1 /*
2 * Copyright 2011 Christoph Bumiller
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20 * OTHER DEALINGS IN THE SOFTWARE.
21 */
22
23 #include "codegen/nv50_ir.h"
24 #include "codegen/nv50_ir_build_util.h"
25
26 #include "codegen/nv50_ir_target_nvc0.h"
27 #include "codegen/nv50_ir_lowering_nvc0.h"
28
29 #include <limits>
30
31 namespace nv50_ir {
32
33 #define QOP_ADD 0
34 #define QOP_SUBR 1
35 #define QOP_SUB 2
36 #define QOP_MOV2 3
37
38 // UL UR LL LR
39 #define QUADOP(q, r, s, t) \
40 ((QOP_##q << 6) | (QOP_##r << 4) | \
41 (QOP_##s << 2) | (QOP_##t << 0))
42
43 void
handleDIV(Instruction * i)44 NVC0LegalizeSSA::handleDIV(Instruction *i)
45 {
46 FlowInstruction *call;
47 int builtin;
48
49 bld.setPosition(i, false);
50
51 // Generate movs to the input regs for the call we want to generate
52 for (int s = 0; i->srcExists(s); ++s) {
53 Instruction *ld = i->getSrc(s)->getInsn();
54 // check if we are moving an immediate, propagate it in that case
55 if (!ld || ld->fixed || (ld->op != OP_LOAD && ld->op != OP_MOV) ||
56 !(ld->src(0).getFile() == FILE_IMMEDIATE))
57 bld.mkMovToReg(s, i->getSrc(s));
58 else {
59 assert(ld->getSrc(0) != NULL);
60 bld.mkMovToReg(s, ld->getSrc(0));
61 // Clear the src, to make code elimination possible here before we
62 // delete the instruction i later
63 i->setSrc(s, NULL);
64 if (ld->isDead())
65 delete_Instruction(prog, ld);
66 }
67 }
68
69 switch (i->dType) {
70 case TYPE_U32: builtin = NVC0_BUILTIN_DIV_U32; break;
71 case TYPE_S32: builtin = NVC0_BUILTIN_DIV_S32; break;
72 default:
73 return;
74 }
75 call = bld.mkFlow(OP_CALL, NULL, CC_ALWAYS, NULL);
76 bld.mkMovFromReg(i->getDef(0), i->op == OP_DIV ? 0 : 1);
77 bld.mkClobber(FILE_GPR, (i->op == OP_DIV) ? 0xe : 0xd, 2);
78 bld.mkClobber(FILE_PREDICATE, (i->dType == TYPE_S32) ? 0xf : 0x3, 0);
79
80 call->fixed = 1;
81 call->absolute = call->builtin = 1;
82 call->target.builtin = builtin;
83 delete_Instruction(prog, i);
84 }
85
86 void
handleRCPRSQLib(Instruction * i,Value * src[])87 NVC0LegalizeSSA::handleRCPRSQLib(Instruction *i, Value *src[])
88 {
89 FlowInstruction *call;
90 Value *def[2];
91 int builtin;
92
93 def[0] = bld.mkMovToReg(0, src[0])->getDef(0);
94 def[1] = bld.mkMovToReg(1, src[1])->getDef(0);
95
96 if (i->op == OP_RCP)
97 builtin = NVC0_BUILTIN_RCP_F64;
98 else
99 builtin = NVC0_BUILTIN_RSQ_F64;
100
101 call = bld.mkFlow(OP_CALL, NULL, CC_ALWAYS, NULL);
102 def[0] = bld.getSSA();
103 def[1] = bld.getSSA();
104 bld.mkMovFromReg(def[0], 0);
105 bld.mkMovFromReg(def[1], 1);
106 bld.mkClobber(FILE_GPR, 0x3fc, 2);
107 bld.mkClobber(FILE_PREDICATE, i->op == OP_RSQ ? 0x3 : 0x1, 0);
108 bld.mkOp2(OP_MERGE, TYPE_U64, i->getDef(0), def[0], def[1]);
109
110 call->fixed = 1;
111 call->absolute = call->builtin = 1;
112 call->target.builtin = builtin;
113 delete_Instruction(prog, i);
114
115 prog->fp64 = true;
116 }
117
118 void
handleRCPRSQ(Instruction * i)119 NVC0LegalizeSSA::handleRCPRSQ(Instruction *i)
120 {
121 assert(i->dType == TYPE_F64);
122 // There are instructions that will compute the high 32 bits of the 64-bit
123 // float. We will just stick 0 in the bottom 32 bits.
124
125 bld.setPosition(i, false);
126
127 // 1. Take the source and it up.
128 Value *src[2], *dst[2], *def = i->getDef(0);
129 bld.mkSplit(src, 4, i->getSrc(0));
130
131 int chip = prog->getTarget()->getChipset();
132 if (chip >= NVISA_GK104_CHIPSET) {
133 handleRCPRSQLib(i, src);
134 return;
135 }
136
137 // 2. We don't care about the low 32 bits of the destination. Stick a 0 in.
138 dst[0] = bld.loadImm(NULL, 0);
139 dst[1] = bld.getSSA();
140
141 // 3. The new version of the instruction takes the high 32 bits of the
142 // source and outputs the high 32 bits of the destination.
143 i->setSrc(0, src[1]);
144 i->setDef(0, dst[1]);
145 i->setType(TYPE_F32);
146 i->subOp = NV50_IR_SUBOP_RCPRSQ_64H;
147
148 // 4. Recombine the two dst pieces back into the original destination.
149 bld.setPosition(i, true);
150 bld.mkOp2(OP_MERGE, TYPE_U64, def, dst[0], dst[1]);
151 }
152
153 void
handleFTZ(Instruction * i)154 NVC0LegalizeSSA::handleFTZ(Instruction *i)
155 {
156 // Only want to flush float inputs
157 assert(i->sType == TYPE_F32);
158
159 // If we're already flushing denorms (and NaN's) to zero, no need for this.
160 if (i->dnz)
161 return;
162
163 // Only certain classes of operations can flush
164 OpClass cls = prog->getTarget()->getOpClass(i->op);
165 if (cls != OPCLASS_ARITH && cls != OPCLASS_COMPARE &&
166 cls != OPCLASS_CONVERT)
167 return;
168
169 i->ftz = true;
170 }
171
172 void
handleTEXLOD(TexInstruction * i)173 NVC0LegalizeSSA::handleTEXLOD(TexInstruction *i)
174 {
175 if (i->tex.levelZero)
176 return;
177
178 ImmediateValue lod;
179
180 // The LOD argument comes right after the coordinates (before depth bias,
181 // offsets, etc).
182 int arg = i->tex.target.getArgCount();
183
184 // SM30+ stores the indirect handle as a separate arg, which comes before
185 // the LOD.
186 if (prog->getTarget()->getChipset() >= NVISA_GK104_CHIPSET &&
187 i->tex.rIndirectSrc >= 0)
188 arg++;
189 // SM20 stores indirect handle combined with array coordinate
190 if (prog->getTarget()->getChipset() < NVISA_GK104_CHIPSET &&
191 !i->tex.target.isArray() &&
192 i->tex.rIndirectSrc >= 0)
193 arg++;
194
195 if (!i->src(arg).getImmediate(lod) || !lod.isInteger(0))
196 return;
197
198 if (i->op == OP_TXL)
199 i->op = OP_TEX;
200 i->tex.levelZero = true;
201 i->moveSources(arg + 1, -1);
202 }
203
204 void
handleShift(Instruction * lo)205 NVC0LegalizeSSA::handleShift(Instruction *lo)
206 {
207 Value *shift = lo->getSrc(1);
208 Value *dst64 = lo->getDef(0);
209 Value *src[2], *dst[2];
210 operation op = lo->op;
211
212 bld.setPosition(lo, false);
213
214 bld.mkSplit(src, 4, lo->getSrc(0));
215
216 // SM30 and prior don't have the fancy new SHF.L/R ops. So the logic has to
217 // be completely emulated. For SM35+, we can use the more directed SHF
218 // operations.
219 if (prog->getTarget()->getChipset() < NVISA_GK20A_CHIPSET) {
220 // The strategy here is to handle shifts >= 32 and less than 32 as
221 // separate parts.
222 //
223 // For SHL:
224 // If the shift is <= 32, then
225 // (HI,LO) << x = (HI << x | (LO >> (32 - x)), LO << x)
226 // If the shift is > 32, then
227 // (HI,LO) << x = (LO << (x - 32), 0)
228 //
229 // For SHR:
230 // If the shift is <= 32, then
231 // (HI,LO) >> x = (HI >> x, (HI << (32 - x)) | LO >> x)
232 // If the shift is > 32, then
233 // (HI,LO) >> x = (0, HI >> (x - 32))
234 //
235 // Note that on NVIDIA hardware, a shift > 32 yields a 0 value, which we
236 // can use to our advantage. Also note the structural similarities
237 // between the right/left cases. The main difference is swapping hi/lo
238 // on input and output.
239
240 Value *x32_minus_shift, *pred, *hi1, *hi2;
241 DataType type = isSignedIntType(lo->dType) ? TYPE_S32 : TYPE_U32;
242 operation antiop = op == OP_SHR ? OP_SHL : OP_SHR;
243 if (op == OP_SHR)
244 std::swap(src[0], src[1]);
245 bld.mkOp2(OP_ADD, TYPE_U32, (x32_minus_shift = bld.getSSA()), shift, bld.mkImm(0x20))
246 ->src(0).mod = Modifier(NV50_IR_MOD_NEG);
247 bld.mkCmp(OP_SET, CC_LE, TYPE_U8, (pred = bld.getSSA(1, FILE_PREDICATE)),
248 TYPE_U32, shift, bld.mkImm(32));
249 // Compute HI (shift <= 32)
250 bld.mkOp2(OP_OR, TYPE_U32, (hi1 = bld.getSSA()),
251 bld.mkOp2v(op, TYPE_U32, bld.getSSA(), src[1], shift),
252 bld.mkOp2v(antiop, TYPE_U32, bld.getSSA(), src[0], x32_minus_shift))
253 ->setPredicate(CC_P, pred);
254 // Compute LO (all shift values)
255 bld.mkOp2(op, type, (dst[0] = bld.getSSA()), src[0], shift);
256 // Compute HI (shift > 32)
257 bld.mkOp2(op, type, (hi2 = bld.getSSA()), src[0],
258 bld.mkOp1v(OP_NEG, TYPE_S32, bld.getSSA(), x32_minus_shift))
259 ->setPredicate(CC_NOT_P, pred);
260 bld.mkOp2(OP_UNION, TYPE_U32, (dst[1] = bld.getSSA()), hi1, hi2);
261 if (op == OP_SHR)
262 std::swap(dst[0], dst[1]);
263 bld.mkOp2(OP_MERGE, TYPE_U64, dst64, dst[0], dst[1]);
264 delete_Instruction(prog, lo);
265 return;
266 }
267
268 Instruction *hi = new_Instruction(func, op, TYPE_U32);
269 lo->bb->insertAfter(lo, hi);
270
271 hi->sType = lo->sType;
272 lo->dType = TYPE_U32;
273
274 hi->setDef(0, (dst[1] = bld.getSSA()));
275 if (lo->op == OP_SHR)
276 hi->subOp |= NV50_IR_SUBOP_SHIFT_HIGH;
277 lo->setDef(0, (dst[0] = bld.getSSA()));
278
279 bld.setPosition(hi, true);
280
281 if (lo->op == OP_SHL)
282 std::swap(hi, lo);
283
284 hi->setSrc(0, new_ImmediateValue(prog, 0u));
285 hi->setSrc(1, shift);
286 hi->setSrc(2, lo->op == OP_SHL ? src[0] : src[1]);
287
288 lo->setSrc(0, src[0]);
289 lo->setSrc(1, shift);
290 lo->setSrc(2, src[1]);
291
292 bld.mkOp2(OP_MERGE, TYPE_U64, dst64, dst[0], dst[1]);
293 }
294
295 void
handleSET(CmpInstruction * cmp)296 NVC0LegalizeSSA::handleSET(CmpInstruction *cmp)
297 {
298 DataType hTy = cmp->sType == TYPE_S64 ? TYPE_S32 : TYPE_U32;
299 Value *carry;
300 Value *src0[2], *src1[2];
301 bld.setPosition(cmp, false);
302
303 bld.mkSplit(src0, 4, cmp->getSrc(0));
304 bld.mkSplit(src1, 4, cmp->getSrc(1));
305 bld.mkOp2(OP_SUB, hTy, NULL, src0[0], src1[0])
306 ->setFlagsDef(0, (carry = bld.getSSA(1, FILE_FLAGS)));
307 cmp->setFlagsSrc(cmp->srcCount(), carry);
308 cmp->setSrc(0, src0[1]);
309 cmp->setSrc(1, src1[1]);
310 cmp->sType = hTy;
311 }
312
313 void
handleBREV(Instruction * i)314 NVC0LegalizeSSA::handleBREV(Instruction *i)
315 {
316 i->op = OP_EXTBF;
317 i->subOp = NV50_IR_SUBOP_EXTBF_REV;
318 i->setSrc(1, bld.mkImm(0x2000));
319 }
320
321 bool
visit(Function * fn)322 NVC0LegalizeSSA::visit(Function *fn)
323 {
324 bld.setProgram(fn->getProgram());
325 return true;
326 }
327
328 bool
visit(BasicBlock * bb)329 NVC0LegalizeSSA::visit(BasicBlock *bb)
330 {
331 Instruction *next;
332 for (Instruction *i = bb->getEntry(); i; i = next) {
333 next = i->next;
334
335 if (i->sType == TYPE_F32 && prog->getType() != Program::TYPE_COMPUTE)
336 handleFTZ(i);
337
338 switch (i->op) {
339 case OP_DIV:
340 case OP_MOD:
341 if (i->sType != TYPE_F32)
342 handleDIV(i);
343 break;
344 case OP_RCP:
345 case OP_RSQ:
346 if (i->dType == TYPE_F64)
347 handleRCPRSQ(i);
348 break;
349 case OP_TXL:
350 case OP_TXF:
351 handleTEXLOD(i->asTex());
352 break;
353 case OP_SHR:
354 case OP_SHL:
355 if (typeSizeof(i->sType) == 8)
356 handleShift(i);
357 break;
358 case OP_SET:
359 case OP_SET_AND:
360 case OP_SET_OR:
361 case OP_SET_XOR:
362 if (typeSizeof(i->sType) == 8 && i->sType != TYPE_F64)
363 handleSET(i->asCmp());
364 break;
365 case OP_BREV:
366 handleBREV(i);
367 break;
368 default:
369 break;
370 }
371 }
372 return true;
373 }
374
NVC0LegalizePostRA(const Program * prog)375 NVC0LegalizePostRA::NVC0LegalizePostRA(const Program *prog)
376 : rZero(NULL),
377 carry(NULL),
378 pOne(NULL),
379 needTexBar(prog->getTarget()->getChipset() >= 0xe0 &&
380 prog->getTarget()->getChipset() < 0x110)
381 {
382 }
383
384 bool
insnDominatedBy(const Instruction * later,const Instruction * early) const385 NVC0LegalizePostRA::insnDominatedBy(const Instruction *later,
386 const Instruction *early) const
387 {
388 if (early->bb == later->bb)
389 return early->serial < later->serial;
390 return later->bb->dominatedBy(early->bb);
391 }
392
393 void
addTexUse(std::list<TexUse> & uses,Instruction * usei,const Instruction * texi)394 NVC0LegalizePostRA::addTexUse(std::list<TexUse> &uses,
395 Instruction *usei, const Instruction *texi)
396 {
397 bool add = true;
398 bool dominated = insnDominatedBy(usei, texi);
399 // Uses before the tex have to all be included. Just because an earlier
400 // instruction dominates another instruction doesn't mean that there's no
401 // way to get from the tex to the later instruction. For example you could
402 // have nested loops, with the tex in the inner loop, and uses before it in
403 // both loops - even though the outer loop's instruction would dominate the
404 // inner's, we still want a texbar before the inner loop's instruction.
405 //
406 // However we can still use the eliding logic between uses dominated by the
407 // tex instruction, as that is unambiguously correct.
408 if (dominated) {
409 for (std::list<TexUse>::iterator it = uses.begin(); it != uses.end();) {
410 if (it->after) {
411 if (insnDominatedBy(usei, it->insn)) {
412 add = false;
413 break;
414 }
415 if (insnDominatedBy(it->insn, usei)) {
416 it = uses.erase(it);
417 continue;
418 }
419 }
420 ++it;
421 }
422 }
423 if (add)
424 uses.push_back(TexUse(usei, texi, dominated));
425 }
426
427 // While it might be tempting to use the an algorithm that just looks at tex
428 // uses, not all texture results are guaranteed to be used on all paths. In
429 // the case where along some control flow path a texture result is never used,
430 // we might reuse that register for something else, creating a
431 // write-after-write hazard. So we have to manually look through all
432 // instructions looking for ones that reference the registers in question.
433 void
findFirstUses(Instruction * texi,std::list<TexUse> & uses)434 NVC0LegalizePostRA::findFirstUses(
435 Instruction *texi, std::list<TexUse> &uses)
436 {
437 int minGPR = texi->def(0).rep()->reg.data.id;
438 int maxGPR = minGPR + texi->def(0).rep()->reg.size / 4 - 1;
439
440 unordered_set<const BasicBlock *> visited;
441 findFirstUsesBB(minGPR, maxGPR, texi->next, texi, uses, visited);
442 }
443
444 void
findFirstUsesBB(int minGPR,int maxGPR,Instruction * start,const Instruction * texi,std::list<TexUse> & uses,unordered_set<const BasicBlock * > & visited)445 NVC0LegalizePostRA::findFirstUsesBB(
446 int minGPR, int maxGPR, Instruction *start,
447 const Instruction *texi, std::list<TexUse> &uses,
448 unordered_set<const BasicBlock *> &visited)
449 {
450 const BasicBlock *bb = start->bb;
451
452 // We don't process the whole bb the first time around. This is correct,
453 // however we might be in a loop and hit this BB again, and need to process
454 // the full thing. So only mark a bb as visited if we processed it from the
455 // beginning.
456 if (start == bb->getEntry()) {
457 if (visited.find(bb) != visited.end())
458 return;
459 visited.insert(bb);
460 }
461
462 for (Instruction *insn = start; insn != bb->getExit(); insn = insn->next) {
463 if (insn->isNop())
464 continue;
465
466 for (int d = 0; insn->defExists(d); ++d) {
467 const Value *def = insn->def(d).rep();
468 if (insn->def(d).getFile() != FILE_GPR ||
469 def->reg.data.id + def->reg.size / 4 - 1 < minGPR ||
470 def->reg.data.id > maxGPR)
471 continue;
472 addTexUse(uses, insn, texi);
473 return;
474 }
475
476 for (int s = 0; insn->srcExists(s); ++s) {
477 const Value *src = insn->src(s).rep();
478 if (insn->src(s).getFile() != FILE_GPR ||
479 src->reg.data.id + src->reg.size / 4 - 1 < minGPR ||
480 src->reg.data.id > maxGPR)
481 continue;
482 addTexUse(uses, insn, texi);
483 return;
484 }
485 }
486
487 for (Graph::EdgeIterator ei = bb->cfg.outgoing(); !ei.end(); ei.next()) {
488 findFirstUsesBB(minGPR, maxGPR, BasicBlock::get(ei.getNode())->getEntry(),
489 texi, uses, visited);
490 }
491 }
492
493 // Texture barriers:
494 // This pass is a bit long and ugly and can probably be optimized.
495 //
496 // 1. obtain a list of TEXes and their outputs' first use(s)
497 // 2. calculate the barrier level of each first use (minimal number of TEXes,
498 // over all paths, between the TEX and the use in question)
499 // 3. for each barrier, if all paths from the source TEX to that barrier
500 // contain a barrier of lesser level, it can be culled
501 bool
insertTextureBarriers(Function * fn)502 NVC0LegalizePostRA::insertTextureBarriers(Function *fn)
503 {
504 std::list<TexUse> *uses;
505 std::vector<Instruction *> texes;
506 std::vector<int> bbFirstTex;
507 std::vector<int> bbFirstUse;
508 std::vector<int> texCounts;
509 std::vector<TexUse> useVec;
510 ArrayList insns;
511
512 fn->orderInstructions(insns);
513
514 texCounts.resize(fn->allBBlocks.getSize(), 0);
515 bbFirstTex.resize(fn->allBBlocks.getSize(), insns.getSize());
516 bbFirstUse.resize(fn->allBBlocks.getSize(), insns.getSize());
517
518 // tag BB CFG nodes by their id for later
519 for (ArrayList::Iterator i = fn->allBBlocks.iterator(); !i.end(); i.next()) {
520 BasicBlock *bb = reinterpret_cast<BasicBlock *>(i.get());
521 if (bb)
522 bb->cfg.tag = bb->getId();
523 }
524
525 // gather the first uses for each TEX
526 for (int i = 0; i < insns.getSize(); ++i) {
527 Instruction *tex = reinterpret_cast<Instruction *>(insns.get(i));
528 if (isTextureOp(tex->op)) {
529 texes.push_back(tex);
530 if (!texCounts.at(tex->bb->getId()))
531 bbFirstTex[tex->bb->getId()] = texes.size() - 1;
532 texCounts[tex->bb->getId()]++;
533 }
534 }
535 insns.clear();
536 if (texes.empty())
537 return false;
538 uses = new std::list<TexUse>[texes.size()];
539 if (!uses)
540 return false;
541 for (size_t i = 0; i < texes.size(); ++i) {
542 findFirstUses(texes[i], uses[i]);
543 }
544
545 // determine the barrier level at each use
546 for (size_t i = 0; i < texes.size(); ++i) {
547 for (std::list<TexUse>::iterator u = uses[i].begin(); u != uses[i].end();
548 ++u) {
549 BasicBlock *tb = texes[i]->bb;
550 BasicBlock *ub = u->insn->bb;
551 if (tb == ub) {
552 u->level = 0;
553 for (size_t j = i + 1; j < texes.size() &&
554 texes[j]->bb == tb && texes[j]->serial < u->insn->serial;
555 ++j)
556 u->level++;
557 } else {
558 u->level = fn->cfg.findLightestPathWeight(&tb->cfg,
559 &ub->cfg, texCounts);
560 if (u->level < 0) {
561 WARN("Failed to find path TEX -> TEXBAR\n");
562 u->level = 0;
563 continue;
564 }
565 // this counted all TEXes in the origin block, correct that
566 u->level -= i - bbFirstTex.at(tb->getId()) + 1 /* this TEX */;
567 // and did not count the TEXes in the destination block, add those
568 for (size_t j = bbFirstTex.at(ub->getId()); j < texes.size() &&
569 texes[j]->bb == ub && texes[j]->serial < u->insn->serial;
570 ++j)
571 u->level++;
572 }
573 assert(u->level >= 0);
574 useVec.push_back(*u);
575 }
576 }
577 delete[] uses;
578
579 // insert the barriers
580 for (size_t i = 0; i < useVec.size(); ++i) {
581 Instruction *prev = useVec[i].insn->prev;
582 if (useVec[i].level < 0)
583 continue;
584 if (prev && prev->op == OP_TEXBAR) {
585 if (prev->subOp > useVec[i].level)
586 prev->subOp = useVec[i].level;
587 prev->setSrc(prev->srcCount(), useVec[i].tex->getDef(0));
588 } else {
589 Instruction *bar = new_Instruction(func, OP_TEXBAR, TYPE_NONE);
590 bar->fixed = 1;
591 bar->subOp = useVec[i].level;
592 // make use explicit to ease latency calculation
593 bar->setSrc(bar->srcCount(), useVec[i].tex->getDef(0));
594 useVec[i].insn->bb->insertBefore(useVec[i].insn, bar);
595 }
596 }
597
598 if (fn->getProgram()->optLevel < 3)
599 return true;
600
601 std::vector<Limits> limitT, limitB, limitS; // entry, exit, single
602
603 limitT.resize(fn->allBBlocks.getSize(), Limits(0, 0));
604 limitB.resize(fn->allBBlocks.getSize(), Limits(0, 0));
605 limitS.resize(fn->allBBlocks.getSize());
606
607 // cull unneeded barriers (should do that earlier, but for simplicity)
608 IteratorRef bi = fn->cfg.iteratorCFG();
609 // first calculate min/max outstanding TEXes for each BB
610 for (bi->reset(); !bi->end(); bi->next()) {
611 Graph::Node *n = reinterpret_cast<Graph::Node *>(bi->get());
612 BasicBlock *bb = BasicBlock::get(n);
613 int min = 0;
614 int max = std::numeric_limits<int>::max();
615 for (Instruction *i = bb->getFirst(); i; i = i->next) {
616 if (isTextureOp(i->op)) {
617 min++;
618 if (max < std::numeric_limits<int>::max())
619 max++;
620 } else
621 if (i->op == OP_TEXBAR) {
622 min = MIN2(min, i->subOp);
623 max = MIN2(max, i->subOp);
624 }
625 }
626 // limits when looking at an isolated block
627 limitS[bb->getId()].min = min;
628 limitS[bb->getId()].max = max;
629 }
630 // propagate the min/max values
631 for (unsigned int l = 0; l <= fn->loopNestingBound; ++l) {
632 for (bi->reset(); !bi->end(); bi->next()) {
633 Graph::Node *n = reinterpret_cast<Graph::Node *>(bi->get());
634 BasicBlock *bb = BasicBlock::get(n);
635 const int bbId = bb->getId();
636 for (Graph::EdgeIterator ei = n->incident(); !ei.end(); ei.next()) {
637 BasicBlock *in = BasicBlock::get(ei.getNode());
638 const int inId = in->getId();
639 limitT[bbId].min = MAX2(limitT[bbId].min, limitB[inId].min);
640 limitT[bbId].max = MAX2(limitT[bbId].max, limitB[inId].max);
641 }
642 // I just hope this is correct ...
643 if (limitS[bbId].max == std::numeric_limits<int>::max()) {
644 // no barrier
645 limitB[bbId].min = limitT[bbId].min + limitS[bbId].min;
646 limitB[bbId].max = limitT[bbId].max + limitS[bbId].min;
647 } else {
648 // block contained a barrier
649 limitB[bbId].min = MIN2(limitS[bbId].max,
650 limitT[bbId].min + limitS[bbId].min);
651 limitB[bbId].max = MIN2(limitS[bbId].max,
652 limitT[bbId].max + limitS[bbId].min);
653 }
654 }
655 }
656 // finally delete unnecessary barriers
657 for (bi->reset(); !bi->end(); bi->next()) {
658 Graph::Node *n = reinterpret_cast<Graph::Node *>(bi->get());
659 BasicBlock *bb = BasicBlock::get(n);
660 Instruction *prev = NULL;
661 Instruction *next;
662 int max = limitT[bb->getId()].max;
663 for (Instruction *i = bb->getFirst(); i; i = next) {
664 next = i->next;
665 if (i->op == OP_TEXBAR) {
666 if (i->subOp >= max) {
667 delete_Instruction(prog, i);
668 i = NULL;
669 } else {
670 max = i->subOp;
671 if (prev && prev->op == OP_TEXBAR && prev->subOp >= max) {
672 delete_Instruction(prog, prev);
673 prev = NULL;
674 }
675 }
676 } else
677 if (isTextureOp(i->op)) {
678 max++;
679 }
680 if (i && !i->isNop())
681 prev = i;
682 }
683 }
684 return true;
685 }
686
687 bool
visit(Function * fn)688 NVC0LegalizePostRA::visit(Function *fn)
689 {
690 if (needTexBar)
691 insertTextureBarriers(fn);
692
693 rZero = new_LValue(fn, FILE_GPR);
694 pOne = new_LValue(fn, FILE_PREDICATE);
695 carry = new_LValue(fn, FILE_FLAGS);
696
697 rZero->reg.data.id = (prog->getTarget()->getChipset() >= NVISA_GK20A_CHIPSET) ? 255 : 63;
698 carry->reg.data.id = 0;
699 pOne->reg.data.id = 7;
700
701 return true;
702 }
703
704 void
replaceZero(Instruction * i)705 NVC0LegalizePostRA::replaceZero(Instruction *i)
706 {
707 for (int s = 0; i->srcExists(s); ++s) {
708 if (s == 2 && i->op == OP_SUCLAMP)
709 continue;
710 if (s == 1 && i->op == OP_SHLADD)
711 continue;
712 ImmediateValue *imm = i->getSrc(s)->asImm();
713 if (imm) {
714 if (i->op == OP_SELP && s == 2) {
715 i->setSrc(s, pOne);
716 if (imm->reg.data.u64 == 0)
717 i->src(s).mod = i->src(s).mod ^ Modifier(NV50_IR_MOD_NOT);
718 } else if (imm->reg.data.u64 == 0) {
719 i->setSrc(s, rZero);
720 }
721 }
722 }
723 }
724
725 // replace CONT with BRA for single unconditional continue
726 bool
tryReplaceContWithBra(BasicBlock * bb)727 NVC0LegalizePostRA::tryReplaceContWithBra(BasicBlock *bb)
728 {
729 if (bb->cfg.incidentCount() != 2 || bb->getEntry()->op != OP_PRECONT)
730 return false;
731 Graph::EdgeIterator ei = bb->cfg.incident();
732 if (ei.getType() != Graph::Edge::BACK)
733 ei.next();
734 if (ei.getType() != Graph::Edge::BACK)
735 return false;
736 BasicBlock *contBB = BasicBlock::get(ei.getNode());
737
738 if (!contBB->getExit() || contBB->getExit()->op != OP_CONT ||
739 contBB->getExit()->getPredicate())
740 return false;
741 contBB->getExit()->op = OP_BRA;
742 bb->remove(bb->getEntry()); // delete PRECONT
743
744 ei.next();
745 assert(ei.end() || ei.getType() != Graph::Edge::BACK);
746 return true;
747 }
748
749 // replace branches to join blocks with join ops
750 void
propagateJoin(BasicBlock * bb)751 NVC0LegalizePostRA::propagateJoin(BasicBlock *bb)
752 {
753 if (bb->getEntry()->op != OP_JOIN || bb->getEntry()->asFlow()->limit)
754 return;
755 for (Graph::EdgeIterator ei = bb->cfg.incident(); !ei.end(); ei.next()) {
756 BasicBlock *in = BasicBlock::get(ei.getNode());
757 Instruction *exit = in->getExit();
758 if (!exit) {
759 in->insertTail(new FlowInstruction(func, OP_JOIN, bb));
760 // there should always be a terminator instruction
761 WARN("inserted missing terminator in BB:%i\n", in->getId());
762 } else
763 if (exit->op == OP_BRA) {
764 exit->op = OP_JOIN;
765 exit->asFlow()->limit = 1; // must-not-propagate marker
766 }
767 }
768 bb->remove(bb->getEntry());
769 }
770
771 // replaces instructions which would end up as f2f or i2i with faster
772 // alternatives:
773 // - fabs(a) -> fadd(0, abs a)
774 // - fneg(a) -> fadd(neg 0, neg a)
775 // - ineg(a) -> iadd(0, neg a)
776 // - fneg(abs a) -> fadd(neg 0, neg abs a)
777 // - sat(a) -> sat add(0, a)
778 void
replaceCvt(Instruction * cvt)779 NVC0LegalizePostRA::replaceCvt(Instruction *cvt)
780 {
781 if (!isFloatType(cvt->sType) && typeSizeof(cvt->sType) != 4)
782 return;
783 if (cvt->sType != cvt->dType)
784 return;
785 // we could make it work, but in this case we have optimizations disabled
786 // and we don't really care either way.
787 if (cvt->src(0).getFile() != FILE_GPR &&
788 cvt->src(0).getFile() != FILE_MEMORY_CONST)
789 return;
790
791 Modifier mod0, mod1;
792
793 switch (cvt->op) {
794 case OP_ABS:
795 if (cvt->src(0).mod)
796 return;
797 if (!isFloatType(cvt->sType))
798 return;
799 mod0 = 0;
800 mod1 = NV50_IR_MOD_ABS;
801 break;
802 case OP_NEG:
803 if (!isFloatType(cvt->sType) && cvt->src(0).mod)
804 return;
805 if (isFloatType(cvt->sType) &&
806 (cvt->src(0).mod && cvt->src(0).mod != Modifier(NV50_IR_MOD_ABS)))
807 return;
808
809 mod0 = isFloatType(cvt->sType) ? NV50_IR_MOD_NEG : 0;
810 mod1 = cvt->src(0).mod == Modifier(NV50_IR_MOD_ABS) ?
811 NV50_IR_MOD_NEG_ABS : NV50_IR_MOD_NEG;
812 break;
813 case OP_SAT:
814 if (!isFloatType(cvt->sType) && cvt->src(0).mod.abs())
815 return;
816 mod0 = 0;
817 mod1 = cvt->src(0).mod;
818 cvt->saturate = true;
819 break;
820 default:
821 return;
822 }
823
824 cvt->op = OP_ADD;
825 cvt->moveSources(0, 1);
826 cvt->setSrc(0, rZero);
827 cvt->src(0).mod = mod0;
828 cvt->src(1).mod = mod1;
829 }
830
831 bool
visit(BasicBlock * bb)832 NVC0LegalizePostRA::visit(BasicBlock *bb)
833 {
834 Instruction *i, *next;
835
836 // remove pseudo operations and non-fixed no-ops, split 64 bit operations
837 for (i = bb->getFirst(); i; i = next) {
838 next = i->next;
839 if (i->op == OP_EMIT || i->op == OP_RESTART) {
840 if (!i->getDef(0)->refCount())
841 i->setDef(0, NULL);
842 if (i->src(0).getFile() == FILE_IMMEDIATE)
843 i->setSrc(0, rZero); // initial value must be 0
844 replaceZero(i);
845 } else
846 if (i->isNop()) {
847 bb->remove(i);
848 } else
849 if (i->op == OP_BAR && i->subOp == NV50_IR_SUBOP_BAR_SYNC &&
850 prog->getType() != Program::TYPE_COMPUTE) {
851 // It seems like barriers are never required for tessellation since
852 // the warp size is 32, and there are always at most 32 tcs threads.
853 bb->remove(i);
854 } else
855 if (i->op == OP_LOAD && i->subOp == NV50_IR_SUBOP_LDC_IS) {
856 int offset = i->src(0).get()->reg.data.offset;
857 if (abs(offset) >= 0x10000)
858 i->src(0).get()->reg.fileIndex += offset >> 16;
859 i->src(0).get()->reg.data.offset = (int)(short)offset;
860 } else {
861 // TODO: Move this to before register allocation for operations that
862 // need the $c register !
863 if (typeSizeof(i->sType) == 8 || typeSizeof(i->dType) == 8) {
864 Instruction *hi;
865 hi = BuildUtil::split64BitOpPostRA(func, i, rZero, carry);
866 if (hi)
867 next = hi;
868 }
869
870 if (i->op != OP_MOV && i->op != OP_PFETCH)
871 replaceZero(i);
872
873 if (i->op == OP_SAT || i->op == OP_NEG || i->op == OP_ABS)
874 replaceCvt(i);
875 }
876 }
877 if (!bb->getEntry())
878 return true;
879
880 if (!tryReplaceContWithBra(bb))
881 propagateJoin(bb);
882
883 return true;
884 }
885
NVC0LoweringPass(Program * prog)886 NVC0LoweringPass::NVC0LoweringPass(Program *prog) : targ(prog->getTarget()),
887 gpEmitAddress(NULL)
888 {
889 bld.setProgram(prog);
890 }
891
892 bool
visit(Function * fn)893 NVC0LoweringPass::visit(Function *fn)
894 {
895 if (prog->getType() == Program::TYPE_GEOMETRY) {
896 assert(!strncmp(fn->getName(), "MAIN", 4));
897 // TODO: when we generate actual functions pass this value along somehow
898 bld.setPosition(BasicBlock::get(fn->cfg.getRoot()), false);
899 gpEmitAddress = bld.loadImm(NULL, 0)->asLValue();
900 if (fn->cfgExit) {
901 bld.setPosition(BasicBlock::get(fn->cfgExit)->getExit(), false);
902 if (prog->getTarget()->getChipset() >= NVISA_GV100_CHIPSET)
903 bld.mkOp1(OP_FINAL, TYPE_NONE, NULL, gpEmitAddress)->fixed = 1;
904 bld.mkMovToReg(0, gpEmitAddress);
905 }
906 }
907 return true;
908 }
909
910 bool
visit(BasicBlock * bb)911 NVC0LoweringPass::visit(BasicBlock *bb)
912 {
913 return true;
914 }
915
916 inline Value *
loadTexHandle(Value * ptr,unsigned int slot)917 NVC0LoweringPass::loadTexHandle(Value *ptr, unsigned int slot)
918 {
919 uint8_t b = prog->driver->io.auxCBSlot;
920 uint32_t off = prog->driver->io.texBindBase + slot * 4;
921
922 if (ptr)
923 ptr = bld.mkOp2v(OP_SHL, TYPE_U32, bld.getSSA(), ptr, bld.mkImm(2));
924
925 return bld.
926 mkLoadv(TYPE_U32, bld.mkSymbol(FILE_MEMORY_CONST, b, TYPE_U32, off), ptr);
927 }
928
929 // move array source to first slot, convert to u16, add indirections
930 bool
handleTEX(TexInstruction * i)931 NVC0LoweringPass::handleTEX(TexInstruction *i)
932 {
933 const int dim = i->tex.target.getDim() + i->tex.target.isCube();
934 const int arg = i->tex.target.getArgCount();
935 const int lyr = arg - (i->tex.target.isMS() ? 2 : 1);
936 const int chipset = prog->getTarget()->getChipset();
937
938 /* Only normalize in the non-explicit derivatives case. For explicit
939 * derivatives, this is handled in handleManualTXD.
940 */
941 if (i->tex.target.isCube() && i->dPdx[0].get() == NULL) {
942 Value *src[3], *val;
943 int c;
944 for (c = 0; c < 3; ++c)
945 src[c] = bld.mkOp1v(OP_ABS, TYPE_F32, bld.getSSA(), i->getSrc(c));
946 val = bld.getScratch();
947 bld.mkOp2(OP_MAX, TYPE_F32, val, src[0], src[1]);
948 bld.mkOp2(OP_MAX, TYPE_F32, val, src[2], val);
949 bld.mkOp1(OP_RCP, TYPE_F32, val, val);
950 for (c = 0; c < 3; ++c) {
951 i->setSrc(c, bld.mkOp2v(OP_MUL, TYPE_F32, bld.getSSA(),
952 i->getSrc(c), val));
953 }
954 }
955
956 // Arguments to the TEX instruction are a little insane. Even though the
957 // encoding is identical between SM20 and SM30, the arguments mean
958 // different things between Fermi and Kepler+. A lot of arguments are
959 // optional based on flags passed to the instruction. This summarizes the
960 // order of things.
961 //
962 // Fermi:
963 // array/indirect
964 // coords
965 // sample
966 // lod bias
967 // depth compare
968 // offsets:
969 // - tg4: 8 bits each, either 2 (1 offset reg) or 8 (2 offset reg)
970 // - other: 4 bits each, single reg
971 //
972 // Kepler+:
973 // indirect handle
974 // array (+ offsets for txd in upper 16 bits)
975 // coords
976 // sample
977 // lod bias
978 // depth compare
979 // offsets (same as fermi, except txd which takes it with array)
980 //
981 // Maxwell (tex):
982 // array
983 // coords
984 // indirect handle
985 // sample
986 // lod bias
987 // depth compare
988 // offsets
989 //
990 // Maxwell (txd):
991 // indirect handle
992 // coords
993 // array + offsets
994 // derivatives
995
996 if (chipset >= NVISA_GK104_CHIPSET) {
997 if (i->tex.rIndirectSrc >= 0 || i->tex.sIndirectSrc >= 0) {
998 // XXX this ignores tsc, and assumes a 1:1 mapping
999 assert(i->tex.rIndirectSrc >= 0);
1000 if (!i->tex.bindless) {
1001 Value *hnd = loadTexHandle(i->getIndirectR(), i->tex.r);
1002 i->tex.r = 0xff;
1003 i->tex.s = 0x1f;
1004 i->setIndirectR(hnd);
1005 }
1006 i->setIndirectS(NULL);
1007 } else if (i->tex.r == i->tex.s || i->op == OP_TXF) {
1008 if (i->tex.r == 0xffff)
1009 i->tex.r = prog->driver->io.fbtexBindBase / 4;
1010 else
1011 i->tex.r += prog->driver->io.texBindBase / 4;
1012 i->tex.s = 0; // only a single cX[] value possible here
1013 } else {
1014 Value *hnd = bld.getScratch();
1015 Value *rHnd = loadTexHandle(NULL, i->tex.r);
1016 Value *sHnd = loadTexHandle(NULL, i->tex.s);
1017
1018 bld.mkOp3(OP_INSBF, TYPE_U32, hnd, rHnd, bld.mkImm(0x1400), sHnd);
1019
1020 i->tex.r = 0; // not used for indirect tex
1021 i->tex.s = 0;
1022 i->setIndirectR(hnd);
1023 }
1024 if (i->tex.target.isArray()) {
1025 LValue *layer = new_LValue(func, FILE_GPR);
1026 Value *src = i->getSrc(lyr);
1027 const int sat = (i->op == OP_TXF) ? 1 : 0;
1028 DataType sTy = (i->op == OP_TXF) ? TYPE_U32 : TYPE_F32;
1029 bld.mkCvt(OP_CVT, TYPE_U16, layer, sTy, src)->saturate = sat;
1030 if (i->op != OP_TXD || chipset < NVISA_GM107_CHIPSET) {
1031 for (int s = dim; s >= 1; --s)
1032 i->setSrc(s, i->getSrc(s - 1));
1033 i->setSrc(0, layer);
1034 } else {
1035 i->setSrc(dim, layer);
1036 }
1037 }
1038 // Move the indirect reference to the first place
1039 if (i->tex.rIndirectSrc >= 0 && (
1040 i->op == OP_TXD || chipset < NVISA_GM107_CHIPSET)) {
1041 Value *hnd = i->getIndirectR();
1042
1043 i->setIndirectR(NULL);
1044 i->moveSources(0, 1);
1045 i->setSrc(0, hnd);
1046 i->tex.rIndirectSrc = 0;
1047 i->tex.sIndirectSrc = -1;
1048 }
1049 // Move the indirect reference to right after the coords
1050 else if (i->tex.rIndirectSrc >= 0 && chipset >= NVISA_GM107_CHIPSET) {
1051 Value *hnd = i->getIndirectR();
1052
1053 i->setIndirectR(NULL);
1054 i->moveSources(arg, 1);
1055 i->setSrc(arg, hnd);
1056 i->tex.rIndirectSrc = 0;
1057 i->tex.sIndirectSrc = -1;
1058 }
1059 } else
1060 // (nvc0) generate and move the tsc/tic/array source to the front
1061 if (i->tex.target.isArray() || i->tex.rIndirectSrc >= 0 || i->tex.sIndirectSrc >= 0) {
1062 LValue *src = new_LValue(func, FILE_GPR); // 0xttxsaaaa
1063
1064 Value *ticRel = i->getIndirectR();
1065 Value *tscRel = i->getIndirectS();
1066
1067 if (i->tex.r == 0xffff) {
1068 i->tex.r = 0x20;
1069 i->tex.s = 0x10;
1070 }
1071
1072 if (ticRel) {
1073 i->setSrc(i->tex.rIndirectSrc, NULL);
1074 if (i->tex.r)
1075 ticRel = bld.mkOp2v(OP_ADD, TYPE_U32, bld.getScratch(),
1076 ticRel, bld.mkImm(i->tex.r));
1077 }
1078 if (tscRel) {
1079 i->setSrc(i->tex.sIndirectSrc, NULL);
1080 if (i->tex.s)
1081 tscRel = bld.mkOp2v(OP_ADD, TYPE_U32, bld.getScratch(),
1082 tscRel, bld.mkImm(i->tex.s));
1083 }
1084
1085 Value *arrayIndex = i->tex.target.isArray() ? i->getSrc(lyr) : NULL;
1086 if (arrayIndex) {
1087 for (int s = dim; s >= 1; --s)
1088 i->setSrc(s, i->getSrc(s - 1));
1089 i->setSrc(0, arrayIndex);
1090 } else {
1091 i->moveSources(0, 1);
1092 }
1093
1094 if (arrayIndex) {
1095 int sat = (i->op == OP_TXF) ? 1 : 0;
1096 DataType sTy = (i->op == OP_TXF) ? TYPE_U32 : TYPE_F32;
1097 bld.mkCvt(OP_CVT, TYPE_U16, src, sTy, arrayIndex)->saturate = sat;
1098 } else {
1099 bld.loadImm(src, 0);
1100 }
1101
1102 if (ticRel)
1103 bld.mkOp3(OP_INSBF, TYPE_U32, src, ticRel, bld.mkImm(0x0917), src);
1104 if (tscRel)
1105 bld.mkOp3(OP_INSBF, TYPE_U32, src, tscRel, bld.mkImm(0x0710), src);
1106
1107 i->setSrc(0, src);
1108 }
1109
1110 // For nvc0, the sample id has to be in the second operand, as the offset
1111 // does. Right now we don't know how to pass both in, and this case can't
1112 // happen with OpenGL. On nve0, the sample id is part of the texture
1113 // coordinate argument.
1114 assert(chipset >= NVISA_GK104_CHIPSET ||
1115 !i->tex.useOffsets || !i->tex.target.isMS());
1116
1117 // offset is between lod and dc
1118 if (i->tex.useOffsets) {
1119 int n, c;
1120 int s = i->srcCount(0xff, true);
1121 if (i->op != OP_TXD || chipset < NVISA_GK104_CHIPSET) {
1122 if (i->tex.target.isShadow())
1123 s--;
1124 if (i->srcExists(s)) // move potential predicate out of the way
1125 i->moveSources(s, 1);
1126 if (i->tex.useOffsets == 4 && i->srcExists(s + 1))
1127 i->moveSources(s + 1, 1);
1128 }
1129 if (i->op == OP_TXG) {
1130 // Either there is 1 offset, which goes into the 2 low bytes of the
1131 // first source, or there are 4 offsets, which go into 2 sources (8
1132 // values, 1 byte each).
1133 Value *offs[2] = {NULL, NULL};
1134 for (n = 0; n < i->tex.useOffsets; n++) {
1135 for (c = 0; c < 2; ++c) {
1136 if ((n % 2) == 0 && c == 0)
1137 bld.mkMov(offs[n / 2] = bld.getScratch(), i->offset[n][c].get());
1138 else
1139 bld.mkOp3(OP_INSBF, TYPE_U32,
1140 offs[n / 2],
1141 i->offset[n][c].get(),
1142 bld.mkImm(0x800 | ((n * 16 + c * 8) % 32)),
1143 offs[n / 2]);
1144 }
1145 }
1146 i->setSrc(s, offs[0]);
1147 if (offs[1])
1148 i->setSrc(s + 1, offs[1]);
1149 } else {
1150 unsigned imm = 0;
1151 assert(i->tex.useOffsets == 1);
1152 for (c = 0; c < 3; ++c) {
1153 ImmediateValue val;
1154 if (!i->offset[0][c].getImmediate(val))
1155 assert(!"non-immediate offset passed to non-TXG");
1156 imm |= (val.reg.data.u32 & 0xf) << (c * 4);
1157 }
1158 if (i->op == OP_TXD && chipset >= NVISA_GK104_CHIPSET) {
1159 // The offset goes into the upper 16 bits of the array index. So
1160 // create it if it's not already there, and INSBF it if it already
1161 // is.
1162 s = (i->tex.rIndirectSrc >= 0) ? 1 : 0;
1163 if (chipset >= NVISA_GM107_CHIPSET)
1164 s += dim;
1165 if (i->tex.target.isArray()) {
1166 Value *offset = bld.getScratch();
1167 bld.mkOp3(OP_INSBF, TYPE_U32, offset,
1168 bld.loadImm(NULL, imm), bld.mkImm(0xc10),
1169 i->getSrc(s));
1170 i->setSrc(s, offset);
1171 } else {
1172 i->moveSources(s, 1);
1173 i->setSrc(s, bld.loadImm(NULL, imm << 16));
1174 }
1175 } else {
1176 i->setSrc(s, bld.loadImm(NULL, imm));
1177 }
1178 }
1179 }
1180
1181 return true;
1182 }
1183
1184 bool
handleManualTXD(TexInstruction * i)1185 NVC0LoweringPass::handleManualTXD(TexInstruction *i)
1186 {
1187 // Always done from the l0 perspective. This is the way that NVIDIA's
1188 // driver does it, and doing it from the "current" lane's perspective
1189 // doesn't seem to always work for reasons that aren't altogether clear,
1190 // even in frag shaders.
1191 //
1192 // Note that we must move not only the coordinates into lane0, but also all
1193 // ancillary arguments, like array indices and depth compare as they may
1194 // differ between lanes. Offsets for TXD are supposed to be uniform, so we
1195 // leave them alone.
1196 static const uint8_t qOps[2] =
1197 { QUADOP(MOV2, ADD, MOV2, ADD), QUADOP(MOV2, MOV2, ADD, ADD) };
1198
1199 Value *def[4][4];
1200 Value *crd[3], *arr[2], *shadow;
1201 Instruction *tex;
1202 Value *zero = bld.loadImm(bld.getSSA(), 0);
1203 int l, c;
1204 const int dim = i->tex.target.getDim() + i->tex.target.isCube();
1205
1206 // This function is invoked after handleTEX lowering, so we have to expect
1207 // the arguments in the order that the hw wants them. For Fermi, array and
1208 // indirect are both in the leading arg, while for Kepler, array and
1209 // indirect are separate (and both precede the coordinates). Maxwell is
1210 // handled in a separate function.
1211 int array;
1212 if (targ->getChipset() < NVISA_GK104_CHIPSET)
1213 array = i->tex.target.isArray() || i->tex.rIndirectSrc >= 0;
1214 else
1215 array = i->tex.target.isArray() + (i->tex.rIndirectSrc >= 0);
1216
1217 i->op = OP_TEX; // no need to clone dPdx/dPdy later
1218
1219 for (c = 0; c < dim; ++c)
1220 crd[c] = bld.getScratch();
1221 for (c = 0; c < array; ++c)
1222 arr[c] = bld.getScratch();
1223 shadow = bld.getScratch();
1224
1225 for (l = 0; l < 4; ++l) {
1226 Value *src[3], *val;
1227
1228 bld.mkOp(OP_QUADON, TYPE_NONE, NULL);
1229 // we're using the texture result from lane 0 in all cases, so make sure
1230 // that lane 0 is pointing at the proper array index, indirect value,
1231 // and depth compare.
1232 if (l != 0) {
1233 for (c = 0; c < array; ++c)
1234 bld.mkQuadop(0x00, arr[c], l, i->getSrc(c), zero);
1235 if (i->tex.target.isShadow()) {
1236 // The next argument after coords is the depth compare
1237 bld.mkQuadop(0x00, shadow, l, i->getSrc(array + dim), zero);
1238 }
1239 }
1240 // mov position coordinates from lane l to all lanes
1241 for (c = 0; c < dim; ++c)
1242 bld.mkQuadop(0x00, crd[c], l, i->getSrc(c + array), zero);
1243 // add dPdx from lane l to lanes dx
1244 for (c = 0; c < dim; ++c)
1245 bld.mkQuadop(qOps[0], crd[c], l, i->dPdx[c].get(), crd[c]);
1246 // add dPdy from lane l to lanes dy
1247 for (c = 0; c < dim; ++c)
1248 bld.mkQuadop(qOps[1], crd[c], l, i->dPdy[c].get(), crd[c]);
1249 // normalize cube coordinates
1250 if (i->tex.target.isCube()) {
1251 for (c = 0; c < 3; ++c)
1252 src[c] = bld.mkOp1v(OP_ABS, TYPE_F32, bld.getSSA(), crd[c]);
1253 val = bld.getScratch();
1254 bld.mkOp2(OP_MAX, TYPE_F32, val, src[0], src[1]);
1255 bld.mkOp2(OP_MAX, TYPE_F32, val, src[2], val);
1256 bld.mkOp1(OP_RCP, TYPE_F32, val, val);
1257 for (c = 0; c < 3; ++c)
1258 src[c] = bld.mkOp2v(OP_MUL, TYPE_F32, bld.getSSA(), crd[c], val);
1259 } else {
1260 for (c = 0; c < dim; ++c)
1261 src[c] = crd[c];
1262 }
1263 // texture
1264 bld.insert(tex = cloneForward(func, i));
1265 if (l != 0) {
1266 for (c = 0; c < array; ++c)
1267 tex->setSrc(c, arr[c]);
1268 if (i->tex.target.isShadow())
1269 tex->setSrc(array + dim, shadow);
1270 }
1271 for (c = 0; c < dim; ++c)
1272 tex->setSrc(c + array, src[c]);
1273 // broadcast results from lane 0 to all lanes so that the moves *into*
1274 // the target lane pick up the proper value.
1275 if (l != 0)
1276 for (c = 0; i->defExists(c); ++c)
1277 bld.mkQuadop(0x00, tex->getDef(c), 0, tex->getDef(c), zero);
1278 bld.mkOp(OP_QUADPOP, TYPE_NONE, NULL);
1279
1280 // save results
1281 for (c = 0; i->defExists(c); ++c) {
1282 Instruction *mov;
1283 def[c][l] = bld.getSSA();
1284 mov = bld.mkMov(def[c][l], tex->getDef(c));
1285 mov->fixed = 1;
1286 mov->lanes = 1 << l;
1287 }
1288 }
1289
1290 for (c = 0; i->defExists(c); ++c) {
1291 Instruction *u = bld.mkOp(OP_UNION, TYPE_U32, i->getDef(c));
1292 for (l = 0; l < 4; ++l)
1293 u->setSrc(l, def[c][l]);
1294 }
1295
1296 i->bb->remove(i);
1297 return true;
1298 }
1299
1300 bool
handleTXD(TexInstruction * txd)1301 NVC0LoweringPass::handleTXD(TexInstruction *txd)
1302 {
1303 int dim = txd->tex.target.getDim() + txd->tex.target.isCube();
1304 unsigned arg = txd->tex.target.getArgCount();
1305 unsigned expected_args = arg;
1306 const int chipset = prog->getTarget()->getChipset();
1307
1308 if (chipset >= NVISA_GK104_CHIPSET) {
1309 if (!txd->tex.target.isArray() && txd->tex.useOffsets)
1310 expected_args++;
1311 if (txd->tex.rIndirectSrc >= 0 || txd->tex.sIndirectSrc >= 0)
1312 expected_args++;
1313 } else {
1314 if (txd->tex.useOffsets)
1315 expected_args++;
1316 if (!txd->tex.target.isArray() && (
1317 txd->tex.rIndirectSrc >= 0 || txd->tex.sIndirectSrc >= 0))
1318 expected_args++;
1319 }
1320
1321 if (expected_args > 4 ||
1322 dim > 2 ||
1323 txd->tex.target.isShadow())
1324 txd->op = OP_TEX;
1325
1326 handleTEX(txd);
1327 while (txd->srcExists(arg))
1328 ++arg;
1329
1330 txd->tex.derivAll = true;
1331 if (txd->op == OP_TEX)
1332 return handleManualTXD(txd);
1333
1334 assert(arg == expected_args);
1335 for (int c = 0; c < dim; ++c) {
1336 txd->setSrc(arg + c * 2 + 0, txd->dPdx[c]);
1337 txd->setSrc(arg + c * 2 + 1, txd->dPdy[c]);
1338 txd->dPdx[c].set(NULL);
1339 txd->dPdy[c].set(NULL);
1340 }
1341
1342 // In this case we have fewer than 4 "real" arguments, which means that
1343 // handleTEX didn't apply any padding. However we have to make sure that
1344 // the second "group" of arguments still gets padded up to 4.
1345 if (chipset >= NVISA_GK104_CHIPSET) {
1346 int s = arg + 2 * dim;
1347 if (s >= 4 && s < 7) {
1348 if (txd->srcExists(s)) // move potential predicate out of the way
1349 txd->moveSources(s, 7 - s);
1350 while (s < 7)
1351 txd->setSrc(s++, bld.loadImm(NULL, 0));
1352 }
1353 }
1354
1355 return true;
1356 }
1357
1358 bool
handleTXQ(TexInstruction * txq)1359 NVC0LoweringPass::handleTXQ(TexInstruction *txq)
1360 {
1361 const int chipset = prog->getTarget()->getChipset();
1362 if (chipset >= NVISA_GK104_CHIPSET && txq->tex.rIndirectSrc < 0)
1363 txq->tex.r += prog->driver->io.texBindBase / 4;
1364
1365 if (txq->tex.rIndirectSrc < 0)
1366 return true;
1367
1368 Value *ticRel = txq->getIndirectR();
1369
1370 txq->setIndirectS(NULL);
1371 txq->tex.sIndirectSrc = -1;
1372
1373 assert(ticRel);
1374
1375 if (chipset < NVISA_GK104_CHIPSET) {
1376 LValue *src = new_LValue(func, FILE_GPR); // 0xttxsaaaa
1377
1378 txq->setSrc(txq->tex.rIndirectSrc, NULL);
1379 if (txq->tex.r)
1380 ticRel = bld.mkOp2v(OP_ADD, TYPE_U32, bld.getScratch(),
1381 ticRel, bld.mkImm(txq->tex.r));
1382
1383 bld.mkOp2(OP_SHL, TYPE_U32, src, ticRel, bld.mkImm(0x17));
1384
1385 txq->moveSources(0, 1);
1386 txq->setSrc(0, src);
1387 } else {
1388 Value *hnd = loadTexHandle(txq->getIndirectR(), txq->tex.r);
1389 txq->tex.r = 0xff;
1390 txq->tex.s = 0x1f;
1391
1392 txq->setIndirectR(NULL);
1393 txq->moveSources(0, 1);
1394 txq->setSrc(0, hnd);
1395 txq->tex.rIndirectSrc = 0;
1396 }
1397
1398 return true;
1399 }
1400
1401 bool
handleTXLQ(TexInstruction * i)1402 NVC0LoweringPass::handleTXLQ(TexInstruction *i)
1403 {
1404 /* The outputs are inverted compared to what the TGSI instruction
1405 * expects. Take that into account in the mask.
1406 */
1407 assert((i->tex.mask & ~3) == 0);
1408 if (i->tex.mask == 1)
1409 i->tex.mask = 2;
1410 else if (i->tex.mask == 2)
1411 i->tex.mask = 1;
1412 handleTEX(i);
1413 bld.setPosition(i, true);
1414
1415 /* The returned values are not quite what we want:
1416 * (a) convert from s16/u16 to f32
1417 * (b) multiply by 1/256
1418 */
1419 for (int def = 0; def < 2; ++def) {
1420 if (!i->defExists(def))
1421 continue;
1422 enum DataType type = TYPE_S16;
1423 if (i->tex.mask == 2 || def > 0)
1424 type = TYPE_U16;
1425 bld.mkCvt(OP_CVT, TYPE_F32, i->getDef(def), type, i->getDef(def));
1426 bld.mkOp2(OP_MUL, TYPE_F32, i->getDef(def),
1427 i->getDef(def), bld.loadImm(NULL, 1.0f / 256));
1428 }
1429 if (i->tex.mask == 3) {
1430 LValue *t = new_LValue(func, FILE_GPR);
1431 bld.mkMov(t, i->getDef(0));
1432 bld.mkMov(i->getDef(0), i->getDef(1));
1433 bld.mkMov(i->getDef(1), t);
1434 }
1435 return true;
1436 }
1437
1438 bool
handleBUFQ(Instruction * bufq)1439 NVC0LoweringPass::handleBUFQ(Instruction *bufq)
1440 {
1441 bufq->op = OP_MOV;
1442 bufq->setSrc(0, loadBufLength32(bufq->getIndirect(0, 1),
1443 bufq->getSrc(0)->reg.fileIndex * 16));
1444 bufq->setIndirect(0, 0, NULL);
1445 bufq->setIndirect(0, 1, NULL);
1446 return true;
1447 }
1448
1449 void
handleSharedATOMNVE4(Instruction * atom)1450 NVC0LoweringPass::handleSharedATOMNVE4(Instruction *atom)
1451 {
1452 assert(atom->src(0).getFile() == FILE_MEMORY_SHARED);
1453
1454 BasicBlock *currBB = atom->bb;
1455 BasicBlock *tryLockBB = atom->bb->splitBefore(atom, false);
1456 BasicBlock *joinBB = atom->bb->splitAfter(atom);
1457 BasicBlock *setAndUnlockBB = new BasicBlock(func);
1458 BasicBlock *failLockBB = new BasicBlock(func);
1459
1460 bld.setPosition(currBB, true);
1461 assert(!currBB->joinAt);
1462 currBB->joinAt = bld.mkFlow(OP_JOINAT, joinBB, CC_ALWAYS, NULL);
1463
1464 CmpInstruction *pred =
1465 bld.mkCmp(OP_SET, CC_EQ, TYPE_U32, bld.getSSA(1, FILE_PREDICATE),
1466 TYPE_U32, bld.mkImm(0), bld.mkImm(1));
1467
1468 bld.mkFlow(OP_BRA, tryLockBB, CC_ALWAYS, NULL);
1469 currBB->cfg.attach(&tryLockBB->cfg, Graph::Edge::TREE);
1470
1471 bld.setPosition(tryLockBB, true);
1472
1473 Instruction *ld =
1474 bld.mkLoad(TYPE_U32, atom->getDef(0), atom->getSrc(0)->asSym(),
1475 atom->getIndirect(0, 0));
1476 ld->setDef(1, bld.getSSA(1, FILE_PREDICATE));
1477 ld->subOp = NV50_IR_SUBOP_LOAD_LOCKED;
1478
1479 bld.mkFlow(OP_BRA, setAndUnlockBB, CC_P, ld->getDef(1));
1480 bld.mkFlow(OP_BRA, failLockBB, CC_ALWAYS, NULL);
1481 tryLockBB->cfg.attach(&failLockBB->cfg, Graph::Edge::CROSS);
1482 tryLockBB->cfg.attach(&setAndUnlockBB->cfg, Graph::Edge::TREE);
1483
1484 tryLockBB->cfg.detach(&joinBB->cfg);
1485 bld.remove(atom);
1486
1487 bld.setPosition(setAndUnlockBB, true);
1488 Value *stVal;
1489 if (atom->subOp == NV50_IR_SUBOP_ATOM_EXCH) {
1490 // Read the old value, and write the new one.
1491 stVal = atom->getSrc(1);
1492 } else if (atom->subOp == NV50_IR_SUBOP_ATOM_CAS) {
1493 CmpInstruction *set =
1494 bld.mkCmp(OP_SET, CC_EQ, TYPE_U32, bld.getSSA(),
1495 TYPE_U32, ld->getDef(0), atom->getSrc(1));
1496
1497 bld.mkCmp(OP_SLCT, CC_NE, TYPE_U32, (stVal = bld.getSSA()),
1498 TYPE_U32, atom->getSrc(2), ld->getDef(0), set->getDef(0));
1499 } else {
1500 operation op;
1501
1502 switch (atom->subOp) {
1503 case NV50_IR_SUBOP_ATOM_ADD:
1504 op = OP_ADD;
1505 break;
1506 case NV50_IR_SUBOP_ATOM_AND:
1507 op = OP_AND;
1508 break;
1509 case NV50_IR_SUBOP_ATOM_OR:
1510 op = OP_OR;
1511 break;
1512 case NV50_IR_SUBOP_ATOM_XOR:
1513 op = OP_XOR;
1514 break;
1515 case NV50_IR_SUBOP_ATOM_MIN:
1516 op = OP_MIN;
1517 break;
1518 case NV50_IR_SUBOP_ATOM_MAX:
1519 op = OP_MAX;
1520 break;
1521 default:
1522 assert(0);
1523 return;
1524 }
1525
1526 stVal = bld.mkOp2v(op, atom->dType, bld.getSSA(), ld->getDef(0),
1527 atom->getSrc(1));
1528 }
1529
1530 Instruction *st =
1531 bld.mkStore(OP_STORE, TYPE_U32, atom->getSrc(0)->asSym(),
1532 atom->getIndirect(0, 0), stVal);
1533 st->setDef(0, pred->getDef(0));
1534 st->subOp = NV50_IR_SUBOP_STORE_UNLOCKED;
1535
1536 bld.mkFlow(OP_BRA, failLockBB, CC_ALWAYS, NULL);
1537 setAndUnlockBB->cfg.attach(&failLockBB->cfg, Graph::Edge::TREE);
1538
1539 // Lock until the store has not been performed.
1540 bld.setPosition(failLockBB, true);
1541 bld.mkFlow(OP_BRA, tryLockBB, CC_NOT_P, pred->getDef(0));
1542 bld.mkFlow(OP_BRA, joinBB, CC_ALWAYS, NULL);
1543 failLockBB->cfg.attach(&tryLockBB->cfg, Graph::Edge::BACK);
1544 failLockBB->cfg.attach(&joinBB->cfg, Graph::Edge::TREE);
1545
1546 bld.setPosition(joinBB, false);
1547 bld.mkFlow(OP_JOIN, NULL, CC_ALWAYS, NULL)->fixed = 1;
1548 }
1549
1550 void
handleSharedATOM(Instruction * atom)1551 NVC0LoweringPass::handleSharedATOM(Instruction *atom)
1552 {
1553 assert(atom->src(0).getFile() == FILE_MEMORY_SHARED);
1554
1555 BasicBlock *currBB = atom->bb;
1556 BasicBlock *tryLockAndSetBB = atom->bb->splitBefore(atom, false);
1557 BasicBlock *joinBB = atom->bb->splitAfter(atom);
1558
1559 bld.setPosition(currBB, true);
1560 assert(!currBB->joinAt);
1561 currBB->joinAt = bld.mkFlow(OP_JOINAT, joinBB, CC_ALWAYS, NULL);
1562
1563 bld.mkFlow(OP_BRA, tryLockAndSetBB, CC_ALWAYS, NULL);
1564 currBB->cfg.attach(&tryLockAndSetBB->cfg, Graph::Edge::TREE);
1565
1566 bld.setPosition(tryLockAndSetBB, true);
1567
1568 Instruction *ld =
1569 bld.mkLoad(TYPE_U32, atom->getDef(0), atom->getSrc(0)->asSym(),
1570 atom->getIndirect(0, 0));
1571 ld->setDef(1, bld.getSSA(1, FILE_PREDICATE));
1572 ld->subOp = NV50_IR_SUBOP_LOAD_LOCKED;
1573
1574 Value *stVal;
1575 if (atom->subOp == NV50_IR_SUBOP_ATOM_EXCH) {
1576 // Read the old value, and write the new one.
1577 stVal = atom->getSrc(1);
1578 } else if (atom->subOp == NV50_IR_SUBOP_ATOM_CAS) {
1579 CmpInstruction *set =
1580 bld.mkCmp(OP_SET, CC_EQ, TYPE_U32, bld.getSSA(1, FILE_PREDICATE),
1581 TYPE_U32, ld->getDef(0), atom->getSrc(1));
1582 set->setPredicate(CC_P, ld->getDef(1));
1583
1584 Instruction *selp =
1585 bld.mkOp3(OP_SELP, TYPE_U32, bld.getSSA(), ld->getDef(0),
1586 atom->getSrc(2), set->getDef(0));
1587 selp->src(2).mod = Modifier(NV50_IR_MOD_NOT);
1588 selp->setPredicate(CC_P, ld->getDef(1));
1589
1590 stVal = selp->getDef(0);
1591 } else {
1592 operation op;
1593
1594 switch (atom->subOp) {
1595 case NV50_IR_SUBOP_ATOM_ADD:
1596 op = OP_ADD;
1597 break;
1598 case NV50_IR_SUBOP_ATOM_AND:
1599 op = OP_AND;
1600 break;
1601 case NV50_IR_SUBOP_ATOM_OR:
1602 op = OP_OR;
1603 break;
1604 case NV50_IR_SUBOP_ATOM_XOR:
1605 op = OP_XOR;
1606 break;
1607 case NV50_IR_SUBOP_ATOM_MIN:
1608 op = OP_MIN;
1609 break;
1610 case NV50_IR_SUBOP_ATOM_MAX:
1611 op = OP_MAX;
1612 break;
1613 default:
1614 assert(0);
1615 return;
1616 }
1617
1618 Instruction *i =
1619 bld.mkOp2(op, atom->dType, bld.getSSA(), ld->getDef(0),
1620 atom->getSrc(1));
1621 i->setPredicate(CC_P, ld->getDef(1));
1622
1623 stVal = i->getDef(0);
1624 }
1625
1626 Instruction *st =
1627 bld.mkStore(OP_STORE, TYPE_U32, atom->getSrc(0)->asSym(),
1628 atom->getIndirect(0, 0), stVal);
1629 st->setPredicate(CC_P, ld->getDef(1));
1630 st->subOp = NV50_IR_SUBOP_STORE_UNLOCKED;
1631
1632 // Loop until the lock is acquired.
1633 bld.mkFlow(OP_BRA, tryLockAndSetBB, CC_NOT_P, ld->getDef(1));
1634 tryLockAndSetBB->cfg.attach(&tryLockAndSetBB->cfg, Graph::Edge::BACK);
1635 tryLockAndSetBB->cfg.attach(&joinBB->cfg, Graph::Edge::CROSS);
1636 bld.mkFlow(OP_BRA, joinBB, CC_ALWAYS, NULL);
1637
1638 bld.remove(atom);
1639
1640 bld.setPosition(joinBB, false);
1641 bld.mkFlow(OP_JOIN, NULL, CC_ALWAYS, NULL)->fixed = 1;
1642 }
1643
1644 bool
handleATOM(Instruction * atom)1645 NVC0LoweringPass::handleATOM(Instruction *atom)
1646 {
1647 SVSemantic sv;
1648 Value *ptr = atom->getIndirect(0, 0), *ind = atom->getIndirect(0, 1), *base;
1649
1650 switch (atom->src(0).getFile()) {
1651 case FILE_MEMORY_LOCAL:
1652 sv = SV_LBASE;
1653 break;
1654 case FILE_MEMORY_SHARED:
1655 // For Fermi/Kepler, we have to use ld lock/st unlock to perform atomic
1656 // operations on shared memory. For Maxwell, ATOMS is enough.
1657 if (targ->getChipset() < NVISA_GK104_CHIPSET)
1658 handleSharedATOM(atom);
1659 else if (targ->getChipset() < NVISA_GM107_CHIPSET)
1660 handleSharedATOMNVE4(atom);
1661 return true;
1662 case FILE_MEMORY_GLOBAL:
1663 return true;
1664 default:
1665 assert(atom->src(0).getFile() == FILE_MEMORY_BUFFER);
1666 base = loadBufInfo64(ind, atom->getSrc(0)->reg.fileIndex * 16);
1667 assert(base->reg.size == 8);
1668 if (ptr)
1669 base = bld.mkOp2v(OP_ADD, TYPE_U64, base, base, ptr);
1670 assert(base->reg.size == 8);
1671 atom->setIndirect(0, 0, base);
1672 atom->getSrc(0)->reg.file = FILE_MEMORY_GLOBAL;
1673
1674 // Harden against out-of-bounds accesses
1675 Value *offset = bld.loadImm(NULL, atom->getSrc(0)->reg.data.offset + typeSizeof(atom->sType));
1676 Value *length = loadBufLength32(ind, atom->getSrc(0)->reg.fileIndex * 16);
1677 Value *pred = new_LValue(func, FILE_PREDICATE);
1678 if (ptr)
1679 bld.mkOp2(OP_ADD, TYPE_U32, offset, offset, ptr);
1680 bld.mkCmp(OP_SET, CC_GT, TYPE_U32, pred, TYPE_U32, offset, length);
1681 atom->setPredicate(CC_NOT_P, pred);
1682 if (atom->defExists(0)) {
1683 Value *zero, *dst = atom->getDef(0);
1684 atom->setDef(0, bld.getSSA());
1685
1686 bld.setPosition(atom, true);
1687 bld.mkMov((zero = bld.getSSA()), bld.mkImm(0))
1688 ->setPredicate(CC_P, pred);
1689 bld.mkOp2(OP_UNION, TYPE_U32, dst, atom->getDef(0), zero);
1690 }
1691
1692 return true;
1693 }
1694 base =
1695 bld.mkOp1v(OP_RDSV, TYPE_U32, bld.getScratch(), bld.mkSysVal(sv, 0));
1696
1697 atom->setSrc(0, cloneShallow(func, atom->getSrc(0)));
1698 atom->getSrc(0)->reg.file = FILE_MEMORY_GLOBAL;
1699 if (ptr)
1700 base = bld.mkOp2v(OP_ADD, TYPE_U32, base, base, ptr);
1701 atom->setIndirect(0, 1, NULL);
1702 atom->setIndirect(0, 0, base);
1703
1704 return true;
1705 }
1706
1707 bool
handleCasExch(Instruction * cas,bool needCctl)1708 NVC0LoweringPass::handleCasExch(Instruction *cas, bool needCctl)
1709 {
1710 if (targ->getChipset() < NVISA_GM107_CHIPSET) {
1711 if (cas->src(0).getFile() == FILE_MEMORY_SHARED) {
1712 // ATOM_CAS and ATOM_EXCH are handled in handleSharedATOM().
1713 return false;
1714 }
1715 }
1716
1717 if (cas->subOp != NV50_IR_SUBOP_ATOM_CAS &&
1718 cas->subOp != NV50_IR_SUBOP_ATOM_EXCH)
1719 return false;
1720 bld.setPosition(cas, true);
1721
1722 if (needCctl) {
1723 Instruction *cctl = bld.mkOp1(OP_CCTL, TYPE_NONE, NULL, cas->getSrc(0));
1724 cctl->setIndirect(0, 0, cas->getIndirect(0, 0));
1725 cctl->fixed = 1;
1726 cctl->subOp = NV50_IR_SUBOP_CCTL_IV;
1727 if (cas->isPredicated())
1728 cctl->setPredicate(cas->cc, cas->getPredicate());
1729 }
1730
1731 if (cas->subOp == NV50_IR_SUBOP_ATOM_CAS &&
1732 targ->getChipset() < NVISA_GV100_CHIPSET) {
1733 // CAS is crazy. It's 2nd source is a double reg, and the 3rd source
1734 // should be set to the high part of the double reg or bad things will
1735 // happen elsewhere in the universe.
1736 // Also, it sometimes returns the new value instead of the old one
1737 // under mysterious circumstances.
1738 DataType ty = typeOfSize(typeSizeof(cas->dType) * 2);
1739 Value *dreg = bld.getSSA(typeSizeof(ty));
1740 bld.setPosition(cas, false);
1741 bld.mkOp2(OP_MERGE, ty, dreg, cas->getSrc(1), cas->getSrc(2));
1742 cas->setSrc(1, dreg);
1743 cas->setSrc(2, dreg);
1744 }
1745
1746 return true;
1747 }
1748
1749 inline Value *
loadResInfo32(Value * ptr,uint32_t off,uint16_t base)1750 NVC0LoweringPass::loadResInfo32(Value *ptr, uint32_t off, uint16_t base)
1751 {
1752 uint8_t b = prog->driver->io.auxCBSlot;
1753 off += base;
1754
1755 return bld.
1756 mkLoadv(TYPE_U32, bld.mkSymbol(FILE_MEMORY_CONST, b, TYPE_U32, off), ptr);
1757 }
1758
1759 inline Value *
loadResInfo64(Value * ptr,uint32_t off,uint16_t base)1760 NVC0LoweringPass::loadResInfo64(Value *ptr, uint32_t off, uint16_t base)
1761 {
1762 uint8_t b = prog->driver->io.auxCBSlot;
1763 off += base;
1764
1765 if (ptr)
1766 ptr = bld.mkOp2v(OP_SHL, TYPE_U32, bld.getScratch(), ptr, bld.mkImm(4));
1767
1768 return bld.
1769 mkLoadv(TYPE_U64, bld.mkSymbol(FILE_MEMORY_CONST, b, TYPE_U64, off), ptr);
1770 }
1771
1772 inline Value *
loadResLength32(Value * ptr,uint32_t off,uint16_t base)1773 NVC0LoweringPass::loadResLength32(Value *ptr, uint32_t off, uint16_t base)
1774 {
1775 uint8_t b = prog->driver->io.auxCBSlot;
1776 off += base;
1777
1778 if (ptr)
1779 ptr = bld.mkOp2v(OP_SHL, TYPE_U32, bld.getScratch(), ptr, bld.mkImm(4));
1780
1781 return bld.
1782 mkLoadv(TYPE_U32, bld.mkSymbol(FILE_MEMORY_CONST, b, TYPE_U64, off + 8), ptr);
1783 }
1784
1785 inline Value *
loadBufInfo64(Value * ptr,uint32_t off)1786 NVC0LoweringPass::loadBufInfo64(Value *ptr, uint32_t off)
1787 {
1788 return loadResInfo64(ptr, off, prog->driver->io.bufInfoBase);
1789 }
1790
1791 inline Value *
loadBufLength32(Value * ptr,uint32_t off)1792 NVC0LoweringPass::loadBufLength32(Value *ptr, uint32_t off)
1793 {
1794 return loadResLength32(ptr, off, prog->driver->io.bufInfoBase);
1795 }
1796
1797 inline Value *
loadUboInfo64(Value * ptr,uint32_t off)1798 NVC0LoweringPass::loadUboInfo64(Value *ptr, uint32_t off)
1799 {
1800 return loadResInfo64(ptr, off, prog->driver->io.uboInfoBase);
1801 }
1802
1803 inline Value *
loadUboLength32(Value * ptr,uint32_t off)1804 NVC0LoweringPass::loadUboLength32(Value *ptr, uint32_t off)
1805 {
1806 return loadResLength32(ptr, off, prog->driver->io.uboInfoBase);
1807 }
1808
1809 inline Value *
loadMsInfo32(Value * ptr,uint32_t off)1810 NVC0LoweringPass::loadMsInfo32(Value *ptr, uint32_t off)
1811 {
1812 uint8_t b = prog->driver->io.msInfoCBSlot;
1813 off += prog->driver->io.msInfoBase;
1814 return bld.
1815 mkLoadv(TYPE_U32, bld.mkSymbol(FILE_MEMORY_CONST, b, TYPE_U32, off), ptr);
1816 }
1817
1818 inline Value *
loadSuInfo32(Value * ptr,int slot,uint32_t off,bool bindless)1819 NVC0LoweringPass::loadSuInfo32(Value *ptr, int slot, uint32_t off, bool bindless)
1820 {
1821 uint32_t base = slot * NVC0_SU_INFO__STRIDE;
1822
1823 // We don't upload surface info for bindless for GM107+
1824 assert(!bindless || targ->getChipset() < NVISA_GM107_CHIPSET);
1825
1826 if (ptr) {
1827 ptr = bld.mkOp2v(OP_ADD, TYPE_U32, bld.getSSA(), ptr, bld.mkImm(slot));
1828 if (bindless)
1829 ptr = bld.mkOp2v(OP_AND, TYPE_U32, bld.getSSA(), ptr, bld.mkImm(511));
1830 else
1831 ptr = bld.mkOp2v(OP_AND, TYPE_U32, bld.getSSA(), ptr, bld.mkImm(7));
1832 ptr = bld.mkOp2v(OP_SHL, TYPE_U32, bld.getSSA(), ptr, bld.mkImm(6));
1833 base = 0;
1834 }
1835 off += base;
1836
1837 return loadResInfo32(ptr, off, bindless ? prog->driver->io.bindlessBase :
1838 prog->driver->io.suInfoBase);
1839 }
1840
1841 Value *
loadMsAdjInfo32(TexInstruction::Target target,uint32_t index,int slot,Value * ind,bool bindless)1842 NVC0LoweringPass::loadMsAdjInfo32(TexInstruction::Target target, uint32_t index, int slot, Value *ind, bool bindless)
1843 {
1844 if (!bindless || targ->getChipset() < NVISA_GM107_CHIPSET)
1845 return loadSuInfo32(ind, slot, NVC0_SU_INFO_MS(index), bindless);
1846
1847 assert(bindless);
1848
1849 Value *samples = bld.getSSA();
1850 // this shouldn't be lowered because it's being inserted before the current instruction
1851 TexInstruction *tex = new_TexInstruction(func, OP_TXQ);
1852 tex->tex.target = target;
1853 tex->tex.query = TXQ_TYPE;
1854 tex->tex.mask = 0x4;
1855 tex->tex.r = 0xff;
1856 tex->tex.s = 0x1f;
1857 tex->tex.rIndirectSrc = 0;
1858 tex->setDef(0, samples);
1859 tex->setSrc(0, ind);
1860 tex->setSrc(1, bld.loadImm(NULL, 0));
1861 bld.insert(tex);
1862
1863 // doesn't work with sample counts other than 1/2/4/8 but they aren't supported
1864 switch (index) {
1865 case 0: {
1866 Value *tmp = bld.mkOp2v(OP_ADD, TYPE_U32, bld.getSSA(), samples, bld.mkImm(2));
1867 return bld.mkOp2v(OP_SHR, TYPE_U32, bld.getSSA(), tmp, bld.mkImm(2));
1868 }
1869 case 1: {
1870 Value *tmp = bld.mkCmp(OP_SET, CC_GT, TYPE_U32, bld.getSSA(), TYPE_U32, samples, bld.mkImm(2))->getDef(0);
1871 return bld.mkOp2v(OP_AND, TYPE_U32, bld.getSSA(), tmp, bld.mkImm(1));
1872 }
1873 default: {
1874 assert(false);
1875 return NULL;
1876 }
1877 }
1878 }
1879
getSuClampSubOp(const TexInstruction * su,int c)1880 static inline uint16_t getSuClampSubOp(const TexInstruction *su, int c)
1881 {
1882 switch (su->tex.target.getEnum()) {
1883 case TEX_TARGET_BUFFER: return NV50_IR_SUBOP_SUCLAMP_PL(0, 1);
1884 case TEX_TARGET_RECT: return NV50_IR_SUBOP_SUCLAMP_SD(0, 2);
1885 case TEX_TARGET_1D: return NV50_IR_SUBOP_SUCLAMP_SD(0, 2);
1886 case TEX_TARGET_1D_ARRAY: return (c == 1) ?
1887 NV50_IR_SUBOP_SUCLAMP_PL(0, 2) :
1888 NV50_IR_SUBOP_SUCLAMP_SD(0, 2);
1889 case TEX_TARGET_2D: return NV50_IR_SUBOP_SUCLAMP_BL(0, 2);
1890 case TEX_TARGET_2D_MS: return NV50_IR_SUBOP_SUCLAMP_BL(0, 2);
1891 case TEX_TARGET_2D_ARRAY: return NV50_IR_SUBOP_SUCLAMP_SD(0, 2);
1892 case TEX_TARGET_2D_MS_ARRAY: return NV50_IR_SUBOP_SUCLAMP_SD(0, 2);
1893 case TEX_TARGET_3D: return NV50_IR_SUBOP_SUCLAMP_SD(0, 2);
1894 case TEX_TARGET_CUBE: return NV50_IR_SUBOP_SUCLAMP_SD(0, 2);
1895 case TEX_TARGET_CUBE_ARRAY: return NV50_IR_SUBOP_SUCLAMP_SD(0, 2);
1896 default:
1897 assert(0);
1898 return 0;
1899 }
1900 }
1901
1902 bool
handleSUQ(TexInstruction * suq)1903 NVC0LoweringPass::handleSUQ(TexInstruction *suq)
1904 {
1905 int mask = suq->tex.mask;
1906 int dim = suq->tex.target.getDim();
1907 int arg = dim + (suq->tex.target.isArray() || suq->tex.target.isCube());
1908 Value *ind = suq->getIndirectR();
1909 int slot = suq->tex.r;
1910 int c, d;
1911
1912 for (c = 0, d = 0; c < 3; ++c, mask >>= 1) {
1913 if (c >= arg || !(mask & 1))
1914 continue;
1915
1916 int offset;
1917
1918 if (c == 1 && suq->tex.target == TEX_TARGET_1D_ARRAY) {
1919 offset = NVC0_SU_INFO_SIZE(2);
1920 } else {
1921 offset = NVC0_SU_INFO_SIZE(c);
1922 }
1923 bld.mkMov(suq->getDef(d++), loadSuInfo32(ind, slot, offset, suq->tex.bindless));
1924 if (c == 2 && suq->tex.target.isCube())
1925 bld.mkOp2(OP_DIV, TYPE_U32, suq->getDef(d - 1), suq->getDef(d - 1),
1926 bld.loadImm(NULL, 6));
1927 }
1928
1929 if (mask & 1) {
1930 if (suq->tex.target.isMS()) {
1931 Value *ms_x = loadSuInfo32(ind, slot, NVC0_SU_INFO_MS(0), suq->tex.bindless);
1932 Value *ms_y = loadSuInfo32(ind, slot, NVC0_SU_INFO_MS(1), suq->tex.bindless);
1933 Value *ms = bld.mkOp2v(OP_ADD, TYPE_U32, bld.getScratch(), ms_x, ms_y);
1934 bld.mkOp2(OP_SHL, TYPE_U32, suq->getDef(d++), bld.loadImm(NULL, 1), ms);
1935 } else {
1936 bld.mkMov(suq->getDef(d++), bld.loadImm(NULL, 1));
1937 }
1938 }
1939
1940 bld.remove(suq);
1941 return true;
1942 }
1943
1944 void
adjustCoordinatesMS(TexInstruction * tex)1945 NVC0LoweringPass::adjustCoordinatesMS(TexInstruction *tex)
1946 {
1947 const int arg = tex->tex.target.getArgCount();
1948 int slot = tex->tex.r;
1949
1950 if (tex->tex.target == TEX_TARGET_2D_MS)
1951 tex->tex.target = TEX_TARGET_2D;
1952 else
1953 if (tex->tex.target == TEX_TARGET_2D_MS_ARRAY)
1954 tex->tex.target = TEX_TARGET_2D_ARRAY;
1955 else
1956 return;
1957
1958 Value *x = tex->getSrc(0);
1959 Value *y = tex->getSrc(1);
1960 Value *s = tex->getSrc(arg - 1);
1961
1962 Value *tx = bld.getSSA(), *ty = bld.getSSA(), *ts = bld.getSSA();
1963 Value *ind = tex->getIndirectR();
1964
1965 Value *ms_x = loadMsAdjInfo32(tex->tex.target, 0, slot, ind, tex->tex.bindless);
1966 Value *ms_y = loadMsAdjInfo32(tex->tex.target, 1, slot, ind, tex->tex.bindless);
1967
1968 bld.mkOp2(OP_SHL, TYPE_U32, tx, x, ms_x);
1969 bld.mkOp2(OP_SHL, TYPE_U32, ty, y, ms_y);
1970
1971 s = bld.mkOp2v(OP_AND, TYPE_U32, ts, s, bld.loadImm(NULL, 0x7));
1972 s = bld.mkOp2v(OP_SHL, TYPE_U32, ts, ts, bld.mkImm(3));
1973
1974 Value *dx = loadMsInfo32(ts, 0x0);
1975 Value *dy = loadMsInfo32(ts, 0x4);
1976
1977 bld.mkOp2(OP_ADD, TYPE_U32, tx, tx, dx);
1978 bld.mkOp2(OP_ADD, TYPE_U32, ty, ty, dy);
1979
1980 tex->setSrc(0, tx);
1981 tex->setSrc(1, ty);
1982 tex->moveSources(arg, -1);
1983 }
1984
1985 // Sets 64-bit "generic address", predicate and format sources for SULD/SUST.
1986 // They're computed from the coordinates using the surface info in c[] space.
1987 void
processSurfaceCoordsNVE4(TexInstruction * su)1988 NVC0LoweringPass::processSurfaceCoordsNVE4(TexInstruction *su)
1989 {
1990 Instruction *insn;
1991 const bool atom = su->op == OP_SUREDB || su->op == OP_SUREDP;
1992 const bool raw =
1993 su->op == OP_SULDB || su->op == OP_SUSTB || su->op == OP_SUREDB;
1994 const int slot = su->tex.r;
1995 const int dim = su->tex.target.getDim();
1996 const bool array = su->tex.target.isArray() || su->tex.target.isCube();
1997 const int arg = dim + array;
1998 int c;
1999 Value *zero = bld.mkImm(0);
2000 Value *p1 = NULL;
2001 Value *v;
2002 Value *src[3];
2003 Value *bf, *eau, *off;
2004 Value *addr, *pred;
2005 Value *ind = su->getIndirectR();
2006 Value *y, *z;
2007
2008 off = bld.getScratch(4);
2009 bf = bld.getScratch(4);
2010 addr = bld.getSSA(8);
2011 pred = bld.getScratch(1, FILE_PREDICATE);
2012
2013 bld.setPosition(su, false);
2014
2015 adjustCoordinatesMS(su);
2016
2017 // calculate clamped coordinates
2018 for (c = 0; c < arg; ++c) {
2019 int dimc = c;
2020
2021 if (c == 1 && su->tex.target == TEX_TARGET_1D_ARRAY) {
2022 // The array index is stored in the Z component for 1D arrays.
2023 dimc = 2;
2024 }
2025
2026 src[c] = bld.getScratch();
2027 if (c == 0 && raw)
2028 v = loadSuInfo32(ind, slot, NVC0_SU_INFO_RAW_X, su->tex.bindless);
2029 else
2030 v = loadSuInfo32(ind, slot, NVC0_SU_INFO_DIM(dimc), su->tex.bindless);
2031 bld.mkOp3(OP_SUCLAMP, TYPE_S32, src[c], su->getSrc(c), v, zero)
2032 ->subOp = getSuClampSubOp(su, dimc);
2033 }
2034 for (; c < 3; ++c)
2035 src[c] = zero;
2036
2037 if (dim == 2 && !array) {
2038 v = loadSuInfo32(ind, slot, NVC0_SU_INFO_UNK1C, su->tex.bindless);
2039 src[2] = bld.mkOp2v(OP_SHR, TYPE_U32, bld.getSSA(),
2040 v, bld.loadImm(NULL, 16));
2041
2042 v = loadSuInfo32(ind, slot, NVC0_SU_INFO_DIM(2), su->tex.bindless);
2043 bld.mkOp3(OP_SUCLAMP, TYPE_S32, src[2], src[2], v, zero)
2044 ->subOp = NV50_IR_SUBOP_SUCLAMP_SD(0, 2);
2045 }
2046
2047 // set predicate output
2048 if (su->tex.target == TEX_TARGET_BUFFER) {
2049 src[0]->getInsn()->setFlagsDef(1, pred);
2050 } else
2051 if (array) {
2052 p1 = bld.getSSA(1, FILE_PREDICATE);
2053 src[dim]->getInsn()->setFlagsDef(1, p1);
2054 }
2055
2056 // calculate pixel offset
2057 if (dim == 1) {
2058 y = z = zero;
2059 if (su->tex.target != TEX_TARGET_BUFFER)
2060 bld.mkOp2(OP_AND, TYPE_U32, off, src[0], bld.loadImm(NULL, 0xffff));
2061 } else {
2062 y = src[1];
2063 z = src[2];
2064
2065 v = loadSuInfo32(ind, slot, NVC0_SU_INFO_UNK1C, su->tex.bindless);
2066 bld.mkOp3(OP_MADSP, TYPE_U32, off, src[2], v, src[1])
2067 ->subOp = NV50_IR_SUBOP_MADSP(4,4,8); // u16l u16l u16l
2068
2069 v = loadSuInfo32(ind, slot, NVC0_SU_INFO_PITCH, su->tex.bindless);
2070 bld.mkOp3(OP_MADSP, TYPE_U32, off, off, v, src[0])
2071 ->subOp = array ?
2072 NV50_IR_SUBOP_MADSP_SD : NV50_IR_SUBOP_MADSP(0,2,8); // u32 u16l u16l
2073 }
2074
2075 // calculate effective address part 1
2076 if (su->tex.target == TEX_TARGET_BUFFER) {
2077 if (raw) {
2078 bf = src[0];
2079 } else {
2080 v = loadSuInfo32(ind, slot, NVC0_SU_INFO_FMT, su->tex.bindless);
2081 bld.mkOp3(OP_VSHL, TYPE_U32, bf, src[0], v, zero)
2082 ->subOp = NV50_IR_SUBOP_V1(7,6,8|2);
2083 }
2084 } else {
2085 uint16_t subOp = 0;
2086
2087 switch (dim) {
2088 case 1:
2089 break;
2090 case 2:
2091 if (array) {
2092 z = off;
2093 } else {
2094 subOp = NV50_IR_SUBOP_SUBFM_3D;
2095 }
2096 break;
2097 default:
2098 subOp = NV50_IR_SUBOP_SUBFM_3D;
2099 assert(dim == 3);
2100 break;
2101 }
2102 insn = bld.mkOp3(OP_SUBFM, TYPE_U32, bf, src[0], y, z);
2103 insn->subOp = subOp;
2104 insn->setFlagsDef(1, pred);
2105 }
2106
2107 // part 2
2108 v = loadSuInfo32(ind, slot, NVC0_SU_INFO_ADDR, su->tex.bindless);
2109
2110 if (su->tex.target == TEX_TARGET_BUFFER) {
2111 eau = v;
2112 } else {
2113 eau = bld.mkOp3v(OP_SUEAU, TYPE_U32, bld.getScratch(4), off, bf, v);
2114 }
2115 // add array layer offset
2116 if (array) {
2117 v = loadSuInfo32(ind, slot, NVC0_SU_INFO_ARRAY, su->tex.bindless);
2118 if (dim == 1)
2119 bld.mkOp3(OP_MADSP, TYPE_U32, eau, src[1], v, eau)
2120 ->subOp = NV50_IR_SUBOP_MADSP(4,0,0); // u16 u24 u32
2121 else
2122 bld.mkOp3(OP_MADSP, TYPE_U32, eau, v, src[2], eau)
2123 ->subOp = NV50_IR_SUBOP_MADSP(0,0,0); // u32 u24 u32
2124 // combine predicates
2125 assert(p1);
2126 bld.mkOp2(OP_OR, TYPE_U8, pred, pred, p1);
2127 }
2128
2129 if (atom) {
2130 Value *lo = bf;
2131 if (su->tex.target == TEX_TARGET_BUFFER) {
2132 lo = zero;
2133 bld.mkMov(off, bf);
2134 }
2135 // bf == g[] address & 0xff
2136 // eau == g[] address >> 8
2137 bld.mkOp3(OP_PERMT, TYPE_U32, bf, lo, bld.loadImm(NULL, 0x6540), eau);
2138 bld.mkOp3(OP_PERMT, TYPE_U32, eau, zero, bld.loadImm(NULL, 0x0007), eau);
2139 } else
2140 if (su->op == OP_SULDP && su->tex.target == TEX_TARGET_BUFFER) {
2141 // Convert from u32 to u8 address format, which is what the library code
2142 // doing SULDP currently uses.
2143 // XXX: can SUEAU do this ?
2144 // XXX: does it matter that we don't mask high bytes in bf ?
2145 // Grrr.
2146 bld.mkOp2(OP_SHR, TYPE_U32, off, bf, bld.mkImm(8));
2147 bld.mkOp2(OP_ADD, TYPE_U32, eau, eau, off);
2148 }
2149
2150 bld.mkOp2(OP_MERGE, TYPE_U64, addr, bf, eau);
2151
2152 if (atom && su->tex.target == TEX_TARGET_BUFFER)
2153 bld.mkOp2(OP_ADD, TYPE_U64, addr, addr, off);
2154
2155 // let's just set it 0 for raw access and hope it works
2156 v = raw ?
2157 bld.mkImm(0) : loadSuInfo32(ind, slot, NVC0_SU_INFO_FMT, su->tex.bindless);
2158
2159 // get rid of old coordinate sources, make space for fmt info and predicate
2160 su->moveSources(arg, 3 - arg);
2161 // set 64 bit address and 32-bit format sources
2162 su->setSrc(0, addr);
2163 su->setSrc(1, v);
2164 su->setSrc(2, pred);
2165 su->setIndirectR(NULL);
2166
2167 // prevent read fault when the image is not actually bound
2168 CmpInstruction *pred1 =
2169 bld.mkCmp(OP_SET, CC_EQ, TYPE_U32, bld.getSSA(1, FILE_PREDICATE),
2170 TYPE_U32, bld.mkImm(0),
2171 loadSuInfo32(ind, slot, NVC0_SU_INFO_ADDR, su->tex.bindless));
2172
2173 if (su->op != OP_SUSTP && su->tex.format) {
2174 const TexInstruction::ImgFormatDesc *format = su->tex.format;
2175 int blockwidth = format->bits[0] + format->bits[1] +
2176 format->bits[2] + format->bits[3];
2177
2178 // make sure that the format doesn't mismatch
2179 assert(format->components != 0);
2180 bld.mkCmp(OP_SET_OR, CC_NE, TYPE_U32, pred1->getDef(0),
2181 TYPE_U32, bld.loadImm(NULL, blockwidth / 8),
2182 loadSuInfo32(ind, slot, NVC0_SU_INFO_BSIZE, su->tex.bindless),
2183 pred1->getDef(0));
2184 }
2185 su->setPredicate(CC_NOT_P, pred1->getDef(0));
2186
2187 // TODO: initialize def values to 0 when the surface operation is not
2188 // performed (not needed for stores). Also, fix the "address bounds test"
2189 // subtests from arb_shader_image_load_store-invalid for buffers, because it
2190 // seems like that the predicate is not correctly set by suclamp.
2191 }
2192
2193 static DataType
getSrcType(const TexInstruction::ImgFormatDesc * t,int c)2194 getSrcType(const TexInstruction::ImgFormatDesc *t, int c)
2195 {
2196 switch (t->type) {
2197 case FLOAT: return t->bits[c] == 16 ? TYPE_F16 : TYPE_F32;
2198 case UNORM: return t->bits[c] == 8 ? TYPE_U8 : TYPE_U16;
2199 case SNORM: return t->bits[c] == 8 ? TYPE_S8 : TYPE_S16;
2200 case UINT:
2201 return (t->bits[c] == 8 ? TYPE_U8 :
2202 (t->bits[c] == 16 ? TYPE_U16 : TYPE_U32));
2203 case SINT:
2204 return (t->bits[c] == 8 ? TYPE_S8 :
2205 (t->bits[c] == 16 ? TYPE_S16 : TYPE_S32));
2206 }
2207 return TYPE_NONE;
2208 }
2209
2210 static DataType
getDestType(const ImgType type)2211 getDestType(const ImgType type) {
2212 switch (type) {
2213 case FLOAT:
2214 case UNORM:
2215 case SNORM:
2216 return TYPE_F32;
2217 case UINT:
2218 return TYPE_U32;
2219 case SINT:
2220 return TYPE_S32;
2221 default:
2222 assert(!"Impossible type");
2223 return TYPE_NONE;
2224 }
2225 }
2226
2227 void
convertSurfaceFormat(TexInstruction * su,Instruction ** loaded)2228 NVC0LoweringPass::convertSurfaceFormat(TexInstruction *su, Instruction **loaded)
2229 {
2230 const TexInstruction::ImgFormatDesc *format = su->tex.format;
2231 int width = format->bits[0] + format->bits[1] +
2232 format->bits[2] + format->bits[3];
2233 Value *untypedDst[4] = {};
2234 Value *typedDst[4] = {};
2235
2236 // We must convert this to a generic load.
2237 su->op = OP_SULDB;
2238
2239 su->dType = typeOfSize(width / 8);
2240 su->sType = TYPE_U8;
2241
2242 for (int i = 0; i < width / 32; i++)
2243 untypedDst[i] = bld.getSSA();
2244 if (width < 32)
2245 untypedDst[0] = bld.getSSA();
2246
2247 if (loaded && loaded[0]) {
2248 for (int i = 0; i < 4; i++) {
2249 if (loaded[i])
2250 typedDst[i] = loaded[i]->getDef(0);
2251 }
2252 } else {
2253 for (int i = 0; i < 4; i++) {
2254 typedDst[i] = su->getDef(i);
2255 }
2256 }
2257
2258 // Set the untyped dsts as the su's destinations
2259 if (loaded && loaded[0]) {
2260 for (int i = 0; i < 4; i++)
2261 if (loaded[i])
2262 loaded[i]->setDef(0, untypedDst[i]);
2263 } else {
2264 for (int i = 0; i < 4; i++)
2265 su->setDef(i, untypedDst[i]);
2266
2267 bld.setPosition(su, true);
2268 }
2269
2270 // Unpack each component into the typed dsts
2271 int bits = 0;
2272 for (int i = 0; i < 4; bits += format->bits[i], i++) {
2273 if (!typedDst[i])
2274 continue;
2275
2276 if (loaded && loaded[0])
2277 bld.setPosition(loaded[i], true);
2278
2279 if (i >= format->components) {
2280 if (format->type == FLOAT ||
2281 format->type == UNORM ||
2282 format->type == SNORM)
2283 bld.loadImm(typedDst[i], i == 3 ? 1.0f : 0.0f);
2284 else
2285 bld.loadImm(typedDst[i], i == 3 ? 1 : 0);
2286 continue;
2287 }
2288
2289 // Get just that component's data into the relevant place
2290 if (format->bits[i] == 32)
2291 bld.mkMov(typedDst[i], untypedDst[i]);
2292 else if (format->bits[i] == 16)
2293 bld.mkCvt(OP_CVT, getDestType(format->type), typedDst[i],
2294 getSrcType(format, i), untypedDst[i / 2])
2295 ->subOp = (i & 1) << (format->type == FLOAT ? 0 : 1);
2296 else if (format->bits[i] == 8)
2297 bld.mkCvt(OP_CVT, getDestType(format->type), typedDst[i],
2298 getSrcType(format, i), untypedDst[0])->subOp = i;
2299 else {
2300 bld.mkOp2(OP_EXTBF, TYPE_U32, typedDst[i], untypedDst[bits / 32],
2301 bld.mkImm((bits % 32) | (format->bits[i] << 8)));
2302 if (format->type == UNORM || format->type == SNORM)
2303 bld.mkCvt(OP_CVT, TYPE_F32, typedDst[i], getSrcType(format, i), typedDst[i]);
2304 }
2305
2306 // Normalize / convert as necessary
2307 if (format->type == UNORM)
2308 bld.mkOp2(OP_MUL, TYPE_F32, typedDst[i], typedDst[i], bld.loadImm(NULL, 1.0f / ((1 << format->bits[i]) - 1)));
2309 else if (format->type == SNORM)
2310 bld.mkOp2(OP_MUL, TYPE_F32, typedDst[i], typedDst[i], bld.loadImm(NULL, 1.0f / ((1 << (format->bits[i] - 1)) - 1)));
2311 else if (format->type == FLOAT && format->bits[i] < 16) {
2312 bld.mkOp2(OP_SHL, TYPE_U32, typedDst[i], typedDst[i], bld.loadImm(NULL, 15 - format->bits[i]));
2313 bld.mkCvt(OP_CVT, TYPE_F32, typedDst[i], TYPE_F16, typedDst[i]);
2314 }
2315 }
2316
2317 if (format->bgra) {
2318 std::swap(typedDst[0], typedDst[2]);
2319 }
2320 }
2321
2322 void
insertOOBSurfaceOpResult(TexInstruction * su)2323 NVC0LoweringPass::insertOOBSurfaceOpResult(TexInstruction *su)
2324 {
2325 if (!su->getPredicate())
2326 return;
2327
2328 bld.setPosition(su, true);
2329
2330 for (unsigned i = 0; su->defExists(i); ++i) {
2331 Value *def = su->getDef(i);
2332 Value *newDef = bld.getSSA();
2333 su->setDef(i, newDef);
2334
2335 Instruction *mov = bld.mkMov(bld.getSSA(), bld.loadImm(NULL, 0));
2336 assert(su->cc == CC_NOT_P);
2337 mov->setPredicate(CC_P, su->getPredicate());
2338 Instruction *uni = bld.mkOp2(OP_UNION, TYPE_U32, bld.getSSA(), newDef, mov->getDef(0));
2339 bld.mkMov(def, uni->getDef(0));
2340 }
2341 }
2342
2343 void
handleSurfaceOpNVE4(TexInstruction * su)2344 NVC0LoweringPass::handleSurfaceOpNVE4(TexInstruction *su)
2345 {
2346 processSurfaceCoordsNVE4(su);
2347
2348 if (su->op == OP_SULDP) {
2349 convertSurfaceFormat(su, NULL);
2350 insertOOBSurfaceOpResult(su);
2351 }
2352
2353 if (su->op == OP_SUREDB || su->op == OP_SUREDP) {
2354 assert(su->getPredicate());
2355 Value *pred =
2356 bld.mkOp2v(OP_OR, TYPE_U8, bld.getScratch(1, FILE_PREDICATE),
2357 su->getPredicate(), su->getSrc(2));
2358
2359 Instruction *red = bld.mkOp(OP_ATOM, su->dType, bld.getSSA());
2360 red->subOp = su->subOp;
2361 red->setSrc(0, bld.mkSymbol(FILE_MEMORY_GLOBAL, 0, TYPE_U32, 0));
2362 red->setSrc(1, su->getSrc(3));
2363 if (su->subOp == NV50_IR_SUBOP_ATOM_CAS)
2364 red->setSrc(2, su->getSrc(4));
2365 red->setIndirect(0, 0, su->getSrc(0));
2366
2367 // make sure to initialize dst value when the atomic operation is not
2368 // performed
2369 Instruction *mov = bld.mkMov(bld.getSSA(), bld.loadImm(NULL, 0));
2370
2371 assert(su->cc == CC_NOT_P);
2372 red->setPredicate(su->cc, pred);
2373 mov->setPredicate(CC_P, pred);
2374
2375 bld.mkOp2(OP_UNION, TYPE_U32, su->getDef(0),
2376 red->getDef(0), mov->getDef(0));
2377
2378 delete_Instruction(bld.getProgram(), su);
2379 handleCasExch(red, true);
2380 }
2381
2382 if (su->op == OP_SUSTB || su->op == OP_SUSTP)
2383 su->sType = (su->tex.target == TEX_TARGET_BUFFER) ? TYPE_U32 : TYPE_U8;
2384 }
2385
2386 void
processSurfaceCoordsNVC0(TexInstruction * su)2387 NVC0LoweringPass::processSurfaceCoordsNVC0(TexInstruction *su)
2388 {
2389 const int slot = su->tex.r;
2390 const int dim = su->tex.target.getDim();
2391 const int arg = dim + (su->tex.target.isArray() || su->tex.target.isCube());
2392 int c;
2393 Value *zero = bld.mkImm(0);
2394 Value *src[3];
2395 Value *v;
2396 Value *ind = su->getIndirectR();
2397
2398 bld.setPosition(su, false);
2399
2400 adjustCoordinatesMS(su);
2401
2402 if (ind) {
2403 Value *ptr;
2404 ptr = bld.mkOp2v(OP_ADD, TYPE_U32, bld.getSSA(), ind, bld.mkImm(su->tex.r));
2405 ptr = bld.mkOp2v(OP_AND, TYPE_U32, bld.getSSA(), ptr, bld.mkImm(7));
2406 su->setIndirectR(ptr);
2407 }
2408
2409 // get surface coordinates
2410 for (c = 0; c < arg; ++c)
2411 src[c] = su->getSrc(c);
2412 for (; c < 3; ++c)
2413 src[c] = zero;
2414
2415 // calculate pixel offset
2416 if (su->op == OP_SULDP || su->op == OP_SUREDP) {
2417 v = loadSuInfo32(ind, slot, NVC0_SU_INFO_BSIZE, su->tex.bindless);
2418 su->setSrc(0, (src[0] = bld.mkOp2v(OP_SHL, TYPE_U32, bld.getSSA(), src[0], v)));
2419 }
2420
2421 // add array layer offset
2422 if (su->tex.target.isArray() || su->tex.target.isCube()) {
2423 v = loadSuInfo32(ind, slot, NVC0_SU_INFO_ARRAY, su->tex.bindless);
2424 assert(dim > 1);
2425 su->setSrc(2, (src[2] = bld.mkOp2v(OP_MUL, TYPE_U32, bld.getSSA(), src[2], v)));
2426 }
2427
2428 // 3d is special-cased. Note that a single "slice" of a 3d image may
2429 // also be attached as 2d, so we have to do the same 3d processing for
2430 // 2d as well, just in case. In order to remap a 3d image onto a 2d
2431 // image, we have to retile it "by hand".
2432 if (su->tex.target == TEX_TARGET_3D || su->tex.target == TEX_TARGET_2D) {
2433 Value *z = loadSuInfo32(ind, slot, NVC0_SU_INFO_UNK1C, su->tex.bindless);
2434 Value *y_size_aligned =
2435 bld.mkOp2v(OP_AND, TYPE_U32, bld.getSSA(),
2436 loadSuInfo32(ind, slot, NVC0_SU_INFO_DIM_Y, su->tex.bindless),
2437 bld.loadImm(NULL, 0x0000ffff));
2438 // Add the z coordinate for actual 3d-images
2439 if (dim > 2)
2440 src[2] = bld.mkOp2v(OP_ADD, TYPE_U32, bld.getSSA(), z, src[2]);
2441 else
2442 src[2] = z;
2443
2444 // Compute the surface parameters from tile shifts
2445 Value *tile_shift[3];
2446 Value *tile_extbf[3];
2447 // Fetch the "real" tiling parameters of the underlying surface
2448 for (int i = 0; i < 3; i++) {
2449 tile_extbf[i] =
2450 bld.mkOp2v(OP_SHR, TYPE_U32, bld.getSSA(),
2451 loadSuInfo32(ind, slot, NVC0_SU_INFO_DIM(i), su->tex.bindless),
2452 bld.loadImm(NULL, 16));
2453 tile_shift[i] =
2454 bld.mkOp2v(OP_SHR, TYPE_U32, bld.getSSA(),
2455 loadSuInfo32(ind, slot, NVC0_SU_INFO_DIM(i), su->tex.bindless),
2456 bld.loadImm(NULL, 24));
2457 }
2458
2459 // However for load/atomics, we use byte-indexing. And for byte
2460 // indexing, the X tile size is always the same. This leads to slightly
2461 // better code.
2462 if (su->op == OP_SULDP || su->op == OP_SUREDP) {
2463 tile_extbf[0] = bld.loadImm(NULL, 0x600);
2464 tile_shift[0] = bld.loadImm(NULL, 6);
2465 }
2466
2467 // Compute the location of given coordinate, both inside the tile as
2468 // well as which (linearly-laid out) tile it's in.
2469 Value *coord_in_tile[3];
2470 Value *tile[3];
2471 for (int i = 0; i < 3; i++) {
2472 coord_in_tile[i] = bld.mkOp2v(OP_EXTBF, TYPE_U32, bld.getSSA(), src[i], tile_extbf[i]);
2473 tile[i] = bld.mkOp2v(OP_SHR, TYPE_U32, bld.getSSA(), src[i], tile_shift[i]);
2474 }
2475
2476 // Based on the "real" tiling parameters, compute x/y coordinates in the
2477 // larger surface with 2d tiling that was supplied to the hardware. This
2478 // was determined and verified with the help of the tiling pseudocode in
2479 // the envytools docs.
2480 //
2481 // adj_x = x_coord_in_tile + x_tile * x_tile_size * z_tile_size +
2482 // z_coord_in_tile * x_tile_size
2483 // adj_y = y_coord_in_tile + y_tile * y_tile_size +
2484 // z_tile * y_tile_size * y_tiles
2485 //
2486 // Note: STRIDE_Y = y_tile_size * y_tiles
2487
2488 su->setSrc(0, bld.mkOp2v(
2489 OP_ADD, TYPE_U32, bld.getSSA(),
2490 bld.mkOp2v(OP_ADD, TYPE_U32, bld.getSSA(),
2491 coord_in_tile[0],
2492 bld.mkOp2v(OP_SHL, TYPE_U32, bld.getSSA(),
2493 tile[0],
2494 bld.mkOp2v(OP_ADD, TYPE_U32, bld.getSSA(),
2495 tile_shift[2], tile_shift[0]))),
2496 bld.mkOp2v(OP_SHL, TYPE_U32, bld.getSSA(),
2497 coord_in_tile[2], tile_shift[0])));
2498
2499 su->setSrc(1, bld.mkOp2v(
2500 OP_ADD, TYPE_U32, bld.getSSA(),
2501 bld.mkOp2v(OP_MUL, TYPE_U32, bld.getSSA(),
2502 tile[2], y_size_aligned),
2503 bld.mkOp2v(OP_ADD, TYPE_U32, bld.getSSA(),
2504 coord_in_tile[1],
2505 bld.mkOp2v(OP_SHL, TYPE_U32, bld.getSSA(),
2506 tile[1], tile_shift[1]))));
2507
2508 if (su->tex.target == TEX_TARGET_3D) {
2509 su->moveSources(3, -1);
2510 su->tex.target = TEX_TARGET_2D;
2511 }
2512 }
2513
2514 // prevent read fault when the image is not actually bound
2515 CmpInstruction *pred =
2516 bld.mkCmp(OP_SET, CC_EQ, TYPE_U32, bld.getSSA(1, FILE_PREDICATE),
2517 TYPE_U32, bld.mkImm(0),
2518 loadSuInfo32(ind, slot, NVC0_SU_INFO_ADDR, su->tex.bindless));
2519 if (su->op != OP_SUSTP && su->tex.format) {
2520 const TexInstruction::ImgFormatDesc *format = su->tex.format;
2521 int blockwidth = format->bits[0] + format->bits[1] +
2522 format->bits[2] + format->bits[3];
2523
2524 assert(format->components != 0);
2525 // make sure that the format doesn't mismatch when it's not FMT_NONE
2526 bld.mkCmp(OP_SET_OR, CC_NE, TYPE_U32, pred->getDef(0),
2527 TYPE_U32, bld.loadImm(NULL, ffs(blockwidth / 8) - 1),
2528 loadSuInfo32(ind, slot, NVC0_SU_INFO_BSIZE, su->tex.bindless),
2529 pred->getDef(0));
2530 }
2531 su->setPredicate(CC_NOT_P, pred->getDef(0));
2532 }
2533
2534 void
handleSurfaceOpNVC0(TexInstruction * su)2535 NVC0LoweringPass::handleSurfaceOpNVC0(TexInstruction *su)
2536 {
2537 if (su->tex.target == TEX_TARGET_1D_ARRAY) {
2538 /* As 1d arrays also need 3 coordinates, switching to TEX_TARGET_2D_ARRAY
2539 * will simplify the lowering pass and the texture constraints. */
2540 su->moveSources(1, 1);
2541 su->setSrc(1, bld.loadImm(NULL, 0));
2542 su->tex.target = TEX_TARGET_2D_ARRAY;
2543 }
2544
2545 processSurfaceCoordsNVC0(su);
2546
2547 if (su->op == OP_SULDP) {
2548 convertSurfaceFormat(su, NULL);
2549 insertOOBSurfaceOpResult(su);
2550 }
2551
2552 if (su->op == OP_SUREDB || su->op == OP_SUREDP) {
2553 const int dim = su->tex.target.getDim();
2554 const int arg = dim + (su->tex.target.isArray() || su->tex.target.isCube());
2555 LValue *addr = bld.getSSA(8);
2556 Value *def = su->getDef(0);
2557
2558 su->op = OP_SULEA;
2559
2560 // Set the destination to the address
2561 su->dType = TYPE_U64;
2562 su->setDef(0, addr);
2563 su->setDef(1, su->getPredicate());
2564
2565 bld.setPosition(su, true);
2566
2567 // Perform the atomic op
2568 Instruction *red = bld.mkOp(OP_ATOM, su->sType, bld.getSSA());
2569 red->subOp = su->subOp;
2570 red->setSrc(0, bld.mkSymbol(FILE_MEMORY_GLOBAL, 0, su->sType, 0));
2571 red->setSrc(1, su->getSrc(arg));
2572 if (red->subOp == NV50_IR_SUBOP_ATOM_CAS)
2573 red->setSrc(2, su->getSrc(arg + 1));
2574 red->setIndirect(0, 0, addr);
2575
2576 // make sure to initialize dst value when the atomic operation is not
2577 // performed
2578 Instruction *mov = bld.mkMov(bld.getSSA(), bld.loadImm(NULL, 0));
2579
2580 assert(su->cc == CC_NOT_P);
2581 red->setPredicate(su->cc, su->getPredicate());
2582 mov->setPredicate(CC_P, su->getPredicate());
2583
2584 bld.mkOp2(OP_UNION, TYPE_U32, def, red->getDef(0), mov->getDef(0));
2585
2586 handleCasExch(red, false);
2587 }
2588 }
2589
2590 TexInstruction *
processSurfaceCoordsGM107(TexInstruction * su,Instruction * ret[4])2591 NVC0LoweringPass::processSurfaceCoordsGM107(TexInstruction *su, Instruction *ret[4])
2592 {
2593 const int slot = su->tex.r;
2594 const int dim = su->tex.target.getDim();
2595 const bool array = su->tex.target.isArray() || su->tex.target.isCube();
2596 const int arg = dim + array;
2597 Value *ind = su->getIndirectR();
2598 Value *handle;
2599 Instruction *pred = NULL, *pred2d = NULL;
2600 int pos = 0;
2601
2602 bld.setPosition(su, false);
2603
2604 adjustCoordinatesMS(su);
2605
2606 // add texture handle
2607 switch (su->op) {
2608 case OP_SUSTP:
2609 pos = 4;
2610 break;
2611 case OP_SUREDP:
2612 pos = (su->subOp == NV50_IR_SUBOP_ATOM_CAS) ? 2 : 1;
2613 break;
2614 default:
2615 assert(pos == 0);
2616 break;
2617 }
2618
2619 if (dim == 2 && !array) {
2620 // This might be a 2d slice of a 3d texture, try to load the z
2621 // coordinate in.
2622 Value *v;
2623 if (!su->tex.bindless)
2624 v = loadSuInfo32(ind, slot, NVC0_SU_INFO_UNK1C, su->tex.bindless);
2625 else
2626 v = bld.mkOp2v(OP_SHR, TYPE_U32, bld.getSSA(), ind, bld.mkImm(11));
2627 Value *is_3d = bld.mkOp2v(OP_AND, TYPE_U32, bld.getSSA(), v, bld.mkImm(1));
2628 pred2d = bld.mkCmp(OP_SET, CC_EQ, TYPE_U32, bld.getSSA(1, FILE_PREDICATE),
2629 TYPE_U32, bld.mkImm(0), is_3d);
2630
2631 bld.mkOp2(OP_SHR, TYPE_U32, v, v, bld.loadImm(NULL, 16));
2632 su->moveSources(dim, 1);
2633 su->setSrc(dim, v);
2634 su->tex.target = nv50_ir::TEX_TARGET_3D;
2635 pos++;
2636 }
2637
2638 if (su->tex.bindless)
2639 handle = bld.mkOp2v(OP_AND, TYPE_U32, bld.getSSA(), ind, bld.mkImm(2047));
2640 else
2641 handle = loadTexHandle(ind, slot + 32);
2642
2643 su->setSrc(arg + pos, handle);
2644
2645 // The address check doesn't make sense here. The format check could make
2646 // sense but it's a bit of a pain.
2647 if (!su->tex.bindless) {
2648 // prevent read fault when the image is not actually bound
2649 pred =
2650 bld.mkCmp(OP_SET, CC_EQ, TYPE_U32, bld.getSSA(1, FILE_PREDICATE),
2651 TYPE_U32, bld.mkImm(0),
2652 loadSuInfo32(ind, slot, NVC0_SU_INFO_ADDR, su->tex.bindless));
2653 if (su->op != OP_SUSTP && su->tex.format) {
2654 const TexInstruction::ImgFormatDesc *format = su->tex.format;
2655 int blockwidth = format->bits[0] + format->bits[1] +
2656 format->bits[2] + format->bits[3];
2657
2658 assert(format->components != 0);
2659 // make sure that the format doesn't mismatch when it's not FMT_NONE
2660 bld.mkCmp(OP_SET_OR, CC_NE, TYPE_U32, pred->getDef(0),
2661 TYPE_U32, bld.loadImm(NULL, blockwidth / 8),
2662 loadSuInfo32(ind, slot, NVC0_SU_INFO_BSIZE, su->tex.bindless),
2663 pred->getDef(0));
2664 }
2665 }
2666
2667 // Now we have "pred" which (optionally) contains whether to do the surface
2668 // op at all, and a "pred2d" which indicates that, in case of doing the
2669 // surface op, we have to create a 2d and 3d version, conditioned on pred2d.
2670 TexInstruction *su2d = NULL;
2671 if (pred2d) {
2672 su2d = cloneForward(func, su)->asTex();
2673 for (unsigned i = 0; su->defExists(i); ++i)
2674 su2d->setDef(i, bld.getSSA());
2675 su2d->moveSources(dim + 1, -1);
2676 su2d->tex.target = nv50_ir::TEX_TARGET_2D;
2677 }
2678 if (pred2d && pred) {
2679 Instruction *pred3d = bld.mkOp2(OP_AND, TYPE_U8,
2680 bld.getSSA(1, FILE_PREDICATE),
2681 pred->getDef(0), pred2d->getDef(0));
2682 pred3d->src(0).mod = Modifier(NV50_IR_MOD_NOT);
2683 pred3d->src(1).mod = Modifier(NV50_IR_MOD_NOT);
2684 su->setPredicate(CC_P, pred3d->getDef(0));
2685 pred2d = bld.mkOp2(OP_AND, TYPE_U8, bld.getSSA(1, FILE_PREDICATE),
2686 pred->getDef(0), pred2d->getDef(0));
2687 pred2d->src(0).mod = Modifier(NV50_IR_MOD_NOT);
2688 } else if (pred) {
2689 su->setPredicate(CC_NOT_P, pred->getDef(0));
2690 } else if (pred2d) {
2691 su->setPredicate(CC_NOT_P, pred2d->getDef(0));
2692 }
2693 if (su2d) {
2694 su2d->setPredicate(CC_P, pred2d->getDef(0));
2695 bld.insert(su2d);
2696
2697 // Create a UNION so that RA assigns the same registers
2698 bld.setPosition(su, true);
2699 for (unsigned i = 0; su->defExists(i); ++i) {
2700 assert(i < 4);
2701
2702 Value *def = su->getDef(i);
2703 Value *newDef = bld.getSSA();
2704 ValueDef &def2 = su2d->def(i);
2705 Instruction *mov = NULL;
2706
2707 su->setDef(i, newDef);
2708 if (pred) {
2709 mov = bld.mkMov(bld.getSSA(), bld.loadImm(NULL, 0));
2710 mov->setPredicate(CC_P, pred->getDef(0));
2711 }
2712
2713 Instruction *uni = ret[i] = bld.mkOp2(OP_UNION, TYPE_U32,
2714 bld.getSSA(),
2715 newDef, def2.get());
2716 if (mov)
2717 uni->setSrc(2, mov->getDef(0));
2718 bld.mkMov(def, uni->getDef(0));
2719 }
2720 } else if (pred) {
2721 // Create a UNION so that RA assigns the same registers
2722 bld.setPosition(su, true);
2723 for (unsigned i = 0; su->defExists(i); ++i) {
2724 assert(i < 4);
2725
2726 Value *def = su->getDef(i);
2727 Value *newDef = bld.getSSA();
2728 su->setDef(i, newDef);
2729
2730 Instruction *mov = bld.mkMov(bld.getSSA(), bld.loadImm(NULL, 0));
2731 mov->setPredicate(CC_P, pred->getDef(0));
2732
2733 Instruction *uni = ret[i] = bld.mkOp2(OP_UNION, TYPE_U32,
2734 bld.getSSA(),
2735 newDef, mov->getDef(0));
2736 bld.mkMov(def, uni->getDef(0));
2737 }
2738 }
2739
2740 return su2d;
2741 }
2742
2743 void
handleSurfaceOpGM107(TexInstruction * su)2744 NVC0LoweringPass::handleSurfaceOpGM107(TexInstruction *su)
2745 {
2746 // processSurfaceCoords also takes care of fixing up the outputs and
2747 // union'ing them with 0 as necessary. Additionally it may create a second
2748 // surface which needs some of the similar fixups.
2749
2750 Instruction *loaded[4] = {};
2751 TexInstruction *su2 = processSurfaceCoordsGM107(su, loaded);
2752
2753 if (su->op == OP_SULDP) {
2754 convertSurfaceFormat(su, loaded);
2755 }
2756
2757 if (su->op == OP_SUREDP) {
2758 su->op = OP_SUREDB;
2759 }
2760
2761 // If we fixed up the type of the regular surface load instruction, we also
2762 // have to fix up the copy.
2763 if (su2) {
2764 su2->op = su->op;
2765 su2->dType = su->dType;
2766 su2->sType = su->sType;
2767 }
2768 }
2769
2770 bool
handleWRSV(Instruction * i)2771 NVC0LoweringPass::handleWRSV(Instruction *i)
2772 {
2773 Instruction *st;
2774 Symbol *sym;
2775 uint32_t addr;
2776
2777 // must replace, $sreg are not writeable
2778 addr = targ->getSVAddress(FILE_SHADER_OUTPUT, i->getSrc(0)->asSym());
2779 if (addr >= 0x400)
2780 return false;
2781 sym = bld.mkSymbol(FILE_SHADER_OUTPUT, 0, i->sType, addr);
2782
2783 st = bld.mkStore(OP_EXPORT, i->dType, sym, i->getIndirect(0, 0),
2784 i->getSrc(1));
2785 st->perPatch = i->perPatch;
2786
2787 bld.getBB()->remove(i);
2788 return true;
2789 }
2790
2791 void
handleLDST(Instruction * i)2792 NVC0LoweringPass::handleLDST(Instruction *i)
2793 {
2794 if (i->src(0).getFile() == FILE_SHADER_INPUT) {
2795 if (prog->getType() == Program::TYPE_COMPUTE) {
2796 i->getSrc(0)->reg.file = FILE_MEMORY_CONST;
2797 i->getSrc(0)->reg.fileIndex = 0;
2798 } else
2799 if (prog->getType() == Program::TYPE_GEOMETRY &&
2800 i->src(0).isIndirect(0)) {
2801 // XXX: this assumes vec4 units
2802 Value *ptr = bld.mkOp2v(OP_SHL, TYPE_U32, bld.getSSA(),
2803 i->getIndirect(0, 0), bld.mkImm(4));
2804 i->setIndirect(0, 0, ptr);
2805 i->op = OP_VFETCH;
2806 } else {
2807 i->op = OP_VFETCH;
2808 assert(prog->getType() != Program::TYPE_FRAGMENT); // INTERP
2809 }
2810 } else if (i->src(0).getFile() == FILE_MEMORY_CONST) {
2811 int8_t fileIndex = i->getSrc(0)->reg.fileIndex - 1;
2812 Value *ind = i->getIndirect(0, 1);
2813
2814 if (targ->getChipset() >= NVISA_GK104_CHIPSET &&
2815 prog->getType() == Program::TYPE_COMPUTE &&
2816 (fileIndex >= 6 || ind)) {
2817 // The launch descriptor only allows to set up 8 CBs, but OpenGL
2818 // requires at least 12 UBOs. To bypass this limitation, for constant
2819 // buffers 7+, we store the addrs into the driver constbuf and we
2820 // directly load from the global memory.
2821 if (ind) {
2822 // Clamp the UBO index when an indirect access is used to avoid
2823 // loading information from the wrong place in the driver cb.
2824 // TODO - synchronize the max with the driver.
2825 ind = bld.mkOp2v(OP_MIN, TYPE_U32, bld.getSSA(),
2826 bld.mkOp2v(OP_ADD, TYPE_U32, bld.getSSA(),
2827 ind, bld.loadImm(NULL, fileIndex)),
2828 bld.loadImm(NULL, 13));
2829 fileIndex = 0;
2830 }
2831
2832 Value *offset = bld.loadImm(NULL, i->getSrc(0)->reg.data.offset + typeSizeof(i->sType));
2833 Value *ptr = loadUboInfo64(ind, fileIndex * 16);
2834 Value *length = loadUboLength32(ind, fileIndex * 16);
2835 Value *pred = new_LValue(func, FILE_PREDICATE);
2836 if (i->src(0).isIndirect(0)) {
2837 bld.mkOp2(OP_ADD, TYPE_U64, ptr, ptr, i->getIndirect(0, 0));
2838 bld.mkOp2(OP_ADD, TYPE_U32, offset, offset, i->getIndirect(0, 0));
2839 }
2840 i->getSrc(0)->reg.file = FILE_MEMORY_GLOBAL;
2841 i->setIndirect(0, 1, NULL);
2842 i->setIndirect(0, 0, ptr);
2843 bld.mkCmp(OP_SET, CC_GT, TYPE_U32, pred, TYPE_U32, offset, length);
2844 i->setPredicate(CC_NOT_P, pred);
2845 Value *zero, *dst = i->getDef(0);
2846 i->setDef(0, bld.getSSA());
2847
2848 bld.setPosition(i, true);
2849 bld.mkMov((zero = bld.getSSA()), bld.mkImm(0))
2850 ->setPredicate(CC_P, pred);
2851 bld.mkOp2(OP_UNION, TYPE_U32, dst, i->getDef(0), zero);
2852 } else if (i->src(0).isIndirect(1)) {
2853 Value *ptr;
2854 if (i->src(0).isIndirect(0))
2855 ptr = bld.mkOp3v(OP_INSBF, TYPE_U32, bld.getSSA(),
2856 i->getIndirect(0, 1), bld.mkImm(0x1010),
2857 i->getIndirect(0, 0));
2858 else
2859 ptr = bld.mkOp2v(OP_SHL, TYPE_U32, bld.getSSA(),
2860 i->getIndirect(0, 1), bld.mkImm(16));
2861 i->setIndirect(0, 1, NULL);
2862 i->setIndirect(0, 0, ptr);
2863 i->subOp = NV50_IR_SUBOP_LDC_IS;
2864 }
2865 } else if (i->src(0).getFile() == FILE_SHADER_OUTPUT) {
2866 assert(prog->getType() == Program::TYPE_TESSELLATION_CONTROL);
2867 i->op = OP_VFETCH;
2868 } else if (i->src(0).getFile() == FILE_MEMORY_BUFFER) {
2869 Value *ind = i->getIndirect(0, 1);
2870 Value *ptr = loadBufInfo64(ind, i->getSrc(0)->reg.fileIndex * 16);
2871 // XXX come up with a way not to do this for EVERY little access but
2872 // rather to batch these up somehow. Unfortunately we've lost the
2873 // information about the field width by the time we get here.
2874 Value *offset = bld.loadImm(NULL, i->getSrc(0)->reg.data.offset + typeSizeof(i->sType));
2875 Value *length = loadBufLength32(ind, i->getSrc(0)->reg.fileIndex * 16);
2876 Value *pred = new_LValue(func, FILE_PREDICATE);
2877 if (i->src(0).isIndirect(0)) {
2878 bld.mkOp2(OP_ADD, TYPE_U64, ptr, ptr, i->getIndirect(0, 0));
2879 bld.mkOp2(OP_ADD, TYPE_U32, offset, offset, i->getIndirect(0, 0));
2880 }
2881 i->setIndirect(0, 1, NULL);
2882 i->setIndirect(0, 0, ptr);
2883 i->getSrc(0)->reg.file = FILE_MEMORY_GLOBAL;
2884 bld.mkCmp(OP_SET, CC_GT, TYPE_U32, pred, TYPE_U32, offset, length);
2885 i->setPredicate(CC_NOT_P, pred);
2886 if (i->defExists(0)) {
2887 Value *zero, *dst = i->getDef(0);
2888 i->setDef(0, bld.getSSA());
2889
2890 bld.setPosition(i, true);
2891 bld.mkMov((zero = bld.getSSA()), bld.mkImm(0))
2892 ->setPredicate(CC_P, pred);
2893 bld.mkOp2(OP_UNION, TYPE_U32, dst, i->getDef(0), zero);
2894 }
2895 }
2896 }
2897
2898 void
readTessCoord(LValue * dst,int c)2899 NVC0LoweringPass::readTessCoord(LValue *dst, int c)
2900 {
2901 Value *laneid = bld.getSSA();
2902 Value *x, *y;
2903
2904 bld.mkOp1(OP_RDSV, TYPE_U32, laneid, bld.mkSysVal(SV_LANEID, 0));
2905
2906 if (c == 0) {
2907 x = dst;
2908 y = NULL;
2909 } else
2910 if (c == 1) {
2911 x = NULL;
2912 y = dst;
2913 } else {
2914 assert(c == 2);
2915 if (prog->driver_out->prop.tp.domain != PIPE_PRIM_TRIANGLES) {
2916 bld.mkMov(dst, bld.loadImm(NULL, 0));
2917 return;
2918 }
2919 x = bld.getSSA();
2920 y = bld.getSSA();
2921 }
2922 if (x)
2923 bld.mkFetch(x, TYPE_F32, FILE_SHADER_OUTPUT, 0x2f0, NULL, laneid);
2924 if (y)
2925 bld.mkFetch(y, TYPE_F32, FILE_SHADER_OUTPUT, 0x2f4, NULL, laneid);
2926
2927 if (c == 2) {
2928 bld.mkOp2(OP_ADD, TYPE_F32, dst, x, y);
2929 bld.mkOp2(OP_SUB, TYPE_F32, dst, bld.loadImm(NULL, 1.0f), dst);
2930 }
2931 }
2932
2933 bool
handleRDSV(Instruction * i)2934 NVC0LoweringPass::handleRDSV(Instruction *i)
2935 {
2936 Symbol *sym = i->getSrc(0)->asSym();
2937 const SVSemantic sv = sym->reg.data.sv.sv;
2938 Value *vtx = NULL;
2939 Instruction *ld;
2940 uint32_t addr = targ->getSVAddress(FILE_SHADER_INPUT, sym);
2941
2942 if (addr >= 0x400) {
2943 // mov $sreg
2944 if (sym->reg.data.sv.index == 3) {
2945 // TGSI backend may use 4th component of TID,NTID,CTAID,NCTAID
2946 i->op = OP_MOV;
2947 i->setSrc(0, bld.mkImm((sv == SV_NTID || sv == SV_NCTAID) ? 1 : 0));
2948 } else
2949 if (sv == SV_TID) {
2950 // Help CSE combine TID fetches
2951 Value *tid = bld.mkOp1v(OP_RDSV, TYPE_U32, bld.getScratch(),
2952 bld.mkSysVal(SV_COMBINED_TID, 0));
2953 i->op = OP_EXTBF;
2954 i->setSrc(0, tid);
2955 switch (sym->reg.data.sv.index) {
2956 case 0: i->setSrc(1, bld.mkImm(0x1000)); break;
2957 case 1: i->setSrc(1, bld.mkImm(0x0a10)); break;
2958 case 2: i->setSrc(1, bld.mkImm(0x061a)); break;
2959 }
2960 }
2961 if (sv == SV_VERTEX_COUNT) {
2962 bld.setPosition(i, true);
2963 bld.mkOp2(OP_EXTBF, TYPE_U32, i->getDef(0), i->getDef(0), bld.mkImm(0x808));
2964 }
2965 return true;
2966 }
2967
2968 switch (sv) {
2969 case SV_POSITION:
2970 assert(prog->getType() == Program::TYPE_FRAGMENT);
2971 if (i->srcExists(1)) {
2972 // Pass offset through to the interpolation logic
2973 ld = bld.mkInterp(NV50_IR_INTERP_LINEAR | NV50_IR_INTERP_OFFSET,
2974 i->getDef(0), addr, NULL);
2975 ld->setSrc(1, i->getSrc(1));
2976 } else {
2977 bld.mkInterp(NV50_IR_INTERP_LINEAR, i->getDef(0), addr, NULL);
2978 }
2979 break;
2980 case SV_FACE:
2981 {
2982 Value *face = i->getDef(0);
2983 bld.mkInterp(NV50_IR_INTERP_FLAT, face, addr, NULL);
2984 if (i->dType == TYPE_F32) {
2985 bld.mkOp2(OP_OR, TYPE_U32, face, face, bld.mkImm(0x00000001));
2986 bld.mkOp1(OP_NEG, TYPE_S32, face, face);
2987 bld.mkCvt(OP_CVT, TYPE_F32, face, TYPE_S32, face);
2988 }
2989 }
2990 break;
2991 case SV_TESS_COORD:
2992 assert(prog->getType() == Program::TYPE_TESSELLATION_EVAL);
2993 readTessCoord(i->getDef(0)->asLValue(), i->getSrc(0)->reg.data.sv.index);
2994 break;
2995 case SV_NTID:
2996 case SV_NCTAID:
2997 case SV_GRIDID:
2998 assert(targ->getChipset() >= NVISA_GK104_CHIPSET); // mov $sreg otherwise
2999 if (sym->reg.data.sv.index == 3) {
3000 i->op = OP_MOV;
3001 i->setSrc(0, bld.mkImm(sv == SV_GRIDID ? 0 : 1));
3002 return true;
3003 }
3004 FALLTHROUGH;
3005 case SV_WORK_DIM:
3006 addr += prog->driver->prop.cp.gridInfoBase;
3007 bld.mkLoad(TYPE_U32, i->getDef(0),
3008 bld.mkSymbol(FILE_MEMORY_CONST, prog->driver->io.auxCBSlot,
3009 TYPE_U32, addr), NULL);
3010 break;
3011 case SV_SAMPLE_INDEX:
3012 // TODO: Properly pass source as an address in the PIX address space
3013 // (which can be of the form [r0+offset]). But this is currently
3014 // unnecessary.
3015 ld = bld.mkOp1(OP_PIXLD, TYPE_U32, i->getDef(0), bld.mkImm(0));
3016 ld->subOp = NV50_IR_SUBOP_PIXLD_SAMPLEID;
3017 break;
3018 case SV_SAMPLE_POS: {
3019 Value *sampleID = bld.getScratch();
3020 ld = bld.mkOp1(OP_PIXLD, TYPE_U32, sampleID, bld.mkImm(0));
3021 ld->subOp = NV50_IR_SUBOP_PIXLD_SAMPLEID;
3022 Value *offset = calculateSampleOffset(sampleID);
3023
3024 assert(prog->driver_out->prop.fp.readsSampleLocations);
3025
3026 if (targ->getChipset() >= NVISA_GM200_CHIPSET) {
3027 bld.mkLoad(TYPE_F32,
3028 i->getDef(0),
3029 bld.mkSymbol(
3030 FILE_MEMORY_CONST, prog->driver->io.auxCBSlot,
3031 TYPE_U32, prog->driver->io.sampleInfoBase),
3032 offset);
3033 bld.mkOp2(OP_EXTBF, TYPE_U32, i->getDef(0), i->getDef(0),
3034 bld.mkImm(0x040c + sym->reg.data.sv.index * 16));
3035 bld.mkCvt(OP_CVT, TYPE_F32, i->getDef(0), TYPE_U32, i->getDef(0));
3036 bld.mkOp2(OP_MUL, TYPE_F32, i->getDef(0), i->getDef(0), bld.mkImm(1.0f / 16.0f));
3037 } else {
3038 bld.mkLoad(TYPE_F32,
3039 i->getDef(0),
3040 bld.mkSymbol(
3041 FILE_MEMORY_CONST, prog->driver->io.auxCBSlot,
3042 TYPE_U32, prog->driver->io.sampleInfoBase +
3043 4 * sym->reg.data.sv.index),
3044 offset);
3045 }
3046 break;
3047 }
3048 case SV_SAMPLE_MASK: {
3049 ld = bld.mkOp1(OP_PIXLD, TYPE_U32, i->getDef(0), bld.mkImm(0));
3050 ld->subOp = NV50_IR_SUBOP_PIXLD_COVMASK;
3051 Instruction *sampleid =
3052 bld.mkOp1(OP_PIXLD, TYPE_U32, bld.getSSA(), bld.mkImm(0));
3053 sampleid->subOp = NV50_IR_SUBOP_PIXLD_SAMPLEID;
3054 Value *masked =
3055 bld.mkOp2v(OP_AND, TYPE_U32, bld.getSSA(), ld->getDef(0),
3056 bld.mkOp2v(OP_SHL, TYPE_U32, bld.getSSA(),
3057 bld.loadImm(NULL, 1), sampleid->getDef(0)));
3058 if (prog->persampleInvocation) {
3059 bld.mkMov(i->getDef(0), masked);
3060 } else {
3061 bld.mkOp3(OP_SELP, TYPE_U32, i->getDef(0), ld->getDef(0), masked,
3062 bld.mkImm(0))
3063 ->subOp = 1;
3064 }
3065 break;
3066 }
3067 case SV_BASEVERTEX:
3068 case SV_BASEINSTANCE:
3069 case SV_DRAWID:
3070 ld = bld.mkLoad(TYPE_U32, i->getDef(0),
3071 bld.mkSymbol(FILE_MEMORY_CONST,
3072 prog->driver->io.auxCBSlot,
3073 TYPE_U32,
3074 prog->driver->io.drawInfoBase +
3075 4 * (sv - SV_BASEVERTEX)),
3076 NULL);
3077 break;
3078 default:
3079 if (prog->getType() == Program::TYPE_TESSELLATION_EVAL && !i->perPatch)
3080 vtx = bld.mkOp1v(OP_PFETCH, TYPE_U32, bld.getSSA(), bld.mkImm(0));
3081 if (prog->getType() == Program::TYPE_FRAGMENT) {
3082 bld.mkInterp(NV50_IR_INTERP_FLAT, i->getDef(0), addr, NULL);
3083 } else {
3084 ld = bld.mkFetch(i->getDef(0), i->dType,
3085 FILE_SHADER_INPUT, addr, i->getIndirect(0, 0), vtx);
3086 ld->perPatch = i->perPatch;
3087 }
3088 break;
3089 }
3090 bld.getBB()->remove(i);
3091 return true;
3092 }
3093
3094 bool
handleDIV(Instruction * i)3095 NVC0LoweringPass::handleDIV(Instruction *i)
3096 {
3097 if (!isFloatType(i->dType))
3098 return true;
3099 bld.setPosition(i, false);
3100 Instruction *rcp = bld.mkOp1(OP_RCP, i->dType, bld.getSSA(typeSizeof(i->dType)), i->getSrc(1));
3101 i->op = OP_MUL;
3102 i->setSrc(1, rcp->getDef(0));
3103 return true;
3104 }
3105
3106 bool
handleMOD(Instruction * i)3107 NVC0LoweringPass::handleMOD(Instruction *i)
3108 {
3109 if (!isFloatType(i->dType))
3110 return true;
3111 LValue *value = bld.getScratch(typeSizeof(i->dType));
3112 bld.mkOp1(OP_RCP, i->dType, value, i->getSrc(1));
3113 bld.mkOp2(OP_MUL, i->dType, value, i->getSrc(0), value);
3114 bld.mkOp1(OP_TRUNC, i->dType, value, value);
3115 bld.mkOp2(OP_MUL, i->dType, value, i->getSrc(1), value);
3116 i->op = OP_SUB;
3117 i->setSrc(1, value);
3118 return true;
3119 }
3120
3121 bool
handleSQRT(Instruction * i)3122 NVC0LoweringPass::handleSQRT(Instruction *i)
3123 {
3124 if (targ->isOpSupported(OP_SQRT, i->dType))
3125 return true;
3126
3127 if (i->dType == TYPE_F64) {
3128 Value *pred = bld.getSSA(1, FILE_PREDICATE);
3129 Value *zero = bld.loadImm(NULL, 0.0);
3130 Value *dst = bld.getSSA(8);
3131 bld.mkOp1(OP_RSQ, i->dType, dst, i->getSrc(0));
3132 bld.mkCmp(OP_SET, CC_LE, i->dType, pred, i->dType, i->getSrc(0), zero);
3133 bld.mkOp3(OP_SELP, TYPE_U64, dst, zero, dst, pred);
3134 i->op = OP_MUL;
3135 i->setSrc(1, dst);
3136 // TODO: Handle this properly with a library function
3137 } else {
3138 bld.setPosition(i, true);
3139 i->op = OP_RSQ;
3140 bld.mkOp1(OP_RCP, i->dType, i->getDef(0), i->getDef(0));
3141 }
3142
3143 return true;
3144 }
3145
3146 bool
handlePOW(Instruction * i)3147 NVC0LoweringPass::handlePOW(Instruction *i)
3148 {
3149 LValue *val = bld.getScratch();
3150
3151 bld.mkOp1(OP_LG2, TYPE_F32, val, i->getSrc(0));
3152 bld.mkOp2(OP_MUL, TYPE_F32, val, i->getSrc(1), val)->dnz = 1;
3153 bld.mkOp1(OP_PREEX2, TYPE_F32, val, val);
3154
3155 i->op = OP_EX2;
3156 i->setSrc(0, val);
3157 i->setSrc(1, NULL);
3158
3159 return true;
3160 }
3161
3162 bool
handleEXPORT(Instruction * i)3163 NVC0LoweringPass::handleEXPORT(Instruction *i)
3164 {
3165 if (prog->getType() == Program::TYPE_FRAGMENT) {
3166 int id = i->getSrc(0)->reg.data.offset / 4;
3167
3168 if (i->src(0).isIndirect(0)) // TODO, ugly
3169 return false;
3170 i->op = OP_MOV;
3171 i->subOp = NV50_IR_SUBOP_MOV_FINAL;
3172 i->src(0).set(i->src(1));
3173 i->setSrc(1, NULL);
3174 i->setDef(0, new_LValue(func, FILE_GPR));
3175 i->getDef(0)->reg.data.id = id;
3176
3177 prog->maxGPR = MAX2(prog->maxGPR, id);
3178 } else
3179 if (prog->getType() == Program::TYPE_GEOMETRY) {
3180 i->setIndirect(0, 1, gpEmitAddress);
3181 }
3182 return true;
3183 }
3184
3185 bool
handleOUT(Instruction * i)3186 NVC0LoweringPass::handleOUT(Instruction *i)
3187 {
3188 Instruction *prev = i->prev;
3189 ImmediateValue stream, prevStream;
3190
3191 // Only merge if the stream ids match. Also, note that the previous
3192 // instruction would have already been lowered, so we take arg1 from it.
3193 if (i->op == OP_RESTART && prev && prev->op == OP_EMIT &&
3194 i->src(0).getImmediate(stream) &&
3195 prev->src(1).getImmediate(prevStream) &&
3196 stream.reg.data.u32 == prevStream.reg.data.u32) {
3197 i->prev->subOp = NV50_IR_SUBOP_EMIT_RESTART;
3198 delete_Instruction(prog, i);
3199 } else {
3200 assert(gpEmitAddress);
3201 i->setDef(0, gpEmitAddress);
3202 i->setSrc(1, i->getSrc(0));
3203 i->setSrc(0, gpEmitAddress);
3204 }
3205 return true;
3206 }
3207
3208 Value *
calculateSampleOffset(Value * sampleID)3209 NVC0LoweringPass::calculateSampleOffset(Value *sampleID)
3210 {
3211 Value *offset = bld.getScratch();
3212 if (targ->getChipset() >= NVISA_GM200_CHIPSET) {
3213 // Sample location offsets (in bytes) are calculated like so:
3214 // offset = (SV_POSITION.y % 4 * 2) + (SV_POSITION.x % 2)
3215 // offset = offset * 32 + sampleID % 8 * 4;
3216 // which is equivalent to:
3217 // offset = (SV_POSITION.y & 0x3) << 6 + (SV_POSITION.x & 0x1) << 5;
3218 // offset += sampleID << 2
3219
3220 // The second operand (src1) of the INSBF instructions are like so:
3221 // 0xssll where ss is the size and ll is the offset.
3222 // so: dest = src2 | (src0 & (1 << ss - 1)) << ll
3223
3224 // Add sample ID (offset = (sampleID & 0x7) << 2)
3225 bld.mkOp3(OP_INSBF, TYPE_U32, offset, sampleID, bld.mkImm(0x0302), bld.mkImm(0x0));
3226
3227 Symbol *xSym = bld.mkSysVal(SV_POSITION, 0);
3228 Symbol *ySym = bld.mkSysVal(SV_POSITION, 1);
3229 Value *coord = bld.getScratch();
3230
3231 // Add X coordinate (offset |= (SV_POSITION.x & 0x1) << 5)
3232 bld.mkInterp(NV50_IR_INTERP_LINEAR, coord,
3233 targ->getSVAddress(FILE_SHADER_INPUT, xSym), NULL);
3234 bld.mkCvt(OP_CVT, TYPE_U32, coord, TYPE_F32, coord)
3235 ->rnd = ROUND_ZI;
3236 bld.mkOp3(OP_INSBF, TYPE_U32, offset, coord, bld.mkImm(0x0105), offset);
3237
3238 // Add Y coordinate (offset |= (SV_POSITION.y & 0x3) << 6)
3239 bld.mkInterp(NV50_IR_INTERP_LINEAR, coord,
3240 targ->getSVAddress(FILE_SHADER_INPUT, ySym), NULL);
3241 bld.mkCvt(OP_CVT, TYPE_U32, coord, TYPE_F32, coord)
3242 ->rnd = ROUND_ZI;
3243 bld.mkOp3(OP_INSBF, TYPE_U32, offset, coord, bld.mkImm(0x0206), offset);
3244 } else {
3245 bld.mkOp2(OP_SHL, TYPE_U32, offset, sampleID, bld.mkImm(3));
3246 }
3247 return offset;
3248 }
3249
3250 // Handle programmable sample locations for GM20x+
3251 void
handlePIXLD(Instruction * i)3252 NVC0LoweringPass::handlePIXLD(Instruction *i)
3253 {
3254 if (i->subOp != NV50_IR_SUBOP_PIXLD_OFFSET)
3255 return;
3256 if (targ->getChipset() < NVISA_GM200_CHIPSET)
3257 return;
3258
3259 assert(prog->driver_out->prop.fp.readsSampleLocations);
3260
3261 bld.mkLoad(TYPE_F32,
3262 i->getDef(0),
3263 bld.mkSymbol(
3264 FILE_MEMORY_CONST, prog->driver->io.auxCBSlot,
3265 TYPE_U32, prog->driver->io.sampleInfoBase),
3266 calculateSampleOffset(i->getSrc(0)));
3267
3268 bld.getBB()->remove(i);
3269 }
3270
3271 // Generate a binary predicate if an instruction is predicated by
3272 // e.g. an f32 value.
3273 void
checkPredicate(Instruction * insn)3274 NVC0LoweringPass::checkPredicate(Instruction *insn)
3275 {
3276 Value *pred = insn->getPredicate();
3277 Value *pdst;
3278
3279 if (!pred || pred->reg.file == FILE_PREDICATE)
3280 return;
3281 pdst = new_LValue(func, FILE_PREDICATE);
3282
3283 // CAUTION: don't use pdst->getInsn, the definition might not be unique,
3284 // delay turning PSET(FSET(x,y),0) into PSET(x,y) to a later pass
3285
3286 bld.mkCmp(OP_SET, CC_NEU, insn->dType, pdst, insn->dType, bld.mkImm(0), pred);
3287
3288 insn->setPredicate(insn->cc, pdst);
3289 }
3290
3291 //
3292 // - add quadop dance for texturing
3293 // - put FP outputs in GPRs
3294 // - convert instruction sequences
3295 //
3296 bool
visit(Instruction * i)3297 NVC0LoweringPass::visit(Instruction *i)
3298 {
3299 bool ret = true;
3300 bld.setPosition(i, false);
3301
3302 if (i->cc != CC_ALWAYS)
3303 checkPredicate(i);
3304
3305 switch (i->op) {
3306 case OP_TEX:
3307 case OP_TXB:
3308 case OP_TXL:
3309 case OP_TXF:
3310 case OP_TXG:
3311 return handleTEX(i->asTex());
3312 case OP_TXD:
3313 return handleTXD(i->asTex());
3314 case OP_TXLQ:
3315 return handleTXLQ(i->asTex());
3316 case OP_TXQ:
3317 return handleTXQ(i->asTex());
3318 case OP_EX2:
3319 bld.mkOp1(OP_PREEX2, TYPE_F32, i->getDef(0), i->getSrc(0));
3320 i->setSrc(0, i->getDef(0));
3321 break;
3322 case OP_POW:
3323 return handlePOW(i);
3324 case OP_DIV:
3325 return handleDIV(i);
3326 case OP_MOD:
3327 return handleMOD(i);
3328 case OP_SQRT:
3329 return handleSQRT(i);
3330 case OP_EXPORT:
3331 ret = handleEXPORT(i);
3332 break;
3333 case OP_EMIT:
3334 case OP_RESTART:
3335 return handleOUT(i);
3336 case OP_RDSV:
3337 return handleRDSV(i);
3338 case OP_WRSV:
3339 return handleWRSV(i);
3340 case OP_STORE:
3341 case OP_LOAD:
3342 handleLDST(i);
3343 break;
3344 case OP_ATOM:
3345 {
3346 const bool cctl = i->src(0).getFile() == FILE_MEMORY_BUFFER;
3347 handleATOM(i);
3348 handleCasExch(i, cctl);
3349 }
3350 break;
3351 case OP_SULDB:
3352 case OP_SULDP:
3353 case OP_SUSTB:
3354 case OP_SUSTP:
3355 case OP_SUREDB:
3356 case OP_SUREDP:
3357 if (targ->getChipset() >= NVISA_GM107_CHIPSET)
3358 handleSurfaceOpGM107(i->asTex());
3359 else if (targ->getChipset() >= NVISA_GK104_CHIPSET)
3360 handleSurfaceOpNVE4(i->asTex());
3361 else
3362 handleSurfaceOpNVC0(i->asTex());
3363 break;
3364 case OP_SUQ:
3365 handleSUQ(i->asTex());
3366 break;
3367 case OP_BUFQ:
3368 handleBUFQ(i);
3369 break;
3370 case OP_PIXLD:
3371 handlePIXLD(i);
3372 break;
3373 default:
3374 break;
3375 }
3376
3377 /* Kepler+ has a special opcode to compute a new base address to be used
3378 * for indirect loads.
3379 *
3380 * Maxwell+ has an additional similar requirement for indirect
3381 * interpolation ops in frag shaders.
3382 */
3383 bool doAfetch = false;
3384 if (targ->getChipset() >= NVISA_GK104_CHIPSET &&
3385 !i->perPatch &&
3386 (i->op == OP_VFETCH || i->op == OP_EXPORT) &&
3387 i->src(0).isIndirect(0)) {
3388 doAfetch = true;
3389 }
3390 if (targ->getChipset() >= NVISA_GM107_CHIPSET &&
3391 (i->op == OP_LINTERP || i->op == OP_PINTERP) &&
3392 i->src(0).isIndirect(0)) {
3393 doAfetch = true;
3394 }
3395
3396 if (doAfetch) {
3397 Value *addr = cloneShallow(func, i->getSrc(0));
3398 Instruction *afetch = bld.mkOp1(OP_AFETCH, TYPE_U32, bld.getSSA(),
3399 i->getSrc(0));
3400 afetch->setIndirect(0, 0, i->getIndirect(0, 0));
3401 addr->reg.data.offset = 0;
3402 i->setSrc(0, addr);
3403 i->setIndirect(0, 0, afetch->getDef(0));
3404 }
3405
3406 return ret;
3407 }
3408
3409 bool
runLegalizePass(Program * prog,CGStage stage) const3410 TargetNVC0::runLegalizePass(Program *prog, CGStage stage) const
3411 {
3412 if (stage == CG_STAGE_PRE_SSA) {
3413 NVC0LoweringPass pass(prog);
3414 return pass.run(prog, false, true);
3415 } else
3416 if (stage == CG_STAGE_POST_RA) {
3417 NVC0LegalizePostRA pass(prog);
3418 return pass.run(prog, false, true);
3419 } else
3420 if (stage == CG_STAGE_SSA) {
3421 NVC0LegalizeSSA pass;
3422 return pass.run(prog, false, true);
3423 }
3424 return false;
3425 }
3426
3427 } // namespace nv50_ir
3428