1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
6 *
7 * Generic socket support routines. Memory allocators, socket lock/release
8 * handler for protocols to use and generic option handler.
9 *
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Alan Cox, <A.Cox@swansea.ac.uk>
14 *
15 * Fixes:
16 * Alan Cox : Numerous verify_area() problems
17 * Alan Cox : Connecting on a connecting socket
18 * now returns an error for tcp.
19 * Alan Cox : sock->protocol is set correctly.
20 * and is not sometimes left as 0.
21 * Alan Cox : connect handles icmp errors on a
22 * connect properly. Unfortunately there
23 * is a restart syscall nasty there. I
24 * can't match BSD without hacking the C
25 * library. Ideas urgently sought!
26 * Alan Cox : Disallow bind() to addresses that are
27 * not ours - especially broadcast ones!!
28 * Alan Cox : Socket 1024 _IS_ ok for users. (fencepost)
29 * Alan Cox : sock_wfree/sock_rfree don't destroy sockets,
30 * instead they leave that for the DESTROY timer.
31 * Alan Cox : Clean up error flag in accept
32 * Alan Cox : TCP ack handling is buggy, the DESTROY timer
33 * was buggy. Put a remove_sock() in the handler
34 * for memory when we hit 0. Also altered the timer
35 * code. The ACK stuff can wait and needs major
36 * TCP layer surgery.
37 * Alan Cox : Fixed TCP ack bug, removed remove sock
38 * and fixed timer/inet_bh race.
39 * Alan Cox : Added zapped flag for TCP
40 * Alan Cox : Move kfree_skb into skbuff.c and tidied up surplus code
41 * Alan Cox : for new sk_buff allocations wmalloc/rmalloc now call alloc_skb
42 * Alan Cox : kfree_s calls now are kfree_skbmem so we can track skb resources
43 * Alan Cox : Supports socket option broadcast now as does udp. Packet and raw need fixing.
44 * Alan Cox : Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so...
45 * Rick Sladkey : Relaxed UDP rules for matching packets.
46 * C.E.Hawkins : IFF_PROMISC/SIOCGHWADDR support
47 * Pauline Middelink : identd support
48 * Alan Cox : Fixed connect() taking signals I think.
49 * Alan Cox : SO_LINGER supported
50 * Alan Cox : Error reporting fixes
51 * Anonymous : inet_create tidied up (sk->reuse setting)
52 * Alan Cox : inet sockets don't set sk->type!
53 * Alan Cox : Split socket option code
54 * Alan Cox : Callbacks
55 * Alan Cox : Nagle flag for Charles & Johannes stuff
56 * Alex : Removed restriction on inet fioctl
57 * Alan Cox : Splitting INET from NET core
58 * Alan Cox : Fixed bogus SO_TYPE handling in getsockopt()
59 * Adam Caldwell : Missing return in SO_DONTROUTE/SO_DEBUG code
60 * Alan Cox : Split IP from generic code
61 * Alan Cox : New kfree_skbmem()
62 * Alan Cox : Make SO_DEBUG superuser only.
63 * Alan Cox : Allow anyone to clear SO_DEBUG
64 * (compatibility fix)
65 * Alan Cox : Added optimistic memory grabbing for AF_UNIX throughput.
66 * Alan Cox : Allocator for a socket is settable.
67 * Alan Cox : SO_ERROR includes soft errors.
68 * Alan Cox : Allow NULL arguments on some SO_ opts
69 * Alan Cox : Generic socket allocation to make hooks
70 * easier (suggested by Craig Metz).
71 * Michael Pall : SO_ERROR returns positive errno again
72 * Steve Whitehouse: Added default destructor to free
73 * protocol private data.
74 * Steve Whitehouse: Added various other default routines
75 * common to several socket families.
76 * Chris Evans : Call suser() check last on F_SETOWN
77 * Jay Schulist : Added SO_ATTACH_FILTER and SO_DETACH_FILTER.
78 * Andi Kleen : Add sock_kmalloc()/sock_kfree_s()
79 * Andi Kleen : Fix write_space callback
80 * Chris Evans : Security fixes - signedness again
81 * Arnaldo C. Melo : cleanups, use skb_queue_purge
82 *
83 * To Fix:
84 */
85
86 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
87
88 #include <asm/unaligned.h>
89 #include <linux/capability.h>
90 #include <linux/errno.h>
91 #include <linux/errqueue.h>
92 #include <linux/types.h>
93 #include <linux/socket.h>
94 #include <linux/in.h>
95 #include <linux/kernel.h>
96 #include <linux/module.h>
97 #include <linux/proc_fs.h>
98 #include <linux/seq_file.h>
99 #include <linux/sched.h>
100 #include <linux/sched/mm.h>
101 #include <linux/timer.h>
102 #include <linux/string.h>
103 #include <linux/sockios.h>
104 #include <linux/net.h>
105 #include <linux/mm.h>
106 #include <linux/slab.h>
107 #include <linux/interrupt.h>
108 #include <linux/poll.h>
109 #include <linux/tcp.h>
110 #include <linux/init.h>
111 #include <linux/highmem.h>
112 #include <linux/user_namespace.h>
113 #include <linux/static_key.h>
114 #include <linux/memcontrol.h>
115 #include <linux/prefetch.h>
116 #include <linux/compat.h>
117
118 #include <linux/uaccess.h>
119
120 #include <linux/netdevice.h>
121 #include <net/protocol.h>
122 #include <linux/skbuff.h>
123 #include <net/net_namespace.h>
124 #include <net/request_sock.h>
125 #include <net/sock.h>
126 #include <linux/net_tstamp.h>
127 #include <net/xfrm.h>
128 #include <linux/ipsec.h>
129 #include <net/cls_cgroup.h>
130 #include <net/netprio_cgroup.h>
131 #include <linux/sock_diag.h>
132
133 #include <linux/filter.h>
134 #include <net/sock_reuseport.h>
135 #include <net/bpf_sk_storage.h>
136
137 #include <trace/events/sock.h>
138
139 #include <net/tcp.h>
140 #include <net/busy_poll.h>
141
142 static DEFINE_MUTEX(proto_list_mutex);
143 static LIST_HEAD(proto_list);
144
145 static void sock_inuse_add(struct net *net, int val);
146
147 /**
148 * sk_ns_capable - General socket capability test
149 * @sk: Socket to use a capability on or through
150 * @user_ns: The user namespace of the capability to use
151 * @cap: The capability to use
152 *
153 * Test to see if the opener of the socket had when the socket was
154 * created and the current process has the capability @cap in the user
155 * namespace @user_ns.
156 */
sk_ns_capable(const struct sock * sk,struct user_namespace * user_ns,int cap)157 bool sk_ns_capable(const struct sock *sk,
158 struct user_namespace *user_ns, int cap)
159 {
160 return file_ns_capable(sk->sk_socket->file, user_ns, cap) &&
161 ns_capable(user_ns, cap);
162 }
163 EXPORT_SYMBOL(sk_ns_capable);
164
165 /**
166 * sk_capable - Socket global capability test
167 * @sk: Socket to use a capability on or through
168 * @cap: The global capability to use
169 *
170 * Test to see if the opener of the socket had when the socket was
171 * created and the current process has the capability @cap in all user
172 * namespaces.
173 */
sk_capable(const struct sock * sk,int cap)174 bool sk_capable(const struct sock *sk, int cap)
175 {
176 return sk_ns_capable(sk, &init_user_ns, cap);
177 }
178 EXPORT_SYMBOL(sk_capable);
179
180 /**
181 * sk_net_capable - Network namespace socket capability test
182 * @sk: Socket to use a capability on or through
183 * @cap: The capability to use
184 *
185 * Test to see if the opener of the socket had when the socket was created
186 * and the current process has the capability @cap over the network namespace
187 * the socket is a member of.
188 */
sk_net_capable(const struct sock * sk,int cap)189 bool sk_net_capable(const struct sock *sk, int cap)
190 {
191 return sk_ns_capable(sk, sock_net(sk)->user_ns, cap);
192 }
193 EXPORT_SYMBOL(sk_net_capable);
194
195 /*
196 * Each address family might have different locking rules, so we have
197 * one slock key per address family and separate keys for internal and
198 * userspace sockets.
199 */
200 static struct lock_class_key af_family_keys[AF_MAX];
201 static struct lock_class_key af_family_kern_keys[AF_MAX];
202 static struct lock_class_key af_family_slock_keys[AF_MAX];
203 static struct lock_class_key af_family_kern_slock_keys[AF_MAX];
204
205 /*
206 * Make lock validator output more readable. (we pre-construct these
207 * strings build-time, so that runtime initialization of socket
208 * locks is fast):
209 */
210
211 #define _sock_locks(x) \
212 x "AF_UNSPEC", x "AF_UNIX" , x "AF_INET" , \
213 x "AF_AX25" , x "AF_IPX" , x "AF_APPLETALK", \
214 x "AF_NETROM", x "AF_BRIDGE" , x "AF_ATMPVC" , \
215 x "AF_X25" , x "AF_INET6" , x "AF_ROSE" , \
216 x "AF_DECnet", x "AF_NETBEUI" , x "AF_SECURITY" , \
217 x "AF_KEY" , x "AF_NETLINK" , x "AF_PACKET" , \
218 x "AF_ASH" , x "AF_ECONET" , x "AF_ATMSVC" , \
219 x "AF_RDS" , x "AF_SNA" , x "AF_IRDA" , \
220 x "AF_PPPOX" , x "AF_WANPIPE" , x "AF_LLC" , \
221 x "27" , x "28" , x "AF_CAN" , \
222 x "AF_TIPC" , x "AF_BLUETOOTH", x "IUCV" , \
223 x "AF_RXRPC" , x "AF_ISDN" , x "AF_PHONET" , \
224 x "AF_IEEE802154", x "AF_CAIF" , x "AF_ALG" , \
225 x "AF_NFC" , x "AF_VSOCK" , x "AF_KCM" , \
226 x "AF_QIPCRTR", x "AF_SMC" , x "AF_XDP" , \
227 x "AF_MAX"
228
229 static const char *const af_family_key_strings[AF_MAX+1] = {
230 _sock_locks("sk_lock-")
231 };
232 static const char *const af_family_slock_key_strings[AF_MAX+1] = {
233 _sock_locks("slock-")
234 };
235 static const char *const af_family_clock_key_strings[AF_MAX+1] = {
236 _sock_locks("clock-")
237 };
238
239 static const char *const af_family_kern_key_strings[AF_MAX+1] = {
240 _sock_locks("k-sk_lock-")
241 };
242 static const char *const af_family_kern_slock_key_strings[AF_MAX+1] = {
243 _sock_locks("k-slock-")
244 };
245 static const char *const af_family_kern_clock_key_strings[AF_MAX+1] = {
246 _sock_locks("k-clock-")
247 };
248 static const char *const af_family_rlock_key_strings[AF_MAX+1] = {
249 _sock_locks("rlock-")
250 };
251 static const char *const af_family_wlock_key_strings[AF_MAX+1] = {
252 _sock_locks("wlock-")
253 };
254 static const char *const af_family_elock_key_strings[AF_MAX+1] = {
255 _sock_locks("elock-")
256 };
257
258 /*
259 * sk_callback_lock and sk queues locking rules are per-address-family,
260 * so split the lock classes by using a per-AF key:
261 */
262 static struct lock_class_key af_callback_keys[AF_MAX];
263 static struct lock_class_key af_rlock_keys[AF_MAX];
264 static struct lock_class_key af_wlock_keys[AF_MAX];
265 static struct lock_class_key af_elock_keys[AF_MAX];
266 static struct lock_class_key af_kern_callback_keys[AF_MAX];
267
268 /* Run time adjustable parameters. */
269 __u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX;
270 EXPORT_SYMBOL(sysctl_wmem_max);
271 __u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX;
272 EXPORT_SYMBOL(sysctl_rmem_max);
273 __u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX;
274 __u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX;
275
276 /* Maximal space eaten by iovec or ancillary data plus some space */
277 int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512);
278 EXPORT_SYMBOL(sysctl_optmem_max);
279
280 int sysctl_tstamp_allow_data __read_mostly = 1;
281
282 DEFINE_STATIC_KEY_FALSE(memalloc_socks_key);
283 EXPORT_SYMBOL_GPL(memalloc_socks_key);
284
285 /**
286 * sk_set_memalloc - sets %SOCK_MEMALLOC
287 * @sk: socket to set it on
288 *
289 * Set %SOCK_MEMALLOC on a socket for access to emergency reserves.
290 * It's the responsibility of the admin to adjust min_free_kbytes
291 * to meet the requirements
292 */
sk_set_memalloc(struct sock * sk)293 void sk_set_memalloc(struct sock *sk)
294 {
295 sock_set_flag(sk, SOCK_MEMALLOC);
296 sk->sk_allocation |= __GFP_MEMALLOC;
297 static_branch_inc(&memalloc_socks_key);
298 }
299 EXPORT_SYMBOL_GPL(sk_set_memalloc);
300
sk_clear_memalloc(struct sock * sk)301 void sk_clear_memalloc(struct sock *sk)
302 {
303 sock_reset_flag(sk, SOCK_MEMALLOC);
304 sk->sk_allocation &= ~__GFP_MEMALLOC;
305 static_branch_dec(&memalloc_socks_key);
306
307 /*
308 * SOCK_MEMALLOC is allowed to ignore rmem limits to ensure forward
309 * progress of swapping. SOCK_MEMALLOC may be cleared while
310 * it has rmem allocations due to the last swapfile being deactivated
311 * but there is a risk that the socket is unusable due to exceeding
312 * the rmem limits. Reclaim the reserves and obey rmem limits again.
313 */
314 sk_mem_reclaim(sk);
315 }
316 EXPORT_SYMBOL_GPL(sk_clear_memalloc);
317
__sk_backlog_rcv(struct sock * sk,struct sk_buff * skb)318 int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
319 {
320 int ret;
321 unsigned int noreclaim_flag;
322
323 /* these should have been dropped before queueing */
324 BUG_ON(!sock_flag(sk, SOCK_MEMALLOC));
325
326 noreclaim_flag = memalloc_noreclaim_save();
327 ret = sk->sk_backlog_rcv(sk, skb);
328 memalloc_noreclaim_restore(noreclaim_flag);
329
330 return ret;
331 }
332 EXPORT_SYMBOL(__sk_backlog_rcv);
333
sock_get_timeout(long timeo,void * optval,bool old_timeval)334 static int sock_get_timeout(long timeo, void *optval, bool old_timeval)
335 {
336 struct __kernel_sock_timeval tv;
337
338 if (timeo == MAX_SCHEDULE_TIMEOUT) {
339 tv.tv_sec = 0;
340 tv.tv_usec = 0;
341 } else {
342 tv.tv_sec = timeo / HZ;
343 tv.tv_usec = ((timeo % HZ) * USEC_PER_SEC) / HZ;
344 }
345
346 if (old_timeval && in_compat_syscall() && !COMPAT_USE_64BIT_TIME) {
347 struct old_timeval32 tv32 = { tv.tv_sec, tv.tv_usec };
348 *(struct old_timeval32 *)optval = tv32;
349 return sizeof(tv32);
350 }
351
352 if (old_timeval) {
353 struct __kernel_old_timeval old_tv;
354 old_tv.tv_sec = tv.tv_sec;
355 old_tv.tv_usec = tv.tv_usec;
356 *(struct __kernel_old_timeval *)optval = old_tv;
357 return sizeof(old_tv);
358 }
359
360 *(struct __kernel_sock_timeval *)optval = tv;
361 return sizeof(tv);
362 }
363
sock_set_timeout(long * timeo_p,sockptr_t optval,int optlen,bool old_timeval)364 static int sock_set_timeout(long *timeo_p, sockptr_t optval, int optlen,
365 bool old_timeval)
366 {
367 struct __kernel_sock_timeval tv;
368
369 if (old_timeval && in_compat_syscall() && !COMPAT_USE_64BIT_TIME) {
370 struct old_timeval32 tv32;
371
372 if (optlen < sizeof(tv32))
373 return -EINVAL;
374
375 if (copy_from_sockptr(&tv32, optval, sizeof(tv32)))
376 return -EFAULT;
377 tv.tv_sec = tv32.tv_sec;
378 tv.tv_usec = tv32.tv_usec;
379 } else if (old_timeval) {
380 struct __kernel_old_timeval old_tv;
381
382 if (optlen < sizeof(old_tv))
383 return -EINVAL;
384 if (copy_from_sockptr(&old_tv, optval, sizeof(old_tv)))
385 return -EFAULT;
386 tv.tv_sec = old_tv.tv_sec;
387 tv.tv_usec = old_tv.tv_usec;
388 } else {
389 if (optlen < sizeof(tv))
390 return -EINVAL;
391 if (copy_from_sockptr(&tv, optval, sizeof(tv)))
392 return -EFAULT;
393 }
394 if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC)
395 return -EDOM;
396
397 if (tv.tv_sec < 0) {
398 static int warned __read_mostly;
399
400 *timeo_p = 0;
401 if (warned < 10 && net_ratelimit()) {
402 warned++;
403 pr_info("%s: `%s' (pid %d) tries to set negative timeout\n",
404 __func__, current->comm, task_pid_nr(current));
405 }
406 return 0;
407 }
408 *timeo_p = MAX_SCHEDULE_TIMEOUT;
409 if (tv.tv_sec == 0 && tv.tv_usec == 0)
410 return 0;
411 if (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT / HZ - 1))
412 *timeo_p = tv.tv_sec * HZ + DIV_ROUND_UP((unsigned long)tv.tv_usec, USEC_PER_SEC / HZ);
413 return 0;
414 }
415
sock_needs_netstamp(const struct sock * sk)416 static bool sock_needs_netstamp(const struct sock *sk)
417 {
418 switch (sk->sk_family) {
419 case AF_UNSPEC:
420 case AF_UNIX:
421 return false;
422 default:
423 return true;
424 }
425 }
426
sock_disable_timestamp(struct sock * sk,unsigned long flags)427 static void sock_disable_timestamp(struct sock *sk, unsigned long flags)
428 {
429 if (sk->sk_flags & flags) {
430 sk->sk_flags &= ~flags;
431 if (sock_needs_netstamp(sk) &&
432 !(sk->sk_flags & SK_FLAGS_TIMESTAMP))
433 net_disable_timestamp();
434 }
435 }
436
437
__sock_queue_rcv_skb(struct sock * sk,struct sk_buff * skb)438 int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
439 {
440 unsigned long flags;
441 struct sk_buff_head *list = &sk->sk_receive_queue;
442
443 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) {
444 atomic_inc(&sk->sk_drops);
445 trace_sock_rcvqueue_full(sk, skb);
446 return -ENOMEM;
447 }
448
449 if (!sk_rmem_schedule(sk, skb, skb->truesize)) {
450 atomic_inc(&sk->sk_drops);
451 return -ENOBUFS;
452 }
453
454 skb->dev = NULL;
455 skb_set_owner_r(skb, sk);
456
457 /* we escape from rcu protected region, make sure we dont leak
458 * a norefcounted dst
459 */
460 skb_dst_force(skb);
461
462 spin_lock_irqsave(&list->lock, flags);
463 sock_skb_set_dropcount(sk, skb);
464 __skb_queue_tail(list, skb);
465 spin_unlock_irqrestore(&list->lock, flags);
466
467 if (!sock_flag(sk, SOCK_DEAD))
468 sk->sk_data_ready(sk);
469 return 0;
470 }
471 EXPORT_SYMBOL(__sock_queue_rcv_skb);
472
sock_queue_rcv_skb(struct sock * sk,struct sk_buff * skb)473 int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
474 {
475 int err;
476
477 err = sk_filter(sk, skb);
478 if (err)
479 return err;
480
481 return __sock_queue_rcv_skb(sk, skb);
482 }
483 EXPORT_SYMBOL(sock_queue_rcv_skb);
484
__sk_receive_skb(struct sock * sk,struct sk_buff * skb,const int nested,unsigned int trim_cap,bool refcounted)485 int __sk_receive_skb(struct sock *sk, struct sk_buff *skb,
486 const int nested, unsigned int trim_cap, bool refcounted)
487 {
488 int rc = NET_RX_SUCCESS;
489
490 if (sk_filter_trim_cap(sk, skb, trim_cap))
491 goto discard_and_relse;
492
493 skb->dev = NULL;
494
495 if (sk_rcvqueues_full(sk, sk->sk_rcvbuf)) {
496 atomic_inc(&sk->sk_drops);
497 goto discard_and_relse;
498 }
499 if (nested)
500 bh_lock_sock_nested(sk);
501 else
502 bh_lock_sock(sk);
503 if (!sock_owned_by_user(sk)) {
504 /*
505 * trylock + unlock semantics:
506 */
507 mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_);
508
509 rc = sk_backlog_rcv(sk, skb);
510
511 mutex_release(&sk->sk_lock.dep_map, _RET_IP_);
512 } else if (sk_add_backlog(sk, skb, READ_ONCE(sk->sk_rcvbuf))) {
513 bh_unlock_sock(sk);
514 atomic_inc(&sk->sk_drops);
515 goto discard_and_relse;
516 }
517
518 bh_unlock_sock(sk);
519 out:
520 if (refcounted)
521 sock_put(sk);
522 return rc;
523 discard_and_relse:
524 kfree_skb(skb);
525 goto out;
526 }
527 EXPORT_SYMBOL(__sk_receive_skb);
528
__sk_dst_check(struct sock * sk,u32 cookie)529 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie)
530 {
531 struct dst_entry *dst = __sk_dst_get(sk);
532
533 if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
534 sk_tx_queue_clear(sk);
535 sk->sk_dst_pending_confirm = 0;
536 RCU_INIT_POINTER(sk->sk_dst_cache, NULL);
537 dst_release(dst);
538 return NULL;
539 }
540
541 return dst;
542 }
543 EXPORT_SYMBOL(__sk_dst_check);
544
sk_dst_check(struct sock * sk,u32 cookie)545 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie)
546 {
547 struct dst_entry *dst = sk_dst_get(sk);
548
549 if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
550 sk_dst_reset(sk);
551 dst_release(dst);
552 return NULL;
553 }
554
555 return dst;
556 }
557 EXPORT_SYMBOL(sk_dst_check);
558
sock_bindtoindex_locked(struct sock * sk,int ifindex)559 static int sock_bindtoindex_locked(struct sock *sk, int ifindex)
560 {
561 int ret = -ENOPROTOOPT;
562 #ifdef CONFIG_NETDEVICES
563 struct net *net = sock_net(sk);
564
565 /* Sorry... */
566 ret = -EPERM;
567 if (sk->sk_bound_dev_if && !ns_capable(net->user_ns, CAP_NET_RAW))
568 goto out;
569
570 ret = -EINVAL;
571 if (ifindex < 0)
572 goto out;
573
574 sk->sk_bound_dev_if = ifindex;
575 if (sk->sk_prot->rehash)
576 sk->sk_prot->rehash(sk);
577 sk_dst_reset(sk);
578
579 ret = 0;
580
581 out:
582 #endif
583
584 return ret;
585 }
586
sock_bindtoindex(struct sock * sk,int ifindex,bool lock_sk)587 int sock_bindtoindex(struct sock *sk, int ifindex, bool lock_sk)
588 {
589 int ret;
590
591 if (lock_sk)
592 lock_sock(sk);
593 ret = sock_bindtoindex_locked(sk, ifindex);
594 if (lock_sk)
595 release_sock(sk);
596
597 return ret;
598 }
599 EXPORT_SYMBOL(sock_bindtoindex);
600
sock_setbindtodevice(struct sock * sk,sockptr_t optval,int optlen)601 static int sock_setbindtodevice(struct sock *sk, sockptr_t optval, int optlen)
602 {
603 int ret = -ENOPROTOOPT;
604 #ifdef CONFIG_NETDEVICES
605 struct net *net = sock_net(sk);
606 char devname[IFNAMSIZ];
607 int index;
608
609 ret = -EINVAL;
610 if (optlen < 0)
611 goto out;
612
613 /* Bind this socket to a particular device like "eth0",
614 * as specified in the passed interface name. If the
615 * name is "" or the option length is zero the socket
616 * is not bound.
617 */
618 if (optlen > IFNAMSIZ - 1)
619 optlen = IFNAMSIZ - 1;
620 memset(devname, 0, sizeof(devname));
621
622 ret = -EFAULT;
623 if (copy_from_sockptr(devname, optval, optlen))
624 goto out;
625
626 index = 0;
627 if (devname[0] != '\0') {
628 struct net_device *dev;
629
630 rcu_read_lock();
631 dev = dev_get_by_name_rcu(net, devname);
632 if (dev)
633 index = dev->ifindex;
634 rcu_read_unlock();
635 ret = -ENODEV;
636 if (!dev)
637 goto out;
638 }
639
640 return sock_bindtoindex(sk, index, true);
641 out:
642 #endif
643
644 return ret;
645 }
646
sock_getbindtodevice(struct sock * sk,char __user * optval,int __user * optlen,int len)647 static int sock_getbindtodevice(struct sock *sk, char __user *optval,
648 int __user *optlen, int len)
649 {
650 int ret = -ENOPROTOOPT;
651 #ifdef CONFIG_NETDEVICES
652 struct net *net = sock_net(sk);
653 char devname[IFNAMSIZ];
654
655 if (sk->sk_bound_dev_if == 0) {
656 len = 0;
657 goto zero;
658 }
659
660 ret = -EINVAL;
661 if (len < IFNAMSIZ)
662 goto out;
663
664 ret = netdev_get_name(net, devname, sk->sk_bound_dev_if);
665 if (ret)
666 goto out;
667
668 len = strlen(devname) + 1;
669
670 ret = -EFAULT;
671 if (copy_to_user(optval, devname, len))
672 goto out;
673
674 zero:
675 ret = -EFAULT;
676 if (put_user(len, optlen))
677 goto out;
678
679 ret = 0;
680
681 out:
682 #endif
683
684 return ret;
685 }
686
sk_mc_loop(struct sock * sk)687 bool sk_mc_loop(struct sock *sk)
688 {
689 if (dev_recursion_level())
690 return false;
691 if (!sk)
692 return true;
693 switch (sk->sk_family) {
694 case AF_INET:
695 return inet_sk(sk)->mc_loop;
696 #if IS_ENABLED(CONFIG_IPV6)
697 case AF_INET6:
698 return inet6_sk(sk)->mc_loop;
699 #endif
700 }
701 WARN_ON_ONCE(1);
702 return true;
703 }
704 EXPORT_SYMBOL(sk_mc_loop);
705
sock_set_reuseaddr(struct sock * sk)706 void sock_set_reuseaddr(struct sock *sk)
707 {
708 lock_sock(sk);
709 sk->sk_reuse = SK_CAN_REUSE;
710 release_sock(sk);
711 }
712 EXPORT_SYMBOL(sock_set_reuseaddr);
713
sock_set_reuseport(struct sock * sk)714 void sock_set_reuseport(struct sock *sk)
715 {
716 lock_sock(sk);
717 sk->sk_reuseport = true;
718 release_sock(sk);
719 }
720 EXPORT_SYMBOL(sock_set_reuseport);
721
sock_no_linger(struct sock * sk)722 void sock_no_linger(struct sock *sk)
723 {
724 lock_sock(sk);
725 sk->sk_lingertime = 0;
726 sock_set_flag(sk, SOCK_LINGER);
727 release_sock(sk);
728 }
729 EXPORT_SYMBOL(sock_no_linger);
730
sock_set_priority(struct sock * sk,u32 priority)731 void sock_set_priority(struct sock *sk, u32 priority)
732 {
733 lock_sock(sk);
734 sk->sk_priority = priority;
735 release_sock(sk);
736 }
737 EXPORT_SYMBOL(sock_set_priority);
738
sock_set_sndtimeo(struct sock * sk,s64 secs)739 void sock_set_sndtimeo(struct sock *sk, s64 secs)
740 {
741 lock_sock(sk);
742 if (secs && secs < MAX_SCHEDULE_TIMEOUT / HZ - 1)
743 sk->sk_sndtimeo = secs * HZ;
744 else
745 sk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT;
746 release_sock(sk);
747 }
748 EXPORT_SYMBOL(sock_set_sndtimeo);
749
__sock_set_timestamps(struct sock * sk,bool val,bool new,bool ns)750 static void __sock_set_timestamps(struct sock *sk, bool val, bool new, bool ns)
751 {
752 if (val) {
753 sock_valbool_flag(sk, SOCK_TSTAMP_NEW, new);
754 sock_valbool_flag(sk, SOCK_RCVTSTAMPNS, ns);
755 sock_set_flag(sk, SOCK_RCVTSTAMP);
756 sock_enable_timestamp(sk, SOCK_TIMESTAMP);
757 } else {
758 sock_reset_flag(sk, SOCK_RCVTSTAMP);
759 sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
760 }
761 }
762
sock_enable_timestamps(struct sock * sk)763 void sock_enable_timestamps(struct sock *sk)
764 {
765 lock_sock(sk);
766 __sock_set_timestamps(sk, true, false, true);
767 release_sock(sk);
768 }
769 EXPORT_SYMBOL(sock_enable_timestamps);
770
sock_set_keepalive(struct sock * sk)771 void sock_set_keepalive(struct sock *sk)
772 {
773 lock_sock(sk);
774 if (sk->sk_prot->keepalive)
775 sk->sk_prot->keepalive(sk, true);
776 sock_valbool_flag(sk, SOCK_KEEPOPEN, true);
777 release_sock(sk);
778 }
779 EXPORT_SYMBOL(sock_set_keepalive);
780
__sock_set_rcvbuf(struct sock * sk,int val)781 static void __sock_set_rcvbuf(struct sock *sk, int val)
782 {
783 /* Ensure val * 2 fits into an int, to prevent max_t() from treating it
784 * as a negative value.
785 */
786 val = min_t(int, val, INT_MAX / 2);
787 sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
788
789 /* We double it on the way in to account for "struct sk_buff" etc.
790 * overhead. Applications assume that the SO_RCVBUF setting they make
791 * will allow that much actual data to be received on that socket.
792 *
793 * Applications are unaware that "struct sk_buff" and other overheads
794 * allocate from the receive buffer during socket buffer allocation.
795 *
796 * And after considering the possible alternatives, returning the value
797 * we actually used in getsockopt is the most desirable behavior.
798 */
799 WRITE_ONCE(sk->sk_rcvbuf, max_t(int, val * 2, SOCK_MIN_RCVBUF));
800 }
801
sock_set_rcvbuf(struct sock * sk,int val)802 void sock_set_rcvbuf(struct sock *sk, int val)
803 {
804 lock_sock(sk);
805 __sock_set_rcvbuf(sk, val);
806 release_sock(sk);
807 }
808 EXPORT_SYMBOL(sock_set_rcvbuf);
809
__sock_set_mark(struct sock * sk,u32 val)810 static void __sock_set_mark(struct sock *sk, u32 val)
811 {
812 if (val != sk->sk_mark) {
813 sk->sk_mark = val;
814 sk_dst_reset(sk);
815 }
816 }
817
sock_set_mark(struct sock * sk,u32 val)818 void sock_set_mark(struct sock *sk, u32 val)
819 {
820 lock_sock(sk);
821 __sock_set_mark(sk, val);
822 release_sock(sk);
823 }
824 EXPORT_SYMBOL(sock_set_mark);
825
826 /*
827 * This is meant for all protocols to use and covers goings on
828 * at the socket level. Everything here is generic.
829 */
830
sock_setsockopt(struct socket * sock,int level,int optname,sockptr_t optval,unsigned int optlen)831 int sock_setsockopt(struct socket *sock, int level, int optname,
832 sockptr_t optval, unsigned int optlen)
833 {
834 struct sock_txtime sk_txtime;
835 struct sock *sk = sock->sk;
836 int val;
837 int valbool;
838 struct linger ling;
839 int ret = 0;
840
841 /*
842 * Options without arguments
843 */
844
845 if (optname == SO_BINDTODEVICE)
846 return sock_setbindtodevice(sk, optval, optlen);
847
848 if (optlen < sizeof(int))
849 return -EINVAL;
850
851 if (copy_from_sockptr(&val, optval, sizeof(val)))
852 return -EFAULT;
853
854 valbool = val ? 1 : 0;
855
856 lock_sock(sk);
857
858 switch (optname) {
859 case SO_DEBUG:
860 if (val && !capable(CAP_NET_ADMIN))
861 ret = -EACCES;
862 else
863 sock_valbool_flag(sk, SOCK_DBG, valbool);
864 break;
865 case SO_REUSEADDR:
866 sk->sk_reuse = (valbool ? SK_CAN_REUSE : SK_NO_REUSE);
867 break;
868 case SO_REUSEPORT:
869 sk->sk_reuseport = valbool;
870 break;
871 case SO_TYPE:
872 case SO_PROTOCOL:
873 case SO_DOMAIN:
874 case SO_ERROR:
875 ret = -ENOPROTOOPT;
876 break;
877 case SO_DONTROUTE:
878 sock_valbool_flag(sk, SOCK_LOCALROUTE, valbool);
879 sk_dst_reset(sk);
880 break;
881 case SO_BROADCAST:
882 sock_valbool_flag(sk, SOCK_BROADCAST, valbool);
883 break;
884 case SO_SNDBUF:
885 /* Don't error on this BSD doesn't and if you think
886 * about it this is right. Otherwise apps have to
887 * play 'guess the biggest size' games. RCVBUF/SNDBUF
888 * are treated in BSD as hints
889 */
890 val = min_t(u32, val, sysctl_wmem_max);
891 set_sndbuf:
892 /* Ensure val * 2 fits into an int, to prevent max_t()
893 * from treating it as a negative value.
894 */
895 val = min_t(int, val, INT_MAX / 2);
896 sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
897 WRITE_ONCE(sk->sk_sndbuf,
898 max_t(int, val * 2, SOCK_MIN_SNDBUF));
899 /* Wake up sending tasks if we upped the value. */
900 sk->sk_write_space(sk);
901 break;
902
903 case SO_SNDBUFFORCE:
904 if (!capable(CAP_NET_ADMIN)) {
905 ret = -EPERM;
906 break;
907 }
908
909 /* No negative values (to prevent underflow, as val will be
910 * multiplied by 2).
911 */
912 if (val < 0)
913 val = 0;
914 goto set_sndbuf;
915
916 case SO_RCVBUF:
917 /* Don't error on this BSD doesn't and if you think
918 * about it this is right. Otherwise apps have to
919 * play 'guess the biggest size' games. RCVBUF/SNDBUF
920 * are treated in BSD as hints
921 */
922 __sock_set_rcvbuf(sk, min_t(u32, val, sysctl_rmem_max));
923 break;
924
925 case SO_RCVBUFFORCE:
926 if (!capable(CAP_NET_ADMIN)) {
927 ret = -EPERM;
928 break;
929 }
930
931 /* No negative values (to prevent underflow, as val will be
932 * multiplied by 2).
933 */
934 __sock_set_rcvbuf(sk, max(val, 0));
935 break;
936
937 case SO_KEEPALIVE:
938 if (sk->sk_prot->keepalive)
939 sk->sk_prot->keepalive(sk, valbool);
940 sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
941 break;
942
943 case SO_OOBINLINE:
944 sock_valbool_flag(sk, SOCK_URGINLINE, valbool);
945 break;
946
947 case SO_NO_CHECK:
948 sk->sk_no_check_tx = valbool;
949 break;
950
951 case SO_PRIORITY:
952 if ((val >= 0 && val <= 6) ||
953 ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
954 sk->sk_priority = val;
955 else
956 ret = -EPERM;
957 break;
958
959 case SO_LINGER:
960 if (optlen < sizeof(ling)) {
961 ret = -EINVAL; /* 1003.1g */
962 break;
963 }
964 if (copy_from_sockptr(&ling, optval, sizeof(ling))) {
965 ret = -EFAULT;
966 break;
967 }
968 if (!ling.l_onoff)
969 sock_reset_flag(sk, SOCK_LINGER);
970 else {
971 #if (BITS_PER_LONG == 32)
972 if ((unsigned int)ling.l_linger >= MAX_SCHEDULE_TIMEOUT/HZ)
973 sk->sk_lingertime = MAX_SCHEDULE_TIMEOUT;
974 else
975 #endif
976 sk->sk_lingertime = (unsigned int)ling.l_linger * HZ;
977 sock_set_flag(sk, SOCK_LINGER);
978 }
979 break;
980
981 case SO_BSDCOMPAT:
982 break;
983
984 case SO_PASSCRED:
985 if (valbool)
986 set_bit(SOCK_PASSCRED, &sock->flags);
987 else
988 clear_bit(SOCK_PASSCRED, &sock->flags);
989 break;
990
991 case SO_TIMESTAMP_OLD:
992 __sock_set_timestamps(sk, valbool, false, false);
993 break;
994 case SO_TIMESTAMP_NEW:
995 __sock_set_timestamps(sk, valbool, true, false);
996 break;
997 case SO_TIMESTAMPNS_OLD:
998 __sock_set_timestamps(sk, valbool, false, true);
999 break;
1000 case SO_TIMESTAMPNS_NEW:
1001 __sock_set_timestamps(sk, valbool, true, true);
1002 break;
1003 case SO_TIMESTAMPING_NEW:
1004 case SO_TIMESTAMPING_OLD:
1005 if (val & ~SOF_TIMESTAMPING_MASK) {
1006 ret = -EINVAL;
1007 break;
1008 }
1009
1010 if (val & SOF_TIMESTAMPING_OPT_ID &&
1011 !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID)) {
1012 if (sk->sk_protocol == IPPROTO_TCP &&
1013 sk->sk_type == SOCK_STREAM) {
1014 if ((1 << sk->sk_state) &
1015 (TCPF_CLOSE | TCPF_LISTEN)) {
1016 ret = -EINVAL;
1017 break;
1018 }
1019 sk->sk_tskey = tcp_sk(sk)->snd_una;
1020 } else {
1021 sk->sk_tskey = 0;
1022 }
1023 }
1024
1025 if (val & SOF_TIMESTAMPING_OPT_STATS &&
1026 !(val & SOF_TIMESTAMPING_OPT_TSONLY)) {
1027 ret = -EINVAL;
1028 break;
1029 }
1030
1031 sk->sk_tsflags = val;
1032 sock_valbool_flag(sk, SOCK_TSTAMP_NEW, optname == SO_TIMESTAMPING_NEW);
1033
1034 if (val & SOF_TIMESTAMPING_RX_SOFTWARE)
1035 sock_enable_timestamp(sk,
1036 SOCK_TIMESTAMPING_RX_SOFTWARE);
1037 else
1038 sock_disable_timestamp(sk,
1039 (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE));
1040 break;
1041
1042 case SO_RCVLOWAT:
1043 if (val < 0)
1044 val = INT_MAX;
1045 if (sock->ops->set_rcvlowat)
1046 ret = sock->ops->set_rcvlowat(sk, val);
1047 else
1048 WRITE_ONCE(sk->sk_rcvlowat, val ? : 1);
1049 break;
1050
1051 case SO_RCVTIMEO_OLD:
1052 case SO_RCVTIMEO_NEW:
1053 ret = sock_set_timeout(&sk->sk_rcvtimeo, optval,
1054 optlen, optname == SO_RCVTIMEO_OLD);
1055 break;
1056
1057 case SO_SNDTIMEO_OLD:
1058 case SO_SNDTIMEO_NEW:
1059 ret = sock_set_timeout(&sk->sk_sndtimeo, optval,
1060 optlen, optname == SO_SNDTIMEO_OLD);
1061 break;
1062
1063 case SO_ATTACH_FILTER: {
1064 struct sock_fprog fprog;
1065
1066 ret = copy_bpf_fprog_from_user(&fprog, optval, optlen);
1067 if (!ret)
1068 ret = sk_attach_filter(&fprog, sk);
1069 break;
1070 }
1071 case SO_ATTACH_BPF:
1072 ret = -EINVAL;
1073 if (optlen == sizeof(u32)) {
1074 u32 ufd;
1075
1076 ret = -EFAULT;
1077 if (copy_from_sockptr(&ufd, optval, sizeof(ufd)))
1078 break;
1079
1080 ret = sk_attach_bpf(ufd, sk);
1081 }
1082 break;
1083
1084 case SO_ATTACH_REUSEPORT_CBPF: {
1085 struct sock_fprog fprog;
1086
1087 ret = copy_bpf_fprog_from_user(&fprog, optval, optlen);
1088 if (!ret)
1089 ret = sk_reuseport_attach_filter(&fprog, sk);
1090 break;
1091 }
1092 case SO_ATTACH_REUSEPORT_EBPF:
1093 ret = -EINVAL;
1094 if (optlen == sizeof(u32)) {
1095 u32 ufd;
1096
1097 ret = -EFAULT;
1098 if (copy_from_sockptr(&ufd, optval, sizeof(ufd)))
1099 break;
1100
1101 ret = sk_reuseport_attach_bpf(ufd, sk);
1102 }
1103 break;
1104
1105 case SO_DETACH_REUSEPORT_BPF:
1106 ret = reuseport_detach_prog(sk);
1107 break;
1108
1109 case SO_DETACH_FILTER:
1110 ret = sk_detach_filter(sk);
1111 break;
1112
1113 case SO_LOCK_FILTER:
1114 if (sock_flag(sk, SOCK_FILTER_LOCKED) && !valbool)
1115 ret = -EPERM;
1116 else
1117 sock_valbool_flag(sk, SOCK_FILTER_LOCKED, valbool);
1118 break;
1119
1120 case SO_PASSSEC:
1121 if (valbool)
1122 set_bit(SOCK_PASSSEC, &sock->flags);
1123 else
1124 clear_bit(SOCK_PASSSEC, &sock->flags);
1125 break;
1126 case SO_MARK:
1127 if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) {
1128 ret = -EPERM;
1129 break;
1130 }
1131
1132 __sock_set_mark(sk, val);
1133 break;
1134
1135 case SO_RXQ_OVFL:
1136 sock_valbool_flag(sk, SOCK_RXQ_OVFL, valbool);
1137 break;
1138
1139 case SO_WIFI_STATUS:
1140 sock_valbool_flag(sk, SOCK_WIFI_STATUS, valbool);
1141 break;
1142
1143 case SO_PEEK_OFF:
1144 if (sock->ops->set_peek_off)
1145 ret = sock->ops->set_peek_off(sk, val);
1146 else
1147 ret = -EOPNOTSUPP;
1148 break;
1149
1150 case SO_NOFCS:
1151 sock_valbool_flag(sk, SOCK_NOFCS, valbool);
1152 break;
1153
1154 case SO_SELECT_ERR_QUEUE:
1155 sock_valbool_flag(sk, SOCK_SELECT_ERR_QUEUE, valbool);
1156 break;
1157
1158 #ifdef CONFIG_NET_RX_BUSY_POLL
1159 case SO_BUSY_POLL:
1160 /* allow unprivileged users to decrease the value */
1161 if ((val > sk->sk_ll_usec) && !capable(CAP_NET_ADMIN))
1162 ret = -EPERM;
1163 else {
1164 if (val < 0)
1165 ret = -EINVAL;
1166 else
1167 WRITE_ONCE(sk->sk_ll_usec, val);
1168 }
1169 break;
1170 #endif
1171
1172 case SO_MAX_PACING_RATE:
1173 {
1174 unsigned long ulval = (val == ~0U) ? ~0UL : (unsigned int)val;
1175
1176 if (sizeof(ulval) != sizeof(val) &&
1177 optlen >= sizeof(ulval) &&
1178 copy_from_sockptr(&ulval, optval, sizeof(ulval))) {
1179 ret = -EFAULT;
1180 break;
1181 }
1182 if (ulval != ~0UL)
1183 cmpxchg(&sk->sk_pacing_status,
1184 SK_PACING_NONE,
1185 SK_PACING_NEEDED);
1186 sk->sk_max_pacing_rate = ulval;
1187 sk->sk_pacing_rate = min(sk->sk_pacing_rate, ulval);
1188 break;
1189 }
1190 case SO_INCOMING_CPU:
1191 WRITE_ONCE(sk->sk_incoming_cpu, val);
1192 break;
1193
1194 case SO_CNX_ADVICE:
1195 if (val == 1)
1196 dst_negative_advice(sk);
1197 break;
1198
1199 case SO_ZEROCOPY:
1200 if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6) {
1201 if (!((sk->sk_type == SOCK_STREAM &&
1202 sk->sk_protocol == IPPROTO_TCP) ||
1203 (sk->sk_type == SOCK_DGRAM &&
1204 sk->sk_protocol == IPPROTO_UDP)))
1205 ret = -ENOTSUPP;
1206 } else if (sk->sk_family != PF_RDS) {
1207 ret = -ENOTSUPP;
1208 }
1209 if (!ret) {
1210 if (val < 0 || val > 1)
1211 ret = -EINVAL;
1212 else
1213 sock_valbool_flag(sk, SOCK_ZEROCOPY, valbool);
1214 }
1215 break;
1216
1217 case SO_TXTIME:
1218 if (optlen != sizeof(struct sock_txtime)) {
1219 ret = -EINVAL;
1220 break;
1221 } else if (copy_from_sockptr(&sk_txtime, optval,
1222 sizeof(struct sock_txtime))) {
1223 ret = -EFAULT;
1224 break;
1225 } else if (sk_txtime.flags & ~SOF_TXTIME_FLAGS_MASK) {
1226 ret = -EINVAL;
1227 break;
1228 }
1229 /* CLOCK_MONOTONIC is only used by sch_fq, and this packet
1230 * scheduler has enough safe guards.
1231 */
1232 if (sk_txtime.clockid != CLOCK_MONOTONIC &&
1233 !ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) {
1234 ret = -EPERM;
1235 break;
1236 }
1237 sock_valbool_flag(sk, SOCK_TXTIME, true);
1238 sk->sk_clockid = sk_txtime.clockid;
1239 sk->sk_txtime_deadline_mode =
1240 !!(sk_txtime.flags & SOF_TXTIME_DEADLINE_MODE);
1241 sk->sk_txtime_report_errors =
1242 !!(sk_txtime.flags & SOF_TXTIME_REPORT_ERRORS);
1243 break;
1244
1245 case SO_BINDTOIFINDEX:
1246 ret = sock_bindtoindex_locked(sk, val);
1247 break;
1248
1249 default:
1250 ret = -ENOPROTOOPT;
1251 break;
1252 }
1253 release_sock(sk);
1254 return ret;
1255 }
1256 EXPORT_SYMBOL(sock_setsockopt);
1257
sk_get_peer_cred(struct sock * sk)1258 static const struct cred *sk_get_peer_cred(struct sock *sk)
1259 {
1260 const struct cred *cred;
1261
1262 spin_lock(&sk->sk_peer_lock);
1263 cred = get_cred(sk->sk_peer_cred);
1264 spin_unlock(&sk->sk_peer_lock);
1265
1266 return cred;
1267 }
1268
cred_to_ucred(struct pid * pid,const struct cred * cred,struct ucred * ucred)1269 static void cred_to_ucred(struct pid *pid, const struct cred *cred,
1270 struct ucred *ucred)
1271 {
1272 ucred->pid = pid_vnr(pid);
1273 ucred->uid = ucred->gid = -1;
1274 if (cred) {
1275 struct user_namespace *current_ns = current_user_ns();
1276
1277 ucred->uid = from_kuid_munged(current_ns, cred->euid);
1278 ucred->gid = from_kgid_munged(current_ns, cred->egid);
1279 }
1280 }
1281
groups_to_user(gid_t __user * dst,const struct group_info * src)1282 static int groups_to_user(gid_t __user *dst, const struct group_info *src)
1283 {
1284 struct user_namespace *user_ns = current_user_ns();
1285 int i;
1286
1287 for (i = 0; i < src->ngroups; i++)
1288 if (put_user(from_kgid_munged(user_ns, src->gid[i]), dst + i))
1289 return -EFAULT;
1290
1291 return 0;
1292 }
1293
sock_getsockopt(struct socket * sock,int level,int optname,char __user * optval,int __user * optlen)1294 int sock_getsockopt(struct socket *sock, int level, int optname,
1295 char __user *optval, int __user *optlen)
1296 {
1297 struct sock *sk = sock->sk;
1298
1299 union {
1300 int val;
1301 u64 val64;
1302 unsigned long ulval;
1303 struct linger ling;
1304 struct old_timeval32 tm32;
1305 struct __kernel_old_timeval tm;
1306 struct __kernel_sock_timeval stm;
1307 struct sock_txtime txtime;
1308 } v;
1309
1310 int lv = sizeof(int);
1311 int len;
1312
1313 if (get_user(len, optlen))
1314 return -EFAULT;
1315 if (len < 0)
1316 return -EINVAL;
1317
1318 memset(&v, 0, sizeof(v));
1319
1320 switch (optname) {
1321 case SO_DEBUG:
1322 v.val = sock_flag(sk, SOCK_DBG);
1323 break;
1324
1325 case SO_DONTROUTE:
1326 v.val = sock_flag(sk, SOCK_LOCALROUTE);
1327 break;
1328
1329 case SO_BROADCAST:
1330 v.val = sock_flag(sk, SOCK_BROADCAST);
1331 break;
1332
1333 case SO_SNDBUF:
1334 v.val = sk->sk_sndbuf;
1335 break;
1336
1337 case SO_RCVBUF:
1338 v.val = sk->sk_rcvbuf;
1339 break;
1340
1341 case SO_REUSEADDR:
1342 v.val = sk->sk_reuse;
1343 break;
1344
1345 case SO_REUSEPORT:
1346 v.val = sk->sk_reuseport;
1347 break;
1348
1349 case SO_KEEPALIVE:
1350 v.val = sock_flag(sk, SOCK_KEEPOPEN);
1351 break;
1352
1353 case SO_TYPE:
1354 v.val = sk->sk_type;
1355 break;
1356
1357 case SO_PROTOCOL:
1358 v.val = sk->sk_protocol;
1359 break;
1360
1361 case SO_DOMAIN:
1362 v.val = sk->sk_family;
1363 break;
1364
1365 case SO_ERROR:
1366 v.val = -sock_error(sk);
1367 if (v.val == 0)
1368 v.val = xchg(&sk->sk_err_soft, 0);
1369 break;
1370
1371 case SO_OOBINLINE:
1372 v.val = sock_flag(sk, SOCK_URGINLINE);
1373 break;
1374
1375 case SO_NO_CHECK:
1376 v.val = sk->sk_no_check_tx;
1377 break;
1378
1379 case SO_PRIORITY:
1380 v.val = sk->sk_priority;
1381 break;
1382
1383 case SO_LINGER:
1384 lv = sizeof(v.ling);
1385 v.ling.l_onoff = sock_flag(sk, SOCK_LINGER);
1386 v.ling.l_linger = sk->sk_lingertime / HZ;
1387 break;
1388
1389 case SO_BSDCOMPAT:
1390 break;
1391
1392 case SO_TIMESTAMP_OLD:
1393 v.val = sock_flag(sk, SOCK_RCVTSTAMP) &&
1394 !sock_flag(sk, SOCK_TSTAMP_NEW) &&
1395 !sock_flag(sk, SOCK_RCVTSTAMPNS);
1396 break;
1397
1398 case SO_TIMESTAMPNS_OLD:
1399 v.val = sock_flag(sk, SOCK_RCVTSTAMPNS) && !sock_flag(sk, SOCK_TSTAMP_NEW);
1400 break;
1401
1402 case SO_TIMESTAMP_NEW:
1403 v.val = sock_flag(sk, SOCK_RCVTSTAMP) && sock_flag(sk, SOCK_TSTAMP_NEW);
1404 break;
1405
1406 case SO_TIMESTAMPNS_NEW:
1407 v.val = sock_flag(sk, SOCK_RCVTSTAMPNS) && sock_flag(sk, SOCK_TSTAMP_NEW);
1408 break;
1409
1410 case SO_TIMESTAMPING_OLD:
1411 v.val = sk->sk_tsflags;
1412 break;
1413
1414 case SO_RCVTIMEO_OLD:
1415 case SO_RCVTIMEO_NEW:
1416 lv = sock_get_timeout(sk->sk_rcvtimeo, &v, SO_RCVTIMEO_OLD == optname);
1417 break;
1418
1419 case SO_SNDTIMEO_OLD:
1420 case SO_SNDTIMEO_NEW:
1421 lv = sock_get_timeout(sk->sk_sndtimeo, &v, SO_SNDTIMEO_OLD == optname);
1422 break;
1423
1424 case SO_RCVLOWAT:
1425 v.val = sk->sk_rcvlowat;
1426 break;
1427
1428 case SO_SNDLOWAT:
1429 v.val = 1;
1430 break;
1431
1432 case SO_PASSCRED:
1433 v.val = !!test_bit(SOCK_PASSCRED, &sock->flags);
1434 break;
1435
1436 case SO_PEERCRED:
1437 {
1438 struct ucred peercred;
1439 if (len > sizeof(peercred))
1440 len = sizeof(peercred);
1441
1442 spin_lock(&sk->sk_peer_lock);
1443 cred_to_ucred(sk->sk_peer_pid, sk->sk_peer_cred, &peercred);
1444 spin_unlock(&sk->sk_peer_lock);
1445
1446 if (copy_to_user(optval, &peercred, len))
1447 return -EFAULT;
1448 goto lenout;
1449 }
1450
1451 case SO_PEERGROUPS:
1452 {
1453 const struct cred *cred;
1454 int ret, n;
1455
1456 cred = sk_get_peer_cred(sk);
1457 if (!cred)
1458 return -ENODATA;
1459
1460 n = cred->group_info->ngroups;
1461 if (len < n * sizeof(gid_t)) {
1462 len = n * sizeof(gid_t);
1463 put_cred(cred);
1464 return put_user(len, optlen) ? -EFAULT : -ERANGE;
1465 }
1466 len = n * sizeof(gid_t);
1467
1468 ret = groups_to_user((gid_t __user *)optval, cred->group_info);
1469 put_cred(cred);
1470 if (ret)
1471 return ret;
1472 goto lenout;
1473 }
1474
1475 case SO_PEERNAME:
1476 {
1477 char address[128];
1478
1479 lv = sock->ops->getname(sock, (struct sockaddr *)address, 2);
1480 if (lv < 0)
1481 return -ENOTCONN;
1482 if (lv < len)
1483 return -EINVAL;
1484 if (copy_to_user(optval, address, len))
1485 return -EFAULT;
1486 goto lenout;
1487 }
1488
1489 /* Dubious BSD thing... Probably nobody even uses it, but
1490 * the UNIX standard wants it for whatever reason... -DaveM
1491 */
1492 case SO_ACCEPTCONN:
1493 v.val = sk->sk_state == TCP_LISTEN;
1494 break;
1495
1496 case SO_PASSSEC:
1497 v.val = !!test_bit(SOCK_PASSSEC, &sock->flags);
1498 break;
1499
1500 case SO_PEERSEC:
1501 return security_socket_getpeersec_stream(sock, optval, optlen, len);
1502
1503 case SO_MARK:
1504 v.val = sk->sk_mark;
1505 break;
1506
1507 case SO_RXQ_OVFL:
1508 v.val = sock_flag(sk, SOCK_RXQ_OVFL);
1509 break;
1510
1511 case SO_WIFI_STATUS:
1512 v.val = sock_flag(sk, SOCK_WIFI_STATUS);
1513 break;
1514
1515 case SO_PEEK_OFF:
1516 if (!sock->ops->set_peek_off)
1517 return -EOPNOTSUPP;
1518
1519 v.val = sk->sk_peek_off;
1520 break;
1521 case SO_NOFCS:
1522 v.val = sock_flag(sk, SOCK_NOFCS);
1523 break;
1524
1525 case SO_BINDTODEVICE:
1526 return sock_getbindtodevice(sk, optval, optlen, len);
1527
1528 case SO_GET_FILTER:
1529 len = sk_get_filter(sk, (struct sock_filter __user *)optval, len);
1530 if (len < 0)
1531 return len;
1532
1533 goto lenout;
1534
1535 case SO_LOCK_FILTER:
1536 v.val = sock_flag(sk, SOCK_FILTER_LOCKED);
1537 break;
1538
1539 case SO_BPF_EXTENSIONS:
1540 v.val = bpf_tell_extensions();
1541 break;
1542
1543 case SO_SELECT_ERR_QUEUE:
1544 v.val = sock_flag(sk, SOCK_SELECT_ERR_QUEUE);
1545 break;
1546
1547 #ifdef CONFIG_NET_RX_BUSY_POLL
1548 case SO_BUSY_POLL:
1549 v.val = sk->sk_ll_usec;
1550 break;
1551 #endif
1552
1553 case SO_MAX_PACING_RATE:
1554 if (sizeof(v.ulval) != sizeof(v.val) && len >= sizeof(v.ulval)) {
1555 lv = sizeof(v.ulval);
1556 v.ulval = sk->sk_max_pacing_rate;
1557 } else {
1558 /* 32bit version */
1559 v.val = min_t(unsigned long, sk->sk_max_pacing_rate, ~0U);
1560 }
1561 break;
1562
1563 case SO_INCOMING_CPU:
1564 v.val = READ_ONCE(sk->sk_incoming_cpu);
1565 break;
1566
1567 case SO_MEMINFO:
1568 {
1569 u32 meminfo[SK_MEMINFO_VARS];
1570
1571 sk_get_meminfo(sk, meminfo);
1572
1573 len = min_t(unsigned int, len, sizeof(meminfo));
1574 if (copy_to_user(optval, &meminfo, len))
1575 return -EFAULT;
1576
1577 goto lenout;
1578 }
1579
1580 #ifdef CONFIG_NET_RX_BUSY_POLL
1581 case SO_INCOMING_NAPI_ID:
1582 v.val = READ_ONCE(sk->sk_napi_id);
1583
1584 /* aggregate non-NAPI IDs down to 0 */
1585 if (v.val < MIN_NAPI_ID)
1586 v.val = 0;
1587
1588 break;
1589 #endif
1590
1591 case SO_COOKIE:
1592 lv = sizeof(u64);
1593 if (len < lv)
1594 return -EINVAL;
1595 v.val64 = sock_gen_cookie(sk);
1596 break;
1597
1598 case SO_ZEROCOPY:
1599 v.val = sock_flag(sk, SOCK_ZEROCOPY);
1600 break;
1601
1602 case SO_TXTIME:
1603 lv = sizeof(v.txtime);
1604 v.txtime.clockid = sk->sk_clockid;
1605 v.txtime.flags |= sk->sk_txtime_deadline_mode ?
1606 SOF_TXTIME_DEADLINE_MODE : 0;
1607 v.txtime.flags |= sk->sk_txtime_report_errors ?
1608 SOF_TXTIME_REPORT_ERRORS : 0;
1609 break;
1610
1611 case SO_BINDTOIFINDEX:
1612 v.val = sk->sk_bound_dev_if;
1613 break;
1614
1615 default:
1616 /* We implement the SO_SNDLOWAT etc to not be settable
1617 * (1003.1g 7).
1618 */
1619 return -ENOPROTOOPT;
1620 }
1621
1622 if (len > lv)
1623 len = lv;
1624 if (copy_to_user(optval, &v, len))
1625 return -EFAULT;
1626 lenout:
1627 if (put_user(len, optlen))
1628 return -EFAULT;
1629 return 0;
1630 }
1631
1632 /*
1633 * Initialize an sk_lock.
1634 *
1635 * (We also register the sk_lock with the lock validator.)
1636 */
sock_lock_init(struct sock * sk)1637 static inline void sock_lock_init(struct sock *sk)
1638 {
1639 if (sk->sk_kern_sock)
1640 sock_lock_init_class_and_name(
1641 sk,
1642 af_family_kern_slock_key_strings[sk->sk_family],
1643 af_family_kern_slock_keys + sk->sk_family,
1644 af_family_kern_key_strings[sk->sk_family],
1645 af_family_kern_keys + sk->sk_family);
1646 else
1647 sock_lock_init_class_and_name(
1648 sk,
1649 af_family_slock_key_strings[sk->sk_family],
1650 af_family_slock_keys + sk->sk_family,
1651 af_family_key_strings[sk->sk_family],
1652 af_family_keys + sk->sk_family);
1653 }
1654
1655 /*
1656 * Copy all fields from osk to nsk but nsk->sk_refcnt must not change yet,
1657 * even temporarly, because of RCU lookups. sk_node should also be left as is.
1658 * We must not copy fields between sk_dontcopy_begin and sk_dontcopy_end
1659 */
sock_copy(struct sock * nsk,const struct sock * osk)1660 static void sock_copy(struct sock *nsk, const struct sock *osk)
1661 {
1662 const struct proto *prot = READ_ONCE(osk->sk_prot);
1663 #ifdef CONFIG_SECURITY_NETWORK
1664 void *sptr = nsk->sk_security;
1665 #endif
1666 memcpy(nsk, osk, offsetof(struct sock, sk_dontcopy_begin));
1667
1668 memcpy(&nsk->sk_dontcopy_end, &osk->sk_dontcopy_end,
1669 prot->obj_size - offsetof(struct sock, sk_dontcopy_end));
1670
1671 #ifdef CONFIG_SECURITY_NETWORK
1672 nsk->sk_security = sptr;
1673 security_sk_clone(osk, nsk);
1674 #endif
1675 }
1676
sk_prot_alloc(struct proto * prot,gfp_t priority,int family)1677 static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority,
1678 int family)
1679 {
1680 struct sock *sk;
1681 struct kmem_cache *slab;
1682
1683 slab = prot->slab;
1684 if (slab != NULL) {
1685 sk = kmem_cache_alloc(slab, priority & ~__GFP_ZERO);
1686 if (!sk)
1687 return sk;
1688 if (want_init_on_alloc(priority))
1689 sk_prot_clear_nulls(sk, prot->obj_size);
1690 } else
1691 sk = kmalloc(prot->obj_size, priority);
1692
1693 if (sk != NULL) {
1694 if (security_sk_alloc(sk, family, priority))
1695 goto out_free;
1696
1697 if (!try_module_get(prot->owner))
1698 goto out_free_sec;
1699 sk_tx_queue_clear(sk);
1700 }
1701
1702 return sk;
1703
1704 out_free_sec:
1705 security_sk_free(sk);
1706 out_free:
1707 if (slab != NULL)
1708 kmem_cache_free(slab, sk);
1709 else
1710 kfree(sk);
1711 return NULL;
1712 }
1713
sk_prot_free(struct proto * prot,struct sock * sk)1714 static void sk_prot_free(struct proto *prot, struct sock *sk)
1715 {
1716 struct kmem_cache *slab;
1717 struct module *owner;
1718
1719 owner = prot->owner;
1720 slab = prot->slab;
1721
1722 cgroup_sk_free(&sk->sk_cgrp_data);
1723 mem_cgroup_sk_free(sk);
1724 security_sk_free(sk);
1725 if (slab != NULL)
1726 kmem_cache_free(slab, sk);
1727 else
1728 kfree(sk);
1729 module_put(owner);
1730 }
1731
1732 /**
1733 * sk_alloc - All socket objects are allocated here
1734 * @net: the applicable net namespace
1735 * @family: protocol family
1736 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1737 * @prot: struct proto associated with this new sock instance
1738 * @kern: is this to be a kernel socket?
1739 */
sk_alloc(struct net * net,int family,gfp_t priority,struct proto * prot,int kern)1740 struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1741 struct proto *prot, int kern)
1742 {
1743 struct sock *sk;
1744
1745 sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family);
1746 if (sk) {
1747 sk->sk_family = family;
1748 /*
1749 * See comment in struct sock definition to understand
1750 * why we need sk_prot_creator -acme
1751 */
1752 sk->sk_prot = sk->sk_prot_creator = prot;
1753 sk->sk_kern_sock = kern;
1754 sock_lock_init(sk);
1755 sk->sk_net_refcnt = kern ? 0 : 1;
1756 if (likely(sk->sk_net_refcnt)) {
1757 get_net(net);
1758 sock_inuse_add(net, 1);
1759 }
1760
1761 sock_net_set(sk, net);
1762 refcount_set(&sk->sk_wmem_alloc, 1);
1763
1764 mem_cgroup_sk_alloc(sk);
1765 cgroup_sk_alloc(&sk->sk_cgrp_data);
1766 sock_update_classid(&sk->sk_cgrp_data);
1767 sock_update_netprioidx(&sk->sk_cgrp_data);
1768 sk_tx_queue_clear(sk);
1769 }
1770
1771 return sk;
1772 }
1773 EXPORT_SYMBOL(sk_alloc);
1774
1775 /* Sockets having SOCK_RCU_FREE will call this function after one RCU
1776 * grace period. This is the case for UDP sockets and TCP listeners.
1777 */
__sk_destruct(struct rcu_head * head)1778 static void __sk_destruct(struct rcu_head *head)
1779 {
1780 struct sock *sk = container_of(head, struct sock, sk_rcu);
1781 struct sk_filter *filter;
1782
1783 if (sk->sk_destruct)
1784 sk->sk_destruct(sk);
1785
1786 filter = rcu_dereference_check(sk->sk_filter,
1787 refcount_read(&sk->sk_wmem_alloc) == 0);
1788 if (filter) {
1789 sk_filter_uncharge(sk, filter);
1790 RCU_INIT_POINTER(sk->sk_filter, NULL);
1791 }
1792
1793 sock_disable_timestamp(sk, SK_FLAGS_TIMESTAMP);
1794
1795 #ifdef CONFIG_BPF_SYSCALL
1796 bpf_sk_storage_free(sk);
1797 #endif
1798
1799 if (atomic_read(&sk->sk_omem_alloc))
1800 pr_debug("%s: optmem leakage (%d bytes) detected\n",
1801 __func__, atomic_read(&sk->sk_omem_alloc));
1802
1803 if (sk->sk_frag.page) {
1804 put_page(sk->sk_frag.page);
1805 sk->sk_frag.page = NULL;
1806 }
1807
1808 /* We do not need to acquire sk->sk_peer_lock, we are the last user. */
1809 put_cred(sk->sk_peer_cred);
1810 put_pid(sk->sk_peer_pid);
1811
1812 if (likely(sk->sk_net_refcnt))
1813 put_net(sock_net(sk));
1814 sk_prot_free(sk->sk_prot_creator, sk);
1815 }
1816
sk_destruct(struct sock * sk)1817 void sk_destruct(struct sock *sk)
1818 {
1819 bool use_call_rcu = sock_flag(sk, SOCK_RCU_FREE);
1820
1821 if (rcu_access_pointer(sk->sk_reuseport_cb)) {
1822 reuseport_detach_sock(sk);
1823 use_call_rcu = true;
1824 }
1825
1826 if (use_call_rcu)
1827 call_rcu(&sk->sk_rcu, __sk_destruct);
1828 else
1829 __sk_destruct(&sk->sk_rcu);
1830 }
1831
__sk_free(struct sock * sk)1832 static void __sk_free(struct sock *sk)
1833 {
1834 if (likely(sk->sk_net_refcnt))
1835 sock_inuse_add(sock_net(sk), -1);
1836
1837 if (unlikely(sk->sk_net_refcnt && sock_diag_has_destroy_listeners(sk)))
1838 sock_diag_broadcast_destroy(sk);
1839 else
1840 sk_destruct(sk);
1841 }
1842
sk_free(struct sock * sk)1843 void sk_free(struct sock *sk)
1844 {
1845 /*
1846 * We subtract one from sk_wmem_alloc and can know if
1847 * some packets are still in some tx queue.
1848 * If not null, sock_wfree() will call __sk_free(sk) later
1849 */
1850 if (refcount_dec_and_test(&sk->sk_wmem_alloc))
1851 __sk_free(sk);
1852 }
1853 EXPORT_SYMBOL(sk_free);
1854
sk_init_common(struct sock * sk)1855 static void sk_init_common(struct sock *sk)
1856 {
1857 skb_queue_head_init(&sk->sk_receive_queue);
1858 skb_queue_head_init(&sk->sk_write_queue);
1859 skb_queue_head_init(&sk->sk_error_queue);
1860
1861 rwlock_init(&sk->sk_callback_lock);
1862 lockdep_set_class_and_name(&sk->sk_receive_queue.lock,
1863 af_rlock_keys + sk->sk_family,
1864 af_family_rlock_key_strings[sk->sk_family]);
1865 lockdep_set_class_and_name(&sk->sk_write_queue.lock,
1866 af_wlock_keys + sk->sk_family,
1867 af_family_wlock_key_strings[sk->sk_family]);
1868 lockdep_set_class_and_name(&sk->sk_error_queue.lock,
1869 af_elock_keys + sk->sk_family,
1870 af_family_elock_key_strings[sk->sk_family]);
1871 lockdep_set_class_and_name(&sk->sk_callback_lock,
1872 af_callback_keys + sk->sk_family,
1873 af_family_clock_key_strings[sk->sk_family]);
1874 }
1875
1876 /**
1877 * sk_clone_lock - clone a socket, and lock its clone
1878 * @sk: the socket to clone
1879 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1880 *
1881 * Caller must unlock socket even in error path (bh_unlock_sock(newsk))
1882 */
sk_clone_lock(const struct sock * sk,const gfp_t priority)1883 struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority)
1884 {
1885 struct proto *prot = READ_ONCE(sk->sk_prot);
1886 struct sk_filter *filter;
1887 bool is_charged = true;
1888 struct sock *newsk;
1889
1890 newsk = sk_prot_alloc(prot, priority, sk->sk_family);
1891 if (!newsk)
1892 goto out;
1893
1894 sock_copy(newsk, sk);
1895
1896 newsk->sk_prot_creator = prot;
1897
1898 /* SANITY */
1899 if (likely(newsk->sk_net_refcnt)) {
1900 get_net(sock_net(newsk));
1901 sock_inuse_add(sock_net(newsk), 1);
1902 }
1903 sk_node_init(&newsk->sk_node);
1904 sock_lock_init(newsk);
1905 bh_lock_sock(newsk);
1906 newsk->sk_backlog.head = newsk->sk_backlog.tail = NULL;
1907 newsk->sk_backlog.len = 0;
1908
1909 atomic_set(&newsk->sk_rmem_alloc, 0);
1910
1911 /* sk_wmem_alloc set to one (see sk_free() and sock_wfree()) */
1912 refcount_set(&newsk->sk_wmem_alloc, 1);
1913
1914 atomic_set(&newsk->sk_omem_alloc, 0);
1915 sk_init_common(newsk);
1916
1917 newsk->sk_dst_cache = NULL;
1918 newsk->sk_dst_pending_confirm = 0;
1919 newsk->sk_wmem_queued = 0;
1920 newsk->sk_forward_alloc = 0;
1921 atomic_set(&newsk->sk_drops, 0);
1922 newsk->sk_send_head = NULL;
1923 newsk->sk_userlocks = sk->sk_userlocks & ~SOCK_BINDPORT_LOCK;
1924 atomic_set(&newsk->sk_zckey, 0);
1925
1926 sock_reset_flag(newsk, SOCK_DONE);
1927
1928 /* sk->sk_memcg will be populated at accept() time */
1929 newsk->sk_memcg = NULL;
1930
1931 cgroup_sk_clone(&newsk->sk_cgrp_data);
1932
1933 rcu_read_lock();
1934 filter = rcu_dereference(sk->sk_filter);
1935 if (filter != NULL)
1936 /* though it's an empty new sock, the charging may fail
1937 * if sysctl_optmem_max was changed between creation of
1938 * original socket and cloning
1939 */
1940 is_charged = sk_filter_charge(newsk, filter);
1941 RCU_INIT_POINTER(newsk->sk_filter, filter);
1942 rcu_read_unlock();
1943
1944 if (unlikely(!is_charged || xfrm_sk_clone_policy(newsk, sk))) {
1945 /* We need to make sure that we don't uncharge the new
1946 * socket if we couldn't charge it in the first place
1947 * as otherwise we uncharge the parent's filter.
1948 */
1949 if (!is_charged)
1950 RCU_INIT_POINTER(newsk->sk_filter, NULL);
1951 sk_free_unlock_clone(newsk);
1952 newsk = NULL;
1953 goto out;
1954 }
1955 RCU_INIT_POINTER(newsk->sk_reuseport_cb, NULL);
1956
1957 if (bpf_sk_storage_clone(sk, newsk)) {
1958 sk_free_unlock_clone(newsk);
1959 newsk = NULL;
1960 goto out;
1961 }
1962
1963 /* Clear sk_user_data if parent had the pointer tagged
1964 * as not suitable for copying when cloning.
1965 */
1966 if (sk_user_data_is_nocopy(newsk))
1967 newsk->sk_user_data = NULL;
1968
1969 newsk->sk_err = 0;
1970 newsk->sk_err_soft = 0;
1971 newsk->sk_priority = 0;
1972 newsk->sk_incoming_cpu = raw_smp_processor_id();
1973
1974 /* Before updating sk_refcnt, we must commit prior changes to memory
1975 * (Documentation/RCU/rculist_nulls.rst for details)
1976 */
1977 smp_wmb();
1978 refcount_set(&newsk->sk_refcnt, 2);
1979
1980 /* Increment the counter in the same struct proto as the master
1981 * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that
1982 * is the same as sk->sk_prot->socks, as this field was copied
1983 * with memcpy).
1984 *
1985 * This _changes_ the previous behaviour, where
1986 * tcp_create_openreq_child always was incrementing the
1987 * equivalent to tcp_prot->socks (inet_sock_nr), so this have
1988 * to be taken into account in all callers. -acme
1989 */
1990 sk_refcnt_debug_inc(newsk);
1991 sk_set_socket(newsk, NULL);
1992 sk_tx_queue_clear(newsk);
1993 RCU_INIT_POINTER(newsk->sk_wq, NULL);
1994
1995 if (newsk->sk_prot->sockets_allocated)
1996 sk_sockets_allocated_inc(newsk);
1997
1998 if (sock_needs_netstamp(sk) && newsk->sk_flags & SK_FLAGS_TIMESTAMP)
1999 net_enable_timestamp();
2000 out:
2001 return newsk;
2002 }
2003 EXPORT_SYMBOL_GPL(sk_clone_lock);
2004
sk_free_unlock_clone(struct sock * sk)2005 void sk_free_unlock_clone(struct sock *sk)
2006 {
2007 /* It is still raw copy of parent, so invalidate
2008 * destructor and make plain sk_free() */
2009 sk->sk_destruct = NULL;
2010 bh_unlock_sock(sk);
2011 sk_free(sk);
2012 }
2013 EXPORT_SYMBOL_GPL(sk_free_unlock_clone);
2014
sk_setup_caps(struct sock * sk,struct dst_entry * dst)2015 void sk_setup_caps(struct sock *sk, struct dst_entry *dst)
2016 {
2017 u32 max_segs = 1;
2018
2019 sk_dst_set(sk, dst);
2020 sk->sk_route_caps = dst->dev->features | sk->sk_route_forced_caps;
2021 if (sk->sk_route_caps & NETIF_F_GSO)
2022 sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE;
2023 sk->sk_route_caps &= ~sk->sk_route_nocaps;
2024 if (sk_can_gso(sk)) {
2025 if (dst->header_len && !xfrm_dst_offload_ok(dst)) {
2026 sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
2027 } else {
2028 sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM;
2029 sk->sk_gso_max_size = dst->dev->gso_max_size;
2030 max_segs = max_t(u32, dst->dev->gso_max_segs, 1);
2031 }
2032 }
2033 sk->sk_gso_max_segs = max_segs;
2034 }
2035 EXPORT_SYMBOL_GPL(sk_setup_caps);
2036
2037 /*
2038 * Simple resource managers for sockets.
2039 */
2040
2041
2042 /*
2043 * Write buffer destructor automatically called from kfree_skb.
2044 */
sock_wfree(struct sk_buff * skb)2045 void sock_wfree(struct sk_buff *skb)
2046 {
2047 struct sock *sk = skb->sk;
2048 unsigned int len = skb->truesize;
2049
2050 if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE)) {
2051 /*
2052 * Keep a reference on sk_wmem_alloc, this will be released
2053 * after sk_write_space() call
2054 */
2055 WARN_ON(refcount_sub_and_test(len - 1, &sk->sk_wmem_alloc));
2056 sk->sk_write_space(sk);
2057 len = 1;
2058 }
2059 /*
2060 * if sk_wmem_alloc reaches 0, we must finish what sk_free()
2061 * could not do because of in-flight packets
2062 */
2063 if (refcount_sub_and_test(len, &sk->sk_wmem_alloc))
2064 __sk_free(sk);
2065 }
2066 EXPORT_SYMBOL(sock_wfree);
2067
2068 /* This variant of sock_wfree() is used by TCP,
2069 * since it sets SOCK_USE_WRITE_QUEUE.
2070 */
__sock_wfree(struct sk_buff * skb)2071 void __sock_wfree(struct sk_buff *skb)
2072 {
2073 struct sock *sk = skb->sk;
2074
2075 if (refcount_sub_and_test(skb->truesize, &sk->sk_wmem_alloc))
2076 __sk_free(sk);
2077 }
2078
skb_set_owner_w(struct sk_buff * skb,struct sock * sk)2079 void skb_set_owner_w(struct sk_buff *skb, struct sock *sk)
2080 {
2081 skb_orphan(skb);
2082 skb->sk = sk;
2083 #ifdef CONFIG_INET
2084 if (unlikely(!sk_fullsock(sk))) {
2085 skb->destructor = sock_edemux;
2086 sock_hold(sk);
2087 return;
2088 }
2089 #endif
2090 skb->destructor = sock_wfree;
2091 skb_set_hash_from_sk(skb, sk);
2092 /*
2093 * We used to take a refcount on sk, but following operation
2094 * is enough to guarantee sk_free() wont free this sock until
2095 * all in-flight packets are completed
2096 */
2097 refcount_add(skb->truesize, &sk->sk_wmem_alloc);
2098 }
2099 EXPORT_SYMBOL(skb_set_owner_w);
2100
can_skb_orphan_partial(const struct sk_buff * skb)2101 static bool can_skb_orphan_partial(const struct sk_buff *skb)
2102 {
2103 #ifdef CONFIG_TLS_DEVICE
2104 /* Drivers depend on in-order delivery for crypto offload,
2105 * partial orphan breaks out-of-order-OK logic.
2106 */
2107 if (skb->decrypted)
2108 return false;
2109 #endif
2110 return (skb->destructor == sock_wfree ||
2111 (IS_ENABLED(CONFIG_INET) && skb->destructor == tcp_wfree));
2112 }
2113
2114 /* This helper is used by netem, as it can hold packets in its
2115 * delay queue. We want to allow the owner socket to send more
2116 * packets, as if they were already TX completed by a typical driver.
2117 * But we also want to keep skb->sk set because some packet schedulers
2118 * rely on it (sch_fq for example).
2119 */
skb_orphan_partial(struct sk_buff * skb)2120 void skb_orphan_partial(struct sk_buff *skb)
2121 {
2122 if (skb_is_tcp_pure_ack(skb))
2123 return;
2124
2125 if (can_skb_orphan_partial(skb) && skb_set_owner_sk_safe(skb, skb->sk))
2126 return;
2127
2128 skb_orphan(skb);
2129 }
2130 EXPORT_SYMBOL(skb_orphan_partial);
2131
2132 /*
2133 * Read buffer destructor automatically called from kfree_skb.
2134 */
sock_rfree(struct sk_buff * skb)2135 void sock_rfree(struct sk_buff *skb)
2136 {
2137 struct sock *sk = skb->sk;
2138 unsigned int len = skb->truesize;
2139
2140 atomic_sub(len, &sk->sk_rmem_alloc);
2141 sk_mem_uncharge(sk, len);
2142 }
2143 EXPORT_SYMBOL(sock_rfree);
2144
2145 /*
2146 * Buffer destructor for skbs that are not used directly in read or write
2147 * path, e.g. for error handler skbs. Automatically called from kfree_skb.
2148 */
sock_efree(struct sk_buff * skb)2149 void sock_efree(struct sk_buff *skb)
2150 {
2151 sock_put(skb->sk);
2152 }
2153 EXPORT_SYMBOL(sock_efree);
2154
2155 /* Buffer destructor for prefetch/receive path where reference count may
2156 * not be held, e.g. for listen sockets.
2157 */
2158 #ifdef CONFIG_INET
sock_pfree(struct sk_buff * skb)2159 void sock_pfree(struct sk_buff *skb)
2160 {
2161 if (sk_is_refcounted(skb->sk))
2162 sock_gen_put(skb->sk);
2163 }
2164 EXPORT_SYMBOL(sock_pfree);
2165 #endif /* CONFIG_INET */
2166
sock_i_uid(struct sock * sk)2167 kuid_t sock_i_uid(struct sock *sk)
2168 {
2169 kuid_t uid;
2170
2171 read_lock_bh(&sk->sk_callback_lock);
2172 uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : GLOBAL_ROOT_UID;
2173 read_unlock_bh(&sk->sk_callback_lock);
2174 return uid;
2175 }
2176 EXPORT_SYMBOL(sock_i_uid);
2177
sock_i_ino(struct sock * sk)2178 unsigned long sock_i_ino(struct sock *sk)
2179 {
2180 unsigned long ino;
2181
2182 read_lock_bh(&sk->sk_callback_lock);
2183 ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0;
2184 read_unlock_bh(&sk->sk_callback_lock);
2185 return ino;
2186 }
2187 EXPORT_SYMBOL(sock_i_ino);
2188
2189 /*
2190 * Allocate a skb from the socket's send buffer.
2191 */
sock_wmalloc(struct sock * sk,unsigned long size,int force,gfp_t priority)2192 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
2193 gfp_t priority)
2194 {
2195 if (force ||
2196 refcount_read(&sk->sk_wmem_alloc) < READ_ONCE(sk->sk_sndbuf)) {
2197 struct sk_buff *skb = alloc_skb(size, priority);
2198
2199 if (skb) {
2200 skb_set_owner_w(skb, sk);
2201 return skb;
2202 }
2203 }
2204 return NULL;
2205 }
2206 EXPORT_SYMBOL(sock_wmalloc);
2207
sock_ofree(struct sk_buff * skb)2208 static void sock_ofree(struct sk_buff *skb)
2209 {
2210 struct sock *sk = skb->sk;
2211
2212 atomic_sub(skb->truesize, &sk->sk_omem_alloc);
2213 }
2214
sock_omalloc(struct sock * sk,unsigned long size,gfp_t priority)2215 struct sk_buff *sock_omalloc(struct sock *sk, unsigned long size,
2216 gfp_t priority)
2217 {
2218 struct sk_buff *skb;
2219
2220 /* small safe race: SKB_TRUESIZE may differ from final skb->truesize */
2221 if (atomic_read(&sk->sk_omem_alloc) + SKB_TRUESIZE(size) >
2222 sysctl_optmem_max)
2223 return NULL;
2224
2225 skb = alloc_skb(size, priority);
2226 if (!skb)
2227 return NULL;
2228
2229 atomic_add(skb->truesize, &sk->sk_omem_alloc);
2230 skb->sk = sk;
2231 skb->destructor = sock_ofree;
2232 return skb;
2233 }
2234
2235 /*
2236 * Allocate a memory block from the socket's option memory buffer.
2237 */
sock_kmalloc(struct sock * sk,int size,gfp_t priority)2238 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority)
2239 {
2240 if ((unsigned int)size <= sysctl_optmem_max &&
2241 atomic_read(&sk->sk_omem_alloc) + size < sysctl_optmem_max) {
2242 void *mem;
2243 /* First do the add, to avoid the race if kmalloc
2244 * might sleep.
2245 */
2246 atomic_add(size, &sk->sk_omem_alloc);
2247 mem = kmalloc(size, priority);
2248 if (mem)
2249 return mem;
2250 atomic_sub(size, &sk->sk_omem_alloc);
2251 }
2252 return NULL;
2253 }
2254 EXPORT_SYMBOL(sock_kmalloc);
2255
2256 /* Free an option memory block. Note, we actually want the inline
2257 * here as this allows gcc to detect the nullify and fold away the
2258 * condition entirely.
2259 */
__sock_kfree_s(struct sock * sk,void * mem,int size,const bool nullify)2260 static inline void __sock_kfree_s(struct sock *sk, void *mem, int size,
2261 const bool nullify)
2262 {
2263 if (WARN_ON_ONCE(!mem))
2264 return;
2265 if (nullify)
2266 kfree_sensitive(mem);
2267 else
2268 kfree(mem);
2269 atomic_sub(size, &sk->sk_omem_alloc);
2270 }
2271
sock_kfree_s(struct sock * sk,void * mem,int size)2272 void sock_kfree_s(struct sock *sk, void *mem, int size)
2273 {
2274 __sock_kfree_s(sk, mem, size, false);
2275 }
2276 EXPORT_SYMBOL(sock_kfree_s);
2277
sock_kzfree_s(struct sock * sk,void * mem,int size)2278 void sock_kzfree_s(struct sock *sk, void *mem, int size)
2279 {
2280 __sock_kfree_s(sk, mem, size, true);
2281 }
2282 EXPORT_SYMBOL(sock_kzfree_s);
2283
2284 /* It is almost wait_for_tcp_memory minus release_sock/lock_sock.
2285 I think, these locks should be removed for datagram sockets.
2286 */
sock_wait_for_wmem(struct sock * sk,long timeo)2287 static long sock_wait_for_wmem(struct sock *sk, long timeo)
2288 {
2289 DEFINE_WAIT(wait);
2290
2291 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
2292 for (;;) {
2293 if (!timeo)
2294 break;
2295 if (signal_pending(current))
2296 break;
2297 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
2298 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
2299 if (refcount_read(&sk->sk_wmem_alloc) < READ_ONCE(sk->sk_sndbuf))
2300 break;
2301 if (sk->sk_shutdown & SEND_SHUTDOWN)
2302 break;
2303 if (sk->sk_err)
2304 break;
2305 timeo = schedule_timeout(timeo);
2306 }
2307 finish_wait(sk_sleep(sk), &wait);
2308 return timeo;
2309 }
2310
2311
2312 /*
2313 * Generic send/receive buffer handlers
2314 */
2315
sock_alloc_send_pskb(struct sock * sk,unsigned long header_len,unsigned long data_len,int noblock,int * errcode,int max_page_order)2316 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
2317 unsigned long data_len, int noblock,
2318 int *errcode, int max_page_order)
2319 {
2320 struct sk_buff *skb;
2321 long timeo;
2322 int err;
2323
2324 timeo = sock_sndtimeo(sk, noblock);
2325 for (;;) {
2326 err = sock_error(sk);
2327 if (err != 0)
2328 goto failure;
2329
2330 err = -EPIPE;
2331 if (sk->sk_shutdown & SEND_SHUTDOWN)
2332 goto failure;
2333
2334 if (sk_wmem_alloc_get(sk) < READ_ONCE(sk->sk_sndbuf))
2335 break;
2336
2337 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
2338 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
2339 err = -EAGAIN;
2340 if (!timeo)
2341 goto failure;
2342 if (signal_pending(current))
2343 goto interrupted;
2344 timeo = sock_wait_for_wmem(sk, timeo);
2345 }
2346 skb = alloc_skb_with_frags(header_len, data_len, max_page_order,
2347 errcode, sk->sk_allocation);
2348 if (skb)
2349 skb_set_owner_w(skb, sk);
2350 return skb;
2351
2352 interrupted:
2353 err = sock_intr_errno(timeo);
2354 failure:
2355 *errcode = err;
2356 return NULL;
2357 }
2358 EXPORT_SYMBOL(sock_alloc_send_pskb);
2359
sock_alloc_send_skb(struct sock * sk,unsigned long size,int noblock,int * errcode)2360 struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
2361 int noblock, int *errcode)
2362 {
2363 return sock_alloc_send_pskb(sk, size, 0, noblock, errcode, 0);
2364 }
2365 EXPORT_SYMBOL(sock_alloc_send_skb);
2366
__sock_cmsg_send(struct sock * sk,struct msghdr * msg,struct cmsghdr * cmsg,struct sockcm_cookie * sockc)2367 int __sock_cmsg_send(struct sock *sk, struct msghdr *msg, struct cmsghdr *cmsg,
2368 struct sockcm_cookie *sockc)
2369 {
2370 u32 tsflags;
2371
2372 switch (cmsg->cmsg_type) {
2373 case SO_MARK:
2374 if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
2375 return -EPERM;
2376 if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32)))
2377 return -EINVAL;
2378 sockc->mark = *(u32 *)CMSG_DATA(cmsg);
2379 break;
2380 case SO_TIMESTAMPING_OLD:
2381 if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32)))
2382 return -EINVAL;
2383
2384 tsflags = *(u32 *)CMSG_DATA(cmsg);
2385 if (tsflags & ~SOF_TIMESTAMPING_TX_RECORD_MASK)
2386 return -EINVAL;
2387
2388 sockc->tsflags &= ~SOF_TIMESTAMPING_TX_RECORD_MASK;
2389 sockc->tsflags |= tsflags;
2390 break;
2391 case SCM_TXTIME:
2392 if (!sock_flag(sk, SOCK_TXTIME))
2393 return -EINVAL;
2394 if (cmsg->cmsg_len != CMSG_LEN(sizeof(u64)))
2395 return -EINVAL;
2396 sockc->transmit_time = get_unaligned((u64 *)CMSG_DATA(cmsg));
2397 break;
2398 /* SCM_RIGHTS and SCM_CREDENTIALS are semantically in SOL_UNIX. */
2399 case SCM_RIGHTS:
2400 case SCM_CREDENTIALS:
2401 break;
2402 default:
2403 return -EINVAL;
2404 }
2405 return 0;
2406 }
2407 EXPORT_SYMBOL(__sock_cmsg_send);
2408
sock_cmsg_send(struct sock * sk,struct msghdr * msg,struct sockcm_cookie * sockc)2409 int sock_cmsg_send(struct sock *sk, struct msghdr *msg,
2410 struct sockcm_cookie *sockc)
2411 {
2412 struct cmsghdr *cmsg;
2413 int ret;
2414
2415 for_each_cmsghdr(cmsg, msg) {
2416 if (!CMSG_OK(msg, cmsg))
2417 return -EINVAL;
2418 if (cmsg->cmsg_level != SOL_SOCKET)
2419 continue;
2420 ret = __sock_cmsg_send(sk, msg, cmsg, sockc);
2421 if (ret)
2422 return ret;
2423 }
2424 return 0;
2425 }
2426 EXPORT_SYMBOL(sock_cmsg_send);
2427
sk_enter_memory_pressure(struct sock * sk)2428 static void sk_enter_memory_pressure(struct sock *sk)
2429 {
2430 if (!sk->sk_prot->enter_memory_pressure)
2431 return;
2432
2433 sk->sk_prot->enter_memory_pressure(sk);
2434 }
2435
sk_leave_memory_pressure(struct sock * sk)2436 static void sk_leave_memory_pressure(struct sock *sk)
2437 {
2438 if (sk->sk_prot->leave_memory_pressure) {
2439 sk->sk_prot->leave_memory_pressure(sk);
2440 } else {
2441 unsigned long *memory_pressure = sk->sk_prot->memory_pressure;
2442
2443 if (memory_pressure && READ_ONCE(*memory_pressure))
2444 WRITE_ONCE(*memory_pressure, 0);
2445 }
2446 }
2447
2448 DEFINE_STATIC_KEY_FALSE(net_high_order_alloc_disable_key);
2449
2450 /**
2451 * skb_page_frag_refill - check that a page_frag contains enough room
2452 * @sz: minimum size of the fragment we want to get
2453 * @pfrag: pointer to page_frag
2454 * @gfp: priority for memory allocation
2455 *
2456 * Note: While this allocator tries to use high order pages, there is
2457 * no guarantee that allocations succeed. Therefore, @sz MUST be
2458 * less or equal than PAGE_SIZE.
2459 */
skb_page_frag_refill(unsigned int sz,struct page_frag * pfrag,gfp_t gfp)2460 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t gfp)
2461 {
2462 if (pfrag->page) {
2463 if (page_ref_count(pfrag->page) == 1) {
2464 pfrag->offset = 0;
2465 return true;
2466 }
2467 if (pfrag->offset + sz <= pfrag->size)
2468 return true;
2469 put_page(pfrag->page);
2470 }
2471
2472 pfrag->offset = 0;
2473 if (SKB_FRAG_PAGE_ORDER &&
2474 !static_branch_unlikely(&net_high_order_alloc_disable_key)) {
2475 /* Avoid direct reclaim but allow kswapd to wake */
2476 pfrag->page = alloc_pages((gfp & ~__GFP_DIRECT_RECLAIM) |
2477 __GFP_COMP | __GFP_NOWARN |
2478 __GFP_NORETRY,
2479 SKB_FRAG_PAGE_ORDER);
2480 if (likely(pfrag->page)) {
2481 pfrag->size = PAGE_SIZE << SKB_FRAG_PAGE_ORDER;
2482 return true;
2483 }
2484 }
2485 pfrag->page = alloc_page(gfp);
2486 if (likely(pfrag->page)) {
2487 pfrag->size = PAGE_SIZE;
2488 return true;
2489 }
2490 return false;
2491 }
2492 EXPORT_SYMBOL(skb_page_frag_refill);
2493
sk_page_frag_refill(struct sock * sk,struct page_frag * pfrag)2494 bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag)
2495 {
2496 if (likely(skb_page_frag_refill(32U, pfrag, sk->sk_allocation)))
2497 return true;
2498
2499 sk_enter_memory_pressure(sk);
2500 sk_stream_moderate_sndbuf(sk);
2501 return false;
2502 }
2503 EXPORT_SYMBOL(sk_page_frag_refill);
2504
__lock_sock(struct sock * sk)2505 static void __lock_sock(struct sock *sk)
2506 __releases(&sk->sk_lock.slock)
2507 __acquires(&sk->sk_lock.slock)
2508 {
2509 DEFINE_WAIT(wait);
2510
2511 for (;;) {
2512 prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait,
2513 TASK_UNINTERRUPTIBLE);
2514 spin_unlock_bh(&sk->sk_lock.slock);
2515 schedule();
2516 spin_lock_bh(&sk->sk_lock.slock);
2517 if (!sock_owned_by_user(sk))
2518 break;
2519 }
2520 finish_wait(&sk->sk_lock.wq, &wait);
2521 }
2522
__release_sock(struct sock * sk)2523 void __release_sock(struct sock *sk)
2524 __releases(&sk->sk_lock.slock)
2525 __acquires(&sk->sk_lock.slock)
2526 {
2527 struct sk_buff *skb, *next;
2528
2529 while ((skb = sk->sk_backlog.head) != NULL) {
2530 sk->sk_backlog.head = sk->sk_backlog.tail = NULL;
2531
2532 spin_unlock_bh(&sk->sk_lock.slock);
2533
2534 do {
2535 next = skb->next;
2536 prefetch(next);
2537 WARN_ON_ONCE(skb_dst_is_noref(skb));
2538 skb_mark_not_on_list(skb);
2539 sk_backlog_rcv(sk, skb);
2540
2541 cond_resched();
2542
2543 skb = next;
2544 } while (skb != NULL);
2545
2546 spin_lock_bh(&sk->sk_lock.slock);
2547 }
2548
2549 /*
2550 * Doing the zeroing here guarantee we can not loop forever
2551 * while a wild producer attempts to flood us.
2552 */
2553 sk->sk_backlog.len = 0;
2554 }
2555
__sk_flush_backlog(struct sock * sk)2556 void __sk_flush_backlog(struct sock *sk)
2557 {
2558 spin_lock_bh(&sk->sk_lock.slock);
2559 __release_sock(sk);
2560 spin_unlock_bh(&sk->sk_lock.slock);
2561 }
2562
2563 /**
2564 * sk_wait_data - wait for data to arrive at sk_receive_queue
2565 * @sk: sock to wait on
2566 * @timeo: for how long
2567 * @skb: last skb seen on sk_receive_queue
2568 *
2569 * Now socket state including sk->sk_err is changed only under lock,
2570 * hence we may omit checks after joining wait queue.
2571 * We check receive queue before schedule() only as optimization;
2572 * it is very likely that release_sock() added new data.
2573 */
sk_wait_data(struct sock * sk,long * timeo,const struct sk_buff * skb)2574 int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb)
2575 {
2576 DEFINE_WAIT_FUNC(wait, woken_wake_function);
2577 int rc;
2578
2579 add_wait_queue(sk_sleep(sk), &wait);
2580 sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk);
2581 rc = sk_wait_event(sk, timeo, skb_peek_tail(&sk->sk_receive_queue) != skb, &wait);
2582 sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk);
2583 remove_wait_queue(sk_sleep(sk), &wait);
2584 return rc;
2585 }
2586 EXPORT_SYMBOL(sk_wait_data);
2587
2588 /**
2589 * __sk_mem_raise_allocated - increase memory_allocated
2590 * @sk: socket
2591 * @size: memory size to allocate
2592 * @amt: pages to allocate
2593 * @kind: allocation type
2594 *
2595 * Similar to __sk_mem_schedule(), but does not update sk_forward_alloc
2596 */
__sk_mem_raise_allocated(struct sock * sk,int size,int amt,int kind)2597 int __sk_mem_raise_allocated(struct sock *sk, int size, int amt, int kind)
2598 {
2599 struct proto *prot = sk->sk_prot;
2600 long allocated = sk_memory_allocated_add(sk, amt);
2601 bool charged = true;
2602
2603 if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
2604 !(charged = mem_cgroup_charge_skmem(sk->sk_memcg, amt)))
2605 goto suppress_allocation;
2606
2607 /* Under limit. */
2608 if (allocated <= sk_prot_mem_limits(sk, 0)) {
2609 sk_leave_memory_pressure(sk);
2610 return 1;
2611 }
2612
2613 /* Under pressure. */
2614 if (allocated > sk_prot_mem_limits(sk, 1))
2615 sk_enter_memory_pressure(sk);
2616
2617 /* Over hard limit. */
2618 if (allocated > sk_prot_mem_limits(sk, 2))
2619 goto suppress_allocation;
2620
2621 /* guarantee minimum buffer size under pressure */
2622 if (kind == SK_MEM_RECV) {
2623 if (atomic_read(&sk->sk_rmem_alloc) < sk_get_rmem0(sk, prot))
2624 return 1;
2625
2626 } else { /* SK_MEM_SEND */
2627 int wmem0 = sk_get_wmem0(sk, prot);
2628
2629 if (sk->sk_type == SOCK_STREAM) {
2630 if (sk->sk_wmem_queued < wmem0)
2631 return 1;
2632 } else if (refcount_read(&sk->sk_wmem_alloc) < wmem0) {
2633 return 1;
2634 }
2635 }
2636
2637 if (sk_has_memory_pressure(sk)) {
2638 u64 alloc;
2639
2640 if (!sk_under_memory_pressure(sk))
2641 return 1;
2642 alloc = sk_sockets_allocated_read_positive(sk);
2643 if (sk_prot_mem_limits(sk, 2) > alloc *
2644 sk_mem_pages(sk->sk_wmem_queued +
2645 atomic_read(&sk->sk_rmem_alloc) +
2646 sk->sk_forward_alloc))
2647 return 1;
2648 }
2649
2650 suppress_allocation:
2651
2652 if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) {
2653 sk_stream_moderate_sndbuf(sk);
2654
2655 /* Fail only if socket is _under_ its sndbuf.
2656 * In this case we cannot block, so that we have to fail.
2657 */
2658 if (sk->sk_wmem_queued + size >= sk->sk_sndbuf)
2659 return 1;
2660 }
2661
2662 if (kind == SK_MEM_SEND || (kind == SK_MEM_RECV && charged))
2663 trace_sock_exceed_buf_limit(sk, prot, allocated, kind);
2664
2665 sk_memory_allocated_sub(sk, amt);
2666
2667 if (mem_cgroup_sockets_enabled && sk->sk_memcg)
2668 mem_cgroup_uncharge_skmem(sk->sk_memcg, amt);
2669
2670 return 0;
2671 }
2672 EXPORT_SYMBOL(__sk_mem_raise_allocated);
2673
2674 /**
2675 * __sk_mem_schedule - increase sk_forward_alloc and memory_allocated
2676 * @sk: socket
2677 * @size: memory size to allocate
2678 * @kind: allocation type
2679 *
2680 * If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means
2681 * rmem allocation. This function assumes that protocols which have
2682 * memory_pressure use sk_wmem_queued as write buffer accounting.
2683 */
__sk_mem_schedule(struct sock * sk,int size,int kind)2684 int __sk_mem_schedule(struct sock *sk, int size, int kind)
2685 {
2686 int ret, amt = sk_mem_pages(size);
2687
2688 sk->sk_forward_alloc += amt << SK_MEM_QUANTUM_SHIFT;
2689 ret = __sk_mem_raise_allocated(sk, size, amt, kind);
2690 if (!ret)
2691 sk->sk_forward_alloc -= amt << SK_MEM_QUANTUM_SHIFT;
2692 return ret;
2693 }
2694 EXPORT_SYMBOL(__sk_mem_schedule);
2695
2696 /**
2697 * __sk_mem_reduce_allocated - reclaim memory_allocated
2698 * @sk: socket
2699 * @amount: number of quanta
2700 *
2701 * Similar to __sk_mem_reclaim(), but does not update sk_forward_alloc
2702 */
__sk_mem_reduce_allocated(struct sock * sk,int amount)2703 void __sk_mem_reduce_allocated(struct sock *sk, int amount)
2704 {
2705 sk_memory_allocated_sub(sk, amount);
2706
2707 if (mem_cgroup_sockets_enabled && sk->sk_memcg)
2708 mem_cgroup_uncharge_skmem(sk->sk_memcg, amount);
2709
2710 if (sk_under_memory_pressure(sk) &&
2711 (sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)))
2712 sk_leave_memory_pressure(sk);
2713 }
2714 EXPORT_SYMBOL(__sk_mem_reduce_allocated);
2715
2716 /**
2717 * __sk_mem_reclaim - reclaim sk_forward_alloc and memory_allocated
2718 * @sk: socket
2719 * @amount: number of bytes (rounded down to a SK_MEM_QUANTUM multiple)
2720 */
__sk_mem_reclaim(struct sock * sk,int amount)2721 void __sk_mem_reclaim(struct sock *sk, int amount)
2722 {
2723 amount >>= SK_MEM_QUANTUM_SHIFT;
2724 sk->sk_forward_alloc -= amount << SK_MEM_QUANTUM_SHIFT;
2725 __sk_mem_reduce_allocated(sk, amount);
2726 }
2727 EXPORT_SYMBOL(__sk_mem_reclaim);
2728
sk_set_peek_off(struct sock * sk,int val)2729 int sk_set_peek_off(struct sock *sk, int val)
2730 {
2731 sk->sk_peek_off = val;
2732 return 0;
2733 }
2734 EXPORT_SYMBOL_GPL(sk_set_peek_off);
2735
2736 /*
2737 * Set of default routines for initialising struct proto_ops when
2738 * the protocol does not support a particular function. In certain
2739 * cases where it makes no sense for a protocol to have a "do nothing"
2740 * function, some default processing is provided.
2741 */
2742
sock_no_bind(struct socket * sock,struct sockaddr * saddr,int len)2743 int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len)
2744 {
2745 return -EOPNOTSUPP;
2746 }
2747 EXPORT_SYMBOL(sock_no_bind);
2748
sock_no_connect(struct socket * sock,struct sockaddr * saddr,int len,int flags)2749 int sock_no_connect(struct socket *sock, struct sockaddr *saddr,
2750 int len, int flags)
2751 {
2752 return -EOPNOTSUPP;
2753 }
2754 EXPORT_SYMBOL(sock_no_connect);
2755
sock_no_socketpair(struct socket * sock1,struct socket * sock2)2756 int sock_no_socketpair(struct socket *sock1, struct socket *sock2)
2757 {
2758 return -EOPNOTSUPP;
2759 }
2760 EXPORT_SYMBOL(sock_no_socketpair);
2761
sock_no_accept(struct socket * sock,struct socket * newsock,int flags,bool kern)2762 int sock_no_accept(struct socket *sock, struct socket *newsock, int flags,
2763 bool kern)
2764 {
2765 return -EOPNOTSUPP;
2766 }
2767 EXPORT_SYMBOL(sock_no_accept);
2768
sock_no_getname(struct socket * sock,struct sockaddr * saddr,int peer)2769 int sock_no_getname(struct socket *sock, struct sockaddr *saddr,
2770 int peer)
2771 {
2772 return -EOPNOTSUPP;
2773 }
2774 EXPORT_SYMBOL(sock_no_getname);
2775
sock_no_ioctl(struct socket * sock,unsigned int cmd,unsigned long arg)2776 int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
2777 {
2778 return -EOPNOTSUPP;
2779 }
2780 EXPORT_SYMBOL(sock_no_ioctl);
2781
sock_no_listen(struct socket * sock,int backlog)2782 int sock_no_listen(struct socket *sock, int backlog)
2783 {
2784 return -EOPNOTSUPP;
2785 }
2786 EXPORT_SYMBOL(sock_no_listen);
2787
sock_no_shutdown(struct socket * sock,int how)2788 int sock_no_shutdown(struct socket *sock, int how)
2789 {
2790 return -EOPNOTSUPP;
2791 }
2792 EXPORT_SYMBOL(sock_no_shutdown);
2793
sock_no_sendmsg(struct socket * sock,struct msghdr * m,size_t len)2794 int sock_no_sendmsg(struct socket *sock, struct msghdr *m, size_t len)
2795 {
2796 return -EOPNOTSUPP;
2797 }
2798 EXPORT_SYMBOL(sock_no_sendmsg);
2799
sock_no_sendmsg_locked(struct sock * sk,struct msghdr * m,size_t len)2800 int sock_no_sendmsg_locked(struct sock *sk, struct msghdr *m, size_t len)
2801 {
2802 return -EOPNOTSUPP;
2803 }
2804 EXPORT_SYMBOL(sock_no_sendmsg_locked);
2805
sock_no_recvmsg(struct socket * sock,struct msghdr * m,size_t len,int flags)2806 int sock_no_recvmsg(struct socket *sock, struct msghdr *m, size_t len,
2807 int flags)
2808 {
2809 return -EOPNOTSUPP;
2810 }
2811 EXPORT_SYMBOL(sock_no_recvmsg);
2812
sock_no_mmap(struct file * file,struct socket * sock,struct vm_area_struct * vma)2813 int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma)
2814 {
2815 /* Mirror missing mmap method error code */
2816 return -ENODEV;
2817 }
2818 EXPORT_SYMBOL(sock_no_mmap);
2819
2820 /*
2821 * When a file is received (via SCM_RIGHTS, etc), we must bump the
2822 * various sock-based usage counts.
2823 */
__receive_sock(struct file * file)2824 void __receive_sock(struct file *file)
2825 {
2826 struct socket *sock;
2827 int error;
2828
2829 /*
2830 * The resulting value of "error" is ignored here since we only
2831 * need to take action when the file is a socket and testing
2832 * "sock" for NULL is sufficient.
2833 */
2834 sock = sock_from_file(file, &error);
2835 if (sock) {
2836 sock_update_netprioidx(&sock->sk->sk_cgrp_data);
2837 sock_update_classid(&sock->sk->sk_cgrp_data);
2838 }
2839 }
2840
sock_no_sendpage(struct socket * sock,struct page * page,int offset,size_t size,int flags)2841 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags)
2842 {
2843 ssize_t res;
2844 struct msghdr msg = {.msg_flags = flags};
2845 struct kvec iov;
2846 char *kaddr = kmap(page);
2847 iov.iov_base = kaddr + offset;
2848 iov.iov_len = size;
2849 res = kernel_sendmsg(sock, &msg, &iov, 1, size);
2850 kunmap(page);
2851 return res;
2852 }
2853 EXPORT_SYMBOL(sock_no_sendpage);
2854
sock_no_sendpage_locked(struct sock * sk,struct page * page,int offset,size_t size,int flags)2855 ssize_t sock_no_sendpage_locked(struct sock *sk, struct page *page,
2856 int offset, size_t size, int flags)
2857 {
2858 ssize_t res;
2859 struct msghdr msg = {.msg_flags = flags};
2860 struct kvec iov;
2861 char *kaddr = kmap(page);
2862
2863 iov.iov_base = kaddr + offset;
2864 iov.iov_len = size;
2865 res = kernel_sendmsg_locked(sk, &msg, &iov, 1, size);
2866 kunmap(page);
2867 return res;
2868 }
2869 EXPORT_SYMBOL(sock_no_sendpage_locked);
2870
2871 /*
2872 * Default Socket Callbacks
2873 */
2874
sock_def_wakeup(struct sock * sk)2875 static void sock_def_wakeup(struct sock *sk)
2876 {
2877 struct socket_wq *wq;
2878
2879 rcu_read_lock();
2880 wq = rcu_dereference(sk->sk_wq);
2881 if (skwq_has_sleeper(wq))
2882 wake_up_interruptible_all(&wq->wait);
2883 rcu_read_unlock();
2884 }
2885
sock_def_error_report(struct sock * sk)2886 static void sock_def_error_report(struct sock *sk)
2887 {
2888 struct socket_wq *wq;
2889
2890 rcu_read_lock();
2891 wq = rcu_dereference(sk->sk_wq);
2892 if (skwq_has_sleeper(wq))
2893 wake_up_interruptible_poll(&wq->wait, EPOLLERR);
2894 sk_wake_async(sk, SOCK_WAKE_IO, POLL_ERR);
2895 rcu_read_unlock();
2896 }
2897
sock_def_readable(struct sock * sk)2898 void sock_def_readable(struct sock *sk)
2899 {
2900 struct socket_wq *wq;
2901
2902 rcu_read_lock();
2903 wq = rcu_dereference(sk->sk_wq);
2904 if (skwq_has_sleeper(wq))
2905 wake_up_interruptible_sync_poll(&wq->wait, EPOLLIN | EPOLLPRI |
2906 EPOLLRDNORM | EPOLLRDBAND);
2907 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
2908 rcu_read_unlock();
2909 }
2910
sock_def_write_space(struct sock * sk)2911 static void sock_def_write_space(struct sock *sk)
2912 {
2913 struct socket_wq *wq;
2914
2915 rcu_read_lock();
2916
2917 /* Do not wake up a writer until he can make "significant"
2918 * progress. --DaveM
2919 */
2920 if ((refcount_read(&sk->sk_wmem_alloc) << 1) <= READ_ONCE(sk->sk_sndbuf)) {
2921 wq = rcu_dereference(sk->sk_wq);
2922 if (skwq_has_sleeper(wq))
2923 wake_up_interruptible_sync_poll(&wq->wait, EPOLLOUT |
2924 EPOLLWRNORM | EPOLLWRBAND);
2925
2926 /* Should agree with poll, otherwise some programs break */
2927 if (sock_writeable(sk))
2928 sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT);
2929 }
2930
2931 rcu_read_unlock();
2932 }
2933
sock_def_destruct(struct sock * sk)2934 static void sock_def_destruct(struct sock *sk)
2935 {
2936 }
2937
sk_send_sigurg(struct sock * sk)2938 void sk_send_sigurg(struct sock *sk)
2939 {
2940 if (sk->sk_socket && sk->sk_socket->file)
2941 if (send_sigurg(&sk->sk_socket->file->f_owner))
2942 sk_wake_async(sk, SOCK_WAKE_URG, POLL_PRI);
2943 }
2944 EXPORT_SYMBOL(sk_send_sigurg);
2945
sk_reset_timer(struct sock * sk,struct timer_list * timer,unsigned long expires)2946 void sk_reset_timer(struct sock *sk, struct timer_list* timer,
2947 unsigned long expires)
2948 {
2949 if (!mod_timer(timer, expires))
2950 sock_hold(sk);
2951 }
2952 EXPORT_SYMBOL(sk_reset_timer);
2953
sk_stop_timer(struct sock * sk,struct timer_list * timer)2954 void sk_stop_timer(struct sock *sk, struct timer_list* timer)
2955 {
2956 if (del_timer(timer))
2957 __sock_put(sk);
2958 }
2959 EXPORT_SYMBOL(sk_stop_timer);
2960
sk_stop_timer_sync(struct sock * sk,struct timer_list * timer)2961 void sk_stop_timer_sync(struct sock *sk, struct timer_list *timer)
2962 {
2963 if (del_timer_sync(timer))
2964 __sock_put(sk);
2965 }
2966 EXPORT_SYMBOL(sk_stop_timer_sync);
2967
sock_init_data_uid(struct socket * sock,struct sock * sk,kuid_t uid)2968 void sock_init_data_uid(struct socket *sock, struct sock *sk, kuid_t uid)
2969 {
2970 sk_init_common(sk);
2971 sk->sk_send_head = NULL;
2972
2973 timer_setup(&sk->sk_timer, NULL, 0);
2974
2975 sk->sk_allocation = GFP_KERNEL;
2976 sk->sk_rcvbuf = sysctl_rmem_default;
2977 sk->sk_sndbuf = sysctl_wmem_default;
2978 sk->sk_state = TCP_CLOSE;
2979 sk_set_socket(sk, sock);
2980
2981 sock_set_flag(sk, SOCK_ZAPPED);
2982
2983 if (sock) {
2984 sk->sk_type = sock->type;
2985 RCU_INIT_POINTER(sk->sk_wq, &sock->wq);
2986 sock->sk = sk;
2987 } else {
2988 RCU_INIT_POINTER(sk->sk_wq, NULL);
2989 }
2990 sk->sk_uid = uid;
2991
2992 rwlock_init(&sk->sk_callback_lock);
2993 if (sk->sk_kern_sock)
2994 lockdep_set_class_and_name(
2995 &sk->sk_callback_lock,
2996 af_kern_callback_keys + sk->sk_family,
2997 af_family_kern_clock_key_strings[sk->sk_family]);
2998 else
2999 lockdep_set_class_and_name(
3000 &sk->sk_callback_lock,
3001 af_callback_keys + sk->sk_family,
3002 af_family_clock_key_strings[sk->sk_family]);
3003
3004 sk->sk_state_change = sock_def_wakeup;
3005 sk->sk_data_ready = sock_def_readable;
3006 sk->sk_write_space = sock_def_write_space;
3007 sk->sk_error_report = sock_def_error_report;
3008 sk->sk_destruct = sock_def_destruct;
3009
3010 sk->sk_frag.page = NULL;
3011 sk->sk_frag.offset = 0;
3012 sk->sk_peek_off = -1;
3013
3014 sk->sk_peer_pid = NULL;
3015 sk->sk_peer_cred = NULL;
3016 spin_lock_init(&sk->sk_peer_lock);
3017
3018 sk->sk_write_pending = 0;
3019 sk->sk_rcvlowat = 1;
3020 sk->sk_rcvtimeo = MAX_SCHEDULE_TIMEOUT;
3021 sk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT;
3022
3023 sk->sk_stamp = SK_DEFAULT_STAMP;
3024 #if BITS_PER_LONG==32
3025 seqlock_init(&sk->sk_stamp_seq);
3026 #endif
3027 atomic_set(&sk->sk_zckey, 0);
3028
3029 #ifdef CONFIG_NET_RX_BUSY_POLL
3030 sk->sk_napi_id = 0;
3031 sk->sk_ll_usec = sysctl_net_busy_read;
3032 #endif
3033
3034 sk->sk_max_pacing_rate = ~0UL;
3035 sk->sk_pacing_rate = ~0UL;
3036 WRITE_ONCE(sk->sk_pacing_shift, 10);
3037 sk->sk_incoming_cpu = -1;
3038
3039 sk_rx_queue_clear(sk);
3040 /*
3041 * Before updating sk_refcnt, we must commit prior changes to memory
3042 * (Documentation/RCU/rculist_nulls.rst for details)
3043 */
3044 smp_wmb();
3045 refcount_set(&sk->sk_refcnt, 1);
3046 atomic_set(&sk->sk_drops, 0);
3047 }
3048 EXPORT_SYMBOL(sock_init_data_uid);
3049
sock_init_data(struct socket * sock,struct sock * sk)3050 void sock_init_data(struct socket *sock, struct sock *sk)
3051 {
3052 kuid_t uid = sock ?
3053 SOCK_INODE(sock)->i_uid :
3054 make_kuid(sock_net(sk)->user_ns, 0);
3055
3056 sock_init_data_uid(sock, sk, uid);
3057 }
3058 EXPORT_SYMBOL(sock_init_data);
3059
lock_sock_nested(struct sock * sk,int subclass)3060 void lock_sock_nested(struct sock *sk, int subclass)
3061 {
3062 might_sleep();
3063 spin_lock_bh(&sk->sk_lock.slock);
3064 if (sk->sk_lock.owned)
3065 __lock_sock(sk);
3066 sk->sk_lock.owned = 1;
3067 spin_unlock(&sk->sk_lock.slock);
3068 /*
3069 * The sk_lock has mutex_lock() semantics here:
3070 */
3071 mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_);
3072 local_bh_enable();
3073 }
3074 EXPORT_SYMBOL(lock_sock_nested);
3075
release_sock(struct sock * sk)3076 void release_sock(struct sock *sk)
3077 {
3078 spin_lock_bh(&sk->sk_lock.slock);
3079 if (sk->sk_backlog.tail)
3080 __release_sock(sk);
3081
3082 /* Warning : release_cb() might need to release sk ownership,
3083 * ie call sock_release_ownership(sk) before us.
3084 */
3085 if (sk->sk_prot->release_cb)
3086 sk->sk_prot->release_cb(sk);
3087
3088 sock_release_ownership(sk);
3089 if (waitqueue_active(&sk->sk_lock.wq))
3090 wake_up(&sk->sk_lock.wq);
3091 spin_unlock_bh(&sk->sk_lock.slock);
3092 }
3093 EXPORT_SYMBOL(release_sock);
3094
3095 /**
3096 * lock_sock_fast - fast version of lock_sock
3097 * @sk: socket
3098 *
3099 * This version should be used for very small section, where process wont block
3100 * return false if fast path is taken:
3101 *
3102 * sk_lock.slock locked, owned = 0, BH disabled
3103 *
3104 * return true if slow path is taken:
3105 *
3106 * sk_lock.slock unlocked, owned = 1, BH enabled
3107 */
lock_sock_fast(struct sock * sk)3108 bool lock_sock_fast(struct sock *sk)
3109 {
3110 might_sleep();
3111 spin_lock_bh(&sk->sk_lock.slock);
3112
3113 if (!sk->sk_lock.owned)
3114 /*
3115 * Note : We must disable BH
3116 */
3117 return false;
3118
3119 __lock_sock(sk);
3120 sk->sk_lock.owned = 1;
3121 spin_unlock(&sk->sk_lock.slock);
3122 /*
3123 * The sk_lock has mutex_lock() semantics here:
3124 */
3125 mutex_acquire(&sk->sk_lock.dep_map, 0, 0, _RET_IP_);
3126 local_bh_enable();
3127 return true;
3128 }
3129 EXPORT_SYMBOL(lock_sock_fast);
3130
sock_gettstamp(struct socket * sock,void __user * userstamp,bool timeval,bool time32)3131 int sock_gettstamp(struct socket *sock, void __user *userstamp,
3132 bool timeval, bool time32)
3133 {
3134 struct sock *sk = sock->sk;
3135 struct timespec64 ts;
3136
3137 sock_enable_timestamp(sk, SOCK_TIMESTAMP);
3138 ts = ktime_to_timespec64(sock_read_timestamp(sk));
3139 if (ts.tv_sec == -1)
3140 return -ENOENT;
3141 if (ts.tv_sec == 0) {
3142 ktime_t kt = ktime_get_real();
3143 sock_write_timestamp(sk, kt);
3144 ts = ktime_to_timespec64(kt);
3145 }
3146
3147 if (timeval)
3148 ts.tv_nsec /= 1000;
3149
3150 #ifdef CONFIG_COMPAT_32BIT_TIME
3151 if (time32)
3152 return put_old_timespec32(&ts, userstamp);
3153 #endif
3154 #ifdef CONFIG_SPARC64
3155 /* beware of padding in sparc64 timeval */
3156 if (timeval && !in_compat_syscall()) {
3157 struct __kernel_old_timeval __user tv = {
3158 .tv_sec = ts.tv_sec,
3159 .tv_usec = ts.tv_nsec,
3160 };
3161 if (copy_to_user(userstamp, &tv, sizeof(tv)))
3162 return -EFAULT;
3163 return 0;
3164 }
3165 #endif
3166 return put_timespec64(&ts, userstamp);
3167 }
3168 EXPORT_SYMBOL(sock_gettstamp);
3169
sock_enable_timestamp(struct sock * sk,enum sock_flags flag)3170 void sock_enable_timestamp(struct sock *sk, enum sock_flags flag)
3171 {
3172 if (!sock_flag(sk, flag)) {
3173 unsigned long previous_flags = sk->sk_flags;
3174
3175 sock_set_flag(sk, flag);
3176 /*
3177 * we just set one of the two flags which require net
3178 * time stamping, but time stamping might have been on
3179 * already because of the other one
3180 */
3181 if (sock_needs_netstamp(sk) &&
3182 !(previous_flags & SK_FLAGS_TIMESTAMP))
3183 net_enable_timestamp();
3184 }
3185 }
3186
sock_recv_errqueue(struct sock * sk,struct msghdr * msg,int len,int level,int type)3187 int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len,
3188 int level, int type)
3189 {
3190 struct sock_exterr_skb *serr;
3191 struct sk_buff *skb;
3192 int copied, err;
3193
3194 err = -EAGAIN;
3195 skb = sock_dequeue_err_skb(sk);
3196 if (skb == NULL)
3197 goto out;
3198
3199 copied = skb->len;
3200 if (copied > len) {
3201 msg->msg_flags |= MSG_TRUNC;
3202 copied = len;
3203 }
3204 err = skb_copy_datagram_msg(skb, 0, msg, copied);
3205 if (err)
3206 goto out_free_skb;
3207
3208 sock_recv_timestamp(msg, sk, skb);
3209
3210 serr = SKB_EXT_ERR(skb);
3211 put_cmsg(msg, level, type, sizeof(serr->ee), &serr->ee);
3212
3213 msg->msg_flags |= MSG_ERRQUEUE;
3214 err = copied;
3215
3216 out_free_skb:
3217 kfree_skb(skb);
3218 out:
3219 return err;
3220 }
3221 EXPORT_SYMBOL(sock_recv_errqueue);
3222
3223 /*
3224 * Get a socket option on an socket.
3225 *
3226 * FIX: POSIX 1003.1g is very ambiguous here. It states that
3227 * asynchronous errors should be reported by getsockopt. We assume
3228 * this means if you specify SO_ERROR (otherwise whats the point of it).
3229 */
sock_common_getsockopt(struct socket * sock,int level,int optname,char __user * optval,int __user * optlen)3230 int sock_common_getsockopt(struct socket *sock, int level, int optname,
3231 char __user *optval, int __user *optlen)
3232 {
3233 struct sock *sk = sock->sk;
3234
3235 /* IPV6_ADDRFORM can change sk->sk_prot under us. */
3236 return READ_ONCE(sk->sk_prot)->getsockopt(sk, level, optname, optval, optlen);
3237 }
3238 EXPORT_SYMBOL(sock_common_getsockopt);
3239
sock_common_recvmsg(struct socket * sock,struct msghdr * msg,size_t size,int flags)3240 int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
3241 int flags)
3242 {
3243 struct sock *sk = sock->sk;
3244 int addr_len = 0;
3245 int err;
3246
3247 err = sk->sk_prot->recvmsg(sk, msg, size, flags & MSG_DONTWAIT,
3248 flags & ~MSG_DONTWAIT, &addr_len);
3249 if (err >= 0)
3250 msg->msg_namelen = addr_len;
3251 return err;
3252 }
3253 EXPORT_SYMBOL(sock_common_recvmsg);
3254
3255 /*
3256 * Set socket options on an inet socket.
3257 */
sock_common_setsockopt(struct socket * sock,int level,int optname,sockptr_t optval,unsigned int optlen)3258 int sock_common_setsockopt(struct socket *sock, int level, int optname,
3259 sockptr_t optval, unsigned int optlen)
3260 {
3261 struct sock *sk = sock->sk;
3262
3263 /* IPV6_ADDRFORM can change sk->sk_prot under us. */
3264 return READ_ONCE(sk->sk_prot)->setsockopt(sk, level, optname, optval, optlen);
3265 }
3266 EXPORT_SYMBOL(sock_common_setsockopt);
3267
sk_common_release(struct sock * sk)3268 void sk_common_release(struct sock *sk)
3269 {
3270 if (sk->sk_prot->destroy)
3271 sk->sk_prot->destroy(sk);
3272
3273 /*
3274 * Observation: when sk_common_release is called, processes have
3275 * no access to socket. But net still has.
3276 * Step one, detach it from networking:
3277 *
3278 * A. Remove from hash tables.
3279 */
3280
3281 sk->sk_prot->unhash(sk);
3282
3283 /*
3284 * In this point socket cannot receive new packets, but it is possible
3285 * that some packets are in flight because some CPU runs receiver and
3286 * did hash table lookup before we unhashed socket. They will achieve
3287 * receive queue and will be purged by socket destructor.
3288 *
3289 * Also we still have packets pending on receive queue and probably,
3290 * our own packets waiting in device queues. sock_destroy will drain
3291 * receive queue, but transmitted packets will delay socket destruction
3292 * until the last reference will be released.
3293 */
3294
3295 sock_orphan(sk);
3296
3297 xfrm_sk_free_policy(sk);
3298
3299 sk_refcnt_debug_release(sk);
3300
3301 sock_put(sk);
3302 }
3303 EXPORT_SYMBOL(sk_common_release);
3304
sk_get_meminfo(const struct sock * sk,u32 * mem)3305 void sk_get_meminfo(const struct sock *sk, u32 *mem)
3306 {
3307 memset(mem, 0, sizeof(*mem) * SK_MEMINFO_VARS);
3308
3309 mem[SK_MEMINFO_RMEM_ALLOC] = sk_rmem_alloc_get(sk);
3310 mem[SK_MEMINFO_RCVBUF] = READ_ONCE(sk->sk_rcvbuf);
3311 mem[SK_MEMINFO_WMEM_ALLOC] = sk_wmem_alloc_get(sk);
3312 mem[SK_MEMINFO_SNDBUF] = READ_ONCE(sk->sk_sndbuf);
3313 mem[SK_MEMINFO_FWD_ALLOC] = sk->sk_forward_alloc;
3314 mem[SK_MEMINFO_WMEM_QUEUED] = READ_ONCE(sk->sk_wmem_queued);
3315 mem[SK_MEMINFO_OPTMEM] = atomic_read(&sk->sk_omem_alloc);
3316 mem[SK_MEMINFO_BACKLOG] = READ_ONCE(sk->sk_backlog.len);
3317 mem[SK_MEMINFO_DROPS] = atomic_read(&sk->sk_drops);
3318 }
3319
3320 #ifdef CONFIG_PROC_FS
3321 #define PROTO_INUSE_NR 64 /* should be enough for the first time */
3322 struct prot_inuse {
3323 int val[PROTO_INUSE_NR];
3324 };
3325
3326 static DECLARE_BITMAP(proto_inuse_idx, PROTO_INUSE_NR);
3327
sock_prot_inuse_add(struct net * net,struct proto * prot,int val)3328 void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
3329 {
3330 __this_cpu_add(net->core.prot_inuse->val[prot->inuse_idx], val);
3331 }
3332 EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
3333
sock_prot_inuse_get(struct net * net,struct proto * prot)3334 int sock_prot_inuse_get(struct net *net, struct proto *prot)
3335 {
3336 int cpu, idx = prot->inuse_idx;
3337 int res = 0;
3338
3339 for_each_possible_cpu(cpu)
3340 res += per_cpu_ptr(net->core.prot_inuse, cpu)->val[idx];
3341
3342 return res >= 0 ? res : 0;
3343 }
3344 EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
3345
sock_inuse_add(struct net * net,int val)3346 static void sock_inuse_add(struct net *net, int val)
3347 {
3348 this_cpu_add(*net->core.sock_inuse, val);
3349 }
3350
sock_inuse_get(struct net * net)3351 int sock_inuse_get(struct net *net)
3352 {
3353 int cpu, res = 0;
3354
3355 for_each_possible_cpu(cpu)
3356 res += *per_cpu_ptr(net->core.sock_inuse, cpu);
3357
3358 return res;
3359 }
3360
3361 EXPORT_SYMBOL_GPL(sock_inuse_get);
3362
sock_inuse_init_net(struct net * net)3363 static int __net_init sock_inuse_init_net(struct net *net)
3364 {
3365 net->core.prot_inuse = alloc_percpu(struct prot_inuse);
3366 if (net->core.prot_inuse == NULL)
3367 return -ENOMEM;
3368
3369 net->core.sock_inuse = alloc_percpu(int);
3370 if (net->core.sock_inuse == NULL)
3371 goto out;
3372
3373 return 0;
3374
3375 out:
3376 free_percpu(net->core.prot_inuse);
3377 return -ENOMEM;
3378 }
3379
sock_inuse_exit_net(struct net * net)3380 static void __net_exit sock_inuse_exit_net(struct net *net)
3381 {
3382 free_percpu(net->core.prot_inuse);
3383 free_percpu(net->core.sock_inuse);
3384 }
3385
3386 static struct pernet_operations net_inuse_ops = {
3387 .init = sock_inuse_init_net,
3388 .exit = sock_inuse_exit_net,
3389 };
3390
net_inuse_init(void)3391 static __init int net_inuse_init(void)
3392 {
3393 if (register_pernet_subsys(&net_inuse_ops))
3394 panic("Cannot initialize net inuse counters");
3395
3396 return 0;
3397 }
3398
3399 core_initcall(net_inuse_init);
3400
assign_proto_idx(struct proto * prot)3401 static int assign_proto_idx(struct proto *prot)
3402 {
3403 prot->inuse_idx = find_first_zero_bit(proto_inuse_idx, PROTO_INUSE_NR);
3404
3405 if (unlikely(prot->inuse_idx == PROTO_INUSE_NR - 1)) {
3406 pr_err("PROTO_INUSE_NR exhausted\n");
3407 return -ENOSPC;
3408 }
3409
3410 set_bit(prot->inuse_idx, proto_inuse_idx);
3411 return 0;
3412 }
3413
release_proto_idx(struct proto * prot)3414 static void release_proto_idx(struct proto *prot)
3415 {
3416 if (prot->inuse_idx != PROTO_INUSE_NR - 1)
3417 clear_bit(prot->inuse_idx, proto_inuse_idx);
3418 }
3419 #else
assign_proto_idx(struct proto * prot)3420 static inline int assign_proto_idx(struct proto *prot)
3421 {
3422 return 0;
3423 }
3424
release_proto_idx(struct proto * prot)3425 static inline void release_proto_idx(struct proto *prot)
3426 {
3427 }
3428
sock_inuse_add(struct net * net,int val)3429 static void sock_inuse_add(struct net *net, int val)
3430 {
3431 }
3432 #endif
3433
tw_prot_cleanup(struct timewait_sock_ops * twsk_prot)3434 static void tw_prot_cleanup(struct timewait_sock_ops *twsk_prot)
3435 {
3436 if (!twsk_prot)
3437 return;
3438 kfree(twsk_prot->twsk_slab_name);
3439 twsk_prot->twsk_slab_name = NULL;
3440 kmem_cache_destroy(twsk_prot->twsk_slab);
3441 twsk_prot->twsk_slab = NULL;
3442 }
3443
req_prot_cleanup(struct request_sock_ops * rsk_prot)3444 static void req_prot_cleanup(struct request_sock_ops *rsk_prot)
3445 {
3446 if (!rsk_prot)
3447 return;
3448 kfree(rsk_prot->slab_name);
3449 rsk_prot->slab_name = NULL;
3450 kmem_cache_destroy(rsk_prot->slab);
3451 rsk_prot->slab = NULL;
3452 }
3453
req_prot_init(const struct proto * prot)3454 static int req_prot_init(const struct proto *prot)
3455 {
3456 struct request_sock_ops *rsk_prot = prot->rsk_prot;
3457
3458 if (!rsk_prot)
3459 return 0;
3460
3461 rsk_prot->slab_name = kasprintf(GFP_KERNEL, "request_sock_%s",
3462 prot->name);
3463 if (!rsk_prot->slab_name)
3464 return -ENOMEM;
3465
3466 rsk_prot->slab = kmem_cache_create(rsk_prot->slab_name,
3467 rsk_prot->obj_size, 0,
3468 SLAB_ACCOUNT | prot->slab_flags,
3469 NULL);
3470
3471 if (!rsk_prot->slab) {
3472 pr_crit("%s: Can't create request sock SLAB cache!\n",
3473 prot->name);
3474 return -ENOMEM;
3475 }
3476 return 0;
3477 }
3478
proto_register(struct proto * prot,int alloc_slab)3479 int proto_register(struct proto *prot, int alloc_slab)
3480 {
3481 int ret = -ENOBUFS;
3482
3483 if (alloc_slab) {
3484 prot->slab = kmem_cache_create_usercopy(prot->name,
3485 prot->obj_size, 0,
3486 SLAB_HWCACHE_ALIGN | SLAB_ACCOUNT |
3487 prot->slab_flags,
3488 prot->useroffset, prot->usersize,
3489 NULL);
3490
3491 if (prot->slab == NULL) {
3492 pr_crit("%s: Can't create sock SLAB cache!\n",
3493 prot->name);
3494 goto out;
3495 }
3496
3497 if (req_prot_init(prot))
3498 goto out_free_request_sock_slab;
3499
3500 if (prot->twsk_prot != NULL) {
3501 prot->twsk_prot->twsk_slab_name = kasprintf(GFP_KERNEL, "tw_sock_%s", prot->name);
3502
3503 if (prot->twsk_prot->twsk_slab_name == NULL)
3504 goto out_free_request_sock_slab;
3505
3506 prot->twsk_prot->twsk_slab =
3507 kmem_cache_create(prot->twsk_prot->twsk_slab_name,
3508 prot->twsk_prot->twsk_obj_size,
3509 0,
3510 SLAB_ACCOUNT |
3511 prot->slab_flags,
3512 NULL);
3513 if (prot->twsk_prot->twsk_slab == NULL)
3514 goto out_free_timewait_sock_slab;
3515 }
3516 }
3517
3518 mutex_lock(&proto_list_mutex);
3519 ret = assign_proto_idx(prot);
3520 if (ret) {
3521 mutex_unlock(&proto_list_mutex);
3522 goto out_free_timewait_sock_slab;
3523 }
3524 list_add(&prot->node, &proto_list);
3525 mutex_unlock(&proto_list_mutex);
3526 return ret;
3527
3528 out_free_timewait_sock_slab:
3529 if (alloc_slab && prot->twsk_prot)
3530 tw_prot_cleanup(prot->twsk_prot);
3531 out_free_request_sock_slab:
3532 if (alloc_slab) {
3533 req_prot_cleanup(prot->rsk_prot);
3534
3535 kmem_cache_destroy(prot->slab);
3536 prot->slab = NULL;
3537 }
3538 out:
3539 return ret;
3540 }
3541 EXPORT_SYMBOL(proto_register);
3542
proto_unregister(struct proto * prot)3543 void proto_unregister(struct proto *prot)
3544 {
3545 mutex_lock(&proto_list_mutex);
3546 release_proto_idx(prot);
3547 list_del(&prot->node);
3548 mutex_unlock(&proto_list_mutex);
3549
3550 kmem_cache_destroy(prot->slab);
3551 prot->slab = NULL;
3552
3553 req_prot_cleanup(prot->rsk_prot);
3554 tw_prot_cleanup(prot->twsk_prot);
3555 }
3556 EXPORT_SYMBOL(proto_unregister);
3557
sock_load_diag_module(int family,int protocol)3558 int sock_load_diag_module(int family, int protocol)
3559 {
3560 if (!protocol) {
3561 if (!sock_is_registered(family))
3562 return -ENOENT;
3563
3564 return request_module("net-pf-%d-proto-%d-type-%d", PF_NETLINK,
3565 NETLINK_SOCK_DIAG, family);
3566 }
3567
3568 #ifdef CONFIG_INET
3569 if (family == AF_INET &&
3570 protocol != IPPROTO_RAW &&
3571 protocol < MAX_INET_PROTOS &&
3572 !rcu_access_pointer(inet_protos[protocol]))
3573 return -ENOENT;
3574 #endif
3575
3576 return request_module("net-pf-%d-proto-%d-type-%d-%d", PF_NETLINK,
3577 NETLINK_SOCK_DIAG, family, protocol);
3578 }
3579 EXPORT_SYMBOL(sock_load_diag_module);
3580
3581 #ifdef CONFIG_PROC_FS
proto_seq_start(struct seq_file * seq,loff_t * pos)3582 static void *proto_seq_start(struct seq_file *seq, loff_t *pos)
3583 __acquires(proto_list_mutex)
3584 {
3585 mutex_lock(&proto_list_mutex);
3586 return seq_list_start_head(&proto_list, *pos);
3587 }
3588
proto_seq_next(struct seq_file * seq,void * v,loff_t * pos)3589 static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3590 {
3591 return seq_list_next(v, &proto_list, pos);
3592 }
3593
proto_seq_stop(struct seq_file * seq,void * v)3594 static void proto_seq_stop(struct seq_file *seq, void *v)
3595 __releases(proto_list_mutex)
3596 {
3597 mutex_unlock(&proto_list_mutex);
3598 }
3599
proto_method_implemented(const void * method)3600 static char proto_method_implemented(const void *method)
3601 {
3602 return method == NULL ? 'n' : 'y';
3603 }
sock_prot_memory_allocated(struct proto * proto)3604 static long sock_prot_memory_allocated(struct proto *proto)
3605 {
3606 return proto->memory_allocated != NULL ? proto_memory_allocated(proto) : -1L;
3607 }
3608
sock_prot_memory_pressure(struct proto * proto)3609 static const char *sock_prot_memory_pressure(struct proto *proto)
3610 {
3611 return proto->memory_pressure != NULL ?
3612 proto_memory_pressure(proto) ? "yes" : "no" : "NI";
3613 }
3614
proto_seq_printf(struct seq_file * seq,struct proto * proto)3615 static void proto_seq_printf(struct seq_file *seq, struct proto *proto)
3616 {
3617
3618 seq_printf(seq, "%-9s %4u %6d %6ld %-3s %6u %-3s %-10s "
3619 "%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n",
3620 proto->name,
3621 proto->obj_size,
3622 sock_prot_inuse_get(seq_file_net(seq), proto),
3623 sock_prot_memory_allocated(proto),
3624 sock_prot_memory_pressure(proto),
3625 proto->max_header,
3626 proto->slab == NULL ? "no" : "yes",
3627 module_name(proto->owner),
3628 proto_method_implemented(proto->close),
3629 proto_method_implemented(proto->connect),
3630 proto_method_implemented(proto->disconnect),
3631 proto_method_implemented(proto->accept),
3632 proto_method_implemented(proto->ioctl),
3633 proto_method_implemented(proto->init),
3634 proto_method_implemented(proto->destroy),
3635 proto_method_implemented(proto->shutdown),
3636 proto_method_implemented(proto->setsockopt),
3637 proto_method_implemented(proto->getsockopt),
3638 proto_method_implemented(proto->sendmsg),
3639 proto_method_implemented(proto->recvmsg),
3640 proto_method_implemented(proto->sendpage),
3641 proto_method_implemented(proto->bind),
3642 proto_method_implemented(proto->backlog_rcv),
3643 proto_method_implemented(proto->hash),
3644 proto_method_implemented(proto->unhash),
3645 proto_method_implemented(proto->get_port),
3646 proto_method_implemented(proto->enter_memory_pressure));
3647 }
3648
proto_seq_show(struct seq_file * seq,void * v)3649 static int proto_seq_show(struct seq_file *seq, void *v)
3650 {
3651 if (v == &proto_list)
3652 seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s",
3653 "protocol",
3654 "size",
3655 "sockets",
3656 "memory",
3657 "press",
3658 "maxhdr",
3659 "slab",
3660 "module",
3661 "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n");
3662 else
3663 proto_seq_printf(seq, list_entry(v, struct proto, node));
3664 return 0;
3665 }
3666
3667 static const struct seq_operations proto_seq_ops = {
3668 .start = proto_seq_start,
3669 .next = proto_seq_next,
3670 .stop = proto_seq_stop,
3671 .show = proto_seq_show,
3672 };
3673
proto_init_net(struct net * net)3674 static __net_init int proto_init_net(struct net *net)
3675 {
3676 if (!proc_create_net("protocols", 0444, net->proc_net, &proto_seq_ops,
3677 sizeof(struct seq_net_private)))
3678 return -ENOMEM;
3679
3680 return 0;
3681 }
3682
proto_exit_net(struct net * net)3683 static __net_exit void proto_exit_net(struct net *net)
3684 {
3685 remove_proc_entry("protocols", net->proc_net);
3686 }
3687
3688
3689 static __net_initdata struct pernet_operations proto_net_ops = {
3690 .init = proto_init_net,
3691 .exit = proto_exit_net,
3692 };
3693
proto_init(void)3694 static int __init proto_init(void)
3695 {
3696 return register_pernet_subsys(&proto_net_ops);
3697 }
3698
3699 subsys_initcall(proto_init);
3700
3701 #endif /* PROC_FS */
3702
3703 #ifdef CONFIG_NET_RX_BUSY_POLL
sk_busy_loop_end(void * p,unsigned long start_time)3704 bool sk_busy_loop_end(void *p, unsigned long start_time)
3705 {
3706 struct sock *sk = p;
3707
3708 return !skb_queue_empty_lockless(&sk->sk_receive_queue) ||
3709 sk_busy_loop_timeout(sk, start_time);
3710 }
3711 EXPORT_SYMBOL(sk_busy_loop_end);
3712 #endif /* CONFIG_NET_RX_BUSY_POLL */
3713
sock_bind_add(struct sock * sk,struct sockaddr * addr,int addr_len)3714 int sock_bind_add(struct sock *sk, struct sockaddr *addr, int addr_len)
3715 {
3716 if (!sk->sk_prot->bind_add)
3717 return -EOPNOTSUPP;
3718 return sk->sk_prot->bind_add(sk, addr, addr_len);
3719 }
3720 EXPORT_SYMBOL(sock_bind_add);
3721