_STATE_CREATE_INFO,
272       .depthTestEnable = false,
273       .depthWriteEnable = false,
274       .depthBoundsTestEnable = false,
275       .stencilTestEnable = false,
276    };
277 
278    VkPipelineColorBlendAttachmentState blend_attachment_state[MAX_RTS] = {0};
279    blend_attachment_state[frag_output] = (VkPipelineColorBlendAttachmentState){
280       .blendEnable = false,
281       .colorWriteMask = VK_COLOR_COMPONENT_A_BIT | VK_COLOR_COMPONENT_R_BIT |
282                         VK_COLOR_COMPONENT_G_BIT | VK_COLOR_COMPONENT_B_BIT,
283    };
284 
285    const VkPipelineColorBlendStateCreateInfo cb_state = {
286       .sType = VK_STRUCTURE_TYPE_PIPELINE_COLOR_BLEND_STATE_CREATE_INFO,
287       .logicOpEnable = false,
288       .attachmentCount = MAX_RTS,
289       .pAttachments = blend_attachment_state};
290 
291    struct radv_graphics_pipeline_create_info extra = {
292       .use_rectlist = true,
293    };
294    result =
295       create_pipeline(device, radv_render_pass_from_handle(pass), samples, vs_nir, fs_nir,
296                       &vi_state, &ds_state, &cb_state, device->meta_state.clear_color_p_layout,
297                       &extra, &device->meta_state.alloc, pipeline);
298 
299    mtx_unlock(&device->meta_state.mtx);
300    return result;
301 }
302 
303 static void
finish_meta_clear_htile_mask_state(struct radv_device * device)304 finish_meta_clear_htile_mask_state(struct radv_device *device)
305 {
306    struct radv_meta_state *state = &device->meta_state;
307 
308    radv_DestroyPipeline(radv_device_to_handle(device), state->clear_htile_mask_pipeline,
309                         &state->alloc);
310    radv_DestroyPipelineLayout(radv_device_to_handle(device), state->clear_htile_mask_p_layout,
311                               &state->alloc);
312    radv_DestroyDescriptorSetLayout(radv_device_to_handle(device), state->clear_htile_mask_ds_layout,
313                                    &state->alloc);
314 }
315 
316 static void
finish_meta_clear_dcc_comp_to_single_state(struct radv_device * device)317 finish_meta_clear_dcc_comp_to_single_state(struct radv_device *device)
318 {
319    struct radv_meta_state *state = &device->meta_state;
320 
321    for (uint32_t i = 0; i < 2; i++) {
322       radv_DestroyPipeline(radv_device_to_handle(device),
323                            state->clear_dcc_comp_to_single_pipeline[i], &state->alloc);
324    }
325    radv_DestroyPipelineLayout(radv_device_to_handle(device), state->clear_dcc_comp_to_single_p_layout,
326                               &state->alloc);
327    radv_DestroyDescriptorSetLayout(radv_device_to_handle(device), state->clear_dcc_comp_to_single_ds_layout,
328                                    &state->alloc);
329 }
330 
331 void
radv_device_finish_meta_clear_state(struct radv_device * device)332 radv_device_finish_meta_clear_state(struct radv_device *device)
333 {
334    struct radv_meta_state *state = &device->meta_state;
335 
336    for (uint32_t i = 0; i < ARRAY_SIZE(state->clear); ++i) {
337       for (uint32_t j = 0; j < ARRAY_SIZE(state->clear[i].color_pipelines); ++j) {
338          radv_DestroyPipeline(radv_device_to_handle(device), state->clear[i].color_pipelines[j],
339                               &state->alloc);
340          radv_DestroyRenderPass(radv_device_to_handle(device), state->clear[i].render_pass[j],
341                                 &state->alloc);
342       }
343 
344       for (uint32_t j = 0; j < NUM_DEPTH_CLEAR_PIPELINES; j++) {
345          radv_DestroyPipeline(radv_device_to_handle(device), state->clear[i].depth_only_pipeline[j],
346                               &state->alloc);
347          radv_DestroyPipeline(radv_device_to_handle(device),
348                               state->clear[i].stencil_only_pipeline[j], &state->alloc);
349          radv_DestroyPipeline(radv_device_to_handle(device),
350                               state->clear[i].depthstencil_pipeline[j], &state->alloc);
351 
352          radv_DestroyPipeline(radv_device_to_handle(device),
353                               state->clear[i].depth_only_unrestricted_pipeline[j], &state->alloc);
354          radv_DestroyPipeline(radv_device_to_handle(device),
355                               state->clear[i].stencil_only_unrestricted_pipeline[j], &state->alloc);
356          radv_DestroyPipeline(radv_device_to_handle(device),
357                               state->clear[i].depthstencil_unrestricted_pipeline[j], &state->alloc);
358       }
359       radv_DestroyRenderPass(radv_device_to_handle(device), state->clear[i].depthstencil_rp,
360                              &state->alloc);
361    }
362    radv_DestroyPipelineLayout(radv_device_to_handle(device), state->clear_color_p_layout,
363                               &state->alloc);
364    radv_DestroyPipelineLayout(radv_device_to_handle(device), state->clear_depth_p_layout,
365                               &state->alloc);
366    radv_DestroyPipelineLayout(radv_device_to_handle(device),
367                               state->clear_depth_unrestricted_p_layout, &state->alloc);
368 
369    finish_meta_clear_htile_mask_state(device);
370    finish_meta_clear_dcc_comp_to_single_state(device);
371 }
372 
373 static void
emit_color_clear(struct radv_cmd_buffer * cmd_buffer,const VkClearAttachment * clear_att,const VkClearRect * clear_rect,uint32_t view_mask)374 emit_color_clear(struct radv_cmd_buffer *cmd_buffer, const VkClearAttachment *clear_att,
375                  const VkClearRect *clear_rect, uint32_t view_mask)
376 {
377    struct radv_device *device = cmd_buffer->device;
378    const struct radv_subpass *subpass = cmd_buffer->state.subpass;
379    const uint32_t subpass_att = clear_att->colorAttachment;
380    const uint32_t pass_att = subpass->color_attachments[subpass_att].attachment;
381    const struct radv_image_view *iview =
382       cmd_buffer->state.attachments ? cmd_buffer->state.attachments[pass_att].iview : NULL;
383    uint32_t samples, samples_log2;
384    VkFormat format;
385    unsigned fs_key;
386    VkClearColorValue clear_value = clear_att->clearValue.color;
387    VkCommandBuffer cmd_buffer_h = radv_cmd_buffer_to_handle(cmd_buffer);
388    VkPipeline pipeline;
389 
390    /* When a framebuffer is bound to the current command buffer, get the
391     * number of samples from it. Otherwise, get the number of samples from
392     * the render pass because it's likely a secondary command buffer.
393     */
394    if (iview) {
395       samples = iview->image->info.samples;
396       format = iview->vk_format;
397    } else {
398       samples = cmd_buffer->state.pass->attachments[pass_att].samples;
399       format = cmd_buffer->state.pass->attachments[pass_att].format;
400    }
401 
402    samples_log2 = ffs(samples) - 1;
403    fs_key = radv_format_meta_fs_key(device, format);
404    assert(fs_key != -1);
405 
406    if (device->meta_state.clear[samples_log2].render_pass[fs_key] == VK_NULL_HANDLE) {
407       VkResult ret =
408          create_color_renderpass(device, radv_fs_key_format_exemplars[fs_key], samples,
409                                  &device->meta_state.clear[samples_log2].render_pass[fs_key]);
410       if (ret != VK_SUCCESS) {
411          cmd_buffer->record_result = ret;
412          return;
413       }
414    }
415 
416    if (device->meta_state.clear[samples_log2].color_pipelines[fs_key] == VK_NULL_HANDLE) {
417       VkResult ret = create_color_pipeline(
418          device, samples, 0, &device->meta_state.clear[samples_log2].color_pipelines[fs_key],
419          device->meta_state.clear[samples_log2].render_pass[fs_key]);
420       if (ret != VK_SUCCESS) {
421          cmd_buffer->record_result = ret;
422          return;
423       }
424    }
425 
426    pipeline = device->meta_state.clear[samples_log2].color_pipelines[fs_key];
427 
428    assert(samples_log2 < ARRAY_SIZE(device->meta_state.clear));
429    assert(pipeline);
430    assert(clear_att->aspectMask == VK_IMAGE_ASPECT_COLOR_BIT);
431    assert(clear_att->colorAttachment < subpass->color_count);
432 
433    radv_CmdPushConstants(radv_cmd_buffer_to_handle(cmd_buffer),
434                          device->meta_state.clear_color_p_layout, VK_SHADER_STAGE_FRAGMENT_BIT, 0,
435                          16, &clear_value);
436 
437    struct radv_subpass clear_subpass = {
438       .color_count = 1,
439       .color_attachments =
440          (struct radv_subpass_attachment[]){subpass->color_attachments[clear_att->colorAttachment]},
441       .depth_stencil_attachment = NULL,
442    };
443 
444    radv_cmd_buffer_set_subpass(cmd_buffer, &clear_subpass);
445 
446    radv_CmdBindPipeline(cmd_buffer_h, VK_PIPELINE_BIND_POINT_GRAPHICS, pipeline);
447 
448    radv_CmdSetViewport(radv_cmd_buffer_to_handle(cmd_buffer), 0, 1,
449                        &(VkViewport){.x = clear_rect->rect.offset.x,
450                                      .y = clear_rect->rect.offset.y,
451                                      .width = clear_rect->rect.extent.width,
452                                      .height = clear_rect->rect.extent.height,
453                                      .minDepth = 0.0f,
454                                      .maxDepth = 1.0f});
455 
456    radv_CmdSetScissor(radv_cmd_buffer_to_handle(cmd_buffer), 0, 1, &clear_rect->rect);
457 
458    if (view_mask) {
459       u_foreach_bit(i, view_mask) radv_CmdDraw(cmd_buffer_h, 3, 1, 0, i);
460    } else {
461       radv_CmdDraw(cmd_buffer_h, 3, clear_rect->layerCount, 0, clear_rect->baseArrayLayer);
462    }
463 
464    radv_cmd_buffer_restore_subpass(cmd_buffer, subpass);
465 }
466 
467 static void
build_depthstencil_shader(struct nir_shader ** out_vs,struct nir_shader ** out_fs,bool unrestricted)468 build_depthstencil_shader(struct nir_shader **out_vs, struct nir_shader **out_fs, bool unrestricted)
469 {
470    nir_builder vs_b = nir_builder_init_simple_shader(
471       MESA_SHADER_VERTEX, NULL,
472       unrestricted ? "meta_clear_depthstencil_unrestricted_vs" : "meta_clear_depthstencil_vs");
473    nir_builder fs_b = nir_builder_init_simple_shader(
474       MESA_SHADER_FRAGMENT, NULL,
475       unrestricted ? "meta_clear_depthstencil_unrestricted_fs" : "meta_clear_depthstencil_fs");
476 
477    const struct glsl_type *position_out_type = glsl_vec4_type();
478 
479    nir_variable *vs_out_pos =
480       nir_variable_create(vs_b.shader, nir_var_shader_out, position_out_type, "gl_Position");
481    vs_out_pos->data.location = VARYING_SLOT_POS;
482 
483    nir_ssa_def *z;
484    if (unrestricted) {
485       nir_ssa_def *in_color_load =
486          nir_load_push_constant(&fs_b, 1, 32, nir_imm_int(&fs_b, 0), .range = 4);
487 
488       nir_variable *fs_out_depth =
489          nir_variable_create(fs_b.shader, nir_var_shader_out, glsl_int_type(), "f_depth");
490       fs_out_depth->data.location = FRAG_RESULT_DEPTH;
491       nir_store_var(&fs_b, fs_out_depth, in_color_load, 0x1);
492 
493       z = nir_imm_float(&vs_b, 0.0);
494    } else {
495       z = nir_load_push_constant(&vs_b, 1, 32, nir_imm_int(&vs_b, 0), .range = 4);
496    }
497 
498    nir_ssa_def *outvec = radv_meta_gen_rect_vertices_comp2(&vs_b, z);
499    nir_store_var(&vs_b, vs_out_pos, outvec, 0xf);
500 
501    const struct glsl_type *layer_type = glsl_int_type();
502    nir_variable *vs_out_layer =
503       nir_variable_create(vs_b.shader, nir_var_shader_out, layer_type, "v_layer");
504    vs_out_layer->data.location = VARYING_SLOT_LAYER;
505    vs_out_layer->data.interpolation = INTERP_MODE_FLAT;
506    nir_ssa_def *inst_id = nir_load_instance_id(&vs_b);
507    nir_ssa_def *base_instance = nir_load_base_instance(&vs_b);
508 
509    nir_ssa_def *layer_id = nir_iadd(&vs_b, inst_id, base_instance);
510    nir_store_var(&vs_b, vs_out_layer, layer_id, 0x1);
511 
512    *out_vs = vs_b.shader;
513    *out_fs = fs_b.shader;
514 }
515 
516 static VkResult
create_depthstencil_renderpass(struct radv_device * device,uint32_t samples,VkRenderPass * render_pass)517 create_depthstencil_renderpass(struct radv_device *device, uint32_t samples,
518                                VkRenderPass *render_pass)
519 {
520    mtx_lock(&device->meta_state.mtx);
521    if (*render_pass) {
522       mtx_unlock(&device->meta_state.mtx);
523       return VK_SUCCESS;
524    }
525 
526    VkResult result = radv_CreateRenderPass2(
527       radv_device_to_handle(device),
528       &(VkRenderPassCreateInfo2){
529          .sType = VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO_2,
530          .attachmentCount = 1,
531          .pAttachments =
532             &(VkAttachmentDescription2){
533                .sType = VK_STRUCTURE_TYPE_ATTACHMENT_DESCRIPTION_2,
534                .format = VK_FORMAT_D32_SFLOAT_S8_UINT,
535                .samples = samples,
536                .loadOp = VK_ATTACHMENT_LOAD_OP_LOAD,
537                .storeOp = VK_ATTACHMENT_STORE_OP_STORE,
538                .initialLayout = VK_IMAGE_LAYOUT_GENERAL,
539                .finalLayout = VK_IMAGE_LAYOUT_GENERAL,
540             },
541          .subpassCount = 1,
542          .pSubpasses =
543             &(VkSubpassDescription2){
544                .sType = VK_STRUCTURE_TYPE_SUBPASS_DESCRIPTION_2,
545                .pipelineBindPoint = VK_PIPELINE_BIND_POINT_GRAPHICS,
546                .inputAttachmentCount = 0,
547                .colorAttachmentCount = 0,
548                .pColorAttachments = NULL,
549                .pResolveAttachments = NULL,
550                .pDepthStencilAttachment =
551                   &(VkAttachmentReference2){
552                      .sType = VK_STRUCTURE_TYPE_ATTACHMENT_REFERENCE_2,
553                      .attachment = 0,
554                      .layout = VK_IMAGE_LAYOUT_GENERAL,
555                   },
556                .preserveAttachmentCount = 0,
557                .pPreserveAttachments = NULL,
558             },
559          .dependencyCount = 2,
560          .pDependencies =
561             (VkSubpassDependency2[]){{.sType = VK_STRUCTURE_TYPE_SUBPASS_DEPENDENCY_2,
562                                       .srcSubpass = VK_SUBPASS_EXTERNAL,
563                                       .dstSubpass = 0,
564                                       .srcStageMask = VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT,
565                                       .dstStageMask = VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT,
566                                       .srcAccessMask = 0,
567                                       .dstAccessMask = 0,
568                                       .dependencyFlags = 0},
569                                      {.sType = VK_STRUCTURE_TYPE_SUBPASS_DEPENDENCY_2,
570                                       .srcSubpass = 0,
571                                       .dstSubpass = VK_SUBPASS_EXTERNAL,
572                                       .srcStageMask = VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT,
573                                       .dstStageMask = VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT,
574                                       .srcAccessMask = 0,
575                                       .dstAccessMask = 0,
576                                       .dependencyFlags = 0}}},
577       &device->meta_state.alloc, render_pass);
578    mtx_unlock(&device->meta_state.mtx);
579    return result;
580 }
581 
582 static VkResult
create_depthstencil_pipeline(struct radv_device * device,VkImageAspectFlags aspects,uint32_t samples,int index,bool unrestricted,VkPipeline * pipeline,VkRenderPass render_pass)583 create_depthstencil_pipeline(struct radv_device *device, VkImageAspectFlags aspects,
584                              uint32_t samples, int index, bool unrestricted, VkPipeline *pipeline,
585                              VkRenderPass render_pass)
586 {
587    struct nir_shader *vs_nir, *fs_nir;
588    VkResult result;
589 
590    mtx_lock(&device->meta_state.mtx);
591    if (*pipeline) {
592       mtx_unlock(&device->meta_state.mtx);
593       return VK_SUCCESS;
594    }
595 
596    build_depthstencil_shader(&vs_nir, &fs_nir, unrestricted);
597 
598    const VkPipelineVertexInputStateCreateInfo vi_state = {
599       .sType = VK_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_STATE_CREATE_INFO,
600       .vertexBindingDescriptionCount = 0,
601       .vertexAttributeDescriptionCount = 0,
602    };
603 
604    const VkPipelineDepthStencilStateCreateInfo ds_state = {
605       .sType = VK_STRUCTURE_TYPE_PIPELINE_DEPTH_STENCIL_STATE_CREATE_INFO,
606       .depthTestEnable = !!(aspects & VK_IMAGE_ASPECT_DEPTH_BIT),
607       .depthCompareOp = VK_COMPARE_OP_ALWAYS,
608       .depthWriteEnable = !!(aspects & VK_IMAGE_ASPECT_DEPTH_BIT),
609       .depthBoundsTestEnable = false,
610       .stencilTestEnable = !!(aspects & VK_IMAGE_ASPECT_STENCIL_BIT),
611       .front =
612          {
613             .passOp = VK_STENCIL_OP_REPLACE,
614             .compareOp = VK_COMPARE_OP_ALWAYS,
615             .writeMask = UINT32_MAX,
616             .reference = 0, /* dynamic */
617          },
618       .back = {0 /* dont care */},
619    };
620 
621    const VkPipelineColorBlendStateCreateInfo cb_state = {
622       .sType = VK_STRUCTURE_TYPE_PIPELINE_COLOR_BLEND_STATE_CREATE_INFO,
623       .logicOpEnable = false,
624       .attachmentCount = 0,
625       .pAttachments = NULL,
626    };
627 
628    struct radv_graphics_pipeline_create_info extra = {
629       .use_rectlist = true,
630    };
631 
632    if (aspects & VK_IMAGE_ASPECT_DEPTH_BIT) {
633       extra.db_depth_clear = index == DEPTH_CLEAR_SLOW ? false : true;
634    }
635    if (aspects & VK_IMAGE_ASPECT_STENCIL_BIT) {
636       extra.db_stencil_clear = index == DEPTH_CLEAR_SLOW ? false : true;
637    }
638    result =
639       create_pipeline(device, radv_render_pass_from_handle(render_pass), samples, vs_nir, fs_nir,
640                       &vi_state, &ds_state, &cb_state, device->meta_state.clear_depth_p_layout,
641                       &extra, &device->meta_state.alloc, pipeline);
642 
643    mtx_unlock(&device->meta_state.mtx);
644    return result;
645 }
646 
647 static bool
depth_view_can_fast_clear(struct radv_cmd_buffer * cmd_buffer,const struct radv_image_view * iview,VkImageAspectFlags aspects,VkImageLayout layout,bool in_render_loop,const VkClearRect * clear_rect,VkClearDepthStencilValue clear_value)648 depth_view_can_fast_clear(struct radv_cmd_buffer *cmd_buffer, const struct radv_image_view *iview,
649                           VkImageAspectFlags aspects, VkImageLayout layout, bool in_render_loop,
650                           const VkClearRect *clear_rect, VkClearDepthStencilValue clear_value)
651 {
652    if (!iview)
653       return false;
654 
655    uint32_t queue_mask = radv_image_queue_family_mask(iview->image, cmd_buffer->queue_family_index,
656                                                       cmd_buffer->queue_family_index);
657    if (clear_rect->rect.offset.x || clear_rect->rect.offset.y ||
658        clear_rect->rect.extent.width != iview->extent.width ||
659        clear_rect->rect.extent.height != iview->extent.height)
660       return false;
661    if (radv_image_is_tc_compat_htile(iview->image) &&
662        (((aspects & VK_IMAGE_ASPECT_DEPTH_BIT) && clear_value.depth != 0.0 &&
663          clear_value.depth != 1.0) ||
664         ((aspects & VK_IMAGE_ASPECT_STENCIL_BIT) && clear_value.stencil != 0)))
665       return false;
666    if (radv_htile_enabled(iview->image, iview->base_mip) && iview->base_mip == 0 &&
667        iview->base_layer == 0 && iview->layer_count == iview->image->info.array_size &&
668        radv_layout_is_htile_compressed(cmd_buffer->device, iview->image, layout, in_render_loop,
669                                        queue_mask) &&
670        radv_image_extent_compare(iview->image, &iview->extent))
671       return true;
672    return false;
673 }
674 
675 static VkPipeline
pick_depthstencil_pipeline(struct radv_cmd_buffer * cmd_buffer,struct radv_meta_state * meta_state,const struct radv_image_view * iview,int samples_log2,VkImageAspectFlags aspects,VkImageLayout layout,bool in_render_loop,const VkClearRect * clear_rect,VkClearDepthStencilValue clear_value)676 pick_depthstencil_pipeline(struct radv_cmd_buffer *cmd_buffer, struct radv_meta_state *meta_state,
677                            const struct radv_image_view *iview, int samples_log2,
678                            VkImageAspectFlags aspects, VkImageLayout layout, bool in_render_loop,
679                            const VkClearRect *clear_rect, VkClearDepthStencilValue clear_value)
680 {
681    bool fast = depth_view_can_fast_clear(cmd_buffer, iview, aspects, layout, in_render_loop,
682                                          clear_rect, clear_value);
683    bool unrestricted = cmd_buffer->device->vk.enabled_extensions.EXT_depth_range_unrestricted;
684    int index = fast ? DEPTH_CLEAR_FAST : DEPTH_CLEAR_SLOW;
685    VkPipeline *pipeline;
686 
687    switch (aspects) {
688    case VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT:
689       pipeline = unrestricted
690                     ? &meta_state->clear[samples_log2].depthstencil_unrestricted_pipeline[index]
691                     : &meta_state->clear[samples_log2].depthstencil_pipeline[index];
692       break;
693    case VK_IMAGE_ASPECT_DEPTH_BIT:
694       pipeline = unrestricted
695                     ? &meta_state->clear[samples_log2].depth_only_unrestricted_pipeline[index]
696                     : &meta_state->clear[samples_log2].depth_only_pipeline[index];
697       break;
698    case VK_IMAGE_ASPECT_STENCIL_BIT:
699       pipeline = unrestricted
700                     ? &meta_state->clear[samples_log2].stencil_only_unrestricted_pipeline[index]
701                     : &meta_state->clear[samples_log2].stencil_only_pipeline[index];
702       break;
703    default:
704       unreachable("expected depth or stencil aspect");
705    }
706 
707    if (cmd_buffer->device->meta_state.clear[samples_log2].depthstencil_rp == VK_NULL_HANDLE) {
708       VkResult ret = create_depthstencil_renderpass(
709          cmd_buffer->device, 1u << samples_log2,
710          &cmd_buffer->device->meta_state.clear[samples_log2].depthstencil_rp);
711       if (ret != VK_SUCCESS) {
712          cmd_buffer->record_result = ret;
713          return VK_NULL_HANDLE;
714       }
715    }
716 
717    if (*pipeline == VK_NULL_HANDLE) {
718       VkResult ret = create_depthstencil_pipeline(
719          cmd_buffer->device, aspects, 1u << samples_log2, index, unrestricted, pipeline,
720          cmd_buffer->device->meta_state.clear[samples_log2].depthstencil_rp);
721       if (ret != VK_SUCCESS) {
722          cmd_buffer->record_result = ret;
723          return VK_NULL_HANDLE;
724       }
725    }
726    return *pipeline;
727 }
728 
729 static void
emit_depthstencil_clear(struct radv_cmd_buffer * cmd_buffer,const VkClearAttachment * clear_att,const VkClearRect * clear_rect,struct radv_subpass_attachment * ds_att,uint32_t view_mask)730 emit_depthstencil_clear(struct radv_cmd_buffer *cmd_buffer, const VkClearAttachment *clear_att,
731                         const VkClearRect *clear_rect, struct radv_subpass_attachment *ds_att,
732                         uint32_t view_mask)
733 {
734    struct radv_device *device = cmd_buffer->device;
735    struct radv_meta_state *meta_state = &device->meta_state;
736    const struct radv_subpass *subpass = cmd_buffer->state.subpass;
737    const uint32_t pass_att = ds_att->attachment;
738    VkClearDepthStencilValue clear_value = clear_att->clearValue.depthStencil;
739    VkImageAspectFlags aspects = clear_att->aspectMask;
740    const struct radv_image_view *iview =
741       cmd_buffer->state.attachments ? cmd_buffer->state.attachments[pass_att].iview : NULL;
742    uint32_t samples, samples_log2;
743    VkCommandBuffer cmd_buffer_h = radv_cmd_buffer_to_handle(cmd_buffer);
744 
745    /* When a framebuffer is bound to the current command buffer, get the
746     * number of samples from it. Otherwise, get the number of samples from
747     * the render pass because it's likely a secondary command buffer.
748     */
749    if (iview) {
750       samples = iview->image->info.samples;
751    } else {
752       samples = cmd_buffer->state.pass->attachments[pass_att].samples;
753    }
754 
755    samples_log2 = ffs(samples) - 1;
756 
757    assert(pass_att != VK_ATTACHMENT_UNUSED);
758 
759    if (!(aspects & VK_IMAGE_ASPECT_DEPTH_BIT))
760       clear_value.depth = 1.0f;
761 
762    if (cmd_buffer->device->vk.enabled_extensions.EXT_depth_range_unrestricted) {
763       radv_CmdPushConstants(radv_cmd_buffer_to_handle(cmd_buffer),
764                             device->meta_state.clear_depth_unrestricted_p_layout,
765                             VK_SHADER_STAGE_FRAGMENT_BIT, 0, 4, &clear_value.depth);
766    } else {
767       radv_CmdPushConstants(radv_cmd_buffer_to_handle(cmd_buffer),
768                             device->meta_state.clear_depth_p_layout, VK_SHADER_STAGE_VERTEX_BIT, 0,
769                             4, &clear_value.depth);
770    }
771 
772    uint32_t prev_reference = cmd_buffer->state.dynamic.stencil_reference.front;
773    if (aspects & VK_IMAGE_ASPECT_STENCIL_BIT) {
774       radv_CmdSetStencilReference(cmd_buffer_h, VK_STENCIL_FACE_FRONT_BIT, clear_value.stencil);
775    }
776 
777    VkPipeline pipeline =
778       pick_depthstencil_pipeline(cmd_buffer, meta_state, iview, samples_log2, aspects,
779                                  ds_att->layout, ds_att->in_render_loop, clear_rect, clear_value);
780    if (!pipeline)
781       return;
782 
783    struct radv_subpass clear_subpass = {
784       .color_count = 0,
785       .color_attachments = NULL,
786       .depth_stencil_attachment = ds_att,
787    };
788 
789    radv_cmd_buffer_set_subpass(cmd_buffer, &clear_subpass);
790 
791    radv_CmdBindPipeline(cmd_buffer_h, VK_PIPELINE_BIND_POINT_GRAPHICS, pipeline);
792 
793    if (depth_view_can_fast_clear(cmd_buffer, iview, aspects, ds_att->layout, ds_att->in_render_loop,
794                                  clear_rect, clear_value))
795       radv_update_ds_clear_metadata(cmd_buffer, iview, clear_value, aspects);
796 
797    radv_CmdSetViewport(radv_cmd_buffer_to_handle(cmd_buffer), 0, 1,
798                        &(VkViewport){.x = clear_rect->rect.offset.x,
799                                      .y = clear_rect->rect.offset.y,
800                                      .width = clear_rect->rect.extent.width,
801                                      .height = clear_rect->rect.extent.height,
802                                      .minDepth = 0.0f,
803                                      .maxDepth = 1.0f});
804 
805    radv_CmdSetScissor(radv_cmd_buffer_to_handle(cmd_buffer), 0, 1, &clear_rect->rect);
806 
807    if (view_mask) {
808       u_foreach_bit(i, view_mask) radv_CmdDraw(cmd_buffer_h, 3, 1, 0, i);
809    } else {
810       radv_CmdDraw(cmd_buffer_h, 3, clear_rect->layerCount, 0, clear_rect->baseArrayLayer);
811    }
812 
813    if (aspects & VK_IMAGE_ASPECT_STENCIL_BIT) {
814       radv_CmdSetStencilReference(cmd_buffer_h, VK_STENCIL_FACE_FRONT_BIT, prev_reference);
815    }
816 
817    radv_cmd_buffer_restore_subpass(cmd_buffer, subpass);
818 }
819 
820 static uint32_t
clear_htile_mask(struct radv_cmd_buffer * cmd_buffer,const struct radv_image * image,struct radeon_winsys_bo * bo,uint64_t offset,uint64_t size,uint32_t htile_value,uint32_t htile_mask)821 clear_htile_mask(struct radv_cmd_buffer *cmd_buffer, const struct radv_image *image,
822                  struct radeon_winsys_bo *bo, uint64_t offset, uint64_t size, uint32_t htile_value,
823                  uint32_t htile_mask)
824 {
825    struct radv_device *device = cmd_buffer->device;
826    struct radv_meta_state *state = &device->meta_state;
827    uint64_t block_count = round_up_u64(size, 1024);
828    struct radv_meta_saved_state saved_state;
829    struct radv_buffer dst_buffer;
830 
831    radv_meta_save(
832       &saved_state, cmd_buffer,
833       RADV_META_SAVE_COMPUTE_PIPELINE | RADV_META_SAVE_CONSTANTS | RADV_META_SAVE_DESCRIPTORS);
834 
835    radv_buffer_init(&dst_buffer, device, bo, size, offset);
836 
837    radv_CmdBindPipeline(radv_cmd_buffer_to_handle(cmd_buffer), VK_PIPELINE_BIND_POINT_COMPUTE,
838                         state->clear_htile_mask_pipeline);
839 
840    radv_meta_push_descriptor_set(
841       cmd_buffer, VK_PIPELINE_BIND_POINT_COMPUTE, state->clear_htile_mask_p_layout, 0, /* set */
842       1, /* descriptorWriteCount */
843       (VkWriteDescriptorSet[]){
844          {.sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET,
845           .dstBinding = 0,
846           .dstArrayElement = 0,
847           .descriptorCount = 1,
848           .descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_BUFFER,
849           .pBufferInfo = &(VkDescriptorBufferInfo){.buffer = radv_buffer_to_handle(&dst_buffer),
850                                                    .offset = 0,
851                                                    .range = size}}});
852 
853    const unsigned constants[2] = {
854       htile_value & htile_mask,
855       ~htile_mask,
856    };
857 
858    radv_CmdPushConstants(radv_cmd_buffer_to_handle(cmd_buffer), state->clear_htile_mask_p_layout,
859                          VK_SHADER_STAGE_COMPUTE_BIT, 0, 8, constants);
860 
861    radv_CmdDispatch(radv_cmd_buffer_to_handle(cmd_buffer), block_count, 1, 1);
862 
863    radv_buffer_finish(&dst_buffer);
864 
865    radv_meta_restore(&saved_state, cmd_buffer);
866 
867    return RADV_CMD_FLAG_CS_PARTIAL_FLUSH |
868           radv_src_access_flush(cmd_buffer, VK_ACCESS_SHADER_WRITE_BIT, image);
869 }
870 
871 static uint32_t
radv_get_htile_fast_clear_value(const struct radv_device * device,const struct radv_image * image,VkClearDepthStencilValue value)872 radv_get_htile_fast_clear_value(const struct radv_device *device, const struct radv_image *image,
873                                 VkClearDepthStencilValue value)
874 {
875    uint32_t max_zval = 0x3fff; /* maximum 14-bit value. */
876    uint32_t zmask = 0, smem = 0;
877    uint32_t htile_value;
878    uint32_t zmin, zmax;
879 
880    /* Convert the depth value to 14-bit zmin/zmax values. */
881    zmin = lroundf(value.depth * max_zval);
882    zmax = zmin;
883 
884    if (radv_image_tile_stencil_disabled(device, image)) {
885       /* Z only (no stencil):
886        *
887        * |31     18|17      4|3     0|
888        * +---------+---------+-------+
889        * |  Max Z  |  Min Z  | ZMask |
890        */
891       htile_value = (((zmax  & 0x3fff) << 18) |
892                      ((zmin  & 0x3fff) <<  4) |
893                      ((zmask &    0xf) <<  0));
894    } else {
895 
896       /* Z and stencil:
897        *
898        * |31       12|11 10|9    8|7   6|5   4|3     0|
899        * +-----------+-----+------+-----+-----+-------+
900        * |  Z Range  |     | SMem | SR1 | SR0 | ZMask |
901        *
902        * Z, stencil, 4 bit VRS encoding:
903        * |31       12| 11      10 |9    8|7         6 |5   4|3     0|
904        * +-----------+------------+------+------------+-----+-------+
905        * |  Z Range  | VRS Y-rate | SMem | VRS X-rate | SR0 | ZMask |
906        */
907       uint32_t delta = 0;
908       uint32_t zrange = ((zmax << 6) | delta);
909       uint32_t sresults = 0xf; /* SR0/SR1 both as 0x3. */
910 
911       if (radv_image_has_vrs_htile(device, image))
912          sresults = 0x3;
913 
914       htile_value = (((zrange   & 0xfffff) << 12) |
915                      ((smem     & 0x3)     <<  8) |
916                      ((sresults & 0xf)     <<  4) |
917                      ((zmask    & 0xf)     <<  0));
918    }
919 
920    return htile_value;
921 }
922 
923 static uint32_t
radv_get_htile_mask(const struct radv_device * device,const struct radv_image * image,VkImageAspectFlags aspects)924 radv_get_htile_mask(const struct radv_device *device, const struct radv_image *image,
925                     VkImageAspectFlags aspects)
926 {
927    uint32_t mask = 0;
928 
929    if (radv_image_tile_stencil_disabled(device, image)) {
930       /* All the HTILE buffer is used when there is no stencil. */
931       mask = UINT32_MAX;
932    } else {
933       if (aspects & VK_IMAGE_ASPECT_DEPTH_BIT)
934          mask |= 0xfffffc0f;
935       if (aspects & VK_IMAGE_ASPECT_STENCIL_BIT)
936          mask |= 0x000003f0;
937    }
938 
939    return mask;
940 }
941 
942 static bool
radv_is_fast_clear_depth_allowed(VkClearDepthStencilValue value)943 radv_is_fast_clear_depth_allowed(VkClearDepthStencilValue value)
944 {
945    return value.depth == 1.0f || value.depth == 0.0f;
946 }
947 
948 static bool
radv_is_fast_clear_stencil_allowed(VkClearDepthStencilValue value)949 radv_is_fast_clear_stencil_allowed(VkClearDepthStencilValue value)
950 {
951    return value.stencil == 0;
952 }
953 
954 static bool
radv_can_fast_clear_depth(struct radv_cmd_buffer * cmd_buffer,const struct radv_image_view * iview,VkImageLayout image_layout,bool in_render_loop,VkImageAspectFlags aspects,const VkClearRect * clear_rect,const VkClearDepthStencilValue clear_value,uint32_t view_mask)955 radv_can_fast_clear_depth(struct radv_cmd_buffer *cmd_buffer, const struct radv_image_view *iview,
956                           VkImageLayout image_layout, bool in_render_loop,
957                           VkImageAspectFlags aspects, const VkClearRect *clear_rect,
958                           const VkClearDepthStencilValue clear_value, uint32_t view_mask)
959 {
960    if (!iview || !iview->support_fast_clear)
961       return false;
962 
963    if (!radv_layout_is_htile_compressed(
964           cmd_buffer->device, iview->image, image_layout, in_render_loop,
965           radv_image_queue_family_mask(iview->image, cmd_buffer->queue_family_index,
966                                        cmd_buffer->queue_family_index)))
967       return false;
968 
969    if (clear_rect->rect.offset.x || clear_rect->rect.offset.y ||
970        clear_rect->rect.extent.width != iview->image->info.width ||
971        clear_rect->rect.extent.height != iview->image->info.height)
972       return false;
973 
974    if (view_mask && (iview->image->info.array_size >= 32 ||
975                      (1u << iview->image->info.array_size) - 1u != view_mask))
976       return false;
977    if (!view_mask && clear_rect->baseArrayLayer != 0)
978       return false;
979    if (!view_mask && clear_rect->layerCount != iview->image->info.array_size)
980       return false;
981 
982    if (cmd_buffer->device->vk.enabled_extensions.EXT_depth_range_unrestricted &&
983        (aspects & VK_IMAGE_ASPECT_DEPTH_BIT) &&
984        (clear_value.depth < 0.0 || clear_value.depth > 1.0))
985       return false;
986 
987    if (radv_image_is_tc_compat_htile(iview->image) &&
988        (((aspects & VK_IMAGE_ASPECT_DEPTH_BIT) && !radv_is_fast_clear_depth_allowed(clear_value)) ||
989         ((aspects & VK_IMAGE_ASPECT_STENCIL_BIT) &&
990          !radv_is_fast_clear_stencil_allowed(clear_value))))
991       return false;
992 
993    if (iview->image->info.levels > 1) {
994       uint32_t last_level = iview->base_mip + iview->level_count - 1;
995       if (last_level >= iview->image->planes[0].surface.num_meta_levels) {
996          /* Do not fast clears if one level can't be fast cleared. */
997          return false;
998       }
999    }
1000 
1001    return true;
1002 }
1003 
1004 static void
radv_fast_clear_depth(struct radv_cmd_buffer * cmd_buffer,const struct radv_image_view * iview,const VkClearAttachment * clear_att,enum radv_cmd_flush_bits * pre_flush,enum radv_cmd_flush_bits * post_flush)1005 radv_fast_clear_depth(struct radv_cmd_buffer *cmd_buffer, const struct radv_image_view *iview,
1006                       const VkClearAttachment *clear_att, enum radv_cmd_flush_bits *pre_flush,
1007                       enum radv_cmd_flush_bits *post_flush)
1008 {
1009    VkClearDepthStencilValue clear_value = clear_att->clearValue.depthStencil;
1010    VkImageAspectFlags aspects = clear_att->aspectMask;
1011    uint32_t clear_word, flush_bits;
1012 
1013    clear_word = radv_get_htile_fast_clear_value(cmd_buffer->device, iview->image, clear_value);
1014 
1015    if (pre_flush) {
1016       enum radv_cmd_flush_bits bits =
1017          radv_src_access_flush(cmd_buffer, VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT,
1018                                iview->image) |
1019          radv_dst_access_flush(cmd_buffer, VK_ACCESS_SHADER_WRITE_BIT |
1020                                            VK_ACCESS_SHADER_READ_BIT, iview->image);
1021       cmd_buffer->state.flush_bits |= bits & ~*pre_flush;
1022       *pre_flush |= cmd_buffer->state.flush_bits;
1023    }
1024 
1025    VkImageSubresourceRange range = {
1026       .aspectMask = aspects,
1027       .baseMipLevel = iview->base_mip,
1028       .levelCount = iview->level_count,
1029       .baseArrayLayer = iview->base_layer,
1030       .layerCount = iview->layer_count,
1031    };
1032 
1033    flush_bits = radv_clear_htile(cmd_buffer, iview->image, &range, clear_word);
1034 
1035    if (iview->image->planes[0].surface.has_stencil &&
1036        !(aspects == (VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT))) {
1037       /* Synchronize after performing a depth-only or a stencil-only
1038        * fast clear because the driver uses an optimized path which
1039        * performs a read-modify-write operation, and the two separate
1040        * aspects might use the same HTILE memory.
1041        */
1042       cmd_buffer->state.flush_bits |= flush_bits;
1043    }
1044 
1045    radv_update_ds_clear_metadata(cmd_buffer, iview, clear_value, aspects);
1046    if (post_flush) {
1047       *post_flush |= flush_bits;
1048    }
1049 }
1050 
1051 static nir_shader *
build_clear_htile_mask_shader()1052 build_clear_htile_mask_shader()
1053 {
1054    nir_builder b =
1055       nir_builder_init_simple_shader(MESA_SHADER_COMPUTE, NULL, "meta_clear_htile_mask");
1056    b.shader->info.workgroup_size[0] = 64;
1057    b.shader->info.workgroup_size[1] = 1;
1058    b.shader->info.workgroup_size[2] = 1;
1059 
1060    nir_ssa_def *global_id = get_global_ids(&b, 1);
1061 
1062    nir_ssa_def *offset = nir_imul(&b, global_id, nir_imm_int(&b, 16));
1063    offset = nir_channel(&b, offset, 0);
1064 
1065    nir_ssa_def *buf = radv_meta_load_descriptor(&b, 0, 0);
1066 
1067    nir_ssa_def *constants = nir_load_push_constant(&b, 2, 32, nir_imm_int(&b, 0), .range = 8);
1068 
1069    nir_ssa_def *load = nir_load_ssbo(&b, 4, 32, buf, offset, .align_mul = 16);
1070 
1071    /* data = (data & ~htile_mask) | (htile_value & htile_mask) */
1072    nir_ssa_def *data = nir_iand(&b, load, nir_channel(&b, constants, 1));
1073    data = nir_ior(&b, data, nir_channel(&b, constants, 0));
1074 
1075    nir_store_ssbo(&b, data, buf, offset, .write_mask = 0xf, .access = ACCESS_NON_READABLE,
1076                   .align_mul = 16);
1077 
1078    return b.shader;
1079 }
1080 
1081 static VkResult
init_meta_clear_htile_mask_state(struct radv_device * device)1082 init_meta_clear_htile_mask_state(struct radv_device *device)
1083 {
1084    struct radv_meta_state *state = &device->meta_state;
1085    VkResult result;
1086    nir_shader *cs = build_clear_htile_mask_shader();
1087 
1088    VkDescriptorSetLayoutCreateInfo ds_layout_info = {
1089       .sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO,
1090       .flags = VK_DESCRIPTOR_SET_LAYOUT_CREATE_PUSH_DESCRIPTOR_BIT_KHR,
1091       .bindingCount = 1,
1092       .pBindings = (VkDescriptorSetLayoutBinding[]){
1093          {.binding = 0,
1094           .descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_BUFFER,
1095           .descriptorCount = 1,
1096           .stageFlags = VK_SHADER_STAGE_COMPUTE_BIT,
1097           .pImmutableSamplers = NULL},
1098       }};
1099 
1100    result = radv_CreateDescriptorSetLayout(radv_device_to_handle(device), &ds_layout_info,
1101                                            &state->alloc, &state->clear_htile_mask_ds_layout);
1102    if (result != VK_SUCCESS)
1103       goto fail;
1104 
1105    VkPipelineLayoutCreateInfo p_layout_info = {
1106       .sType = VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO,
1107       .setLayoutCount = 1,
1108       .pSetLayouts = &state->clear_htile_mask_ds_layout,
1109       .pushConstantRangeCount = 1,
1110       .pPushConstantRanges =
1111          &(VkPushConstantRange){
1112             VK_SHADER_STAGE_COMPUTE_BIT,
1113             0,
1114             8,
1115          },
1116    };
1117 
1118    result = radv_CreatePipelineLayout(radv_device_to_handle(device), &p_layout_info, &state->alloc,
1119                                       &state->clear_htile_mask_p_layout);
1120    if (result != VK_SUCCESS)
1121       goto fail;
1122 
1123    VkPipelineShaderStageCreateInfo shader_stage = {
1124       .sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO,
1125       .stage = VK_SHADER_STAGE_COMPUTE_BIT,
1126       .module = vk_shader_module_handle_from_nir(cs),
1127       .pName = "main",
1128       .pSpecializationInfo = NULL,
1129    };
1130 
1131    VkComputePipelineCreateInfo pipeline_info = {
1132       .sType = VK_STRUCTURE_TYPE_COMPUTE_PIPELINE_CREATE_INFO,
1133       .stage = shader_stage,
1134       .flags = 0,
1135       .layout = state->clear_htile_mask_p_layout,
1136    };
1137 
1138    result = radv_CreateComputePipelines(radv_device_to_handle(device),
1139                                         radv_pipeline_cache_to_handle(&state->cache), 1,
1140                                         &pipeline_info, NULL, &state->clear_htile_mask_pipeline);
1141 
1142    ralloc_free(cs);
1143    return result;
1144 fail:
1145    ralloc_free(cs);
1146    return result;
1147 }
1148 
1149 /* Clear DCC using comp-to-single by storing the clear value at the beginning of every 256B block.
1150  * For MSAA images, clearing the first sample should be enough as long as CMASK is also cleared.
1151  */
1152 static nir_shader *
build_clear_dcc_comp_to_single_shader(bool is_msaa)1153 build_clear_dcc_comp_to_single_shader(bool is_msaa)
1154 {
1155    enum glsl_sampler_dim dim = is_msaa ? GLSL_SAMPLER_DIM_MS : GLSL_SAMPLER_DIM_2D;
1156    const struct glsl_type *img_type = glsl_image_type(dim, true, GLSL_TYPE_FLOAT);
1157 
1158    nir_builder b =
1159       nir_builder_init_simple_shader(MESA_SHADER_COMPUTE, NULL, "meta_clear_dcc_comp_to_single-%s",
1160                                      is_msaa ? "multisampled" : "singlesampled");
1161    b.shader->info.workgroup_size[0] = 8;
1162    b.shader->info.workgroup_size[1] = 8;
1163    b.shader->info.workgroup_size[2] = 1;
1164 
1165    nir_ssa_def *global_id = get_global_ids(&b, 3);
1166 
1167    /* Load the dimensions in pixels of a block that gets compressed to one DCC byte. */
1168    nir_ssa_def *dcc_block_size = nir_load_push_constant(&b, 2, 32, nir_imm_int(&b, 0), .range = 8);
1169 
1170    /* Compute the coordinates. */
1171    nir_ssa_def *coord = nir_channels(&b, global_id, 0x3);
1172    coord = nir_imul(&b, coord, dcc_block_size);
1173    coord = nir_vec4(&b, nir_channel(&b, coord, 0),
1174                         nir_channel(&b, coord, 1),
1175                         nir_channel(&b, global_id, 2),
1176                         nir_ssa_undef(&b, 1, 32));
1177 
1178    nir_variable *output_img = nir_variable_create(b.shader, nir_var_uniform, img_type, "out_img");
1179    output_img->data.descriptor_set = 0;
1180    output_img->data.binding = 0;
1181 
1182    /* Load the clear color values. */
1183    nir_ssa_def *clear_values = nir_load_push_constant(&b, 2, 32, nir_imm_int(&b, 8), .range = 8);
1184 
1185    nir_ssa_def *data = nir_vec4(&b, nir_channel(&b, clear_values, 0),
1186                                     nir_channel(&b, clear_values, 1),
1187                                     nir_channel(&b, clear_values, 1),
1188                                     nir_channel(&b, clear_values, 1));
1189 
1190    /* Store the clear color values. */
1191    nir_ssa_def *sample_id = is_msaa ? nir_imm_int(&b, 0) : nir_ssa_undef(&b, 1, 32);
1192    nir_image_deref_store(&b, &nir_build_deref_var(&b, output_img)->dest.ssa, coord,
1193                          sample_id, data, nir_imm_int(&b, 0),
1194                          .image_dim = dim, .image_array = true);
1195 
1196    return b.shader;
1197 }
1198 
1199 static VkResult
create_dcc_comp_to_single_pipeline(struct radv_device * device,bool is_msaa,VkPipeline * pipeline)1200 create_dcc_comp_to_single_pipeline(struct radv_device *device, bool is_msaa, VkPipeline *pipeline)
1201 {
1202    struct radv_meta_state *state = &device->meta_state;
1203    VkResult result;
1204    nir_shader *cs = build_clear_dcc_comp_to_single_shader(is_msaa);
1205 
1206    VkPipelineShaderStageCreateInfo shader_stage = {
1207       .sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO,
1208       .stage = VK_SHADER_STAGE_COMPUTE_BIT,
1209       .module = vk_shader_module_handle_from_nir(cs),
1210       .pName = "main",
1211       .pSpecializationInfo = NULL,
1212    };
1213 
1214    VkComputePipelineCreateInfo pipeline_info = {
1215       .sType = VK_STRUCTURE_TYPE_COMPUTE_PIPELINE_CREATE_INFO,
1216       .stage = shader_stage,
1217       .flags = 0,
1218       .layout = state->clear_dcc_comp_to_single_p_layout,
1219    };
1220 
1221    result = radv_CreateComputePipelines(radv_device_to_handle(device),
1222                                         radv_pipeline_cache_to_handle(&state->cache), 1,
1223                                         &pipeline_info, NULL, pipeline);
1224 
1225    ralloc_free(cs);
1226    return result;
1227 }
1228 
1229 static VkResult
init_meta_clear_dcc_comp_to_single_state(struct radv_device * device)1230 init_meta_clear_dcc_comp_to_single_state(struct radv_device *device)
1231 {
1232    struct radv_meta_state *state = &device->meta_state;
1233    VkResult result;
1234 
1235    VkDescriptorSetLayoutCreateInfo ds_layout_info = {
1236       .sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO,
1237       .flags = VK_DESCRIPTOR_SET_LAYOUT_CREATE_PUSH_DESCRIPTOR_BIT_KHR,
1238       .bindingCount = 1,
1239       .pBindings = (VkDescriptorSetLayoutBinding[]){
1240          {.binding = 0,
1241           .descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_IMAGE,
1242           .descriptorCount = 1,
1243           .stageFlags = VK_SHADER_STAGE_COMPUTE_BIT,
1244           .pImmutableSamplers = NULL},
1245       }};
1246 
1247    result = radv_CreateDescriptorSetLayout(radv_device_to_handle(device), &ds_layout_info,
1248                                            &state->alloc, &state->clear_dcc_comp_to_single_ds_layout);
1249    if (result != VK_SUCCESS)
1250       goto fail;
1251 
1252    VkPipelineLayoutCreateInfo p_layout_info = {
1253       .sType = VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO,
1254       .setLayoutCount = 1,
1255       .pSetLayouts = &state->clear_dcc_comp_to_single_ds_layout,
1256       .pushConstantRangeCount = 1,
1257       .pPushConstantRanges =
1258          &(VkPushConstantRange){
1259             VK_SHADER_STAGE_COMPUTE_BIT,
1260             0,
1261             16,
1262          },
1263    };
1264 
1265    result = radv_CreatePipelineLayout(radv_device_to_handle(device), &p_layout_info, &state->alloc,
1266                                       &state->clear_dcc_comp_to_single_p_layout);
1267    if (result != VK_SUCCESS)
1268       goto fail;
1269 
1270    for (uint32_t i = 0; i < 2; i++) {
1271       result = create_dcc_comp_to_single_pipeline(device, !!i,
1272                                                   &state->clear_dcc_comp_to_single_pipeline[i]);
1273       if (result != VK_SUCCESS)
1274          goto fail;
1275    }
1276 
1277 fail:
1278    return result;
1279 }
1280 
1281 VkResult
radv_device_init_meta_clear_state(struct radv_device * device,bool on_demand)1282 radv_device_init_meta_clear_state(struct radv_device *device, bool on_demand)
1283 {
1284    VkResult res;
1285    struct radv_meta_state *state = &device->meta_state;
1286 
1287    VkPipelineLayoutCreateInfo pl_color_create_info = {
1288       .sType = VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO,
1289       .setLayoutCount = 0,
1290       .pushConstantRangeCount = 1,
1291       .pPushConstantRanges = &(VkPushConstantRange){VK_SHADER_STAGE_FRAGMENT_BIT, 0, 16},
1292    };
1293 
1294    res = radv_CreatePipelineLayout(radv_device_to_handle(device), &pl_color_create_info,
1295                                    &device->meta_state.alloc,
1296                                    &device->meta_state.clear_color_p_layout);
1297    if (res != VK_SUCCESS)
1298       goto fail;
1299 
1300    VkPipelineLayoutCreateInfo pl_depth_create_info = {
1301       .sType = VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO,
1302       .setLayoutCount = 0,
1303       .pushConstantRangeCount = 1,
1304       .pPushConstantRanges = &(VkPushConstantRange){VK_SHADER_STAGE_VERTEX_BIT, 0, 4},
1305    };
1306 
1307    res = radv_CreatePipelineLayout(radv_device_to_handle(device), &pl_depth_create_info,
1308                                    &device->meta_state.alloc,
1309                                    &device->meta_state.clear_depth_p_layout);
1310    if (res != VK_SUCCESS)
1311       goto fail;
1312 
1313    VkPipelineLayoutCreateInfo pl_depth_unrestricted_create_info = {
1314       .sType = VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO,
1315       .setLayoutCount = 0,
1316       .pushConstantRangeCount = 1,
1317       .pPushConstantRanges = &(VkPushConstantRange){VK_SHADER_STAGE_FRAGMENT_BIT, 0, 4},
1318    };
1319 
1320    res = radv_CreatePipelineLayout(radv_device_to_handle(device),
1321                                    &pl_depth_unrestricted_create_info, &device->meta_state.alloc,
1322                                    &device->meta_state.clear_depth_unrestricted_p_layout);
1323    if (res != VK_SUCCESS)
1324       goto fail;
1325 
1326    res = init_meta_clear_htile_mask_state(device);
1327    if (res != VK_SUCCESS)
1328       goto fail;
1329 
1330    res = init_meta_clear_dcc_comp_to_single_state(device);
1331    if (res != VK_SUCCESS)
1332       goto fail;
1333 
1334    if (on_demand)
1335       return VK_SUCCESS;
1336 
1337    for (uint32_t i = 0; i < ARRAY_SIZE(state->clear); ++i) {
1338       uint32_t samples = 1 << i;
1339       for (uint32_t j = 0; j < NUM_META_FS_KEYS; ++j) {
1340          VkFormat format = radv_fs_key_format_exemplars[j];
1341          unsigned fs_key = radv_format_meta_fs_key(device, format);
1342          assert(!state->clear[i].color_pipelines[fs_key]);
1343 
1344          res =
1345             create_color_renderpass(device, format, samples, &state->clear[i].render_pass[fs_key]);
1346          if (res != VK_SUCCESS)
1347             goto fail;
1348 
1349          res = create_color_pipeline(device, samples, 0, &state->clear[i].color_pipelines[fs_key],
1350                                      state->clear[i].render_pass[fs_key]);
1351          if (res != VK_SUCCESS)
1352             goto fail;
1353       }
1354 
1355       res = create_depthstencil_renderpass(device, samples, &state->clear[i].depthstencil_rp);
1356       if (res != VK_SUCCESS)
1357          goto fail;
1358 
1359       for (uint32_t j = 0; j < NUM_DEPTH_CLEAR_PIPELINES; j++) {
1360          res = create_depthstencil_pipeline(device, VK_IMAGE_ASPECT_DEPTH_BIT, samples, j, false,
1361                                             &state->clear[i].depth_only_pipeline[j],
1362                                             state->clear[i].depthstencil_rp);
1363          if (res != VK_SUCCESS)
1364             goto fail;
1365 
1366          res = create_depthstencil_pipeline(device, VK_IMAGE_ASPECT_STENCIL_BIT, samples, j, false,
1367                                             &state->clear[i].stencil_only_pipeline[j],
1368                                             state->clear[i].depthstencil_rp);
1369          if (res != VK_SUCCESS)
1370             goto fail;
1371 
1372          res = create_depthstencil_pipeline(
1373             device, VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT, samples, j, false,
1374             &state->clear[i].depthstencil_pipeline[j], state->clear[i].depthstencil_rp);
1375          if (res != VK_SUCCESS)
1376             goto fail;
1377 
1378          res = create_depthstencil_pipeline(device, VK_IMAGE_ASPECT_DEPTH_BIT, samples, j, true,
1379                                             &state->clear[i].depth_only_unrestricted_pipeline[j],
1380                                             state->clear[i].depthstencil_rp);
1381          if (res != VK_SUCCESS)
1382             goto fail;
1383 
1384          res = create_depthstencil_pipeline(device, VK_IMAGE_ASPECT_STENCIL_BIT, samples, j, true,
1385                                             &state->clear[i].stencil_only_unrestricted_pipeline[j],
1386                                             state->clear[i].depthstencil_rp);
1387          if (res != VK_SUCCESS)
1388             goto fail;
1389 
1390          res = create_depthstencil_pipeline(
1391             device, VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT, samples, j, true,
1392             &state->clear[i].depthstencil_unrestricted_pipeline[j],
1393             state->clear[i].depthstencil_rp);
1394          if (res != VK_SUCCESS)
1395             goto fail;
1396       }
1397    }
1398    return VK_SUCCESS;
1399 
1400 fail:
1401    radv_device_finish_meta_clear_state(device);
1402    return res;
1403 }
1404 
1405 static uint32_t
radv_get_cmask_fast_clear_value(const struct radv_image * image)1406 radv_get_cmask_fast_clear_value(const struct radv_image *image)
1407 {
1408    uint32_t value = 0; /* Default value when no DCC. */
1409 
1410    /* The fast-clear value is different for images that have both DCC and
1411     * CMASK metadata.
1412     */
1413    if (radv_image_has_dcc(image)) {
1414       /* DCC fast clear with MSAA should clear CMASK to 0xC. */
1415       return image->info.samples > 1 ? 0xcccccccc : 0xffffffff;
1416    }
1417 
1418    return value;
1419 }
1420 
1421 uint32_t
radv_clear_cmask(struct radv_cmd_buffer * cmd_buffer,struct radv_image * image,const VkImageSubresourceRange * range,uint32_t value)1422 radv_clear_cmask(struct radv_cmd_buffer *cmd_buffer, struct radv_image *image,
1423                  const VkImageSubresourceRange *range, uint32_t value)
1424 {
1425    uint64_t offset = image->offset + image->planes[0].surface.cmask_offset;
1426    uint64_t size;
1427 
1428    if (cmd_buffer->device->physical_device->rad_info.chip_class == GFX9) {
1429       /* TODO: clear layers. */
1430       size = image->planes[0].surface.cmask_size;
1431    } else {
1432       unsigned slice_size = image->planes[0].surface.cmask_slice_size;
1433 
1434       offset += slice_size * range->baseArrayLayer;
1435       size = slice_size * radv_get_layerCount(image, range);
1436    }
1437 
1438    return radv_fill_buffer(cmd_buffer, image, image->bo, offset, size, value);
1439 }
1440 
1441 uint32_t
radv_clear_fmask(struct radv_cmd_buffer * cmd_buffer,struct radv_image * image,const VkImageSubresourceRange * range,uint32_t value)1442 radv_clear_fmask(struct radv_cmd_buffer *cmd_buffer, struct radv_image *image,
1443                  const VkImageSubresourceRange *range, uint32_t value)
1444 {
1445    uint64_t offset = image->offset + image->planes[0].surface.fmask_offset;
1446    unsigned slice_size = image->planes[0].surface.fmask_slice_size;
1447    uint64_t size;
1448 
1449    /* MSAA images do not support mipmap levels. */
1450    assert(range->baseMipLevel == 0 && radv_get_levelCount(image, range) == 1);
1451 
1452    offset += slice_size * range->baseArrayLayer;
1453    size = slice_size * radv_get_layerCount(image, range);
1454 
1455    return radv_fill_buffer(cmd_buffer, image, image->bo, offset, size, value);
1456 }
1457 
1458 uint32_t
radv_clear_dcc(struct radv_cmd_buffer * cmd_buffer,struct radv_image * image,const VkImageSubresourceRange * range,uint32_t value)1459 radv_clear_dcc(struct radv_cmd_buffer *cmd_buffer, struct radv_image *image,
1460                const VkImageSubresourceRange *range, uint32_t value)
1461 {
1462    uint32_t level_count = radv_get_levelCount(image, range);
1463    uint32_t layer_count = radv_get_layerCount(image, range);
1464    uint32_t flush_bits = 0;
1465 
1466    /* Mark the image as being compressed. */
1467    radv_update_dcc_metadata(cmd_buffer, image, range, true);
1468 
1469    for (uint32_t l = 0; l < level_count; l++) {
1470       uint64_t offset = image->offset + image->planes[0].surface.meta_offset;
1471       uint32_t level = range->baseMipLevel + l;
1472       uint64_t size;
1473 
1474       if (cmd_buffer->device->physical_device->rad_info.chip_class >= GFX10) {
1475          /* DCC for mipmaps+layers is currently disabled. */
1476          offset += image->planes[0].surface.meta_slice_size * range->baseArrayLayer +
1477                    image->planes[0].surface.u.gfx9.meta_levels[level].offset;
1478          size = image->planes[0].surface.u.gfx9.meta_levels[level].size * layer_count;
1479       } else if (cmd_buffer->device->physical_device->rad_info.chip_class == GFX9) {
1480          /* Mipmap levels and layers aren't implemented. */
1481          assert(level == 0);
1482          size = image->planes[0].surface.meta_size;
1483       } else {
1484          const struct legacy_surf_dcc_level *dcc_level =
1485             &image->planes[0].surface.u.legacy.color.dcc_level[level];
1486 
1487          /* If dcc_fast_clear_size is 0 (which might happens for
1488           * mipmaps) the fill buffer operation below is a no-op.
1489           * This can only happen during initialization as the
1490           * fast clear path fallbacks to slow clears if one
1491           * level can't be fast cleared.
1492           */
1493          offset +=
1494             dcc_level->dcc_offset + dcc_level->dcc_slice_fast_clear_size * range->baseArrayLayer;
1495          size = dcc_level->dcc_slice_fast_clear_size * radv_get_layerCount(image, range);
1496       }
1497 
1498       /* Do not clear this level if it can't be compressed. */
1499       if (!size)
1500          continue;
1501 
1502       flush_bits |= radv_fill_buffer(cmd_buffer, image, image->bo, offset, size, value);
1503    }
1504 
1505    return flush_bits;
1506 }
1507 
1508 static uint32_t
radv_clear_dcc_comp_to_single(struct radv_cmd_buffer * cmd_buffer,struct radv_image * image,const VkImageSubresourceRange * range,uint32_t color_values[2])1509 radv_clear_dcc_comp_to_single(struct radv_cmd_buffer *cmd_buffer,
1510                               struct radv_image *image,
1511                               const VkImageSubresourceRange *range,
1512                               uint32_t color_values[2])
1513 {
1514    struct radv_device *device = cmd_buffer->device;
1515    unsigned bytes_per_pixel = vk_format_get_blocksize(image->vk_format);
1516    unsigned layer_count = radv_get_layerCount(image, range);
1517    struct radv_meta_saved_state saved_state;
1518    bool is_msaa = image->info.samples > 1;
1519    struct radv_image_view iview;
1520    VkFormat format;
1521 
1522    switch (bytes_per_pixel) {
1523    case 1:
1524       format = VK_FORMAT_R8_UINT;
1525       break;
1526    case 2:
1527       format = VK_FORMAT_R16_UINT;
1528       break;
1529    case 4:
1530       format = VK_FORMAT_R32_UINT;
1531       break;
1532    case 8:
1533       format = VK_FORMAT_R32G32_UINT;
1534       break;
1535    case 16:
1536       format = VK_FORMAT_R32G32B32A32_UINT;
1537       break;
1538    default:
1539       unreachable("Unsupported number of bytes per pixel");
1540    }
1541 
1542    radv_meta_save(
1543       &saved_state, cmd_buffer,
1544       RADV_META_SAVE_DESCRIPTORS | RADV_META_SAVE_COMPUTE_PIPELINE | RADV_META_SAVE_CONSTANTS);
1545 
1546    VkPipeline pipeline = device->meta_state.clear_dcc_comp_to_single_pipeline[is_msaa];
1547 
1548    radv_CmdBindPipeline(radv_cmd_buffer_to_handle(cmd_buffer), VK_PIPELINE_BIND_POINT_COMPUTE,
1549                         pipeline);
1550 
1551    for (uint32_t l = 0; l < radv_get_levelCount(image, range); l++) {
1552       uint32_t width, height;
1553 
1554       /* Do not write the clear color value for levels without DCC. */
1555       if (!radv_dcc_enabled(image, range->baseMipLevel + l))
1556          continue;
1557 
1558       width = radv_minify(image->info.width, range->baseMipLevel + l);
1559       height = radv_minify(image->info.height, range->baseMipLevel + l);
1560 
1561       radv_image_view_init(
1562          &iview, cmd_buffer->device,
1563          &(VkImageViewCreateInfo){
1564             .sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO,
1565             .image = radv_image_to_handle(image),
1566             .viewType = VK_IMAGE_VIEW_TYPE_2D,
1567             .format = format,
1568             .subresourceRange = {.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT,
1569                                  .baseMipLevel = range->baseMipLevel + l,
1570                                  .levelCount = 1,
1571                                  .baseArrayLayer = range->baseArrayLayer,
1572                                  .layerCount = layer_count},
1573          },
1574          &(struct radv_image_view_extra_create_info){.disable_compression = true});
1575 
1576       radv_meta_push_descriptor_set(
1577          cmd_buffer, VK_PIPELINE_BIND_POINT_COMPUTE,
1578          device->meta_state.clear_dcc_comp_to_single_p_layout, 0,
1579          1,
1580          (VkWriteDescriptorSet[]){{.sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET,
1581                                    .dstBinding = 0,
1582                                    .dstArrayElement = 0,
1583                                    .descriptorCount = 1,
1584                                    .descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_IMAGE,
1585                                    .pImageInfo =
1586                                       (VkDescriptorImageInfo[]){
1587                                          {
1588                                             .sampler = VK_NULL_HANDLE,
1589                                             .imageView = radv_image_view_to_handle(&iview),
1590                                             .imageLayout = VK_IMAGE_LAYOUT_GENERAL,
1591                                          },
1592                                       }}});
1593 
1594       unsigned dcc_width =
1595          DIV_ROUND_UP(width, image->planes[0].surface.u.gfx9.color.dcc_block_width);
1596       unsigned dcc_height =
1597          DIV_ROUND_UP(height, image->planes[0].surface.u.gfx9.color.dcc_block_height);
1598 
1599       const unsigned constants[4] = {
1600          image->planes[0].surface.u.gfx9.color.dcc_block_width,
1601          image->planes[0].surface.u.gfx9.color.dcc_block_height,
1602          color_values[0],
1603          color_values[1],
1604       };
1605 
1606       radv_CmdPushConstants(radv_cmd_buffer_to_handle(cmd_buffer),
1607                             device->meta_state.clear_dcc_comp_to_single_p_layout,
1608                             VK_SHADER_STAGE_COMPUTE_BIT, 0, 16, constants);
1609 
1610       radv_unaligned_dispatch(cmd_buffer, dcc_width, dcc_height, layer_count);
1611 
1612       radv_image_view_finish(&iview);
1613    }
1614 
1615    radv_meta_restore(&saved_state, cmd_buffer);
1616 
1617    return RADV_CMD_FLAG_CS_PARTIAL_FLUSH |
1618           radv_src_access_flush(cmd_buffer, VK_ACCESS_SHADER_WRITE_BIT, image);
1619 }
1620 
1621 uint32_t
radv_clear_htile(struct radv_cmd_buffer * cmd_buffer,const struct radv_image * image,const VkImageSubresourceRange * range,uint32_t value)1622 radv_clear_htile(struct radv_cmd_buffer *cmd_buffer, const struct radv_image *image,
1623                  const VkImageSubresourceRange *range, uint32_t value)
1624 {
1625    uint32_t level_count = radv_get_levelCount(image, range);
1626    uint32_t flush_bits = 0;
1627    uint32_t htile_mask;
1628 
1629    htile_mask = radv_get_htile_mask(cmd_buffer->device, image, range->aspectMask);
1630 
1631    if (level_count != image->info.levels) {
1632       assert(cmd_buffer->device->physical_device->rad_info.chip_class >= GFX10);
1633 
1634       /* Clear individuals levels separately. */
1635       for (uint32_t l = 0; l < level_count; l++) {
1636          uint32_t level = range->baseMipLevel + l;
1637          uint64_t offset = image->offset + image->planes[0].surface.meta_offset +
1638                            image->planes[0].surface.u.gfx9.meta_levels[level].offset;
1639          uint32_t size = image->planes[0].surface.u.gfx9.meta_levels[level].size;
1640 
1641          /* Do not clear this level if it can be compressed. */
1642          if (!size)
1643             continue;
1644 
1645          if (htile_mask == UINT_MAX) {
1646             /* Clear the whole HTILE buffer. */
1647             flush_bits |= radv_fill_buffer(cmd_buffer, image, image->bo, offset, size, value);
1648          } else {
1649             /* Only clear depth or stencil bytes in the HTILE buffer. */
1650             flush_bits |=
1651                clear_htile_mask(cmd_buffer, image, image->bo, offset, size, value, htile_mask);
1652          }
1653       }
1654    } else {
1655       unsigned layer_count = radv_get_layerCount(image, range);
1656       uint64_t size = image->planes[0].surface.meta_slice_size * layer_count;
1657       uint64_t offset = image->offset + image->planes[0].surface.meta_offset +
1658                         image->planes[0].surface.meta_slice_size * range->baseArrayLayer;
1659 
1660       if (htile_mask == UINT_MAX) {
1661          /* Clear the whole HTILE buffer. */
1662          flush_bits = radv_fill_buffer(cmd_buffer, image, image->bo, offset, size, value);
1663       } else {
1664          /* Only clear depth or stencil bytes in the HTILE buffer. */
1665          flush_bits =
1666             clear_htile_mask(cmd_buffer, image, image->bo, offset, size, value, htile_mask);
1667       }
1668    }
1669 
1670    return flush_bits;
1671 }
1672 
1673 enum {
1674    RADV_DCC_CLEAR_0000 = 0x00000000U,
1675    RADV_DCC_CLEAR_0001 = 0x40404040U,
1676    RADV_DCC_CLEAR_1110 = 0x80808080U,
1677    RADV_DCC_CLEAR_1111 = 0xC0C0C0C0U,
1678    RADV_DCC_CLEAR_REG = 0x20202020U,
1679    RADV_DCC_CLEAR_SINGLE = 0x10101010U,
1680 };
1681 
1682 static void
vi_get_fast_clear_parameters(struct radv_device * device,const struct radv_image_view * iview,const VkClearColorValue * clear_value,uint32_t * reset_value,bool * can_avoid_fast_clear_elim)1683 vi_get_fast_clear_parameters(struct radv_device *device, const struct radv_image_view *iview,
1684                              const VkClearColorValue *clear_value,
1685                              uint32_t *reset_value, bool *can_avoid_fast_clear_elim)
1686 {
1687    bool values[4] = {0};
1688    int extra_channel;
1689    bool main_value = false;
1690    bool extra_value = false;
1691    bool has_color = false;
1692    bool has_alpha = false;
1693 
1694    /* comp-to-single allows to perform DCC fast clears without requiring a FCE. */
1695    if (iview->image->support_comp_to_single) {
1696       *reset_value = RADV_DCC_CLEAR_SINGLE;
1697       *can_avoid_fast_clear_elim = true;
1698    } else {
1699       *reset_value = RADV_DCC_CLEAR_REG;
1700       *can_avoid_fast_clear_elim = false;
1701    }
1702 
1703    const struct util_format_description *desc = vk_format_description(iview->vk_format);
1704    if (iview->vk_format == VK_FORMAT_B10G11R11_UFLOAT_PACK32 ||
1705        iview->vk_format == VK_FORMAT_R5G6B5_UNORM_PACK16 || iview->vk_format == VK_FORMAT_B5G6R5_UNORM_PACK16)
1706       extra_channel = -1;
1707    else if (desc->layout == UTIL_FORMAT_LAYOUT_PLAIN) {
1708       if (vi_alpha_is_on_msb(device, iview->vk_format))
1709          extra_channel = desc->nr_channels - 1;
1710       else
1711          extra_channel = 0;
1712    } else
1713       return;
1714 
1715    for (int i = 0; i < 4; i++) {
1716       int index = desc->swizzle[i] - PIPE_SWIZZLE_X;
1717       if (desc->swizzle[i] < PIPE_SWIZZLE_X || desc->swizzle[i] > PIPE_SWIZZLE_W)
1718          continue;
1719 
1720       if (desc->channel[i].pure_integer && desc->channel[i].type == UTIL_FORMAT_TYPE_SIGNED) {
1721          /* Use the maximum value for clamping the clear color. */
1722          int max = u_bit_consecutive(0, desc->channel[i].size - 1);
1723 
1724          values[i] = clear_value->int32[i] != 0;
1725          if (clear_value->int32[i] != 0 && MIN2(clear_value->int32[i], max) != max)
1726             return;
1727       } else if (desc->channel[i].pure_integer &&
1728                  desc->channel[i].type == UTIL_FORMAT_TYPE_UNSIGNED) {
1729          /* Use the maximum value for clamping the clear color. */
1730          unsigned max = u_bit_consecutive(0, desc->channel[i].size);
1731 
1732          values[i] = clear_value->uint32[i] != 0U;
1733          if (clear_value->uint32[i] != 0U && MIN2(clear_value->uint32[i], max) != max)
1734             return;
1735       } else {
1736          values[i] = clear_value->float32[i] != 0.0F;
1737          if (clear_value->float32[i] != 0.0F && clear_value->float32[i] != 1.0F)
1738             return;
1739       }
1740 
1741       if (index == extra_channel) {
1742          extra_value = values[i];
1743          has_alpha = true;
1744       } else {
1745          main_value = values[i];
1746          has_color = true;
1747       }
1748    }
1749 
1750    /* If alpha isn't present, make it the same as color, and vice versa. */
1751    if (!has_alpha)
1752       extra_value = main_value;
1753    else if (!has_color)
1754       main_value = extra_value;
1755 
1756    for (int i = 0; i < 4; ++i)
1757       if (values[i] != main_value && desc->swizzle[i] - PIPE_SWIZZLE_X != extra_channel &&
1758           desc->swizzle[i] >= PIPE_SWIZZLE_X && desc->swizzle[i] <= PIPE_SWIZZLE_W)
1759          return;
1760 
1761    /* Only DCC clear code 0000 is allowed for signed<->unsigned formats. */
1762    if ((main_value || extra_value) && iview->image->dcc_sign_reinterpret)
1763       return;
1764 
1765    *can_avoid_fast_clear_elim = true;
1766 
1767    if (main_value) {
1768       if (extra_value)
1769          *reset_value = RADV_DCC_CLEAR_1111;
1770       else
1771          *reset_value = RADV_DCC_CLEAR_1110;
1772    } else {
1773       if (extra_value)
1774          *reset_value = RADV_DCC_CLEAR_0001;
1775       else
1776          *reset_value = RADV_DCC_CLEAR_0000;
1777    }
1778 }
1779 
1780 static bool
radv_can_fast_clear_color(struct radv_cmd_buffer * cmd_buffer,const struct radv_image_view * iview,VkImageLayout image_layout,bool in_render_loop,const VkClearRect * clear_rect,VkClearColorValue clear_value,uint32_t view_mask)1781 radv_can_fast_clear_color(struct radv_cmd_buffer *cmd_buffer, const struct radv_image_view *iview,
1782                           VkImageLayout image_layout, bool in_render_loop,
1783                           const VkClearRect *clear_rect, VkClearColorValue clear_value,
1784                           uint32_t view_mask)
1785 {
1786    uint32_t clear_color[2];
1787 
1788    if (!iview || !iview->support_fast_clear)
1789       return false;
1790 
1791    if (!radv_layout_can_fast_clear(
1792           cmd_buffer->device, iview->image, iview->base_mip, image_layout, in_render_loop,
1793           radv_image_queue_family_mask(iview->image, cmd_buffer->queue_family_index,
1794                                        cmd_buffer->queue_family_index)))
1795       return false;
1796 
1797    if (clear_rect->rect.offset.x || clear_rect->rect.offset.y ||
1798        clear_rect->rect.extent.width != iview->image->info.width ||
1799        clear_rect->rect.extent.height != iview->image->info.height)
1800       return false;
1801 
1802    if (view_mask && (iview->image->info.array_size >= 32 ||
1803                      (1u << iview->image->info.array_size) - 1u != view_mask))
1804       return false;
1805    if (!view_mask && clear_rect->baseArrayLayer != 0)
1806       return false;
1807    if (!view_mask && clear_rect->layerCount != iview->image->info.array_size)
1808       return false;
1809 
1810    /* DCC */
1811    if (!radv_format_pack_clear_color(iview->vk_format, clear_color, &clear_value))
1812       return false;
1813 
1814    if (!radv_image_has_clear_value(iview->image) && (clear_color[0] != 0 || clear_color[1] != 0))
1815       return false;
1816 
1817    if (radv_dcc_enabled(iview->image, iview->base_mip)) {
1818       bool can_avoid_fast_clear_elim;
1819       uint32_t reset_value;
1820 
1821       vi_get_fast_clear_parameters(cmd_buffer->device, iview, &clear_value, &reset_value,
1822                                    &can_avoid_fast_clear_elim);
1823 
1824       if (iview->image->info.levels > 1) {
1825          if (cmd_buffer->device->physical_device->rad_info.chip_class >= GFX9) {
1826             uint32_t last_level = iview->base_mip + iview->level_count - 1;
1827             if (last_level >= iview->image->planes[0].surface.num_meta_levels) {
1828                /* Do not fast clears if one level can't be fast cleard. */
1829                return false;
1830             }
1831          } else {
1832             for (uint32_t l = 0; l < iview->level_count; l++) {
1833                uint32_t level = iview->base_mip + l;
1834                struct legacy_surf_dcc_level *dcc_level =
1835                   &iview->image->planes[0].surface.u.legacy.color.dcc_level[level];
1836 
1837                /* Do not fast clears if one level can't be
1838                 * fast cleared.
1839                 */
1840                if (!dcc_level->dcc_fast_clear_size)
1841                   return false;
1842             }
1843          }
1844       }
1845    }
1846 
1847    return true;
1848 }
1849 
1850 static void
radv_fast_clear_color(struct radv_cmd_buffer * cmd_buffer,const struct radv_image_view * iview,const VkClearAttachment * clear_att,uint32_t subpass_att,enum radv_cmd_flush_bits * pre_flush,enum radv_cmd_flush_bits * post_flush)1851 radv_fast_clear_color(struct radv_cmd_buffer *cmd_buffer, const struct radv_image_view *iview,
1852                       const VkClearAttachment *clear_att, uint32_t subpass_att,
1853                       enum radv_cmd_flush_bits *pre_flush, enum radv_cmd_flush_bits *post_flush)
1854 {
1855    VkClearColorValue clear_value = clear_att->clearValue.color;
1856    uint32_t clear_color[2], flush_bits = 0;
1857    uint32_t cmask_clear_value;
1858    VkImageSubresourceRange range = {
1859       .aspectMask = iview->aspect_mask,
1860       .baseMipLevel = iview->base_mip,
1861       .levelCount = iview->level_count,
1862       .baseArrayLayer = iview->base_layer,
1863       .layerCount = iview->layer_count,
1864    };
1865 
1866    if (pre_flush) {
1867       enum radv_cmd_flush_bits bits =
1868          radv_src_access_flush(cmd_buffer, VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT, iview->image) |
1869          radv_dst_access_flush(cmd_buffer, VK_ACCESS_SHADER_WRITE_BIT, iview->image);
1870       cmd_buffer->state.flush_bits |= bits & ~*pre_flush;
1871       *pre_flush |= cmd_buffer->state.flush_bits;
1872    }
1873 
1874    /* DCC */
1875    radv_format_pack_clear_color(iview->vk_format, clear_color, &clear_value);
1876 
1877    cmask_clear_value = radv_get_cmask_fast_clear_value(iview->image);
1878 
1879    /* clear cmask buffer */
1880    bool need_decompress_pass = false;
1881    if (radv_dcc_enabled(iview->image, iview->base_mip)) {
1882       uint32_t reset_value;
1883       bool can_avoid_fast_clear_elim;
1884 
1885       vi_get_fast_clear_parameters(cmd_buffer->device, iview, &clear_value, &reset_value,
1886                                    &can_avoid_fast_clear_elim);
1887 
1888       if (radv_image_has_cmask(iview->image)) {
1889          flush_bits = radv_clear_cmask(cmd_buffer, iview->image, &range, cmask_clear_value);
1890       }
1891 
1892       if (!can_avoid_fast_clear_elim)
1893          need_decompress_pass = true;
1894 
1895       flush_bits |= radv_clear_dcc(cmd_buffer, iview->image, &range, reset_value);
1896 
1897       if (reset_value == RADV_DCC_CLEAR_SINGLE) {
1898          /* Write the clear color to the first byte of each 256B block when the image supports DCC
1899           * fast clears with comp-to-single.
1900           */
1901          flush_bits |= radv_clear_dcc_comp_to_single(cmd_buffer, iview->image, &range, clear_color);
1902       }
1903    } else {
1904       flush_bits = radv_clear_cmask(cmd_buffer, iview->image, &range, cmask_clear_value);
1905 
1906       /* Fast clearing with CMASK should always be eliminated. */
1907       need_decompress_pass = true;
1908    }
1909 
1910    if (post_flush) {
1911       *post_flush |= flush_bits;
1912    }
1913 
1914    /* Update the FCE predicate to perform a fast-clear eliminate. */
1915    radv_update_fce_metadata(cmd_buffer, iview->image, &range, need_decompress_pass);
1916 
1917    radv_update_color_clear_metadata(cmd_buffer, iview, subpass_att, clear_color);
1918 }
1919 
1920 /**
1921  * The parameters mean that same as those in vkCmdClearAttachments.
1922  */
1923 static void
emit_clear(struct radv_cmd_buffer * cmd_buffer,const VkClearAttachment * clear_att,const VkClearRect * clear_rect,enum radv_cmd_flush_bits * pre_flush,enum radv_cmd_flush_bits * post_flush,uint32_t view_mask,bool ds_resolve_clear)1924 emit_clear(struct radv_cmd_buffer *cmd_buffer, const VkClearAttachment *clear_att,
1925            const VkClearRect *clear_rect, enum radv_cmd_flush_bits *pre_flush,
1926            enum radv_cmd_flush_bits *post_flush, uint32_t view_mask, bool ds_resolve_clear)
1927 {
1928    const struct radv_framebuffer *fb = cmd_buffer->state.framebuffer;
1929    const struct radv_subpass *subpass = cmd_buffer->state.subpass;
1930    VkImageAspectFlags aspects = clear_att->aspectMask;
1931 
1932    if (aspects & VK_IMAGE_ASPECT_COLOR_BIT) {
1933       const uint32_t subpass_att = clear_att->colorAttachment;
1934       assert(subpass_att < subpass->color_count);
1935       const uint32_t pass_att = subpass->color_attachments[subpass_att].attachment;
1936       if (pass_att == VK_ATTACHMENT_UNUSED)
1937          return;
1938 
1939       VkImageLayout image_layout = subpass->color_attachments[subpass_att].layout;
1940       bool in_render_loop = subpass->color_attachments[subpass_att].in_render_loop;
1941       const struct radv_image_view *iview =
1942          fb ? cmd_buffer->state.attachments[pass_att].iview : NULL;
1943       VkClearColorValue clear_value = clear_att->clearValue.color;
1944 
1945       if (radv_can_fast_clear_color(cmd_buffer, iview, image_layout, in_render_loop, clear_rect,
1946                                     clear_value, view_mask)) {
1947          radv_fast_clear_color(cmd_buffer, iview, clear_att, subpass_att, pre_flush, post_flush);
1948       } else {
1949          emit_color_clear(cmd_buffer, clear_att, clear_rect, view_mask);
1950       }
1951    } else {
1952       struct radv_subpass_attachment *ds_att = subpass->depth_stencil_attachment;
1953 
1954       if (ds_resolve_clear)
1955          ds_att = subpass->ds_resolve_attachment;
1956 
1957       if (!ds_att || ds_att->attachment == VK_ATTACHMENT_UNUSED)
1958          return;
1959 
1960       VkImageLayout image_layout = ds_att->layout;
1961       bool in_render_loop = ds_att->in_render_loop;
1962       const struct radv_image_view *iview =
1963          fb ? cmd_buffer->state.attachments[ds_att->attachment].iview : NULL;
1964       VkClearDepthStencilValue clear_value = clear_att->clearValue.depthStencil;
1965 
1966       assert(aspects & (VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT));
1967 
1968       if (radv_can_fast_clear_depth(cmd_buffer, iview, image_layout, in_render_loop, aspects,
1969                                     clear_rect, clear_value, view_mask)) {
1970          radv_fast_clear_depth(cmd_buffer, iview, clear_att, pre_flush, post_flush);
1971       } else {
1972          emit_depthstencil_clear(cmd_buffer, clear_att, clear_rect, ds_att, view_mask);
1973       }
1974    }
1975 }
1976 
1977 static inline bool
radv_attachment_needs_clear(struct radv_cmd_state * cmd_state,uint32_t a)1978 radv_attachment_needs_clear(struct radv_cmd_state *cmd_state, uint32_t a)
1979 {
1980    uint32_t view_mask = cmd_state->subpass->view_mask;
1981    return (a != VK_ATTACHMENT_UNUSED && cmd_state->attachments[a].pending_clear_aspects &&
1982            (!view_mask || (view_mask & ~cmd_state->attachments[a].cleared_views)));
1983 }
1984 
1985 static bool
radv_subpass_needs_clear(struct radv_cmd_buffer * cmd_buffer)1986 radv_subpass_needs_clear(struct radv_cmd_buffer *cmd_buffer)
1987 {
1988    struct radv_cmd_state *cmd_state = &cmd_buffer->state;
1989    uint32_t a;
1990 
1991    if (!cmd_state->subpass)
1992       return false;
1993 
1994    for (uint32_t i = 0; i < cmd_state->subpass->color_count; ++i) {
1995       a = cmd_state->subpass->color_attachments[i].attachment;
1996       if (radv_attachment_needs_clear(cmd_state, a))
1997          return true;
1998    }
1999 
2000    if (cmd_state->subpass->depth_stencil_attachment) {
2001       a = cmd_state->subpass->depth_stencil_attachment->attachment;
2002       if (radv_attachment_needs_clear(cmd_state, a))
2003          return true;
2004    }
2005 
2006    if (!cmd_state->subpass->ds_resolve_attachment)
2007       return false;
2008 
2009    a = cmd_state->subpass->ds_resolve_attachment->attachment;
2010    return radv_attachment_needs_clear(cmd_state, a);
2011 }
2012 
2013 static void
radv_subpass_clear_attachment(struct radv_cmd_buffer * cmd_buffer,struct radv_attachment_state * attachment,const VkClearAttachment * clear_att,enum radv_cmd_flush_bits * pre_flush,enum radv_cmd_flush_bits * post_flush,bool ds_resolve_clear)2014 radv_subpass_clear_attachment(struct radv_cmd_buffer *cmd_buffer,
2015                               struct radv_attachment_state *attachment,
2016                               const VkClearAttachment *clear_att,
2017                               enum radv_cmd_flush_bits *pre_flush,
2018                               enum radv_cmd_flush_bits *post_flush, bool ds_resolve_clear)
2019 {
2020    struct radv_cmd_state *cmd_state = &cmd_buffer->state;
2021    uint32_t view_mask = cmd_state->subpass->view_mask;
2022 
2023    VkClearRect clear_rect = {
2024       .rect = cmd_state->render_area,
2025       .baseArrayLayer = 0,
2026       .layerCount = cmd_state->framebuffer->layers,
2027    };
2028 
2029    radv_describe_begin_render_pass_clear(cmd_buffer, clear_att->aspectMask);
2030 
2031    emit_clear(cmd_buffer, clear_att, &clear_rect, pre_flush, post_flush,
2032               view_mask & ~attachment->cleared_views, ds_resolve_clear);
2033    if (view_mask)
2034       attachment->cleared_views |= view_mask;
2035    else
2036       attachment->pending_clear_aspects = 0;
2037 
2038    radv_describe_end_render_pass_clear(cmd_buffer);
2039 }
2040 
2041 /**
2042  * Emit any pending attachment clears for the current subpass.
2043  *
2044  * @see radv_attachment_state::pending_clear_aspects
2045  */
2046 void
radv_cmd_buffer_clear_subpass(struct radv_cmd_buffer * cmd_buffer)2047 radv_cmd_buffer_clear_subpass(struct radv_cmd_buffer *cmd_buffer)
2048 {
2049    struct radv_cmd_state *cmd_state = &cmd_buffer->state;
2050    struct radv_meta_saved_state saved_state;
2051    enum radv_cmd_flush_bits pre_flush = 0;
2052    enum radv_cmd_flush_bits post_flush = 0;
2053 
2054    if (!radv_subpass_needs_clear(cmd_buffer))
2055       return;
2056 
2057    radv_meta_save(&saved_state, cmd_buffer,
2058                   RADV_META_SAVE_GRAPHICS_PIPELINE | RADV_META_SAVE_CONSTANTS);
2059 
2060    for (uint32_t i = 0; i < cmd_state->subpass->color_count; ++i) {
2061       uint32_t a = cmd_state->subpass->color_attachments[i].attachment;
2062 
2063       if (!radv_attachment_needs_clear(cmd_state, a))
2064          continue;
2065 
2066       assert(cmd_state->attachments[a].pending_clear_aspects == VK_IMAGE_ASPECT_COLOR_BIT);
2067 
2068       VkClearAttachment clear_att = {
2069          .aspectMask = VK_IMAGE_ASPECT_COLOR_BIT,
2070          .colorAttachment = i, /* Use attachment index relative to subpass */
2071          .clearValue = cmd_state->attachments[a].clear_value,
2072       };
2073 
2074       radv_subpass_clear_attachment(cmd_buffer, &cmd_state->attachments[a], &clear_att, &pre_flush,
2075                                     &post_flush, false);
2076    }
2077 
2078    if (cmd_state->subpass->depth_stencil_attachment) {
2079       uint32_t ds = cmd_state->subpass->depth_stencil_attachment->attachment;
2080       if (radv_attachment_needs_clear(cmd_state, ds)) {
2081          VkClearAttachment clear_att = {
2082             .aspectMask = cmd_state->attachments[ds].pending_clear_aspects,
2083             .clearValue = cmd_state->attachments[ds].clear_value,
2084          };
2085 
2086          radv_subpass_clear_attachment(cmd_buffer, &cmd_state->attachments[ds], &clear_att,
2087                                        &pre_flush, &post_flush, false);
2088       }
2089    }
2090 
2091    if (cmd_state->subpass->ds_resolve_attachment) {
2092       uint32_t ds_resolve = cmd_state->subpass->ds_resolve_attachment->attachment;
2093       if (radv_attachment_needs_clear(cmd_state, ds_resolve)) {
2094          VkClearAttachment clear_att = {
2095             .aspectMask = cmd_state->attachments[ds_resolve].pending_clear_aspects,
2096             .clearValue = cmd_state->attachments[ds_resolve].clear_value,
2097          };
2098 
2099          radv_subpass_clear_attachment(cmd_buffer, &cmd_state->attachments[ds_resolve], &clear_att,
2100                                        &pre_flush, &post_flush, true);
2101       }
2102    }
2103 
2104    radv_meta_restore(&saved_state, cmd_buffer);
2105    cmd_buffer->state.flush_bits |= post_flush;
2106 }
2107 
2108 static void
radv_clear_image_layer(struct radv_cmd_buffer * cmd_buffer,struct radv_image * image,VkImageLayout image_layout,const VkImageSubresourceRange * range,VkFormat format,int level,unsigned layer_count,const VkClearValue * clear_val)2109 radv_clear_image_layer(struct radv_cmd_buffer *cmd_buffer, struct radv_image *image,
2110                        VkImageLayout image_layout, const VkImageSubresourceRange *range,
2111                        VkFormat format, int level, unsigned layer_count,
2112                        const VkClearValue *clear_val)
2113 {
2114    VkDevice device_h = radv_device_to_handle(cmd_buffer->device);
2115    struct radv_image_view iview;
2116    uint32_t width = radv_minify(image->info.width, range->baseMipLevel + level);
2117    uint32_t height = radv_minify(image->info.height, range->baseMipLevel + level);
2118 
2119    radv_image_view_init(&iview, cmd_buffer->device,
2120                         &(VkImageViewCreateInfo){
2121                            .sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO,
2122                            .image = radv_image_to_handle(image),
2123                            .viewType = radv_meta_get_view_type(image),
2124                            .format = format,
2125                            .subresourceRange = {.aspectMask = range->aspectMask,
2126                                                 .baseMipLevel = range->baseMipLevel + level,
2127                                                 .levelCount = 1,
2128                                                 .baseArrayLayer = range->baseArrayLayer,
2129                                                 .layerCount = layer_count},
2130                         },
2131                         NULL);
2132 
2133    VkFramebuffer fb;
2134    radv_CreateFramebuffer(
2135       device_h,
2136       &(VkFramebufferCreateInfo){.sType = VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO,
2137                                  .attachmentCount = 1,
2138                                  .pAttachments =
2139                                     (VkImageView[]){
2140                                        radv_image_view_to_handle(&iview),
2141                                     },
2142                                  .width = width,
2143                                  .height = height,
2144                                  .layers = layer_count},
2145       &cmd_buffer->pool->alloc, &fb);
2146 
2147    VkAttachmentDescription2 att_desc = {
2148       .sType = VK_STRUCTURE_TYPE_ATTACHMENT_DESCRIPTION_2,
2149       .format = iview.vk_format,
2150       .loadOp = VK_ATTACHMENT_LOAD_OP_LOAD,
2151       .storeOp = VK_ATTACHMENT_STORE_OP_STORE,
2152       .stencilLoadOp = VK_ATTACHMENT_LOAD_OP_LOAD,
2153       .stencilStoreOp = VK_ATTACHMENT_STORE_OP_STORE,
2154       .initialLayout = image_layout,
2155       .finalLayout = image_layout,
2156    };
2157 
2158    VkSubpassDescription2 subpass_desc = {
2159       .sType = VK_STRUCTURE_TYPE_SUBPASS_DESCRIPTION_2,
2160       .pipelineBindPoint = VK_PIPELINE_BIND_POINT_GRAPHICS,
2161       .inputAttachmentCount = 0,
2162       .colorAttachmentCount = 0,
2163       .pColorAttachments = NULL,
2164       .pResolveAttachments = NULL,
2165       .pDepthStencilAttachment = NULL,
2166       .preserveAttachmentCount = 0,
2167       .pPreserveAttachments = NULL,
2168    };
2169 
2170    const VkAttachmentReference2 att_ref = {
2171       .sType = VK_STRUCTURE_TYPE_ATTACHMENT_REFERENCE_2,
2172       .attachment = 0,
2173       .layout = image_layout,
2174    };
2175 
2176    if (range->aspectMask & VK_IMAGE_ASPECT_COLOR_BIT) {
2177       subpass_desc.colorAttachmentCount = 1;
2178       subpass_desc.pColorAttachments = &att_ref;
2179    } else {
2180       subpass_desc.pDepthStencilAttachment = &att_ref;
2181    }
2182 
2183    VkRenderPass pass;
2184    radv_CreateRenderPass2(
2185       device_h,
2186       &(VkRenderPassCreateInfo2){
2187          .sType = VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO_2,
2188          .attachmentCount = 1,
2189          .pAttachments = &att_desc,
2190          .subpassCount = 1,
2191          .pSubpasses = &subpass_desc,
2192          .dependencyCount = 2,
2193          .pDependencies =
2194             (VkSubpassDependency2[]){{.sType = VK_STRUCTURE_TYPE_SUBPASS_DEPENDENCY_2,
2195                                       .srcSubpass = VK_SUBPASS_EXTERNAL,
2196                                       .dstSubpass = 0,
2197                                       .srcStageMask = VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT,
2198                                       .dstStageMask = VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT,
2199                                       .srcAccessMask = 0,
2200                                       .dstAccessMask = 0,
2201                                       .dependencyFlags = 0},
2202                                      {.sType = VK_STRUCTURE_TYPE_SUBPASS_DEPENDENCY_2,
2203                                       .srcSubpass = 0,
2204                                       .dstSubpass = VK_SUBPASS_EXTERNAL,
2205                                       .srcStageMask = VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT,
2206                                       .dstStageMask = VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT,
2207                                       .srcAccessMask = 0,
2208                                       .dstAccessMask = 0,
2209                                       .dependencyFlags = 0}}},
2210       &cmd_buffer->pool->alloc, &pass);
2211 
2212    radv_cmd_buffer_begin_render_pass(cmd_buffer,
2213                                      &(VkRenderPassBeginInfo){
2214                                         .sType = VK_STRUCTURE_TYPE_RENDER_PASS_BEGIN_INFO,
2215                                         .renderArea =
2216                                            {
2217                                               .offset =
2218                                                  {
2219                                                     0,
2220                                                     0,
2221                                                  },
2222                                               .extent =
2223                                                  {
2224                                                     .width = width,
2225                                                     .height = height,
2226                                                  },
2227                                            },
2228                                         .renderPass = pass,
2229                                         .framebuffer = fb,
2230                                         .clearValueCount = 0,
2231                                         .pClearValues = NULL,
2232                                      },
2233                                      NULL);
2234 
2235    radv_cmd_buffer_set_subpass(cmd_buffer, &cmd_buffer->state.pass->subpasses[0]);
2236 
2237    VkClearAttachment clear_att = {
2238       .aspectMask = range->aspectMask,
2239       .colorAttachment = 0,
2240       .clearValue = *clear_val,
2241    };
2242 
2243    VkClearRect clear_rect = {
2244       .rect =
2245          {
2246             .offset = {0, 0},
2247             .extent = {width, height},
2248          },
2249       .baseArrayLayer = 0,
2250       .layerCount = layer_count,
2251    };
2252 
2253    emit_clear(cmd_buffer, &clear_att, &clear_rect, NULL, NULL, 0, false);
2254 
2255    radv_image_view_finish(&iview);
2256    radv_cmd_buffer_end_render_pass(cmd_buffer);
2257    radv_DestroyRenderPass(device_h, pass, &cmd_buffer->pool->alloc);
2258    radv_DestroyFramebuffer(device_h, fb, &cmd_buffer->pool->alloc);
2259 }
2260 
2261 /**
2262  * Return TRUE if a fast color or depth clear has been performed.
2263  */
2264 static bool
radv_fast_clear_range(struct radv_cmd_buffer * cmd_buffer,struct radv_image * image,VkFormat format,VkImageLayout image_layout,bool in_render_loop,const VkImageSubresourceRange * range,const VkClearValue * clear_val)2265 radv_fast_clear_range(struct radv_cmd_buffer *cmd_buffer, struct radv_image *image, VkFormat format,
2266                       VkImageLayout image_layout, bool in_render_loop,
2267                       const VkImageSubresourceRange *range, const VkClearValue *clear_val)
2268 {
2269    struct radv_image_view iview;
2270    bool fast_cleared = false;
2271 
2272    radv_image_view_init(&iview, cmd_buffer->device,
2273                         &(VkImageViewCreateInfo){
2274                            .sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO,
2275                            .image = radv_image_to_handle(image),
2276                            .viewType = radv_meta_get_view_type(image),
2277                            .format = image->vk_format,
2278                            .subresourceRange =
2279                               {
2280                                  .aspectMask = range->aspectMask,
2281                                  .baseMipLevel = range->baseMipLevel,
2282                                  .levelCount = range->levelCount,
2283                                  .baseArrayLayer = range->baseArrayLayer,
2284                                  .layerCount = range->layerCount,
2285                               },
2286                         },
2287                         NULL);
2288 
2289    VkClearRect clear_rect = {
2290       .rect =
2291          {
2292             .offset = {0, 0},
2293             .extent =
2294                {
2295                   radv_minify(image->info.width, range->baseMipLevel),
2296                   radv_minify(image->info.height, range->baseMipLevel),
2297                },
2298          },
2299       .baseArrayLayer = range->baseArrayLayer,
2300       .layerCount = range->layerCount,
2301    };
2302 
2303    VkClearAttachment clear_att = {
2304       .aspectMask = range->aspectMask,
2305       .colorAttachment = 0,
2306       .clearValue = *clear_val,
2307    };
2308 
2309    if (vk_format_is_color(format)) {
2310       if (radv_can_fast_clear_color(cmd_buffer, &iview, image_layout, in_render_loop, &clear_rect,
2311                                     clear_att.clearValue.color, 0)) {
2312          radv_fast_clear_color(cmd_buffer, &iview, &clear_att, clear_att.colorAttachment, NULL,
2313                                NULL);
2314          fast_cleared = true;
2315       }
2316    } else {
2317       if (radv_can_fast_clear_depth(cmd_buffer, &iview, image_layout, in_render_loop,
2318                                     range->aspectMask, &clear_rect,
2319                                     clear_att.clearValue.depthStencil, 0)) {
2320          radv_fast_clear_depth(cmd_buffer, &iview, &clear_att, NULL, NULL);
2321          fast_cleared = true;
2322       }
2323    }
2324 
2325    radv_image_view_finish(&iview);
2326    return fast_cleared;
2327 }
2328 
2329 static void
radv_cmd_clear_image(struct radv_cmd_buffer * cmd_buffer,struct radv_image * image,VkImageLayout image_layout,const VkClearValue * clear_value,uint32_t range_count,const VkImageSubresourceRange * ranges,bool cs)2330 radv_cmd_clear_image(struct radv_cmd_buffer *cmd_buffer, struct radv_image *image,
2331                      VkImageLayout image_layout, const VkClearValue *clear_value,
2332                      uint32_t range_count, const VkImageSubresourceRange *ranges, bool cs)
2333 {
2334    VkFormat format = image->vk_format;
2335    VkClearValue internal_clear_value;
2336 
2337    if (ranges->aspectMask & VK_IMAGE_ASPECT_COLOR_BIT)
2338       internal_clear_value.color = clear_value->color;
2339    else
2340       internal_clear_value.depthStencil = clear_value->depthStencil;
2341 
2342    bool disable_compression = false;
2343 
2344    if (format == VK_FORMAT_E5B9G9R9_UFLOAT_PACK32) {
2345       bool blendable;
2346       if (cs ? !radv_is_storage_image_format_supported(cmd_buffer->device->physical_device, format)
2347              : !radv_is_colorbuffer_format_supported(cmd_buffer->device->physical_device, format,
2348                                                      &blendable)) {
2349          format = VK_FORMAT_R32_UINT;
2350          internal_clear_value.color.uint32[0] = float3_to_rgb9e5(clear_value->color.float32);
2351 
2352          uint32_t queue_mask = radv_image_queue_family_mask(image, cmd_buffer->queue_family_index,
2353                                                             cmd_buffer->queue_family_index);
2354 
2355          for (uint32_t r = 0; r < range_count; r++) {
2356             const VkImageSubresourceRange *range = &ranges[r];
2357 
2358             /* Don't use compressed image stores because they will use an incompatible format. */
2359             if (radv_layout_dcc_compressed(cmd_buffer->device, image, range->baseMipLevel,
2360                                            image_layout, false, queue_mask)) {
2361                disable_compression = cs;
2362                break;
2363             }
2364          }
2365       }
2366    }
2367 
2368    if (format == VK_FORMAT_R4G4_UNORM_PACK8) {
2369       uint8_t r, g;
2370       format = VK_FORMAT_R8_UINT;
2371       r = float_to_ubyte(clear_value->color.float32[0]) >> 4;
2372       g = float_to_ubyte(clear_value->color.float32[1]) >> 4;
2373       internal_clear_value.color.uint32[0] = (r << 4) | (g & 0xf);
2374    }
2375 
2376    for (uint32_t r = 0; r < range_count; r++) {
2377       const VkImageSubresourceRange *range = &ranges[r];
2378 
2379       /* Try to perform a fast clear first, otherwise fallback to
2380        * the legacy path.
2381        */
2382       if (!cs && radv_fast_clear_range(cmd_buffer, image, format, image_layout, false, range,
2383                                        &internal_clear_value)) {
2384          continue;
2385       }
2386 
2387       for (uint32_t l = 0; l < radv_get_levelCount(image, range); ++l) {
2388          const uint32_t layer_count = image->type == VK_IMAGE_TYPE_3D
2389                                          ? radv_minify(image->info.depth, range->baseMipLevel + l)
2390                                          : radv_get_layerCount(image, range);
2391 
2392          if (cs) {
2393             for (uint32_t s = 0; s < layer_count; ++s) {
2394                struct radv_meta_blit2d_surf surf;
2395                surf.format = format;
2396                surf.image = image;
2397                surf.level = range->baseMipLevel + l;
2398                surf.layer = range->baseArrayLayer + s;
2399                surf.aspect_mask = range->aspectMask;
2400                surf.disable_compression = disable_compression;
2401                radv_meta_clear_image_cs(cmd_buffer, &surf, &internal_clear_value.color);
2402             }
2403          } else {
2404             assert(!disable_compression);
2405             radv_clear_image_layer(cmd_buffer, image, image_layout, range, format, l, layer_count,
2406                                    &internal_clear_value);
2407          }
2408       }
2409    }
2410 
2411    if (disable_compression) {
2412       enum radv_cmd_flush_bits flush_bits = 0;
2413       for (unsigned i = 0; i < range_count; i++) {
2414          if (radv_dcc_enabled(image, ranges[i].baseMipLevel))
2415             flush_bits |= radv_clear_dcc(cmd_buffer, image, &ranges[i], 0xffffffffu);
2416       }
2417       cmd_buffer->state.flush_bits |= flush_bits;
2418    }
2419 }
2420 
2421 void
radv_CmdClearColorImage(VkCommandBuffer commandBuffer,VkImage image_h,VkImageLayout imageLayout,const VkClearColorValue * pColor,uint32_t rangeCount,const VkImageSubresourceRange * pRanges)2422 radv_CmdClearColorImage(VkCommandBuffer commandBuffer, VkImage image_h, VkImageLayout imageLayout,
2423                         const VkClearColorValue *pColor, uint32_t rangeCount,
2424                         const VkImageSubresourceRange *pRanges)
2425 {
2426    RADV_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
2427    RADV_FROM_HANDLE(radv_image, image, image_h);
2428    struct radv_meta_saved_state saved_state;
2429    bool cs;
2430 
2431    cs = cmd_buffer->queue_family_index == RADV_QUEUE_COMPUTE ||
2432         !radv_image_is_renderable(cmd_buffer->device, image);
2433 
2434    if (cs) {
2435       radv_meta_save(
2436          &saved_state, cmd_buffer,
2437          RADV_META_SAVE_COMPUTE_PIPELINE | RADV_META_SAVE_CONSTANTS | RADV_META_SAVE_DESCRIPTORS);
2438    } else {
2439       radv_meta_save(&saved_state, cmd_buffer,
2440                      RADV_META_SAVE_GRAPHICS_PIPELINE | RADV_META_SAVE_CONSTANTS);
2441    }
2442 
2443    radv_cmd_clear_image(cmd_buffer, image, imageLayout, (const VkClearValue *)pColor, rangeCount,
2444                         pRanges, cs);
2445 
2446    radv_meta_restore(&saved_state, cmd_buffer);
2447 }
2448 
2449 void
radv_CmdClearDepthStencilImage(VkCommandBuffer commandBuffer,VkImage image_h,VkImageLayout imageLayout,const VkClearDepthStencilValue * pDepthStencil,uint32_t rangeCount,const VkImageSubresourceRange * pRanges)2450 radv_CmdClearDepthStencilImage(VkCommandBuffer commandBuffer, VkImage image_h,
2451                                VkImageLayout imageLayout,
2452                                const VkClearDepthStencilValue *pDepthStencil, uint32_t rangeCount,
2453                                const VkImageSubresourceRange *pRanges)
2454 {
2455    RADV_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
2456    RADV_FROM_HANDLE(radv_image, image, image_h);
2457    struct radv_meta_saved_state saved_state;
2458 
2459    radv_meta_save(&saved_state, cmd_buffer,
2460                   RADV_META_SAVE_GRAPHICS_PIPELINE | RADV_META_SAVE_CONSTANTS);
2461 
2462    radv_cmd_clear_image(cmd_buffer, image, imageLayout, (const VkClearValue *)pDepthStencil,
2463                         rangeCount, pRanges, false);
2464 
2465    radv_meta_restore(&saved_state, cmd_buffer);
2466 }
2467 
2468 void
radv_CmdClearAttachments(VkCommandBuffer commandBuffer,uint32_t attachmentCount,const VkClearAttachment * pAttachments,uint32_t rectCount,const VkClearRect * pRects)2469 radv_CmdClearAttachments(VkCommandBuffer commandBuffer, uint32_t attachmentCount,
2470                          const VkClearAttachment *pAttachments, uint32_t rectCount,
2471                          const VkClearRect *pRects)
2472 {
2473    RADV_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
2474    struct radv_meta_saved_state saved_state;
2475    enum radv_cmd_flush_bits pre_flush = 0;
2476    enum radv_cmd_flush_bits post_flush = 0;
2477 
2478    if (!cmd_buffer->state.subpass)
2479       return;
2480 
2481    radv_meta_save(&saved_state, cmd_buffer,
2482                   RADV_META_SAVE_GRAPHICS_PIPELINE | RADV_META_SAVE_CONSTANTS);
2483 
2484    /* FINISHME: We can do better than this dumb loop. It thrashes too much
2485     * state.
2486     */
2487    for (uint32_t a = 0; a < attachmentCount; ++a) {
2488       for (uint32_t r = 0; r < rectCount; ++r) {
2489          emit_clear(cmd_buffer, &pAttachments[a], &pRects[r], &pre_flush, &post_flush,
2490                     cmd_buffer->state.subpass->view_mask, false);
2491       }
2492    }
2493 
2494    radv_meta_restore(&saved_state, cmd_buffer);
2495    cmd_buffer->state.flush_bits |= post_flush;
2496 }
2497