1 // SPDX-License-Identifier: GPL-2.0-or-later
2 //
3 // core.c -- Voltage/Current Regulator framework.
4 //
5 // Copyright 2007, 2008 Wolfson Microelectronics PLC.
6 // Copyright 2008 SlimLogic Ltd.
7 //
8 // Author: Liam Girdwood <lrg@slimlogic.co.uk>
9
10 #include <linux/kernel.h>
11 #include <linux/init.h>
12 #include <linux/debugfs.h>
13 #include <linux/device.h>
14 #include <linux/slab.h>
15 #include <linux/async.h>
16 #include <linux/err.h>
17 #include <linux/mutex.h>
18 #include <linux/suspend.h>
19 #include <linux/delay.h>
20 #include <linux/gpio/consumer.h>
21 #include <linux/of.h>
22 #include <linux/regmap.h>
23 #include <linux/regulator/of_regulator.h>
24 #include <linux/regulator/consumer.h>
25 #include <linux/regulator/coupler.h>
26 #include <linux/regulator/driver.h>
27 #include <linux/regulator/machine.h>
28 #include <linux/module.h>
29
30 #define CREATE_TRACE_POINTS
31 #include <trace/events/regulator.h>
32
33 #include "dummy.h"
34 #include "internal.h"
35
36 #define rdev_crit(rdev, fmt, ...) \
37 pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
38 #define rdev_err(rdev, fmt, ...) \
39 pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
40 #define rdev_warn(rdev, fmt, ...) \
41 pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
42 #define rdev_info(rdev, fmt, ...) \
43 pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
44 #define rdev_dbg(rdev, fmt, ...) \
45 pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
46
47 static DEFINE_WW_CLASS(regulator_ww_class);
48 static DEFINE_MUTEX(regulator_nesting_mutex);
49 static DEFINE_MUTEX(regulator_list_mutex);
50 static LIST_HEAD(regulator_map_list);
51 static LIST_HEAD(regulator_ena_gpio_list);
52 static LIST_HEAD(regulator_supply_alias_list);
53 static LIST_HEAD(regulator_coupler_list);
54 static bool has_full_constraints;
55
56 static struct dentry *debugfs_root;
57
58 /*
59 * struct regulator_map
60 *
61 * Used to provide symbolic supply names to devices.
62 */
63 struct regulator_map {
64 struct list_head list;
65 const char *dev_name; /* The dev_name() for the consumer */
66 const char *supply;
67 struct regulator_dev *regulator;
68 };
69
70 /*
71 * struct regulator_enable_gpio
72 *
73 * Management for shared enable GPIO pin
74 */
75 struct regulator_enable_gpio {
76 struct list_head list;
77 struct gpio_desc *gpiod;
78 u32 enable_count; /* a number of enabled shared GPIO */
79 u32 request_count; /* a number of requested shared GPIO */
80 };
81
82 /*
83 * struct regulator_supply_alias
84 *
85 * Used to map lookups for a supply onto an alternative device.
86 */
87 struct regulator_supply_alias {
88 struct list_head list;
89 struct device *src_dev;
90 const char *src_supply;
91 struct device *alias_dev;
92 const char *alias_supply;
93 };
94
95 static int _regulator_is_enabled(struct regulator_dev *rdev);
96 static int _regulator_disable(struct regulator *regulator);
97 static int _regulator_get_current_limit(struct regulator_dev *rdev);
98 static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
99 static int _notifier_call_chain(struct regulator_dev *rdev,
100 unsigned long event, void *data);
101 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
102 int min_uV, int max_uV);
103 static int regulator_balance_voltage(struct regulator_dev *rdev,
104 suspend_state_t state);
105 static struct regulator *create_regulator(struct regulator_dev *rdev,
106 struct device *dev,
107 const char *supply_name);
108 static void destroy_regulator(struct regulator *regulator);
109 static void _regulator_put(struct regulator *regulator);
110
rdev_get_name(struct regulator_dev * rdev)111 const char *rdev_get_name(struct regulator_dev *rdev)
112 {
113 if (rdev->constraints && rdev->constraints->name)
114 return rdev->constraints->name;
115 else if (rdev->desc->name)
116 return rdev->desc->name;
117 else
118 return "";
119 }
120
have_full_constraints(void)121 static bool have_full_constraints(void)
122 {
123 return has_full_constraints || of_have_populated_dt();
124 }
125
regulator_ops_is_valid(struct regulator_dev * rdev,int ops)126 static bool regulator_ops_is_valid(struct regulator_dev *rdev, int ops)
127 {
128 if (!rdev->constraints) {
129 rdev_err(rdev, "no constraints\n");
130 return false;
131 }
132
133 if (rdev->constraints->valid_ops_mask & ops)
134 return true;
135
136 return false;
137 }
138
139 /**
140 * regulator_lock_nested - lock a single regulator
141 * @rdev: regulator source
142 * @ww_ctx: w/w mutex acquire context
143 *
144 * This function can be called many times by one task on
145 * a single regulator and its mutex will be locked only
146 * once. If a task, which is calling this function is other
147 * than the one, which initially locked the mutex, it will
148 * wait on mutex.
149 */
regulator_lock_nested(struct regulator_dev * rdev,struct ww_acquire_ctx * ww_ctx)150 static inline int regulator_lock_nested(struct regulator_dev *rdev,
151 struct ww_acquire_ctx *ww_ctx)
152 {
153 bool lock = false;
154 int ret = 0;
155
156 mutex_lock(®ulator_nesting_mutex);
157
158 if (ww_ctx || !ww_mutex_trylock(&rdev->mutex)) {
159 if (rdev->mutex_owner == current)
160 rdev->ref_cnt++;
161 else
162 lock = true;
163
164 if (lock) {
165 mutex_unlock(®ulator_nesting_mutex);
166 ret = ww_mutex_lock(&rdev->mutex, ww_ctx);
167 mutex_lock(®ulator_nesting_mutex);
168 }
169 } else {
170 lock = true;
171 }
172
173 if (lock && ret != -EDEADLK) {
174 rdev->ref_cnt++;
175 rdev->mutex_owner = current;
176 }
177
178 mutex_unlock(®ulator_nesting_mutex);
179
180 return ret;
181 }
182
183 /**
184 * regulator_lock - lock a single regulator
185 * @rdev: regulator source
186 *
187 * This function can be called many times by one task on
188 * a single regulator and its mutex will be locked only
189 * once. If a task, which is calling this function is other
190 * than the one, which initially locked the mutex, it will
191 * wait on mutex.
192 */
regulator_lock(struct regulator_dev * rdev)193 static void regulator_lock(struct regulator_dev *rdev)
194 {
195 regulator_lock_nested(rdev, NULL);
196 }
197
198 /**
199 * regulator_unlock - unlock a single regulator
200 * @rdev: regulator_source
201 *
202 * This function unlocks the mutex when the
203 * reference counter reaches 0.
204 */
regulator_unlock(struct regulator_dev * rdev)205 static void regulator_unlock(struct regulator_dev *rdev)
206 {
207 mutex_lock(®ulator_nesting_mutex);
208
209 if (--rdev->ref_cnt == 0) {
210 rdev->mutex_owner = NULL;
211 ww_mutex_unlock(&rdev->mutex);
212 }
213
214 WARN_ON_ONCE(rdev->ref_cnt < 0);
215
216 mutex_unlock(®ulator_nesting_mutex);
217 }
218
regulator_supply_is_couple(struct regulator_dev * rdev)219 static bool regulator_supply_is_couple(struct regulator_dev *rdev)
220 {
221 struct regulator_dev *c_rdev;
222 int i;
223
224 for (i = 1; i < rdev->coupling_desc.n_coupled; i++) {
225 c_rdev = rdev->coupling_desc.coupled_rdevs[i];
226
227 if (rdev->supply->rdev == c_rdev)
228 return true;
229 }
230
231 return false;
232 }
233
regulator_unlock_recursive(struct regulator_dev * rdev,unsigned int n_coupled)234 static void regulator_unlock_recursive(struct regulator_dev *rdev,
235 unsigned int n_coupled)
236 {
237 struct regulator_dev *c_rdev, *supply_rdev;
238 int i, supply_n_coupled;
239
240 for (i = n_coupled; i > 0; i--) {
241 c_rdev = rdev->coupling_desc.coupled_rdevs[i - 1];
242
243 if (!c_rdev)
244 continue;
245
246 if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) {
247 supply_rdev = c_rdev->supply->rdev;
248 supply_n_coupled = supply_rdev->coupling_desc.n_coupled;
249
250 regulator_unlock_recursive(supply_rdev,
251 supply_n_coupled);
252 }
253
254 regulator_unlock(c_rdev);
255 }
256 }
257
regulator_lock_recursive(struct regulator_dev * rdev,struct regulator_dev ** new_contended_rdev,struct regulator_dev ** old_contended_rdev,struct ww_acquire_ctx * ww_ctx)258 static int regulator_lock_recursive(struct regulator_dev *rdev,
259 struct regulator_dev **new_contended_rdev,
260 struct regulator_dev **old_contended_rdev,
261 struct ww_acquire_ctx *ww_ctx)
262 {
263 struct regulator_dev *c_rdev;
264 int i, err;
265
266 for (i = 0; i < rdev->coupling_desc.n_coupled; i++) {
267 c_rdev = rdev->coupling_desc.coupled_rdevs[i];
268
269 if (!c_rdev)
270 continue;
271
272 if (c_rdev != *old_contended_rdev) {
273 err = regulator_lock_nested(c_rdev, ww_ctx);
274 if (err) {
275 if (err == -EDEADLK) {
276 *new_contended_rdev = c_rdev;
277 goto err_unlock;
278 }
279
280 /* shouldn't happen */
281 WARN_ON_ONCE(err != -EALREADY);
282 }
283 } else {
284 *old_contended_rdev = NULL;
285 }
286
287 if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) {
288 err = regulator_lock_recursive(c_rdev->supply->rdev,
289 new_contended_rdev,
290 old_contended_rdev,
291 ww_ctx);
292 if (err) {
293 regulator_unlock(c_rdev);
294 goto err_unlock;
295 }
296 }
297 }
298
299 return 0;
300
301 err_unlock:
302 regulator_unlock_recursive(rdev, i);
303
304 return err;
305 }
306
307 /**
308 * regulator_unlock_dependent - unlock regulator's suppliers and coupled
309 * regulators
310 * @rdev: regulator source
311 * @ww_ctx: w/w mutex acquire context
312 *
313 * Unlock all regulators related with rdev by coupling or supplying.
314 */
regulator_unlock_dependent(struct regulator_dev * rdev,struct ww_acquire_ctx * ww_ctx)315 static void regulator_unlock_dependent(struct regulator_dev *rdev,
316 struct ww_acquire_ctx *ww_ctx)
317 {
318 regulator_unlock_recursive(rdev, rdev->coupling_desc.n_coupled);
319 ww_acquire_fini(ww_ctx);
320 }
321
322 /**
323 * regulator_lock_dependent - lock regulator's suppliers and coupled regulators
324 * @rdev: regulator source
325 * @ww_ctx: w/w mutex acquire context
326 *
327 * This function as a wrapper on regulator_lock_recursive(), which locks
328 * all regulators related with rdev by coupling or supplying.
329 */
regulator_lock_dependent(struct regulator_dev * rdev,struct ww_acquire_ctx * ww_ctx)330 static void regulator_lock_dependent(struct regulator_dev *rdev,
331 struct ww_acquire_ctx *ww_ctx)
332 {
333 struct regulator_dev *new_contended_rdev = NULL;
334 struct regulator_dev *old_contended_rdev = NULL;
335 int err;
336
337 mutex_lock(®ulator_list_mutex);
338
339 ww_acquire_init(ww_ctx, ®ulator_ww_class);
340
341 do {
342 if (new_contended_rdev) {
343 ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
344 old_contended_rdev = new_contended_rdev;
345 old_contended_rdev->ref_cnt++;
346 }
347
348 err = regulator_lock_recursive(rdev,
349 &new_contended_rdev,
350 &old_contended_rdev,
351 ww_ctx);
352
353 if (old_contended_rdev)
354 regulator_unlock(old_contended_rdev);
355
356 } while (err == -EDEADLK);
357
358 ww_acquire_done(ww_ctx);
359
360 mutex_unlock(®ulator_list_mutex);
361 }
362
363 /**
364 * of_get_child_regulator - get a child regulator device node
365 * based on supply name
366 * @parent: Parent device node
367 * @prop_name: Combination regulator supply name and "-supply"
368 *
369 * Traverse all child nodes.
370 * Extract the child regulator device node corresponding to the supply name.
371 * returns the device node corresponding to the regulator if found, else
372 * returns NULL.
373 */
of_get_child_regulator(struct device_node * parent,const char * prop_name)374 static struct device_node *of_get_child_regulator(struct device_node *parent,
375 const char *prop_name)
376 {
377 struct device_node *regnode = NULL;
378 struct device_node *child = NULL;
379
380 for_each_child_of_node(parent, child) {
381 regnode = of_parse_phandle(child, prop_name, 0);
382
383 if (!regnode) {
384 regnode = of_get_child_regulator(child, prop_name);
385 if (regnode)
386 goto err_node_put;
387 } else {
388 goto err_node_put;
389 }
390 }
391 return NULL;
392
393 err_node_put:
394 of_node_put(child);
395 return regnode;
396 }
397
398 /**
399 * of_get_regulator - get a regulator device node based on supply name
400 * @dev: Device pointer for the consumer (of regulator) device
401 * @supply: regulator supply name
402 *
403 * Extract the regulator device node corresponding to the supply name.
404 * returns the device node corresponding to the regulator if found, else
405 * returns NULL.
406 */
of_get_regulator(struct device * dev,const char * supply)407 static struct device_node *of_get_regulator(struct device *dev, const char *supply)
408 {
409 struct device_node *regnode = NULL;
410 char prop_name[64]; /* 64 is max size of property name */
411
412 dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
413
414 snprintf(prop_name, 64, "%s-supply", supply);
415 regnode = of_parse_phandle(dev->of_node, prop_name, 0);
416
417 if (!regnode) {
418 regnode = of_get_child_regulator(dev->of_node, prop_name);
419 if (regnode)
420 return regnode;
421
422 dev_dbg(dev, "Looking up %s property in node %pOF failed\n",
423 prop_name, dev->of_node);
424 return NULL;
425 }
426 return regnode;
427 }
428
429 /* Platform voltage constraint check */
regulator_check_voltage(struct regulator_dev * rdev,int * min_uV,int * max_uV)430 int regulator_check_voltage(struct regulator_dev *rdev,
431 int *min_uV, int *max_uV)
432 {
433 BUG_ON(*min_uV > *max_uV);
434
435 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
436 rdev_err(rdev, "voltage operation not allowed\n");
437 return -EPERM;
438 }
439
440 if (*max_uV > rdev->constraints->max_uV)
441 *max_uV = rdev->constraints->max_uV;
442 if (*min_uV < rdev->constraints->min_uV)
443 *min_uV = rdev->constraints->min_uV;
444
445 if (*min_uV > *max_uV) {
446 rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
447 *min_uV, *max_uV);
448 return -EINVAL;
449 }
450
451 return 0;
452 }
453
454 /* return 0 if the state is valid */
regulator_check_states(suspend_state_t state)455 static int regulator_check_states(suspend_state_t state)
456 {
457 return (state > PM_SUSPEND_MAX || state == PM_SUSPEND_TO_IDLE);
458 }
459
460 /* Make sure we select a voltage that suits the needs of all
461 * regulator consumers
462 */
regulator_check_consumers(struct regulator_dev * rdev,int * min_uV,int * max_uV,suspend_state_t state)463 int regulator_check_consumers(struct regulator_dev *rdev,
464 int *min_uV, int *max_uV,
465 suspend_state_t state)
466 {
467 struct regulator *regulator;
468 struct regulator_voltage *voltage;
469
470 list_for_each_entry(regulator, &rdev->consumer_list, list) {
471 voltage = ®ulator->voltage[state];
472 /*
473 * Assume consumers that didn't say anything are OK
474 * with anything in the constraint range.
475 */
476 if (!voltage->min_uV && !voltage->max_uV)
477 continue;
478
479 if (*max_uV > voltage->max_uV)
480 *max_uV = voltage->max_uV;
481 if (*min_uV < voltage->min_uV)
482 *min_uV = voltage->min_uV;
483 }
484
485 if (*min_uV > *max_uV) {
486 rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
487 *min_uV, *max_uV);
488 return -EINVAL;
489 }
490
491 return 0;
492 }
493
494 /* current constraint check */
regulator_check_current_limit(struct regulator_dev * rdev,int * min_uA,int * max_uA)495 static int regulator_check_current_limit(struct regulator_dev *rdev,
496 int *min_uA, int *max_uA)
497 {
498 BUG_ON(*min_uA > *max_uA);
499
500 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_CURRENT)) {
501 rdev_err(rdev, "current operation not allowed\n");
502 return -EPERM;
503 }
504
505 if (*max_uA > rdev->constraints->max_uA)
506 *max_uA = rdev->constraints->max_uA;
507 if (*min_uA < rdev->constraints->min_uA)
508 *min_uA = rdev->constraints->min_uA;
509
510 if (*min_uA > *max_uA) {
511 rdev_err(rdev, "unsupportable current range: %d-%duA\n",
512 *min_uA, *max_uA);
513 return -EINVAL;
514 }
515
516 return 0;
517 }
518
519 /* operating mode constraint check */
regulator_mode_constrain(struct regulator_dev * rdev,unsigned int * mode)520 static int regulator_mode_constrain(struct regulator_dev *rdev,
521 unsigned int *mode)
522 {
523 switch (*mode) {
524 case REGULATOR_MODE_FAST:
525 case REGULATOR_MODE_NORMAL:
526 case REGULATOR_MODE_IDLE:
527 case REGULATOR_MODE_STANDBY:
528 break;
529 default:
530 rdev_err(rdev, "invalid mode %x specified\n", *mode);
531 return -EINVAL;
532 }
533
534 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_MODE)) {
535 rdev_err(rdev, "mode operation not allowed\n");
536 return -EPERM;
537 }
538
539 /* The modes are bitmasks, the most power hungry modes having
540 * the lowest values. If the requested mode isn't supported
541 * try higher modes. */
542 while (*mode) {
543 if (rdev->constraints->valid_modes_mask & *mode)
544 return 0;
545 *mode /= 2;
546 }
547
548 return -EINVAL;
549 }
550
551 static inline struct regulator_state *
regulator_get_suspend_state(struct regulator_dev * rdev,suspend_state_t state)552 regulator_get_suspend_state(struct regulator_dev *rdev, suspend_state_t state)
553 {
554 if (rdev->constraints == NULL)
555 return NULL;
556
557 switch (state) {
558 case PM_SUSPEND_STANDBY:
559 return &rdev->constraints->state_standby;
560 case PM_SUSPEND_MEM:
561 return &rdev->constraints->state_mem;
562 case PM_SUSPEND_MAX:
563 return &rdev->constraints->state_disk;
564 default:
565 return NULL;
566 }
567 }
568
569 static const struct regulator_state *
regulator_get_suspend_state_check(struct regulator_dev * rdev,suspend_state_t state)570 regulator_get_suspend_state_check(struct regulator_dev *rdev, suspend_state_t state)
571 {
572 const struct regulator_state *rstate;
573
574 rstate = regulator_get_suspend_state(rdev, state);
575 if (rstate == NULL)
576 return NULL;
577
578 /* If we have no suspend mode configuration don't set anything;
579 * only warn if the driver implements set_suspend_voltage or
580 * set_suspend_mode callback.
581 */
582 if (rstate->enabled != ENABLE_IN_SUSPEND &&
583 rstate->enabled != DISABLE_IN_SUSPEND) {
584 if (rdev->desc->ops->set_suspend_voltage ||
585 rdev->desc->ops->set_suspend_mode)
586 rdev_warn(rdev, "No configuration\n");
587 return NULL;
588 }
589
590 return rstate;
591 }
592
regulator_uV_show(struct device * dev,struct device_attribute * attr,char * buf)593 static ssize_t regulator_uV_show(struct device *dev,
594 struct device_attribute *attr, char *buf)
595 {
596 struct regulator_dev *rdev = dev_get_drvdata(dev);
597 int uV;
598
599 regulator_lock(rdev);
600 uV = regulator_get_voltage_rdev(rdev);
601 regulator_unlock(rdev);
602
603 if (uV < 0)
604 return uV;
605 return sprintf(buf, "%d\n", uV);
606 }
607 static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
608
regulator_uA_show(struct device * dev,struct device_attribute * attr,char * buf)609 static ssize_t regulator_uA_show(struct device *dev,
610 struct device_attribute *attr, char *buf)
611 {
612 struct regulator_dev *rdev = dev_get_drvdata(dev);
613
614 return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
615 }
616 static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
617
name_show(struct device * dev,struct device_attribute * attr,char * buf)618 static ssize_t name_show(struct device *dev, struct device_attribute *attr,
619 char *buf)
620 {
621 struct regulator_dev *rdev = dev_get_drvdata(dev);
622
623 return sprintf(buf, "%s\n", rdev_get_name(rdev));
624 }
625 static DEVICE_ATTR_RO(name);
626
regulator_opmode_to_str(int mode)627 static const char *regulator_opmode_to_str(int mode)
628 {
629 switch (mode) {
630 case REGULATOR_MODE_FAST:
631 return "fast";
632 case REGULATOR_MODE_NORMAL:
633 return "normal";
634 case REGULATOR_MODE_IDLE:
635 return "idle";
636 case REGULATOR_MODE_STANDBY:
637 return "standby";
638 }
639 return "unknown";
640 }
641
regulator_print_opmode(char * buf,int mode)642 static ssize_t regulator_print_opmode(char *buf, int mode)
643 {
644 return sprintf(buf, "%s\n", regulator_opmode_to_str(mode));
645 }
646
regulator_opmode_show(struct device * dev,struct device_attribute * attr,char * buf)647 static ssize_t regulator_opmode_show(struct device *dev,
648 struct device_attribute *attr, char *buf)
649 {
650 struct regulator_dev *rdev = dev_get_drvdata(dev);
651
652 return regulator_print_opmode(buf, _regulator_get_mode(rdev));
653 }
654 static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
655
regulator_print_state(char * buf,int state)656 static ssize_t regulator_print_state(char *buf, int state)
657 {
658 if (state > 0)
659 return sprintf(buf, "enabled\n");
660 else if (state == 0)
661 return sprintf(buf, "disabled\n");
662 else
663 return sprintf(buf, "unknown\n");
664 }
665
regulator_state_show(struct device * dev,struct device_attribute * attr,char * buf)666 static ssize_t regulator_state_show(struct device *dev,
667 struct device_attribute *attr, char *buf)
668 {
669 struct regulator_dev *rdev = dev_get_drvdata(dev);
670 ssize_t ret;
671
672 regulator_lock(rdev);
673 ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
674 regulator_unlock(rdev);
675
676 return ret;
677 }
678 static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
679
regulator_status_show(struct device * dev,struct device_attribute * attr,char * buf)680 static ssize_t regulator_status_show(struct device *dev,
681 struct device_attribute *attr, char *buf)
682 {
683 struct regulator_dev *rdev = dev_get_drvdata(dev);
684 int status;
685 char *label;
686
687 status = rdev->desc->ops->get_status(rdev);
688 if (status < 0)
689 return status;
690
691 switch (status) {
692 case REGULATOR_STATUS_OFF:
693 label = "off";
694 break;
695 case REGULATOR_STATUS_ON:
696 label = "on";
697 break;
698 case REGULATOR_STATUS_ERROR:
699 label = "error";
700 break;
701 case REGULATOR_STATUS_FAST:
702 label = "fast";
703 break;
704 case REGULATOR_STATUS_NORMAL:
705 label = "normal";
706 break;
707 case REGULATOR_STATUS_IDLE:
708 label = "idle";
709 break;
710 case REGULATOR_STATUS_STANDBY:
711 label = "standby";
712 break;
713 case REGULATOR_STATUS_BYPASS:
714 label = "bypass";
715 break;
716 case REGULATOR_STATUS_UNDEFINED:
717 label = "undefined";
718 break;
719 default:
720 return -ERANGE;
721 }
722
723 return sprintf(buf, "%s\n", label);
724 }
725 static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
726
regulator_min_uA_show(struct device * dev,struct device_attribute * attr,char * buf)727 static ssize_t regulator_min_uA_show(struct device *dev,
728 struct device_attribute *attr, char *buf)
729 {
730 struct regulator_dev *rdev = dev_get_drvdata(dev);
731
732 if (!rdev->constraints)
733 return sprintf(buf, "constraint not defined\n");
734
735 return sprintf(buf, "%d\n", rdev->constraints->min_uA);
736 }
737 static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
738
regulator_max_uA_show(struct device * dev,struct device_attribute * attr,char * buf)739 static ssize_t regulator_max_uA_show(struct device *dev,
740 struct device_attribute *attr, char *buf)
741 {
742 struct regulator_dev *rdev = dev_get_drvdata(dev);
743
744 if (!rdev->constraints)
745 return sprintf(buf, "constraint not defined\n");
746
747 return sprintf(buf, "%d\n", rdev->constraints->max_uA);
748 }
749 static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
750
regulator_min_uV_show(struct device * dev,struct device_attribute * attr,char * buf)751 static ssize_t regulator_min_uV_show(struct device *dev,
752 struct device_attribute *attr, char *buf)
753 {
754 struct regulator_dev *rdev = dev_get_drvdata(dev);
755
756 if (!rdev->constraints)
757 return sprintf(buf, "constraint not defined\n");
758
759 return sprintf(buf, "%d\n", rdev->constraints->min_uV);
760 }
761 static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
762
regulator_max_uV_show(struct device * dev,struct device_attribute * attr,char * buf)763 static ssize_t regulator_max_uV_show(struct device *dev,
764 struct device_attribute *attr, char *buf)
765 {
766 struct regulator_dev *rdev = dev_get_drvdata(dev);
767
768 if (!rdev->constraints)
769 return sprintf(buf, "constraint not defined\n");
770
771 return sprintf(buf, "%d\n", rdev->constraints->max_uV);
772 }
773 static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
774
regulator_total_uA_show(struct device * dev,struct device_attribute * attr,char * buf)775 static ssize_t regulator_total_uA_show(struct device *dev,
776 struct device_attribute *attr, char *buf)
777 {
778 struct regulator_dev *rdev = dev_get_drvdata(dev);
779 struct regulator *regulator;
780 int uA = 0;
781
782 regulator_lock(rdev);
783 list_for_each_entry(regulator, &rdev->consumer_list, list) {
784 if (regulator->enable_count)
785 uA += regulator->uA_load;
786 }
787 regulator_unlock(rdev);
788 return sprintf(buf, "%d\n", uA);
789 }
790 static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
791
num_users_show(struct device * dev,struct device_attribute * attr,char * buf)792 static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
793 char *buf)
794 {
795 struct regulator_dev *rdev = dev_get_drvdata(dev);
796 return sprintf(buf, "%d\n", rdev->use_count);
797 }
798 static DEVICE_ATTR_RO(num_users);
799
type_show(struct device * dev,struct device_attribute * attr,char * buf)800 static ssize_t type_show(struct device *dev, struct device_attribute *attr,
801 char *buf)
802 {
803 struct regulator_dev *rdev = dev_get_drvdata(dev);
804
805 switch (rdev->desc->type) {
806 case REGULATOR_VOLTAGE:
807 return sprintf(buf, "voltage\n");
808 case REGULATOR_CURRENT:
809 return sprintf(buf, "current\n");
810 }
811 return sprintf(buf, "unknown\n");
812 }
813 static DEVICE_ATTR_RO(type);
814
regulator_suspend_mem_uV_show(struct device * dev,struct device_attribute * attr,char * buf)815 static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
816 struct device_attribute *attr, char *buf)
817 {
818 struct regulator_dev *rdev = dev_get_drvdata(dev);
819
820 return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
821 }
822 static DEVICE_ATTR(suspend_mem_microvolts, 0444,
823 regulator_suspend_mem_uV_show, NULL);
824
regulator_suspend_disk_uV_show(struct device * dev,struct device_attribute * attr,char * buf)825 static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
826 struct device_attribute *attr, char *buf)
827 {
828 struct regulator_dev *rdev = dev_get_drvdata(dev);
829
830 return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
831 }
832 static DEVICE_ATTR(suspend_disk_microvolts, 0444,
833 regulator_suspend_disk_uV_show, NULL);
834
regulator_suspend_standby_uV_show(struct device * dev,struct device_attribute * attr,char * buf)835 static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
836 struct device_attribute *attr, char *buf)
837 {
838 struct regulator_dev *rdev = dev_get_drvdata(dev);
839
840 return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
841 }
842 static DEVICE_ATTR(suspend_standby_microvolts, 0444,
843 regulator_suspend_standby_uV_show, NULL);
844
regulator_suspend_mem_mode_show(struct device * dev,struct device_attribute * attr,char * buf)845 static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
846 struct device_attribute *attr, char *buf)
847 {
848 struct regulator_dev *rdev = dev_get_drvdata(dev);
849
850 return regulator_print_opmode(buf,
851 rdev->constraints->state_mem.mode);
852 }
853 static DEVICE_ATTR(suspend_mem_mode, 0444,
854 regulator_suspend_mem_mode_show, NULL);
855
regulator_suspend_disk_mode_show(struct device * dev,struct device_attribute * attr,char * buf)856 static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
857 struct device_attribute *attr, char *buf)
858 {
859 struct regulator_dev *rdev = dev_get_drvdata(dev);
860
861 return regulator_print_opmode(buf,
862 rdev->constraints->state_disk.mode);
863 }
864 static DEVICE_ATTR(suspend_disk_mode, 0444,
865 regulator_suspend_disk_mode_show, NULL);
866
regulator_suspend_standby_mode_show(struct device * dev,struct device_attribute * attr,char * buf)867 static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
868 struct device_attribute *attr, char *buf)
869 {
870 struct regulator_dev *rdev = dev_get_drvdata(dev);
871
872 return regulator_print_opmode(buf,
873 rdev->constraints->state_standby.mode);
874 }
875 static DEVICE_ATTR(suspend_standby_mode, 0444,
876 regulator_suspend_standby_mode_show, NULL);
877
regulator_suspend_mem_state_show(struct device * dev,struct device_attribute * attr,char * buf)878 static ssize_t regulator_suspend_mem_state_show(struct device *dev,
879 struct device_attribute *attr, char *buf)
880 {
881 struct regulator_dev *rdev = dev_get_drvdata(dev);
882
883 return regulator_print_state(buf,
884 rdev->constraints->state_mem.enabled);
885 }
886 static DEVICE_ATTR(suspend_mem_state, 0444,
887 regulator_suspend_mem_state_show, NULL);
888
regulator_suspend_disk_state_show(struct device * dev,struct device_attribute * attr,char * buf)889 static ssize_t regulator_suspend_disk_state_show(struct device *dev,
890 struct device_attribute *attr, char *buf)
891 {
892 struct regulator_dev *rdev = dev_get_drvdata(dev);
893
894 return regulator_print_state(buf,
895 rdev->constraints->state_disk.enabled);
896 }
897 static DEVICE_ATTR(suspend_disk_state, 0444,
898 regulator_suspend_disk_state_show, NULL);
899
regulator_suspend_standby_state_show(struct device * dev,struct device_attribute * attr,char * buf)900 static ssize_t regulator_suspend_standby_state_show(struct device *dev,
901 struct device_attribute *attr, char *buf)
902 {
903 struct regulator_dev *rdev = dev_get_drvdata(dev);
904
905 return regulator_print_state(buf,
906 rdev->constraints->state_standby.enabled);
907 }
908 static DEVICE_ATTR(suspend_standby_state, 0444,
909 regulator_suspend_standby_state_show, NULL);
910
regulator_bypass_show(struct device * dev,struct device_attribute * attr,char * buf)911 static ssize_t regulator_bypass_show(struct device *dev,
912 struct device_attribute *attr, char *buf)
913 {
914 struct regulator_dev *rdev = dev_get_drvdata(dev);
915 const char *report;
916 bool bypass;
917 int ret;
918
919 ret = rdev->desc->ops->get_bypass(rdev, &bypass);
920
921 if (ret != 0)
922 report = "unknown";
923 else if (bypass)
924 report = "enabled";
925 else
926 report = "disabled";
927
928 return sprintf(buf, "%s\n", report);
929 }
930 static DEVICE_ATTR(bypass, 0444,
931 regulator_bypass_show, NULL);
932
933 /* Calculate the new optimum regulator operating mode based on the new total
934 * consumer load. All locks held by caller */
drms_uA_update(struct regulator_dev * rdev)935 static int drms_uA_update(struct regulator_dev *rdev)
936 {
937 struct regulator *sibling;
938 int current_uA = 0, output_uV, input_uV, err;
939 unsigned int mode;
940
941 /*
942 * first check to see if we can set modes at all, otherwise just
943 * tell the consumer everything is OK.
944 */
945 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS)) {
946 rdev_dbg(rdev, "DRMS operation not allowed\n");
947 return 0;
948 }
949
950 if (!rdev->desc->ops->get_optimum_mode &&
951 !rdev->desc->ops->set_load)
952 return 0;
953
954 if (!rdev->desc->ops->set_mode &&
955 !rdev->desc->ops->set_load)
956 return -EINVAL;
957
958 /* calc total requested load */
959 list_for_each_entry(sibling, &rdev->consumer_list, list) {
960 if (sibling->enable_count)
961 current_uA += sibling->uA_load;
962 }
963
964 current_uA += rdev->constraints->system_load;
965
966 if (rdev->desc->ops->set_load) {
967 /* set the optimum mode for our new total regulator load */
968 err = rdev->desc->ops->set_load(rdev, current_uA);
969 if (err < 0)
970 rdev_err(rdev, "failed to set load %d: %pe\n",
971 current_uA, ERR_PTR(err));
972 } else {
973 /* get output voltage */
974 output_uV = regulator_get_voltage_rdev(rdev);
975 if (output_uV <= 0) {
976 rdev_err(rdev, "invalid output voltage found\n");
977 return -EINVAL;
978 }
979
980 /* get input voltage */
981 input_uV = 0;
982 if (rdev->supply)
983 input_uV = regulator_get_voltage(rdev->supply);
984 if (input_uV <= 0)
985 input_uV = rdev->constraints->input_uV;
986 if (input_uV <= 0) {
987 rdev_err(rdev, "invalid input voltage found\n");
988 return -EINVAL;
989 }
990
991 /* now get the optimum mode for our new total regulator load */
992 mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
993 output_uV, current_uA);
994
995 /* check the new mode is allowed */
996 err = regulator_mode_constrain(rdev, &mode);
997 if (err < 0) {
998 rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV: %pe\n",
999 current_uA, input_uV, output_uV, ERR_PTR(err));
1000 return err;
1001 }
1002
1003 err = rdev->desc->ops->set_mode(rdev, mode);
1004 if (err < 0)
1005 rdev_err(rdev, "failed to set optimum mode %x: %pe\n",
1006 mode, ERR_PTR(err));
1007 }
1008
1009 return err;
1010 }
1011
__suspend_set_state(struct regulator_dev * rdev,const struct regulator_state * rstate)1012 static int __suspend_set_state(struct regulator_dev *rdev,
1013 const struct regulator_state *rstate)
1014 {
1015 int ret = 0;
1016
1017 if (rstate->enabled == ENABLE_IN_SUSPEND &&
1018 rdev->desc->ops->set_suspend_enable)
1019 ret = rdev->desc->ops->set_suspend_enable(rdev);
1020 else if (rstate->enabled == DISABLE_IN_SUSPEND &&
1021 rdev->desc->ops->set_suspend_disable)
1022 ret = rdev->desc->ops->set_suspend_disable(rdev);
1023 else /* OK if set_suspend_enable or set_suspend_disable is NULL */
1024 ret = 0;
1025
1026 if (ret < 0) {
1027 rdev_err(rdev, "failed to enabled/disable: %pe\n", ERR_PTR(ret));
1028 return ret;
1029 }
1030
1031 if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
1032 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
1033 if (ret < 0) {
1034 rdev_err(rdev, "failed to set voltage: %pe\n", ERR_PTR(ret));
1035 return ret;
1036 }
1037 }
1038
1039 if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
1040 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
1041 if (ret < 0) {
1042 rdev_err(rdev, "failed to set mode: %pe\n", ERR_PTR(ret));
1043 return ret;
1044 }
1045 }
1046
1047 return ret;
1048 }
1049
suspend_set_initial_state(struct regulator_dev * rdev)1050 static int suspend_set_initial_state(struct regulator_dev *rdev)
1051 {
1052 const struct regulator_state *rstate;
1053
1054 rstate = regulator_get_suspend_state_check(rdev,
1055 rdev->constraints->initial_state);
1056 if (!rstate)
1057 return 0;
1058
1059 return __suspend_set_state(rdev, rstate);
1060 }
1061
1062 #if defined(DEBUG) || defined(CONFIG_DYNAMIC_DEBUG)
print_constraints_debug(struct regulator_dev * rdev)1063 static void print_constraints_debug(struct regulator_dev *rdev)
1064 {
1065 struct regulation_constraints *constraints = rdev->constraints;
1066 char buf[160] = "";
1067 size_t len = sizeof(buf) - 1;
1068 int count = 0;
1069 int ret;
1070
1071 if (constraints->min_uV && constraints->max_uV) {
1072 if (constraints->min_uV == constraints->max_uV)
1073 count += scnprintf(buf + count, len - count, "%d mV ",
1074 constraints->min_uV / 1000);
1075 else
1076 count += scnprintf(buf + count, len - count,
1077 "%d <--> %d mV ",
1078 constraints->min_uV / 1000,
1079 constraints->max_uV / 1000);
1080 }
1081
1082 if (!constraints->min_uV ||
1083 constraints->min_uV != constraints->max_uV) {
1084 ret = regulator_get_voltage_rdev(rdev);
1085 if (ret > 0)
1086 count += scnprintf(buf + count, len - count,
1087 "at %d mV ", ret / 1000);
1088 }
1089
1090 if (constraints->uV_offset)
1091 count += scnprintf(buf + count, len - count, "%dmV offset ",
1092 constraints->uV_offset / 1000);
1093
1094 if (constraints->min_uA && constraints->max_uA) {
1095 if (constraints->min_uA == constraints->max_uA)
1096 count += scnprintf(buf + count, len - count, "%d mA ",
1097 constraints->min_uA / 1000);
1098 else
1099 count += scnprintf(buf + count, len - count,
1100 "%d <--> %d mA ",
1101 constraints->min_uA / 1000,
1102 constraints->max_uA / 1000);
1103 }
1104
1105 if (!constraints->min_uA ||
1106 constraints->min_uA != constraints->max_uA) {
1107 ret = _regulator_get_current_limit(rdev);
1108 if (ret > 0)
1109 count += scnprintf(buf + count, len - count,
1110 "at %d mA ", ret / 1000);
1111 }
1112
1113 if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
1114 count += scnprintf(buf + count, len - count, "fast ");
1115 if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
1116 count += scnprintf(buf + count, len - count, "normal ");
1117 if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
1118 count += scnprintf(buf + count, len - count, "idle ");
1119 if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
1120 count += scnprintf(buf + count, len - count, "standby ");
1121
1122 if (!count)
1123 count = scnprintf(buf, len, "no parameters");
1124 else
1125 --count;
1126
1127 count += scnprintf(buf + count, len - count, ", %s",
1128 _regulator_is_enabled(rdev) ? "enabled" : "disabled");
1129
1130 rdev_dbg(rdev, "%s\n", buf);
1131 }
1132 #else /* !DEBUG && !CONFIG_DYNAMIC_DEBUG */
print_constraints_debug(struct regulator_dev * rdev)1133 static inline void print_constraints_debug(struct regulator_dev *rdev) {}
1134 #endif /* !DEBUG && !CONFIG_DYNAMIC_DEBUG */
1135
print_constraints(struct regulator_dev * rdev)1136 static void print_constraints(struct regulator_dev *rdev)
1137 {
1138 struct regulation_constraints *constraints = rdev->constraints;
1139
1140 print_constraints_debug(rdev);
1141
1142 if ((constraints->min_uV != constraints->max_uV) &&
1143 !regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE))
1144 rdev_warn(rdev,
1145 "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
1146 }
1147
machine_constraints_voltage(struct regulator_dev * rdev,struct regulation_constraints * constraints)1148 static int machine_constraints_voltage(struct regulator_dev *rdev,
1149 struct regulation_constraints *constraints)
1150 {
1151 const struct regulator_ops *ops = rdev->desc->ops;
1152 int ret;
1153
1154 /* do we need to apply the constraint voltage */
1155 if (rdev->constraints->apply_uV &&
1156 rdev->constraints->min_uV && rdev->constraints->max_uV) {
1157 int target_min, target_max;
1158 int current_uV = regulator_get_voltage_rdev(rdev);
1159
1160 if (current_uV == -ENOTRECOVERABLE) {
1161 /* This regulator can't be read and must be initialized */
1162 rdev_info(rdev, "Setting %d-%duV\n",
1163 rdev->constraints->min_uV,
1164 rdev->constraints->max_uV);
1165 _regulator_do_set_voltage(rdev,
1166 rdev->constraints->min_uV,
1167 rdev->constraints->max_uV);
1168 current_uV = regulator_get_voltage_rdev(rdev);
1169 }
1170
1171 if (current_uV < 0) {
1172 rdev_err(rdev,
1173 "failed to get the current voltage: %pe\n",
1174 ERR_PTR(current_uV));
1175 return current_uV;
1176 }
1177
1178 /*
1179 * If we're below the minimum voltage move up to the
1180 * minimum voltage, if we're above the maximum voltage
1181 * then move down to the maximum.
1182 */
1183 target_min = current_uV;
1184 target_max = current_uV;
1185
1186 if (current_uV < rdev->constraints->min_uV) {
1187 target_min = rdev->constraints->min_uV;
1188 target_max = rdev->constraints->min_uV;
1189 }
1190
1191 if (current_uV > rdev->constraints->max_uV) {
1192 target_min = rdev->constraints->max_uV;
1193 target_max = rdev->constraints->max_uV;
1194 }
1195
1196 if (target_min != current_uV || target_max != current_uV) {
1197 rdev_info(rdev, "Bringing %duV into %d-%duV\n",
1198 current_uV, target_min, target_max);
1199 ret = _regulator_do_set_voltage(
1200 rdev, target_min, target_max);
1201 if (ret < 0) {
1202 rdev_err(rdev,
1203 "failed to apply %d-%duV constraint: %pe\n",
1204 target_min, target_max, ERR_PTR(ret));
1205 return ret;
1206 }
1207 }
1208 }
1209
1210 /* constrain machine-level voltage specs to fit
1211 * the actual range supported by this regulator.
1212 */
1213 if (ops->list_voltage && rdev->desc->n_voltages) {
1214 int count = rdev->desc->n_voltages;
1215 int i;
1216 int min_uV = INT_MAX;
1217 int max_uV = INT_MIN;
1218 int cmin = constraints->min_uV;
1219 int cmax = constraints->max_uV;
1220
1221 /* it's safe to autoconfigure fixed-voltage supplies
1222 and the constraints are used by list_voltage. */
1223 if (count == 1 && !cmin) {
1224 cmin = 1;
1225 cmax = INT_MAX;
1226 constraints->min_uV = cmin;
1227 constraints->max_uV = cmax;
1228 }
1229
1230 /* voltage constraints are optional */
1231 if ((cmin == 0) && (cmax == 0))
1232 return 0;
1233
1234 /* else require explicit machine-level constraints */
1235 if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
1236 rdev_err(rdev, "invalid voltage constraints\n");
1237 return -EINVAL;
1238 }
1239
1240 /* no need to loop voltages if range is continuous */
1241 if (rdev->desc->continuous_voltage_range)
1242 return 0;
1243
1244 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
1245 for (i = 0; i < count; i++) {
1246 int value;
1247
1248 value = ops->list_voltage(rdev, i);
1249 if (value <= 0)
1250 continue;
1251
1252 /* maybe adjust [min_uV..max_uV] */
1253 if (value >= cmin && value < min_uV)
1254 min_uV = value;
1255 if (value <= cmax && value > max_uV)
1256 max_uV = value;
1257 }
1258
1259 /* final: [min_uV..max_uV] valid iff constraints valid */
1260 if (max_uV < min_uV) {
1261 rdev_err(rdev,
1262 "unsupportable voltage constraints %u-%uuV\n",
1263 min_uV, max_uV);
1264 return -EINVAL;
1265 }
1266
1267 /* use regulator's subset of machine constraints */
1268 if (constraints->min_uV < min_uV) {
1269 rdev_dbg(rdev, "override min_uV, %d -> %d\n",
1270 constraints->min_uV, min_uV);
1271 constraints->min_uV = min_uV;
1272 }
1273 if (constraints->max_uV > max_uV) {
1274 rdev_dbg(rdev, "override max_uV, %d -> %d\n",
1275 constraints->max_uV, max_uV);
1276 constraints->max_uV = max_uV;
1277 }
1278 }
1279
1280 return 0;
1281 }
1282
machine_constraints_current(struct regulator_dev * rdev,struct regulation_constraints * constraints)1283 static int machine_constraints_current(struct regulator_dev *rdev,
1284 struct regulation_constraints *constraints)
1285 {
1286 const struct regulator_ops *ops = rdev->desc->ops;
1287 int ret;
1288
1289 if (!constraints->min_uA && !constraints->max_uA)
1290 return 0;
1291
1292 if (constraints->min_uA > constraints->max_uA) {
1293 rdev_err(rdev, "Invalid current constraints\n");
1294 return -EINVAL;
1295 }
1296
1297 if (!ops->set_current_limit || !ops->get_current_limit) {
1298 rdev_warn(rdev, "Operation of current configuration missing\n");
1299 return 0;
1300 }
1301
1302 /* Set regulator current in constraints range */
1303 ret = ops->set_current_limit(rdev, constraints->min_uA,
1304 constraints->max_uA);
1305 if (ret < 0) {
1306 rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
1307 return ret;
1308 }
1309
1310 return 0;
1311 }
1312
1313 static int _regulator_do_enable(struct regulator_dev *rdev);
1314
1315 /**
1316 * set_machine_constraints - sets regulator constraints
1317 * @rdev: regulator source
1318 *
1319 * Allows platform initialisation code to define and constrain
1320 * regulator circuits e.g. valid voltage/current ranges, etc. NOTE:
1321 * Constraints *must* be set by platform code in order for some
1322 * regulator operations to proceed i.e. set_voltage, set_current_limit,
1323 * set_mode.
1324 */
set_machine_constraints(struct regulator_dev * rdev)1325 static int set_machine_constraints(struct regulator_dev *rdev)
1326 {
1327 int ret = 0;
1328 const struct regulator_ops *ops = rdev->desc->ops;
1329
1330 ret = machine_constraints_voltage(rdev, rdev->constraints);
1331 if (ret != 0)
1332 return ret;
1333
1334 ret = machine_constraints_current(rdev, rdev->constraints);
1335 if (ret != 0)
1336 return ret;
1337
1338 if (rdev->constraints->ilim_uA && ops->set_input_current_limit) {
1339 ret = ops->set_input_current_limit(rdev,
1340 rdev->constraints->ilim_uA);
1341 if (ret < 0) {
1342 rdev_err(rdev, "failed to set input limit: %pe\n", ERR_PTR(ret));
1343 return ret;
1344 }
1345 }
1346
1347 /* do we need to setup our suspend state */
1348 if (rdev->constraints->initial_state) {
1349 ret = suspend_set_initial_state(rdev);
1350 if (ret < 0) {
1351 rdev_err(rdev, "failed to set suspend state: %pe\n", ERR_PTR(ret));
1352 return ret;
1353 }
1354 }
1355
1356 if (rdev->constraints->initial_mode) {
1357 if (!ops->set_mode) {
1358 rdev_err(rdev, "no set_mode operation\n");
1359 return -EINVAL;
1360 }
1361
1362 ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1363 if (ret < 0) {
1364 rdev_err(rdev, "failed to set initial mode: %pe\n", ERR_PTR(ret));
1365 return ret;
1366 }
1367 } else if (rdev->constraints->system_load) {
1368 /*
1369 * We'll only apply the initial system load if an
1370 * initial mode wasn't specified.
1371 */
1372 drms_uA_update(rdev);
1373 }
1374
1375 if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
1376 && ops->set_ramp_delay) {
1377 ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
1378 if (ret < 0) {
1379 rdev_err(rdev, "failed to set ramp_delay: %pe\n", ERR_PTR(ret));
1380 return ret;
1381 }
1382 }
1383
1384 if (rdev->constraints->pull_down && ops->set_pull_down) {
1385 ret = ops->set_pull_down(rdev);
1386 if (ret < 0) {
1387 rdev_err(rdev, "failed to set pull down: %pe\n", ERR_PTR(ret));
1388 return ret;
1389 }
1390 }
1391
1392 if (rdev->constraints->soft_start && ops->set_soft_start) {
1393 ret = ops->set_soft_start(rdev);
1394 if (ret < 0) {
1395 rdev_err(rdev, "failed to set soft start: %pe\n", ERR_PTR(ret));
1396 return ret;
1397 }
1398 }
1399
1400 if (rdev->constraints->over_current_protection
1401 && ops->set_over_current_protection) {
1402 ret = ops->set_over_current_protection(rdev);
1403 if (ret < 0) {
1404 rdev_err(rdev, "failed to set over current protection: %pe\n",
1405 ERR_PTR(ret));
1406 return ret;
1407 }
1408 }
1409
1410 if (rdev->constraints->active_discharge && ops->set_active_discharge) {
1411 bool ad_state = (rdev->constraints->active_discharge ==
1412 REGULATOR_ACTIVE_DISCHARGE_ENABLE) ? true : false;
1413
1414 ret = ops->set_active_discharge(rdev, ad_state);
1415 if (ret < 0) {
1416 rdev_err(rdev, "failed to set active discharge: %pe\n", ERR_PTR(ret));
1417 return ret;
1418 }
1419 }
1420
1421 /* If the constraints say the regulator should be on at this point
1422 * and we have control then make sure it is enabled.
1423 */
1424 if (rdev->constraints->always_on || rdev->constraints->boot_on) {
1425 /* If we want to enable this regulator, make sure that we know
1426 * the supplying regulator.
1427 */
1428 if (rdev->supply_name && !rdev->supply)
1429 return -EPROBE_DEFER;
1430
1431 if (rdev->supply) {
1432 ret = regulator_enable(rdev->supply);
1433 if (ret < 0) {
1434 _regulator_put(rdev->supply);
1435 rdev->supply = NULL;
1436 return ret;
1437 }
1438 }
1439
1440 ret = _regulator_do_enable(rdev);
1441 if (ret < 0 && ret != -EINVAL) {
1442 rdev_err(rdev, "failed to enable: %pe\n", ERR_PTR(ret));
1443 return ret;
1444 }
1445
1446 if (rdev->constraints->always_on)
1447 rdev->use_count++;
1448 } else if (rdev->desc->off_on_delay) {
1449 rdev->last_off_jiffy = jiffies;
1450 }
1451
1452 print_constraints(rdev);
1453 return 0;
1454 }
1455
1456 /**
1457 * set_supply - set regulator supply regulator
1458 * @rdev: regulator name
1459 * @supply_rdev: supply regulator name
1460 *
1461 * Called by platform initialisation code to set the supply regulator for this
1462 * regulator. This ensures that a regulators supply will also be enabled by the
1463 * core if it's child is enabled.
1464 */
set_supply(struct regulator_dev * rdev,struct regulator_dev * supply_rdev)1465 static int set_supply(struct regulator_dev *rdev,
1466 struct regulator_dev *supply_rdev)
1467 {
1468 int err;
1469
1470 rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1471
1472 if (!try_module_get(supply_rdev->owner))
1473 return -ENODEV;
1474
1475 rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1476 if (rdev->supply == NULL) {
1477 err = -ENOMEM;
1478 return err;
1479 }
1480 supply_rdev->open_count++;
1481
1482 return 0;
1483 }
1484
1485 /**
1486 * set_consumer_device_supply - Bind a regulator to a symbolic supply
1487 * @rdev: regulator source
1488 * @consumer_dev_name: dev_name() string for device supply applies to
1489 * @supply: symbolic name for supply
1490 *
1491 * Allows platform initialisation code to map physical regulator
1492 * sources to symbolic names for supplies for use by devices. Devices
1493 * should use these symbolic names to request regulators, avoiding the
1494 * need to provide board-specific regulator names as platform data.
1495 */
set_consumer_device_supply(struct regulator_dev * rdev,const char * consumer_dev_name,const char * supply)1496 static int set_consumer_device_supply(struct regulator_dev *rdev,
1497 const char *consumer_dev_name,
1498 const char *supply)
1499 {
1500 struct regulator_map *node, *new_node;
1501 int has_dev;
1502
1503 if (supply == NULL)
1504 return -EINVAL;
1505
1506 if (consumer_dev_name != NULL)
1507 has_dev = 1;
1508 else
1509 has_dev = 0;
1510
1511 new_node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1512 if (new_node == NULL)
1513 return -ENOMEM;
1514
1515 new_node->regulator = rdev;
1516 new_node->supply = supply;
1517
1518 if (has_dev) {
1519 new_node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1520 if (new_node->dev_name == NULL) {
1521 kfree(new_node);
1522 return -ENOMEM;
1523 }
1524 }
1525
1526 mutex_lock(®ulator_list_mutex);
1527 list_for_each_entry(node, ®ulator_map_list, list) {
1528 if (node->dev_name && consumer_dev_name) {
1529 if (strcmp(node->dev_name, consumer_dev_name) != 0)
1530 continue;
1531 } else if (node->dev_name || consumer_dev_name) {
1532 continue;
1533 }
1534
1535 if (strcmp(node->supply, supply) != 0)
1536 continue;
1537
1538 pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1539 consumer_dev_name,
1540 dev_name(&node->regulator->dev),
1541 node->regulator->desc->name,
1542 supply,
1543 dev_name(&rdev->dev), rdev_get_name(rdev));
1544 goto fail;
1545 }
1546
1547 list_add(&new_node->list, ®ulator_map_list);
1548 mutex_unlock(®ulator_list_mutex);
1549
1550 return 0;
1551
1552 fail:
1553 mutex_unlock(®ulator_list_mutex);
1554 kfree(new_node->dev_name);
1555 kfree(new_node);
1556 return -EBUSY;
1557 }
1558
unset_regulator_supplies(struct regulator_dev * rdev)1559 static void unset_regulator_supplies(struct regulator_dev *rdev)
1560 {
1561 struct regulator_map *node, *n;
1562
1563 list_for_each_entry_safe(node, n, ®ulator_map_list, list) {
1564 if (rdev == node->regulator) {
1565 list_del(&node->list);
1566 kfree(node->dev_name);
1567 kfree(node);
1568 }
1569 }
1570 }
1571
1572 #ifdef CONFIG_DEBUG_FS
constraint_flags_read_file(struct file * file,char __user * user_buf,size_t count,loff_t * ppos)1573 static ssize_t constraint_flags_read_file(struct file *file,
1574 char __user *user_buf,
1575 size_t count, loff_t *ppos)
1576 {
1577 const struct regulator *regulator = file->private_data;
1578 const struct regulation_constraints *c = regulator->rdev->constraints;
1579 char *buf;
1580 ssize_t ret;
1581
1582 if (!c)
1583 return 0;
1584
1585 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
1586 if (!buf)
1587 return -ENOMEM;
1588
1589 ret = snprintf(buf, PAGE_SIZE,
1590 "always_on: %u\n"
1591 "boot_on: %u\n"
1592 "apply_uV: %u\n"
1593 "ramp_disable: %u\n"
1594 "soft_start: %u\n"
1595 "pull_down: %u\n"
1596 "over_current_protection: %u\n",
1597 c->always_on,
1598 c->boot_on,
1599 c->apply_uV,
1600 c->ramp_disable,
1601 c->soft_start,
1602 c->pull_down,
1603 c->over_current_protection);
1604
1605 ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
1606 kfree(buf);
1607
1608 return ret;
1609 }
1610
1611 #endif
1612
1613 static const struct file_operations constraint_flags_fops = {
1614 #ifdef CONFIG_DEBUG_FS
1615 .open = simple_open,
1616 .read = constraint_flags_read_file,
1617 .llseek = default_llseek,
1618 #endif
1619 };
1620
1621 #define REG_STR_SIZE 64
1622
create_regulator(struct regulator_dev * rdev,struct device * dev,const char * supply_name)1623 static struct regulator *create_regulator(struct regulator_dev *rdev,
1624 struct device *dev,
1625 const char *supply_name)
1626 {
1627 struct regulator *regulator;
1628 int err = 0;
1629
1630 if (dev) {
1631 char buf[REG_STR_SIZE];
1632 int size;
1633
1634 size = snprintf(buf, REG_STR_SIZE, "%s-%s",
1635 dev->kobj.name, supply_name);
1636 if (size >= REG_STR_SIZE)
1637 return NULL;
1638
1639 supply_name = kstrdup(buf, GFP_KERNEL);
1640 if (supply_name == NULL)
1641 return NULL;
1642 } else {
1643 supply_name = kstrdup_const(supply_name, GFP_KERNEL);
1644 if (supply_name == NULL)
1645 return NULL;
1646 }
1647
1648 regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1649 if (regulator == NULL) {
1650 kfree(supply_name);
1651 return NULL;
1652 }
1653
1654 regulator->rdev = rdev;
1655 regulator->supply_name = supply_name;
1656
1657 regulator_lock(rdev);
1658 list_add(®ulator->list, &rdev->consumer_list);
1659 regulator_unlock(rdev);
1660
1661 if (dev) {
1662 regulator->dev = dev;
1663
1664 /* Add a link to the device sysfs entry */
1665 err = sysfs_create_link_nowarn(&rdev->dev.kobj, &dev->kobj,
1666 supply_name);
1667 if (err) {
1668 rdev_dbg(rdev, "could not add device link %s: %pe\n",
1669 dev->kobj.name, ERR_PTR(err));
1670 /* non-fatal */
1671 }
1672 }
1673
1674 if (err != -EEXIST)
1675 regulator->debugfs = debugfs_create_dir(supply_name, rdev->debugfs);
1676 if (!regulator->debugfs) {
1677 rdev_dbg(rdev, "Failed to create debugfs directory\n");
1678 } else {
1679 debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1680 ®ulator->uA_load);
1681 debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1682 ®ulator->voltage[PM_SUSPEND_ON].min_uV);
1683 debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1684 ®ulator->voltage[PM_SUSPEND_ON].max_uV);
1685 debugfs_create_file("constraint_flags", 0444,
1686 regulator->debugfs, regulator,
1687 &constraint_flags_fops);
1688 }
1689
1690 /*
1691 * Check now if the regulator is an always on regulator - if
1692 * it is then we don't need to do nearly so much work for
1693 * enable/disable calls.
1694 */
1695 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS) &&
1696 _regulator_is_enabled(rdev))
1697 regulator->always_on = true;
1698
1699 return regulator;
1700 }
1701
_regulator_get_enable_time(struct regulator_dev * rdev)1702 static int _regulator_get_enable_time(struct regulator_dev *rdev)
1703 {
1704 if (rdev->constraints && rdev->constraints->enable_time)
1705 return rdev->constraints->enable_time;
1706 if (rdev->desc->ops->enable_time)
1707 return rdev->desc->ops->enable_time(rdev);
1708 return rdev->desc->enable_time;
1709 }
1710
regulator_find_supply_alias(struct device * dev,const char * supply)1711 static struct regulator_supply_alias *regulator_find_supply_alias(
1712 struct device *dev, const char *supply)
1713 {
1714 struct regulator_supply_alias *map;
1715
1716 list_for_each_entry(map, ®ulator_supply_alias_list, list)
1717 if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
1718 return map;
1719
1720 return NULL;
1721 }
1722
regulator_supply_alias(struct device ** dev,const char ** supply)1723 static void regulator_supply_alias(struct device **dev, const char **supply)
1724 {
1725 struct regulator_supply_alias *map;
1726
1727 map = regulator_find_supply_alias(*dev, *supply);
1728 if (map) {
1729 dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
1730 *supply, map->alias_supply,
1731 dev_name(map->alias_dev));
1732 *dev = map->alias_dev;
1733 *supply = map->alias_supply;
1734 }
1735 }
1736
regulator_match(struct device * dev,const void * data)1737 static int regulator_match(struct device *dev, const void *data)
1738 {
1739 struct regulator_dev *r = dev_to_rdev(dev);
1740
1741 return strcmp(rdev_get_name(r), data) == 0;
1742 }
1743
regulator_lookup_by_name(const char * name)1744 static struct regulator_dev *regulator_lookup_by_name(const char *name)
1745 {
1746 struct device *dev;
1747
1748 dev = class_find_device(®ulator_class, NULL, name, regulator_match);
1749
1750 return dev ? dev_to_rdev(dev) : NULL;
1751 }
1752
1753 /**
1754 * regulator_dev_lookup - lookup a regulator device.
1755 * @dev: device for regulator "consumer".
1756 * @supply: Supply name or regulator ID.
1757 *
1758 * If successful, returns a struct regulator_dev that corresponds to the name
1759 * @supply and with the embedded struct device refcount incremented by one.
1760 * The refcount must be dropped by calling put_device().
1761 * On failure one of the following ERR-PTR-encoded values is returned:
1762 * -ENODEV if lookup fails permanently, -EPROBE_DEFER if lookup could succeed
1763 * in the future.
1764 */
regulator_dev_lookup(struct device * dev,const char * supply)1765 static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1766 const char *supply)
1767 {
1768 struct regulator_dev *r = NULL;
1769 struct device_node *node;
1770 struct regulator_map *map;
1771 const char *devname = NULL;
1772
1773 regulator_supply_alias(&dev, &supply);
1774
1775 /* first do a dt based lookup */
1776 if (dev && dev->of_node) {
1777 node = of_get_regulator(dev, supply);
1778 if (node) {
1779 r = of_find_regulator_by_node(node);
1780 if (r)
1781 return r;
1782
1783 /*
1784 * We have a node, but there is no device.
1785 * assume it has not registered yet.
1786 */
1787 return ERR_PTR(-EPROBE_DEFER);
1788 }
1789 }
1790
1791 /* if not found, try doing it non-dt way */
1792 if (dev)
1793 devname = dev_name(dev);
1794
1795 mutex_lock(®ulator_list_mutex);
1796 list_for_each_entry(map, ®ulator_map_list, list) {
1797 /* If the mapping has a device set up it must match */
1798 if (map->dev_name &&
1799 (!devname || strcmp(map->dev_name, devname)))
1800 continue;
1801
1802 if (strcmp(map->supply, supply) == 0 &&
1803 get_device(&map->regulator->dev)) {
1804 r = map->regulator;
1805 break;
1806 }
1807 }
1808 mutex_unlock(®ulator_list_mutex);
1809
1810 if (r)
1811 return r;
1812
1813 r = regulator_lookup_by_name(supply);
1814 if (r)
1815 return r;
1816
1817 return ERR_PTR(-ENODEV);
1818 }
1819
regulator_resolve_supply(struct regulator_dev * rdev)1820 static int regulator_resolve_supply(struct regulator_dev *rdev)
1821 {
1822 struct regulator_dev *r;
1823 struct device *dev = rdev->dev.parent;
1824 int ret = 0;
1825
1826 /* No supply to resolve? */
1827 if (!rdev->supply_name)
1828 return 0;
1829
1830 /* Supply already resolved? (fast-path without locking contention) */
1831 if (rdev->supply)
1832 return 0;
1833
1834 r = regulator_dev_lookup(dev, rdev->supply_name);
1835 if (IS_ERR(r)) {
1836 ret = PTR_ERR(r);
1837
1838 /* Did the lookup explicitly defer for us? */
1839 if (ret == -EPROBE_DEFER)
1840 goto out;
1841
1842 if (have_full_constraints()) {
1843 r = dummy_regulator_rdev;
1844 get_device(&r->dev);
1845 } else {
1846 dev_err(dev, "Failed to resolve %s-supply for %s\n",
1847 rdev->supply_name, rdev->desc->name);
1848 ret = -EPROBE_DEFER;
1849 goto out;
1850 }
1851 }
1852
1853 if (r == rdev) {
1854 dev_err(dev, "Supply for %s (%s) resolved to itself\n",
1855 rdev->desc->name, rdev->supply_name);
1856 if (!have_full_constraints()) {
1857 ret = -EINVAL;
1858 goto out;
1859 }
1860 r = dummy_regulator_rdev;
1861 get_device(&r->dev);
1862 }
1863
1864 /*
1865 * If the supply's parent device is not the same as the
1866 * regulator's parent device, then ensure the parent device
1867 * is bound before we resolve the supply, in case the parent
1868 * device get probe deferred and unregisters the supply.
1869 */
1870 if (r->dev.parent && r->dev.parent != rdev->dev.parent) {
1871 if (!device_is_bound(r->dev.parent)) {
1872 put_device(&r->dev);
1873 ret = -EPROBE_DEFER;
1874 goto out;
1875 }
1876 }
1877
1878 /* Recursively resolve the supply of the supply */
1879 ret = regulator_resolve_supply(r);
1880 if (ret < 0) {
1881 put_device(&r->dev);
1882 goto out;
1883 }
1884
1885 /*
1886 * Recheck rdev->supply with rdev->mutex lock held to avoid a race
1887 * between rdev->supply null check and setting rdev->supply in
1888 * set_supply() from concurrent tasks.
1889 */
1890 regulator_lock(rdev);
1891
1892 /* Supply just resolved by a concurrent task? */
1893 if (rdev->supply) {
1894 regulator_unlock(rdev);
1895 put_device(&r->dev);
1896 goto out;
1897 }
1898
1899 ret = set_supply(rdev, r);
1900 if (ret < 0) {
1901 regulator_unlock(rdev);
1902 put_device(&r->dev);
1903 goto out;
1904 }
1905
1906 regulator_unlock(rdev);
1907
1908 /*
1909 * In set_machine_constraints() we may have turned this regulator on
1910 * but we couldn't propagate to the supply if it hadn't been resolved
1911 * yet. Do it now.
1912 */
1913 if (rdev->use_count) {
1914 ret = regulator_enable(rdev->supply);
1915 if (ret < 0) {
1916 _regulator_put(rdev->supply);
1917 rdev->supply = NULL;
1918 goto out;
1919 }
1920 }
1921
1922 out:
1923 return ret;
1924 }
1925
1926 /* Internal regulator request function */
_regulator_get(struct device * dev,const char * id,enum regulator_get_type get_type)1927 struct regulator *_regulator_get(struct device *dev, const char *id,
1928 enum regulator_get_type get_type)
1929 {
1930 struct regulator_dev *rdev;
1931 struct regulator *regulator;
1932 struct device_link *link;
1933 int ret;
1934
1935 if (get_type >= MAX_GET_TYPE) {
1936 dev_err(dev, "invalid type %d in %s\n", get_type, __func__);
1937 return ERR_PTR(-EINVAL);
1938 }
1939
1940 if (id == NULL) {
1941 pr_err("get() with no identifier\n");
1942 return ERR_PTR(-EINVAL);
1943 }
1944
1945 rdev = regulator_dev_lookup(dev, id);
1946 if (IS_ERR(rdev)) {
1947 ret = PTR_ERR(rdev);
1948
1949 /*
1950 * If regulator_dev_lookup() fails with error other
1951 * than -ENODEV our job here is done, we simply return it.
1952 */
1953 if (ret != -ENODEV)
1954 return ERR_PTR(ret);
1955
1956 if (!have_full_constraints()) {
1957 dev_warn(dev,
1958 "incomplete constraints, dummy supplies not allowed\n");
1959 return ERR_PTR(-ENODEV);
1960 }
1961
1962 switch (get_type) {
1963 case NORMAL_GET:
1964 /*
1965 * Assume that a regulator is physically present and
1966 * enabled, even if it isn't hooked up, and just
1967 * provide a dummy.
1968 */
1969 dev_warn(dev, "supply %s not found, using dummy regulator\n", id);
1970 rdev = dummy_regulator_rdev;
1971 get_device(&rdev->dev);
1972 break;
1973
1974 case EXCLUSIVE_GET:
1975 dev_warn(dev,
1976 "dummy supplies not allowed for exclusive requests\n");
1977 fallthrough;
1978
1979 default:
1980 return ERR_PTR(-ENODEV);
1981 }
1982 }
1983
1984 if (rdev->exclusive) {
1985 regulator = ERR_PTR(-EPERM);
1986 put_device(&rdev->dev);
1987 return regulator;
1988 }
1989
1990 if (get_type == EXCLUSIVE_GET && rdev->open_count) {
1991 regulator = ERR_PTR(-EBUSY);
1992 put_device(&rdev->dev);
1993 return regulator;
1994 }
1995
1996 mutex_lock(®ulator_list_mutex);
1997 ret = (rdev->coupling_desc.n_resolved != rdev->coupling_desc.n_coupled);
1998 mutex_unlock(®ulator_list_mutex);
1999
2000 if (ret != 0) {
2001 regulator = ERR_PTR(-EPROBE_DEFER);
2002 put_device(&rdev->dev);
2003 return regulator;
2004 }
2005
2006 ret = regulator_resolve_supply(rdev);
2007 if (ret < 0) {
2008 regulator = ERR_PTR(ret);
2009 put_device(&rdev->dev);
2010 return regulator;
2011 }
2012
2013 if (!try_module_get(rdev->owner)) {
2014 regulator = ERR_PTR(-EPROBE_DEFER);
2015 put_device(&rdev->dev);
2016 return regulator;
2017 }
2018
2019 regulator = create_regulator(rdev, dev, id);
2020 if (regulator == NULL) {
2021 regulator = ERR_PTR(-ENOMEM);
2022 module_put(rdev->owner);
2023 put_device(&rdev->dev);
2024 return regulator;
2025 }
2026
2027 rdev->open_count++;
2028 if (get_type == EXCLUSIVE_GET) {
2029 rdev->exclusive = 1;
2030
2031 ret = _regulator_is_enabled(rdev);
2032 if (ret > 0)
2033 rdev->use_count = 1;
2034 else
2035 rdev->use_count = 0;
2036 }
2037
2038 link = device_link_add(dev, &rdev->dev, DL_FLAG_STATELESS);
2039 if (!IS_ERR_OR_NULL(link))
2040 regulator->device_link = true;
2041
2042 return regulator;
2043 }
2044
2045 /**
2046 * regulator_get - lookup and obtain a reference to a regulator.
2047 * @dev: device for regulator "consumer"
2048 * @id: Supply name or regulator ID.
2049 *
2050 * Returns a struct regulator corresponding to the regulator producer,
2051 * or IS_ERR() condition containing errno.
2052 *
2053 * Use of supply names configured via regulator_set_device_supply() is
2054 * strongly encouraged. It is recommended that the supply name used
2055 * should match the name used for the supply and/or the relevant
2056 * device pins in the datasheet.
2057 */
regulator_get(struct device * dev,const char * id)2058 struct regulator *regulator_get(struct device *dev, const char *id)
2059 {
2060 return _regulator_get(dev, id, NORMAL_GET);
2061 }
2062 EXPORT_SYMBOL_GPL(regulator_get);
2063
2064 /**
2065 * regulator_get_exclusive - obtain exclusive access to a regulator.
2066 * @dev: device for regulator "consumer"
2067 * @id: Supply name or regulator ID.
2068 *
2069 * Returns a struct regulator corresponding to the regulator producer,
2070 * or IS_ERR() condition containing errno. Other consumers will be
2071 * unable to obtain this regulator while this reference is held and the
2072 * use count for the regulator will be initialised to reflect the current
2073 * state of the regulator.
2074 *
2075 * This is intended for use by consumers which cannot tolerate shared
2076 * use of the regulator such as those which need to force the
2077 * regulator off for correct operation of the hardware they are
2078 * controlling.
2079 *
2080 * Use of supply names configured via regulator_set_device_supply() is
2081 * strongly encouraged. It is recommended that the supply name used
2082 * should match the name used for the supply and/or the relevant
2083 * device pins in the datasheet.
2084 */
regulator_get_exclusive(struct device * dev,const char * id)2085 struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
2086 {
2087 return _regulator_get(dev, id, EXCLUSIVE_GET);
2088 }
2089 EXPORT_SYMBOL_GPL(regulator_get_exclusive);
2090
2091 /**
2092 * regulator_get_optional - obtain optional access to a regulator.
2093 * @dev: device for regulator "consumer"
2094 * @id: Supply name or regulator ID.
2095 *
2096 * Returns a struct regulator corresponding to the regulator producer,
2097 * or IS_ERR() condition containing errno.
2098 *
2099 * This is intended for use by consumers for devices which can have
2100 * some supplies unconnected in normal use, such as some MMC devices.
2101 * It can allow the regulator core to provide stub supplies for other
2102 * supplies requested using normal regulator_get() calls without
2103 * disrupting the operation of drivers that can handle absent
2104 * supplies.
2105 *
2106 * Use of supply names configured via regulator_set_device_supply() is
2107 * strongly encouraged. It is recommended that the supply name used
2108 * should match the name used for the supply and/or the relevant
2109 * device pins in the datasheet.
2110 */
regulator_get_optional(struct device * dev,const char * id)2111 struct regulator *regulator_get_optional(struct device *dev, const char *id)
2112 {
2113 return _regulator_get(dev, id, OPTIONAL_GET);
2114 }
2115 EXPORT_SYMBOL_GPL(regulator_get_optional);
2116
destroy_regulator(struct regulator * regulator)2117 static void destroy_regulator(struct regulator *regulator)
2118 {
2119 struct regulator_dev *rdev = regulator->rdev;
2120
2121 debugfs_remove_recursive(regulator->debugfs);
2122
2123 if (regulator->dev) {
2124 if (regulator->device_link)
2125 device_link_remove(regulator->dev, &rdev->dev);
2126
2127 /* remove any sysfs entries */
2128 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
2129 }
2130
2131 regulator_lock(rdev);
2132 list_del(®ulator->list);
2133
2134 rdev->open_count--;
2135 rdev->exclusive = 0;
2136 regulator_unlock(rdev);
2137
2138 kfree_const(regulator->supply_name);
2139 kfree(regulator);
2140 }
2141
2142 /* regulator_list_mutex lock held by regulator_put() */
_regulator_put(struct regulator * regulator)2143 static void _regulator_put(struct regulator *regulator)
2144 {
2145 struct regulator_dev *rdev;
2146
2147 if (IS_ERR_OR_NULL(regulator))
2148 return;
2149
2150 lockdep_assert_held_once(®ulator_list_mutex);
2151
2152 /* Docs say you must disable before calling regulator_put() */
2153 WARN_ON(regulator->enable_count);
2154
2155 rdev = regulator->rdev;
2156
2157 destroy_regulator(regulator);
2158
2159 module_put(rdev->owner);
2160 put_device(&rdev->dev);
2161 }
2162
2163 /**
2164 * regulator_put - "free" the regulator source
2165 * @regulator: regulator source
2166 *
2167 * Note: drivers must ensure that all regulator_enable calls made on this
2168 * regulator source are balanced by regulator_disable calls prior to calling
2169 * this function.
2170 */
regulator_put(struct regulator * regulator)2171 void regulator_put(struct regulator *regulator)
2172 {
2173 mutex_lock(®ulator_list_mutex);
2174 _regulator_put(regulator);
2175 mutex_unlock(®ulator_list_mutex);
2176 }
2177 EXPORT_SYMBOL_GPL(regulator_put);
2178
2179 /**
2180 * regulator_register_supply_alias - Provide device alias for supply lookup
2181 *
2182 * @dev: device that will be given as the regulator "consumer"
2183 * @id: Supply name or regulator ID
2184 * @alias_dev: device that should be used to lookup the supply
2185 * @alias_id: Supply name or regulator ID that should be used to lookup the
2186 * supply
2187 *
2188 * All lookups for id on dev will instead be conducted for alias_id on
2189 * alias_dev.
2190 */
regulator_register_supply_alias(struct device * dev,const char * id,struct device * alias_dev,const char * alias_id)2191 int regulator_register_supply_alias(struct device *dev, const char *id,
2192 struct device *alias_dev,
2193 const char *alias_id)
2194 {
2195 struct regulator_supply_alias *map;
2196
2197 map = regulator_find_supply_alias(dev, id);
2198 if (map)
2199 return -EEXIST;
2200
2201 map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
2202 if (!map)
2203 return -ENOMEM;
2204
2205 map->src_dev = dev;
2206 map->src_supply = id;
2207 map->alias_dev = alias_dev;
2208 map->alias_supply = alias_id;
2209
2210 list_add(&map->list, ®ulator_supply_alias_list);
2211
2212 pr_info("Adding alias for supply %s,%s -> %s,%s\n",
2213 id, dev_name(dev), alias_id, dev_name(alias_dev));
2214
2215 return 0;
2216 }
2217 EXPORT_SYMBOL_GPL(regulator_register_supply_alias);
2218
2219 /**
2220 * regulator_unregister_supply_alias - Remove device alias
2221 *
2222 * @dev: device that will be given as the regulator "consumer"
2223 * @id: Supply name or regulator ID
2224 *
2225 * Remove a lookup alias if one exists for id on dev.
2226 */
regulator_unregister_supply_alias(struct device * dev,const char * id)2227 void regulator_unregister_supply_alias(struct device *dev, const char *id)
2228 {
2229 struct regulator_supply_alias *map;
2230
2231 map = regulator_find_supply_alias(dev, id);
2232 if (map) {
2233 list_del(&map->list);
2234 kfree(map);
2235 }
2236 }
2237 EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);
2238
2239 /**
2240 * regulator_bulk_register_supply_alias - register multiple aliases
2241 *
2242 * @dev: device that will be given as the regulator "consumer"
2243 * @id: List of supply names or regulator IDs
2244 * @alias_dev: device that should be used to lookup the supply
2245 * @alias_id: List of supply names or regulator IDs that should be used to
2246 * lookup the supply
2247 * @num_id: Number of aliases to register
2248 *
2249 * @return 0 on success, an errno on failure.
2250 *
2251 * This helper function allows drivers to register several supply
2252 * aliases in one operation. If any of the aliases cannot be
2253 * registered any aliases that were registered will be removed
2254 * before returning to the caller.
2255 */
regulator_bulk_register_supply_alias(struct device * dev,const char * const * id,struct device * alias_dev,const char * const * alias_id,int num_id)2256 int regulator_bulk_register_supply_alias(struct device *dev,
2257 const char *const *id,
2258 struct device *alias_dev,
2259 const char *const *alias_id,
2260 int num_id)
2261 {
2262 int i;
2263 int ret;
2264
2265 for (i = 0; i < num_id; ++i) {
2266 ret = regulator_register_supply_alias(dev, id[i], alias_dev,
2267 alias_id[i]);
2268 if (ret < 0)
2269 goto err;
2270 }
2271
2272 return 0;
2273
2274 err:
2275 dev_err(dev,
2276 "Failed to create supply alias %s,%s -> %s,%s\n",
2277 id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));
2278
2279 while (--i >= 0)
2280 regulator_unregister_supply_alias(dev, id[i]);
2281
2282 return ret;
2283 }
2284 EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);
2285
2286 /**
2287 * regulator_bulk_unregister_supply_alias - unregister multiple aliases
2288 *
2289 * @dev: device that will be given as the regulator "consumer"
2290 * @id: List of supply names or regulator IDs
2291 * @num_id: Number of aliases to unregister
2292 *
2293 * This helper function allows drivers to unregister several supply
2294 * aliases in one operation.
2295 */
regulator_bulk_unregister_supply_alias(struct device * dev,const char * const * id,int num_id)2296 void regulator_bulk_unregister_supply_alias(struct device *dev,
2297 const char *const *id,
2298 int num_id)
2299 {
2300 int i;
2301
2302 for (i = 0; i < num_id; ++i)
2303 regulator_unregister_supply_alias(dev, id[i]);
2304 }
2305 EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);
2306
2307
2308 /* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
regulator_ena_gpio_request(struct regulator_dev * rdev,const struct regulator_config * config)2309 static int regulator_ena_gpio_request(struct regulator_dev *rdev,
2310 const struct regulator_config *config)
2311 {
2312 struct regulator_enable_gpio *pin, *new_pin;
2313 struct gpio_desc *gpiod;
2314
2315 gpiod = config->ena_gpiod;
2316 new_pin = kzalloc(sizeof(*new_pin), GFP_KERNEL);
2317
2318 mutex_lock(®ulator_list_mutex);
2319
2320 list_for_each_entry(pin, ®ulator_ena_gpio_list, list) {
2321 if (pin->gpiod == gpiod) {
2322 rdev_dbg(rdev, "GPIO is already used\n");
2323 goto update_ena_gpio_to_rdev;
2324 }
2325 }
2326
2327 if (new_pin == NULL) {
2328 mutex_unlock(®ulator_list_mutex);
2329 return -ENOMEM;
2330 }
2331
2332 pin = new_pin;
2333 new_pin = NULL;
2334
2335 pin->gpiod = gpiod;
2336 list_add(&pin->list, ®ulator_ena_gpio_list);
2337
2338 update_ena_gpio_to_rdev:
2339 pin->request_count++;
2340 rdev->ena_pin = pin;
2341
2342 mutex_unlock(®ulator_list_mutex);
2343 kfree(new_pin);
2344
2345 return 0;
2346 }
2347
regulator_ena_gpio_free(struct regulator_dev * rdev)2348 static void regulator_ena_gpio_free(struct regulator_dev *rdev)
2349 {
2350 struct regulator_enable_gpio *pin, *n;
2351
2352 if (!rdev->ena_pin)
2353 return;
2354
2355 /* Free the GPIO only in case of no use */
2356 list_for_each_entry_safe(pin, n, ®ulator_ena_gpio_list, list) {
2357 if (pin != rdev->ena_pin)
2358 continue;
2359
2360 if (--pin->request_count)
2361 break;
2362
2363 gpiod_put(pin->gpiod);
2364 list_del(&pin->list);
2365 kfree(pin);
2366 break;
2367 }
2368
2369 rdev->ena_pin = NULL;
2370 }
2371
2372 /**
2373 * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
2374 * @rdev: regulator_dev structure
2375 * @enable: enable GPIO at initial use?
2376 *
2377 * GPIO is enabled in case of initial use. (enable_count is 0)
2378 * GPIO is disabled when it is not shared any more. (enable_count <= 1)
2379 */
regulator_ena_gpio_ctrl(struct regulator_dev * rdev,bool enable)2380 static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
2381 {
2382 struct regulator_enable_gpio *pin = rdev->ena_pin;
2383
2384 if (!pin)
2385 return -EINVAL;
2386
2387 if (enable) {
2388 /* Enable GPIO at initial use */
2389 if (pin->enable_count == 0)
2390 gpiod_set_value_cansleep(pin->gpiod, 1);
2391
2392 pin->enable_count++;
2393 } else {
2394 if (pin->enable_count > 1) {
2395 pin->enable_count--;
2396 return 0;
2397 }
2398
2399 /* Disable GPIO if not used */
2400 if (pin->enable_count <= 1) {
2401 gpiod_set_value_cansleep(pin->gpiod, 0);
2402 pin->enable_count = 0;
2403 }
2404 }
2405
2406 return 0;
2407 }
2408
2409 /**
2410 * _regulator_enable_delay - a delay helper function
2411 * @delay: time to delay in microseconds
2412 *
2413 * Delay for the requested amount of time as per the guidelines in:
2414 *
2415 * Documentation/timers/timers-howto.rst
2416 *
2417 * The assumption here is that regulators will never be enabled in
2418 * atomic context and therefore sleeping functions can be used.
2419 */
_regulator_enable_delay(unsigned int delay)2420 static void _regulator_enable_delay(unsigned int delay)
2421 {
2422 unsigned int ms = delay / 1000;
2423 unsigned int us = delay % 1000;
2424
2425 if (ms > 0) {
2426 /*
2427 * For small enough values, handle super-millisecond
2428 * delays in the usleep_range() call below.
2429 */
2430 if (ms < 20)
2431 us += ms * 1000;
2432 else
2433 msleep(ms);
2434 }
2435
2436 /*
2437 * Give the scheduler some room to coalesce with any other
2438 * wakeup sources. For delays shorter than 10 us, don't even
2439 * bother setting up high-resolution timers and just busy-
2440 * loop.
2441 */
2442 if (us >= 10)
2443 usleep_range(us, us + 100);
2444 else
2445 udelay(us);
2446 }
2447
2448 /**
2449 * _regulator_check_status_enabled
2450 *
2451 * A helper function to check if the regulator status can be interpreted
2452 * as 'regulator is enabled'.
2453 * @rdev: the regulator device to check
2454 *
2455 * Return:
2456 * * 1 - if status shows regulator is in enabled state
2457 * * 0 - if not enabled state
2458 * * Error Value - as received from ops->get_status()
2459 */
_regulator_check_status_enabled(struct regulator_dev * rdev)2460 static inline int _regulator_check_status_enabled(struct regulator_dev *rdev)
2461 {
2462 int ret = rdev->desc->ops->get_status(rdev);
2463
2464 if (ret < 0) {
2465 rdev_info(rdev, "get_status returned error: %d\n", ret);
2466 return ret;
2467 }
2468
2469 switch (ret) {
2470 case REGULATOR_STATUS_OFF:
2471 case REGULATOR_STATUS_ERROR:
2472 case REGULATOR_STATUS_UNDEFINED:
2473 return 0;
2474 default:
2475 return 1;
2476 }
2477 }
2478
_regulator_do_enable(struct regulator_dev * rdev)2479 static int _regulator_do_enable(struct regulator_dev *rdev)
2480 {
2481 int ret, delay;
2482
2483 /* Query before enabling in case configuration dependent. */
2484 ret = _regulator_get_enable_time(rdev);
2485 if (ret >= 0) {
2486 delay = ret;
2487 } else {
2488 rdev_warn(rdev, "enable_time() failed: %pe\n", ERR_PTR(ret));
2489 delay = 0;
2490 }
2491
2492 trace_regulator_enable(rdev_get_name(rdev));
2493
2494 if (rdev->desc->off_on_delay) {
2495 /* if needed, keep a distance of off_on_delay from last time
2496 * this regulator was disabled.
2497 */
2498 unsigned long start_jiffy = jiffies;
2499 unsigned long intended, max_delay, remaining;
2500
2501 max_delay = usecs_to_jiffies(rdev->desc->off_on_delay);
2502 intended = rdev->last_off_jiffy + max_delay;
2503
2504 if (time_before(start_jiffy, intended)) {
2505 /* calc remaining jiffies to deal with one-time
2506 * timer wrapping.
2507 * in case of multiple timer wrapping, either it can be
2508 * detected by out-of-range remaining, or it cannot be
2509 * detected and we get a penalty of
2510 * _regulator_enable_delay().
2511 */
2512 remaining = intended - start_jiffy;
2513 if (remaining <= max_delay)
2514 _regulator_enable_delay(
2515 jiffies_to_usecs(remaining));
2516 }
2517 }
2518
2519 if (rdev->ena_pin) {
2520 if (!rdev->ena_gpio_state) {
2521 ret = regulator_ena_gpio_ctrl(rdev, true);
2522 if (ret < 0)
2523 return ret;
2524 rdev->ena_gpio_state = 1;
2525 }
2526 } else if (rdev->desc->ops->enable) {
2527 ret = rdev->desc->ops->enable(rdev);
2528 if (ret < 0)
2529 return ret;
2530 } else {
2531 return -EINVAL;
2532 }
2533
2534 /* Allow the regulator to ramp; it would be useful to extend
2535 * this for bulk operations so that the regulators can ramp
2536 * together. */
2537 trace_regulator_enable_delay(rdev_get_name(rdev));
2538
2539 /* If poll_enabled_time is set, poll upto the delay calculated
2540 * above, delaying poll_enabled_time uS to check if the regulator
2541 * actually got enabled.
2542 * If the regulator isn't enabled after enable_delay has
2543 * expired, return -ETIMEDOUT.
2544 */
2545 if (rdev->desc->poll_enabled_time) {
2546 unsigned int time_remaining = delay;
2547
2548 while (time_remaining > 0) {
2549 _regulator_enable_delay(rdev->desc->poll_enabled_time);
2550
2551 if (rdev->desc->ops->get_status) {
2552 ret = _regulator_check_status_enabled(rdev);
2553 if (ret < 0)
2554 return ret;
2555 else if (ret)
2556 break;
2557 } else if (rdev->desc->ops->is_enabled(rdev))
2558 break;
2559
2560 time_remaining -= rdev->desc->poll_enabled_time;
2561 }
2562
2563 if (time_remaining <= 0) {
2564 rdev_err(rdev, "Enabled check timed out\n");
2565 return -ETIMEDOUT;
2566 }
2567 } else {
2568 _regulator_enable_delay(delay);
2569 }
2570
2571 trace_regulator_enable_complete(rdev_get_name(rdev));
2572
2573 return 0;
2574 }
2575
2576 /**
2577 * _regulator_handle_consumer_enable - handle that a consumer enabled
2578 * @regulator: regulator source
2579 *
2580 * Some things on a regulator consumer (like the contribution towards total
2581 * load on the regulator) only have an effect when the consumer wants the
2582 * regulator enabled. Explained in example with two consumers of the same
2583 * regulator:
2584 * consumer A: set_load(100); => total load = 0
2585 * consumer A: regulator_enable(); => total load = 100
2586 * consumer B: set_load(1000); => total load = 100
2587 * consumer B: regulator_enable(); => total load = 1100
2588 * consumer A: regulator_disable(); => total_load = 1000
2589 *
2590 * This function (together with _regulator_handle_consumer_disable) is
2591 * responsible for keeping track of the refcount for a given regulator consumer
2592 * and applying / unapplying these things.
2593 *
2594 * Returns 0 upon no error; -error upon error.
2595 */
_regulator_handle_consumer_enable(struct regulator * regulator)2596 static int _regulator_handle_consumer_enable(struct regulator *regulator)
2597 {
2598 struct regulator_dev *rdev = regulator->rdev;
2599
2600 lockdep_assert_held_once(&rdev->mutex.base);
2601
2602 regulator->enable_count++;
2603 if (regulator->uA_load && regulator->enable_count == 1)
2604 return drms_uA_update(rdev);
2605
2606 return 0;
2607 }
2608
2609 /**
2610 * _regulator_handle_consumer_disable - handle that a consumer disabled
2611 * @regulator: regulator source
2612 *
2613 * The opposite of _regulator_handle_consumer_enable().
2614 *
2615 * Returns 0 upon no error; -error upon error.
2616 */
_regulator_handle_consumer_disable(struct regulator * regulator)2617 static int _regulator_handle_consumer_disable(struct regulator *regulator)
2618 {
2619 struct regulator_dev *rdev = regulator->rdev;
2620
2621 lockdep_assert_held_once(&rdev->mutex.base);
2622
2623 if (!regulator->enable_count) {
2624 rdev_err(rdev, "Underflow of regulator enable count\n");
2625 return -EINVAL;
2626 }
2627
2628 regulator->enable_count--;
2629 if (regulator->uA_load && regulator->enable_count == 0)
2630 return drms_uA_update(rdev);
2631
2632 return 0;
2633 }
2634
2635 /* locks held by regulator_enable() */
_regulator_enable(struct regulator * regulator)2636 static int _regulator_enable(struct regulator *regulator)
2637 {
2638 struct regulator_dev *rdev = regulator->rdev;
2639 int ret;
2640
2641 lockdep_assert_held_once(&rdev->mutex.base);
2642
2643 if (rdev->use_count == 0 && rdev->supply) {
2644 ret = _regulator_enable(rdev->supply);
2645 if (ret < 0)
2646 return ret;
2647 }
2648
2649 /* balance only if there are regulators coupled */
2650 if (rdev->coupling_desc.n_coupled > 1) {
2651 ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2652 if (ret < 0)
2653 goto err_disable_supply;
2654 }
2655
2656 ret = _regulator_handle_consumer_enable(regulator);
2657 if (ret < 0)
2658 goto err_disable_supply;
2659
2660 if (rdev->use_count == 0) {
2661 /* The regulator may on if it's not switchable or left on */
2662 ret = _regulator_is_enabled(rdev);
2663 if (ret == -EINVAL || ret == 0) {
2664 if (!regulator_ops_is_valid(rdev,
2665 REGULATOR_CHANGE_STATUS)) {
2666 ret = -EPERM;
2667 goto err_consumer_disable;
2668 }
2669
2670 ret = _regulator_do_enable(rdev);
2671 if (ret < 0)
2672 goto err_consumer_disable;
2673
2674 _notifier_call_chain(rdev, REGULATOR_EVENT_ENABLE,
2675 NULL);
2676 } else if (ret < 0) {
2677 rdev_err(rdev, "is_enabled() failed: %pe\n", ERR_PTR(ret));
2678 goto err_consumer_disable;
2679 }
2680 /* Fallthrough on positive return values - already enabled */
2681 }
2682
2683 rdev->use_count++;
2684
2685 return 0;
2686
2687 err_consumer_disable:
2688 _regulator_handle_consumer_disable(regulator);
2689
2690 err_disable_supply:
2691 if (rdev->use_count == 0 && rdev->supply)
2692 _regulator_disable(rdev->supply);
2693
2694 return ret;
2695 }
2696
2697 /**
2698 * regulator_enable - enable regulator output
2699 * @regulator: regulator source
2700 *
2701 * Request that the regulator be enabled with the regulator output at
2702 * the predefined voltage or current value. Calls to regulator_enable()
2703 * must be balanced with calls to regulator_disable().
2704 *
2705 * NOTE: the output value can be set by other drivers, boot loader or may be
2706 * hardwired in the regulator.
2707 */
regulator_enable(struct regulator * regulator)2708 int regulator_enable(struct regulator *regulator)
2709 {
2710 struct regulator_dev *rdev = regulator->rdev;
2711 struct ww_acquire_ctx ww_ctx;
2712 int ret;
2713
2714 regulator_lock_dependent(rdev, &ww_ctx);
2715 ret = _regulator_enable(regulator);
2716 regulator_unlock_dependent(rdev, &ww_ctx);
2717
2718 return ret;
2719 }
2720 EXPORT_SYMBOL_GPL(regulator_enable);
2721
_regulator_do_disable(struct regulator_dev * rdev)2722 static int _regulator_do_disable(struct regulator_dev *rdev)
2723 {
2724 int ret;
2725
2726 trace_regulator_disable(rdev_get_name(rdev));
2727
2728 if (rdev->ena_pin) {
2729 if (rdev->ena_gpio_state) {
2730 ret = regulator_ena_gpio_ctrl(rdev, false);
2731 if (ret < 0)
2732 return ret;
2733 rdev->ena_gpio_state = 0;
2734 }
2735
2736 } else if (rdev->desc->ops->disable) {
2737 ret = rdev->desc->ops->disable(rdev);
2738 if (ret != 0)
2739 return ret;
2740 }
2741
2742 /* cares about last_off_jiffy only if off_on_delay is required by
2743 * device.
2744 */
2745 if (rdev->desc->off_on_delay)
2746 rdev->last_off_jiffy = jiffies;
2747
2748 trace_regulator_disable_complete(rdev_get_name(rdev));
2749
2750 return 0;
2751 }
2752
2753 /* locks held by regulator_disable() */
_regulator_disable(struct regulator * regulator)2754 static int _regulator_disable(struct regulator *regulator)
2755 {
2756 struct regulator_dev *rdev = regulator->rdev;
2757 int ret = 0;
2758
2759 lockdep_assert_held_once(&rdev->mutex.base);
2760
2761 if (WARN(rdev->use_count <= 0,
2762 "unbalanced disables for %s\n", rdev_get_name(rdev)))
2763 return -EIO;
2764
2765 /* are we the last user and permitted to disable ? */
2766 if (rdev->use_count == 1 &&
2767 (rdev->constraints && !rdev->constraints->always_on)) {
2768
2769 /* we are last user */
2770 if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS)) {
2771 ret = _notifier_call_chain(rdev,
2772 REGULATOR_EVENT_PRE_DISABLE,
2773 NULL);
2774 if (ret & NOTIFY_STOP_MASK)
2775 return -EINVAL;
2776
2777 ret = _regulator_do_disable(rdev);
2778 if (ret < 0) {
2779 rdev_err(rdev, "failed to disable: %pe\n", ERR_PTR(ret));
2780 _notifier_call_chain(rdev,
2781 REGULATOR_EVENT_ABORT_DISABLE,
2782 NULL);
2783 return ret;
2784 }
2785 _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
2786 NULL);
2787 }
2788
2789 rdev->use_count = 0;
2790 } else if (rdev->use_count > 1) {
2791 rdev->use_count--;
2792 }
2793
2794 if (ret == 0)
2795 ret = _regulator_handle_consumer_disable(regulator);
2796
2797 if (ret == 0 && rdev->coupling_desc.n_coupled > 1)
2798 ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2799
2800 if (ret == 0 && rdev->use_count == 0 && rdev->supply)
2801 ret = _regulator_disable(rdev->supply);
2802
2803 return ret;
2804 }
2805
2806 /**
2807 * regulator_disable - disable regulator output
2808 * @regulator: regulator source
2809 *
2810 * Disable the regulator output voltage or current. Calls to
2811 * regulator_enable() must be balanced with calls to
2812 * regulator_disable().
2813 *
2814 * NOTE: this will only disable the regulator output if no other consumer
2815 * devices have it enabled, the regulator device supports disabling and
2816 * machine constraints permit this operation.
2817 */
regulator_disable(struct regulator * regulator)2818 int regulator_disable(struct regulator *regulator)
2819 {
2820 struct regulator_dev *rdev = regulator->rdev;
2821 struct ww_acquire_ctx ww_ctx;
2822 int ret;
2823
2824 regulator_lock_dependent(rdev, &ww_ctx);
2825 ret = _regulator_disable(regulator);
2826 regulator_unlock_dependent(rdev, &ww_ctx);
2827
2828 return ret;
2829 }
2830 EXPORT_SYMBOL_GPL(regulator_disable);
2831
2832 /* locks held by regulator_force_disable() */
_regulator_force_disable(struct regulator_dev * rdev)2833 static int _regulator_force_disable(struct regulator_dev *rdev)
2834 {
2835 int ret = 0;
2836
2837 lockdep_assert_held_once(&rdev->mutex.base);
2838
2839 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2840 REGULATOR_EVENT_PRE_DISABLE, NULL);
2841 if (ret & NOTIFY_STOP_MASK)
2842 return -EINVAL;
2843
2844 ret = _regulator_do_disable(rdev);
2845 if (ret < 0) {
2846 rdev_err(rdev, "failed to force disable: %pe\n", ERR_PTR(ret));
2847 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2848 REGULATOR_EVENT_ABORT_DISABLE, NULL);
2849 return ret;
2850 }
2851
2852 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2853 REGULATOR_EVENT_DISABLE, NULL);
2854
2855 return 0;
2856 }
2857
2858 /**
2859 * regulator_force_disable - force disable regulator output
2860 * @regulator: regulator source
2861 *
2862 * Forcibly disable the regulator output voltage or current.
2863 * NOTE: this *will* disable the regulator output even if other consumer
2864 * devices have it enabled. This should be used for situations when device
2865 * damage will likely occur if the regulator is not disabled (e.g. over temp).
2866 */
regulator_force_disable(struct regulator * regulator)2867 int regulator_force_disable(struct regulator *regulator)
2868 {
2869 struct regulator_dev *rdev = regulator->rdev;
2870 struct ww_acquire_ctx ww_ctx;
2871 int ret;
2872
2873 regulator_lock_dependent(rdev, &ww_ctx);
2874
2875 ret = _regulator_force_disable(regulator->rdev);
2876
2877 if (rdev->coupling_desc.n_coupled > 1)
2878 regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2879
2880 if (regulator->uA_load) {
2881 regulator->uA_load = 0;
2882 ret = drms_uA_update(rdev);
2883 }
2884
2885 if (rdev->use_count != 0 && rdev->supply)
2886 _regulator_disable(rdev->supply);
2887
2888 regulator_unlock_dependent(rdev, &ww_ctx);
2889
2890 return ret;
2891 }
2892 EXPORT_SYMBOL_GPL(regulator_force_disable);
2893
regulator_disable_work(struct work_struct * work)2894 static void regulator_disable_work(struct work_struct *work)
2895 {
2896 struct regulator_dev *rdev = container_of(work, struct regulator_dev,
2897 disable_work.work);
2898 struct ww_acquire_ctx ww_ctx;
2899 int count, i, ret;
2900 struct regulator *regulator;
2901 int total_count = 0;
2902
2903 regulator_lock_dependent(rdev, &ww_ctx);
2904
2905 /*
2906 * Workqueue functions queue the new work instance while the previous
2907 * work instance is being processed. Cancel the queued work instance
2908 * as the work instance under processing does the job of the queued
2909 * work instance.
2910 */
2911 cancel_delayed_work(&rdev->disable_work);
2912
2913 list_for_each_entry(regulator, &rdev->consumer_list, list) {
2914 count = regulator->deferred_disables;
2915
2916 if (!count)
2917 continue;
2918
2919 total_count += count;
2920 regulator->deferred_disables = 0;
2921
2922 for (i = 0; i < count; i++) {
2923 ret = _regulator_disable(regulator);
2924 if (ret != 0)
2925 rdev_err(rdev, "Deferred disable failed: %pe\n",
2926 ERR_PTR(ret));
2927 }
2928 }
2929 WARN_ON(!total_count);
2930
2931 if (rdev->coupling_desc.n_coupled > 1)
2932 regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2933
2934 regulator_unlock_dependent(rdev, &ww_ctx);
2935 }
2936
2937 /**
2938 * regulator_disable_deferred - disable regulator output with delay
2939 * @regulator: regulator source
2940 * @ms: milliseconds until the regulator is disabled
2941 *
2942 * Execute regulator_disable() on the regulator after a delay. This
2943 * is intended for use with devices that require some time to quiesce.
2944 *
2945 * NOTE: this will only disable the regulator output if no other consumer
2946 * devices have it enabled, the regulator device supports disabling and
2947 * machine constraints permit this operation.
2948 */
regulator_disable_deferred(struct regulator * regulator,int ms)2949 int regulator_disable_deferred(struct regulator *regulator, int ms)
2950 {
2951 struct regulator_dev *rdev = regulator->rdev;
2952
2953 if (!ms)
2954 return regulator_disable(regulator);
2955
2956 regulator_lock(rdev);
2957 regulator->deferred_disables++;
2958 mod_delayed_work(system_power_efficient_wq, &rdev->disable_work,
2959 msecs_to_jiffies(ms));
2960 regulator_unlock(rdev);
2961
2962 return 0;
2963 }
2964 EXPORT_SYMBOL_GPL(regulator_disable_deferred);
2965
_regulator_is_enabled(struct regulator_dev * rdev)2966 static int _regulator_is_enabled(struct regulator_dev *rdev)
2967 {
2968 /* A GPIO control always takes precedence */
2969 if (rdev->ena_pin)
2970 return rdev->ena_gpio_state;
2971
2972 /* If we don't know then assume that the regulator is always on */
2973 if (!rdev->desc->ops->is_enabled)
2974 return 1;
2975
2976 return rdev->desc->ops->is_enabled(rdev);
2977 }
2978
_regulator_list_voltage(struct regulator_dev * rdev,unsigned selector,int lock)2979 static int _regulator_list_voltage(struct regulator_dev *rdev,
2980 unsigned selector, int lock)
2981 {
2982 const struct regulator_ops *ops = rdev->desc->ops;
2983 int ret;
2984
2985 if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
2986 return rdev->desc->fixed_uV;
2987
2988 if (ops->list_voltage) {
2989 if (selector >= rdev->desc->n_voltages)
2990 return -EINVAL;
2991 if (lock)
2992 regulator_lock(rdev);
2993 ret = ops->list_voltage(rdev, selector);
2994 if (lock)
2995 regulator_unlock(rdev);
2996 } else if (rdev->is_switch && rdev->supply) {
2997 ret = _regulator_list_voltage(rdev->supply->rdev,
2998 selector, lock);
2999 } else {
3000 return -EINVAL;
3001 }
3002
3003 if (ret > 0) {
3004 if (ret < rdev->constraints->min_uV)
3005 ret = 0;
3006 else if (ret > rdev->constraints->max_uV)
3007 ret = 0;
3008 }
3009
3010 return ret;
3011 }
3012
3013 /**
3014 * regulator_is_enabled - is the regulator output enabled
3015 * @regulator: regulator source
3016 *
3017 * Returns positive if the regulator driver backing the source/client
3018 * has requested that the device be enabled, zero if it hasn't, else a
3019 * negative errno code.
3020 *
3021 * Note that the device backing this regulator handle can have multiple
3022 * users, so it might be enabled even if regulator_enable() was never
3023 * called for this particular source.
3024 */
regulator_is_enabled(struct regulator * regulator)3025 int regulator_is_enabled(struct regulator *regulator)
3026 {
3027 int ret;
3028
3029 if (regulator->always_on)
3030 return 1;
3031
3032 regulator_lock(regulator->rdev);
3033 ret = _regulator_is_enabled(regulator->rdev);
3034 regulator_unlock(regulator->rdev);
3035
3036 return ret;
3037 }
3038 EXPORT_SYMBOL_GPL(regulator_is_enabled);
3039
3040 /**
3041 * regulator_count_voltages - count regulator_list_voltage() selectors
3042 * @regulator: regulator source
3043 *
3044 * Returns number of selectors, or negative errno. Selectors are
3045 * numbered starting at zero, and typically correspond to bitfields
3046 * in hardware registers.
3047 */
regulator_count_voltages(struct regulator * regulator)3048 int regulator_count_voltages(struct regulator *regulator)
3049 {
3050 struct regulator_dev *rdev = regulator->rdev;
3051
3052 if (rdev->desc->n_voltages)
3053 return rdev->desc->n_voltages;
3054
3055 if (!rdev->is_switch || !rdev->supply)
3056 return -EINVAL;
3057
3058 return regulator_count_voltages(rdev->supply);
3059 }
3060 EXPORT_SYMBOL_GPL(regulator_count_voltages);
3061
3062 /**
3063 * regulator_list_voltage - enumerate supported voltages
3064 * @regulator: regulator source
3065 * @selector: identify voltage to list
3066 * Context: can sleep
3067 *
3068 * Returns a voltage that can be passed to @regulator_set_voltage(),
3069 * zero if this selector code can't be used on this system, or a
3070 * negative errno.
3071 */
regulator_list_voltage(struct regulator * regulator,unsigned selector)3072 int regulator_list_voltage(struct regulator *regulator, unsigned selector)
3073 {
3074 return _regulator_list_voltage(regulator->rdev, selector, 1);
3075 }
3076 EXPORT_SYMBOL_GPL(regulator_list_voltage);
3077
3078 /**
3079 * regulator_get_regmap - get the regulator's register map
3080 * @regulator: regulator source
3081 *
3082 * Returns the register map for the given regulator, or an ERR_PTR value
3083 * if the regulator doesn't use regmap.
3084 */
regulator_get_regmap(struct regulator * regulator)3085 struct regmap *regulator_get_regmap(struct regulator *regulator)
3086 {
3087 struct regmap *map = regulator->rdev->regmap;
3088
3089 return map ? map : ERR_PTR(-EOPNOTSUPP);
3090 }
3091
3092 /**
3093 * regulator_get_hardware_vsel_register - get the HW voltage selector register
3094 * @regulator: regulator source
3095 * @vsel_reg: voltage selector register, output parameter
3096 * @vsel_mask: mask for voltage selector bitfield, output parameter
3097 *
3098 * Returns the hardware register offset and bitmask used for setting the
3099 * regulator voltage. This might be useful when configuring voltage-scaling
3100 * hardware or firmware that can make I2C requests behind the kernel's back,
3101 * for example.
3102 *
3103 * On success, the output parameters @vsel_reg and @vsel_mask are filled in
3104 * and 0 is returned, otherwise a negative errno is returned.
3105 */
regulator_get_hardware_vsel_register(struct regulator * regulator,unsigned * vsel_reg,unsigned * vsel_mask)3106 int regulator_get_hardware_vsel_register(struct regulator *regulator,
3107 unsigned *vsel_reg,
3108 unsigned *vsel_mask)
3109 {
3110 struct regulator_dev *rdev = regulator->rdev;
3111 const struct regulator_ops *ops = rdev->desc->ops;
3112
3113 if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
3114 return -EOPNOTSUPP;
3115
3116 *vsel_reg = rdev->desc->vsel_reg;
3117 *vsel_mask = rdev->desc->vsel_mask;
3118
3119 return 0;
3120 }
3121 EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register);
3122
3123 /**
3124 * regulator_list_hardware_vsel - get the HW-specific register value for a selector
3125 * @regulator: regulator source
3126 * @selector: identify voltage to list
3127 *
3128 * Converts the selector to a hardware-specific voltage selector that can be
3129 * directly written to the regulator registers. The address of the voltage
3130 * register can be determined by calling @regulator_get_hardware_vsel_register.
3131 *
3132 * On error a negative errno is returned.
3133 */
regulator_list_hardware_vsel(struct regulator * regulator,unsigned selector)3134 int regulator_list_hardware_vsel(struct regulator *regulator,
3135 unsigned selector)
3136 {
3137 struct regulator_dev *rdev = regulator->rdev;
3138 const struct regulator_ops *ops = rdev->desc->ops;
3139
3140 if (selector >= rdev->desc->n_voltages)
3141 return -EINVAL;
3142 if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
3143 return -EOPNOTSUPP;
3144
3145 return selector;
3146 }
3147 EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel);
3148
3149 /**
3150 * regulator_get_linear_step - return the voltage step size between VSEL values
3151 * @regulator: regulator source
3152 *
3153 * Returns the voltage step size between VSEL values for linear
3154 * regulators, or return 0 if the regulator isn't a linear regulator.
3155 */
regulator_get_linear_step(struct regulator * regulator)3156 unsigned int regulator_get_linear_step(struct regulator *regulator)
3157 {
3158 struct regulator_dev *rdev = regulator->rdev;
3159
3160 return rdev->desc->uV_step;
3161 }
3162 EXPORT_SYMBOL_GPL(regulator_get_linear_step);
3163
3164 /**
3165 * regulator_is_supported_voltage - check if a voltage range can be supported
3166 *
3167 * @regulator: Regulator to check.
3168 * @min_uV: Minimum required voltage in uV.
3169 * @max_uV: Maximum required voltage in uV.
3170 *
3171 * Returns a boolean.
3172 */
regulator_is_supported_voltage(struct regulator * regulator,int min_uV,int max_uV)3173 int regulator_is_supported_voltage(struct regulator *regulator,
3174 int min_uV, int max_uV)
3175 {
3176 struct regulator_dev *rdev = regulator->rdev;
3177 int i, voltages, ret;
3178
3179 /* If we can't change voltage check the current voltage */
3180 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3181 ret = regulator_get_voltage(regulator);
3182 if (ret >= 0)
3183 return min_uV <= ret && ret <= max_uV;
3184 else
3185 return ret;
3186 }
3187
3188 /* Any voltage within constrains range is fine? */
3189 if (rdev->desc->continuous_voltage_range)
3190 return min_uV >= rdev->constraints->min_uV &&
3191 max_uV <= rdev->constraints->max_uV;
3192
3193 ret = regulator_count_voltages(regulator);
3194 if (ret < 0)
3195 return 0;
3196 voltages = ret;
3197
3198 for (i = 0; i < voltages; i++) {
3199 ret = regulator_list_voltage(regulator, i);
3200
3201 if (ret >= min_uV && ret <= max_uV)
3202 return 1;
3203 }
3204
3205 return 0;
3206 }
3207 EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
3208
regulator_map_voltage(struct regulator_dev * rdev,int min_uV,int max_uV)3209 static int regulator_map_voltage(struct regulator_dev *rdev, int min_uV,
3210 int max_uV)
3211 {
3212 const struct regulator_desc *desc = rdev->desc;
3213
3214 if (desc->ops->map_voltage)
3215 return desc->ops->map_voltage(rdev, min_uV, max_uV);
3216
3217 if (desc->ops->list_voltage == regulator_list_voltage_linear)
3218 return regulator_map_voltage_linear(rdev, min_uV, max_uV);
3219
3220 if (desc->ops->list_voltage == regulator_list_voltage_linear_range)
3221 return regulator_map_voltage_linear_range(rdev, min_uV, max_uV);
3222
3223 if (desc->ops->list_voltage ==
3224 regulator_list_voltage_pickable_linear_range)
3225 return regulator_map_voltage_pickable_linear_range(rdev,
3226 min_uV, max_uV);
3227
3228 return regulator_map_voltage_iterate(rdev, min_uV, max_uV);
3229 }
3230
_regulator_call_set_voltage(struct regulator_dev * rdev,int min_uV,int max_uV,unsigned * selector)3231 static int _regulator_call_set_voltage(struct regulator_dev *rdev,
3232 int min_uV, int max_uV,
3233 unsigned *selector)
3234 {
3235 struct pre_voltage_change_data data;
3236 int ret;
3237
3238 data.old_uV = regulator_get_voltage_rdev(rdev);
3239 data.min_uV = min_uV;
3240 data.max_uV = max_uV;
3241 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
3242 &data);
3243 if (ret & NOTIFY_STOP_MASK)
3244 return -EINVAL;
3245
3246 ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector);
3247 if (ret >= 0)
3248 return ret;
3249
3250 _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
3251 (void *)data.old_uV);
3252
3253 return ret;
3254 }
3255
_regulator_call_set_voltage_sel(struct regulator_dev * rdev,int uV,unsigned selector)3256 static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev,
3257 int uV, unsigned selector)
3258 {
3259 struct pre_voltage_change_data data;
3260 int ret;
3261
3262 data.old_uV = regulator_get_voltage_rdev(rdev);
3263 data.min_uV = uV;
3264 data.max_uV = uV;
3265 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
3266 &data);
3267 if (ret & NOTIFY_STOP_MASK)
3268 return -EINVAL;
3269
3270 ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
3271 if (ret >= 0)
3272 return ret;
3273
3274 _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
3275 (void *)data.old_uV);
3276
3277 return ret;
3278 }
3279
_regulator_set_voltage_sel_step(struct regulator_dev * rdev,int uV,int new_selector)3280 static int _regulator_set_voltage_sel_step(struct regulator_dev *rdev,
3281 int uV, int new_selector)
3282 {
3283 const struct regulator_ops *ops = rdev->desc->ops;
3284 int diff, old_sel, curr_sel, ret;
3285
3286 /* Stepping is only needed if the regulator is enabled. */
3287 if (!_regulator_is_enabled(rdev))
3288 goto final_set;
3289
3290 if (!ops->get_voltage_sel)
3291 return -EINVAL;
3292
3293 old_sel = ops->get_voltage_sel(rdev);
3294 if (old_sel < 0)
3295 return old_sel;
3296
3297 diff = new_selector - old_sel;
3298 if (diff == 0)
3299 return 0; /* No change needed. */
3300
3301 if (diff > 0) {
3302 /* Stepping up. */
3303 for (curr_sel = old_sel + rdev->desc->vsel_step;
3304 curr_sel < new_selector;
3305 curr_sel += rdev->desc->vsel_step) {
3306 /*
3307 * Call the callback directly instead of using
3308 * _regulator_call_set_voltage_sel() as we don't
3309 * want to notify anyone yet. Same in the branch
3310 * below.
3311 */
3312 ret = ops->set_voltage_sel(rdev, curr_sel);
3313 if (ret)
3314 goto try_revert;
3315 }
3316 } else {
3317 /* Stepping down. */
3318 for (curr_sel = old_sel - rdev->desc->vsel_step;
3319 curr_sel > new_selector;
3320 curr_sel -= rdev->desc->vsel_step) {
3321 ret = ops->set_voltage_sel(rdev, curr_sel);
3322 if (ret)
3323 goto try_revert;
3324 }
3325 }
3326
3327 final_set:
3328 /* The final selector will trigger the notifiers. */
3329 return _regulator_call_set_voltage_sel(rdev, uV, new_selector);
3330
3331 try_revert:
3332 /*
3333 * At least try to return to the previous voltage if setting a new
3334 * one failed.
3335 */
3336 (void)ops->set_voltage_sel(rdev, old_sel);
3337 return ret;
3338 }
3339
_regulator_set_voltage_time(struct regulator_dev * rdev,int old_uV,int new_uV)3340 static int _regulator_set_voltage_time(struct regulator_dev *rdev,
3341 int old_uV, int new_uV)
3342 {
3343 unsigned int ramp_delay = 0;
3344
3345 if (rdev->constraints->ramp_delay)
3346 ramp_delay = rdev->constraints->ramp_delay;
3347 else if (rdev->desc->ramp_delay)
3348 ramp_delay = rdev->desc->ramp_delay;
3349 else if (rdev->constraints->settling_time)
3350 return rdev->constraints->settling_time;
3351 else if (rdev->constraints->settling_time_up &&
3352 (new_uV > old_uV))
3353 return rdev->constraints->settling_time_up;
3354 else if (rdev->constraints->settling_time_down &&
3355 (new_uV < old_uV))
3356 return rdev->constraints->settling_time_down;
3357
3358 if (ramp_delay == 0) {
3359 rdev_dbg(rdev, "ramp_delay not set\n");
3360 return 0;
3361 }
3362
3363 return DIV_ROUND_UP(abs(new_uV - old_uV), ramp_delay);
3364 }
3365
_regulator_do_set_voltage(struct regulator_dev * rdev,int min_uV,int max_uV)3366 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
3367 int min_uV, int max_uV)
3368 {
3369 int ret;
3370 int delay = 0;
3371 int best_val = 0;
3372 unsigned int selector;
3373 int old_selector = -1;
3374 const struct regulator_ops *ops = rdev->desc->ops;
3375 int old_uV = regulator_get_voltage_rdev(rdev);
3376
3377 trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
3378
3379 min_uV += rdev->constraints->uV_offset;
3380 max_uV += rdev->constraints->uV_offset;
3381
3382 /*
3383 * If we can't obtain the old selector there is not enough
3384 * info to call set_voltage_time_sel().
3385 */
3386 if (_regulator_is_enabled(rdev) &&
3387 ops->set_voltage_time_sel && ops->get_voltage_sel) {
3388 old_selector = ops->get_voltage_sel(rdev);
3389 if (old_selector < 0)
3390 return old_selector;
3391 }
3392
3393 if (ops->set_voltage) {
3394 ret = _regulator_call_set_voltage(rdev, min_uV, max_uV,
3395 &selector);
3396
3397 if (ret >= 0) {
3398 if (ops->list_voltage)
3399 best_val = ops->list_voltage(rdev,
3400 selector);
3401 else
3402 best_val = regulator_get_voltage_rdev(rdev);
3403 }
3404
3405 } else if (ops->set_voltage_sel) {
3406 ret = regulator_map_voltage(rdev, min_uV, max_uV);
3407 if (ret >= 0) {
3408 best_val = ops->list_voltage(rdev, ret);
3409 if (min_uV <= best_val && max_uV >= best_val) {
3410 selector = ret;
3411 if (old_selector == selector)
3412 ret = 0;
3413 else if (rdev->desc->vsel_step)
3414 ret = _regulator_set_voltage_sel_step(
3415 rdev, best_val, selector);
3416 else
3417 ret = _regulator_call_set_voltage_sel(
3418 rdev, best_val, selector);
3419 } else {
3420 ret = -EINVAL;
3421 }
3422 }
3423 } else {
3424 ret = -EINVAL;
3425 }
3426
3427 if (ret)
3428 goto out;
3429
3430 if (ops->set_voltage_time_sel) {
3431 /*
3432 * Call set_voltage_time_sel if successfully obtained
3433 * old_selector
3434 */
3435 if (old_selector >= 0 && old_selector != selector)
3436 delay = ops->set_voltage_time_sel(rdev, old_selector,
3437 selector);
3438 } else {
3439 if (old_uV != best_val) {
3440 if (ops->set_voltage_time)
3441 delay = ops->set_voltage_time(rdev, old_uV,
3442 best_val);
3443 else
3444 delay = _regulator_set_voltage_time(rdev,
3445 old_uV,
3446 best_val);
3447 }
3448 }
3449
3450 if (delay < 0) {
3451 rdev_warn(rdev, "failed to get delay: %pe\n", ERR_PTR(delay));
3452 delay = 0;
3453 }
3454
3455 /* Insert any necessary delays */
3456 if (delay >= 1000) {
3457 mdelay(delay / 1000);
3458 udelay(delay % 1000);
3459 } else if (delay) {
3460 udelay(delay);
3461 }
3462
3463 if (best_val >= 0) {
3464 unsigned long data = best_val;
3465
3466 _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
3467 (void *)data);
3468 }
3469
3470 out:
3471 trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
3472
3473 return ret;
3474 }
3475
_regulator_do_set_suspend_voltage(struct regulator_dev * rdev,int min_uV,int max_uV,suspend_state_t state)3476 static int _regulator_do_set_suspend_voltage(struct regulator_dev *rdev,
3477 int min_uV, int max_uV, suspend_state_t state)
3478 {
3479 struct regulator_state *rstate;
3480 int uV, sel;
3481
3482 rstate = regulator_get_suspend_state(rdev, state);
3483 if (rstate == NULL)
3484 return -EINVAL;
3485
3486 if (min_uV < rstate->min_uV)
3487 min_uV = rstate->min_uV;
3488 if (max_uV > rstate->max_uV)
3489 max_uV = rstate->max_uV;
3490
3491 sel = regulator_map_voltage(rdev, min_uV, max_uV);
3492 if (sel < 0)
3493 return sel;
3494
3495 uV = rdev->desc->ops->list_voltage(rdev, sel);
3496 if (uV >= min_uV && uV <= max_uV)
3497 rstate->uV = uV;
3498
3499 return 0;
3500 }
3501
regulator_set_voltage_unlocked(struct regulator * regulator,int min_uV,int max_uV,suspend_state_t state)3502 static int regulator_set_voltage_unlocked(struct regulator *regulator,
3503 int min_uV, int max_uV,
3504 suspend_state_t state)
3505 {
3506 struct regulator_dev *rdev = regulator->rdev;
3507 struct regulator_voltage *voltage = ®ulator->voltage[state];
3508 int ret = 0;
3509 int old_min_uV, old_max_uV;
3510 int current_uV;
3511
3512 /* If we're setting the same range as last time the change
3513 * should be a noop (some cpufreq implementations use the same
3514 * voltage for multiple frequencies, for example).
3515 */
3516 if (voltage->min_uV == min_uV && voltage->max_uV == max_uV)
3517 goto out;
3518
3519 /* If we're trying to set a range that overlaps the current voltage,
3520 * return successfully even though the regulator does not support
3521 * changing the voltage.
3522 */
3523 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3524 current_uV = regulator_get_voltage_rdev(rdev);
3525 if (min_uV <= current_uV && current_uV <= max_uV) {
3526 voltage->min_uV = min_uV;
3527 voltage->max_uV = max_uV;
3528 goto out;
3529 }
3530 }
3531
3532 /* sanity check */
3533 if (!rdev->desc->ops->set_voltage &&
3534 !rdev->desc->ops->set_voltage_sel) {
3535 ret = -EINVAL;
3536 goto out;
3537 }
3538
3539 /* constraints check */
3540 ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
3541 if (ret < 0)
3542 goto out;
3543
3544 /* restore original values in case of error */
3545 old_min_uV = voltage->min_uV;
3546 old_max_uV = voltage->max_uV;
3547 voltage->min_uV = min_uV;
3548 voltage->max_uV = max_uV;
3549
3550 /* for not coupled regulators this will just set the voltage */
3551 ret = regulator_balance_voltage(rdev, state);
3552 if (ret < 0) {
3553 voltage->min_uV = old_min_uV;
3554 voltage->max_uV = old_max_uV;
3555 }
3556
3557 out:
3558 return ret;
3559 }
3560
regulator_set_voltage_rdev(struct regulator_dev * rdev,int min_uV,int max_uV,suspend_state_t state)3561 int regulator_set_voltage_rdev(struct regulator_dev *rdev, int min_uV,
3562 int max_uV, suspend_state_t state)
3563 {
3564 int best_supply_uV = 0;
3565 int supply_change_uV = 0;
3566 int ret;
3567
3568 if (rdev->supply &&
3569 regulator_ops_is_valid(rdev->supply->rdev,
3570 REGULATOR_CHANGE_VOLTAGE) &&
3571 (rdev->desc->min_dropout_uV || !(rdev->desc->ops->get_voltage ||
3572 rdev->desc->ops->get_voltage_sel))) {
3573 int current_supply_uV;
3574 int selector;
3575
3576 selector = regulator_map_voltage(rdev, min_uV, max_uV);
3577 if (selector < 0) {
3578 ret = selector;
3579 goto out;
3580 }
3581
3582 best_supply_uV = _regulator_list_voltage(rdev, selector, 0);
3583 if (best_supply_uV < 0) {
3584 ret = best_supply_uV;
3585 goto out;
3586 }
3587
3588 best_supply_uV += rdev->desc->min_dropout_uV;
3589
3590 current_supply_uV = regulator_get_voltage_rdev(rdev->supply->rdev);
3591 if (current_supply_uV < 0) {
3592 ret = current_supply_uV;
3593 goto out;
3594 }
3595
3596 supply_change_uV = best_supply_uV - current_supply_uV;
3597 }
3598
3599 if (supply_change_uV > 0) {
3600 ret = regulator_set_voltage_unlocked(rdev->supply,
3601 best_supply_uV, INT_MAX, state);
3602 if (ret) {
3603 dev_err(&rdev->dev, "Failed to increase supply voltage: %pe\n",
3604 ERR_PTR(ret));
3605 goto out;
3606 }
3607 }
3608
3609 if (state == PM_SUSPEND_ON)
3610 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
3611 else
3612 ret = _regulator_do_set_suspend_voltage(rdev, min_uV,
3613 max_uV, state);
3614 if (ret < 0)
3615 goto out;
3616
3617 if (supply_change_uV < 0) {
3618 ret = regulator_set_voltage_unlocked(rdev->supply,
3619 best_supply_uV, INT_MAX, state);
3620 if (ret)
3621 dev_warn(&rdev->dev, "Failed to decrease supply voltage: %pe\n",
3622 ERR_PTR(ret));
3623 /* No need to fail here */
3624 ret = 0;
3625 }
3626
3627 out:
3628 return ret;
3629 }
3630 EXPORT_SYMBOL_GPL(regulator_set_voltage_rdev);
3631
regulator_limit_voltage_step(struct regulator_dev * rdev,int * current_uV,int * min_uV)3632 static int regulator_limit_voltage_step(struct regulator_dev *rdev,
3633 int *current_uV, int *min_uV)
3634 {
3635 struct regulation_constraints *constraints = rdev->constraints;
3636
3637 /* Limit voltage change only if necessary */
3638 if (!constraints->max_uV_step || !_regulator_is_enabled(rdev))
3639 return 1;
3640
3641 if (*current_uV < 0) {
3642 *current_uV = regulator_get_voltage_rdev(rdev);
3643
3644 if (*current_uV < 0)
3645 return *current_uV;
3646 }
3647
3648 if (abs(*current_uV - *min_uV) <= constraints->max_uV_step)
3649 return 1;
3650
3651 /* Clamp target voltage within the given step */
3652 if (*current_uV < *min_uV)
3653 *min_uV = min(*current_uV + constraints->max_uV_step,
3654 *min_uV);
3655 else
3656 *min_uV = max(*current_uV - constraints->max_uV_step,
3657 *min_uV);
3658
3659 return 0;
3660 }
3661
regulator_get_optimal_voltage(struct regulator_dev * rdev,int * current_uV,int * min_uV,int * max_uV,suspend_state_t state,int n_coupled)3662 static int regulator_get_optimal_voltage(struct regulator_dev *rdev,
3663 int *current_uV,
3664 int *min_uV, int *max_uV,
3665 suspend_state_t state,
3666 int n_coupled)
3667 {
3668 struct coupling_desc *c_desc = &rdev->coupling_desc;
3669 struct regulator_dev **c_rdevs = c_desc->coupled_rdevs;
3670 struct regulation_constraints *constraints = rdev->constraints;
3671 int desired_min_uV = 0, desired_max_uV = INT_MAX;
3672 int max_current_uV = 0, min_current_uV = INT_MAX;
3673 int highest_min_uV = 0, target_uV, possible_uV;
3674 int i, ret, max_spread;
3675 bool done;
3676
3677 *current_uV = -1;
3678
3679 /*
3680 * If there are no coupled regulators, simply set the voltage
3681 * demanded by consumers.
3682 */
3683 if (n_coupled == 1) {
3684 /*
3685 * If consumers don't provide any demands, set voltage
3686 * to min_uV
3687 */
3688 desired_min_uV = constraints->min_uV;
3689 desired_max_uV = constraints->max_uV;
3690
3691 ret = regulator_check_consumers(rdev,
3692 &desired_min_uV,
3693 &desired_max_uV, state);
3694 if (ret < 0)
3695 return ret;
3696
3697 possible_uV = desired_min_uV;
3698 done = true;
3699
3700 goto finish;
3701 }
3702
3703 /* Find highest min desired voltage */
3704 for (i = 0; i < n_coupled; i++) {
3705 int tmp_min = 0;
3706 int tmp_max = INT_MAX;
3707
3708 lockdep_assert_held_once(&c_rdevs[i]->mutex.base);
3709
3710 ret = regulator_check_consumers(c_rdevs[i],
3711 &tmp_min,
3712 &tmp_max, state);
3713 if (ret < 0)
3714 return ret;
3715
3716 ret = regulator_check_voltage(c_rdevs[i], &tmp_min, &tmp_max);
3717 if (ret < 0)
3718 return ret;
3719
3720 highest_min_uV = max(highest_min_uV, tmp_min);
3721
3722 if (i == 0) {
3723 desired_min_uV = tmp_min;
3724 desired_max_uV = tmp_max;
3725 }
3726 }
3727
3728 max_spread = constraints->max_spread[0];
3729
3730 /*
3731 * Let target_uV be equal to the desired one if possible.
3732 * If not, set it to minimum voltage, allowed by other coupled
3733 * regulators.
3734 */
3735 target_uV = max(desired_min_uV, highest_min_uV - max_spread);
3736
3737 /*
3738 * Find min and max voltages, which currently aren't violating
3739 * max_spread.
3740 */
3741 for (i = 1; i < n_coupled; i++) {
3742 int tmp_act;
3743
3744 if (!_regulator_is_enabled(c_rdevs[i]))
3745 continue;
3746
3747 tmp_act = regulator_get_voltage_rdev(c_rdevs[i]);
3748 if (tmp_act < 0)
3749 return tmp_act;
3750
3751 min_current_uV = min(tmp_act, min_current_uV);
3752 max_current_uV = max(tmp_act, max_current_uV);
3753 }
3754
3755 /* There aren't any other regulators enabled */
3756 if (max_current_uV == 0) {
3757 possible_uV = target_uV;
3758 } else {
3759 /*
3760 * Correct target voltage, so as it currently isn't
3761 * violating max_spread
3762 */
3763 possible_uV = max(target_uV, max_current_uV - max_spread);
3764 possible_uV = min(possible_uV, min_current_uV + max_spread);
3765 }
3766
3767 if (possible_uV > desired_max_uV)
3768 return -EINVAL;
3769
3770 done = (possible_uV == target_uV);
3771 desired_min_uV = possible_uV;
3772
3773 finish:
3774 /* Apply max_uV_step constraint if necessary */
3775 if (state == PM_SUSPEND_ON) {
3776 ret = regulator_limit_voltage_step(rdev, current_uV,
3777 &desired_min_uV);
3778 if (ret < 0)
3779 return ret;
3780
3781 if (ret == 0)
3782 done = false;
3783 }
3784
3785 /* Set current_uV if wasn't done earlier in the code and if necessary */
3786 if (n_coupled > 1 && *current_uV == -1) {
3787
3788 if (_regulator_is_enabled(rdev)) {
3789 ret = regulator_get_voltage_rdev(rdev);
3790 if (ret < 0)
3791 return ret;
3792
3793 *current_uV = ret;
3794 } else {
3795 *current_uV = desired_min_uV;
3796 }
3797 }
3798
3799 *min_uV = desired_min_uV;
3800 *max_uV = desired_max_uV;
3801
3802 return done;
3803 }
3804
regulator_do_balance_voltage(struct regulator_dev * rdev,suspend_state_t state,bool skip_coupled)3805 int regulator_do_balance_voltage(struct regulator_dev *rdev,
3806 suspend_state_t state, bool skip_coupled)
3807 {
3808 struct regulator_dev **c_rdevs;
3809 struct regulator_dev *best_rdev;
3810 struct coupling_desc *c_desc = &rdev->coupling_desc;
3811 int i, ret, n_coupled, best_min_uV, best_max_uV, best_c_rdev;
3812 unsigned int delta, best_delta;
3813 unsigned long c_rdev_done = 0;
3814 bool best_c_rdev_done;
3815
3816 c_rdevs = c_desc->coupled_rdevs;
3817 n_coupled = skip_coupled ? 1 : c_desc->n_coupled;
3818
3819 /*
3820 * Find the best possible voltage change on each loop. Leave the loop
3821 * if there isn't any possible change.
3822 */
3823 do {
3824 best_c_rdev_done = false;
3825 best_delta = 0;
3826 best_min_uV = 0;
3827 best_max_uV = 0;
3828 best_c_rdev = 0;
3829 best_rdev = NULL;
3830
3831 /*
3832 * Find highest difference between optimal voltage
3833 * and current voltage.
3834 */
3835 for (i = 0; i < n_coupled; i++) {
3836 /*
3837 * optimal_uV is the best voltage that can be set for
3838 * i-th regulator at the moment without violating
3839 * max_spread constraint in order to balance
3840 * the coupled voltages.
3841 */
3842 int optimal_uV = 0, optimal_max_uV = 0, current_uV = 0;
3843
3844 if (test_bit(i, &c_rdev_done))
3845 continue;
3846
3847 ret = regulator_get_optimal_voltage(c_rdevs[i],
3848 ¤t_uV,
3849 &optimal_uV,
3850 &optimal_max_uV,
3851 state, n_coupled);
3852 if (ret < 0)
3853 goto out;
3854
3855 delta = abs(optimal_uV - current_uV);
3856
3857 if (delta && best_delta <= delta) {
3858 best_c_rdev_done = ret;
3859 best_delta = delta;
3860 best_rdev = c_rdevs[i];
3861 best_min_uV = optimal_uV;
3862 best_max_uV = optimal_max_uV;
3863 best_c_rdev = i;
3864 }
3865 }
3866
3867 /* Nothing to change, return successfully */
3868 if (!best_rdev) {
3869 ret = 0;
3870 goto out;
3871 }
3872
3873 ret = regulator_set_voltage_rdev(best_rdev, best_min_uV,
3874 best_max_uV, state);
3875
3876 if (ret < 0)
3877 goto out;
3878
3879 if (best_c_rdev_done)
3880 set_bit(best_c_rdev, &c_rdev_done);
3881
3882 } while (n_coupled > 1);
3883
3884 out:
3885 return ret;
3886 }
3887
regulator_balance_voltage(struct regulator_dev * rdev,suspend_state_t state)3888 static int regulator_balance_voltage(struct regulator_dev *rdev,
3889 suspend_state_t state)
3890 {
3891 struct coupling_desc *c_desc = &rdev->coupling_desc;
3892 struct regulator_coupler *coupler = c_desc->coupler;
3893 bool skip_coupled = false;
3894
3895 /*
3896 * If system is in a state other than PM_SUSPEND_ON, don't check
3897 * other coupled regulators.
3898 */
3899 if (state != PM_SUSPEND_ON)
3900 skip_coupled = true;
3901
3902 if (c_desc->n_resolved < c_desc->n_coupled) {
3903 rdev_err(rdev, "Not all coupled regulators registered\n");
3904 return -EPERM;
3905 }
3906
3907 /* Invoke custom balancer for customized couplers */
3908 if (coupler && coupler->balance_voltage)
3909 return coupler->balance_voltage(coupler, rdev, state);
3910
3911 return regulator_do_balance_voltage(rdev, state, skip_coupled);
3912 }
3913
3914 /**
3915 * regulator_set_voltage - set regulator output voltage
3916 * @regulator: regulator source
3917 * @min_uV: Minimum required voltage in uV
3918 * @max_uV: Maximum acceptable voltage in uV
3919 *
3920 * Sets a voltage regulator to the desired output voltage. This can be set
3921 * during any regulator state. IOW, regulator can be disabled or enabled.
3922 *
3923 * If the regulator is enabled then the voltage will change to the new value
3924 * immediately otherwise if the regulator is disabled the regulator will
3925 * output at the new voltage when enabled.
3926 *
3927 * NOTE: If the regulator is shared between several devices then the lowest
3928 * request voltage that meets the system constraints will be used.
3929 * Regulator system constraints must be set for this regulator before
3930 * calling this function otherwise this call will fail.
3931 */
regulator_set_voltage(struct regulator * regulator,int min_uV,int max_uV)3932 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
3933 {
3934 struct ww_acquire_ctx ww_ctx;
3935 int ret;
3936
3937 regulator_lock_dependent(regulator->rdev, &ww_ctx);
3938
3939 ret = regulator_set_voltage_unlocked(regulator, min_uV, max_uV,
3940 PM_SUSPEND_ON);
3941
3942 regulator_unlock_dependent(regulator->rdev, &ww_ctx);
3943
3944 return ret;
3945 }
3946 EXPORT_SYMBOL_GPL(regulator_set_voltage);
3947
regulator_suspend_toggle(struct regulator_dev * rdev,suspend_state_t state,bool en)3948 static inline int regulator_suspend_toggle(struct regulator_dev *rdev,
3949 suspend_state_t state, bool en)
3950 {
3951 struct regulator_state *rstate;
3952
3953 rstate = regulator_get_suspend_state(rdev, state);
3954 if (rstate == NULL)
3955 return -EINVAL;
3956
3957 if (!rstate->changeable)
3958 return -EPERM;
3959
3960 rstate->enabled = (en) ? ENABLE_IN_SUSPEND : DISABLE_IN_SUSPEND;
3961
3962 return 0;
3963 }
3964
regulator_suspend_enable(struct regulator_dev * rdev,suspend_state_t state)3965 int regulator_suspend_enable(struct regulator_dev *rdev,
3966 suspend_state_t state)
3967 {
3968 return regulator_suspend_toggle(rdev, state, true);
3969 }
3970 EXPORT_SYMBOL_GPL(regulator_suspend_enable);
3971
regulator_suspend_disable(struct regulator_dev * rdev,suspend_state_t state)3972 int regulator_suspend_disable(struct regulator_dev *rdev,
3973 suspend_state_t state)
3974 {
3975 struct regulator *regulator;
3976 struct regulator_voltage *voltage;
3977
3978 /*
3979 * if any consumer wants this regulator device keeping on in
3980 * suspend states, don't set it as disabled.
3981 */
3982 list_for_each_entry(regulator, &rdev->consumer_list, list) {
3983 voltage = ®ulator->voltage[state];
3984 if (voltage->min_uV || voltage->max_uV)
3985 return 0;
3986 }
3987
3988 return regulator_suspend_toggle(rdev, state, false);
3989 }
3990 EXPORT_SYMBOL_GPL(regulator_suspend_disable);
3991
_regulator_set_suspend_voltage(struct regulator * regulator,int min_uV,int max_uV,suspend_state_t state)3992 static int _regulator_set_suspend_voltage(struct regulator *regulator,
3993 int min_uV, int max_uV,
3994 suspend_state_t state)
3995 {
3996 struct regulator_dev *rdev = regulator->rdev;
3997 struct regulator_state *rstate;
3998
3999 rstate = regulator_get_suspend_state(rdev, state);
4000 if (rstate == NULL)
4001 return -EINVAL;
4002
4003 if (rstate->min_uV == rstate->max_uV) {
4004 rdev_err(rdev, "The suspend voltage can't be changed!\n");
4005 return -EPERM;
4006 }
4007
4008 return regulator_set_voltage_unlocked(regulator, min_uV, max_uV, state);
4009 }
4010
regulator_set_suspend_voltage(struct regulator * regulator,int min_uV,int max_uV,suspend_state_t state)4011 int regulator_set_suspend_voltage(struct regulator *regulator, int min_uV,
4012 int max_uV, suspend_state_t state)
4013 {
4014 struct ww_acquire_ctx ww_ctx;
4015 int ret;
4016
4017 /* PM_SUSPEND_ON is handled by regulator_set_voltage() */
4018 if (regulator_check_states(state) || state == PM_SUSPEND_ON)
4019 return -EINVAL;
4020
4021 regulator_lock_dependent(regulator->rdev, &ww_ctx);
4022
4023 ret = _regulator_set_suspend_voltage(regulator, min_uV,
4024 max_uV, state);
4025
4026 regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4027
4028 return ret;
4029 }
4030 EXPORT_SYMBOL_GPL(regulator_set_suspend_voltage);
4031
4032 /**
4033 * regulator_set_voltage_time - get raise/fall time
4034 * @regulator: regulator source
4035 * @old_uV: starting voltage in microvolts
4036 * @new_uV: target voltage in microvolts
4037 *
4038 * Provided with the starting and ending voltage, this function attempts to
4039 * calculate the time in microseconds required to rise or fall to this new
4040 * voltage.
4041 */
regulator_set_voltage_time(struct regulator * regulator,int old_uV,int new_uV)4042 int regulator_set_voltage_time(struct regulator *regulator,
4043 int old_uV, int new_uV)
4044 {
4045 struct regulator_dev *rdev = regulator->rdev;
4046 const struct regulator_ops *ops = rdev->desc->ops;
4047 int old_sel = -1;
4048 int new_sel = -1;
4049 int voltage;
4050 int i;
4051
4052 if (ops->set_voltage_time)
4053 return ops->set_voltage_time(rdev, old_uV, new_uV);
4054 else if (!ops->set_voltage_time_sel)
4055 return _regulator_set_voltage_time(rdev, old_uV, new_uV);
4056
4057 /* Currently requires operations to do this */
4058 if (!ops->list_voltage || !rdev->desc->n_voltages)
4059 return -EINVAL;
4060
4061 for (i = 0; i < rdev->desc->n_voltages; i++) {
4062 /* We only look for exact voltage matches here */
4063
4064 if (old_sel >= 0 && new_sel >= 0)
4065 break;
4066
4067 voltage = regulator_list_voltage(regulator, i);
4068 if (voltage < 0)
4069 return -EINVAL;
4070 if (voltage == 0)
4071 continue;
4072 if (voltage == old_uV)
4073 old_sel = i;
4074 if (voltage == new_uV)
4075 new_sel = i;
4076 }
4077
4078 if (old_sel < 0 || new_sel < 0)
4079 return -EINVAL;
4080
4081 return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
4082 }
4083 EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
4084
4085 /**
4086 * regulator_set_voltage_time_sel - get raise/fall time
4087 * @rdev: regulator source device
4088 * @old_selector: selector for starting voltage
4089 * @new_selector: selector for target voltage
4090 *
4091 * Provided with the starting and target voltage selectors, this function
4092 * returns time in microseconds required to rise or fall to this new voltage
4093 *
4094 * Drivers providing ramp_delay in regulation_constraints can use this as their
4095 * set_voltage_time_sel() operation.
4096 */
regulator_set_voltage_time_sel(struct regulator_dev * rdev,unsigned int old_selector,unsigned int new_selector)4097 int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
4098 unsigned int old_selector,
4099 unsigned int new_selector)
4100 {
4101 int old_volt, new_volt;
4102
4103 /* sanity check */
4104 if (!rdev->desc->ops->list_voltage)
4105 return -EINVAL;
4106
4107 old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
4108 new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
4109
4110 if (rdev->desc->ops->set_voltage_time)
4111 return rdev->desc->ops->set_voltage_time(rdev, old_volt,
4112 new_volt);
4113 else
4114 return _regulator_set_voltage_time(rdev, old_volt, new_volt);
4115 }
4116 EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
4117
4118 /**
4119 * regulator_sync_voltage - re-apply last regulator output voltage
4120 * @regulator: regulator source
4121 *
4122 * Re-apply the last configured voltage. This is intended to be used
4123 * where some external control source the consumer is cooperating with
4124 * has caused the configured voltage to change.
4125 */
regulator_sync_voltage(struct regulator * regulator)4126 int regulator_sync_voltage(struct regulator *regulator)
4127 {
4128 struct regulator_dev *rdev = regulator->rdev;
4129 struct regulator_voltage *voltage = ®ulator->voltage[PM_SUSPEND_ON];
4130 int ret, min_uV, max_uV;
4131
4132 regulator_lock(rdev);
4133
4134 if (!rdev->desc->ops->set_voltage &&
4135 !rdev->desc->ops->set_voltage_sel) {
4136 ret = -EINVAL;
4137 goto out;
4138 }
4139
4140 /* This is only going to work if we've had a voltage configured. */
4141 if (!voltage->min_uV && !voltage->max_uV) {
4142 ret = -EINVAL;
4143 goto out;
4144 }
4145
4146 min_uV = voltage->min_uV;
4147 max_uV = voltage->max_uV;
4148
4149 /* This should be a paranoia check... */
4150 ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
4151 if (ret < 0)
4152 goto out;
4153
4154 ret = regulator_check_consumers(rdev, &min_uV, &max_uV, 0);
4155 if (ret < 0)
4156 goto out;
4157
4158 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
4159
4160 out:
4161 regulator_unlock(rdev);
4162 return ret;
4163 }
4164 EXPORT_SYMBOL_GPL(regulator_sync_voltage);
4165
regulator_get_voltage_rdev(struct regulator_dev * rdev)4166 int regulator_get_voltage_rdev(struct regulator_dev *rdev)
4167 {
4168 int sel, ret;
4169 bool bypassed;
4170
4171 if (rdev->desc->ops->get_bypass) {
4172 ret = rdev->desc->ops->get_bypass(rdev, &bypassed);
4173 if (ret < 0)
4174 return ret;
4175 if (bypassed) {
4176 /* if bypassed the regulator must have a supply */
4177 if (!rdev->supply) {
4178 rdev_err(rdev,
4179 "bypassed regulator has no supply!\n");
4180 return -EPROBE_DEFER;
4181 }
4182
4183 return regulator_get_voltage_rdev(rdev->supply->rdev);
4184 }
4185 }
4186
4187 if (rdev->desc->ops->get_voltage_sel) {
4188 sel = rdev->desc->ops->get_voltage_sel(rdev);
4189 if (sel < 0)
4190 return sel;
4191 ret = rdev->desc->ops->list_voltage(rdev, sel);
4192 } else if (rdev->desc->ops->get_voltage) {
4193 ret = rdev->desc->ops->get_voltage(rdev);
4194 } else if (rdev->desc->ops->list_voltage) {
4195 ret = rdev->desc->ops->list_voltage(rdev, 0);
4196 } else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
4197 ret = rdev->desc->fixed_uV;
4198 } else if (rdev->supply) {
4199 ret = regulator_get_voltage_rdev(rdev->supply->rdev);
4200 } else if (rdev->supply_name) {
4201 return -EPROBE_DEFER;
4202 } else {
4203 return -EINVAL;
4204 }
4205
4206 if (ret < 0)
4207 return ret;
4208 return ret - rdev->constraints->uV_offset;
4209 }
4210 EXPORT_SYMBOL_GPL(regulator_get_voltage_rdev);
4211
4212 /**
4213 * regulator_get_voltage - get regulator output voltage
4214 * @regulator: regulator source
4215 *
4216 * This returns the current regulator voltage in uV.
4217 *
4218 * NOTE: If the regulator is disabled it will return the voltage value. This
4219 * function should not be used to determine regulator state.
4220 */
regulator_get_voltage(struct regulator * regulator)4221 int regulator_get_voltage(struct regulator *regulator)
4222 {
4223 struct ww_acquire_ctx ww_ctx;
4224 int ret;
4225
4226 regulator_lock_dependent(regulator->rdev, &ww_ctx);
4227 ret = regulator_get_voltage_rdev(regulator->rdev);
4228 regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4229
4230 return ret;
4231 }
4232 EXPORT_SYMBOL_GPL(regulator_get_voltage);
4233
4234 /**
4235 * regulator_set_current_limit - set regulator output current limit
4236 * @regulator: regulator source
4237 * @min_uA: Minimum supported current in uA
4238 * @max_uA: Maximum supported current in uA
4239 *
4240 * Sets current sink to the desired output current. This can be set during
4241 * any regulator state. IOW, regulator can be disabled or enabled.
4242 *
4243 * If the regulator is enabled then the current will change to the new value
4244 * immediately otherwise if the regulator is disabled the regulator will
4245 * output at the new current when enabled.
4246 *
4247 * NOTE: Regulator system constraints must be set for this regulator before
4248 * calling this function otherwise this call will fail.
4249 */
regulator_set_current_limit(struct regulator * regulator,int min_uA,int max_uA)4250 int regulator_set_current_limit(struct regulator *regulator,
4251 int min_uA, int max_uA)
4252 {
4253 struct regulator_dev *rdev = regulator->rdev;
4254 int ret;
4255
4256 regulator_lock(rdev);
4257
4258 /* sanity check */
4259 if (!rdev->desc->ops->set_current_limit) {
4260 ret = -EINVAL;
4261 goto out;
4262 }
4263
4264 /* constraints check */
4265 ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
4266 if (ret < 0)
4267 goto out;
4268
4269 ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
4270 out:
4271 regulator_unlock(rdev);
4272 return ret;
4273 }
4274 EXPORT_SYMBOL_GPL(regulator_set_current_limit);
4275
_regulator_get_current_limit_unlocked(struct regulator_dev * rdev)4276 static int _regulator_get_current_limit_unlocked(struct regulator_dev *rdev)
4277 {
4278 /* sanity check */
4279 if (!rdev->desc->ops->get_current_limit)
4280 return -EINVAL;
4281
4282 return rdev->desc->ops->get_current_limit(rdev);
4283 }
4284
_regulator_get_current_limit(struct regulator_dev * rdev)4285 static int _regulator_get_current_limit(struct regulator_dev *rdev)
4286 {
4287 int ret;
4288
4289 regulator_lock(rdev);
4290 ret = _regulator_get_current_limit_unlocked(rdev);
4291 regulator_unlock(rdev);
4292
4293 return ret;
4294 }
4295
4296 /**
4297 * regulator_get_current_limit - get regulator output current
4298 * @regulator: regulator source
4299 *
4300 * This returns the current supplied by the specified current sink in uA.
4301 *
4302 * NOTE: If the regulator is disabled it will return the current value. This
4303 * function should not be used to determine regulator state.
4304 */
regulator_get_current_limit(struct regulator * regulator)4305 int regulator_get_current_limit(struct regulator *regulator)
4306 {
4307 return _regulator_get_current_limit(regulator->rdev);
4308 }
4309 EXPORT_SYMBOL_GPL(regulator_get_current_limit);
4310
4311 /**
4312 * regulator_set_mode - set regulator operating mode
4313 * @regulator: regulator source
4314 * @mode: operating mode - one of the REGULATOR_MODE constants
4315 *
4316 * Set regulator operating mode to increase regulator efficiency or improve
4317 * regulation performance.
4318 *
4319 * NOTE: Regulator system constraints must be set for this regulator before
4320 * calling this function otherwise this call will fail.
4321 */
regulator_set_mode(struct regulator * regulator,unsigned int mode)4322 int regulator_set_mode(struct regulator *regulator, unsigned int mode)
4323 {
4324 struct regulator_dev *rdev = regulator->rdev;
4325 int ret;
4326 int regulator_curr_mode;
4327
4328 regulator_lock(rdev);
4329
4330 /* sanity check */
4331 if (!rdev->desc->ops->set_mode) {
4332 ret = -EINVAL;
4333 goto out;
4334 }
4335
4336 /* return if the same mode is requested */
4337 if (rdev->desc->ops->get_mode) {
4338 regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
4339 if (regulator_curr_mode == mode) {
4340 ret = 0;
4341 goto out;
4342 }
4343 }
4344
4345 /* constraints check */
4346 ret = regulator_mode_constrain(rdev, &mode);
4347 if (ret < 0)
4348 goto out;
4349
4350 ret = rdev->desc->ops->set_mode(rdev, mode);
4351 out:
4352 regulator_unlock(rdev);
4353 return ret;
4354 }
4355 EXPORT_SYMBOL_GPL(regulator_set_mode);
4356
_regulator_get_mode_unlocked(struct regulator_dev * rdev)4357 static unsigned int _regulator_get_mode_unlocked(struct regulator_dev *rdev)
4358 {
4359 /* sanity check */
4360 if (!rdev->desc->ops->get_mode)
4361 return -EINVAL;
4362
4363 return rdev->desc->ops->get_mode(rdev);
4364 }
4365
_regulator_get_mode(struct regulator_dev * rdev)4366 static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
4367 {
4368 int ret;
4369
4370 regulator_lock(rdev);
4371 ret = _regulator_get_mode_unlocked(rdev);
4372 regulator_unlock(rdev);
4373
4374 return ret;
4375 }
4376
4377 /**
4378 * regulator_get_mode - get regulator operating mode
4379 * @regulator: regulator source
4380 *
4381 * Get the current regulator operating mode.
4382 */
regulator_get_mode(struct regulator * regulator)4383 unsigned int regulator_get_mode(struct regulator *regulator)
4384 {
4385 return _regulator_get_mode(regulator->rdev);
4386 }
4387 EXPORT_SYMBOL_GPL(regulator_get_mode);
4388
_regulator_get_error_flags(struct regulator_dev * rdev,unsigned int * flags)4389 static int _regulator_get_error_flags(struct regulator_dev *rdev,
4390 unsigned int *flags)
4391 {
4392 int ret;
4393
4394 regulator_lock(rdev);
4395
4396 /* sanity check */
4397 if (!rdev->desc->ops->get_error_flags) {
4398 ret = -EINVAL;
4399 goto out;
4400 }
4401
4402 ret = rdev->desc->ops->get_error_flags(rdev, flags);
4403 out:
4404 regulator_unlock(rdev);
4405 return ret;
4406 }
4407
4408 /**
4409 * regulator_get_error_flags - get regulator error information
4410 * @regulator: regulator source
4411 * @flags: pointer to store error flags
4412 *
4413 * Get the current regulator error information.
4414 */
regulator_get_error_flags(struct regulator * regulator,unsigned int * flags)4415 int regulator_get_error_flags(struct regulator *regulator,
4416 unsigned int *flags)
4417 {
4418 return _regulator_get_error_flags(regulator->rdev, flags);
4419 }
4420 EXPORT_SYMBOL_GPL(regulator_get_error_flags);
4421
4422 /**
4423 * regulator_set_load - set regulator load
4424 * @regulator: regulator source
4425 * @uA_load: load current
4426 *
4427 * Notifies the regulator core of a new device load. This is then used by
4428 * DRMS (if enabled by constraints) to set the most efficient regulator
4429 * operating mode for the new regulator loading.
4430 *
4431 * Consumer devices notify their supply regulator of the maximum power
4432 * they will require (can be taken from device datasheet in the power
4433 * consumption tables) when they change operational status and hence power
4434 * state. Examples of operational state changes that can affect power
4435 * consumption are :-
4436 *
4437 * o Device is opened / closed.
4438 * o Device I/O is about to begin or has just finished.
4439 * o Device is idling in between work.
4440 *
4441 * This information is also exported via sysfs to userspace.
4442 *
4443 * DRMS will sum the total requested load on the regulator and change
4444 * to the most efficient operating mode if platform constraints allow.
4445 *
4446 * NOTE: when a regulator consumer requests to have a regulator
4447 * disabled then any load that consumer requested no longer counts
4448 * toward the total requested load. If the regulator is re-enabled
4449 * then the previously requested load will start counting again.
4450 *
4451 * If a regulator is an always-on regulator then an individual consumer's
4452 * load will still be removed if that consumer is fully disabled.
4453 *
4454 * On error a negative errno is returned.
4455 */
regulator_set_load(struct regulator * regulator,int uA_load)4456 int regulator_set_load(struct regulator *regulator, int uA_load)
4457 {
4458 struct regulator_dev *rdev = regulator->rdev;
4459 int old_uA_load;
4460 int ret = 0;
4461
4462 regulator_lock(rdev);
4463 old_uA_load = regulator->uA_load;
4464 regulator->uA_load = uA_load;
4465 if (regulator->enable_count && old_uA_load != uA_load) {
4466 ret = drms_uA_update(rdev);
4467 if (ret < 0)
4468 regulator->uA_load = old_uA_load;
4469 }
4470 regulator_unlock(rdev);
4471
4472 return ret;
4473 }
4474 EXPORT_SYMBOL_GPL(regulator_set_load);
4475
4476 /**
4477 * regulator_allow_bypass - allow the regulator to go into bypass mode
4478 *
4479 * @regulator: Regulator to configure
4480 * @enable: enable or disable bypass mode
4481 *
4482 * Allow the regulator to go into bypass mode if all other consumers
4483 * for the regulator also enable bypass mode and the machine
4484 * constraints allow this. Bypass mode means that the regulator is
4485 * simply passing the input directly to the output with no regulation.
4486 */
regulator_allow_bypass(struct regulator * regulator,bool enable)4487 int regulator_allow_bypass(struct regulator *regulator, bool enable)
4488 {
4489 struct regulator_dev *rdev = regulator->rdev;
4490 const char *name = rdev_get_name(rdev);
4491 int ret = 0;
4492
4493 if (!rdev->desc->ops->set_bypass)
4494 return 0;
4495
4496 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_BYPASS))
4497 return 0;
4498
4499 regulator_lock(rdev);
4500
4501 if (enable && !regulator->bypass) {
4502 rdev->bypass_count++;
4503
4504 if (rdev->bypass_count == rdev->open_count) {
4505 trace_regulator_bypass_enable(name);
4506
4507 ret = rdev->desc->ops->set_bypass(rdev, enable);
4508 if (ret != 0)
4509 rdev->bypass_count--;
4510 else
4511 trace_regulator_bypass_enable_complete(name);
4512 }
4513
4514 } else if (!enable && regulator->bypass) {
4515 rdev->bypass_count--;
4516
4517 if (rdev->bypass_count != rdev->open_count) {
4518 trace_regulator_bypass_disable(name);
4519
4520 ret = rdev->desc->ops->set_bypass(rdev, enable);
4521 if (ret != 0)
4522 rdev->bypass_count++;
4523 else
4524 trace_regulator_bypass_disable_complete(name);
4525 }
4526 }
4527
4528 if (ret == 0)
4529 regulator->bypass = enable;
4530
4531 regulator_unlock(rdev);
4532
4533 return ret;
4534 }
4535 EXPORT_SYMBOL_GPL(regulator_allow_bypass);
4536
4537 /**
4538 * regulator_register_notifier - register regulator event notifier
4539 * @regulator: regulator source
4540 * @nb: notifier block
4541 *
4542 * Register notifier block to receive regulator events.
4543 */
regulator_register_notifier(struct regulator * regulator,struct notifier_block * nb)4544 int regulator_register_notifier(struct regulator *regulator,
4545 struct notifier_block *nb)
4546 {
4547 return blocking_notifier_chain_register(®ulator->rdev->notifier,
4548 nb);
4549 }
4550 EXPORT_SYMBOL_GPL(regulator_register_notifier);
4551
4552 /**
4553 * regulator_unregister_notifier - unregister regulator event notifier
4554 * @regulator: regulator source
4555 * @nb: notifier block
4556 *
4557 * Unregister regulator event notifier block.
4558 */
regulator_unregister_notifier(struct regulator * regulator,struct notifier_block * nb)4559 int regulator_unregister_notifier(struct regulator *regulator,
4560 struct notifier_block *nb)
4561 {
4562 return blocking_notifier_chain_unregister(®ulator->rdev->notifier,
4563 nb);
4564 }
4565 EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
4566
4567 /* notify regulator consumers and downstream regulator consumers.
4568 * Note mutex must be held by caller.
4569 */
_notifier_call_chain(struct regulator_dev * rdev,unsigned long event,void * data)4570 static int _notifier_call_chain(struct regulator_dev *rdev,
4571 unsigned long event, void *data)
4572 {
4573 /* call rdev chain first */
4574 return blocking_notifier_call_chain(&rdev->notifier, event, data);
4575 }
4576
4577 /**
4578 * regulator_bulk_get - get multiple regulator consumers
4579 *
4580 * @dev: Device to supply
4581 * @num_consumers: Number of consumers to register
4582 * @consumers: Configuration of consumers; clients are stored here.
4583 *
4584 * @return 0 on success, an errno on failure.
4585 *
4586 * This helper function allows drivers to get several regulator
4587 * consumers in one operation. If any of the regulators cannot be
4588 * acquired then any regulators that were allocated will be freed
4589 * before returning to the caller.
4590 */
regulator_bulk_get(struct device * dev,int num_consumers,struct regulator_bulk_data * consumers)4591 int regulator_bulk_get(struct device *dev, int num_consumers,
4592 struct regulator_bulk_data *consumers)
4593 {
4594 int i;
4595 int ret;
4596
4597 for (i = 0; i < num_consumers; i++)
4598 consumers[i].consumer = NULL;
4599
4600 for (i = 0; i < num_consumers; i++) {
4601 consumers[i].consumer = regulator_get(dev,
4602 consumers[i].supply);
4603 if (IS_ERR(consumers[i].consumer)) {
4604 ret = PTR_ERR(consumers[i].consumer);
4605 consumers[i].consumer = NULL;
4606 goto err;
4607 }
4608 }
4609
4610 return 0;
4611
4612 err:
4613 if (ret != -EPROBE_DEFER)
4614 dev_err(dev, "Failed to get supply '%s': %pe\n",
4615 consumers[i].supply, ERR_PTR(ret));
4616 else
4617 dev_dbg(dev, "Failed to get supply '%s', deferring\n",
4618 consumers[i].supply);
4619
4620 while (--i >= 0)
4621 regulator_put(consumers[i].consumer);
4622
4623 return ret;
4624 }
4625 EXPORT_SYMBOL_GPL(regulator_bulk_get);
4626
regulator_bulk_enable_async(void * data,async_cookie_t cookie)4627 static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
4628 {
4629 struct regulator_bulk_data *bulk = data;
4630
4631 bulk->ret = regulator_enable(bulk->consumer);
4632 }
4633
4634 /**
4635 * regulator_bulk_enable - enable multiple regulator consumers
4636 *
4637 * @num_consumers: Number of consumers
4638 * @consumers: Consumer data; clients are stored here.
4639 * @return 0 on success, an errno on failure
4640 *
4641 * This convenience API allows consumers to enable multiple regulator
4642 * clients in a single API call. If any consumers cannot be enabled
4643 * then any others that were enabled will be disabled again prior to
4644 * return.
4645 */
regulator_bulk_enable(int num_consumers,struct regulator_bulk_data * consumers)4646 int regulator_bulk_enable(int num_consumers,
4647 struct regulator_bulk_data *consumers)
4648 {
4649 ASYNC_DOMAIN_EXCLUSIVE(async_domain);
4650 int i;
4651 int ret = 0;
4652
4653 for (i = 0; i < num_consumers; i++) {
4654 async_schedule_domain(regulator_bulk_enable_async,
4655 &consumers[i], &async_domain);
4656 }
4657
4658 async_synchronize_full_domain(&async_domain);
4659
4660 /* If any consumer failed we need to unwind any that succeeded */
4661 for (i = 0; i < num_consumers; i++) {
4662 if (consumers[i].ret != 0) {
4663 ret = consumers[i].ret;
4664 goto err;
4665 }
4666 }
4667
4668 return 0;
4669
4670 err:
4671 for (i = 0; i < num_consumers; i++) {
4672 if (consumers[i].ret < 0)
4673 pr_err("Failed to enable %s: %pe\n", consumers[i].supply,
4674 ERR_PTR(consumers[i].ret));
4675 else
4676 regulator_disable(consumers[i].consumer);
4677 }
4678
4679 return ret;
4680 }
4681 EXPORT_SYMBOL_GPL(regulator_bulk_enable);
4682
4683 /**
4684 * regulator_bulk_disable - disable multiple regulator consumers
4685 *
4686 * @num_consumers: Number of consumers
4687 * @consumers: Consumer data; clients are stored here.
4688 * @return 0 on success, an errno on failure
4689 *
4690 * This convenience API allows consumers to disable multiple regulator
4691 * clients in a single API call. If any consumers cannot be disabled
4692 * then any others that were disabled will be enabled again prior to
4693 * return.
4694 */
regulator_bulk_disable(int num_consumers,struct regulator_bulk_data * consumers)4695 int regulator_bulk_disable(int num_consumers,
4696 struct regulator_bulk_data *consumers)
4697 {
4698 int i;
4699 int ret, r;
4700
4701 for (i = num_consumers - 1; i >= 0; --i) {
4702 ret = regulator_disable(consumers[i].consumer);
4703 if (ret != 0)
4704 goto err;
4705 }
4706
4707 return 0;
4708
4709 err:
4710 pr_err("Failed to disable %s: %pe\n", consumers[i].supply, ERR_PTR(ret));
4711 for (++i; i < num_consumers; ++i) {
4712 r = regulator_enable(consumers[i].consumer);
4713 if (r != 0)
4714 pr_err("Failed to re-enable %s: %pe\n",
4715 consumers[i].supply, ERR_PTR(r));
4716 }
4717
4718 return ret;
4719 }
4720 EXPORT_SYMBOL_GPL(regulator_bulk_disable);
4721
4722 /**
4723 * regulator_bulk_force_disable - force disable multiple regulator consumers
4724 *
4725 * @num_consumers: Number of consumers
4726 * @consumers: Consumer data; clients are stored here.
4727 * @return 0 on success, an errno on failure
4728 *
4729 * This convenience API allows consumers to forcibly disable multiple regulator
4730 * clients in a single API call.
4731 * NOTE: This should be used for situations when device damage will
4732 * likely occur if the regulators are not disabled (e.g. over temp).
4733 * Although regulator_force_disable function call for some consumers can
4734 * return error numbers, the function is called for all consumers.
4735 */
regulator_bulk_force_disable(int num_consumers,struct regulator_bulk_data * consumers)4736 int regulator_bulk_force_disable(int num_consumers,
4737 struct regulator_bulk_data *consumers)
4738 {
4739 int i;
4740 int ret = 0;
4741
4742 for (i = 0; i < num_consumers; i++) {
4743 consumers[i].ret =
4744 regulator_force_disable(consumers[i].consumer);
4745
4746 /* Store first error for reporting */
4747 if (consumers[i].ret && !ret)
4748 ret = consumers[i].ret;
4749 }
4750
4751 return ret;
4752 }
4753 EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
4754
4755 /**
4756 * regulator_bulk_free - free multiple regulator consumers
4757 *
4758 * @num_consumers: Number of consumers
4759 * @consumers: Consumer data; clients are stored here.
4760 *
4761 * This convenience API allows consumers to free multiple regulator
4762 * clients in a single API call.
4763 */
regulator_bulk_free(int num_consumers,struct regulator_bulk_data * consumers)4764 void regulator_bulk_free(int num_consumers,
4765 struct regulator_bulk_data *consumers)
4766 {
4767 int i;
4768
4769 for (i = 0; i < num_consumers; i++) {
4770 regulator_put(consumers[i].consumer);
4771 consumers[i].consumer = NULL;
4772 }
4773 }
4774 EXPORT_SYMBOL_GPL(regulator_bulk_free);
4775
4776 /**
4777 * regulator_notifier_call_chain - call regulator event notifier
4778 * @rdev: regulator source
4779 * @event: notifier block
4780 * @data: callback-specific data.
4781 *
4782 * Called by regulator drivers to notify clients a regulator event has
4783 * occurred.
4784 */
regulator_notifier_call_chain(struct regulator_dev * rdev,unsigned long event,void * data)4785 int regulator_notifier_call_chain(struct regulator_dev *rdev,
4786 unsigned long event, void *data)
4787 {
4788 _notifier_call_chain(rdev, event, data);
4789 return NOTIFY_DONE;
4790
4791 }
4792 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
4793
4794 /**
4795 * regulator_mode_to_status - convert a regulator mode into a status
4796 *
4797 * @mode: Mode to convert
4798 *
4799 * Convert a regulator mode into a status.
4800 */
regulator_mode_to_status(unsigned int mode)4801 int regulator_mode_to_status(unsigned int mode)
4802 {
4803 switch (mode) {
4804 case REGULATOR_MODE_FAST:
4805 return REGULATOR_STATUS_FAST;
4806 case REGULATOR_MODE_NORMAL:
4807 return REGULATOR_STATUS_NORMAL;
4808 case REGULATOR_MODE_IDLE:
4809 return REGULATOR_STATUS_IDLE;
4810 case REGULATOR_MODE_STANDBY:
4811 return REGULATOR_STATUS_STANDBY;
4812 default:
4813 return REGULATOR_STATUS_UNDEFINED;
4814 }
4815 }
4816 EXPORT_SYMBOL_GPL(regulator_mode_to_status);
4817
4818 static struct attribute *regulator_dev_attrs[] = {
4819 &dev_attr_name.attr,
4820 &dev_attr_num_users.attr,
4821 &dev_attr_type.attr,
4822 &dev_attr_microvolts.attr,
4823 &dev_attr_microamps.attr,
4824 &dev_attr_opmode.attr,
4825 &dev_attr_state.attr,
4826 &dev_attr_status.attr,
4827 &dev_attr_bypass.attr,
4828 &dev_attr_requested_microamps.attr,
4829 &dev_attr_min_microvolts.attr,
4830 &dev_attr_max_microvolts.attr,
4831 &dev_attr_min_microamps.attr,
4832 &dev_attr_max_microamps.attr,
4833 &dev_attr_suspend_standby_state.attr,
4834 &dev_attr_suspend_mem_state.attr,
4835 &dev_attr_suspend_disk_state.attr,
4836 &dev_attr_suspend_standby_microvolts.attr,
4837 &dev_attr_suspend_mem_microvolts.attr,
4838 &dev_attr_suspend_disk_microvolts.attr,
4839 &dev_attr_suspend_standby_mode.attr,
4840 &dev_attr_suspend_mem_mode.attr,
4841 &dev_attr_suspend_disk_mode.attr,
4842 NULL
4843 };
4844
4845 /*
4846 * To avoid cluttering sysfs (and memory) with useless state, only
4847 * create attributes that can be meaningfully displayed.
4848 */
regulator_attr_is_visible(struct kobject * kobj,struct attribute * attr,int idx)4849 static umode_t regulator_attr_is_visible(struct kobject *kobj,
4850 struct attribute *attr, int idx)
4851 {
4852 struct device *dev = kobj_to_dev(kobj);
4853 struct regulator_dev *rdev = dev_to_rdev(dev);
4854 const struct regulator_ops *ops = rdev->desc->ops;
4855 umode_t mode = attr->mode;
4856
4857 /* these three are always present */
4858 if (attr == &dev_attr_name.attr ||
4859 attr == &dev_attr_num_users.attr ||
4860 attr == &dev_attr_type.attr)
4861 return mode;
4862
4863 /* some attributes need specific methods to be displayed */
4864 if (attr == &dev_attr_microvolts.attr) {
4865 if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
4866 (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
4867 (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
4868 (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1))
4869 return mode;
4870 return 0;
4871 }
4872
4873 if (attr == &dev_attr_microamps.attr)
4874 return ops->get_current_limit ? mode : 0;
4875
4876 if (attr == &dev_attr_opmode.attr)
4877 return ops->get_mode ? mode : 0;
4878
4879 if (attr == &dev_attr_state.attr)
4880 return (rdev->ena_pin || ops->is_enabled) ? mode : 0;
4881
4882 if (attr == &dev_attr_status.attr)
4883 return ops->get_status ? mode : 0;
4884
4885 if (attr == &dev_attr_bypass.attr)
4886 return ops->get_bypass ? mode : 0;
4887
4888 /* constraints need specific supporting methods */
4889 if (attr == &dev_attr_min_microvolts.attr ||
4890 attr == &dev_attr_max_microvolts.attr)
4891 return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0;
4892
4893 if (attr == &dev_attr_min_microamps.attr ||
4894 attr == &dev_attr_max_microamps.attr)
4895 return ops->set_current_limit ? mode : 0;
4896
4897 if (attr == &dev_attr_suspend_standby_state.attr ||
4898 attr == &dev_attr_suspend_mem_state.attr ||
4899 attr == &dev_attr_suspend_disk_state.attr)
4900 return mode;
4901
4902 if (attr == &dev_attr_suspend_standby_microvolts.attr ||
4903 attr == &dev_attr_suspend_mem_microvolts.attr ||
4904 attr == &dev_attr_suspend_disk_microvolts.attr)
4905 return ops->set_suspend_voltage ? mode : 0;
4906
4907 if (attr == &dev_attr_suspend_standby_mode.attr ||
4908 attr == &dev_attr_suspend_mem_mode.attr ||
4909 attr == &dev_attr_suspend_disk_mode.attr)
4910 return ops->set_suspend_mode ? mode : 0;
4911
4912 return mode;
4913 }
4914
4915 static const struct attribute_group regulator_dev_group = {
4916 .attrs = regulator_dev_attrs,
4917 .is_visible = regulator_attr_is_visible,
4918 };
4919
4920 static const struct attribute_group *regulator_dev_groups[] = {
4921 ®ulator_dev_group,
4922 NULL
4923 };
4924
regulator_dev_release(struct device * dev)4925 static void regulator_dev_release(struct device *dev)
4926 {
4927 struct regulator_dev *rdev = dev_get_drvdata(dev);
4928
4929 kfree(rdev->constraints);
4930 of_node_put(rdev->dev.of_node);
4931 kfree(rdev);
4932 }
4933
rdev_init_debugfs(struct regulator_dev * rdev)4934 static void rdev_init_debugfs(struct regulator_dev *rdev)
4935 {
4936 struct device *parent = rdev->dev.parent;
4937 const char *rname = rdev_get_name(rdev);
4938 char name[NAME_MAX];
4939
4940 /* Avoid duplicate debugfs directory names */
4941 if (parent && rname == rdev->desc->name) {
4942 snprintf(name, sizeof(name), "%s-%s", dev_name(parent),
4943 rname);
4944 rname = name;
4945 }
4946
4947 rdev->debugfs = debugfs_create_dir(rname, debugfs_root);
4948 if (!rdev->debugfs) {
4949 rdev_warn(rdev, "Failed to create debugfs directory\n");
4950 return;
4951 }
4952
4953 debugfs_create_u32("use_count", 0444, rdev->debugfs,
4954 &rdev->use_count);
4955 debugfs_create_u32("open_count", 0444, rdev->debugfs,
4956 &rdev->open_count);
4957 debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
4958 &rdev->bypass_count);
4959 }
4960
regulator_register_resolve_supply(struct device * dev,void * data)4961 static int regulator_register_resolve_supply(struct device *dev, void *data)
4962 {
4963 struct regulator_dev *rdev = dev_to_rdev(dev);
4964
4965 if (regulator_resolve_supply(rdev))
4966 rdev_dbg(rdev, "unable to resolve supply\n");
4967
4968 return 0;
4969 }
4970
regulator_coupler_register(struct regulator_coupler * coupler)4971 int regulator_coupler_register(struct regulator_coupler *coupler)
4972 {
4973 mutex_lock(®ulator_list_mutex);
4974 list_add_tail(&coupler->list, ®ulator_coupler_list);
4975 mutex_unlock(®ulator_list_mutex);
4976
4977 return 0;
4978 }
4979
4980 static struct regulator_coupler *
regulator_find_coupler(struct regulator_dev * rdev)4981 regulator_find_coupler(struct regulator_dev *rdev)
4982 {
4983 struct regulator_coupler *coupler;
4984 int err;
4985
4986 /*
4987 * Note that regulators are appended to the list and the generic
4988 * coupler is registered first, hence it will be attached at last
4989 * if nobody cared.
4990 */
4991 list_for_each_entry_reverse(coupler, ®ulator_coupler_list, list) {
4992 err = coupler->attach_regulator(coupler, rdev);
4993 if (!err) {
4994 if (!coupler->balance_voltage &&
4995 rdev->coupling_desc.n_coupled > 2)
4996 goto err_unsupported;
4997
4998 return coupler;
4999 }
5000
5001 if (err < 0)
5002 return ERR_PTR(err);
5003
5004 if (err == 1)
5005 continue;
5006
5007 break;
5008 }
5009
5010 return ERR_PTR(-EINVAL);
5011
5012 err_unsupported:
5013 if (coupler->detach_regulator)
5014 coupler->detach_regulator(coupler, rdev);
5015
5016 rdev_err(rdev,
5017 "Voltage balancing for multiple regulator couples is unimplemented\n");
5018
5019 return ERR_PTR(-EPERM);
5020 }
5021
regulator_resolve_coupling(struct regulator_dev * rdev)5022 static void regulator_resolve_coupling(struct regulator_dev *rdev)
5023 {
5024 struct regulator_coupler *coupler = rdev->coupling_desc.coupler;
5025 struct coupling_desc *c_desc = &rdev->coupling_desc;
5026 int n_coupled = c_desc->n_coupled;
5027 struct regulator_dev *c_rdev;
5028 int i;
5029
5030 for (i = 1; i < n_coupled; i++) {
5031 /* already resolved */
5032 if (c_desc->coupled_rdevs[i])
5033 continue;
5034
5035 c_rdev = of_parse_coupled_regulator(rdev, i - 1);
5036
5037 if (!c_rdev)
5038 continue;
5039
5040 if (c_rdev->coupling_desc.coupler != coupler) {
5041 rdev_err(rdev, "coupler mismatch with %s\n",
5042 rdev_get_name(c_rdev));
5043 return;
5044 }
5045
5046 c_desc->coupled_rdevs[i] = c_rdev;
5047 c_desc->n_resolved++;
5048
5049 regulator_resolve_coupling(c_rdev);
5050 }
5051 }
5052
regulator_remove_coupling(struct regulator_dev * rdev)5053 static void regulator_remove_coupling(struct regulator_dev *rdev)
5054 {
5055 struct regulator_coupler *coupler = rdev->coupling_desc.coupler;
5056 struct coupling_desc *__c_desc, *c_desc = &rdev->coupling_desc;
5057 struct regulator_dev *__c_rdev, *c_rdev;
5058 unsigned int __n_coupled, n_coupled;
5059 int i, k;
5060 int err;
5061
5062 n_coupled = c_desc->n_coupled;
5063
5064 for (i = 1; i < n_coupled; i++) {
5065 c_rdev = c_desc->coupled_rdevs[i];
5066
5067 if (!c_rdev)
5068 continue;
5069
5070 regulator_lock(c_rdev);
5071
5072 __c_desc = &c_rdev->coupling_desc;
5073 __n_coupled = __c_desc->n_coupled;
5074
5075 for (k = 1; k < __n_coupled; k++) {
5076 __c_rdev = __c_desc->coupled_rdevs[k];
5077
5078 if (__c_rdev == rdev) {
5079 __c_desc->coupled_rdevs[k] = NULL;
5080 __c_desc->n_resolved--;
5081 break;
5082 }
5083 }
5084
5085 regulator_unlock(c_rdev);
5086
5087 c_desc->coupled_rdevs[i] = NULL;
5088 c_desc->n_resolved--;
5089 }
5090
5091 if (coupler && coupler->detach_regulator) {
5092 err = coupler->detach_regulator(coupler, rdev);
5093 if (err)
5094 rdev_err(rdev, "failed to detach from coupler: %pe\n",
5095 ERR_PTR(err));
5096 }
5097
5098 kfree(rdev->coupling_desc.coupled_rdevs);
5099 rdev->coupling_desc.coupled_rdevs = NULL;
5100 }
5101
regulator_init_coupling(struct regulator_dev * rdev)5102 static int regulator_init_coupling(struct regulator_dev *rdev)
5103 {
5104 struct regulator_dev **coupled;
5105 int err, n_phandles;
5106
5107 if (!IS_ENABLED(CONFIG_OF))
5108 n_phandles = 0;
5109 else
5110 n_phandles = of_get_n_coupled(rdev);
5111
5112 coupled = kcalloc(n_phandles + 1, sizeof(*coupled), GFP_KERNEL);
5113 if (!coupled)
5114 return -ENOMEM;
5115
5116 rdev->coupling_desc.coupled_rdevs = coupled;
5117
5118 /*
5119 * Every regulator should always have coupling descriptor filled with
5120 * at least pointer to itself.
5121 */
5122 rdev->coupling_desc.coupled_rdevs[0] = rdev;
5123 rdev->coupling_desc.n_coupled = n_phandles + 1;
5124 rdev->coupling_desc.n_resolved++;
5125
5126 /* regulator isn't coupled */
5127 if (n_phandles == 0)
5128 return 0;
5129
5130 if (!of_check_coupling_data(rdev))
5131 return -EPERM;
5132
5133 mutex_lock(®ulator_list_mutex);
5134 rdev->coupling_desc.coupler = regulator_find_coupler(rdev);
5135 mutex_unlock(®ulator_list_mutex);
5136
5137 if (IS_ERR(rdev->coupling_desc.coupler)) {
5138 err = PTR_ERR(rdev->coupling_desc.coupler);
5139 rdev_err(rdev, "failed to get coupler: %pe\n", ERR_PTR(err));
5140 return err;
5141 }
5142
5143 return 0;
5144 }
5145
generic_coupler_attach(struct regulator_coupler * coupler,struct regulator_dev * rdev)5146 static int generic_coupler_attach(struct regulator_coupler *coupler,
5147 struct regulator_dev *rdev)
5148 {
5149 if (rdev->coupling_desc.n_coupled > 2) {
5150 rdev_err(rdev,
5151 "Voltage balancing for multiple regulator couples is unimplemented\n");
5152 return -EPERM;
5153 }
5154
5155 if (!rdev->constraints->always_on) {
5156 rdev_err(rdev,
5157 "Coupling of a non always-on regulator is unimplemented\n");
5158 return -ENOTSUPP;
5159 }
5160
5161 return 0;
5162 }
5163
5164 static struct regulator_coupler generic_regulator_coupler = {
5165 .attach_regulator = generic_coupler_attach,
5166 };
5167
5168 /**
5169 * regulator_register - register regulator
5170 * @regulator_desc: regulator to register
5171 * @cfg: runtime configuration for regulator
5172 *
5173 * Called by regulator drivers to register a regulator.
5174 * Returns a valid pointer to struct regulator_dev on success
5175 * or an ERR_PTR() on error.
5176 */
5177 struct regulator_dev *
regulator_register(const struct regulator_desc * regulator_desc,const struct regulator_config * cfg)5178 regulator_register(const struct regulator_desc *regulator_desc,
5179 const struct regulator_config *cfg)
5180 {
5181 const struct regulator_init_data *init_data;
5182 struct regulator_config *config = NULL;
5183 static atomic_t regulator_no = ATOMIC_INIT(-1);
5184 struct regulator_dev *rdev;
5185 bool dangling_cfg_gpiod = false;
5186 bool dangling_of_gpiod = false;
5187 struct device *dev;
5188 int ret, i;
5189
5190 if (cfg == NULL)
5191 return ERR_PTR(-EINVAL);
5192 if (cfg->ena_gpiod)
5193 dangling_cfg_gpiod = true;
5194 if (regulator_desc == NULL) {
5195 ret = -EINVAL;
5196 goto rinse;
5197 }
5198
5199 dev = cfg->dev;
5200 WARN_ON(!dev);
5201
5202 if (regulator_desc->name == NULL || regulator_desc->ops == NULL) {
5203 ret = -EINVAL;
5204 goto rinse;
5205 }
5206
5207 if (regulator_desc->type != REGULATOR_VOLTAGE &&
5208 regulator_desc->type != REGULATOR_CURRENT) {
5209 ret = -EINVAL;
5210 goto rinse;
5211 }
5212
5213 /* Only one of each should be implemented */
5214 WARN_ON(regulator_desc->ops->get_voltage &&
5215 regulator_desc->ops->get_voltage_sel);
5216 WARN_ON(regulator_desc->ops->set_voltage &&
5217 regulator_desc->ops->set_voltage_sel);
5218
5219 /* If we're using selectors we must implement list_voltage. */
5220 if (regulator_desc->ops->get_voltage_sel &&
5221 !regulator_desc->ops->list_voltage) {
5222 ret = -EINVAL;
5223 goto rinse;
5224 }
5225 if (regulator_desc->ops->set_voltage_sel &&
5226 !regulator_desc->ops->list_voltage) {
5227 ret = -EINVAL;
5228 goto rinse;
5229 }
5230
5231 rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
5232 if (rdev == NULL) {
5233 ret = -ENOMEM;
5234 goto rinse;
5235 }
5236 device_initialize(&rdev->dev);
5237
5238 /*
5239 * Duplicate the config so the driver could override it after
5240 * parsing init data.
5241 */
5242 config = kmemdup(cfg, sizeof(*cfg), GFP_KERNEL);
5243 if (config == NULL) {
5244 ret = -ENOMEM;
5245 goto clean;
5246 }
5247
5248 init_data = regulator_of_get_init_data(dev, regulator_desc, config,
5249 &rdev->dev.of_node);
5250
5251 /*
5252 * Sometimes not all resources are probed already so we need to take
5253 * that into account. This happens most the time if the ena_gpiod comes
5254 * from a gpio extender or something else.
5255 */
5256 if (PTR_ERR(init_data) == -EPROBE_DEFER) {
5257 ret = -EPROBE_DEFER;
5258 goto clean;
5259 }
5260
5261 /*
5262 * We need to keep track of any GPIO descriptor coming from the
5263 * device tree until we have handled it over to the core. If the
5264 * config that was passed in to this function DOES NOT contain
5265 * a descriptor, and the config after this call DOES contain
5266 * a descriptor, we definitely got one from parsing the device
5267 * tree.
5268 */
5269 if (!cfg->ena_gpiod && config->ena_gpiod)
5270 dangling_of_gpiod = true;
5271 if (!init_data) {
5272 init_data = config->init_data;
5273 rdev->dev.of_node = of_node_get(config->of_node);
5274 }
5275
5276 ww_mutex_init(&rdev->mutex, ®ulator_ww_class);
5277 rdev->reg_data = config->driver_data;
5278 rdev->owner = regulator_desc->owner;
5279 rdev->desc = regulator_desc;
5280 if (config->regmap)
5281 rdev->regmap = config->regmap;
5282 else if (dev_get_regmap(dev, NULL))
5283 rdev->regmap = dev_get_regmap(dev, NULL);
5284 else if (dev->parent)
5285 rdev->regmap = dev_get_regmap(dev->parent, NULL);
5286 INIT_LIST_HEAD(&rdev->consumer_list);
5287 INIT_LIST_HEAD(&rdev->list);
5288 BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
5289 INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
5290
5291 /* preform any regulator specific init */
5292 if (init_data && init_data->regulator_init) {
5293 ret = init_data->regulator_init(rdev->reg_data);
5294 if (ret < 0)
5295 goto clean;
5296 }
5297
5298 if (config->ena_gpiod) {
5299 ret = regulator_ena_gpio_request(rdev, config);
5300 if (ret != 0) {
5301 rdev_err(rdev, "Failed to request enable GPIO: %pe\n",
5302 ERR_PTR(ret));
5303 goto clean;
5304 }
5305 /* The regulator core took over the GPIO descriptor */
5306 dangling_cfg_gpiod = false;
5307 dangling_of_gpiod = false;
5308 }
5309
5310 /* register with sysfs */
5311 rdev->dev.class = ®ulator_class;
5312 rdev->dev.parent = dev;
5313 dev_set_name(&rdev->dev, "regulator.%lu",
5314 (unsigned long) atomic_inc_return(®ulator_no));
5315 dev_set_drvdata(&rdev->dev, rdev);
5316
5317 /* set regulator constraints */
5318 if (init_data)
5319 rdev->constraints = kmemdup(&init_data->constraints,
5320 sizeof(*rdev->constraints),
5321 GFP_KERNEL);
5322 else
5323 rdev->constraints = kzalloc(sizeof(*rdev->constraints),
5324 GFP_KERNEL);
5325 if (!rdev->constraints) {
5326 ret = -ENOMEM;
5327 goto wash;
5328 }
5329
5330 if (init_data && init_data->supply_regulator)
5331 rdev->supply_name = init_data->supply_regulator;
5332 else if (regulator_desc->supply_name)
5333 rdev->supply_name = regulator_desc->supply_name;
5334
5335 ret = set_machine_constraints(rdev);
5336 if (ret == -EPROBE_DEFER) {
5337 /* Regulator might be in bypass mode and so needs its supply
5338 * to set the constraints */
5339 /* FIXME: this currently triggers a chicken-and-egg problem
5340 * when creating -SUPPLY symlink in sysfs to a regulator
5341 * that is just being created */
5342 ret = regulator_resolve_supply(rdev);
5343 if (!ret)
5344 ret = set_machine_constraints(rdev);
5345 else
5346 rdev_dbg(rdev, "unable to resolve supply early: %pe\n",
5347 ERR_PTR(ret));
5348 }
5349 if (ret < 0)
5350 goto wash;
5351
5352 ret = regulator_init_coupling(rdev);
5353 if (ret < 0)
5354 goto wash;
5355
5356 /* add consumers devices */
5357 if (init_data) {
5358 for (i = 0; i < init_data->num_consumer_supplies; i++) {
5359 ret = set_consumer_device_supply(rdev,
5360 init_data->consumer_supplies[i].dev_name,
5361 init_data->consumer_supplies[i].supply);
5362 if (ret < 0) {
5363 dev_err(dev, "Failed to set supply %s\n",
5364 init_data->consumer_supplies[i].supply);
5365 goto unset_supplies;
5366 }
5367 }
5368 }
5369
5370 if (!rdev->desc->ops->get_voltage &&
5371 !rdev->desc->ops->list_voltage &&
5372 !rdev->desc->fixed_uV)
5373 rdev->is_switch = true;
5374
5375 ret = device_add(&rdev->dev);
5376 if (ret != 0)
5377 goto unset_supplies;
5378
5379 rdev_init_debugfs(rdev);
5380
5381 /* try to resolve regulators coupling since a new one was registered */
5382 mutex_lock(®ulator_list_mutex);
5383 regulator_resolve_coupling(rdev);
5384 mutex_unlock(®ulator_list_mutex);
5385
5386 /* try to resolve regulators supply since a new one was registered */
5387 class_for_each_device(®ulator_class, NULL, NULL,
5388 regulator_register_resolve_supply);
5389 kfree(config);
5390 return rdev;
5391
5392 unset_supplies:
5393 mutex_lock(®ulator_list_mutex);
5394 unset_regulator_supplies(rdev);
5395 regulator_remove_coupling(rdev);
5396 mutex_unlock(®ulator_list_mutex);
5397 wash:
5398 kfree(rdev->coupling_desc.coupled_rdevs);
5399 mutex_lock(®ulator_list_mutex);
5400 regulator_ena_gpio_free(rdev);
5401 mutex_unlock(®ulator_list_mutex);
5402 clean:
5403 if (dangling_of_gpiod)
5404 gpiod_put(config->ena_gpiod);
5405 kfree(config);
5406 put_device(&rdev->dev);
5407 rinse:
5408 if (dangling_cfg_gpiod)
5409 gpiod_put(cfg->ena_gpiod);
5410 return ERR_PTR(ret);
5411 }
5412 EXPORT_SYMBOL_GPL(regulator_register);
5413
5414 /**
5415 * regulator_unregister - unregister regulator
5416 * @rdev: regulator to unregister
5417 *
5418 * Called by regulator drivers to unregister a regulator.
5419 */
regulator_unregister(struct regulator_dev * rdev)5420 void regulator_unregister(struct regulator_dev *rdev)
5421 {
5422 if (rdev == NULL)
5423 return;
5424
5425 if (rdev->supply) {
5426 while (rdev->use_count--)
5427 regulator_disable(rdev->supply);
5428 regulator_put(rdev->supply);
5429 }
5430
5431 flush_work(&rdev->disable_work.work);
5432
5433 mutex_lock(®ulator_list_mutex);
5434
5435 debugfs_remove_recursive(rdev->debugfs);
5436 WARN_ON(rdev->open_count);
5437 regulator_remove_coupling(rdev);
5438 unset_regulator_supplies(rdev);
5439 list_del(&rdev->list);
5440 regulator_ena_gpio_free(rdev);
5441 device_unregister(&rdev->dev);
5442
5443 mutex_unlock(®ulator_list_mutex);
5444 }
5445 EXPORT_SYMBOL_GPL(regulator_unregister);
5446
5447 #ifdef CONFIG_SUSPEND
5448 /**
5449 * regulator_suspend - prepare regulators for system wide suspend
5450 * @dev: ``&struct device`` pointer that is passed to _regulator_suspend()
5451 *
5452 * Configure each regulator with it's suspend operating parameters for state.
5453 */
regulator_suspend(struct device * dev)5454 static int regulator_suspend(struct device *dev)
5455 {
5456 struct regulator_dev *rdev = dev_to_rdev(dev);
5457 suspend_state_t state = pm_suspend_target_state;
5458 int ret;
5459 const struct regulator_state *rstate;
5460
5461 rstate = regulator_get_suspend_state_check(rdev, state);
5462 if (!rstate)
5463 return 0;
5464
5465 regulator_lock(rdev);
5466 ret = __suspend_set_state(rdev, rstate);
5467 regulator_unlock(rdev);
5468
5469 return ret;
5470 }
5471
regulator_resume(struct device * dev)5472 static int regulator_resume(struct device *dev)
5473 {
5474 suspend_state_t state = pm_suspend_target_state;
5475 struct regulator_dev *rdev = dev_to_rdev(dev);
5476 struct regulator_state *rstate;
5477 int ret = 0;
5478
5479 rstate = regulator_get_suspend_state(rdev, state);
5480 if (rstate == NULL)
5481 return 0;
5482
5483 /* Avoid grabbing the lock if we don't need to */
5484 if (!rdev->desc->ops->resume)
5485 return 0;
5486
5487 regulator_lock(rdev);
5488
5489 if (rstate->enabled == ENABLE_IN_SUSPEND ||
5490 rstate->enabled == DISABLE_IN_SUSPEND)
5491 ret = rdev->desc->ops->resume(rdev);
5492
5493 regulator_unlock(rdev);
5494
5495 return ret;
5496 }
5497 #else /* !CONFIG_SUSPEND */
5498
5499 #define regulator_suspend NULL
5500 #define regulator_resume NULL
5501
5502 #endif /* !CONFIG_SUSPEND */
5503
5504 #ifdef CONFIG_PM
5505 static const struct dev_pm_ops __maybe_unused regulator_pm_ops = {
5506 .suspend = regulator_suspend,
5507 .resume = regulator_resume,
5508 };
5509 #endif
5510
5511 struct class regulator_class = {
5512 .name = "regulator",
5513 .dev_release = regulator_dev_release,
5514 .dev_groups = regulator_dev_groups,
5515 #ifdef CONFIG_PM
5516 .pm = ®ulator_pm_ops,
5517 #endif
5518 };
5519 /**
5520 * regulator_has_full_constraints - the system has fully specified constraints
5521 *
5522 * Calling this function will cause the regulator API to disable all
5523 * regulators which have a zero use count and don't have an always_on
5524 * constraint in a late_initcall.
5525 *
5526 * The intention is that this will become the default behaviour in a
5527 * future kernel release so users are encouraged to use this facility
5528 * now.
5529 */
regulator_has_full_constraints(void)5530 void regulator_has_full_constraints(void)
5531 {
5532 has_full_constraints = 1;
5533 }
5534 EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
5535
5536 /**
5537 * rdev_get_drvdata - get rdev regulator driver data
5538 * @rdev: regulator
5539 *
5540 * Get rdev regulator driver private data. This call can be used in the
5541 * regulator driver context.
5542 */
rdev_get_drvdata(struct regulator_dev * rdev)5543 void *rdev_get_drvdata(struct regulator_dev *rdev)
5544 {
5545 return rdev->reg_data;
5546 }
5547 EXPORT_SYMBOL_GPL(rdev_get_drvdata);
5548
5549 /**
5550 * regulator_get_drvdata - get regulator driver data
5551 * @regulator: regulator
5552 *
5553 * Get regulator driver private data. This call can be used in the consumer
5554 * driver context when non API regulator specific functions need to be called.
5555 */
regulator_get_drvdata(struct regulator * regulator)5556 void *regulator_get_drvdata(struct regulator *regulator)
5557 {
5558 return regulator->rdev->reg_data;
5559 }
5560 EXPORT_SYMBOL_GPL(regulator_get_drvdata);
5561
5562 /**
5563 * regulator_set_drvdata - set regulator driver data
5564 * @regulator: regulator
5565 * @data: data
5566 */
regulator_set_drvdata(struct regulator * regulator,void * data)5567 void regulator_set_drvdata(struct regulator *regulator, void *data)
5568 {
5569 regulator->rdev->reg_data = data;
5570 }
5571 EXPORT_SYMBOL_GPL(regulator_set_drvdata);
5572
5573 /**
5574 * regulator_get_id - get regulator ID
5575 * @rdev: regulator
5576 */
rdev_get_id(struct regulator_dev * rdev)5577 int rdev_get_id(struct regulator_dev *rdev)
5578 {
5579 return rdev->desc->id;
5580 }
5581 EXPORT_SYMBOL_GPL(rdev_get_id);
5582
rdev_get_dev(struct regulator_dev * rdev)5583 struct device *rdev_get_dev(struct regulator_dev *rdev)
5584 {
5585 return &rdev->dev;
5586 }
5587 EXPORT_SYMBOL_GPL(rdev_get_dev);
5588
rdev_get_regmap(struct regulator_dev * rdev)5589 struct regmap *rdev_get_regmap(struct regulator_dev *rdev)
5590 {
5591 return rdev->regmap;
5592 }
5593 EXPORT_SYMBOL_GPL(rdev_get_regmap);
5594
regulator_get_init_drvdata(struct regulator_init_data * reg_init_data)5595 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
5596 {
5597 return reg_init_data->driver_data;
5598 }
5599 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
5600
5601 #ifdef CONFIG_DEBUG_FS
supply_map_show(struct seq_file * sf,void * data)5602 static int supply_map_show(struct seq_file *sf, void *data)
5603 {
5604 struct regulator_map *map;
5605
5606 list_for_each_entry(map, ®ulator_map_list, list) {
5607 seq_printf(sf, "%s -> %s.%s\n",
5608 rdev_get_name(map->regulator), map->dev_name,
5609 map->supply);
5610 }
5611
5612 return 0;
5613 }
5614 DEFINE_SHOW_ATTRIBUTE(supply_map);
5615
5616 struct summary_data {
5617 struct seq_file *s;
5618 struct regulator_dev *parent;
5619 int level;
5620 };
5621
5622 static void regulator_summary_show_subtree(struct seq_file *s,
5623 struct regulator_dev *rdev,
5624 int level);
5625
regulator_summary_show_children(struct device * dev,void * data)5626 static int regulator_summary_show_children(struct device *dev, void *data)
5627 {
5628 struct regulator_dev *rdev = dev_to_rdev(dev);
5629 struct summary_data *summary_data = data;
5630
5631 if (rdev->supply && rdev->supply->rdev == summary_data->parent)
5632 regulator_summary_show_subtree(summary_data->s, rdev,
5633 summary_data->level + 1);
5634
5635 return 0;
5636 }
5637
regulator_summary_show_subtree(struct seq_file * s,struct regulator_dev * rdev,int level)5638 static void regulator_summary_show_subtree(struct seq_file *s,
5639 struct regulator_dev *rdev,
5640 int level)
5641 {
5642 struct regulation_constraints *c;
5643 struct regulator *consumer;
5644 struct summary_data summary_data;
5645 unsigned int opmode;
5646
5647 if (!rdev)
5648 return;
5649
5650 opmode = _regulator_get_mode_unlocked(rdev);
5651 seq_printf(s, "%*s%-*s %3d %4d %6d %7s ",
5652 level * 3 + 1, "",
5653 30 - level * 3, rdev_get_name(rdev),
5654 rdev->use_count, rdev->open_count, rdev->bypass_count,
5655 regulator_opmode_to_str(opmode));
5656
5657 seq_printf(s, "%5dmV ", regulator_get_voltage_rdev(rdev) / 1000);
5658 seq_printf(s, "%5dmA ",
5659 _regulator_get_current_limit_unlocked(rdev) / 1000);
5660
5661 c = rdev->constraints;
5662 if (c) {
5663 switch (rdev->desc->type) {
5664 case REGULATOR_VOLTAGE:
5665 seq_printf(s, "%5dmV %5dmV ",
5666 c->min_uV / 1000, c->max_uV / 1000);
5667 break;
5668 case REGULATOR_CURRENT:
5669 seq_printf(s, "%5dmA %5dmA ",
5670 c->min_uA / 1000, c->max_uA / 1000);
5671 break;
5672 }
5673 }
5674
5675 seq_puts(s, "\n");
5676
5677 list_for_each_entry(consumer, &rdev->consumer_list, list) {
5678 if (consumer->dev && consumer->dev->class == ®ulator_class)
5679 continue;
5680
5681 seq_printf(s, "%*s%-*s ",
5682 (level + 1) * 3 + 1, "",
5683 30 - (level + 1) * 3,
5684 consumer->supply_name ? consumer->supply_name :
5685 consumer->dev ? dev_name(consumer->dev) : "deviceless");
5686
5687 switch (rdev->desc->type) {
5688 case REGULATOR_VOLTAGE:
5689 seq_printf(s, "%3d %33dmA%c%5dmV %5dmV",
5690 consumer->enable_count,
5691 consumer->uA_load / 1000,
5692 consumer->uA_load && !consumer->enable_count ?
5693 '*' : ' ',
5694 consumer->voltage[PM_SUSPEND_ON].min_uV / 1000,
5695 consumer->voltage[PM_SUSPEND_ON].max_uV / 1000);
5696 break;
5697 case REGULATOR_CURRENT:
5698 break;
5699 }
5700
5701 seq_puts(s, "\n");
5702 }
5703
5704 summary_data.s = s;
5705 summary_data.level = level;
5706 summary_data.parent = rdev;
5707
5708 class_for_each_device(®ulator_class, NULL, &summary_data,
5709 regulator_summary_show_children);
5710 }
5711
5712 struct summary_lock_data {
5713 struct ww_acquire_ctx *ww_ctx;
5714 struct regulator_dev **new_contended_rdev;
5715 struct regulator_dev **old_contended_rdev;
5716 };
5717
regulator_summary_lock_one(struct device * dev,void * data)5718 static int regulator_summary_lock_one(struct device *dev, void *data)
5719 {
5720 struct regulator_dev *rdev = dev_to_rdev(dev);
5721 struct summary_lock_data *lock_data = data;
5722 int ret = 0;
5723
5724 if (rdev != *lock_data->old_contended_rdev) {
5725 ret = regulator_lock_nested(rdev, lock_data->ww_ctx);
5726
5727 if (ret == -EDEADLK)
5728 *lock_data->new_contended_rdev = rdev;
5729 else
5730 WARN_ON_ONCE(ret);
5731 } else {
5732 *lock_data->old_contended_rdev = NULL;
5733 }
5734
5735 return ret;
5736 }
5737
regulator_summary_unlock_one(struct device * dev,void * data)5738 static int regulator_summary_unlock_one(struct device *dev, void *data)
5739 {
5740 struct regulator_dev *rdev = dev_to_rdev(dev);
5741 struct summary_lock_data *lock_data = data;
5742
5743 if (lock_data) {
5744 if (rdev == *lock_data->new_contended_rdev)
5745 return -EDEADLK;
5746 }
5747
5748 regulator_unlock(rdev);
5749
5750 return 0;
5751 }
5752
regulator_summary_lock_all(struct ww_acquire_ctx * ww_ctx,struct regulator_dev ** new_contended_rdev,struct regulator_dev ** old_contended_rdev)5753 static int regulator_summary_lock_all(struct ww_acquire_ctx *ww_ctx,
5754 struct regulator_dev **new_contended_rdev,
5755 struct regulator_dev **old_contended_rdev)
5756 {
5757 struct summary_lock_data lock_data;
5758 int ret;
5759
5760 lock_data.ww_ctx = ww_ctx;
5761 lock_data.new_contended_rdev = new_contended_rdev;
5762 lock_data.old_contended_rdev = old_contended_rdev;
5763
5764 ret = class_for_each_device(®ulator_class, NULL, &lock_data,
5765 regulator_summary_lock_one);
5766 if (ret)
5767 class_for_each_device(®ulator_class, NULL, &lock_data,
5768 regulator_summary_unlock_one);
5769
5770 return ret;
5771 }
5772
regulator_summary_lock(struct ww_acquire_ctx * ww_ctx)5773 static void regulator_summary_lock(struct ww_acquire_ctx *ww_ctx)
5774 {
5775 struct regulator_dev *new_contended_rdev = NULL;
5776 struct regulator_dev *old_contended_rdev = NULL;
5777 int err;
5778
5779 mutex_lock(®ulator_list_mutex);
5780
5781 ww_acquire_init(ww_ctx, ®ulator_ww_class);
5782
5783 do {
5784 if (new_contended_rdev) {
5785 ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
5786 old_contended_rdev = new_contended_rdev;
5787 old_contended_rdev->ref_cnt++;
5788 }
5789
5790 err = regulator_summary_lock_all(ww_ctx,
5791 &new_contended_rdev,
5792 &old_contended_rdev);
5793
5794 if (old_contended_rdev)
5795 regulator_unlock(old_contended_rdev);
5796
5797 } while (err == -EDEADLK);
5798
5799 ww_acquire_done(ww_ctx);
5800 }
5801
regulator_summary_unlock(struct ww_acquire_ctx * ww_ctx)5802 static void regulator_summary_unlock(struct ww_acquire_ctx *ww_ctx)
5803 {
5804 class_for_each_device(®ulator_class, NULL, NULL,
5805 regulator_summary_unlock_one);
5806 ww_acquire_fini(ww_ctx);
5807
5808 mutex_unlock(®ulator_list_mutex);
5809 }
5810
regulator_summary_show_roots(struct device * dev,void * data)5811 static int regulator_summary_show_roots(struct device *dev, void *data)
5812 {
5813 struct regulator_dev *rdev = dev_to_rdev(dev);
5814 struct seq_file *s = data;
5815
5816 if (!rdev->supply)
5817 regulator_summary_show_subtree(s, rdev, 0);
5818
5819 return 0;
5820 }
5821
regulator_summary_show(struct seq_file * s,void * data)5822 static int regulator_summary_show(struct seq_file *s, void *data)
5823 {
5824 struct ww_acquire_ctx ww_ctx;
5825
5826 seq_puts(s, " regulator use open bypass opmode voltage current min max\n");
5827 seq_puts(s, "---------------------------------------------------------------------------------------\n");
5828
5829 regulator_summary_lock(&ww_ctx);
5830
5831 class_for_each_device(®ulator_class, NULL, s,
5832 regulator_summary_show_roots);
5833
5834 regulator_summary_unlock(&ww_ctx);
5835
5836 return 0;
5837 }
5838 DEFINE_SHOW_ATTRIBUTE(regulator_summary);
5839 #endif /* CONFIG_DEBUG_FS */
5840
regulator_init(void)5841 static int __init regulator_init(void)
5842 {
5843 int ret;
5844
5845 ret = class_register(®ulator_class);
5846
5847 debugfs_root = debugfs_create_dir("regulator", NULL);
5848 if (!debugfs_root)
5849 pr_warn("regulator: Failed to create debugfs directory\n");
5850
5851 #ifdef CONFIG_DEBUG_FS
5852 debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
5853 &supply_map_fops);
5854
5855 debugfs_create_file("regulator_summary", 0444, debugfs_root,
5856 NULL, ®ulator_summary_fops);
5857 #endif
5858 regulator_dummy_init();
5859
5860 regulator_coupler_register(&generic_regulator_coupler);
5861
5862 return ret;
5863 }
5864
5865 /* init early to allow our consumers to complete system booting */
5866 core_initcall(regulator_init);
5867
regulator_late_cleanup(struct device * dev,void * data)5868 static int regulator_late_cleanup(struct device *dev, void *data)
5869 {
5870 struct regulator_dev *rdev = dev_to_rdev(dev);
5871 const struct regulator_ops *ops = rdev->desc->ops;
5872 struct regulation_constraints *c = rdev->constraints;
5873 int enabled, ret;
5874
5875 if (c && c->always_on)
5876 return 0;
5877
5878 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS))
5879 return 0;
5880
5881 regulator_lock(rdev);
5882
5883 if (rdev->use_count)
5884 goto unlock;
5885
5886 /* If we can't read the status assume it's always on. */
5887 if (ops->is_enabled)
5888 enabled = ops->is_enabled(rdev);
5889 else
5890 enabled = 1;
5891
5892 /* But if reading the status failed, assume that it's off. */
5893 if (enabled <= 0)
5894 goto unlock;
5895
5896 if (have_full_constraints()) {
5897 /* We log since this may kill the system if it goes
5898 * wrong. */
5899 rdev_info(rdev, "disabling\n");
5900 ret = _regulator_do_disable(rdev);
5901 if (ret != 0)
5902 rdev_err(rdev, "couldn't disable: %pe\n", ERR_PTR(ret));
5903 } else {
5904 /* The intention is that in future we will
5905 * assume that full constraints are provided
5906 * so warn even if we aren't going to do
5907 * anything here.
5908 */
5909 rdev_warn(rdev, "incomplete constraints, leaving on\n");
5910 }
5911
5912 unlock:
5913 regulator_unlock(rdev);
5914
5915 return 0;
5916 }
5917
regulator_init_complete_work_function(struct work_struct * work)5918 static void regulator_init_complete_work_function(struct work_struct *work)
5919 {
5920 /*
5921 * Regulators may had failed to resolve their input supplies
5922 * when were registered, either because the input supply was
5923 * not registered yet or because its parent device was not
5924 * bound yet. So attempt to resolve the input supplies for
5925 * pending regulators before trying to disable unused ones.
5926 */
5927 class_for_each_device(®ulator_class, NULL, NULL,
5928 regulator_register_resolve_supply);
5929
5930 /* If we have a full configuration then disable any regulators
5931 * we have permission to change the status for and which are
5932 * not in use or always_on. This is effectively the default
5933 * for DT and ACPI as they have full constraints.
5934 */
5935 class_for_each_device(®ulator_class, NULL, NULL,
5936 regulator_late_cleanup);
5937 }
5938
5939 static DECLARE_DELAYED_WORK(regulator_init_complete_work,
5940 regulator_init_complete_work_function);
5941
regulator_init_complete(void)5942 static int __init regulator_init_complete(void)
5943 {
5944 /*
5945 * Since DT doesn't provide an idiomatic mechanism for
5946 * enabling full constraints and since it's much more natural
5947 * with DT to provide them just assume that a DT enabled
5948 * system has full constraints.
5949 */
5950 if (of_have_populated_dt())
5951 has_full_constraints = true;
5952
5953 /*
5954 * We punt completion for an arbitrary amount of time since
5955 * systems like distros will load many drivers from userspace
5956 * so consumers might not always be ready yet, this is
5957 * particularly an issue with laptops where this might bounce
5958 * the display off then on. Ideally we'd get a notification
5959 * from userspace when this happens but we don't so just wait
5960 * a bit and hope we waited long enough. It'd be better if
5961 * we'd only do this on systems that need it, and a kernel
5962 * command line option might be useful.
5963 */
5964 schedule_delayed_work(®ulator_init_complete_work,
5965 msecs_to_jiffies(30000));
5966
5967 return 0;
5968 }
5969 late_initcall_sync(regulator_init_complete);
5970