• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (c) 2004 Topspin Communications.  All rights reserved.
3  * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
4  *
5  * This software is available to you under a choice of one of two
6  * licenses.  You may choose to be licensed under the terms of the GNU
7  * General Public License (GPL) Version 2, available from the file
8  * COPYING in the main directory of this source tree, or the
9  * OpenIB.org BSD license below:
10  *
11  *     Redistribution and use in source and binary forms, with or
12  *     without modification, are permitted provided that the following
13  *     conditions are met:
14  *
15  *      - Redistributions of source code must retain the above
16  *        copyright notice, this list of conditions and the following
17  *        disclaimer.
18  *
19  *      - Redistributions in binary form must reproduce the above
20  *        copyright notice, this list of conditions and the following
21  *        disclaimer in the documentation and/or other materials
22  *        provided with the distribution.
23  *
24  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31  * SOFTWARE.
32  */
33 
34 #include <linux/module.h>
35 #include <linux/string.h>
36 #include <linux/errno.h>
37 #include <linux/kernel.h>
38 #include <linux/slab.h>
39 #include <linux/init.h>
40 #include <linux/netdevice.h>
41 #include <net/net_namespace.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/hashtable.h>
45 #include <rdma/rdma_netlink.h>
46 #include <rdma/ib_addr.h>
47 #include <rdma/ib_cache.h>
48 #include <rdma/rdma_counter.h>
49 
50 #include "core_priv.h"
51 #include "restrack.h"
52 
53 MODULE_AUTHOR("Roland Dreier");
54 MODULE_DESCRIPTION("core kernel InfiniBand API");
55 MODULE_LICENSE("Dual BSD/GPL");
56 
57 struct workqueue_struct *ib_comp_wq;
58 struct workqueue_struct *ib_comp_unbound_wq;
59 struct workqueue_struct *ib_wq;
60 EXPORT_SYMBOL_GPL(ib_wq);
61 
62 /*
63  * Each of the three rwsem locks (devices, clients, client_data) protects the
64  * xarray of the same name. Specifically it allows the caller to assert that
65  * the MARK will/will not be changing under the lock, and for devices and
66  * clients, that the value in the xarray is still a valid pointer. Change of
67  * the MARK is linked to the object state, so holding the lock and testing the
68  * MARK also asserts that the contained object is in a certain state.
69  *
70  * This is used to build a two stage register/unregister flow where objects
71  * can continue to be in the xarray even though they are still in progress to
72  * register/unregister.
73  *
74  * The xarray itself provides additional locking, and restartable iteration,
75  * which is also relied on.
76  *
77  * Locks should not be nested, with the exception of client_data, which is
78  * allowed to nest under the read side of the other two locks.
79  *
80  * The devices_rwsem also protects the device name list, any change or
81  * assignment of device name must also hold the write side to guarantee unique
82  * names.
83  */
84 
85 /*
86  * devices contains devices that have had their names assigned. The
87  * devices may not be registered. Users that care about the registration
88  * status need to call ib_device_try_get() on the device to ensure it is
89  * registered, and keep it registered, for the required duration.
90  *
91  */
92 static DEFINE_XARRAY_FLAGS(devices, XA_FLAGS_ALLOC);
93 static DECLARE_RWSEM(devices_rwsem);
94 #define DEVICE_REGISTERED XA_MARK_1
95 
96 static u32 highest_client_id;
97 #define CLIENT_REGISTERED XA_MARK_1
98 static DEFINE_XARRAY_FLAGS(clients, XA_FLAGS_ALLOC);
99 static DECLARE_RWSEM(clients_rwsem);
100 
ib_client_put(struct ib_client * client)101 static void ib_client_put(struct ib_client *client)
102 {
103 	if (refcount_dec_and_test(&client->uses))
104 		complete(&client->uses_zero);
105 }
106 
107 /*
108  * If client_data is registered then the corresponding client must also still
109  * be registered.
110  */
111 #define CLIENT_DATA_REGISTERED XA_MARK_1
112 
113 unsigned int rdma_dev_net_id;
114 
115 /*
116  * A list of net namespaces is maintained in an xarray. This is necessary
117  * because we can't get the locking right using the existing net ns list. We
118  * would require a init_net callback after the list is updated.
119  */
120 static DEFINE_XARRAY_FLAGS(rdma_nets, XA_FLAGS_ALLOC);
121 /*
122  * rwsem to protect accessing the rdma_nets xarray entries.
123  */
124 static DECLARE_RWSEM(rdma_nets_rwsem);
125 
126 bool ib_devices_shared_netns = true;
127 module_param_named(netns_mode, ib_devices_shared_netns, bool, 0444);
128 MODULE_PARM_DESC(netns_mode,
129 		 "Share device among net namespaces; default=1 (shared)");
130 /**
131  * rdma_dev_access_netns() - Return whether an rdma device can be accessed
132  *			     from a specified net namespace or not.
133  * @dev:	Pointer to rdma device which needs to be checked
134  * @net:	Pointer to net namesapce for which access to be checked
135  *
136  * When the rdma device is in shared mode, it ignores the net namespace.
137  * When the rdma device is exclusive to a net namespace, rdma device net
138  * namespace is checked against the specified one.
139  */
rdma_dev_access_netns(const struct ib_device * dev,const struct net * net)140 bool rdma_dev_access_netns(const struct ib_device *dev, const struct net *net)
141 {
142 	return (ib_devices_shared_netns ||
143 		net_eq(read_pnet(&dev->coredev.rdma_net), net));
144 }
145 EXPORT_SYMBOL(rdma_dev_access_netns);
146 
147 /*
148  * xarray has this behavior where it won't iterate over NULL values stored in
149  * allocated arrays.  So we need our own iterator to see all values stored in
150  * the array. This does the same thing as xa_for_each except that it also
151  * returns NULL valued entries if the array is allocating. Simplified to only
152  * work on simple xarrays.
153  */
xan_find_marked(struct xarray * xa,unsigned long * indexp,xa_mark_t filter)154 static void *xan_find_marked(struct xarray *xa, unsigned long *indexp,
155 			     xa_mark_t filter)
156 {
157 	XA_STATE(xas, xa, *indexp);
158 	void *entry;
159 
160 	rcu_read_lock();
161 	do {
162 		entry = xas_find_marked(&xas, ULONG_MAX, filter);
163 		if (xa_is_zero(entry))
164 			break;
165 	} while (xas_retry(&xas, entry));
166 	rcu_read_unlock();
167 
168 	if (entry) {
169 		*indexp = xas.xa_index;
170 		if (xa_is_zero(entry))
171 			return NULL;
172 		return entry;
173 	}
174 	return XA_ERROR(-ENOENT);
175 }
176 #define xan_for_each_marked(xa, index, entry, filter)                          \
177 	for (index = 0, entry = xan_find_marked(xa, &(index), filter);         \
178 	     !xa_is_err(entry);                                                \
179 	     (index)++, entry = xan_find_marked(xa, &(index), filter))
180 
181 /* RCU hash table mapping netdevice pointers to struct ib_port_data */
182 static DEFINE_SPINLOCK(ndev_hash_lock);
183 static DECLARE_HASHTABLE(ndev_hash, 5);
184 
185 static void free_netdevs(struct ib_device *ib_dev);
186 static void ib_unregister_work(struct work_struct *work);
187 static void __ib_unregister_device(struct ib_device *device);
188 static int ib_security_change(struct notifier_block *nb, unsigned long event,
189 			      void *lsm_data);
190 static void ib_policy_change_task(struct work_struct *work);
191 static DECLARE_WORK(ib_policy_change_work, ib_policy_change_task);
192 
__ibdev_printk(const char * level,const struct ib_device * ibdev,struct va_format * vaf)193 static void __ibdev_printk(const char *level, const struct ib_device *ibdev,
194 			   struct va_format *vaf)
195 {
196 	if (ibdev && ibdev->dev.parent)
197 		dev_printk_emit(level[1] - '0',
198 				ibdev->dev.parent,
199 				"%s %s %s: %pV",
200 				dev_driver_string(ibdev->dev.parent),
201 				dev_name(ibdev->dev.parent),
202 				dev_name(&ibdev->dev),
203 				vaf);
204 	else if (ibdev)
205 		printk("%s%s: %pV",
206 		       level, dev_name(&ibdev->dev), vaf);
207 	else
208 		printk("%s(NULL ib_device): %pV", level, vaf);
209 }
210 
ibdev_printk(const char * level,const struct ib_device * ibdev,const char * format,...)211 void ibdev_printk(const char *level, const struct ib_device *ibdev,
212 		  const char *format, ...)
213 {
214 	struct va_format vaf;
215 	va_list args;
216 
217 	va_start(args, format);
218 
219 	vaf.fmt = format;
220 	vaf.va = &args;
221 
222 	__ibdev_printk(level, ibdev, &vaf);
223 
224 	va_end(args);
225 }
226 EXPORT_SYMBOL(ibdev_printk);
227 
228 #define define_ibdev_printk_level(func, level)                  \
229 void func(const struct ib_device *ibdev, const char *fmt, ...)  \
230 {                                                               \
231 	struct va_format vaf;                                   \
232 	va_list args;                                           \
233 								\
234 	va_start(args, fmt);                                    \
235 								\
236 	vaf.fmt = fmt;                                          \
237 	vaf.va = &args;                                         \
238 								\
239 	__ibdev_printk(level, ibdev, &vaf);                     \
240 								\
241 	va_end(args);                                           \
242 }                                                               \
243 EXPORT_SYMBOL(func);
244 
245 define_ibdev_printk_level(ibdev_emerg, KERN_EMERG);
246 define_ibdev_printk_level(ibdev_alert, KERN_ALERT);
247 define_ibdev_printk_level(ibdev_crit, KERN_CRIT);
248 define_ibdev_printk_level(ibdev_err, KERN_ERR);
249 define_ibdev_printk_level(ibdev_warn, KERN_WARNING);
250 define_ibdev_printk_level(ibdev_notice, KERN_NOTICE);
251 define_ibdev_printk_level(ibdev_info, KERN_INFO);
252 
253 static struct notifier_block ibdev_lsm_nb = {
254 	.notifier_call = ib_security_change,
255 };
256 
257 static int rdma_dev_change_netns(struct ib_device *device, struct net *cur_net,
258 				 struct net *net);
259 
260 /* Pointer to the RCU head at the start of the ib_port_data array */
261 struct ib_port_data_rcu {
262 	struct rcu_head rcu_head;
263 	struct ib_port_data pdata[];
264 };
265 
ib_device_check_mandatory(struct ib_device * device)266 static void ib_device_check_mandatory(struct ib_device *device)
267 {
268 #define IB_MANDATORY_FUNC(x) { offsetof(struct ib_device_ops, x), #x }
269 	static const struct {
270 		size_t offset;
271 		char  *name;
272 	} mandatory_table[] = {
273 		IB_MANDATORY_FUNC(query_device),
274 		IB_MANDATORY_FUNC(query_port),
275 		IB_MANDATORY_FUNC(alloc_pd),
276 		IB_MANDATORY_FUNC(dealloc_pd),
277 		IB_MANDATORY_FUNC(create_qp),
278 		IB_MANDATORY_FUNC(modify_qp),
279 		IB_MANDATORY_FUNC(destroy_qp),
280 		IB_MANDATORY_FUNC(post_send),
281 		IB_MANDATORY_FUNC(post_recv),
282 		IB_MANDATORY_FUNC(create_cq),
283 		IB_MANDATORY_FUNC(destroy_cq),
284 		IB_MANDATORY_FUNC(poll_cq),
285 		IB_MANDATORY_FUNC(req_notify_cq),
286 		IB_MANDATORY_FUNC(get_dma_mr),
287 		IB_MANDATORY_FUNC(dereg_mr),
288 		IB_MANDATORY_FUNC(get_port_immutable)
289 	};
290 	int i;
291 
292 	device->kverbs_provider = true;
293 	for (i = 0; i < ARRAY_SIZE(mandatory_table); ++i) {
294 		if (!*(void **) ((void *) &device->ops +
295 				 mandatory_table[i].offset)) {
296 			device->kverbs_provider = false;
297 			break;
298 		}
299 	}
300 }
301 
302 /*
303  * Caller must perform ib_device_put() to return the device reference count
304  * when ib_device_get_by_index() returns valid device pointer.
305  */
ib_device_get_by_index(const struct net * net,u32 index)306 struct ib_device *ib_device_get_by_index(const struct net *net, u32 index)
307 {
308 	struct ib_device *device;
309 
310 	down_read(&devices_rwsem);
311 	device = xa_load(&devices, index);
312 	if (device) {
313 		if (!rdma_dev_access_netns(device, net)) {
314 			device = NULL;
315 			goto out;
316 		}
317 
318 		if (!ib_device_try_get(device))
319 			device = NULL;
320 	}
321 out:
322 	up_read(&devices_rwsem);
323 	return device;
324 }
325 
326 /**
327  * ib_device_put - Release IB device reference
328  * @device: device whose reference to be released
329  *
330  * ib_device_put() releases reference to the IB device to allow it to be
331  * unregistered and eventually free.
332  */
ib_device_put(struct ib_device * device)333 void ib_device_put(struct ib_device *device)
334 {
335 	if (refcount_dec_and_test(&device->refcount))
336 		complete(&device->unreg_completion);
337 }
338 EXPORT_SYMBOL(ib_device_put);
339 
__ib_device_get_by_name(const char * name)340 static struct ib_device *__ib_device_get_by_name(const char *name)
341 {
342 	struct ib_device *device;
343 	unsigned long index;
344 
345 	xa_for_each (&devices, index, device)
346 		if (!strcmp(name, dev_name(&device->dev)))
347 			return device;
348 
349 	return NULL;
350 }
351 
352 /**
353  * ib_device_get_by_name - Find an IB device by name
354  * @name: The name to look for
355  * @driver_id: The driver ID that must match (RDMA_DRIVER_UNKNOWN matches all)
356  *
357  * Find and hold an ib_device by its name. The caller must call
358  * ib_device_put() on the returned pointer.
359  */
ib_device_get_by_name(const char * name,enum rdma_driver_id driver_id)360 struct ib_device *ib_device_get_by_name(const char *name,
361 					enum rdma_driver_id driver_id)
362 {
363 	struct ib_device *device;
364 
365 	down_read(&devices_rwsem);
366 	device = __ib_device_get_by_name(name);
367 	if (device && driver_id != RDMA_DRIVER_UNKNOWN &&
368 	    device->ops.driver_id != driver_id)
369 		device = NULL;
370 
371 	if (device) {
372 		if (!ib_device_try_get(device))
373 			device = NULL;
374 	}
375 	up_read(&devices_rwsem);
376 	return device;
377 }
378 EXPORT_SYMBOL(ib_device_get_by_name);
379 
rename_compat_devs(struct ib_device * device)380 static int rename_compat_devs(struct ib_device *device)
381 {
382 	struct ib_core_device *cdev;
383 	unsigned long index;
384 	int ret = 0;
385 
386 	mutex_lock(&device->compat_devs_mutex);
387 	xa_for_each (&device->compat_devs, index, cdev) {
388 		ret = device_rename(&cdev->dev, dev_name(&device->dev));
389 		if (ret) {
390 			dev_warn(&cdev->dev,
391 				 "Fail to rename compatdev to new name %s\n",
392 				 dev_name(&device->dev));
393 			break;
394 		}
395 	}
396 	mutex_unlock(&device->compat_devs_mutex);
397 	return ret;
398 }
399 
ib_device_rename(struct ib_device * ibdev,const char * name)400 int ib_device_rename(struct ib_device *ibdev, const char *name)
401 {
402 	unsigned long index;
403 	void *client_data;
404 	int ret;
405 
406 	down_write(&devices_rwsem);
407 	if (!strcmp(name, dev_name(&ibdev->dev))) {
408 		up_write(&devices_rwsem);
409 		return 0;
410 	}
411 
412 	if (__ib_device_get_by_name(name)) {
413 		up_write(&devices_rwsem);
414 		return -EEXIST;
415 	}
416 
417 	ret = device_rename(&ibdev->dev, name);
418 	if (ret) {
419 		up_write(&devices_rwsem);
420 		return ret;
421 	}
422 
423 	strlcpy(ibdev->name, name, IB_DEVICE_NAME_MAX);
424 	ret = rename_compat_devs(ibdev);
425 
426 	downgrade_write(&devices_rwsem);
427 	down_read(&ibdev->client_data_rwsem);
428 	xan_for_each_marked(&ibdev->client_data, index, client_data,
429 			    CLIENT_DATA_REGISTERED) {
430 		struct ib_client *client = xa_load(&clients, index);
431 
432 		if (!client || !client->rename)
433 			continue;
434 
435 		client->rename(ibdev, client_data);
436 	}
437 	up_read(&ibdev->client_data_rwsem);
438 	up_read(&devices_rwsem);
439 	return 0;
440 }
441 
ib_device_set_dim(struct ib_device * ibdev,u8 use_dim)442 int ib_device_set_dim(struct ib_device *ibdev, u8 use_dim)
443 {
444 	if (use_dim > 1)
445 		return -EINVAL;
446 	ibdev->use_cq_dim = use_dim;
447 
448 	return 0;
449 }
450 
alloc_name(struct ib_device * ibdev,const char * name)451 static int alloc_name(struct ib_device *ibdev, const char *name)
452 {
453 	struct ib_device *device;
454 	unsigned long index;
455 	struct ida inuse;
456 	int rc;
457 	int i;
458 
459 	lockdep_assert_held_write(&devices_rwsem);
460 	ida_init(&inuse);
461 	xa_for_each (&devices, index, device) {
462 		char buf[IB_DEVICE_NAME_MAX];
463 
464 		if (sscanf(dev_name(&device->dev), name, &i) != 1)
465 			continue;
466 		if (i < 0 || i >= INT_MAX)
467 			continue;
468 		snprintf(buf, sizeof buf, name, i);
469 		if (strcmp(buf, dev_name(&device->dev)) != 0)
470 			continue;
471 
472 		rc = ida_alloc_range(&inuse, i, i, GFP_KERNEL);
473 		if (rc < 0)
474 			goto out;
475 	}
476 
477 	rc = ida_alloc(&inuse, GFP_KERNEL);
478 	if (rc < 0)
479 		goto out;
480 
481 	rc = dev_set_name(&ibdev->dev, name, rc);
482 out:
483 	ida_destroy(&inuse);
484 	return rc;
485 }
486 
ib_device_release(struct device * device)487 static void ib_device_release(struct device *device)
488 {
489 	struct ib_device *dev = container_of(device, struct ib_device, dev);
490 
491 	free_netdevs(dev);
492 	WARN_ON(refcount_read(&dev->refcount));
493 	if (dev->port_data) {
494 		ib_cache_release_one(dev);
495 		ib_security_release_port_pkey_list(dev);
496 		rdma_counter_release(dev);
497 		kfree_rcu(container_of(dev->port_data, struct ib_port_data_rcu,
498 				       pdata[0]),
499 			  rcu_head);
500 	}
501 
502 	mutex_destroy(&dev->unregistration_lock);
503 	mutex_destroy(&dev->compat_devs_mutex);
504 
505 	xa_destroy(&dev->compat_devs);
506 	xa_destroy(&dev->client_data);
507 	kfree_rcu(dev, rcu_head);
508 }
509 
ib_device_uevent(struct device * device,struct kobj_uevent_env * env)510 static int ib_device_uevent(struct device *device,
511 			    struct kobj_uevent_env *env)
512 {
513 	if (add_uevent_var(env, "NAME=%s", dev_name(device)))
514 		return -ENOMEM;
515 
516 	/*
517 	 * It would be nice to pass the node GUID with the event...
518 	 */
519 
520 	return 0;
521 }
522 
net_namespace(struct device * d)523 static const void *net_namespace(struct device *d)
524 {
525 	struct ib_core_device *coredev =
526 			container_of(d, struct ib_core_device, dev);
527 
528 	return read_pnet(&coredev->rdma_net);
529 }
530 
531 static struct class ib_class = {
532 	.name    = "infiniband",
533 	.dev_release = ib_device_release,
534 	.dev_uevent = ib_device_uevent,
535 	.ns_type = &net_ns_type_operations,
536 	.namespace = net_namespace,
537 };
538 
rdma_init_coredev(struct ib_core_device * coredev,struct ib_device * dev,struct net * net)539 static void rdma_init_coredev(struct ib_core_device *coredev,
540 			      struct ib_device *dev, struct net *net)
541 {
542 	/* This BUILD_BUG_ON is intended to catch layout change
543 	 * of union of ib_core_device and device.
544 	 * dev must be the first element as ib_core and providers
545 	 * driver uses it. Adding anything in ib_core_device before
546 	 * device will break this assumption.
547 	 */
548 	BUILD_BUG_ON(offsetof(struct ib_device, coredev.dev) !=
549 		     offsetof(struct ib_device, dev));
550 
551 	coredev->dev.class = &ib_class;
552 	coredev->dev.groups = dev->groups;
553 	device_initialize(&coredev->dev);
554 	coredev->owner = dev;
555 	INIT_LIST_HEAD(&coredev->port_list);
556 	write_pnet(&coredev->rdma_net, net);
557 }
558 
559 /**
560  * _ib_alloc_device - allocate an IB device struct
561  * @size:size of structure to allocate
562  *
563  * Low-level drivers should use ib_alloc_device() to allocate &struct
564  * ib_device.  @size is the size of the structure to be allocated,
565  * including any private data used by the low-level driver.
566  * ib_dealloc_device() must be used to free structures allocated with
567  * ib_alloc_device().
568  */
_ib_alloc_device(size_t size)569 struct ib_device *_ib_alloc_device(size_t size)
570 {
571 	struct ib_device *device;
572 
573 	if (WARN_ON(size < sizeof(struct ib_device)))
574 		return NULL;
575 
576 	device = kzalloc(size, GFP_KERNEL);
577 	if (!device)
578 		return NULL;
579 
580 	if (rdma_restrack_init(device)) {
581 		kfree(device);
582 		return NULL;
583 	}
584 
585 	device->groups[0] = &ib_dev_attr_group;
586 	rdma_init_coredev(&device->coredev, device, &init_net);
587 
588 	INIT_LIST_HEAD(&device->event_handler_list);
589 	spin_lock_init(&device->qp_open_list_lock);
590 	init_rwsem(&device->event_handler_rwsem);
591 	mutex_init(&device->unregistration_lock);
592 	/*
593 	 * client_data needs to be alloc because we don't want our mark to be
594 	 * destroyed if the user stores NULL in the client data.
595 	 */
596 	xa_init_flags(&device->client_data, XA_FLAGS_ALLOC);
597 	init_rwsem(&device->client_data_rwsem);
598 	xa_init_flags(&device->compat_devs, XA_FLAGS_ALLOC);
599 	mutex_init(&device->compat_devs_mutex);
600 	init_completion(&device->unreg_completion);
601 	INIT_WORK(&device->unregistration_work, ib_unregister_work);
602 
603 	return device;
604 }
605 EXPORT_SYMBOL(_ib_alloc_device);
606 
607 /**
608  * ib_dealloc_device - free an IB device struct
609  * @device:structure to free
610  *
611  * Free a structure allocated with ib_alloc_device().
612  */
ib_dealloc_device(struct ib_device * device)613 void ib_dealloc_device(struct ib_device *device)
614 {
615 	if (device->ops.dealloc_driver)
616 		device->ops.dealloc_driver(device);
617 
618 	/*
619 	 * ib_unregister_driver() requires all devices to remain in the xarray
620 	 * while their ops are callable. The last op we call is dealloc_driver
621 	 * above.  This is needed to create a fence on op callbacks prior to
622 	 * allowing the driver module to unload.
623 	 */
624 	down_write(&devices_rwsem);
625 	if (xa_load(&devices, device->index) == device)
626 		xa_erase(&devices, device->index);
627 	up_write(&devices_rwsem);
628 
629 	/* Expedite releasing netdev references */
630 	free_netdevs(device);
631 
632 	WARN_ON(!xa_empty(&device->compat_devs));
633 	WARN_ON(!xa_empty(&device->client_data));
634 	WARN_ON(refcount_read(&device->refcount));
635 	rdma_restrack_clean(device);
636 	/* Balances with device_initialize */
637 	put_device(&device->dev);
638 }
639 EXPORT_SYMBOL(ib_dealloc_device);
640 
641 /*
642  * add_client_context() and remove_client_context() must be safe against
643  * parallel calls on the same device - registration/unregistration of both the
644  * device and client can be occurring in parallel.
645  *
646  * The routines need to be a fence, any caller must not return until the add
647  * or remove is fully completed.
648  */
add_client_context(struct ib_device * device,struct ib_client * client)649 static int add_client_context(struct ib_device *device,
650 			      struct ib_client *client)
651 {
652 	int ret = 0;
653 
654 	if (!device->kverbs_provider && !client->no_kverbs_req)
655 		return 0;
656 
657 	down_write(&device->client_data_rwsem);
658 	/*
659 	 * So long as the client is registered hold both the client and device
660 	 * unregistration locks.
661 	 */
662 	if (!refcount_inc_not_zero(&client->uses))
663 		goto out_unlock;
664 	refcount_inc(&device->refcount);
665 
666 	/*
667 	 * Another caller to add_client_context got here first and has already
668 	 * completely initialized context.
669 	 */
670 	if (xa_get_mark(&device->client_data, client->client_id,
671 		    CLIENT_DATA_REGISTERED))
672 		goto out;
673 
674 	ret = xa_err(xa_store(&device->client_data, client->client_id, NULL,
675 			      GFP_KERNEL));
676 	if (ret)
677 		goto out;
678 	downgrade_write(&device->client_data_rwsem);
679 	if (client->add) {
680 		if (client->add(device)) {
681 			/*
682 			 * If a client fails to add then the error code is
683 			 * ignored, but we won't call any more ops on this
684 			 * client.
685 			 */
686 			xa_erase(&device->client_data, client->client_id);
687 			up_read(&device->client_data_rwsem);
688 			ib_device_put(device);
689 			ib_client_put(client);
690 			return 0;
691 		}
692 	}
693 
694 	/* Readers shall not see a client until add has been completed */
695 	xa_set_mark(&device->client_data, client->client_id,
696 		    CLIENT_DATA_REGISTERED);
697 	up_read(&device->client_data_rwsem);
698 	return 0;
699 
700 out:
701 	ib_device_put(device);
702 	ib_client_put(client);
703 out_unlock:
704 	up_write(&device->client_data_rwsem);
705 	return ret;
706 }
707 
remove_client_context(struct ib_device * device,unsigned int client_id)708 static void remove_client_context(struct ib_device *device,
709 				  unsigned int client_id)
710 {
711 	struct ib_client *client;
712 	void *client_data;
713 
714 	down_write(&device->client_data_rwsem);
715 	if (!xa_get_mark(&device->client_data, client_id,
716 			 CLIENT_DATA_REGISTERED)) {
717 		up_write(&device->client_data_rwsem);
718 		return;
719 	}
720 	client_data = xa_load(&device->client_data, client_id);
721 	xa_clear_mark(&device->client_data, client_id, CLIENT_DATA_REGISTERED);
722 	client = xa_load(&clients, client_id);
723 	up_write(&device->client_data_rwsem);
724 
725 	/*
726 	 * Notice we cannot be holding any exclusive locks when calling the
727 	 * remove callback as the remove callback can recurse back into any
728 	 * public functions in this module and thus try for any locks those
729 	 * functions take.
730 	 *
731 	 * For this reason clients and drivers should not call the
732 	 * unregistration functions will holdling any locks.
733 	 */
734 	if (client->remove)
735 		client->remove(device, client_data);
736 
737 	xa_erase(&device->client_data, client_id);
738 	ib_device_put(device);
739 	ib_client_put(client);
740 }
741 
alloc_port_data(struct ib_device * device)742 static int alloc_port_data(struct ib_device *device)
743 {
744 	struct ib_port_data_rcu *pdata_rcu;
745 	unsigned int port;
746 
747 	if (device->port_data)
748 		return 0;
749 
750 	/* This can only be called once the physical port range is defined */
751 	if (WARN_ON(!device->phys_port_cnt))
752 		return -EINVAL;
753 
754 	/*
755 	 * device->port_data is indexed directly by the port number to make
756 	 * access to this data as efficient as possible.
757 	 *
758 	 * Therefore port_data is declared as a 1 based array with potential
759 	 * empty slots at the beginning.
760 	 */
761 	pdata_rcu = kzalloc(struct_size(pdata_rcu, pdata,
762 					rdma_end_port(device) + 1),
763 			    GFP_KERNEL);
764 	if (!pdata_rcu)
765 		return -ENOMEM;
766 	/*
767 	 * The rcu_head is put in front of the port data array and the stored
768 	 * pointer is adjusted since we never need to see that member until
769 	 * kfree_rcu.
770 	 */
771 	device->port_data = pdata_rcu->pdata;
772 
773 	rdma_for_each_port (device, port) {
774 		struct ib_port_data *pdata = &device->port_data[port];
775 
776 		pdata->ib_dev = device;
777 		spin_lock_init(&pdata->pkey_list_lock);
778 		INIT_LIST_HEAD(&pdata->pkey_list);
779 		spin_lock_init(&pdata->netdev_lock);
780 		INIT_HLIST_NODE(&pdata->ndev_hash_link);
781 	}
782 	return 0;
783 }
784 
verify_immutable(const struct ib_device * dev,u8 port)785 static int verify_immutable(const struct ib_device *dev, u8 port)
786 {
787 	return WARN_ON(!rdma_cap_ib_mad(dev, port) &&
788 			    rdma_max_mad_size(dev, port) != 0);
789 }
790 
setup_port_data(struct ib_device * device)791 static int setup_port_data(struct ib_device *device)
792 {
793 	unsigned int port;
794 	int ret;
795 
796 	ret = alloc_port_data(device);
797 	if (ret)
798 		return ret;
799 
800 	rdma_for_each_port (device, port) {
801 		struct ib_port_data *pdata = &device->port_data[port];
802 
803 		ret = device->ops.get_port_immutable(device, port,
804 						     &pdata->immutable);
805 		if (ret)
806 			return ret;
807 
808 		if (verify_immutable(device, port))
809 			return -EINVAL;
810 	}
811 	return 0;
812 }
813 
ib_get_device_fw_str(struct ib_device * dev,char * str)814 void ib_get_device_fw_str(struct ib_device *dev, char *str)
815 {
816 	if (dev->ops.get_dev_fw_str)
817 		dev->ops.get_dev_fw_str(dev, str);
818 	else
819 		str[0] = '\0';
820 }
821 EXPORT_SYMBOL(ib_get_device_fw_str);
822 
ib_policy_change_task(struct work_struct * work)823 static void ib_policy_change_task(struct work_struct *work)
824 {
825 	struct ib_device *dev;
826 	unsigned long index;
827 
828 	down_read(&devices_rwsem);
829 	xa_for_each_marked (&devices, index, dev, DEVICE_REGISTERED) {
830 		unsigned int i;
831 
832 		rdma_for_each_port (dev, i) {
833 			u64 sp;
834 			int ret = ib_get_cached_subnet_prefix(dev,
835 							      i,
836 							      &sp);
837 
838 			WARN_ONCE(ret,
839 				  "ib_get_cached_subnet_prefix err: %d, this should never happen here\n",
840 				  ret);
841 			if (!ret)
842 				ib_security_cache_change(dev, i, sp);
843 		}
844 	}
845 	up_read(&devices_rwsem);
846 }
847 
ib_security_change(struct notifier_block * nb,unsigned long event,void * lsm_data)848 static int ib_security_change(struct notifier_block *nb, unsigned long event,
849 			      void *lsm_data)
850 {
851 	if (event != LSM_POLICY_CHANGE)
852 		return NOTIFY_DONE;
853 
854 	schedule_work(&ib_policy_change_work);
855 	ib_mad_agent_security_change();
856 
857 	return NOTIFY_OK;
858 }
859 
compatdev_release(struct device * dev)860 static void compatdev_release(struct device *dev)
861 {
862 	struct ib_core_device *cdev =
863 		container_of(dev, struct ib_core_device, dev);
864 
865 	kfree(cdev);
866 }
867 
add_one_compat_dev(struct ib_device * device,struct rdma_dev_net * rnet)868 static int add_one_compat_dev(struct ib_device *device,
869 			      struct rdma_dev_net *rnet)
870 {
871 	struct ib_core_device *cdev;
872 	int ret;
873 
874 	lockdep_assert_held(&rdma_nets_rwsem);
875 	if (!ib_devices_shared_netns)
876 		return 0;
877 
878 	/*
879 	 * Create and add compat device in all namespaces other than where it
880 	 * is currently bound to.
881 	 */
882 	if (net_eq(read_pnet(&rnet->net),
883 		   read_pnet(&device->coredev.rdma_net)))
884 		return 0;
885 
886 	/*
887 	 * The first of init_net() or ib_register_device() to take the
888 	 * compat_devs_mutex wins and gets to add the device. Others will wait
889 	 * for completion here.
890 	 */
891 	mutex_lock(&device->compat_devs_mutex);
892 	cdev = xa_load(&device->compat_devs, rnet->id);
893 	if (cdev) {
894 		ret = 0;
895 		goto done;
896 	}
897 	ret = xa_reserve(&device->compat_devs, rnet->id, GFP_KERNEL);
898 	if (ret)
899 		goto done;
900 
901 	cdev = kzalloc(sizeof(*cdev), GFP_KERNEL);
902 	if (!cdev) {
903 		ret = -ENOMEM;
904 		goto cdev_err;
905 	}
906 
907 	cdev->dev.parent = device->dev.parent;
908 	rdma_init_coredev(cdev, device, read_pnet(&rnet->net));
909 	cdev->dev.release = compatdev_release;
910 	ret = dev_set_name(&cdev->dev, "%s", dev_name(&device->dev));
911 	if (ret)
912 		goto add_err;
913 
914 	ret = device_add(&cdev->dev);
915 	if (ret)
916 		goto add_err;
917 	ret = ib_setup_port_attrs(cdev);
918 	if (ret)
919 		goto port_err;
920 
921 	ret = xa_err(xa_store(&device->compat_devs, rnet->id,
922 			      cdev, GFP_KERNEL));
923 	if (ret)
924 		goto insert_err;
925 
926 	mutex_unlock(&device->compat_devs_mutex);
927 	return 0;
928 
929 insert_err:
930 	ib_free_port_attrs(cdev);
931 port_err:
932 	device_del(&cdev->dev);
933 add_err:
934 	put_device(&cdev->dev);
935 cdev_err:
936 	xa_release(&device->compat_devs, rnet->id);
937 done:
938 	mutex_unlock(&device->compat_devs_mutex);
939 	return ret;
940 }
941 
remove_one_compat_dev(struct ib_device * device,u32 id)942 static void remove_one_compat_dev(struct ib_device *device, u32 id)
943 {
944 	struct ib_core_device *cdev;
945 
946 	mutex_lock(&device->compat_devs_mutex);
947 	cdev = xa_erase(&device->compat_devs, id);
948 	mutex_unlock(&device->compat_devs_mutex);
949 	if (cdev) {
950 		ib_free_port_attrs(cdev);
951 		device_del(&cdev->dev);
952 		put_device(&cdev->dev);
953 	}
954 }
955 
remove_compat_devs(struct ib_device * device)956 static void remove_compat_devs(struct ib_device *device)
957 {
958 	struct ib_core_device *cdev;
959 	unsigned long index;
960 
961 	xa_for_each (&device->compat_devs, index, cdev)
962 		remove_one_compat_dev(device, index);
963 }
964 
add_compat_devs(struct ib_device * device)965 static int add_compat_devs(struct ib_device *device)
966 {
967 	struct rdma_dev_net *rnet;
968 	unsigned long index;
969 	int ret = 0;
970 
971 	lockdep_assert_held(&devices_rwsem);
972 
973 	down_read(&rdma_nets_rwsem);
974 	xa_for_each (&rdma_nets, index, rnet) {
975 		ret = add_one_compat_dev(device, rnet);
976 		if (ret)
977 			break;
978 	}
979 	up_read(&rdma_nets_rwsem);
980 	return ret;
981 }
982 
remove_all_compat_devs(void)983 static void remove_all_compat_devs(void)
984 {
985 	struct ib_compat_device *cdev;
986 	struct ib_device *dev;
987 	unsigned long index;
988 
989 	down_read(&devices_rwsem);
990 	xa_for_each (&devices, index, dev) {
991 		unsigned long c_index = 0;
992 
993 		/* Hold nets_rwsem so that any other thread modifying this
994 		 * system param can sync with this thread.
995 		 */
996 		down_read(&rdma_nets_rwsem);
997 		xa_for_each (&dev->compat_devs, c_index, cdev)
998 			remove_one_compat_dev(dev, c_index);
999 		up_read(&rdma_nets_rwsem);
1000 	}
1001 	up_read(&devices_rwsem);
1002 }
1003 
add_all_compat_devs(void)1004 static int add_all_compat_devs(void)
1005 {
1006 	struct rdma_dev_net *rnet;
1007 	struct ib_device *dev;
1008 	unsigned long index;
1009 	int ret = 0;
1010 
1011 	down_read(&devices_rwsem);
1012 	xa_for_each_marked (&devices, index, dev, DEVICE_REGISTERED) {
1013 		unsigned long net_index = 0;
1014 
1015 		/* Hold nets_rwsem so that any other thread modifying this
1016 		 * system param can sync with this thread.
1017 		 */
1018 		down_read(&rdma_nets_rwsem);
1019 		xa_for_each (&rdma_nets, net_index, rnet) {
1020 			ret = add_one_compat_dev(dev, rnet);
1021 			if (ret)
1022 				break;
1023 		}
1024 		up_read(&rdma_nets_rwsem);
1025 	}
1026 	up_read(&devices_rwsem);
1027 	if (ret)
1028 		remove_all_compat_devs();
1029 	return ret;
1030 }
1031 
rdma_compatdev_set(u8 enable)1032 int rdma_compatdev_set(u8 enable)
1033 {
1034 	struct rdma_dev_net *rnet;
1035 	unsigned long index;
1036 	int ret = 0;
1037 
1038 	down_write(&rdma_nets_rwsem);
1039 	if (ib_devices_shared_netns == enable) {
1040 		up_write(&rdma_nets_rwsem);
1041 		return 0;
1042 	}
1043 
1044 	/* enable/disable of compat devices is not supported
1045 	 * when more than default init_net exists.
1046 	 */
1047 	xa_for_each (&rdma_nets, index, rnet) {
1048 		ret++;
1049 		break;
1050 	}
1051 	if (!ret)
1052 		ib_devices_shared_netns = enable;
1053 	up_write(&rdma_nets_rwsem);
1054 	if (ret)
1055 		return -EBUSY;
1056 
1057 	if (enable)
1058 		ret = add_all_compat_devs();
1059 	else
1060 		remove_all_compat_devs();
1061 	return ret;
1062 }
1063 
rdma_dev_exit_net(struct net * net)1064 static void rdma_dev_exit_net(struct net *net)
1065 {
1066 	struct rdma_dev_net *rnet = rdma_net_to_dev_net(net);
1067 	struct ib_device *dev;
1068 	unsigned long index;
1069 	int ret;
1070 
1071 	down_write(&rdma_nets_rwsem);
1072 	/*
1073 	 * Prevent the ID from being re-used and hide the id from xa_for_each.
1074 	 */
1075 	ret = xa_err(xa_store(&rdma_nets, rnet->id, NULL, GFP_KERNEL));
1076 	WARN_ON(ret);
1077 	up_write(&rdma_nets_rwsem);
1078 
1079 	down_read(&devices_rwsem);
1080 	xa_for_each (&devices, index, dev) {
1081 		get_device(&dev->dev);
1082 		/*
1083 		 * Release the devices_rwsem so that pontentially blocking
1084 		 * device_del, doesn't hold the devices_rwsem for too long.
1085 		 */
1086 		up_read(&devices_rwsem);
1087 
1088 		remove_one_compat_dev(dev, rnet->id);
1089 
1090 		/*
1091 		 * If the real device is in the NS then move it back to init.
1092 		 */
1093 		rdma_dev_change_netns(dev, net, &init_net);
1094 
1095 		put_device(&dev->dev);
1096 		down_read(&devices_rwsem);
1097 	}
1098 	up_read(&devices_rwsem);
1099 
1100 	rdma_nl_net_exit(rnet);
1101 	xa_erase(&rdma_nets, rnet->id);
1102 }
1103 
rdma_dev_init_net(struct net * net)1104 static __net_init int rdma_dev_init_net(struct net *net)
1105 {
1106 	struct rdma_dev_net *rnet = rdma_net_to_dev_net(net);
1107 	unsigned long index;
1108 	struct ib_device *dev;
1109 	int ret;
1110 
1111 	write_pnet(&rnet->net, net);
1112 
1113 	ret = rdma_nl_net_init(rnet);
1114 	if (ret)
1115 		return ret;
1116 
1117 	/* No need to create any compat devices in default init_net. */
1118 	if (net_eq(net, &init_net))
1119 		return 0;
1120 
1121 	ret = xa_alloc(&rdma_nets, &rnet->id, rnet, xa_limit_32b, GFP_KERNEL);
1122 	if (ret) {
1123 		rdma_nl_net_exit(rnet);
1124 		return ret;
1125 	}
1126 
1127 	down_read(&devices_rwsem);
1128 	xa_for_each_marked (&devices, index, dev, DEVICE_REGISTERED) {
1129 		/* Hold nets_rwsem so that netlink command cannot change
1130 		 * system configuration for device sharing mode.
1131 		 */
1132 		down_read(&rdma_nets_rwsem);
1133 		ret = add_one_compat_dev(dev, rnet);
1134 		up_read(&rdma_nets_rwsem);
1135 		if (ret)
1136 			break;
1137 	}
1138 	up_read(&devices_rwsem);
1139 
1140 	if (ret)
1141 		rdma_dev_exit_net(net);
1142 
1143 	return ret;
1144 }
1145 
1146 /*
1147  * Assign the unique string device name and the unique device index. This is
1148  * undone by ib_dealloc_device.
1149  */
assign_name(struct ib_device * device,const char * name)1150 static int assign_name(struct ib_device *device, const char *name)
1151 {
1152 	static u32 last_id;
1153 	int ret;
1154 
1155 	down_write(&devices_rwsem);
1156 	/* Assign a unique name to the device */
1157 	if (strchr(name, '%'))
1158 		ret = alloc_name(device, name);
1159 	else
1160 		ret = dev_set_name(&device->dev, name);
1161 	if (ret)
1162 		goto out;
1163 
1164 	if (__ib_device_get_by_name(dev_name(&device->dev))) {
1165 		ret = -ENFILE;
1166 		goto out;
1167 	}
1168 	strlcpy(device->name, dev_name(&device->dev), IB_DEVICE_NAME_MAX);
1169 
1170 	ret = xa_alloc_cyclic(&devices, &device->index, device, xa_limit_31b,
1171 			&last_id, GFP_KERNEL);
1172 	if (ret > 0)
1173 		ret = 0;
1174 
1175 out:
1176 	up_write(&devices_rwsem);
1177 	return ret;
1178 }
1179 
1180 /*
1181  * setup_device() allocates memory and sets up data that requires calling the
1182  * device ops, this is the only reason these actions are not done during
1183  * ib_alloc_device. It is undone by ib_dealloc_device().
1184  */
setup_device(struct ib_device * device)1185 static int setup_device(struct ib_device *device)
1186 {
1187 	struct ib_udata uhw = {.outlen = 0, .inlen = 0};
1188 	int ret;
1189 
1190 	ib_device_check_mandatory(device);
1191 
1192 	ret = setup_port_data(device);
1193 	if (ret) {
1194 		dev_warn(&device->dev, "Couldn't create per-port data\n");
1195 		return ret;
1196 	}
1197 
1198 	memset(&device->attrs, 0, sizeof(device->attrs));
1199 	ret = device->ops.query_device(device, &device->attrs, &uhw);
1200 	if (ret) {
1201 		dev_warn(&device->dev,
1202 			 "Couldn't query the device attributes\n");
1203 		return ret;
1204 	}
1205 
1206 	return 0;
1207 }
1208 
disable_device(struct ib_device * device)1209 static void disable_device(struct ib_device *device)
1210 {
1211 	u32 cid;
1212 
1213 	WARN_ON(!refcount_read(&device->refcount));
1214 
1215 	down_write(&devices_rwsem);
1216 	xa_clear_mark(&devices, device->index, DEVICE_REGISTERED);
1217 	up_write(&devices_rwsem);
1218 
1219 	/*
1220 	 * Remove clients in LIFO order, see assign_client_id. This could be
1221 	 * more efficient if xarray learns to reverse iterate. Since no new
1222 	 * clients can be added to this ib_device past this point we only need
1223 	 * the maximum possible client_id value here.
1224 	 */
1225 	down_read(&clients_rwsem);
1226 	cid = highest_client_id;
1227 	up_read(&clients_rwsem);
1228 	while (cid) {
1229 		cid--;
1230 		remove_client_context(device, cid);
1231 	}
1232 
1233 	ib_cq_pool_destroy(device);
1234 
1235 	/* Pairs with refcount_set in enable_device */
1236 	ib_device_put(device);
1237 	wait_for_completion(&device->unreg_completion);
1238 
1239 	/*
1240 	 * compat devices must be removed after device refcount drops to zero.
1241 	 * Otherwise init_net() may add more compatdevs after removing compat
1242 	 * devices and before device is disabled.
1243 	 */
1244 	remove_compat_devs(device);
1245 }
1246 
1247 /*
1248  * An enabled device is visible to all clients and to all the public facing
1249  * APIs that return a device pointer. This always returns with a new get, even
1250  * if it fails.
1251  */
enable_device_and_get(struct ib_device * device)1252 static int enable_device_and_get(struct ib_device *device)
1253 {
1254 	struct ib_client *client;
1255 	unsigned long index;
1256 	int ret = 0;
1257 
1258 	/*
1259 	 * One ref belongs to the xa and the other belongs to this
1260 	 * thread. This is needed to guard against parallel unregistration.
1261 	 */
1262 	refcount_set(&device->refcount, 2);
1263 	down_write(&devices_rwsem);
1264 	xa_set_mark(&devices, device->index, DEVICE_REGISTERED);
1265 
1266 	/*
1267 	 * By using downgrade_write() we ensure that no other thread can clear
1268 	 * DEVICE_REGISTERED while we are completing the client setup.
1269 	 */
1270 	downgrade_write(&devices_rwsem);
1271 
1272 	if (device->ops.enable_driver) {
1273 		ret = device->ops.enable_driver(device);
1274 		if (ret)
1275 			goto out;
1276 	}
1277 
1278 	ib_cq_pool_init(device);
1279 
1280 	down_read(&clients_rwsem);
1281 	xa_for_each_marked (&clients, index, client, CLIENT_REGISTERED) {
1282 		ret = add_client_context(device, client);
1283 		if (ret)
1284 			break;
1285 	}
1286 	up_read(&clients_rwsem);
1287 	if (!ret)
1288 		ret = add_compat_devs(device);
1289 out:
1290 	up_read(&devices_rwsem);
1291 	return ret;
1292 }
1293 
prevent_dealloc_device(struct ib_device * ib_dev)1294 static void prevent_dealloc_device(struct ib_device *ib_dev)
1295 {
1296 }
1297 
1298 /**
1299  * ib_register_device - Register an IB device with IB core
1300  * @device: Device to register
1301  * @name: unique string device name. This may include a '%' which will
1302  * 	  cause a unique index to be added to the passed device name.
1303  * @dma_device: pointer to a DMA-capable device. If %NULL, then the IB
1304  *	        device will be used. In this case the caller should fully
1305  *		setup the ibdev for DMA. This usually means using dma_virt_ops.
1306  *
1307  * Low-level drivers use ib_register_device() to register their
1308  * devices with the IB core.  All registered clients will receive a
1309  * callback for each device that is added. @device must be allocated
1310  * with ib_alloc_device().
1311  *
1312  * If the driver uses ops.dealloc_driver and calls any ib_unregister_device()
1313  * asynchronously then the device pointer may become freed as soon as this
1314  * function returns.
1315  */
ib_register_device(struct ib_device * device,const char * name,struct device * dma_device)1316 int ib_register_device(struct ib_device *device, const char *name,
1317 		       struct device *dma_device)
1318 {
1319 	int ret;
1320 
1321 	ret = assign_name(device, name);
1322 	if (ret)
1323 		return ret;
1324 
1325 	/*
1326 	 * If the caller does not provide a DMA capable device then the IB core
1327 	 * will set up ib_sge and scatterlist structures that stash the kernel
1328 	 * virtual address into the address field.
1329 	 */
1330 	WARN_ON(dma_device && !dma_device->dma_parms);
1331 	device->dma_device = dma_device;
1332 
1333 	ret = setup_device(device);
1334 	if (ret)
1335 		return ret;
1336 
1337 	ret = ib_cache_setup_one(device);
1338 	if (ret) {
1339 		dev_warn(&device->dev,
1340 			 "Couldn't set up InfiniBand P_Key/GID cache\n");
1341 		return ret;
1342 	}
1343 
1344 	ib_device_register_rdmacg(device);
1345 
1346 	rdma_counter_init(device);
1347 
1348 	/*
1349 	 * Ensure that ADD uevent is not fired because it
1350 	 * is too early amd device is not initialized yet.
1351 	 */
1352 	dev_set_uevent_suppress(&device->dev, true);
1353 	ret = device_add(&device->dev);
1354 	if (ret)
1355 		goto cg_cleanup;
1356 
1357 	ret = ib_device_register_sysfs(device);
1358 	if (ret) {
1359 		dev_warn(&device->dev,
1360 			 "Couldn't register device with driver model\n");
1361 		goto dev_cleanup;
1362 	}
1363 
1364 	ret = enable_device_and_get(device);
1365 	if (ret) {
1366 		void (*dealloc_fn)(struct ib_device *);
1367 
1368 		/*
1369 		 * If we hit this error flow then we don't want to
1370 		 * automatically dealloc the device since the caller is
1371 		 * expected to call ib_dealloc_device() after
1372 		 * ib_register_device() fails. This is tricky due to the
1373 		 * possibility for a parallel unregistration along with this
1374 		 * error flow. Since we have a refcount here we know any
1375 		 * parallel flow is stopped in disable_device and will see the
1376 		 * special dealloc_driver pointer, causing the responsibility to
1377 		 * ib_dealloc_device() to revert back to this thread.
1378 		 */
1379 		dealloc_fn = device->ops.dealloc_driver;
1380 		device->ops.dealloc_driver = prevent_dealloc_device;
1381 		ib_device_put(device);
1382 		__ib_unregister_device(device);
1383 		device->ops.dealloc_driver = dealloc_fn;
1384 		dev_set_uevent_suppress(&device->dev, false);
1385 		return ret;
1386 	}
1387 	dev_set_uevent_suppress(&device->dev, false);
1388 	/* Mark for userspace that device is ready */
1389 	kobject_uevent(&device->dev.kobj, KOBJ_ADD);
1390 	ib_device_put(device);
1391 
1392 	return 0;
1393 
1394 dev_cleanup:
1395 	device_del(&device->dev);
1396 cg_cleanup:
1397 	dev_set_uevent_suppress(&device->dev, false);
1398 	ib_device_unregister_rdmacg(device);
1399 	ib_cache_cleanup_one(device);
1400 	return ret;
1401 }
1402 EXPORT_SYMBOL(ib_register_device);
1403 
1404 /* Callers must hold a get on the device. */
__ib_unregister_device(struct ib_device * ib_dev)1405 static void __ib_unregister_device(struct ib_device *ib_dev)
1406 {
1407 	/*
1408 	 * We have a registration lock so that all the calls to unregister are
1409 	 * fully fenced, once any unregister returns the device is truely
1410 	 * unregistered even if multiple callers are unregistering it at the
1411 	 * same time. This also interacts with the registration flow and
1412 	 * provides sane semantics if register and unregister are racing.
1413 	 */
1414 	mutex_lock(&ib_dev->unregistration_lock);
1415 	if (!refcount_read(&ib_dev->refcount))
1416 		goto out;
1417 
1418 	disable_device(ib_dev);
1419 
1420 	/* Expedite removing unregistered pointers from the hash table */
1421 	free_netdevs(ib_dev);
1422 
1423 	ib_device_unregister_sysfs(ib_dev);
1424 	device_del(&ib_dev->dev);
1425 	ib_device_unregister_rdmacg(ib_dev);
1426 	ib_cache_cleanup_one(ib_dev);
1427 
1428 	/*
1429 	 * Drivers using the new flow may not call ib_dealloc_device except
1430 	 * in error unwind prior to registration success.
1431 	 */
1432 	if (ib_dev->ops.dealloc_driver &&
1433 	    ib_dev->ops.dealloc_driver != prevent_dealloc_device) {
1434 		WARN_ON(kref_read(&ib_dev->dev.kobj.kref) <= 1);
1435 		ib_dealloc_device(ib_dev);
1436 	}
1437 out:
1438 	mutex_unlock(&ib_dev->unregistration_lock);
1439 }
1440 
1441 /**
1442  * ib_unregister_device - Unregister an IB device
1443  * @ib_dev: The device to unregister
1444  *
1445  * Unregister an IB device.  All clients will receive a remove callback.
1446  *
1447  * Callers should call this routine only once, and protect against races with
1448  * registration. Typically it should only be called as part of a remove
1449  * callback in an implementation of driver core's struct device_driver and
1450  * related.
1451  *
1452  * If ops.dealloc_driver is used then ib_dev will be freed upon return from
1453  * this function.
1454  */
ib_unregister_device(struct ib_device * ib_dev)1455 void ib_unregister_device(struct ib_device *ib_dev)
1456 {
1457 	get_device(&ib_dev->dev);
1458 	__ib_unregister_device(ib_dev);
1459 	put_device(&ib_dev->dev);
1460 }
1461 EXPORT_SYMBOL(ib_unregister_device);
1462 
1463 /**
1464  * ib_unregister_device_and_put - Unregister a device while holding a 'get'
1465  * @ib_dev: The device to unregister
1466  *
1467  * This is the same as ib_unregister_device(), except it includes an internal
1468  * ib_device_put() that should match a 'get' obtained by the caller.
1469  *
1470  * It is safe to call this routine concurrently from multiple threads while
1471  * holding the 'get'. When the function returns the device is fully
1472  * unregistered.
1473  *
1474  * Drivers using this flow MUST use the driver_unregister callback to clean up
1475  * their resources associated with the device and dealloc it.
1476  */
ib_unregister_device_and_put(struct ib_device * ib_dev)1477 void ib_unregister_device_and_put(struct ib_device *ib_dev)
1478 {
1479 	WARN_ON(!ib_dev->ops.dealloc_driver);
1480 	get_device(&ib_dev->dev);
1481 	ib_device_put(ib_dev);
1482 	__ib_unregister_device(ib_dev);
1483 	put_device(&ib_dev->dev);
1484 }
1485 EXPORT_SYMBOL(ib_unregister_device_and_put);
1486 
1487 /**
1488  * ib_unregister_driver - Unregister all IB devices for a driver
1489  * @driver_id: The driver to unregister
1490  *
1491  * This implements a fence for device unregistration. It only returns once all
1492  * devices associated with the driver_id have fully completed their
1493  * unregistration and returned from ib_unregister_device*().
1494  *
1495  * If device's are not yet unregistered it goes ahead and starts unregistering
1496  * them.
1497  *
1498  * This does not block creation of new devices with the given driver_id, that
1499  * is the responsibility of the caller.
1500  */
ib_unregister_driver(enum rdma_driver_id driver_id)1501 void ib_unregister_driver(enum rdma_driver_id driver_id)
1502 {
1503 	struct ib_device *ib_dev;
1504 	unsigned long index;
1505 
1506 	down_read(&devices_rwsem);
1507 	xa_for_each (&devices, index, ib_dev) {
1508 		if (ib_dev->ops.driver_id != driver_id)
1509 			continue;
1510 
1511 		get_device(&ib_dev->dev);
1512 		up_read(&devices_rwsem);
1513 
1514 		WARN_ON(!ib_dev->ops.dealloc_driver);
1515 		__ib_unregister_device(ib_dev);
1516 
1517 		put_device(&ib_dev->dev);
1518 		down_read(&devices_rwsem);
1519 	}
1520 	up_read(&devices_rwsem);
1521 }
1522 EXPORT_SYMBOL(ib_unregister_driver);
1523 
ib_unregister_work(struct work_struct * work)1524 static void ib_unregister_work(struct work_struct *work)
1525 {
1526 	struct ib_device *ib_dev =
1527 		container_of(work, struct ib_device, unregistration_work);
1528 
1529 	__ib_unregister_device(ib_dev);
1530 	put_device(&ib_dev->dev);
1531 }
1532 
1533 /**
1534  * ib_unregister_device_queued - Unregister a device using a work queue
1535  * @ib_dev: The device to unregister
1536  *
1537  * This schedules an asynchronous unregistration using a WQ for the device. A
1538  * driver should use this to avoid holding locks while doing unregistration,
1539  * such as holding the RTNL lock.
1540  *
1541  * Drivers using this API must use ib_unregister_driver before module unload
1542  * to ensure that all scheduled unregistrations have completed.
1543  */
ib_unregister_device_queued(struct ib_device * ib_dev)1544 void ib_unregister_device_queued(struct ib_device *ib_dev)
1545 {
1546 	WARN_ON(!refcount_read(&ib_dev->refcount));
1547 	WARN_ON(!ib_dev->ops.dealloc_driver);
1548 	get_device(&ib_dev->dev);
1549 	if (!queue_work(system_unbound_wq, &ib_dev->unregistration_work))
1550 		put_device(&ib_dev->dev);
1551 }
1552 EXPORT_SYMBOL(ib_unregister_device_queued);
1553 
1554 /*
1555  * The caller must pass in a device that has the kref held and the refcount
1556  * released. If the device is in cur_net and still registered then it is moved
1557  * into net.
1558  */
rdma_dev_change_netns(struct ib_device * device,struct net * cur_net,struct net * net)1559 static int rdma_dev_change_netns(struct ib_device *device, struct net *cur_net,
1560 				 struct net *net)
1561 {
1562 	int ret2 = -EINVAL;
1563 	int ret;
1564 
1565 	mutex_lock(&device->unregistration_lock);
1566 
1567 	/*
1568 	 * If a device not under ib_device_get() or if the unregistration_lock
1569 	 * is not held, the namespace can be changed, or it can be unregistered.
1570 	 * Check again under the lock.
1571 	 */
1572 	if (refcount_read(&device->refcount) == 0 ||
1573 	    !net_eq(cur_net, read_pnet(&device->coredev.rdma_net))) {
1574 		ret = -ENODEV;
1575 		goto out;
1576 	}
1577 
1578 	kobject_uevent(&device->dev.kobj, KOBJ_REMOVE);
1579 	disable_device(device);
1580 
1581 	/*
1582 	 * At this point no one can be using the device, so it is safe to
1583 	 * change the namespace.
1584 	 */
1585 	write_pnet(&device->coredev.rdma_net, net);
1586 
1587 	down_read(&devices_rwsem);
1588 	/*
1589 	 * Currently rdma devices are system wide unique. So the device name
1590 	 * is guaranteed free in the new namespace. Publish the new namespace
1591 	 * at the sysfs level.
1592 	 */
1593 	ret = device_rename(&device->dev, dev_name(&device->dev));
1594 	up_read(&devices_rwsem);
1595 	if (ret) {
1596 		dev_warn(&device->dev,
1597 			 "%s: Couldn't rename device after namespace change\n",
1598 			 __func__);
1599 		/* Try and put things back and re-enable the device */
1600 		write_pnet(&device->coredev.rdma_net, cur_net);
1601 	}
1602 
1603 	ret2 = enable_device_and_get(device);
1604 	if (ret2) {
1605 		/*
1606 		 * This shouldn't really happen, but if it does, let the user
1607 		 * retry at later point. So don't disable the device.
1608 		 */
1609 		dev_warn(&device->dev,
1610 			 "%s: Couldn't re-enable device after namespace change\n",
1611 			 __func__);
1612 	}
1613 	kobject_uevent(&device->dev.kobj, KOBJ_ADD);
1614 
1615 	ib_device_put(device);
1616 out:
1617 	mutex_unlock(&device->unregistration_lock);
1618 	if (ret)
1619 		return ret;
1620 	return ret2;
1621 }
1622 
ib_device_set_netns_put(struct sk_buff * skb,struct ib_device * dev,u32 ns_fd)1623 int ib_device_set_netns_put(struct sk_buff *skb,
1624 			    struct ib_device *dev, u32 ns_fd)
1625 {
1626 	struct net *net;
1627 	int ret;
1628 
1629 	net = get_net_ns_by_fd(ns_fd);
1630 	if (IS_ERR(net)) {
1631 		ret = PTR_ERR(net);
1632 		goto net_err;
1633 	}
1634 
1635 	if (!netlink_ns_capable(skb, net->user_ns, CAP_NET_ADMIN)) {
1636 		ret = -EPERM;
1637 		goto ns_err;
1638 	}
1639 
1640 	/*
1641 	 * Currently supported only for those providers which support
1642 	 * disassociation and don't do port specific sysfs init. Once a
1643 	 * port_cleanup infrastructure is implemented, this limitation will be
1644 	 * removed.
1645 	 */
1646 	if (!dev->ops.disassociate_ucontext || dev->ops.init_port ||
1647 	    ib_devices_shared_netns) {
1648 		ret = -EOPNOTSUPP;
1649 		goto ns_err;
1650 	}
1651 
1652 	get_device(&dev->dev);
1653 	ib_device_put(dev);
1654 	ret = rdma_dev_change_netns(dev, current->nsproxy->net_ns, net);
1655 	put_device(&dev->dev);
1656 
1657 	put_net(net);
1658 	return ret;
1659 
1660 ns_err:
1661 	put_net(net);
1662 net_err:
1663 	ib_device_put(dev);
1664 	return ret;
1665 }
1666 
1667 static struct pernet_operations rdma_dev_net_ops = {
1668 	.init = rdma_dev_init_net,
1669 	.exit = rdma_dev_exit_net,
1670 	.id = &rdma_dev_net_id,
1671 	.size = sizeof(struct rdma_dev_net),
1672 };
1673 
assign_client_id(struct ib_client * client)1674 static int assign_client_id(struct ib_client *client)
1675 {
1676 	int ret;
1677 
1678 	down_write(&clients_rwsem);
1679 	/*
1680 	 * The add/remove callbacks must be called in FIFO/LIFO order. To
1681 	 * achieve this we assign client_ids so they are sorted in
1682 	 * registration order.
1683 	 */
1684 	client->client_id = highest_client_id;
1685 	ret = xa_insert(&clients, client->client_id, client, GFP_KERNEL);
1686 	if (ret)
1687 		goto out;
1688 
1689 	highest_client_id++;
1690 	xa_set_mark(&clients, client->client_id, CLIENT_REGISTERED);
1691 
1692 out:
1693 	up_write(&clients_rwsem);
1694 	return ret;
1695 }
1696 
remove_client_id(struct ib_client * client)1697 static void remove_client_id(struct ib_client *client)
1698 {
1699 	down_write(&clients_rwsem);
1700 	xa_erase(&clients, client->client_id);
1701 	for (; highest_client_id; highest_client_id--)
1702 		if (xa_load(&clients, highest_client_id - 1))
1703 			break;
1704 	up_write(&clients_rwsem);
1705 }
1706 
1707 /**
1708  * ib_register_client - Register an IB client
1709  * @client:Client to register
1710  *
1711  * Upper level users of the IB drivers can use ib_register_client() to
1712  * register callbacks for IB device addition and removal.  When an IB
1713  * device is added, each registered client's add method will be called
1714  * (in the order the clients were registered), and when a device is
1715  * removed, each client's remove method will be called (in the reverse
1716  * order that clients were registered).  In addition, when
1717  * ib_register_client() is called, the client will receive an add
1718  * callback for all devices already registered.
1719  */
ib_register_client(struct ib_client * client)1720 int ib_register_client(struct ib_client *client)
1721 {
1722 	struct ib_device *device;
1723 	unsigned long index;
1724 	int ret;
1725 
1726 	refcount_set(&client->uses, 1);
1727 	init_completion(&client->uses_zero);
1728 	ret = assign_client_id(client);
1729 	if (ret)
1730 		return ret;
1731 
1732 	down_read(&devices_rwsem);
1733 	xa_for_each_marked (&devices, index, device, DEVICE_REGISTERED) {
1734 		ret = add_client_context(device, client);
1735 		if (ret) {
1736 			up_read(&devices_rwsem);
1737 			ib_unregister_client(client);
1738 			return ret;
1739 		}
1740 	}
1741 	up_read(&devices_rwsem);
1742 	return 0;
1743 }
1744 EXPORT_SYMBOL(ib_register_client);
1745 
1746 /**
1747  * ib_unregister_client - Unregister an IB client
1748  * @client:Client to unregister
1749  *
1750  * Upper level users use ib_unregister_client() to remove their client
1751  * registration.  When ib_unregister_client() is called, the client
1752  * will receive a remove callback for each IB device still registered.
1753  *
1754  * This is a full fence, once it returns no client callbacks will be called,
1755  * or are running in another thread.
1756  */
ib_unregister_client(struct ib_client * client)1757 void ib_unregister_client(struct ib_client *client)
1758 {
1759 	struct ib_device *device;
1760 	unsigned long index;
1761 
1762 	down_write(&clients_rwsem);
1763 	ib_client_put(client);
1764 	xa_clear_mark(&clients, client->client_id, CLIENT_REGISTERED);
1765 	up_write(&clients_rwsem);
1766 
1767 	/* We do not want to have locks while calling client->remove() */
1768 	rcu_read_lock();
1769 	xa_for_each (&devices, index, device) {
1770 		if (!ib_device_try_get(device))
1771 			continue;
1772 		rcu_read_unlock();
1773 
1774 		remove_client_context(device, client->client_id);
1775 
1776 		ib_device_put(device);
1777 		rcu_read_lock();
1778 	}
1779 	rcu_read_unlock();
1780 
1781 	/*
1782 	 * remove_client_context() is not a fence, it can return even though a
1783 	 * removal is ongoing. Wait until all removals are completed.
1784 	 */
1785 	wait_for_completion(&client->uses_zero);
1786 	remove_client_id(client);
1787 }
1788 EXPORT_SYMBOL(ib_unregister_client);
1789 
__ib_get_global_client_nl_info(const char * client_name,struct ib_client_nl_info * res)1790 static int __ib_get_global_client_nl_info(const char *client_name,
1791 					  struct ib_client_nl_info *res)
1792 {
1793 	struct ib_client *client;
1794 	unsigned long index;
1795 	int ret = -ENOENT;
1796 
1797 	down_read(&clients_rwsem);
1798 	xa_for_each_marked (&clients, index, client, CLIENT_REGISTERED) {
1799 		if (strcmp(client->name, client_name) != 0)
1800 			continue;
1801 		if (!client->get_global_nl_info) {
1802 			ret = -EOPNOTSUPP;
1803 			break;
1804 		}
1805 		ret = client->get_global_nl_info(res);
1806 		if (WARN_ON(ret == -ENOENT))
1807 			ret = -EINVAL;
1808 		if (!ret && res->cdev)
1809 			get_device(res->cdev);
1810 		break;
1811 	}
1812 	up_read(&clients_rwsem);
1813 	return ret;
1814 }
1815 
__ib_get_client_nl_info(struct ib_device * ibdev,const char * client_name,struct ib_client_nl_info * res)1816 static int __ib_get_client_nl_info(struct ib_device *ibdev,
1817 				   const char *client_name,
1818 				   struct ib_client_nl_info *res)
1819 {
1820 	unsigned long index;
1821 	void *client_data;
1822 	int ret = -ENOENT;
1823 
1824 	down_read(&ibdev->client_data_rwsem);
1825 	xan_for_each_marked (&ibdev->client_data, index, client_data,
1826 			     CLIENT_DATA_REGISTERED) {
1827 		struct ib_client *client = xa_load(&clients, index);
1828 
1829 		if (!client || strcmp(client->name, client_name) != 0)
1830 			continue;
1831 		if (!client->get_nl_info) {
1832 			ret = -EOPNOTSUPP;
1833 			break;
1834 		}
1835 		ret = client->get_nl_info(ibdev, client_data, res);
1836 		if (WARN_ON(ret == -ENOENT))
1837 			ret = -EINVAL;
1838 
1839 		/*
1840 		 * The cdev is guaranteed valid as long as we are inside the
1841 		 * client_data_rwsem as remove_one can't be called. Keep it
1842 		 * valid for the caller.
1843 		 */
1844 		if (!ret && res->cdev)
1845 			get_device(res->cdev);
1846 		break;
1847 	}
1848 	up_read(&ibdev->client_data_rwsem);
1849 
1850 	return ret;
1851 }
1852 
1853 /**
1854  * ib_get_client_nl_info - Fetch the nl_info from a client
1855  * @device - IB device
1856  * @client_name - Name of the client
1857  * @res - Result of the query
1858  */
ib_get_client_nl_info(struct ib_device * ibdev,const char * client_name,struct ib_client_nl_info * res)1859 int ib_get_client_nl_info(struct ib_device *ibdev, const char *client_name,
1860 			  struct ib_client_nl_info *res)
1861 {
1862 	int ret;
1863 
1864 	if (ibdev)
1865 		ret = __ib_get_client_nl_info(ibdev, client_name, res);
1866 	else
1867 		ret = __ib_get_global_client_nl_info(client_name, res);
1868 #ifdef CONFIG_MODULES
1869 	if (ret == -ENOENT) {
1870 		request_module("rdma-client-%s", client_name);
1871 		if (ibdev)
1872 			ret = __ib_get_client_nl_info(ibdev, client_name, res);
1873 		else
1874 			ret = __ib_get_global_client_nl_info(client_name, res);
1875 	}
1876 #endif
1877 	if (ret) {
1878 		if (ret == -ENOENT)
1879 			return -EOPNOTSUPP;
1880 		return ret;
1881 	}
1882 
1883 	if (WARN_ON(!res->cdev))
1884 		return -EINVAL;
1885 	return 0;
1886 }
1887 
1888 /**
1889  * ib_set_client_data - Set IB client context
1890  * @device:Device to set context for
1891  * @client:Client to set context for
1892  * @data:Context to set
1893  *
1894  * ib_set_client_data() sets client context data that can be retrieved with
1895  * ib_get_client_data(). This can only be called while the client is
1896  * registered to the device, once the ib_client remove() callback returns this
1897  * cannot be called.
1898  */
ib_set_client_data(struct ib_device * device,struct ib_client * client,void * data)1899 void ib_set_client_data(struct ib_device *device, struct ib_client *client,
1900 			void *data)
1901 {
1902 	void *rc;
1903 
1904 	if (WARN_ON(IS_ERR(data)))
1905 		data = NULL;
1906 
1907 	rc = xa_store(&device->client_data, client->client_id, data,
1908 		      GFP_KERNEL);
1909 	WARN_ON(xa_is_err(rc));
1910 }
1911 EXPORT_SYMBOL(ib_set_client_data);
1912 
1913 /**
1914  * ib_register_event_handler - Register an IB event handler
1915  * @event_handler:Handler to register
1916  *
1917  * ib_register_event_handler() registers an event handler that will be
1918  * called back when asynchronous IB events occur (as defined in
1919  * chapter 11 of the InfiniBand Architecture Specification). This
1920  * callback occurs in workqueue context.
1921  */
ib_register_event_handler(struct ib_event_handler * event_handler)1922 void ib_register_event_handler(struct ib_event_handler *event_handler)
1923 {
1924 	down_write(&event_handler->device->event_handler_rwsem);
1925 	list_add_tail(&event_handler->list,
1926 		      &event_handler->device->event_handler_list);
1927 	up_write(&event_handler->device->event_handler_rwsem);
1928 }
1929 EXPORT_SYMBOL(ib_register_event_handler);
1930 
1931 /**
1932  * ib_unregister_event_handler - Unregister an event handler
1933  * @event_handler:Handler to unregister
1934  *
1935  * Unregister an event handler registered with
1936  * ib_register_event_handler().
1937  */
ib_unregister_event_handler(struct ib_event_handler * event_handler)1938 void ib_unregister_event_handler(struct ib_event_handler *event_handler)
1939 {
1940 	down_write(&event_handler->device->event_handler_rwsem);
1941 	list_del(&event_handler->list);
1942 	up_write(&event_handler->device->event_handler_rwsem);
1943 }
1944 EXPORT_SYMBOL(ib_unregister_event_handler);
1945 
ib_dispatch_event_clients(struct ib_event * event)1946 void ib_dispatch_event_clients(struct ib_event *event)
1947 {
1948 	struct ib_event_handler *handler;
1949 
1950 	down_read(&event->device->event_handler_rwsem);
1951 
1952 	list_for_each_entry(handler, &event->device->event_handler_list, list)
1953 		handler->handler(handler, event);
1954 
1955 	up_read(&event->device->event_handler_rwsem);
1956 }
1957 
iw_query_port(struct ib_device * device,u8 port_num,struct ib_port_attr * port_attr)1958 static int iw_query_port(struct ib_device *device,
1959 			   u8 port_num,
1960 			   struct ib_port_attr *port_attr)
1961 {
1962 	struct in_device *inetdev;
1963 	struct net_device *netdev;
1964 
1965 	memset(port_attr, 0, sizeof(*port_attr));
1966 
1967 	netdev = ib_device_get_netdev(device, port_num);
1968 	if (!netdev)
1969 		return -ENODEV;
1970 
1971 	port_attr->max_mtu = IB_MTU_4096;
1972 	port_attr->active_mtu = ib_mtu_int_to_enum(netdev->mtu);
1973 
1974 	if (!netif_carrier_ok(netdev)) {
1975 		port_attr->state = IB_PORT_DOWN;
1976 		port_attr->phys_state = IB_PORT_PHYS_STATE_DISABLED;
1977 	} else {
1978 		rcu_read_lock();
1979 		inetdev = __in_dev_get_rcu(netdev);
1980 
1981 		if (inetdev && inetdev->ifa_list) {
1982 			port_attr->state = IB_PORT_ACTIVE;
1983 			port_attr->phys_state = IB_PORT_PHYS_STATE_LINK_UP;
1984 		} else {
1985 			port_attr->state = IB_PORT_INIT;
1986 			port_attr->phys_state =
1987 				IB_PORT_PHYS_STATE_PORT_CONFIGURATION_TRAINING;
1988 		}
1989 
1990 		rcu_read_unlock();
1991 	}
1992 
1993 	dev_put(netdev);
1994 	return device->ops.query_port(device, port_num, port_attr);
1995 }
1996 
__ib_query_port(struct ib_device * device,u8 port_num,struct ib_port_attr * port_attr)1997 static int __ib_query_port(struct ib_device *device,
1998 			   u8 port_num,
1999 			   struct ib_port_attr *port_attr)
2000 {
2001 	union ib_gid gid = {};
2002 	int err;
2003 
2004 	memset(port_attr, 0, sizeof(*port_attr));
2005 
2006 	err = device->ops.query_port(device, port_num, port_attr);
2007 	if (err || port_attr->subnet_prefix)
2008 		return err;
2009 
2010 	if (rdma_port_get_link_layer(device, port_num) !=
2011 	    IB_LINK_LAYER_INFINIBAND)
2012 		return 0;
2013 
2014 	err = device->ops.query_gid(device, port_num, 0, &gid);
2015 	if (err)
2016 		return err;
2017 
2018 	port_attr->subnet_prefix = be64_to_cpu(gid.global.subnet_prefix);
2019 	return 0;
2020 }
2021 
2022 /**
2023  * ib_query_port - Query IB port attributes
2024  * @device:Device to query
2025  * @port_num:Port number to query
2026  * @port_attr:Port attributes
2027  *
2028  * ib_query_port() returns the attributes of a port through the
2029  * @port_attr pointer.
2030  */
ib_query_port(struct ib_device * device,u8 port_num,struct ib_port_attr * port_attr)2031 int ib_query_port(struct ib_device *device,
2032 		  u8 port_num,
2033 		  struct ib_port_attr *port_attr)
2034 {
2035 	if (!rdma_is_port_valid(device, port_num))
2036 		return -EINVAL;
2037 
2038 	if (rdma_protocol_iwarp(device, port_num))
2039 		return iw_query_port(device, port_num, port_attr);
2040 	else
2041 		return __ib_query_port(device, port_num, port_attr);
2042 }
2043 EXPORT_SYMBOL(ib_query_port);
2044 
add_ndev_hash(struct ib_port_data * pdata)2045 static void add_ndev_hash(struct ib_port_data *pdata)
2046 {
2047 	unsigned long flags;
2048 
2049 	might_sleep();
2050 
2051 	spin_lock_irqsave(&ndev_hash_lock, flags);
2052 	if (hash_hashed(&pdata->ndev_hash_link)) {
2053 		hash_del_rcu(&pdata->ndev_hash_link);
2054 		spin_unlock_irqrestore(&ndev_hash_lock, flags);
2055 		/*
2056 		 * We cannot do hash_add_rcu after a hash_del_rcu until the
2057 		 * grace period
2058 		 */
2059 		synchronize_rcu();
2060 		spin_lock_irqsave(&ndev_hash_lock, flags);
2061 	}
2062 	if (pdata->netdev)
2063 		hash_add_rcu(ndev_hash, &pdata->ndev_hash_link,
2064 			     (uintptr_t)pdata->netdev);
2065 	spin_unlock_irqrestore(&ndev_hash_lock, flags);
2066 }
2067 
2068 /**
2069  * ib_device_set_netdev - Associate the ib_dev with an underlying net_device
2070  * @ib_dev: Device to modify
2071  * @ndev: net_device to affiliate, may be NULL
2072  * @port: IB port the net_device is connected to
2073  *
2074  * Drivers should use this to link the ib_device to a netdev so the netdev
2075  * shows up in interfaces like ib_enum_roce_netdev. Only one netdev may be
2076  * affiliated with any port.
2077  *
2078  * The caller must ensure that the given ndev is not unregistered or
2079  * unregistering, and that either the ib_device is unregistered or
2080  * ib_device_set_netdev() is called with NULL when the ndev sends a
2081  * NETDEV_UNREGISTER event.
2082  */
ib_device_set_netdev(struct ib_device * ib_dev,struct net_device * ndev,unsigned int port)2083 int ib_device_set_netdev(struct ib_device *ib_dev, struct net_device *ndev,
2084 			 unsigned int port)
2085 {
2086 	struct net_device *old_ndev;
2087 	struct ib_port_data *pdata;
2088 	unsigned long flags;
2089 	int ret;
2090 
2091 	/*
2092 	 * Drivers wish to call this before ib_register_driver, so we have to
2093 	 * setup the port data early.
2094 	 */
2095 	ret = alloc_port_data(ib_dev);
2096 	if (ret)
2097 		return ret;
2098 
2099 	if (!rdma_is_port_valid(ib_dev, port))
2100 		return -EINVAL;
2101 
2102 	pdata = &ib_dev->port_data[port];
2103 	spin_lock_irqsave(&pdata->netdev_lock, flags);
2104 	old_ndev = rcu_dereference_protected(
2105 		pdata->netdev, lockdep_is_held(&pdata->netdev_lock));
2106 	if (old_ndev == ndev) {
2107 		spin_unlock_irqrestore(&pdata->netdev_lock, flags);
2108 		return 0;
2109 	}
2110 
2111 	if (ndev)
2112 		dev_hold(ndev);
2113 	rcu_assign_pointer(pdata->netdev, ndev);
2114 	spin_unlock_irqrestore(&pdata->netdev_lock, flags);
2115 
2116 	add_ndev_hash(pdata);
2117 	if (old_ndev)
2118 		dev_put(old_ndev);
2119 
2120 	return 0;
2121 }
2122 EXPORT_SYMBOL(ib_device_set_netdev);
2123 
free_netdevs(struct ib_device * ib_dev)2124 static void free_netdevs(struct ib_device *ib_dev)
2125 {
2126 	unsigned long flags;
2127 	unsigned int port;
2128 
2129 	if (!ib_dev->port_data)
2130 		return;
2131 
2132 	rdma_for_each_port (ib_dev, port) {
2133 		struct ib_port_data *pdata = &ib_dev->port_data[port];
2134 		struct net_device *ndev;
2135 
2136 		spin_lock_irqsave(&pdata->netdev_lock, flags);
2137 		ndev = rcu_dereference_protected(
2138 			pdata->netdev, lockdep_is_held(&pdata->netdev_lock));
2139 		if (ndev) {
2140 			spin_lock(&ndev_hash_lock);
2141 			hash_del_rcu(&pdata->ndev_hash_link);
2142 			spin_unlock(&ndev_hash_lock);
2143 
2144 			/*
2145 			 * If this is the last dev_put there is still a
2146 			 * synchronize_rcu before the netdev is kfreed, so we
2147 			 * can continue to rely on unlocked pointer
2148 			 * comparisons after the put
2149 			 */
2150 			rcu_assign_pointer(pdata->netdev, NULL);
2151 			dev_put(ndev);
2152 		}
2153 		spin_unlock_irqrestore(&pdata->netdev_lock, flags);
2154 	}
2155 }
2156 
ib_device_get_netdev(struct ib_device * ib_dev,unsigned int port)2157 struct net_device *ib_device_get_netdev(struct ib_device *ib_dev,
2158 					unsigned int port)
2159 {
2160 	struct ib_port_data *pdata;
2161 	struct net_device *res;
2162 
2163 	if (!rdma_is_port_valid(ib_dev, port))
2164 		return NULL;
2165 
2166 	pdata = &ib_dev->port_data[port];
2167 
2168 	/*
2169 	 * New drivers should use ib_device_set_netdev() not the legacy
2170 	 * get_netdev().
2171 	 */
2172 	if (ib_dev->ops.get_netdev)
2173 		res = ib_dev->ops.get_netdev(ib_dev, port);
2174 	else {
2175 		spin_lock(&pdata->netdev_lock);
2176 		res = rcu_dereference_protected(
2177 			pdata->netdev, lockdep_is_held(&pdata->netdev_lock));
2178 		if (res)
2179 			dev_hold(res);
2180 		spin_unlock(&pdata->netdev_lock);
2181 	}
2182 
2183 	/*
2184 	 * If we are starting to unregister expedite things by preventing
2185 	 * propagation of an unregistering netdev.
2186 	 */
2187 	if (res && res->reg_state != NETREG_REGISTERED) {
2188 		dev_put(res);
2189 		return NULL;
2190 	}
2191 
2192 	return res;
2193 }
2194 
2195 /**
2196  * ib_device_get_by_netdev - Find an IB device associated with a netdev
2197  * @ndev: netdev to locate
2198  * @driver_id: The driver ID that must match (RDMA_DRIVER_UNKNOWN matches all)
2199  *
2200  * Find and hold an ib_device that is associated with a netdev via
2201  * ib_device_set_netdev(). The caller must call ib_device_put() on the
2202  * returned pointer.
2203  */
ib_device_get_by_netdev(struct net_device * ndev,enum rdma_driver_id driver_id)2204 struct ib_device *ib_device_get_by_netdev(struct net_device *ndev,
2205 					  enum rdma_driver_id driver_id)
2206 {
2207 	struct ib_device *res = NULL;
2208 	struct ib_port_data *cur;
2209 
2210 	rcu_read_lock();
2211 	hash_for_each_possible_rcu (ndev_hash, cur, ndev_hash_link,
2212 				    (uintptr_t)ndev) {
2213 		if (rcu_access_pointer(cur->netdev) == ndev &&
2214 		    (driver_id == RDMA_DRIVER_UNKNOWN ||
2215 		     cur->ib_dev->ops.driver_id == driver_id) &&
2216 		    ib_device_try_get(cur->ib_dev)) {
2217 			res = cur->ib_dev;
2218 			break;
2219 		}
2220 	}
2221 	rcu_read_unlock();
2222 
2223 	return res;
2224 }
2225 EXPORT_SYMBOL(ib_device_get_by_netdev);
2226 
2227 /**
2228  * ib_enum_roce_netdev - enumerate all RoCE ports
2229  * @ib_dev : IB device we want to query
2230  * @filter: Should we call the callback?
2231  * @filter_cookie: Cookie passed to filter
2232  * @cb: Callback to call for each found RoCE ports
2233  * @cookie: Cookie passed back to the callback
2234  *
2235  * Enumerates all of the physical RoCE ports of ib_dev
2236  * which are related to netdevice and calls callback() on each
2237  * device for which filter() function returns non zero.
2238  */
ib_enum_roce_netdev(struct ib_device * ib_dev,roce_netdev_filter filter,void * filter_cookie,roce_netdev_callback cb,void * cookie)2239 void ib_enum_roce_netdev(struct ib_device *ib_dev,
2240 			 roce_netdev_filter filter,
2241 			 void *filter_cookie,
2242 			 roce_netdev_callback cb,
2243 			 void *cookie)
2244 {
2245 	unsigned int port;
2246 
2247 	rdma_for_each_port (ib_dev, port)
2248 		if (rdma_protocol_roce(ib_dev, port)) {
2249 			struct net_device *idev =
2250 				ib_device_get_netdev(ib_dev, port);
2251 
2252 			if (filter(ib_dev, port, idev, filter_cookie))
2253 				cb(ib_dev, port, idev, cookie);
2254 
2255 			if (idev)
2256 				dev_put(idev);
2257 		}
2258 }
2259 
2260 /**
2261  * ib_enum_all_roce_netdevs - enumerate all RoCE devices
2262  * @filter: Should we call the callback?
2263  * @filter_cookie: Cookie passed to filter
2264  * @cb: Callback to call for each found RoCE ports
2265  * @cookie: Cookie passed back to the callback
2266  *
2267  * Enumerates all RoCE devices' physical ports which are related
2268  * to netdevices and calls callback() on each device for which
2269  * filter() function returns non zero.
2270  */
ib_enum_all_roce_netdevs(roce_netdev_filter filter,void * filter_cookie,roce_netdev_callback cb,void * cookie)2271 void ib_enum_all_roce_netdevs(roce_netdev_filter filter,
2272 			      void *filter_cookie,
2273 			      roce_netdev_callback cb,
2274 			      void *cookie)
2275 {
2276 	struct ib_device *dev;
2277 	unsigned long index;
2278 
2279 	down_read(&devices_rwsem);
2280 	xa_for_each_marked (&devices, index, dev, DEVICE_REGISTERED)
2281 		ib_enum_roce_netdev(dev, filter, filter_cookie, cb, cookie);
2282 	up_read(&devices_rwsem);
2283 }
2284 
2285 /**
2286  * ib_enum_all_devs - enumerate all ib_devices
2287  * @cb: Callback to call for each found ib_device
2288  *
2289  * Enumerates all ib_devices and calls callback() on each device.
2290  */
ib_enum_all_devs(nldev_callback nldev_cb,struct sk_buff * skb,struct netlink_callback * cb)2291 int ib_enum_all_devs(nldev_callback nldev_cb, struct sk_buff *skb,
2292 		     struct netlink_callback *cb)
2293 {
2294 	unsigned long index;
2295 	struct ib_device *dev;
2296 	unsigned int idx = 0;
2297 	int ret = 0;
2298 
2299 	down_read(&devices_rwsem);
2300 	xa_for_each_marked (&devices, index, dev, DEVICE_REGISTERED) {
2301 		if (!rdma_dev_access_netns(dev, sock_net(skb->sk)))
2302 			continue;
2303 
2304 		ret = nldev_cb(dev, skb, cb, idx);
2305 		if (ret)
2306 			break;
2307 		idx++;
2308 	}
2309 	up_read(&devices_rwsem);
2310 	return ret;
2311 }
2312 
2313 /**
2314  * ib_query_pkey - Get P_Key table entry
2315  * @device:Device to query
2316  * @port_num:Port number to query
2317  * @index:P_Key table index to query
2318  * @pkey:Returned P_Key
2319  *
2320  * ib_query_pkey() fetches the specified P_Key table entry.
2321  */
ib_query_pkey(struct ib_device * device,u8 port_num,u16 index,u16 * pkey)2322 int ib_query_pkey(struct ib_device *device,
2323 		  u8 port_num, u16 index, u16 *pkey)
2324 {
2325 	if (!rdma_is_port_valid(device, port_num))
2326 		return -EINVAL;
2327 
2328 	if (!device->ops.query_pkey)
2329 		return -EOPNOTSUPP;
2330 
2331 	return device->ops.query_pkey(device, port_num, index, pkey);
2332 }
2333 EXPORT_SYMBOL(ib_query_pkey);
2334 
2335 /**
2336  * ib_modify_device - Change IB device attributes
2337  * @device:Device to modify
2338  * @device_modify_mask:Mask of attributes to change
2339  * @device_modify:New attribute values
2340  *
2341  * ib_modify_device() changes a device's attributes as specified by
2342  * the @device_modify_mask and @device_modify structure.
2343  */
ib_modify_device(struct ib_device * device,int device_modify_mask,struct ib_device_modify * device_modify)2344 int ib_modify_device(struct ib_device *device,
2345 		     int device_modify_mask,
2346 		     struct ib_device_modify *device_modify)
2347 {
2348 	if (!device->ops.modify_device)
2349 		return -EOPNOTSUPP;
2350 
2351 	return device->ops.modify_device(device, device_modify_mask,
2352 					 device_modify);
2353 }
2354 EXPORT_SYMBOL(ib_modify_device);
2355 
2356 /**
2357  * ib_modify_port - Modifies the attributes for the specified port.
2358  * @device: The device to modify.
2359  * @port_num: The number of the port to modify.
2360  * @port_modify_mask: Mask used to specify which attributes of the port
2361  *   to change.
2362  * @port_modify: New attribute values for the port.
2363  *
2364  * ib_modify_port() changes a port's attributes as specified by the
2365  * @port_modify_mask and @port_modify structure.
2366  */
ib_modify_port(struct ib_device * device,u8 port_num,int port_modify_mask,struct ib_port_modify * port_modify)2367 int ib_modify_port(struct ib_device *device,
2368 		   u8 port_num, int port_modify_mask,
2369 		   struct ib_port_modify *port_modify)
2370 {
2371 	int rc;
2372 
2373 	if (!rdma_is_port_valid(device, port_num))
2374 		return -EINVAL;
2375 
2376 	if (device->ops.modify_port)
2377 		rc = device->ops.modify_port(device, port_num,
2378 					     port_modify_mask,
2379 					     port_modify);
2380 	else if (rdma_protocol_roce(device, port_num) &&
2381 		 ((port_modify->set_port_cap_mask & ~IB_PORT_CM_SUP) == 0 ||
2382 		  (port_modify->clr_port_cap_mask & ~IB_PORT_CM_SUP) == 0))
2383 		rc = 0;
2384 	else
2385 		rc = -EOPNOTSUPP;
2386 	return rc;
2387 }
2388 EXPORT_SYMBOL(ib_modify_port);
2389 
2390 /**
2391  * ib_find_gid - Returns the port number and GID table index where
2392  *   a specified GID value occurs. Its searches only for IB link layer.
2393  * @device: The device to query.
2394  * @gid: The GID value to search for.
2395  * @port_num: The port number of the device where the GID value was found.
2396  * @index: The index into the GID table where the GID was found.  This
2397  *   parameter may be NULL.
2398  */
ib_find_gid(struct ib_device * device,union ib_gid * gid,u8 * port_num,u16 * index)2399 int ib_find_gid(struct ib_device *device, union ib_gid *gid,
2400 		u8 *port_num, u16 *index)
2401 {
2402 	union ib_gid tmp_gid;
2403 	unsigned int port;
2404 	int ret, i;
2405 
2406 	rdma_for_each_port (device, port) {
2407 		if (!rdma_protocol_ib(device, port))
2408 			continue;
2409 
2410 		for (i = 0; i < device->port_data[port].immutable.gid_tbl_len;
2411 		     ++i) {
2412 			ret = rdma_query_gid(device, port, i, &tmp_gid);
2413 			if (ret)
2414 				continue;
2415 
2416 			if (!memcmp(&tmp_gid, gid, sizeof *gid)) {
2417 				*port_num = port;
2418 				if (index)
2419 					*index = i;
2420 				return 0;
2421 			}
2422 		}
2423 	}
2424 
2425 	return -ENOENT;
2426 }
2427 EXPORT_SYMBOL(ib_find_gid);
2428 
2429 /**
2430  * ib_find_pkey - Returns the PKey table index where a specified
2431  *   PKey value occurs.
2432  * @device: The device to query.
2433  * @port_num: The port number of the device to search for the PKey.
2434  * @pkey: The PKey value to search for.
2435  * @index: The index into the PKey table where the PKey was found.
2436  */
ib_find_pkey(struct ib_device * device,u8 port_num,u16 pkey,u16 * index)2437 int ib_find_pkey(struct ib_device *device,
2438 		 u8 port_num, u16 pkey, u16 *index)
2439 {
2440 	int ret, i;
2441 	u16 tmp_pkey;
2442 	int partial_ix = -1;
2443 
2444 	for (i = 0; i < device->port_data[port_num].immutable.pkey_tbl_len;
2445 	     ++i) {
2446 		ret = ib_query_pkey(device, port_num, i, &tmp_pkey);
2447 		if (ret)
2448 			return ret;
2449 		if ((pkey & 0x7fff) == (tmp_pkey & 0x7fff)) {
2450 			/* if there is full-member pkey take it.*/
2451 			if (tmp_pkey & 0x8000) {
2452 				*index = i;
2453 				return 0;
2454 			}
2455 			if (partial_ix < 0)
2456 				partial_ix = i;
2457 		}
2458 	}
2459 
2460 	/*no full-member, if exists take the limited*/
2461 	if (partial_ix >= 0) {
2462 		*index = partial_ix;
2463 		return 0;
2464 	}
2465 	return -ENOENT;
2466 }
2467 EXPORT_SYMBOL(ib_find_pkey);
2468 
2469 /**
2470  * ib_get_net_dev_by_params() - Return the appropriate net_dev
2471  * for a received CM request
2472  * @dev:	An RDMA device on which the request has been received.
2473  * @port:	Port number on the RDMA device.
2474  * @pkey:	The Pkey the request came on.
2475  * @gid:	A GID that the net_dev uses to communicate.
2476  * @addr:	Contains the IP address that the request specified as its
2477  *		destination.
2478  *
2479  */
ib_get_net_dev_by_params(struct ib_device * dev,u8 port,u16 pkey,const union ib_gid * gid,const struct sockaddr * addr)2480 struct net_device *ib_get_net_dev_by_params(struct ib_device *dev,
2481 					    u8 port,
2482 					    u16 pkey,
2483 					    const union ib_gid *gid,
2484 					    const struct sockaddr *addr)
2485 {
2486 	struct net_device *net_dev = NULL;
2487 	unsigned long index;
2488 	void *client_data;
2489 
2490 	if (!rdma_protocol_ib(dev, port))
2491 		return NULL;
2492 
2493 	/*
2494 	 * Holding the read side guarantees that the client will not become
2495 	 * unregistered while we are calling get_net_dev_by_params()
2496 	 */
2497 	down_read(&dev->client_data_rwsem);
2498 	xan_for_each_marked (&dev->client_data, index, client_data,
2499 			     CLIENT_DATA_REGISTERED) {
2500 		struct ib_client *client = xa_load(&clients, index);
2501 
2502 		if (!client || !client->get_net_dev_by_params)
2503 			continue;
2504 
2505 		net_dev = client->get_net_dev_by_params(dev, port, pkey, gid,
2506 							addr, client_data);
2507 		if (net_dev)
2508 			break;
2509 	}
2510 	up_read(&dev->client_data_rwsem);
2511 
2512 	return net_dev;
2513 }
2514 EXPORT_SYMBOL(ib_get_net_dev_by_params);
2515 
ib_set_device_ops(struct ib_device * dev,const struct ib_device_ops * ops)2516 void ib_set_device_ops(struct ib_device *dev, const struct ib_device_ops *ops)
2517 {
2518 	struct ib_device_ops *dev_ops = &dev->ops;
2519 #define SET_DEVICE_OP(ptr, name)                                               \
2520 	do {                                                                   \
2521 		if (ops->name)                                                 \
2522 			if (!((ptr)->name))				       \
2523 				(ptr)->name = ops->name;                       \
2524 	} while (0)
2525 
2526 #define SET_OBJ_SIZE(ptr, name) SET_DEVICE_OP(ptr, size_##name)
2527 
2528 	if (ops->driver_id != RDMA_DRIVER_UNKNOWN) {
2529 		WARN_ON(dev_ops->driver_id != RDMA_DRIVER_UNKNOWN &&
2530 			dev_ops->driver_id != ops->driver_id);
2531 		dev_ops->driver_id = ops->driver_id;
2532 	}
2533 	if (ops->owner) {
2534 		WARN_ON(dev_ops->owner && dev_ops->owner != ops->owner);
2535 		dev_ops->owner = ops->owner;
2536 	}
2537 	if (ops->uverbs_abi_ver)
2538 		dev_ops->uverbs_abi_ver = ops->uverbs_abi_ver;
2539 
2540 	dev_ops->uverbs_no_driver_id_binding |=
2541 		ops->uverbs_no_driver_id_binding;
2542 
2543 	SET_DEVICE_OP(dev_ops, add_gid);
2544 	SET_DEVICE_OP(dev_ops, advise_mr);
2545 	SET_DEVICE_OP(dev_ops, alloc_dm);
2546 	SET_DEVICE_OP(dev_ops, alloc_hw_stats);
2547 	SET_DEVICE_OP(dev_ops, alloc_mr);
2548 	SET_DEVICE_OP(dev_ops, alloc_mr_integrity);
2549 	SET_DEVICE_OP(dev_ops, alloc_mw);
2550 	SET_DEVICE_OP(dev_ops, alloc_pd);
2551 	SET_DEVICE_OP(dev_ops, alloc_rdma_netdev);
2552 	SET_DEVICE_OP(dev_ops, alloc_ucontext);
2553 	SET_DEVICE_OP(dev_ops, alloc_xrcd);
2554 	SET_DEVICE_OP(dev_ops, attach_mcast);
2555 	SET_DEVICE_OP(dev_ops, check_mr_status);
2556 	SET_DEVICE_OP(dev_ops, counter_alloc_stats);
2557 	SET_DEVICE_OP(dev_ops, counter_bind_qp);
2558 	SET_DEVICE_OP(dev_ops, counter_dealloc);
2559 	SET_DEVICE_OP(dev_ops, counter_unbind_qp);
2560 	SET_DEVICE_OP(dev_ops, counter_update_stats);
2561 	SET_DEVICE_OP(dev_ops, create_ah);
2562 	SET_DEVICE_OP(dev_ops, create_counters);
2563 	SET_DEVICE_OP(dev_ops, create_cq);
2564 	SET_DEVICE_OP(dev_ops, create_flow);
2565 	SET_DEVICE_OP(dev_ops, create_flow_action_esp);
2566 	SET_DEVICE_OP(dev_ops, create_qp);
2567 	SET_DEVICE_OP(dev_ops, create_rwq_ind_table);
2568 	SET_DEVICE_OP(dev_ops, create_srq);
2569 	SET_DEVICE_OP(dev_ops, create_wq);
2570 	SET_DEVICE_OP(dev_ops, dealloc_dm);
2571 	SET_DEVICE_OP(dev_ops, dealloc_driver);
2572 	SET_DEVICE_OP(dev_ops, dealloc_mw);
2573 	SET_DEVICE_OP(dev_ops, dealloc_pd);
2574 	SET_DEVICE_OP(dev_ops, dealloc_ucontext);
2575 	SET_DEVICE_OP(dev_ops, dealloc_xrcd);
2576 	SET_DEVICE_OP(dev_ops, del_gid);
2577 	SET_DEVICE_OP(dev_ops, dereg_mr);
2578 	SET_DEVICE_OP(dev_ops, destroy_ah);
2579 	SET_DEVICE_OP(dev_ops, destroy_counters);
2580 	SET_DEVICE_OP(dev_ops, destroy_cq);
2581 	SET_DEVICE_OP(dev_ops, destroy_flow);
2582 	SET_DEVICE_OP(dev_ops, destroy_flow_action);
2583 	SET_DEVICE_OP(dev_ops, destroy_qp);
2584 	SET_DEVICE_OP(dev_ops, destroy_rwq_ind_table);
2585 	SET_DEVICE_OP(dev_ops, destroy_srq);
2586 	SET_DEVICE_OP(dev_ops, destroy_wq);
2587 	SET_DEVICE_OP(dev_ops, detach_mcast);
2588 	SET_DEVICE_OP(dev_ops, disassociate_ucontext);
2589 	SET_DEVICE_OP(dev_ops, drain_rq);
2590 	SET_DEVICE_OP(dev_ops, drain_sq);
2591 	SET_DEVICE_OP(dev_ops, enable_driver);
2592 	SET_DEVICE_OP(dev_ops, fill_res_cm_id_entry);
2593 	SET_DEVICE_OP(dev_ops, fill_res_cq_entry);
2594 	SET_DEVICE_OP(dev_ops, fill_res_cq_entry_raw);
2595 	SET_DEVICE_OP(dev_ops, fill_res_mr_entry);
2596 	SET_DEVICE_OP(dev_ops, fill_res_mr_entry_raw);
2597 	SET_DEVICE_OP(dev_ops, fill_res_qp_entry);
2598 	SET_DEVICE_OP(dev_ops, fill_res_qp_entry_raw);
2599 	SET_DEVICE_OP(dev_ops, fill_stat_mr_entry);
2600 	SET_DEVICE_OP(dev_ops, get_dev_fw_str);
2601 	SET_DEVICE_OP(dev_ops, get_dma_mr);
2602 	SET_DEVICE_OP(dev_ops, get_hw_stats);
2603 	SET_DEVICE_OP(dev_ops, get_link_layer);
2604 	SET_DEVICE_OP(dev_ops, get_netdev);
2605 	SET_DEVICE_OP(dev_ops, get_port_immutable);
2606 	SET_DEVICE_OP(dev_ops, get_vector_affinity);
2607 	SET_DEVICE_OP(dev_ops, get_vf_config);
2608 	SET_DEVICE_OP(dev_ops, get_vf_guid);
2609 	SET_DEVICE_OP(dev_ops, get_vf_stats);
2610 	SET_DEVICE_OP(dev_ops, init_port);
2611 	SET_DEVICE_OP(dev_ops, iw_accept);
2612 	SET_DEVICE_OP(dev_ops, iw_add_ref);
2613 	SET_DEVICE_OP(dev_ops, iw_connect);
2614 	SET_DEVICE_OP(dev_ops, iw_create_listen);
2615 	SET_DEVICE_OP(dev_ops, iw_destroy_listen);
2616 	SET_DEVICE_OP(dev_ops, iw_get_qp);
2617 	SET_DEVICE_OP(dev_ops, iw_reject);
2618 	SET_DEVICE_OP(dev_ops, iw_rem_ref);
2619 	SET_DEVICE_OP(dev_ops, map_mr_sg);
2620 	SET_DEVICE_OP(dev_ops, map_mr_sg_pi);
2621 	SET_DEVICE_OP(dev_ops, mmap);
2622 	SET_DEVICE_OP(dev_ops, mmap_free);
2623 	SET_DEVICE_OP(dev_ops, modify_ah);
2624 	SET_DEVICE_OP(dev_ops, modify_cq);
2625 	SET_DEVICE_OP(dev_ops, modify_device);
2626 	SET_DEVICE_OP(dev_ops, modify_flow_action_esp);
2627 	SET_DEVICE_OP(dev_ops, modify_port);
2628 	SET_DEVICE_OP(dev_ops, modify_qp);
2629 	SET_DEVICE_OP(dev_ops, modify_srq);
2630 	SET_DEVICE_OP(dev_ops, modify_wq);
2631 	SET_DEVICE_OP(dev_ops, peek_cq);
2632 	SET_DEVICE_OP(dev_ops, poll_cq);
2633 	SET_DEVICE_OP(dev_ops, post_recv);
2634 	SET_DEVICE_OP(dev_ops, post_send);
2635 	SET_DEVICE_OP(dev_ops, post_srq_recv);
2636 	SET_DEVICE_OP(dev_ops, process_mad);
2637 	SET_DEVICE_OP(dev_ops, query_ah);
2638 	SET_DEVICE_OP(dev_ops, query_device);
2639 	SET_DEVICE_OP(dev_ops, query_gid);
2640 	SET_DEVICE_OP(dev_ops, query_pkey);
2641 	SET_DEVICE_OP(dev_ops, query_port);
2642 	SET_DEVICE_OP(dev_ops, query_qp);
2643 	SET_DEVICE_OP(dev_ops, query_srq);
2644 	SET_DEVICE_OP(dev_ops, query_ucontext);
2645 	SET_DEVICE_OP(dev_ops, rdma_netdev_get_params);
2646 	SET_DEVICE_OP(dev_ops, read_counters);
2647 	SET_DEVICE_OP(dev_ops, reg_dm_mr);
2648 	SET_DEVICE_OP(dev_ops, reg_user_mr);
2649 	SET_DEVICE_OP(dev_ops, req_ncomp_notif);
2650 	SET_DEVICE_OP(dev_ops, req_notify_cq);
2651 	SET_DEVICE_OP(dev_ops, rereg_user_mr);
2652 	SET_DEVICE_OP(dev_ops, resize_cq);
2653 	SET_DEVICE_OP(dev_ops, set_vf_guid);
2654 	SET_DEVICE_OP(dev_ops, set_vf_link_state);
2655 
2656 	SET_OBJ_SIZE(dev_ops, ib_ah);
2657 	SET_OBJ_SIZE(dev_ops, ib_counters);
2658 	SET_OBJ_SIZE(dev_ops, ib_cq);
2659 	SET_OBJ_SIZE(dev_ops, ib_mw);
2660 	SET_OBJ_SIZE(dev_ops, ib_pd);
2661 	SET_OBJ_SIZE(dev_ops, ib_rwq_ind_table);
2662 	SET_OBJ_SIZE(dev_ops, ib_srq);
2663 	SET_OBJ_SIZE(dev_ops, ib_ucontext);
2664 	SET_OBJ_SIZE(dev_ops, ib_xrcd);
2665 }
2666 EXPORT_SYMBOL(ib_set_device_ops);
2667 
2668 #ifdef CONFIG_INFINIBAND_VIRT_DMA
ib_dma_virt_map_sg(struct ib_device * dev,struct scatterlist * sg,int nents)2669 int ib_dma_virt_map_sg(struct ib_device *dev, struct scatterlist *sg, int nents)
2670 {
2671 	struct scatterlist *s;
2672 	int i;
2673 
2674 	for_each_sg(sg, s, nents, i) {
2675 		sg_dma_address(s) = (uintptr_t)sg_virt(s);
2676 		sg_dma_len(s) = s->length;
2677 	}
2678 	return nents;
2679 }
2680 EXPORT_SYMBOL(ib_dma_virt_map_sg);
2681 #endif /* CONFIG_INFINIBAND_VIRT_DMA */
2682 
2683 static const struct rdma_nl_cbs ibnl_ls_cb_table[RDMA_NL_LS_NUM_OPS] = {
2684 	[RDMA_NL_LS_OP_RESOLVE] = {
2685 		.doit = ib_nl_handle_resolve_resp,
2686 		.flags = RDMA_NL_ADMIN_PERM,
2687 	},
2688 	[RDMA_NL_LS_OP_SET_TIMEOUT] = {
2689 		.doit = ib_nl_handle_set_timeout,
2690 		.flags = RDMA_NL_ADMIN_PERM,
2691 	},
2692 	[RDMA_NL_LS_OP_IP_RESOLVE] = {
2693 		.doit = ib_nl_handle_ip_res_resp,
2694 		.flags = RDMA_NL_ADMIN_PERM,
2695 	},
2696 };
2697 
ib_core_init(void)2698 static int __init ib_core_init(void)
2699 {
2700 	int ret;
2701 
2702 	ib_wq = alloc_workqueue("infiniband", 0, 0);
2703 	if (!ib_wq)
2704 		return -ENOMEM;
2705 
2706 	ib_comp_wq = alloc_workqueue("ib-comp-wq",
2707 			WQ_HIGHPRI | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
2708 	if (!ib_comp_wq) {
2709 		ret = -ENOMEM;
2710 		goto err;
2711 	}
2712 
2713 	ib_comp_unbound_wq =
2714 		alloc_workqueue("ib-comp-unb-wq",
2715 				WQ_UNBOUND | WQ_HIGHPRI | WQ_MEM_RECLAIM |
2716 				WQ_SYSFS, WQ_UNBOUND_MAX_ACTIVE);
2717 	if (!ib_comp_unbound_wq) {
2718 		ret = -ENOMEM;
2719 		goto err_comp;
2720 	}
2721 
2722 	ret = class_register(&ib_class);
2723 	if (ret) {
2724 		pr_warn("Couldn't create InfiniBand device class\n");
2725 		goto err_comp_unbound;
2726 	}
2727 
2728 	rdma_nl_init();
2729 
2730 	ret = addr_init();
2731 	if (ret) {
2732 		pr_warn("Couldn't init IB address resolution\n");
2733 		goto err_ibnl;
2734 	}
2735 
2736 	ret = ib_mad_init();
2737 	if (ret) {
2738 		pr_warn("Couldn't init IB MAD\n");
2739 		goto err_addr;
2740 	}
2741 
2742 	ret = ib_sa_init();
2743 	if (ret) {
2744 		pr_warn("Couldn't init SA\n");
2745 		goto err_mad;
2746 	}
2747 
2748 	ret = register_blocking_lsm_notifier(&ibdev_lsm_nb);
2749 	if (ret) {
2750 		pr_warn("Couldn't register LSM notifier. ret %d\n", ret);
2751 		goto err_sa;
2752 	}
2753 
2754 	ret = register_pernet_device(&rdma_dev_net_ops);
2755 	if (ret) {
2756 		pr_warn("Couldn't init compat dev. ret %d\n", ret);
2757 		goto err_compat;
2758 	}
2759 
2760 	nldev_init();
2761 	rdma_nl_register(RDMA_NL_LS, ibnl_ls_cb_table);
2762 	roce_gid_mgmt_init();
2763 
2764 	return 0;
2765 
2766 err_compat:
2767 	unregister_blocking_lsm_notifier(&ibdev_lsm_nb);
2768 err_sa:
2769 	ib_sa_cleanup();
2770 err_mad:
2771 	ib_mad_cleanup();
2772 err_addr:
2773 	addr_cleanup();
2774 err_ibnl:
2775 	class_unregister(&ib_class);
2776 err_comp_unbound:
2777 	destroy_workqueue(ib_comp_unbound_wq);
2778 err_comp:
2779 	destroy_workqueue(ib_comp_wq);
2780 err:
2781 	destroy_workqueue(ib_wq);
2782 	return ret;
2783 }
2784 
ib_core_cleanup(void)2785 static void __exit ib_core_cleanup(void)
2786 {
2787 	roce_gid_mgmt_cleanup();
2788 	nldev_exit();
2789 	rdma_nl_unregister(RDMA_NL_LS);
2790 	unregister_pernet_device(&rdma_dev_net_ops);
2791 	unregister_blocking_lsm_notifier(&ibdev_lsm_nb);
2792 	ib_sa_cleanup();
2793 	ib_mad_cleanup();
2794 	addr_cleanup();
2795 	rdma_nl_exit();
2796 	class_unregister(&ib_class);
2797 	destroy_workqueue(ib_comp_unbound_wq);
2798 	destroy_workqueue(ib_comp_wq);
2799 	/* Make sure that any pending umem accounting work is done. */
2800 	destroy_workqueue(ib_wq);
2801 	flush_workqueue(system_unbound_wq);
2802 	WARN_ON(!xa_empty(&clients));
2803 	WARN_ON(!xa_empty(&devices));
2804 }
2805 
2806 MODULE_ALIAS_RDMA_NETLINK(RDMA_NL_LS, 4);
2807 
2808 /* ib core relies on netdev stack to first register net_ns_type_operations
2809  * ns kobject type before ib_core initialization.
2810  */
2811 fs_initcall(ib_core_init);
2812 module_exit(ib_core_cleanup);
2813