• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright 2011 Christoph Bumiller
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  */
22 
23 #include "codegen/nv50_ir.h"
24 #include "codegen/nv50_ir_build_util.h"
25 
26 #include "codegen/nv50_ir_target_nvc0.h"
27 #include "codegen/nv50_ir_lowering_nvc0.h"
28 
29 #include <limits>
30 
31 namespace nv50_ir {
32 
33 #define QOP_ADD  0
34 #define QOP_SUBR 1
35 #define QOP_SUB  2
36 #define QOP_MOV2 3
37 
38 //             UL UR LL LR
39 #define QUADOP(q, r, s, t)                      \
40    ((QOP_##q << 6) | (QOP_##r << 4) |           \
41     (QOP_##s << 2) | (QOP_##t << 0))
42 
43 void
handleDIV(Instruction * i)44 NVC0LegalizeSSA::handleDIV(Instruction *i)
45 {
46    FlowInstruction *call;
47    int builtin;
48 
49    bld.setPosition(i, false);
50 
51    // Generate movs to the input regs for the call we want to generate
52    for (int s = 0; i->srcExists(s); ++s) {
53       Instruction *ld = i->getSrc(s)->getInsn();
54       // check if we are moving an immediate, propagate it in that case
55       if (!ld || ld->fixed || (ld->op != OP_LOAD && ld->op != OP_MOV) ||
56             !(ld->src(0).getFile() == FILE_IMMEDIATE))
57          bld.mkMovToReg(s, i->getSrc(s));
58       else {
59          assert(ld->getSrc(0) != NULL);
60          bld.mkMovToReg(s, ld->getSrc(0));
61          // Clear the src, to make code elimination possible here before we
62          // delete the instruction i later
63          i->setSrc(s, NULL);
64          if (ld->isDead())
65             delete_Instruction(prog, ld);
66       }
67    }
68 
69    switch (i->dType) {
70    case TYPE_U32: builtin = NVC0_BUILTIN_DIV_U32; break;
71    case TYPE_S32: builtin = NVC0_BUILTIN_DIV_S32; break;
72    default:
73       return;
74    }
75    call = bld.mkFlow(OP_CALL, NULL, CC_ALWAYS, NULL);
76    bld.mkMovFromReg(i->getDef(0), i->op == OP_DIV ? 0 : 1);
77    bld.mkClobber(FILE_GPR, (i->op == OP_DIV) ? 0xe : 0xd, 2);
78    bld.mkClobber(FILE_PREDICATE, (i->dType == TYPE_S32) ? 0xf : 0x3, 0);
79 
80    call->fixed = 1;
81    call->absolute = call->builtin = 1;
82    call->target.builtin = builtin;
83    delete_Instruction(prog, i);
84 }
85 
86 void
handleRCPRSQLib(Instruction * i,Value * src[])87 NVC0LegalizeSSA::handleRCPRSQLib(Instruction *i, Value *src[])
88 {
89    FlowInstruction *call;
90    Value *def[2];
91    int builtin;
92 
93    def[0] = bld.mkMovToReg(0, src[0])->getDef(0);
94    def[1] = bld.mkMovToReg(1, src[1])->getDef(0);
95 
96    if (i->op == OP_RCP)
97       builtin = NVC0_BUILTIN_RCP_F64;
98    else
99       builtin = NVC0_BUILTIN_RSQ_F64;
100 
101    call = bld.mkFlow(OP_CALL, NULL, CC_ALWAYS, NULL);
102    def[0] = bld.getSSA();
103    def[1] = bld.getSSA();
104    bld.mkMovFromReg(def[0], 0);
105    bld.mkMovFromReg(def[1], 1);
106    bld.mkClobber(FILE_GPR, 0x3fc, 2);
107    bld.mkClobber(FILE_PREDICATE, i->op == OP_RSQ ? 0x3 : 0x1, 0);
108    bld.mkOp2(OP_MERGE, TYPE_U64, i->getDef(0), def[0], def[1]);
109 
110    call->fixed = 1;
111    call->absolute = call->builtin = 1;
112    call->target.builtin = builtin;
113    delete_Instruction(prog, i);
114 
115    prog->fp64 = true;
116 }
117 
118 void
handleRCPRSQ(Instruction * i)119 NVC0LegalizeSSA::handleRCPRSQ(Instruction *i)
120 {
121    assert(i->dType == TYPE_F64);
122    // There are instructions that will compute the high 32 bits of the 64-bit
123    // float. We will just stick 0 in the bottom 32 bits.
124 
125    bld.setPosition(i, false);
126 
127    // 1. Take the source and it up.
128    Value *src[2], *dst[2], *def = i->getDef(0);
129    bld.mkSplit(src, 4, i->getSrc(0));
130 
131    int chip = prog->getTarget()->getChipset();
132    if (chip >= NVISA_GK104_CHIPSET) {
133       handleRCPRSQLib(i, src);
134       return;
135    }
136 
137    // 2. We don't care about the low 32 bits of the destination. Stick a 0 in.
138    dst[0] = bld.loadImm(NULL, 0);
139    dst[1] = bld.getSSA();
140 
141    // 3. The new version of the instruction takes the high 32 bits of the
142    // source and outputs the high 32 bits of the destination.
143    i->setSrc(0, src[1]);
144    i->setDef(0, dst[1]);
145    i->setType(TYPE_F32);
146    i->subOp = NV50_IR_SUBOP_RCPRSQ_64H;
147 
148    // 4. Recombine the two dst pieces back into the original destination.
149    bld.setPosition(i, true);
150    bld.mkOp2(OP_MERGE, TYPE_U64, def, dst[0], dst[1]);
151 }
152 
153 void
handleFTZ(Instruction * i)154 NVC0LegalizeSSA::handleFTZ(Instruction *i)
155 {
156    // Only want to flush float inputs
157    assert(i->sType == TYPE_F32);
158 
159    // If we're already flushing denorms (and NaN's) to zero, no need for this.
160    if (i->dnz)
161       return;
162 
163    // Only certain classes of operations can flush
164    OpClass cls = prog->getTarget()->getOpClass(i->op);
165    if (cls != OPCLASS_ARITH && cls != OPCLASS_COMPARE &&
166        cls != OPCLASS_CONVERT)
167       return;
168 
169    i->ftz = true;
170 }
171 
172 void
handleTEXLOD(TexInstruction * i)173 NVC0LegalizeSSA::handleTEXLOD(TexInstruction *i)
174 {
175    if (i->tex.levelZero)
176       return;
177 
178    ImmediateValue lod;
179 
180    // The LOD argument comes right after the coordinates (before depth bias,
181    // offsets, etc).
182    int arg = i->tex.target.getArgCount();
183 
184    // SM30+ stores the indirect handle as a separate arg, which comes before
185    // the LOD.
186    if (prog->getTarget()->getChipset() >= NVISA_GK104_CHIPSET &&
187        i->tex.rIndirectSrc >= 0)
188       arg++;
189    // SM20 stores indirect handle combined with array coordinate
190    if (prog->getTarget()->getChipset() < NVISA_GK104_CHIPSET &&
191        !i->tex.target.isArray() &&
192        i->tex.rIndirectSrc >= 0)
193       arg++;
194 
195    if (!i->src(arg).getImmediate(lod) || !lod.isInteger(0))
196       return;
197 
198    if (i->op == OP_TXL)
199       i->op = OP_TEX;
200    i->tex.levelZero = true;
201    i->moveSources(arg + 1, -1);
202 }
203 
204 void
handleShift(Instruction * lo)205 NVC0LegalizeSSA::handleShift(Instruction *lo)
206 {
207    Value *shift = lo->getSrc(1);
208    Value *dst64 = lo->getDef(0);
209    Value *src[2], *dst[2];
210    operation op = lo->op;
211 
212    bld.setPosition(lo, false);
213 
214    bld.mkSplit(src, 4, lo->getSrc(0));
215 
216    // SM30 and prior don't have the fancy new SHF.L/R ops. So the logic has to
217    // be completely emulated. For SM35+, we can use the more directed SHF
218    // operations.
219    if (prog->getTarget()->getChipset() < NVISA_GK20A_CHIPSET) {
220       // The strategy here is to handle shifts >= 32 and less than 32 as
221       // separate parts.
222       //
223       // For SHL:
224       // If the shift is <= 32, then
225       //   (HI,LO) << x = (HI << x | (LO >> (32 - x)), LO << x)
226       // If the shift is > 32, then
227       //   (HI,LO) << x = (LO << (x - 32), 0)
228       //
229       // For SHR:
230       // If the shift is <= 32, then
231       //   (HI,LO) >> x = (HI >> x, (HI << (32 - x)) | LO >> x)
232       // If the shift is > 32, then
233       //   (HI,LO) >> x = (0, HI >> (x - 32))
234       //
235       // Note that on NVIDIA hardware, a shift > 32 yields a 0 value, which we
236       // can use to our advantage. Also note the structural similarities
237       // between the right/left cases. The main difference is swapping hi/lo
238       // on input and output.
239 
240       Value *x32_minus_shift, *pred, *hi1, *hi2;
241       DataType type = isSignedIntType(lo->dType) ? TYPE_S32 : TYPE_U32;
242       operation antiop = op == OP_SHR ? OP_SHL : OP_SHR;
243       if (op == OP_SHR)
244          std::swap(src[0], src[1]);
245       bld.mkOp2(OP_ADD, TYPE_U32, (x32_minus_shift = bld.getSSA()), shift, bld.mkImm(0x20))
246          ->src(0).mod = Modifier(NV50_IR_MOD_NEG);
247       bld.mkCmp(OP_SET, CC_LE, TYPE_U8, (pred = bld.getSSA(1, FILE_PREDICATE)),
248                 TYPE_U32, shift, bld.mkImm(32));
249       // Compute HI (shift <= 32)
250       bld.mkOp2(OP_OR, TYPE_U32, (hi1 = bld.getSSA()),
251                 bld.mkOp2v(op, TYPE_U32, bld.getSSA(), src[1], shift),
252                 bld.mkOp2v(antiop, TYPE_U32, bld.getSSA(), src[0], x32_minus_shift))
253          ->setPredicate(CC_P, pred);
254       // Compute LO (all shift values)
255       bld.mkOp2(op, type, (dst[0] = bld.getSSA()), src[0], shift);
256       // Compute HI (shift > 32)
257       bld.mkOp2(op, type, (hi2 = bld.getSSA()), src[0],
258                 bld.mkOp1v(OP_NEG, TYPE_S32, bld.getSSA(), x32_minus_shift))
259          ->setPredicate(CC_NOT_P, pred);
260       bld.mkOp2(OP_UNION, TYPE_U32, (dst[1] = bld.getSSA()), hi1, hi2);
261       if (op == OP_SHR)
262          std::swap(dst[0], dst[1]);
263       bld.mkOp2(OP_MERGE, TYPE_U64, dst64, dst[0], dst[1]);
264       delete_Instruction(prog, lo);
265       return;
266    }
267 
268    Instruction *hi = new_Instruction(func, op, TYPE_U32);
269    lo->bb->insertAfter(lo, hi);
270 
271    hi->sType = lo->sType;
272    lo->dType = TYPE_U32;
273 
274    hi->setDef(0, (dst[1] = bld.getSSA()));
275    if (lo->op == OP_SHR)
276       hi->subOp |= NV50_IR_SUBOP_SHIFT_HIGH;
277    lo->setDef(0, (dst[0] = bld.getSSA()));
278 
279    bld.setPosition(hi, true);
280 
281    if (lo->op == OP_SHL)
282       std::swap(hi, lo);
283 
284    hi->setSrc(0, new_ImmediateValue(prog, 0u));
285    hi->setSrc(1, shift);
286    hi->setSrc(2, lo->op == OP_SHL ? src[0] : src[1]);
287 
288    lo->setSrc(0, src[0]);
289    lo->setSrc(1, shift);
290    lo->setSrc(2, src[1]);
291 
292    bld.mkOp2(OP_MERGE, TYPE_U64, dst64, dst[0], dst[1]);
293 }
294 
295 void
handleSET(CmpInstruction * cmp)296 NVC0LegalizeSSA::handleSET(CmpInstruction *cmp)
297 {
298    DataType hTy = cmp->sType == TYPE_S64 ? TYPE_S32 : TYPE_U32;
299    Value *carry;
300    Value *src0[2], *src1[2];
301    bld.setPosition(cmp, false);
302 
303    bld.mkSplit(src0, 4, cmp->getSrc(0));
304    bld.mkSplit(src1, 4, cmp->getSrc(1));
305    bld.mkOp2(OP_SUB, hTy, NULL, src0[0], src1[0])
306       ->setFlagsDef(0, (carry = bld.getSSA(1, FILE_FLAGS)));
307    cmp->setFlagsSrc(cmp->srcCount(), carry);
308    cmp->setSrc(0, src0[1]);
309    cmp->setSrc(1, src1[1]);
310    cmp->sType = hTy;
311 }
312 
313 void
handleBREV(Instruction * i)314 NVC0LegalizeSSA::handleBREV(Instruction *i)
315 {
316    i->op = OP_EXTBF;
317    i->subOp = NV50_IR_SUBOP_EXTBF_REV;
318    i->setSrc(1, bld.mkImm(0x2000));
319 }
320 
321 bool
visit(Function * fn)322 NVC0LegalizeSSA::visit(Function *fn)
323 {
324    bld.setProgram(fn->getProgram());
325    return true;
326 }
327 
328 bool
visit(BasicBlock * bb)329 NVC0LegalizeSSA::visit(BasicBlock *bb)
330 {
331    Instruction *next;
332    for (Instruction *i = bb->getEntry(); i; i = next) {
333       next = i->next;
334 
335       if (i->sType == TYPE_F32 && prog->getType() != Program::TYPE_COMPUTE)
336          handleFTZ(i);
337 
338       switch (i->op) {
339       case OP_DIV:
340       case OP_MOD:
341          if (i->sType != TYPE_F32)
342             handleDIV(i);
343          break;
344       case OP_RCP:
345       case OP_RSQ:
346          if (i->dType == TYPE_F64)
347             handleRCPRSQ(i);
348          break;
349       case OP_TXL:
350       case OP_TXF:
351          handleTEXLOD(i->asTex());
352          break;
353       case OP_SHR:
354       case OP_SHL:
355          if (typeSizeof(i->sType) == 8)
356             handleShift(i);
357          break;
358       case OP_SET:
359       case OP_SET_AND:
360       case OP_SET_OR:
361       case OP_SET_XOR:
362          if (typeSizeof(i->sType) == 8 && i->sType != TYPE_F64)
363             handleSET(i->asCmp());
364          break;
365       case OP_BREV:
366          handleBREV(i);
367          break;
368       default:
369          break;
370       }
371    }
372    return true;
373 }
374 
NVC0LegalizePostRA(const Program * prog)375 NVC0LegalizePostRA::NVC0LegalizePostRA(const Program *prog)
376    : rZero(NULL),
377      carry(NULL),
378      pOne(NULL),
379      needTexBar(prog->getTarget()->getChipset() >= 0xe0 &&
380                 prog->getTarget()->getChipset() < 0x110)
381 {
382 }
383 
384 bool
insnDominatedBy(const Instruction * later,const Instruction * early) const385 NVC0LegalizePostRA::insnDominatedBy(const Instruction *later,
386                                     const Instruction *early) const
387 {
388    if (early->bb == later->bb)
389       return early->serial < later->serial;
390    return later->bb->dominatedBy(early->bb);
391 }
392 
393 void
addTexUse(std::list<TexUse> & uses,Instruction * usei,const Instruction * texi)394 NVC0LegalizePostRA::addTexUse(std::list<TexUse> &uses,
395                               Instruction *usei, const Instruction *texi)
396 {
397    bool add = true;
398    bool dominated = insnDominatedBy(usei, texi);
399    // Uses before the tex have to all be included. Just because an earlier
400    // instruction dominates another instruction doesn't mean that there's no
401    // way to get from the tex to the later instruction. For example you could
402    // have nested loops, with the tex in the inner loop, and uses before it in
403    // both loops - even though the outer loop's instruction would dominate the
404    // inner's, we still want a texbar before the inner loop's instruction.
405    //
406    // However we can still use the eliding logic between uses dominated by the
407    // tex instruction, as that is unambiguously correct.
408    if (dominated) {
409       for (std::list<TexUse>::iterator it = uses.begin(); it != uses.end();) {
410          if (it->after) {
411             if (insnDominatedBy(usei, it->insn)) {
412                add = false;
413                break;
414             }
415             if (insnDominatedBy(it->insn, usei)) {
416                it = uses.erase(it);
417                continue;
418             }
419          }
420          ++it;
421       }
422    }
423    if (add)
424       uses.push_back(TexUse(usei, texi, dominated));
425 }
426 
427 // While it might be tempting to use the an algorithm that just looks at tex
428 // uses, not all texture results are guaranteed to be used on all paths. In
429 // the case where along some control flow path a texture result is never used,
430 // we might reuse that register for something else, creating a
431 // write-after-write hazard. So we have to manually look through all
432 // instructions looking for ones that reference the registers in question.
433 void
findFirstUses(Instruction * texi,std::list<TexUse> & uses)434 NVC0LegalizePostRA::findFirstUses(
435    Instruction *texi, std::list<TexUse> &uses)
436 {
437    int minGPR = texi->def(0).rep()->reg.data.id;
438    int maxGPR = minGPR + texi->def(0).rep()->reg.size / 4 - 1;
439 
440    unordered_set<const BasicBlock *> visited;
441    findFirstUsesBB(minGPR, maxGPR, texi->next, texi, uses, visited);
442 }
443 
444 void
findFirstUsesBB(int minGPR,int maxGPR,Instruction * start,const Instruction * texi,std::list<TexUse> & uses,unordered_set<const BasicBlock * > & visited)445 NVC0LegalizePostRA::findFirstUsesBB(
446    int minGPR, int maxGPR, Instruction *start,
447    const Instruction *texi, std::list<TexUse> &uses,
448    unordered_set<const BasicBlock *> &visited)
449 {
450    const BasicBlock *bb = start->bb;
451 
452    // We don't process the whole bb the first time around. This is correct,
453    // however we might be in a loop and hit this BB again, and need to process
454    // the full thing. So only mark a bb as visited if we processed it from the
455    // beginning.
456    if (start == bb->getEntry()) {
457       if (visited.find(bb) != visited.end())
458          return;
459       visited.insert(bb);
460    }
461 
462    for (Instruction *insn = start; insn != bb->getExit(); insn = insn->next) {
463       if (insn->isNop())
464          continue;
465 
466       for (int d = 0; insn->defExists(d); ++d) {
467          const Value *def = insn->def(d).rep();
468          if (insn->def(d).getFile() != FILE_GPR ||
469              def->reg.data.id + def->reg.size / 4 - 1 < minGPR ||
470              def->reg.data.id > maxGPR)
471             continue;
472          addTexUse(uses, insn, texi);
473          return;
474       }
475 
476       for (int s = 0; insn->srcExists(s); ++s) {
477          const Value *src = insn->src(s).rep();
478          if (insn->src(s).getFile() != FILE_GPR ||
479              src->reg.data.id + src->reg.size / 4 - 1 < minGPR ||
480              src->reg.data.id > maxGPR)
481             continue;
482          addTexUse(uses, insn, texi);
483          return;
484       }
485    }
486 
487    for (Graph::EdgeIterator ei = bb->cfg.outgoing(); !ei.end(); ei.next()) {
488       findFirstUsesBB(minGPR, maxGPR, BasicBlock::get(ei.getNode())->getEntry(),
489                       texi, uses, visited);
490    }
491 }
492 
493 // Texture barriers:
494 // This pass is a bit long and ugly and can probably be optimized.
495 //
496 // 1. obtain a list of TEXes and their outputs' first use(s)
497 // 2. calculate the barrier level of each first use (minimal number of TEXes,
498 //    over all paths, between the TEX and the use in question)
499 // 3. for each barrier, if all paths from the source TEX to that barrier
500 //    contain a barrier of lesser level, it can be culled
501 bool
insertTextureBarriers(Function * fn)502 NVC0LegalizePostRA::insertTextureBarriers(Function *fn)
503 {
504    std::list<TexUse> *uses;
505    std::vector<Instruction *> texes;
506    std::vector<int> bbFirstTex;
507    std::vector<int> bbFirstUse;
508    std::vector<int> texCounts;
509    std::vector<TexUse> useVec;
510    ArrayList insns;
511 
512    fn->orderInstructions(insns);
513 
514    texCounts.resize(fn->allBBlocks.getSize(), 0);
515    bbFirstTex.resize(fn->allBBlocks.getSize(), insns.getSize());
516    bbFirstUse.resize(fn->allBBlocks.getSize(), insns.getSize());
517 
518    // tag BB CFG nodes by their id for later
519    for (ArrayList::Iterator i = fn->allBBlocks.iterator(); !i.end(); i.next()) {
520       BasicBlock *bb = reinterpret_cast<BasicBlock *>(i.get());
521       if (bb)
522          bb->cfg.tag = bb->getId();
523    }
524 
525    // gather the first uses for each TEX
526    for (int i = 0; i < insns.getSize(); ++i) {
527       Instruction *tex = reinterpret_cast<Instruction *>(insns.get(i));
528       if (isTextureOp(tex->op)) {
529          texes.push_back(tex);
530          if (!texCounts.at(tex->bb->getId()))
531             bbFirstTex[tex->bb->getId()] = texes.size() - 1;
532          texCounts[tex->bb->getId()]++;
533       }
534    }
535    insns.clear();
536    if (texes.empty())
537       return false;
538    uses = new std::list<TexUse>[texes.size()];
539    if (!uses)
540       return false;
541    for (size_t i = 0; i < texes.size(); ++i) {
542       findFirstUses(texes[i], uses[i]);
543    }
544 
545    // determine the barrier level at each use
546    for (size_t i = 0; i < texes.size(); ++i) {
547       for (std::list<TexUse>::iterator u = uses[i].begin(); u != uses[i].end();
548            ++u) {
549          BasicBlock *tb = texes[i]->bb;
550          BasicBlock *ub = u->insn->bb;
551          if (tb == ub) {
552             u->level = 0;
553             for (size_t j = i + 1; j < texes.size() &&
554                     texes[j]->bb == tb && texes[j]->serial < u->insn->serial;
555                  ++j)
556                u->level++;
557          } else {
558             u->level = fn->cfg.findLightestPathWeight(&tb->cfg,
559                                                       &ub->cfg, texCounts);
560             if (u->level < 0) {
561                WARN("Failed to find path TEX -> TEXBAR\n");
562                u->level = 0;
563                continue;
564             }
565             // this counted all TEXes in the origin block, correct that
566             u->level -= i - bbFirstTex.at(tb->getId()) + 1 /* this TEX */;
567             // and did not count the TEXes in the destination block, add those
568             for (size_t j = bbFirstTex.at(ub->getId()); j < texes.size() &&
569                     texes[j]->bb == ub && texes[j]->serial < u->insn->serial;
570                  ++j)
571                u->level++;
572          }
573          assert(u->level >= 0);
574          useVec.push_back(*u);
575       }
576    }
577    delete[] uses;
578 
579    // insert the barriers
580    for (size_t i = 0; i < useVec.size(); ++i) {
581       Instruction *prev = useVec[i].insn->prev;
582       if (useVec[i].level < 0)
583          continue;
584       if (prev && prev->op == OP_TEXBAR) {
585          if (prev->subOp > useVec[i].level)
586             prev->subOp = useVec[i].level;
587          prev->setSrc(prev->srcCount(), useVec[i].tex->getDef(0));
588       } else {
589          Instruction *bar = new_Instruction(func, OP_TEXBAR, TYPE_NONE);
590          bar->fixed = 1;
591          bar->subOp = useVec[i].level;
592          // make use explicit to ease latency calculation
593          bar->setSrc(bar->srcCount(), useVec[i].tex->getDef(0));
594          useVec[i].insn->bb->insertBefore(useVec[i].insn, bar);
595       }
596    }
597 
598    if (fn->getProgram()->optLevel < 3)
599       return true;
600 
601    std::vector<Limits> limitT, limitB, limitS; // entry, exit, single
602 
603    limitT.resize(fn->allBBlocks.getSize(), Limits(0, 0));
604    limitB.resize(fn->allBBlocks.getSize(), Limits(0, 0));
605    limitS.resize(fn->allBBlocks.getSize());
606 
607    // cull unneeded barriers (should do that earlier, but for simplicity)
608    IteratorRef bi = fn->cfg.iteratorCFG();
609    // first calculate min/max outstanding TEXes for each BB
610    for (bi->reset(); !bi->end(); bi->next()) {
611       Graph::Node *n = reinterpret_cast<Graph::Node *>(bi->get());
612       BasicBlock *bb = BasicBlock::get(n);
613       int min = 0;
614       int max = std::numeric_limits<int>::max();
615       for (Instruction *i = bb->getFirst(); i; i = i->next) {
616          if (isTextureOp(i->op)) {
617             min++;
618             if (max < std::numeric_limits<int>::max())
619                max++;
620          } else
621          if (i->op == OP_TEXBAR) {
622             min = MIN2(min, i->subOp);
623             max = MIN2(max, i->subOp);
624          }
625       }
626       // limits when looking at an isolated block
627       limitS[bb->getId()].min = min;
628       limitS[bb->getId()].max = max;
629    }
630    // propagate the min/max values
631    for (unsigned int l = 0; l <= fn->loopNestingBound; ++l) {
632       for (bi->reset(); !bi->end(); bi->next()) {
633          Graph::Node *n = reinterpret_cast<Graph::Node *>(bi->get());
634          BasicBlock *bb = BasicBlock::get(n);
635          const int bbId = bb->getId();
636          for (Graph::EdgeIterator ei = n->incident(); !ei.end(); ei.next()) {
637             BasicBlock *in = BasicBlock::get(ei.getNode());
638             const int inId = in->getId();
639             limitT[bbId].min = MAX2(limitT[bbId].min, limitB[inId].min);
640             limitT[bbId].max = MAX2(limitT[bbId].max, limitB[inId].max);
641          }
642          // I just hope this is correct ...
643          if (limitS[bbId].max == std::numeric_limits<int>::max()) {
644             // no barrier
645             limitB[bbId].min = limitT[bbId].min + limitS[bbId].min;
646             limitB[bbId].max = limitT[bbId].max + limitS[bbId].min;
647          } else {
648             // block contained a barrier
649             limitB[bbId].min = MIN2(limitS[bbId].max,
650                                     limitT[bbId].min + limitS[bbId].min);
651             limitB[bbId].max = MIN2(limitS[bbId].max,
652                                     limitT[bbId].max + limitS[bbId].min);
653          }
654       }
655    }
656    // finally delete unnecessary barriers
657    for (bi->reset(); !bi->end(); bi->next()) {
658       Graph::Node *n = reinterpret_cast<Graph::Node *>(bi->get());
659       BasicBlock *bb = BasicBlock::get(n);
660       Instruction *prev = NULL;
661       Instruction *next;
662       int max = limitT[bb->getId()].max;
663       for (Instruction *i = bb->getFirst(); i; i = next) {
664          next = i->next;
665          if (i->op == OP_TEXBAR) {
666             if (i->subOp >= max) {
667                delete_Instruction(prog, i);
668                i = NULL;
669             } else {
670                max = i->subOp;
671                if (prev && prev->op == OP_TEXBAR && prev->subOp >= max) {
672                   delete_Instruction(prog, prev);
673                   prev = NULL;
674                }
675             }
676          } else
677          if (isTextureOp(i->op)) {
678             max++;
679          }
680          if (i && !i->isNop())
681             prev = i;
682       }
683    }
684    return true;
685 }
686 
687 bool
visit(Function * fn)688 NVC0LegalizePostRA::visit(Function *fn)
689 {
690    if (needTexBar)
691       insertTextureBarriers(fn);
692 
693    rZero = new_LValue(fn, FILE_GPR);
694    pOne = new_LValue(fn, FILE_PREDICATE);
695    carry = new_LValue(fn, FILE_FLAGS);
696 
697    rZero->reg.data.id = (prog->getTarget()->getChipset() >= NVISA_GK20A_CHIPSET) ? 255 : 63;
698    carry->reg.data.id = 0;
699    pOne->reg.data.id = 7;
700 
701    return true;
702 }
703 
704 void
replaceZero(Instruction * i)705 NVC0LegalizePostRA::replaceZero(Instruction *i)
706 {
707    for (int s = 0; i->srcExists(s); ++s) {
708       if (s == 2 && i->op == OP_SUCLAMP)
709          continue;
710       if (s == 1 && i->op == OP_SHLADD)
711          continue;
712       ImmediateValue *imm = i->getSrc(s)->asImm();
713       if (imm) {
714          if (i->op == OP_SELP && s == 2) {
715             i->setSrc(s, pOne);
716             if (imm->reg.data.u64 == 0)
717                i->src(s).mod = i->src(s).mod ^ Modifier(NV50_IR_MOD_NOT);
718          } else if (imm->reg.data.u64 == 0) {
719             i->setSrc(s, rZero);
720          }
721       }
722    }
723 }
724 
725 // replace CONT with BRA for single unconditional continue
726 bool
tryReplaceContWithBra(BasicBlock * bb)727 NVC0LegalizePostRA::tryReplaceContWithBra(BasicBlock *bb)
728 {
729    if (bb->cfg.incidentCount() != 2 || bb->getEntry()->op != OP_PRECONT)
730       return false;
731    Graph::EdgeIterator ei = bb->cfg.incident();
732    if (ei.getType() != Graph::Edge::BACK)
733       ei.next();
734    if (ei.getType() != Graph::Edge::BACK)
735       return false;
736    BasicBlock *contBB = BasicBlock::get(ei.getNode());
737 
738    if (!contBB->getExit() || contBB->getExit()->op != OP_CONT ||
739        contBB->getExit()->getPredicate())
740       return false;
741    contBB->getExit()->op = OP_BRA;
742    bb->remove(bb->getEntry()); // delete PRECONT
743 
744    ei.next();
745    assert(ei.end() || ei.getType() != Graph::Edge::BACK);
746    return true;
747 }
748 
749 // replace branches to join blocks with join ops
750 void
propagateJoin(BasicBlock * bb)751 NVC0LegalizePostRA::propagateJoin(BasicBlock *bb)
752 {
753    if (bb->getEntry()->op != OP_JOIN || bb->getEntry()->asFlow()->limit)
754       return;
755    for (Graph::EdgeIterator ei = bb->cfg.incident(); !ei.end(); ei.next()) {
756       BasicBlock *in = BasicBlock::get(ei.getNode());
757       Instruction *exit = in->getExit();
758       if (!exit) {
759          in->insertTail(new FlowInstruction(func, OP_JOIN, bb));
760          // there should always be a terminator instruction
761          WARN("inserted missing terminator in BB:%i\n", in->getId());
762       } else
763       if (exit->op == OP_BRA) {
764          exit->op = OP_JOIN;
765          exit->asFlow()->limit = 1; // must-not-propagate marker
766       }
767    }
768    bb->remove(bb->getEntry());
769 }
770 
771 // replaces instructions which would end up as f2f or i2i with faster
772 // alternatives:
773 //  - fabs(a)     -> fadd(0, abs a)
774 //  - fneg(a)     -> fadd(neg 0, neg a)
775 //  - ineg(a)     -> iadd(0, neg a)
776 //  - fneg(abs a) -> fadd(neg 0, neg abs a)
777 //  - sat(a)      -> sat add(0, a)
778 void
replaceCvt(Instruction * cvt)779 NVC0LegalizePostRA::replaceCvt(Instruction *cvt)
780 {
781    if (!isFloatType(cvt->sType) && typeSizeof(cvt->sType) != 4)
782       return;
783    if (cvt->sType != cvt->dType)
784       return;
785    // we could make it work, but in this case we have optimizations disabled
786    // and we don't really care either way.
787    if (cvt->src(0).getFile() != FILE_GPR &&
788        cvt->src(0).getFile() != FILE_MEMORY_CONST)
789       return;
790 
791    Modifier mod0, mod1;
792 
793    switch (cvt->op) {
794    case OP_ABS:
795       if (cvt->src(0).mod)
796          return;
797       if (!isFloatType(cvt->sType))
798          return;
799       mod0 = 0;
800       mod1 = NV50_IR_MOD_ABS;
801       break;
802    case OP_NEG:
803       if (!isFloatType(cvt->sType) && cvt->src(0).mod)
804          return;
805       if (isFloatType(cvt->sType) &&
806           (cvt->src(0).mod && cvt->src(0).mod != Modifier(NV50_IR_MOD_ABS)))
807          return;
808 
809       mod0 = isFloatType(cvt->sType) ? NV50_IR_MOD_NEG : 0;
810       mod1 = cvt->src(0).mod == Modifier(NV50_IR_MOD_ABS) ?
811          NV50_IR_MOD_NEG_ABS : NV50_IR_MOD_NEG;
812       break;
813    case OP_SAT:
814       if (!isFloatType(cvt->sType) && cvt->src(0).mod.abs())
815          return;
816       mod0 = 0;
817       mod1 = cvt->src(0).mod;
818       cvt->saturate = true;
819       break;
820    default:
821       return;
822    }
823 
824    cvt->op = OP_ADD;
825    cvt->moveSources(0, 1);
826    cvt->setSrc(0, rZero);
827    cvt->src(0).mod = mod0;
828    cvt->src(1).mod = mod1;
829 }
830 
831 bool
visit(BasicBlock * bb)832 NVC0LegalizePostRA::visit(BasicBlock *bb)
833 {
834    Instruction *i, *next;
835 
836    // remove pseudo operations and non-fixed no-ops, split 64 bit operations
837    for (i = bb->getFirst(); i; i = next) {
838       next = i->next;
839       if (i->op == OP_EMIT || i->op == OP_RESTART) {
840          if (!i->getDef(0)->refCount())
841             i->setDef(0, NULL);
842          if (i->src(0).getFile() == FILE_IMMEDIATE)
843             i->setSrc(0, rZero); // initial value must be 0
844          replaceZero(i);
845       } else
846       if (i->isNop()) {
847          bb->remove(i);
848       } else
849       if (i->op == OP_BAR && i->subOp == NV50_IR_SUBOP_BAR_SYNC &&
850           prog->getType() != Program::TYPE_COMPUTE) {
851          // It seems like barriers are never required for tessellation since
852          // the warp size is 32, and there are always at most 32 tcs threads.
853          bb->remove(i);
854       } else
855       if (i->op == OP_LOAD && i->subOp == NV50_IR_SUBOP_LDC_IS) {
856          int offset = i->src(0).get()->reg.data.offset;
857          if (abs(offset) >= 0x10000)
858             i->src(0).get()->reg.fileIndex += offset >> 16;
859          i->src(0).get()->reg.data.offset = (int)(short)offset;
860       } else {
861          // TODO: Move this to before register allocation for operations that
862          // need the $c register !
863          if (typeSizeof(i->sType) == 8 || typeSizeof(i->dType) == 8) {
864             Instruction *hi;
865             hi = BuildUtil::split64BitOpPostRA(func, i, rZero, carry);
866             if (hi)
867                next = hi;
868          }
869 
870          if (i->op != OP_MOV && i->op != OP_PFETCH)
871             replaceZero(i);
872 
873          if (i->op == OP_SAT || i->op == OP_NEG || i->op == OP_ABS)
874             replaceCvt(i);
875       }
876    }
877    if (!bb->getEntry())
878       return true;
879 
880    if (!tryReplaceContWithBra(bb))
881       propagateJoin(bb);
882 
883    return true;
884 }
885 
NVC0LoweringPass(Program * prog)886 NVC0LoweringPass::NVC0LoweringPass(Program *prog) : targ(prog->getTarget()),
887    gpEmitAddress(NULL)
888 {
889    bld.setProgram(prog);
890 }
891 
892 bool
visit(Function * fn)893 NVC0LoweringPass::visit(Function *fn)
894 {
895    if (prog->getType() == Program::TYPE_GEOMETRY) {
896       assert(!strncmp(fn->getName(), "MAIN", 4));
897       // TODO: when we generate actual functions pass this value along somehow
898       bld.setPosition(BasicBlock::get(fn->cfg.getRoot()), false);
899       gpEmitAddress = bld.loadImm(NULL, 0)->asLValue();
900       if (fn->cfgExit) {
901          bld.setPosition(BasicBlock::get(fn->cfgExit)->getExit(), false);
902          if (prog->getTarget()->getChipset() >= NVISA_GV100_CHIPSET)
903             bld.mkOp1(OP_FINAL, TYPE_NONE, NULL, gpEmitAddress)->fixed = 1;
904          bld.mkMovToReg(0, gpEmitAddress);
905       }
906    }
907    return true;
908 }
909 
910 bool
visit(BasicBlock * bb)911 NVC0LoweringPass::visit(BasicBlock *bb)
912 {
913    return true;
914 }
915 
916 inline Value *
loadTexHandle(Value * ptr,unsigned int slot)917 NVC0LoweringPass::loadTexHandle(Value *ptr, unsigned int slot)
918 {
919    uint8_t b = prog->driver->io.auxCBSlot;
920    uint32_t off = prog->driver->io.texBindBase + slot * 4;
921 
922    if (ptr)
923       ptr = bld.mkOp2v(OP_SHL, TYPE_U32, bld.getSSA(), ptr, bld.mkImm(2));
924 
925    return bld.
926       mkLoadv(TYPE_U32, bld.mkSymbol(FILE_MEMORY_CONST, b, TYPE_U32, off), ptr);
927 }
928 
929 // move array source to first slot, convert to u16, add indirections
930 bool
handleTEX(TexInstruction * i)931 NVC0LoweringPass::handleTEX(TexInstruction *i)
932 {
933    const int dim = i->tex.target.getDim() + i->tex.target.isCube();
934    const int arg = i->tex.target.getArgCount();
935    const int lyr = arg - (i->tex.target.isMS() ? 2 : 1);
936    const int chipset = prog->getTarget()->getChipset();
937 
938    /* Only normalize in the non-explicit derivatives case. For explicit
939     * derivatives, this is handled in handleManualTXD.
940     */
941    if (i->tex.target.isCube() && i->dPdx[0].get() == NULL) {
942       Value *src[3], *val;
943       int c;
944       for (c = 0; c < 3; ++c)
945          src[c] = bld.mkOp1v(OP_ABS, TYPE_F32, bld.getSSA(), i->getSrc(c));
946       val = bld.getScratch();
947       bld.mkOp2(OP_MAX, TYPE_F32, val, src[0], src[1]);
948       bld.mkOp2(OP_MAX, TYPE_F32, val, src[2], val);
949       bld.mkOp1(OP_RCP, TYPE_F32, val, val);
950       for (c = 0; c < 3; ++c) {
951          i->setSrc(c, bld.mkOp2v(OP_MUL, TYPE_F32, bld.getSSA(),
952                                  i->getSrc(c), val));
953       }
954    }
955 
956    // Arguments to the TEX instruction are a little insane. Even though the
957    // encoding is identical between SM20 and SM30, the arguments mean
958    // different things between Fermi and Kepler+. A lot of arguments are
959    // optional based on flags passed to the instruction. This summarizes the
960    // order of things.
961    //
962    // Fermi:
963    //  array/indirect
964    //  coords
965    //  sample
966    //  lod bias
967    //  depth compare
968    //  offsets:
969    //    - tg4: 8 bits each, either 2 (1 offset reg) or 8 (2 offset reg)
970    //    - other: 4 bits each, single reg
971    //
972    // Kepler+:
973    //  indirect handle
974    //  array (+ offsets for txd in upper 16 bits)
975    //  coords
976    //  sample
977    //  lod bias
978    //  depth compare
979    //  offsets (same as fermi, except txd which takes it with array)
980    //
981    // Maxwell (tex):
982    //  array
983    //  coords
984    //  indirect handle
985    //  sample
986    //  lod bias
987    //  depth compare
988    //  offsets
989    //
990    // Maxwell (txd):
991    //  indirect handle
992    //  coords
993    //  array + offsets
994    //  derivatives
995 
996    if (chipset >= NVISA_GK104_CHIPSET) {
997       if (i->tex.rIndirectSrc >= 0 || i->tex.sIndirectSrc >= 0) {
998          // XXX this ignores tsc, and assumes a 1:1 mapping
999          assert(i->tex.rIndirectSrc >= 0);
1000          if (!i->tex.bindless) {
1001             Value *hnd = loadTexHandle(i->getIndirectR(), i->tex.r);
1002             i->tex.r = 0xff;
1003             i->tex.s = 0x1f;
1004             i->setIndirectR(hnd);
1005          }
1006          i->setIndirectS(NULL);
1007       } else if (i->tex.r == i->tex.s || i->op == OP_TXF) {
1008          if (i->tex.r == 0xffff)
1009             i->tex.r = prog->driver->io.fbtexBindBase / 4;
1010          else
1011             i->tex.r += prog->driver->io.texBindBase / 4;
1012          i->tex.s  = 0; // only a single cX[] value possible here
1013       } else {
1014          Value *hnd = bld.getScratch();
1015          Value *rHnd = loadTexHandle(NULL, i->tex.r);
1016          Value *sHnd = loadTexHandle(NULL, i->tex.s);
1017 
1018          bld.mkOp3(OP_INSBF, TYPE_U32, hnd, rHnd, bld.mkImm(0x1400), sHnd);
1019 
1020          i->tex.r = 0; // not used for indirect tex
1021          i->tex.s = 0;
1022          i->setIndirectR(hnd);
1023       }
1024       if (i->tex.target.isArray()) {
1025          LValue *layer = new_LValue(func, FILE_GPR);
1026          Value *src = i->getSrc(lyr);
1027          const int sat = (i->op == OP_TXF) ? 1 : 0;
1028          DataType sTy = (i->op == OP_TXF) ? TYPE_U32 : TYPE_F32;
1029          bld.mkCvt(OP_CVT, TYPE_U16, layer, sTy, src)->saturate = sat;
1030          if (i->op != OP_TXD || chipset < NVISA_GM107_CHIPSET) {
1031             for (int s = dim; s >= 1; --s)
1032                i->setSrc(s, i->getSrc(s - 1));
1033             i->setSrc(0, layer);
1034          } else {
1035             i->setSrc(dim, layer);
1036          }
1037       }
1038       // Move the indirect reference to the first place
1039       if (i->tex.rIndirectSrc >= 0 && (
1040                 i->op == OP_TXD || chipset < NVISA_GM107_CHIPSET)) {
1041          Value *hnd = i->getIndirectR();
1042 
1043          i->setIndirectR(NULL);
1044          i->moveSources(0, 1);
1045          i->setSrc(0, hnd);
1046          i->tex.rIndirectSrc = 0;
1047          i->tex.sIndirectSrc = -1;
1048       }
1049       // Move the indirect reference to right after the coords
1050       else if (i->tex.rIndirectSrc >= 0 && chipset >= NVISA_GM107_CHIPSET) {
1051          Value *hnd = i->getIndirectR();
1052 
1053          i->setIndirectR(NULL);
1054          i->moveSources(arg, 1);
1055          i->setSrc(arg, hnd);
1056          i->tex.rIndirectSrc = 0;
1057          i->tex.sIndirectSrc = -1;
1058       }
1059    } else
1060    // (nvc0) generate and move the tsc/tic/array source to the front
1061    if (i->tex.target.isArray() || i->tex.rIndirectSrc >= 0 || i->tex.sIndirectSrc >= 0) {
1062       LValue *src = new_LValue(func, FILE_GPR); // 0xttxsaaaa
1063 
1064       Value *ticRel = i->getIndirectR();
1065       Value *tscRel = i->getIndirectS();
1066 
1067       if (i->tex.r == 0xffff) {
1068          i->tex.r = 0x20;
1069          i->tex.s = 0x10;
1070       }
1071 
1072       if (ticRel) {
1073          i->setSrc(i->tex.rIndirectSrc, NULL);
1074          if (i->tex.r)
1075             ticRel = bld.mkOp2v(OP_ADD, TYPE_U32, bld.getScratch(),
1076                                 ticRel, bld.mkImm(i->tex.r));
1077       }
1078       if (tscRel) {
1079          i->setSrc(i->tex.sIndirectSrc, NULL);
1080          if (i->tex.s)
1081             tscRel = bld.mkOp2v(OP_ADD, TYPE_U32, bld.getScratch(),
1082                                 tscRel, bld.mkImm(i->tex.s));
1083       }
1084 
1085       Value *arrayIndex = i->tex.target.isArray() ? i->getSrc(lyr) : NULL;
1086       if (arrayIndex) {
1087          for (int s = dim; s >= 1; --s)
1088             i->setSrc(s, i->getSrc(s - 1));
1089          i->setSrc(0, arrayIndex);
1090       } else {
1091          i->moveSources(0, 1);
1092       }
1093 
1094       if (arrayIndex) {
1095          int sat = (i->op == OP_TXF) ? 1 : 0;
1096          DataType sTy = (i->op == OP_TXF) ? TYPE_U32 : TYPE_F32;
1097          bld.mkCvt(OP_CVT, TYPE_U16, src, sTy, arrayIndex)->saturate = sat;
1098       } else {
1099          bld.loadImm(src, 0);
1100       }
1101 
1102       if (ticRel)
1103          bld.mkOp3(OP_INSBF, TYPE_U32, src, ticRel, bld.mkImm(0x0917), src);
1104       if (tscRel)
1105          bld.mkOp3(OP_INSBF, TYPE_U32, src, tscRel, bld.mkImm(0x0710), src);
1106 
1107       i->setSrc(0, src);
1108    }
1109 
1110    // For nvc0, the sample id has to be in the second operand, as the offset
1111    // does. Right now we don't know how to pass both in, and this case can't
1112    // happen with OpenGL. On nve0, the sample id is part of the texture
1113    // coordinate argument.
1114    assert(chipset >= NVISA_GK104_CHIPSET ||
1115           !i->tex.useOffsets || !i->tex.target.isMS());
1116 
1117    // offset is between lod and dc
1118    if (i->tex.useOffsets) {
1119       int n, c;
1120       int s = i->srcCount(0xff, true);
1121       if (i->op != OP_TXD || chipset < NVISA_GK104_CHIPSET) {
1122          if (i->tex.target.isShadow())
1123             s--;
1124          if (i->srcExists(s)) // move potential predicate out of the way
1125             i->moveSources(s, 1);
1126          if (i->tex.useOffsets == 4 && i->srcExists(s + 1))
1127             i->moveSources(s + 1, 1);
1128       }
1129       if (i->op == OP_TXG) {
1130          // Either there is 1 offset, which goes into the 2 low bytes of the
1131          // first source, or there are 4 offsets, which go into 2 sources (8
1132          // values, 1 byte each).
1133          Value *offs[2] = {NULL, NULL};
1134          for (n = 0; n < i->tex.useOffsets; n++) {
1135             for (c = 0; c < 2; ++c) {
1136                if ((n % 2) == 0 && c == 0)
1137                   bld.mkMov(offs[n / 2] = bld.getScratch(), i->offset[n][c].get());
1138                else
1139                   bld.mkOp3(OP_INSBF, TYPE_U32,
1140                             offs[n / 2],
1141                             i->offset[n][c].get(),
1142                             bld.mkImm(0x800 | ((n * 16 + c * 8) % 32)),
1143                             offs[n / 2]);
1144             }
1145          }
1146          i->setSrc(s, offs[0]);
1147          if (offs[1])
1148             i->setSrc(s + 1, offs[1]);
1149       } else {
1150          unsigned imm = 0;
1151          assert(i->tex.useOffsets == 1);
1152          for (c = 0; c < 3; ++c) {
1153             ImmediateValue val;
1154             if (!i->offset[0][c].getImmediate(val))
1155                assert(!"non-immediate offset passed to non-TXG");
1156             imm |= (val.reg.data.u32 & 0xf) << (c * 4);
1157          }
1158          if (i->op == OP_TXD && chipset >= NVISA_GK104_CHIPSET) {
1159             // The offset goes into the upper 16 bits of the array index. So
1160             // create it if it's not already there, and INSBF it if it already
1161             // is.
1162             s = (i->tex.rIndirectSrc >= 0) ? 1 : 0;
1163             if (chipset >= NVISA_GM107_CHIPSET)
1164                s += dim;
1165             if (i->tex.target.isArray()) {
1166                Value *offset = bld.getScratch();
1167                bld.mkOp3(OP_INSBF, TYPE_U32, offset,
1168                          bld.loadImm(NULL, imm), bld.mkImm(0xc10),
1169                          i->getSrc(s));
1170                i->setSrc(s, offset);
1171             } else {
1172                i->moveSources(s, 1);
1173                i->setSrc(s, bld.loadImm(NULL, imm << 16));
1174             }
1175          } else {
1176             i->setSrc(s, bld.loadImm(NULL, imm));
1177          }
1178       }
1179    }
1180 
1181    return true;
1182 }
1183 
1184 bool
handleManualTXD(TexInstruction * i)1185 NVC0LoweringPass::handleManualTXD(TexInstruction *i)
1186 {
1187    // Always done from the l0 perspective. This is the way that NVIDIA's
1188    // driver does it, and doing it from the "current" lane's perspective
1189    // doesn't seem to always work for reasons that aren't altogether clear,
1190    // even in frag shaders.
1191    //
1192    // Note that we must move not only the coordinates into lane0, but also all
1193    // ancillary arguments, like array indices and depth compare as they may
1194    // differ between lanes. Offsets for TXD are supposed to be uniform, so we
1195    // leave them alone.
1196    static const uint8_t qOps[2] =
1197       { QUADOP(MOV2, ADD,  MOV2, ADD),  QUADOP(MOV2, MOV2, ADD,  ADD) };
1198 
1199    Value *def[4][4];
1200    Value *crd[3], *arr[2], *shadow;
1201    Instruction *tex;
1202    Value *zero = bld.loadImm(bld.getSSA(), 0);
1203    int l, c;
1204    const int dim = i->tex.target.getDim() + i->tex.target.isCube();
1205 
1206    // This function is invoked after handleTEX lowering, so we have to expect
1207    // the arguments in the order that the hw wants them. For Fermi, array and
1208    // indirect are both in the leading arg, while for Kepler, array and
1209    // indirect are separate (and both precede the coordinates). Maxwell is
1210    // handled in a separate function.
1211    int array;
1212    if (targ->getChipset() < NVISA_GK104_CHIPSET)
1213       array = i->tex.target.isArray() || i->tex.rIndirectSrc >= 0;
1214    else
1215       array = i->tex.target.isArray() + (i->tex.rIndirectSrc >= 0);
1216 
1217    i->op = OP_TEX; // no need to clone dPdx/dPdy later
1218 
1219    for (c = 0; c < dim; ++c)
1220       crd[c] = bld.getScratch();
1221    for (c = 0; c < array; ++c)
1222       arr[c] = bld.getScratch();
1223    shadow = bld.getScratch();
1224 
1225    for (l = 0; l < 4; ++l) {
1226       Value *src[3], *val;
1227 
1228       bld.mkOp(OP_QUADON, TYPE_NONE, NULL);
1229       // we're using the texture result from lane 0 in all cases, so make sure
1230       // that lane 0 is pointing at the proper array index, indirect value,
1231       // and depth compare.
1232       if (l != 0) {
1233          for (c = 0; c < array; ++c)
1234             bld.mkQuadop(0x00, arr[c], l, i->getSrc(c), zero);
1235          if (i->tex.target.isShadow()) {
1236             // The next argument after coords is the depth compare
1237             bld.mkQuadop(0x00, shadow, l, i->getSrc(array + dim), zero);
1238          }
1239       }
1240       // mov position coordinates from lane l to all lanes
1241       for (c = 0; c < dim; ++c)
1242          bld.mkQuadop(0x00, crd[c], l, i->getSrc(c + array), zero);
1243       // add dPdx from lane l to lanes dx
1244       for (c = 0; c < dim; ++c)
1245          bld.mkQuadop(qOps[0], crd[c], l, i->dPdx[c].get(), crd[c]);
1246       // add dPdy from lane l to lanes dy
1247       for (c = 0; c < dim; ++c)
1248          bld.mkQuadop(qOps[1], crd[c], l, i->dPdy[c].get(), crd[c]);
1249       // normalize cube coordinates
1250       if (i->tex.target.isCube()) {
1251          for (c = 0; c < 3; ++c)
1252             src[c] = bld.mkOp1v(OP_ABS, TYPE_F32, bld.getSSA(), crd[c]);
1253          val = bld.getScratch();
1254          bld.mkOp2(OP_MAX, TYPE_F32, val, src[0], src[1]);
1255          bld.mkOp2(OP_MAX, TYPE_F32, val, src[2], val);
1256          bld.mkOp1(OP_RCP, TYPE_F32, val, val);
1257          for (c = 0; c < 3; ++c)
1258             src[c] = bld.mkOp2v(OP_MUL, TYPE_F32, bld.getSSA(), crd[c], val);
1259       } else {
1260          for (c = 0; c < dim; ++c)
1261             src[c] = crd[c];
1262       }
1263       // texture
1264       bld.insert(tex = cloneForward(func, i));
1265       if (l != 0) {
1266          for (c = 0; c < array; ++c)
1267             tex->setSrc(c, arr[c]);
1268          if (i->tex.target.isShadow())
1269             tex->setSrc(array + dim, shadow);
1270       }
1271       for (c = 0; c < dim; ++c)
1272          tex->setSrc(c + array, src[c]);
1273       // broadcast results from lane 0 to all lanes so that the moves *into*
1274       // the target lane pick up the proper value.
1275       if (l != 0)
1276          for (c = 0; i->defExists(c); ++c)
1277             bld.mkQuadop(0x00, tex->getDef(c), 0, tex->getDef(c), zero);
1278       bld.mkOp(OP_QUADPOP, TYPE_NONE, NULL);
1279 
1280       // save results
1281       for (c = 0; i->defExists(c); ++c) {
1282          Instruction *mov;
1283          def[c][l] = bld.getSSA();
1284          mov = bld.mkMov(def[c][l], tex->getDef(c));
1285          mov->fixed = 1;
1286          mov->lanes = 1 << l;
1287       }
1288    }
1289 
1290    for (c = 0; i->defExists(c); ++c) {
1291       Instruction *u = bld.mkOp(OP_UNION, TYPE_U32, i->getDef(c));
1292       for (l = 0; l < 4; ++l)
1293          u->setSrc(l, def[c][l]);
1294    }
1295 
1296    i->bb->remove(i);
1297    return true;
1298 }
1299 
1300 bool
handleTXD(TexInstruction * txd)1301 NVC0LoweringPass::handleTXD(TexInstruction *txd)
1302 {
1303    int dim = txd->tex.target.getDim() + txd->tex.target.isCube();
1304    unsigned arg = txd->tex.target.getArgCount();
1305    unsigned expected_args = arg;
1306    const int chipset = prog->getTarget()->getChipset();
1307 
1308    if (chipset >= NVISA_GK104_CHIPSET) {
1309       if (!txd->tex.target.isArray() && txd->tex.useOffsets)
1310          expected_args++;
1311       if (txd->tex.rIndirectSrc >= 0 || txd->tex.sIndirectSrc >= 0)
1312          expected_args++;
1313    } else {
1314       if (txd->tex.useOffsets)
1315          expected_args++;
1316       if (!txd->tex.target.isArray() && (
1317                 txd->tex.rIndirectSrc >= 0 || txd->tex.sIndirectSrc >= 0))
1318          expected_args++;
1319    }
1320 
1321    if (expected_args > 4 ||
1322        dim > 2 ||
1323        txd->tex.target.isShadow())
1324       txd->op = OP_TEX;
1325 
1326    handleTEX(txd);
1327    while (txd->srcExists(arg))
1328       ++arg;
1329 
1330    txd->tex.derivAll = true;
1331    if (txd->op == OP_TEX)
1332       return handleManualTXD(txd);
1333 
1334    assert(arg == expected_args);
1335    for (int c = 0; c < dim; ++c) {
1336       txd->setSrc(arg + c * 2 + 0, txd->dPdx[c]);
1337       txd->setSrc(arg + c * 2 + 1, txd->dPdy[c]);
1338       txd->dPdx[c].set(NULL);
1339       txd->dPdy[c].set(NULL);
1340    }
1341 
1342    // In this case we have fewer than 4 "real" arguments, which means that
1343    // handleTEX didn't apply any padding. However we have to make sure that
1344    // the second "group" of arguments still gets padded up to 4.
1345    if (chipset >= NVISA_GK104_CHIPSET) {
1346       int s = arg + 2 * dim;
1347       if (s >= 4 && s < 7) {
1348          if (txd->srcExists(s)) // move potential predicate out of the way
1349             txd->moveSources(s, 7 - s);
1350          while (s < 7)
1351             txd->setSrc(s++, bld.loadImm(NULL, 0));
1352       }
1353    }
1354 
1355    return true;
1356 }
1357 
1358 bool
handleTXQ(TexInstruction * txq)1359 NVC0LoweringPass::handleTXQ(TexInstruction *txq)
1360 {
1361    const int chipset = prog->getTarget()->getChipset();
1362    if (chipset >= NVISA_GK104_CHIPSET && txq->tex.rIndirectSrc < 0)
1363       txq->tex.r += prog->driver->io.texBindBase / 4;
1364 
1365    if (txq->tex.rIndirectSrc < 0)
1366       return true;
1367 
1368    Value *ticRel = txq->getIndirectR();
1369 
1370    txq->setIndirectS(NULL);
1371    txq->tex.sIndirectSrc = -1;
1372 
1373    assert(ticRel);
1374 
1375    if (chipset < NVISA_GK104_CHIPSET) {
1376       LValue *src = new_LValue(func, FILE_GPR); // 0xttxsaaaa
1377 
1378       txq->setSrc(txq->tex.rIndirectSrc, NULL);
1379       if (txq->tex.r)
1380          ticRel = bld.mkOp2v(OP_ADD, TYPE_U32, bld.getScratch(),
1381                              ticRel, bld.mkImm(txq->tex.r));
1382 
1383       bld.mkOp2(OP_SHL, TYPE_U32, src, ticRel, bld.mkImm(0x17));
1384 
1385       txq->moveSources(0, 1);
1386       txq->setSrc(0, src);
1387    } else {
1388       Value *hnd = loadTexHandle(txq->getIndirectR(), txq->tex.r);
1389       txq->tex.r = 0xff;
1390       txq->tex.s = 0x1f;
1391 
1392       txq->setIndirectR(NULL);
1393       txq->moveSources(0, 1);
1394       txq->setSrc(0, hnd);
1395       txq->tex.rIndirectSrc = 0;
1396    }
1397 
1398    return true;
1399 }
1400 
1401 bool
handleTXLQ(TexInstruction * i)1402 NVC0LoweringPass::handleTXLQ(TexInstruction *i)
1403 {
1404    /* The outputs are inverted compared to what the TGSI instruction
1405     * expects. Take that into account in the mask.
1406     */
1407    assert((i->tex.mask & ~3) == 0);
1408    if (i->tex.mask == 1)
1409       i->tex.mask = 2;
1410    else if (i->tex.mask == 2)
1411       i->tex.mask = 1;
1412    handleTEX(i);
1413    bld.setPosition(i, true);
1414 
1415    /* The returned values are not quite what we want:
1416     * (a) convert from s16/u16 to f32
1417     * (b) multiply by 1/256
1418     */
1419    for (int def = 0; def < 2; ++def) {
1420       if (!i->defExists(def))
1421          continue;
1422       enum DataType type = TYPE_S16;
1423       if (i->tex.mask == 2 || def > 0)
1424          type = TYPE_U16;
1425       bld.mkCvt(OP_CVT, TYPE_F32, i->getDef(def), type, i->getDef(def));
1426       bld.mkOp2(OP_MUL, TYPE_F32, i->getDef(def),
1427                 i->getDef(def), bld.loadImm(NULL, 1.0f / 256));
1428    }
1429    if (i->tex.mask == 3) {
1430       LValue *t = new_LValue(func, FILE_GPR);
1431       bld.mkMov(t, i->getDef(0));
1432       bld.mkMov(i->getDef(0), i->getDef(1));
1433       bld.mkMov(i->getDef(1), t);
1434    }
1435    return true;
1436 }
1437 
1438 bool
handleBUFQ(Instruction * bufq)1439 NVC0LoweringPass::handleBUFQ(Instruction *bufq)
1440 {
1441    bufq->op = OP_MOV;
1442    bufq->setSrc(0, loadBufLength32(bufq->getIndirect(0, 1),
1443                                    bufq->getSrc(0)->reg.fileIndex * 16));
1444    bufq->setIndirect(0, 0, NULL);
1445    bufq->setIndirect(0, 1, NULL);
1446    return true;
1447 }
1448 
1449 void
handleSharedATOMNVE4(Instruction * atom)1450 NVC0LoweringPass::handleSharedATOMNVE4(Instruction *atom)
1451 {
1452    assert(atom->src(0).getFile() == FILE_MEMORY_SHARED);
1453 
1454    BasicBlock *currBB = atom->bb;
1455    BasicBlock *tryLockBB = atom->bb->splitBefore(atom, false);
1456    BasicBlock *joinBB = atom->bb->splitAfter(atom);
1457    BasicBlock *setAndUnlockBB = new BasicBlock(func);
1458    BasicBlock *failLockBB = new BasicBlock(func);
1459 
1460    bld.setPosition(currBB, true);
1461    assert(!currBB->joinAt);
1462    currBB->joinAt = bld.mkFlow(OP_JOINAT, joinBB, CC_ALWAYS, NULL);
1463 
1464    CmpInstruction *pred =
1465       bld.mkCmp(OP_SET, CC_EQ, TYPE_U32, bld.getSSA(1, FILE_PREDICATE),
1466                 TYPE_U32, bld.mkImm(0), bld.mkImm(1));
1467 
1468    bld.mkFlow(OP_BRA, tryLockBB, CC_ALWAYS, NULL);
1469    currBB->cfg.attach(&tryLockBB->cfg, Graph::Edge::TREE);
1470 
1471    bld.setPosition(tryLockBB, true);
1472 
1473    Instruction *ld =
1474       bld.mkLoad(TYPE_U32, atom->getDef(0), atom->getSrc(0)->asSym(),
1475                  atom->getIndirect(0, 0));
1476    ld->setDef(1, bld.getSSA(1, FILE_PREDICATE));
1477    ld->subOp = NV50_IR_SUBOP_LOAD_LOCKED;
1478 
1479    bld.mkFlow(OP_BRA, setAndUnlockBB, CC_P, ld->getDef(1));
1480    bld.mkFlow(OP_BRA, failLockBB, CC_ALWAYS, NULL);
1481    tryLockBB->cfg.attach(&failLockBB->cfg, Graph::Edge::CROSS);
1482    tryLockBB->cfg.attach(&setAndUnlockBB->cfg, Graph::Edge::TREE);
1483 
1484    tryLockBB->cfg.detach(&joinBB->cfg);
1485    bld.remove(atom);
1486 
1487    bld.setPosition(setAndUnlockBB, true);
1488    Value *stVal;
1489    if (atom->subOp == NV50_IR_SUBOP_ATOM_EXCH) {
1490       // Read the old value, and write the new one.
1491       stVal = atom->getSrc(1);
1492    } else if (atom->subOp == NV50_IR_SUBOP_ATOM_CAS) {
1493       CmpInstruction *set =
1494          bld.mkCmp(OP_SET, CC_EQ, TYPE_U32, bld.getSSA(),
1495                    TYPE_U32, ld->getDef(0), atom->getSrc(1));
1496 
1497       bld.mkCmp(OP_SLCT, CC_NE, TYPE_U32, (stVal = bld.getSSA()),
1498                 TYPE_U32, atom->getSrc(2), ld->getDef(0), set->getDef(0));
1499    } else {
1500       operation op;
1501 
1502       switch (atom->subOp) {
1503       case NV50_IR_SUBOP_ATOM_ADD:
1504          op = OP_ADD;
1505          break;
1506       case NV50_IR_SUBOP_ATOM_AND:
1507          op = OP_AND;
1508          break;
1509       case NV50_IR_SUBOP_ATOM_OR:
1510          op = OP_OR;
1511          break;
1512       case NV50_IR_SUBOP_ATOM_XOR:
1513          op = OP_XOR;
1514          break;
1515       case NV50_IR_SUBOP_ATOM_MIN:
1516          op = OP_MIN;
1517          break;
1518       case NV50_IR_SUBOP_ATOM_MAX:
1519          op = OP_MAX;
1520          break;
1521       default:
1522          assert(0);
1523          return;
1524       }
1525 
1526       stVal = bld.mkOp2v(op, atom->dType, bld.getSSA(), ld->getDef(0),
1527                          atom->getSrc(1));
1528    }
1529 
1530    Instruction *st =
1531       bld.mkStore(OP_STORE, TYPE_U32, atom->getSrc(0)->asSym(),
1532                   atom->getIndirect(0, 0), stVal);
1533    st->setDef(0, pred->getDef(0));
1534    st->subOp = NV50_IR_SUBOP_STORE_UNLOCKED;
1535 
1536    bld.mkFlow(OP_BRA, failLockBB, CC_ALWAYS, NULL);
1537    setAndUnlockBB->cfg.attach(&failLockBB->cfg, Graph::Edge::TREE);
1538 
1539    // Lock until the store has not been performed.
1540    bld.setPosition(failLockBB, true);
1541    bld.mkFlow(OP_BRA, tryLockBB, CC_NOT_P, pred->getDef(0));
1542    bld.mkFlow(OP_BRA, joinBB, CC_ALWAYS, NULL);
1543    failLockBB->cfg.attach(&tryLockBB->cfg, Graph::Edge::BACK);
1544    failLockBB->cfg.attach(&joinBB->cfg, Graph::Edge::TREE);
1545 
1546    bld.setPosition(joinBB, false);
1547    bld.mkFlow(OP_JOIN, NULL, CC_ALWAYS, NULL)->fixed = 1;
1548 }
1549 
1550 void
handleSharedATOM(Instruction * atom)1551 NVC0LoweringPass::handleSharedATOM(Instruction *atom)
1552 {
1553    assert(atom->src(0).getFile() == FILE_MEMORY_SHARED);
1554 
1555    BasicBlock *currBB = atom->bb;
1556    BasicBlock *tryLockAndSetBB = atom->bb->splitBefore(atom, false);
1557    BasicBlock *joinBB = atom->bb->splitAfter(atom);
1558 
1559    bld.setPosition(currBB, true);
1560    assert(!currBB->joinAt);
1561    currBB->joinAt = bld.mkFlow(OP_JOINAT, joinBB, CC_ALWAYS, NULL);
1562 
1563    bld.mkFlow(OP_BRA, tryLockAndSetBB, CC_ALWAYS, NULL);
1564    currBB->cfg.attach(&tryLockAndSetBB->cfg, Graph::Edge::TREE);
1565 
1566    bld.setPosition(tryLockAndSetBB, true);
1567 
1568    Instruction *ld =
1569       bld.mkLoad(TYPE_U32, atom->getDef(0), atom->getSrc(0)->asSym(),
1570                  atom->getIndirect(0, 0));
1571    ld->setDef(1, bld.getSSA(1, FILE_PREDICATE));
1572    ld->subOp = NV50_IR_SUBOP_LOAD_LOCKED;
1573 
1574    Value *stVal;
1575    if (atom->subOp == NV50_IR_SUBOP_ATOM_EXCH) {
1576       // Read the old value, and write the new one.
1577       stVal = atom->getSrc(1);
1578    } else if (atom->subOp == NV50_IR_SUBOP_ATOM_CAS) {
1579       CmpInstruction *set =
1580          bld.mkCmp(OP_SET, CC_EQ, TYPE_U32, bld.getSSA(1, FILE_PREDICATE),
1581                    TYPE_U32, ld->getDef(0), atom->getSrc(1));
1582       set->setPredicate(CC_P, ld->getDef(1));
1583 
1584       Instruction *selp =
1585          bld.mkOp3(OP_SELP, TYPE_U32, bld.getSSA(), ld->getDef(0),
1586                    atom->getSrc(2), set->getDef(0));
1587       selp->src(2).mod = Modifier(NV50_IR_MOD_NOT);
1588       selp->setPredicate(CC_P, ld->getDef(1));
1589 
1590       stVal = selp->getDef(0);
1591    } else {
1592       operation op;
1593 
1594       switch (atom->subOp) {
1595       case NV50_IR_SUBOP_ATOM_ADD:
1596          op = OP_ADD;
1597          break;
1598       case NV50_IR_SUBOP_ATOM_AND:
1599          op = OP_AND;
1600          break;
1601       case NV50_IR_SUBOP_ATOM_OR:
1602          op = OP_OR;
1603          break;
1604       case NV50_IR_SUBOP_ATOM_XOR:
1605          op = OP_XOR;
1606          break;
1607       case NV50_IR_SUBOP_ATOM_MIN:
1608          op = OP_MIN;
1609          break;
1610       case NV50_IR_SUBOP_ATOM_MAX:
1611          op = OP_MAX;
1612          break;
1613       default:
1614          assert(0);
1615          return;
1616       }
1617 
1618       Instruction *i =
1619          bld.mkOp2(op, atom->dType, bld.getSSA(), ld->getDef(0),
1620                    atom->getSrc(1));
1621       i->setPredicate(CC_P, ld->getDef(1));
1622 
1623       stVal = i->getDef(0);
1624    }
1625 
1626    Instruction *st =
1627       bld.mkStore(OP_STORE, TYPE_U32, atom->getSrc(0)->asSym(),
1628                   atom->getIndirect(0, 0), stVal);
1629    st->setPredicate(CC_P, ld->getDef(1));
1630    st->subOp = NV50_IR_SUBOP_STORE_UNLOCKED;
1631 
1632    // Loop until the lock is acquired.
1633    bld.mkFlow(OP_BRA, tryLockAndSetBB, CC_NOT_P, ld->getDef(1));
1634    tryLockAndSetBB->cfg.attach(&tryLockAndSetBB->cfg, Graph::Edge::BACK);
1635    tryLockAndSetBB->cfg.attach(&joinBB->cfg, Graph::Edge::CROSS);
1636    bld.mkFlow(OP_BRA, joinBB, CC_ALWAYS, NULL);
1637 
1638    bld.remove(atom);
1639 
1640    bld.setPosition(joinBB, false);
1641    bld.mkFlow(OP_JOIN, NULL, CC_ALWAYS, NULL)->fixed = 1;
1642 }
1643 
1644 bool
handleATOM(Instruction * atom)1645 NVC0LoweringPass::handleATOM(Instruction *atom)
1646 {
1647    SVSemantic sv;
1648    Value *ptr = atom->getIndirect(0, 0), *ind = atom->getIndirect(0, 1), *base;
1649 
1650    switch (atom->src(0).getFile()) {
1651    case FILE_MEMORY_LOCAL:
1652       sv = SV_LBASE;
1653       break;
1654    case FILE_MEMORY_SHARED:
1655       // For Fermi/Kepler, we have to use ld lock/st unlock to perform atomic
1656       // operations on shared memory. For Maxwell, ATOMS is enough.
1657       if (targ->getChipset() < NVISA_GK104_CHIPSET)
1658          handleSharedATOM(atom);
1659       else if (targ->getChipset() < NVISA_GM107_CHIPSET)
1660          handleSharedATOMNVE4(atom);
1661       return true;
1662    case FILE_MEMORY_GLOBAL:
1663       return true;
1664    default:
1665       assert(atom->src(0).getFile() == FILE_MEMORY_BUFFER);
1666       base = loadBufInfo64(ind, atom->getSrc(0)->reg.fileIndex * 16);
1667       assert(base->reg.size == 8);
1668       if (ptr)
1669          base = bld.mkOp2v(OP_ADD, TYPE_U64, base, base, ptr);
1670       assert(base->reg.size == 8);
1671       atom->setIndirect(0, 0, base);
1672       atom->getSrc(0)->reg.file = FILE_MEMORY_GLOBAL;
1673 
1674       // Harden against out-of-bounds accesses
1675       Value *offset = bld.loadImm(NULL, atom->getSrc(0)->reg.data.offset + typeSizeof(atom->sType));
1676       Value *length = loadBufLength32(ind, atom->getSrc(0)->reg.fileIndex * 16);
1677       Value *pred = new_LValue(func, FILE_PREDICATE);
1678       if (ptr)
1679          bld.mkOp2(OP_ADD, TYPE_U32, offset, offset, ptr);
1680       bld.mkCmp(OP_SET, CC_GT, TYPE_U32, pred, TYPE_U32, offset, length);
1681       atom->setPredicate(CC_NOT_P, pred);
1682       if (atom->defExists(0)) {
1683          Value *zero, *dst = atom->getDef(0);
1684          atom->setDef(0, bld.getSSA());
1685 
1686          bld.setPosition(atom, true);
1687          bld.mkMov((zero = bld.getSSA()), bld.mkImm(0))
1688             ->setPredicate(CC_P, pred);
1689          bld.mkOp2(OP_UNION, TYPE_U32, dst, atom->getDef(0), zero);
1690       }
1691 
1692       return true;
1693    }
1694    base =
1695       bld.mkOp1v(OP_RDSV, TYPE_U32, bld.getScratch(), bld.mkSysVal(sv, 0));
1696 
1697    atom->setSrc(0, cloneShallow(func, atom->getSrc(0)));
1698    atom->getSrc(0)->reg.file = FILE_MEMORY_GLOBAL;
1699    if (ptr)
1700       base = bld.mkOp2v(OP_ADD, TYPE_U32, base, base, ptr);
1701    atom->setIndirect(0, 1, NULL);
1702    atom->setIndirect(0, 0, base);
1703 
1704    return true;
1705 }
1706 
1707 bool
handleCasExch(Instruction * cas,bool needCctl)1708 NVC0LoweringPass::handleCasExch(Instruction *cas, bool needCctl)
1709 {
1710    if (targ->getChipset() < NVISA_GM107_CHIPSET) {
1711       if (cas->src(0).getFile() == FILE_MEMORY_SHARED) {
1712          // ATOM_CAS and ATOM_EXCH are handled in handleSharedATOM().
1713          return false;
1714       }
1715    }
1716 
1717    if (cas->subOp != NV50_IR_SUBOP_ATOM_CAS &&
1718        cas->subOp != NV50_IR_SUBOP_ATOM_EXCH)
1719       return false;
1720    bld.setPosition(cas, true);
1721 
1722    if (needCctl) {
1723       Instruction *cctl = bld.mkOp1(OP_CCTL, TYPE_NONE, NULL, cas->getSrc(0));
1724       cctl->setIndirect(0, 0, cas->getIndirect(0, 0));
1725       cctl->fixed = 1;
1726       cctl->subOp = NV50_IR_SUBOP_CCTL_IV;
1727       if (cas->isPredicated())
1728          cctl->setPredicate(cas->cc, cas->getPredicate());
1729    }
1730 
1731    if (cas->subOp == NV50_IR_SUBOP_ATOM_CAS &&
1732        targ->getChipset() < NVISA_GV100_CHIPSET) {
1733       // CAS is crazy. It's 2nd source is a double reg, and the 3rd source
1734       // should be set to the high part of the double reg or bad things will
1735       // happen elsewhere in the universe.
1736       // Also, it sometimes returns the new value instead of the old one
1737       // under mysterious circumstances.
1738       DataType ty = typeOfSize(typeSizeof(cas->dType) * 2);
1739       Value *dreg = bld.getSSA(typeSizeof(ty));
1740       bld.setPosition(cas, false);
1741       bld.mkOp2(OP_MERGE, ty, dreg, cas->getSrc(1), cas->getSrc(2));
1742       cas->setSrc(1, dreg);
1743       cas->setSrc(2, dreg);
1744    }
1745 
1746    return true;
1747 }
1748 
1749 inline Value *
loadResInfo32(Value * ptr,uint32_t off,uint16_t base)1750 NVC0LoweringPass::loadResInfo32(Value *ptr, uint32_t off, uint16_t base)
1751 {
1752    uint8_t b = prog->driver->io.auxCBSlot;
1753    off += base;
1754 
1755    return bld.
1756       mkLoadv(TYPE_U32, bld.mkSymbol(FILE_MEMORY_CONST, b, TYPE_U32, off), ptr);
1757 }
1758 
1759 inline Value *
loadResInfo64(Value * ptr,uint32_t off,uint16_t base)1760 NVC0LoweringPass::loadResInfo64(Value *ptr, uint32_t off, uint16_t base)
1761 {
1762    uint8_t b = prog->driver->io.auxCBSlot;
1763    off += base;
1764 
1765    if (ptr)
1766       ptr = bld.mkOp2v(OP_SHL, TYPE_U32, bld.getScratch(), ptr, bld.mkImm(4));
1767 
1768    return bld.
1769       mkLoadv(TYPE_U64, bld.mkSymbol(FILE_MEMORY_CONST, b, TYPE_U64, off), ptr);
1770 }
1771 
1772 inline Value *
loadResLength32(Value * ptr,uint32_t off,uint16_t base)1773 NVC0LoweringPass::loadResLength32(Value *ptr, uint32_t off, uint16_t base)
1774 {
1775    uint8_t b = prog->driver->io.auxCBSlot;
1776    off += base;
1777 
1778    if (ptr)
1779       ptr = bld.mkOp2v(OP_SHL, TYPE_U32, bld.getScratch(), ptr, bld.mkImm(4));
1780 
1781    return bld.
1782       mkLoadv(TYPE_U32, bld.mkSymbol(FILE_MEMORY_CONST, b, TYPE_U64, off + 8), ptr);
1783 }
1784 
1785 inline Value *
loadBufInfo64(Value * ptr,uint32_t off)1786 NVC0LoweringPass::loadBufInfo64(Value *ptr, uint32_t off)
1787 {
1788    return loadResInfo64(ptr, off, prog->driver->io.bufInfoBase);
1789 }
1790 
1791 inline Value *
loadBufLength32(Value * ptr,uint32_t off)1792 NVC0LoweringPass::loadBufLength32(Value *ptr, uint32_t off)
1793 {
1794    return loadResLength32(ptr, off, prog->driver->io.bufInfoBase);
1795 }
1796 
1797 inline Value *
loadUboInfo64(Value * ptr,uint32_t off)1798 NVC0LoweringPass::loadUboInfo64(Value *ptr, uint32_t off)
1799 {
1800    return loadResInfo64(ptr, off, prog->driver->io.uboInfoBase);
1801 }
1802 
1803 inline Value *
loadUboLength32(Value * ptr,uint32_t off)1804 NVC0LoweringPass::loadUboLength32(Value *ptr, uint32_t off)
1805 {
1806    return loadResLength32(ptr, off, prog->driver->io.uboInfoBase);
1807 }
1808 
1809 inline Value *
loadMsInfo32(Value * ptr,uint32_t off)1810 NVC0LoweringPass::loadMsInfo32(Value *ptr, uint32_t off)
1811 {
1812    uint8_t b = prog->driver->io.msInfoCBSlot;
1813    off += prog->driver->io.msInfoBase;
1814    return bld.
1815       mkLoadv(TYPE_U32, bld.mkSymbol(FILE_MEMORY_CONST, b, TYPE_U32, off), ptr);
1816 }
1817 
1818 inline Value *
loadSuInfo32(Value * ptr,int slot,uint32_t off,bool bindless)1819 NVC0LoweringPass::loadSuInfo32(Value *ptr, int slot, uint32_t off, bool bindless)
1820 {
1821    uint32_t base = slot * NVC0_SU_INFO__STRIDE;
1822 
1823    // We don't upload surface info for bindless for GM107+
1824    assert(!bindless || targ->getChipset() < NVISA_GM107_CHIPSET);
1825 
1826    if (ptr) {
1827       ptr = bld.mkOp2v(OP_ADD, TYPE_U32, bld.getSSA(), ptr, bld.mkImm(slot));
1828       if (bindless)
1829          ptr = bld.mkOp2v(OP_AND, TYPE_U32, bld.getSSA(), ptr, bld.mkImm(511));
1830       else
1831          ptr = bld.mkOp2v(OP_AND, TYPE_U32, bld.getSSA(), ptr, bld.mkImm(7));
1832       ptr = bld.mkOp2v(OP_SHL, TYPE_U32, bld.getSSA(), ptr, bld.mkImm(6));
1833       base = 0;
1834    }
1835    off += base;
1836 
1837    return loadResInfo32(ptr, off, bindless ? prog->driver->io.bindlessBase :
1838                         prog->driver->io.suInfoBase);
1839 }
1840 
1841 Value *
loadMsAdjInfo32(TexInstruction::Target target,uint32_t index,int slot,Value * ind,bool bindless)1842 NVC0LoweringPass::loadMsAdjInfo32(TexInstruction::Target target, uint32_t index, int slot, Value *ind, bool bindless)
1843 {
1844    if (!bindless || targ->getChipset() < NVISA_GM107_CHIPSET)
1845       return loadSuInfo32(ind, slot, NVC0_SU_INFO_MS(index), bindless);
1846 
1847    assert(bindless);
1848 
1849    Value *samples = bld.getSSA();
1850    // this shouldn't be lowered because it's being inserted before the current instruction
1851    TexInstruction *tex = new_TexInstruction(func, OP_TXQ);
1852    tex->tex.target = target;
1853    tex->tex.query = TXQ_TYPE;
1854    tex->tex.mask = 0x4;
1855    tex->tex.r = 0xff;
1856    tex->tex.s = 0x1f;
1857    tex->tex.rIndirectSrc = 0;
1858    tex->setDef(0, samples);
1859    tex->setSrc(0, ind);
1860    tex->setSrc(1, bld.loadImm(NULL, 0));
1861    bld.insert(tex);
1862 
1863    // doesn't work with sample counts other than 1/2/4/8 but they aren't supported
1864    switch (index) {
1865    case 0: {
1866       Value *tmp = bld.mkOp2v(OP_ADD, TYPE_U32, bld.getSSA(), samples, bld.mkImm(2));
1867       return bld.mkOp2v(OP_SHR, TYPE_U32, bld.getSSA(), tmp, bld.mkImm(2));
1868    }
1869    case 1: {
1870       Value *tmp = bld.mkCmp(OP_SET, CC_GT, TYPE_U32, bld.getSSA(), TYPE_U32, samples, bld.mkImm(2))->getDef(0);
1871       return bld.mkOp2v(OP_AND, TYPE_U32, bld.getSSA(), tmp, bld.mkImm(1));
1872    }
1873    default: {
1874       assert(false);
1875       return NULL;
1876    }
1877    }
1878 }
1879 
getSuClampSubOp(const TexInstruction * su,int c)1880 static inline uint16_t getSuClampSubOp(const TexInstruction *su, int c)
1881 {
1882    switch (su->tex.target.getEnum()) {
1883    case TEX_TARGET_BUFFER:      return NV50_IR_SUBOP_SUCLAMP_PL(0, 1);
1884    case TEX_TARGET_RECT:        return NV50_IR_SUBOP_SUCLAMP_SD(0, 2);
1885    case TEX_TARGET_1D:          return NV50_IR_SUBOP_SUCLAMP_SD(0, 2);
1886    case TEX_TARGET_1D_ARRAY:    return (c == 1) ?
1887                                    NV50_IR_SUBOP_SUCLAMP_PL(0, 2) :
1888                                    NV50_IR_SUBOP_SUCLAMP_SD(0, 2);
1889    case TEX_TARGET_2D:          return NV50_IR_SUBOP_SUCLAMP_BL(0, 2);
1890    case TEX_TARGET_2D_MS:       return NV50_IR_SUBOP_SUCLAMP_BL(0, 2);
1891    case TEX_TARGET_2D_ARRAY:    return NV50_IR_SUBOP_SUCLAMP_SD(0, 2);
1892    case TEX_TARGET_2D_MS_ARRAY: return NV50_IR_SUBOP_SUCLAMP_SD(0, 2);
1893    case TEX_TARGET_3D:          return NV50_IR_SUBOP_SUCLAMP_SD(0, 2);
1894    case TEX_TARGET_CUBE:        return NV50_IR_SUBOP_SUCLAMP_SD(0, 2);
1895    case TEX_TARGET_CUBE_ARRAY:  return NV50_IR_SUBOP_SUCLAMP_SD(0, 2);
1896    default:
1897       assert(0);
1898       return 0;
1899    }
1900 }
1901 
1902 bool
handleSUQ(TexInstruction * suq)1903 NVC0LoweringPass::handleSUQ(TexInstruction *suq)
1904 {
1905    int mask = suq->tex.mask;
1906    int dim = suq->tex.target.getDim();
1907    int arg = dim + (suq->tex.target.isArray() || suq->tex.target.isCube());
1908    Value *ind = suq->getIndirectR();
1909    int slot = suq->tex.r;
1910    int c, d;
1911 
1912    for (c = 0, d = 0; c < 3; ++c, mask >>= 1) {
1913       if (c >= arg || !(mask & 1))
1914          continue;
1915 
1916       int offset;
1917 
1918       if (c == 1 && suq->tex.target == TEX_TARGET_1D_ARRAY) {
1919          offset = NVC0_SU_INFO_SIZE(2);
1920       } else {
1921          offset = NVC0_SU_INFO_SIZE(c);
1922       }
1923       bld.mkMov(suq->getDef(d++), loadSuInfo32(ind, slot, offset, suq->tex.bindless));
1924       if (c == 2 && suq->tex.target.isCube())
1925          bld.mkOp2(OP_DIV, TYPE_U32, suq->getDef(d - 1), suq->getDef(d - 1),
1926                    bld.loadImm(NULL, 6));
1927    }
1928 
1929    if (mask & 1) {
1930       if (suq->tex.target.isMS()) {
1931          Value *ms_x = loadSuInfo32(ind, slot, NVC0_SU_INFO_MS(0), suq->tex.bindless);
1932          Value *ms_y = loadSuInfo32(ind, slot, NVC0_SU_INFO_MS(1), suq->tex.bindless);
1933          Value *ms = bld.mkOp2v(OP_ADD, TYPE_U32, bld.getScratch(), ms_x, ms_y);
1934          bld.mkOp2(OP_SHL, TYPE_U32, suq->getDef(d++), bld.loadImm(NULL, 1), ms);
1935       } else {
1936          bld.mkMov(suq->getDef(d++), bld.loadImm(NULL, 1));
1937       }
1938    }
1939 
1940    bld.remove(suq);
1941    return true;
1942 }
1943 
1944 void
adjustCoordinatesMS(TexInstruction * tex)1945 NVC0LoweringPass::adjustCoordinatesMS(TexInstruction *tex)
1946 {
1947    const int arg = tex->tex.target.getArgCount();
1948    int slot = tex->tex.r;
1949 
1950    if (tex->tex.target == TEX_TARGET_2D_MS)
1951       tex->tex.target = TEX_TARGET_2D;
1952    else
1953    if (tex->tex.target == TEX_TARGET_2D_MS_ARRAY)
1954       tex->tex.target = TEX_TARGET_2D_ARRAY;
1955    else
1956       return;
1957 
1958    Value *x = tex->getSrc(0);
1959    Value *y = tex->getSrc(1);
1960    Value *s = tex->getSrc(arg - 1);
1961 
1962    Value *tx = bld.getSSA(), *ty = bld.getSSA(), *ts = bld.getSSA();
1963    Value *ind = tex->getIndirectR();
1964 
1965    Value *ms_x = loadMsAdjInfo32(tex->tex.target, 0, slot, ind, tex->tex.bindless);
1966    Value *ms_y = loadMsAdjInfo32(tex->tex.target, 1, slot, ind, tex->tex.bindless);
1967 
1968    bld.mkOp2(OP_SHL, TYPE_U32, tx, x, ms_x);
1969    bld.mkOp2(OP_SHL, TYPE_U32, ty, y, ms_y);
1970 
1971    s = bld.mkOp2v(OP_AND, TYPE_U32, ts, s, bld.loadImm(NULL, 0x7));
1972    s = bld.mkOp2v(OP_SHL, TYPE_U32, ts, ts, bld.mkImm(3));
1973 
1974    Value *dx = loadMsInfo32(ts, 0x0);
1975    Value *dy = loadMsInfo32(ts, 0x4);
1976 
1977    bld.mkOp2(OP_ADD, TYPE_U32, tx, tx, dx);
1978    bld.mkOp2(OP_ADD, TYPE_U32, ty, ty, dy);
1979 
1980    tex->setSrc(0, tx);
1981    tex->setSrc(1, ty);
1982    tex->moveSources(arg, -1);
1983 }
1984 
1985 // Sets 64-bit "generic address", predicate and format sources for SULD/SUST.
1986 // They're computed from the coordinates using the surface info in c[] space.
1987 void
processSurfaceCoordsNVE4(TexInstruction * su)1988 NVC0LoweringPass::processSurfaceCoordsNVE4(TexInstruction *su)
1989 {
1990    Instruction *insn;
1991    const bool atom = su->op == OP_SUREDB || su->op == OP_SUREDP;
1992    const bool raw =
1993       su->op == OP_SULDB || su->op == OP_SUSTB || su->op == OP_SUREDB;
1994    const int slot = su->tex.r;
1995    const int dim = su->tex.target.getDim();
1996    const bool array = su->tex.target.isArray() || su->tex.target.isCube();
1997    const int arg = dim + array;
1998    int c;
1999    Value *zero = bld.mkImm(0);
2000    Value *p1 = NULL;
2001    Value *v;
2002    Value *src[3];
2003    Value *bf, *eau, *off;
2004    Value *addr, *pred;
2005    Value *ind = su->getIndirectR();
2006    Value *y, *z;
2007 
2008    off = bld.getScratch(4);
2009    bf = bld.getScratch(4);
2010    addr = bld.getSSA(8);
2011    pred = bld.getScratch(1, FILE_PREDICATE);
2012 
2013    bld.setPosition(su, false);
2014 
2015    adjustCoordinatesMS(su);
2016 
2017    // calculate clamped coordinates
2018    for (c = 0; c < arg; ++c) {
2019       int dimc = c;
2020 
2021       if (c == 1 && su->tex.target == TEX_TARGET_1D_ARRAY) {
2022          // The array index is stored in the Z component for 1D arrays.
2023          dimc = 2;
2024       }
2025 
2026       src[c] = bld.getScratch();
2027       if (c == 0 && raw)
2028          v = loadSuInfo32(ind, slot, NVC0_SU_INFO_RAW_X, su->tex.bindless);
2029       else
2030          v = loadSuInfo32(ind, slot, NVC0_SU_INFO_DIM(dimc), su->tex.bindless);
2031       bld.mkOp3(OP_SUCLAMP, TYPE_S32, src[c], su->getSrc(c), v, zero)
2032          ->subOp = getSuClampSubOp(su, dimc);
2033    }
2034    for (; c < 3; ++c)
2035       src[c] = zero;
2036 
2037    if (dim == 2 && !array) {
2038       v = loadSuInfo32(ind, slot, NVC0_SU_INFO_UNK1C, su->tex.bindless);
2039       src[2] = bld.mkOp2v(OP_SHR, TYPE_U32, bld.getSSA(),
2040                           v, bld.loadImm(NULL, 16));
2041 
2042       v = loadSuInfo32(ind, slot, NVC0_SU_INFO_DIM(2), su->tex.bindless);
2043       bld.mkOp3(OP_SUCLAMP, TYPE_S32, src[2], src[2], v, zero)
2044          ->subOp = NV50_IR_SUBOP_SUCLAMP_SD(0, 2);
2045    }
2046 
2047    // set predicate output
2048    if (su->tex.target == TEX_TARGET_BUFFER) {
2049       src[0]->getInsn()->setFlagsDef(1, pred);
2050    } else
2051    if (array) {
2052       p1 = bld.getSSA(1, FILE_PREDICATE);
2053       src[dim]->getInsn()->setFlagsDef(1, p1);
2054    }
2055 
2056    // calculate pixel offset
2057    if (dim == 1) {
2058       y = z = zero;
2059       if (su->tex.target != TEX_TARGET_BUFFER)
2060          bld.mkOp2(OP_AND, TYPE_U32, off, src[0], bld.loadImm(NULL, 0xffff));
2061    } else {
2062       y = src[1];
2063       z = src[2];
2064 
2065       v = loadSuInfo32(ind, slot, NVC0_SU_INFO_UNK1C, su->tex.bindless);
2066       bld.mkOp3(OP_MADSP, TYPE_U32, off, src[2], v, src[1])
2067          ->subOp = NV50_IR_SUBOP_MADSP(4,4,8); // u16l u16l u16l
2068 
2069       v = loadSuInfo32(ind, slot, NVC0_SU_INFO_PITCH, su->tex.bindless);
2070       bld.mkOp3(OP_MADSP, TYPE_U32, off, off, v, src[0])
2071          ->subOp = array ?
2072          NV50_IR_SUBOP_MADSP_SD : NV50_IR_SUBOP_MADSP(0,2,8); // u32 u16l u16l
2073    }
2074 
2075    // calculate effective address part 1
2076    if (su->tex.target == TEX_TARGET_BUFFER) {
2077       if (raw) {
2078          bf = src[0];
2079       } else {
2080          v = loadSuInfo32(ind, slot, NVC0_SU_INFO_FMT, su->tex.bindless);
2081          bld.mkOp3(OP_VSHL, TYPE_U32, bf, src[0], v, zero)
2082             ->subOp = NV50_IR_SUBOP_V1(7,6,8|2);
2083       }
2084    } else {
2085       uint16_t subOp = 0;
2086 
2087       switch (dim) {
2088       case 1:
2089          break;
2090       case 2:
2091          if (array) {
2092             z = off;
2093          } else {
2094             subOp = NV50_IR_SUBOP_SUBFM_3D;
2095          }
2096          break;
2097       default:
2098          subOp = NV50_IR_SUBOP_SUBFM_3D;
2099          assert(dim == 3);
2100          break;
2101       }
2102       insn = bld.mkOp3(OP_SUBFM, TYPE_U32, bf, src[0], y, z);
2103       insn->subOp = subOp;
2104       insn->setFlagsDef(1, pred);
2105    }
2106 
2107    // part 2
2108    v = loadSuInfo32(ind, slot, NVC0_SU_INFO_ADDR, su->tex.bindless);
2109 
2110    if (su->tex.target == TEX_TARGET_BUFFER) {
2111       eau = v;
2112    } else {
2113       eau = bld.mkOp3v(OP_SUEAU, TYPE_U32, bld.getScratch(4), off, bf, v);
2114    }
2115    // add array layer offset
2116    if (array) {
2117       v = loadSuInfo32(ind, slot, NVC0_SU_INFO_ARRAY, su->tex.bindless);
2118       if (dim == 1)
2119          bld.mkOp3(OP_MADSP, TYPE_U32, eau, src[1], v, eau)
2120             ->subOp = NV50_IR_SUBOP_MADSP(4,0,0); // u16 u24 u32
2121       else
2122          bld.mkOp3(OP_MADSP, TYPE_U32, eau, v, src[2], eau)
2123             ->subOp = NV50_IR_SUBOP_MADSP(0,0,0); // u32 u24 u32
2124       // combine predicates
2125       assert(p1);
2126       bld.mkOp2(OP_OR, TYPE_U8, pred, pred, p1);
2127    }
2128 
2129    if (atom) {
2130       Value *lo = bf;
2131       if (su->tex.target == TEX_TARGET_BUFFER) {
2132          lo = zero;
2133          bld.mkMov(off, bf);
2134       }
2135       //  bf == g[] address & 0xff
2136       // eau == g[] address >> 8
2137       bld.mkOp3(OP_PERMT, TYPE_U32,  bf,   lo, bld.loadImm(NULL, 0x6540), eau);
2138       bld.mkOp3(OP_PERMT, TYPE_U32, eau, zero, bld.loadImm(NULL, 0x0007), eau);
2139    } else
2140    if (su->op == OP_SULDP && su->tex.target == TEX_TARGET_BUFFER) {
2141       // Convert from u32 to u8 address format, which is what the library code
2142       // doing SULDP currently uses.
2143       // XXX: can SUEAU do this ?
2144       // XXX: does it matter that we don't mask high bytes in bf ?
2145       // Grrr.
2146       bld.mkOp2(OP_SHR, TYPE_U32, off, bf, bld.mkImm(8));
2147       bld.mkOp2(OP_ADD, TYPE_U32, eau, eau, off);
2148    }
2149 
2150    bld.mkOp2(OP_MERGE, TYPE_U64, addr, bf, eau);
2151 
2152    if (atom && su->tex.target == TEX_TARGET_BUFFER)
2153       bld.mkOp2(OP_ADD, TYPE_U64, addr, addr, off);
2154 
2155    // let's just set it 0 for raw access and hope it works
2156    v = raw ?
2157       bld.mkImm(0) : loadSuInfo32(ind, slot, NVC0_SU_INFO_FMT, su->tex.bindless);
2158 
2159    // get rid of old coordinate sources, make space for fmt info and predicate
2160    su->moveSources(arg, 3 - arg);
2161    // set 64 bit address and 32-bit format sources
2162    su->setSrc(0, addr);
2163    su->setSrc(1, v);
2164    su->setSrc(2, pred);
2165    su->setIndirectR(NULL);
2166 
2167    // prevent read fault when the image is not actually bound
2168    CmpInstruction *pred1 =
2169       bld.mkCmp(OP_SET, CC_EQ, TYPE_U32, bld.getSSA(1, FILE_PREDICATE),
2170                 TYPE_U32, bld.mkImm(0),
2171                 loadSuInfo32(ind, slot, NVC0_SU_INFO_ADDR, su->tex.bindless));
2172 
2173    if (su->op != OP_SUSTP && su->tex.format) {
2174       const TexInstruction::ImgFormatDesc *format = su->tex.format;
2175       int blockwidth = format->bits[0] + format->bits[1] +
2176                        format->bits[2] + format->bits[3];
2177 
2178       // make sure that the format doesn't mismatch
2179       assert(format->components != 0);
2180       bld.mkCmp(OP_SET_OR, CC_NE, TYPE_U32, pred1->getDef(0),
2181                 TYPE_U32, bld.loadImm(NULL, blockwidth / 8),
2182                 loadSuInfo32(ind, slot, NVC0_SU_INFO_BSIZE, su->tex.bindless),
2183                 pred1->getDef(0));
2184    }
2185    su->setPredicate(CC_NOT_P, pred1->getDef(0));
2186 
2187    // TODO: initialize def values to 0 when the surface operation is not
2188    // performed (not needed for stores). Also, fix the "address bounds test"
2189    // subtests from arb_shader_image_load_store-invalid for buffers, because it
2190    // seems like that the predicate is not correctly set by suclamp.
2191 }
2192 
2193 static DataType
getSrcType(const TexInstruction::ImgFormatDesc * t,int c)2194 getSrcType(const TexInstruction::ImgFormatDesc *t, int c)
2195 {
2196    switch (t->type) {
2197    case FLOAT: return t->bits[c] == 16 ? TYPE_F16 : TYPE_F32;
2198    case UNORM: return t->bits[c] == 8 ? TYPE_U8 : TYPE_U16;
2199    case SNORM: return t->bits[c] == 8 ? TYPE_S8 : TYPE_S16;
2200    case UINT:
2201       return (t->bits[c] == 8 ? TYPE_U8 :
2202               (t->bits[c] == 16 ? TYPE_U16 : TYPE_U32));
2203    case SINT:
2204       return (t->bits[c] == 8 ? TYPE_S8 :
2205               (t->bits[c] == 16 ? TYPE_S16 : TYPE_S32));
2206    }
2207    return TYPE_NONE;
2208 }
2209 
2210 static DataType
getDestType(const ImgType type)2211 getDestType(const ImgType type) {
2212    switch (type) {
2213    case FLOAT:
2214    case UNORM:
2215    case SNORM:
2216       return TYPE_F32;
2217    case UINT:
2218       return TYPE_U32;
2219    case SINT:
2220       return TYPE_S32;
2221    default:
2222       assert(!"Impossible type");
2223       return TYPE_NONE;
2224    }
2225 }
2226 
2227 void
convertSurfaceFormat(TexInstruction * su,Instruction ** loaded)2228 NVC0LoweringPass::convertSurfaceFormat(TexInstruction *su, Instruction **loaded)
2229 {
2230    const TexInstruction::ImgFormatDesc *format = su->tex.format;
2231    int width = format->bits[0] + format->bits[1] +
2232       format->bits[2] + format->bits[3];
2233    Value *untypedDst[4] = {};
2234    Value *typedDst[4] = {};
2235 
2236    // We must convert this to a generic load.
2237    su->op = OP_SULDB;
2238 
2239    su->dType = typeOfSize(width / 8);
2240    su->sType = TYPE_U8;
2241 
2242    for (int i = 0; i < width / 32; i++)
2243       untypedDst[i] = bld.getSSA();
2244    if (width < 32)
2245       untypedDst[0] = bld.getSSA();
2246 
2247    if (loaded && loaded[0]) {
2248       for (int i = 0; i < 4; i++) {
2249          if (loaded[i])
2250             typedDst[i] = loaded[i]->getDef(0);
2251       }
2252    } else {
2253       for (int i = 0; i < 4; i++) {
2254          typedDst[i] = su->getDef(i);
2255       }
2256    }
2257 
2258    // Set the untyped dsts as the su's destinations
2259    if (loaded && loaded[0]) {
2260       for (int i = 0; i < 4; i++)
2261          if (loaded[i])
2262             loaded[i]->setDef(0, untypedDst[i]);
2263    } else {
2264       for (int i = 0; i < 4; i++)
2265          su->setDef(i, untypedDst[i]);
2266 
2267       bld.setPosition(su, true);
2268    }
2269 
2270    // Unpack each component into the typed dsts
2271    int bits = 0;
2272    for (int i = 0; i < 4; bits += format->bits[i], i++) {
2273       if (!typedDst[i])
2274          continue;
2275 
2276       if (loaded && loaded[0])
2277          bld.setPosition(loaded[i], true);
2278 
2279       if (i >= format->components) {
2280          if (format->type == FLOAT ||
2281              format->type == UNORM ||
2282              format->type == SNORM)
2283             bld.loadImm(typedDst[i], i == 3 ? 1.0f : 0.0f);
2284          else
2285             bld.loadImm(typedDst[i], i == 3 ? 1 : 0);
2286          continue;
2287       }
2288 
2289       // Get just that component's data into the relevant place
2290       if (format->bits[i] == 32)
2291          bld.mkMov(typedDst[i], untypedDst[i]);
2292       else if (format->bits[i] == 16)
2293          bld.mkCvt(OP_CVT, getDestType(format->type), typedDst[i],
2294                    getSrcType(format, i), untypedDst[i / 2])
2295          ->subOp = (i & 1) << (format->type == FLOAT ? 0 : 1);
2296       else if (format->bits[i] == 8)
2297          bld.mkCvt(OP_CVT, getDestType(format->type), typedDst[i],
2298                    getSrcType(format, i), untypedDst[0])->subOp = i;
2299       else {
2300          bld.mkOp2(OP_EXTBF, TYPE_U32, typedDst[i], untypedDst[bits / 32],
2301                    bld.mkImm((bits % 32) | (format->bits[i] << 8)));
2302          if (format->type == UNORM || format->type == SNORM)
2303             bld.mkCvt(OP_CVT, TYPE_F32, typedDst[i], getSrcType(format, i), typedDst[i]);
2304       }
2305 
2306       // Normalize / convert as necessary
2307       if (format->type == UNORM)
2308          bld.mkOp2(OP_MUL, TYPE_F32, typedDst[i], typedDst[i], bld.loadImm(NULL, 1.0f / ((1 << format->bits[i]) - 1)));
2309       else if (format->type == SNORM)
2310          bld.mkOp2(OP_MUL, TYPE_F32, typedDst[i], typedDst[i], bld.loadImm(NULL, 1.0f / ((1 << (format->bits[i] - 1)) - 1)));
2311       else if (format->type == FLOAT && format->bits[i] < 16) {
2312          bld.mkOp2(OP_SHL, TYPE_U32, typedDst[i], typedDst[i], bld.loadImm(NULL, 15 - format->bits[i]));
2313          bld.mkCvt(OP_CVT, TYPE_F32, typedDst[i], TYPE_F16, typedDst[i]);
2314       }
2315    }
2316 
2317    if (format->bgra) {
2318       std::swap(typedDst[0], typedDst[2]);
2319    }
2320 }
2321 
2322 void
insertOOBSurfaceOpResult(TexInstruction * su)2323 NVC0LoweringPass::insertOOBSurfaceOpResult(TexInstruction *su)
2324 {
2325    if (!su->getPredicate())
2326       return;
2327 
2328    bld.setPosition(su, true);
2329 
2330    for (unsigned i = 0; su->defExists(i); ++i) {
2331       Value *def = su->getDef(i);
2332       Value *newDef = bld.getSSA();
2333       su->setDef(i, newDef);
2334 
2335       Instruction *mov = bld.mkMov(bld.getSSA(), bld.loadImm(NULL, 0));
2336       assert(su->cc == CC_NOT_P);
2337       mov->setPredicate(CC_P, su->getPredicate());
2338       Instruction *uni = bld.mkOp2(OP_UNION, TYPE_U32, bld.getSSA(), newDef, mov->getDef(0));
2339       bld.mkMov(def, uni->getDef(0));
2340    }
2341 }
2342 
2343 void
handleSurfaceOpNVE4(TexInstruction * su)2344 NVC0LoweringPass::handleSurfaceOpNVE4(TexInstruction *su)
2345 {
2346    processSurfaceCoordsNVE4(su);
2347 
2348    if (su->op == OP_SULDP) {
2349       convertSurfaceFormat(su, NULL);
2350       insertOOBSurfaceOpResult(su);
2351    }
2352 
2353    if (su->op == OP_SUREDB || su->op == OP_SUREDP) {
2354       assert(su->getPredicate());
2355       Value *pred =
2356          bld.mkOp2v(OP_OR, TYPE_U8, bld.getScratch(1, FILE_PREDICATE),
2357                     su->getPredicate(), su->getSrc(2));
2358 
2359       Instruction *red = bld.mkOp(OP_ATOM, su->dType, bld.getSSA());
2360       red->subOp = su->subOp;
2361       red->setSrc(0, bld.mkSymbol(FILE_MEMORY_GLOBAL, 0, TYPE_U32, 0));
2362       red->setSrc(1, su->getSrc(3));
2363       if (su->subOp == NV50_IR_SUBOP_ATOM_CAS)
2364          red->setSrc(2, su->getSrc(4));
2365       red->setIndirect(0, 0, su->getSrc(0));
2366 
2367       // make sure to initialize dst value when the atomic operation is not
2368       // performed
2369       Instruction *mov = bld.mkMov(bld.getSSA(), bld.loadImm(NULL, 0));
2370 
2371       assert(su->cc == CC_NOT_P);
2372       red->setPredicate(su->cc, pred);
2373       mov->setPredicate(CC_P, pred);
2374 
2375       bld.mkOp2(OP_UNION, TYPE_U32, su->getDef(0),
2376                 red->getDef(0), mov->getDef(0));
2377 
2378       delete_Instruction(bld.getProgram(), su);
2379       handleCasExch(red, true);
2380    }
2381 
2382    if (su->op == OP_SUSTB || su->op == OP_SUSTP)
2383       su->sType = (su->tex.target == TEX_TARGET_BUFFER) ? TYPE_U32 : TYPE_U8;
2384 }
2385 
2386 void
processSurfaceCoordsNVC0(TexInstruction * su)2387 NVC0LoweringPass::processSurfaceCoordsNVC0(TexInstruction *su)
2388 {
2389    const int slot = su->tex.r;
2390    const int dim = su->tex.target.getDim();
2391    const int arg = dim + (su->tex.target.isArray() || su->tex.target.isCube());
2392    int c;
2393    Value *zero = bld.mkImm(0);
2394    Value *src[3];
2395    Value *v;
2396    Value *ind = su->getIndirectR();
2397 
2398    bld.setPosition(su, false);
2399 
2400    adjustCoordinatesMS(su);
2401 
2402    if (ind) {
2403       Value *ptr;
2404       ptr = bld.mkOp2v(OP_ADD, TYPE_U32, bld.getSSA(), ind, bld.mkImm(su->tex.r));
2405       ptr = bld.mkOp2v(OP_AND, TYPE_U32, bld.getSSA(), ptr, bld.mkImm(7));
2406       su->setIndirectR(ptr);
2407    }
2408 
2409    // get surface coordinates
2410    for (c = 0; c < arg; ++c)
2411       src[c] = su->getSrc(c);
2412    for (; c < 3; ++c)
2413       src[c] = zero;
2414 
2415    // calculate pixel offset
2416    if (su->op == OP_SULDP || su->op == OP_SUREDP) {
2417       v = loadSuInfo32(ind, slot, NVC0_SU_INFO_BSIZE, su->tex.bindless);
2418       su->setSrc(0, (src[0] = bld.mkOp2v(OP_SHL, TYPE_U32, bld.getSSA(), src[0], v)));
2419    }
2420 
2421    // add array layer offset
2422    if (su->tex.target.isArray() || su->tex.target.isCube()) {
2423       v = loadSuInfo32(ind, slot, NVC0_SU_INFO_ARRAY, su->tex.bindless);
2424       assert(dim > 1);
2425       su->setSrc(2, (src[2] = bld.mkOp2v(OP_MUL, TYPE_U32, bld.getSSA(), src[2], v)));
2426    }
2427 
2428    // 3d is special-cased. Note that a single "slice" of a 3d image may
2429    // also be attached as 2d, so we have to do the same 3d processing for
2430    // 2d as well, just in case. In order to remap a 3d image onto a 2d
2431    // image, we have to retile it "by hand".
2432    if (su->tex.target == TEX_TARGET_3D || su->tex.target == TEX_TARGET_2D) {
2433       Value *z = loadSuInfo32(ind, slot, NVC0_SU_INFO_UNK1C, su->tex.bindless);
2434       Value *y_size_aligned =
2435          bld.mkOp2v(OP_AND, TYPE_U32, bld.getSSA(),
2436                     loadSuInfo32(ind, slot, NVC0_SU_INFO_DIM_Y, su->tex.bindless),
2437                     bld.loadImm(NULL, 0x0000ffff));
2438       // Add the z coordinate for actual 3d-images
2439       if (dim > 2)
2440          src[2] = bld.mkOp2v(OP_ADD, TYPE_U32, bld.getSSA(), z, src[2]);
2441       else
2442          src[2] = z;
2443 
2444       // Compute the surface parameters from tile shifts
2445       Value *tile_shift[3];
2446       Value *tile_extbf[3];
2447       // Fetch the "real" tiling parameters of the underlying surface
2448       for (int i = 0; i < 3; i++) {
2449          tile_extbf[i] =
2450             bld.mkOp2v(OP_SHR, TYPE_U32, bld.getSSA(),
2451                        loadSuInfo32(ind, slot, NVC0_SU_INFO_DIM(i), su->tex.bindless),
2452                        bld.loadImm(NULL, 16));
2453          tile_shift[i] =
2454             bld.mkOp2v(OP_SHR, TYPE_U32, bld.getSSA(),
2455                        loadSuInfo32(ind, slot, NVC0_SU_INFO_DIM(i), su->tex.bindless),
2456                        bld.loadImm(NULL, 24));
2457       }
2458 
2459       // However for load/atomics, we use byte-indexing. And for byte
2460       // indexing, the X tile size is always the same. This leads to slightly
2461       // better code.
2462       if (su->op == OP_SULDP || su->op == OP_SUREDP) {
2463          tile_extbf[0] = bld.loadImm(NULL, 0x600);
2464          tile_shift[0] = bld.loadImm(NULL, 6);
2465       }
2466 
2467       // Compute the location of given coordinate, both inside the tile as
2468       // well as which (linearly-laid out) tile it's in.
2469       Value *coord_in_tile[3];
2470       Value *tile[3];
2471       for (int i = 0; i < 3; i++) {
2472          coord_in_tile[i] = bld.mkOp2v(OP_EXTBF, TYPE_U32, bld.getSSA(), src[i], tile_extbf[i]);
2473          tile[i] = bld.mkOp2v(OP_SHR, TYPE_U32, bld.getSSA(), src[i], tile_shift[i]);
2474       }
2475 
2476       // Based on the "real" tiling parameters, compute x/y coordinates in the
2477       // larger surface with 2d tiling that was supplied to the hardware. This
2478       // was determined and verified with the help of the tiling pseudocode in
2479       // the envytools docs.
2480       //
2481       // adj_x = x_coord_in_tile + x_tile * x_tile_size * z_tile_size +
2482       //         z_coord_in_tile * x_tile_size
2483       // adj_y = y_coord_in_tile + y_tile * y_tile_size +
2484       //         z_tile * y_tile_size * y_tiles
2485       //
2486       // Note: STRIDE_Y = y_tile_size * y_tiles
2487 
2488       su->setSrc(0, bld.mkOp2v(
2489             OP_ADD, TYPE_U32, bld.getSSA(),
2490             bld.mkOp2v(OP_ADD, TYPE_U32, bld.getSSA(),
2491                        coord_in_tile[0],
2492                        bld.mkOp2v(OP_SHL, TYPE_U32, bld.getSSA(),
2493                                   tile[0],
2494                                   bld.mkOp2v(OP_ADD, TYPE_U32, bld.getSSA(),
2495                                              tile_shift[2], tile_shift[0]))),
2496             bld.mkOp2v(OP_SHL, TYPE_U32, bld.getSSA(),
2497                        coord_in_tile[2], tile_shift[0])));
2498 
2499       su->setSrc(1, bld.mkOp2v(
2500             OP_ADD, TYPE_U32, bld.getSSA(),
2501             bld.mkOp2v(OP_MUL, TYPE_U32, bld.getSSA(),
2502                        tile[2], y_size_aligned),
2503             bld.mkOp2v(OP_ADD, TYPE_U32, bld.getSSA(),
2504                        coord_in_tile[1],
2505                        bld.mkOp2v(OP_SHL, TYPE_U32, bld.getSSA(),
2506                                   tile[1], tile_shift[1]))));
2507 
2508       if (su->tex.target == TEX_TARGET_3D) {
2509          su->moveSources(3, -1);
2510          su->tex.target = TEX_TARGET_2D;
2511       }
2512    }
2513 
2514    // prevent read fault when the image is not actually bound
2515    CmpInstruction *pred =
2516       bld.mkCmp(OP_SET, CC_EQ, TYPE_U32, bld.getSSA(1, FILE_PREDICATE),
2517                 TYPE_U32, bld.mkImm(0),
2518                 loadSuInfo32(ind, slot, NVC0_SU_INFO_ADDR, su->tex.bindless));
2519    if (su->op != OP_SUSTP && su->tex.format) {
2520       const TexInstruction::ImgFormatDesc *format = su->tex.format;
2521       int blockwidth = format->bits[0] + format->bits[1] +
2522                        format->bits[2] + format->bits[3];
2523 
2524       assert(format->components != 0);
2525       // make sure that the format doesn't mismatch when it's not FMT_NONE
2526       bld.mkCmp(OP_SET_OR, CC_NE, TYPE_U32, pred->getDef(0),
2527                 TYPE_U32, bld.loadImm(NULL, ffs(blockwidth / 8) - 1),
2528                 loadSuInfo32(ind, slot, NVC0_SU_INFO_BSIZE, su->tex.bindless),
2529                 pred->getDef(0));
2530    }
2531    su->setPredicate(CC_NOT_P, pred->getDef(0));
2532 }
2533 
2534 void
handleSurfaceOpNVC0(TexInstruction * su)2535 NVC0LoweringPass::handleSurfaceOpNVC0(TexInstruction *su)
2536 {
2537    if (su->tex.target == TEX_TARGET_1D_ARRAY) {
2538       /* As 1d arrays also need 3 coordinates, switching to TEX_TARGET_2D_ARRAY
2539        * will simplify the lowering pass and the texture constraints. */
2540       su->moveSources(1, 1);
2541       su->setSrc(1, bld.loadImm(NULL, 0));
2542       su->tex.target = TEX_TARGET_2D_ARRAY;
2543    }
2544 
2545    processSurfaceCoordsNVC0(su);
2546 
2547    if (su->op == OP_SULDP) {
2548       convertSurfaceFormat(su, NULL);
2549       insertOOBSurfaceOpResult(su);
2550    }
2551 
2552    if (su->op == OP_SUREDB || su->op == OP_SUREDP) {
2553       const int dim = su->tex.target.getDim();
2554       const int arg = dim + (su->tex.target.isArray() || su->tex.target.isCube());
2555       LValue *addr = bld.getSSA(8);
2556       Value *def = su->getDef(0);
2557 
2558       su->op = OP_SULEA;
2559 
2560       // Set the destination to the address
2561       su->dType = TYPE_U64;
2562       su->setDef(0, addr);
2563       su->setDef(1, su->getPredicate());
2564 
2565       bld.setPosition(su, true);
2566 
2567       // Perform the atomic op
2568       Instruction *red = bld.mkOp(OP_ATOM, su->sType, bld.getSSA());
2569       red->subOp = su->subOp;
2570       red->setSrc(0, bld.mkSymbol(FILE_MEMORY_GLOBAL, 0, su->sType, 0));
2571       red->setSrc(1, su->getSrc(arg));
2572       if (red->subOp == NV50_IR_SUBOP_ATOM_CAS)
2573          red->setSrc(2, su->getSrc(arg + 1));
2574       red->setIndirect(0, 0, addr);
2575 
2576       // make sure to initialize dst value when the atomic operation is not
2577       // performed
2578       Instruction *mov = bld.mkMov(bld.getSSA(), bld.loadImm(NULL, 0));
2579 
2580       assert(su->cc == CC_NOT_P);
2581       red->setPredicate(su->cc, su->getPredicate());
2582       mov->setPredicate(CC_P, su->getPredicate());
2583 
2584       bld.mkOp2(OP_UNION, TYPE_U32, def, red->getDef(0), mov->getDef(0));
2585 
2586       handleCasExch(red, false);
2587    }
2588 }
2589 
2590 TexInstruction *
processSurfaceCoordsGM107(TexInstruction * su,Instruction * ret[4])2591 NVC0LoweringPass::processSurfaceCoordsGM107(TexInstruction *su, Instruction *ret[4])
2592 {
2593    const int slot = su->tex.r;
2594    const int dim = su->tex.target.getDim();
2595    const bool array = su->tex.target.isArray() || su->tex.target.isCube();
2596    const int arg = dim + array;
2597    Value *ind = su->getIndirectR();
2598    Value *handle;
2599    Instruction *pred = NULL, *pred2d = NULL;
2600    int pos = 0;
2601 
2602    bld.setPosition(su, false);
2603 
2604    adjustCoordinatesMS(su);
2605 
2606    // add texture handle
2607    switch (su->op) {
2608    case OP_SUSTP:
2609       pos = 4;
2610       break;
2611    case OP_SUREDP:
2612       pos = (su->subOp == NV50_IR_SUBOP_ATOM_CAS) ? 2 : 1;
2613       break;
2614    default:
2615       assert(pos == 0);
2616       break;
2617    }
2618 
2619    if (dim == 2 && !array) {
2620       // This might be a 2d slice of a 3d texture, try to load the z
2621       // coordinate in.
2622       Value *v;
2623       if (!su->tex.bindless)
2624          v = loadSuInfo32(ind, slot, NVC0_SU_INFO_UNK1C, su->tex.bindless);
2625       else
2626          v = bld.mkOp2v(OP_SHR, TYPE_U32, bld.getSSA(), ind, bld.mkImm(11));
2627       Value *is_3d = bld.mkOp2v(OP_AND, TYPE_U32, bld.getSSA(), v, bld.mkImm(1));
2628       pred2d = bld.mkCmp(OP_SET, CC_EQ, TYPE_U32, bld.getSSA(1, FILE_PREDICATE),
2629                          TYPE_U32, bld.mkImm(0), is_3d);
2630 
2631       bld.mkOp2(OP_SHR, TYPE_U32, v, v, bld.loadImm(NULL, 16));
2632       su->moveSources(dim, 1);
2633       su->setSrc(dim, v);
2634       su->tex.target = nv50_ir::TEX_TARGET_3D;
2635       pos++;
2636    }
2637 
2638    if (su->tex.bindless)
2639       handle = bld.mkOp2v(OP_AND, TYPE_U32, bld.getSSA(), ind, bld.mkImm(2047));
2640    else
2641       handle = loadTexHandle(ind, slot + 32);
2642 
2643    su->setSrc(arg + pos, handle);
2644 
2645    // The address check doesn't make sense here. The format check could make
2646    // sense but it's a bit of a pain.
2647    if (!su->tex.bindless) {
2648       // prevent read fault when the image is not actually bound
2649       pred =
2650          bld.mkCmp(OP_SET, CC_EQ, TYPE_U32, bld.getSSA(1, FILE_PREDICATE),
2651                    TYPE_U32, bld.mkImm(0),
2652                    loadSuInfo32(ind, slot, NVC0_SU_INFO_ADDR, su->tex.bindless));
2653       if (su->op != OP_SUSTP && su->tex.format) {
2654          const TexInstruction::ImgFormatDesc *format = su->tex.format;
2655          int blockwidth = format->bits[0] + format->bits[1] +
2656             format->bits[2] + format->bits[3];
2657 
2658          assert(format->components != 0);
2659          // make sure that the format doesn't mismatch when it's not FMT_NONE
2660          bld.mkCmp(OP_SET_OR, CC_NE, TYPE_U32, pred->getDef(0),
2661                    TYPE_U32, bld.loadImm(NULL, blockwidth / 8),
2662                    loadSuInfo32(ind, slot, NVC0_SU_INFO_BSIZE, su->tex.bindless),
2663                    pred->getDef(0));
2664       }
2665    }
2666 
2667    // Now we have "pred" which (optionally) contains whether to do the surface
2668    // op at all, and a "pred2d" which indicates that, in case of doing the
2669    // surface op, we have to create a 2d and 3d version, conditioned on pred2d.
2670    TexInstruction *su2d = NULL;
2671    if (pred2d) {
2672       su2d = cloneForward(func, su)->asTex();
2673       for (unsigned i = 0; su->defExists(i); ++i)
2674          su2d->setDef(i, bld.getSSA());
2675       su2d->moveSources(dim + 1, -1);
2676       su2d->tex.target = nv50_ir::TEX_TARGET_2D;
2677    }
2678    if (pred2d && pred) {
2679       Instruction *pred3d = bld.mkOp2(OP_AND, TYPE_U8,
2680                                       bld.getSSA(1, FILE_PREDICATE),
2681                                       pred->getDef(0), pred2d->getDef(0));
2682       pred3d->src(0).mod = Modifier(NV50_IR_MOD_NOT);
2683       pred3d->src(1).mod = Modifier(NV50_IR_MOD_NOT);
2684       su->setPredicate(CC_P, pred3d->getDef(0));
2685       pred2d = bld.mkOp2(OP_AND, TYPE_U8, bld.getSSA(1, FILE_PREDICATE),
2686                          pred->getDef(0), pred2d->getDef(0));
2687       pred2d->src(0).mod = Modifier(NV50_IR_MOD_NOT);
2688    } else if (pred) {
2689       su->setPredicate(CC_NOT_P, pred->getDef(0));
2690    } else if (pred2d) {
2691       su->setPredicate(CC_NOT_P, pred2d->getDef(0));
2692    }
2693    if (su2d) {
2694       su2d->setPredicate(CC_P, pred2d->getDef(0));
2695       bld.insert(su2d);
2696 
2697       // Create a UNION so that RA assigns the same registers
2698       bld.setPosition(su, true);
2699       for (unsigned i = 0; su->defExists(i); ++i) {
2700          assert(i < 4);
2701 
2702          Value *def = su->getDef(i);
2703          Value *newDef = bld.getSSA();
2704          ValueDef &def2 = su2d->def(i);
2705          Instruction *mov = NULL;
2706 
2707          su->setDef(i, newDef);
2708          if (pred) {
2709             mov = bld.mkMov(bld.getSSA(), bld.loadImm(NULL, 0));
2710             mov->setPredicate(CC_P, pred->getDef(0));
2711          }
2712 
2713          Instruction *uni = ret[i] = bld.mkOp2(OP_UNION, TYPE_U32,
2714                                       bld.getSSA(),
2715                                       newDef, def2.get());
2716          if (mov)
2717             uni->setSrc(2, mov->getDef(0));
2718          bld.mkMov(def, uni->getDef(0));
2719       }
2720    } else if (pred) {
2721       // Create a UNION so that RA assigns the same registers
2722       bld.setPosition(su, true);
2723       for (unsigned i = 0; su->defExists(i); ++i) {
2724          assert(i < 4);
2725 
2726          Value *def = su->getDef(i);
2727          Value *newDef = bld.getSSA();
2728          su->setDef(i, newDef);
2729 
2730          Instruction *mov = bld.mkMov(bld.getSSA(), bld.loadImm(NULL, 0));
2731          mov->setPredicate(CC_P, pred->getDef(0));
2732 
2733          Instruction *uni = ret[i] = bld.mkOp2(OP_UNION, TYPE_U32,
2734                                       bld.getSSA(),
2735                                       newDef, mov->getDef(0));
2736          bld.mkMov(def, uni->getDef(0));
2737       }
2738    }
2739 
2740    return su2d;
2741 }
2742 
2743 void
handleSurfaceOpGM107(TexInstruction * su)2744 NVC0LoweringPass::handleSurfaceOpGM107(TexInstruction *su)
2745 {
2746    // processSurfaceCoords also takes care of fixing up the outputs and
2747    // union'ing them with 0 as necessary. Additionally it may create a second
2748    // surface which needs some of the similar fixups.
2749 
2750    Instruction *loaded[4] = {};
2751    TexInstruction *su2 = processSurfaceCoordsGM107(su, loaded);
2752 
2753    if (su->op == OP_SULDP) {
2754       convertSurfaceFormat(su, loaded);
2755    }
2756 
2757    if (su->op == OP_SUREDP) {
2758       su->op = OP_SUREDB;
2759    }
2760 
2761    // If we fixed up the type of the regular surface load instruction, we also
2762    // have to fix up the copy.
2763    if (su2) {
2764       su2->op = su->op;
2765       su2->dType = su->dType;
2766       su2->sType = su->sType;
2767    }
2768 }
2769 
2770 bool
handleWRSV(Instruction * i)2771 NVC0LoweringPass::handleWRSV(Instruction *i)
2772 {
2773    Instruction *st;
2774    Symbol *sym;
2775    uint32_t addr;
2776 
2777    // must replace, $sreg are not writeable
2778    addr = targ->getSVAddress(FILE_SHADER_OUTPUT, i->getSrc(0)->asSym());
2779    if (addr >= 0x400)
2780       return false;
2781    sym = bld.mkSymbol(FILE_SHADER_OUTPUT, 0, i->sType, addr);
2782 
2783    st = bld.mkStore(OP_EXPORT, i->dType, sym, i->getIndirect(0, 0),
2784                     i->getSrc(1));
2785    st->perPatch = i->perPatch;
2786 
2787    bld.getBB()->remove(i);
2788    return true;
2789 }
2790 
2791 void
handleLDST(Instruction * i)2792 NVC0LoweringPass::handleLDST(Instruction *i)
2793 {
2794    if (i->src(0).getFile() == FILE_SHADER_INPUT) {
2795       if (prog->getType() == Program::TYPE_COMPUTE) {
2796          i->getSrc(0)->reg.file = FILE_MEMORY_CONST;
2797          i->getSrc(0)->reg.fileIndex = 0;
2798       } else
2799       if (prog->getType() == Program::TYPE_GEOMETRY &&
2800           i->src(0).isIndirect(0)) {
2801          // XXX: this assumes vec4 units
2802          Value *ptr = bld.mkOp2v(OP_SHL, TYPE_U32, bld.getSSA(),
2803                                  i->getIndirect(0, 0), bld.mkImm(4));
2804          i->setIndirect(0, 0, ptr);
2805          i->op = OP_VFETCH;
2806       } else {
2807          i->op = OP_VFETCH;
2808          assert(prog->getType() != Program::TYPE_FRAGMENT); // INTERP
2809       }
2810    } else if (i->src(0).getFile() == FILE_MEMORY_CONST) {
2811       int8_t fileIndex = i->getSrc(0)->reg.fileIndex - 1;
2812       Value *ind = i->getIndirect(0, 1);
2813 
2814       if (targ->getChipset() >= NVISA_GK104_CHIPSET &&
2815           prog->getType() == Program::TYPE_COMPUTE &&
2816           (fileIndex >= 6 || ind)) {
2817          // The launch descriptor only allows to set up 8 CBs, but OpenGL
2818          // requires at least 12 UBOs. To bypass this limitation, for constant
2819          // buffers 7+, we store the addrs into the driver constbuf and we
2820          // directly load from the global memory.
2821          if (ind) {
2822             // Clamp the UBO index when an indirect access is used to avoid
2823             // loading information from the wrong place in the driver cb.
2824             // TODO - synchronize the max with the driver.
2825             ind = bld.mkOp2v(OP_MIN, TYPE_U32, bld.getSSA(),
2826                              bld.mkOp2v(OP_ADD, TYPE_U32, bld.getSSA(),
2827                                         ind, bld.loadImm(NULL, fileIndex)),
2828                              bld.loadImm(NULL, 13));
2829             fileIndex = 0;
2830          }
2831 
2832          Value *offset = bld.loadImm(NULL, i->getSrc(0)->reg.data.offset + typeSizeof(i->sType));
2833          Value *ptr = loadUboInfo64(ind, fileIndex * 16);
2834          Value *length = loadUboLength32(ind, fileIndex * 16);
2835          Value *pred = new_LValue(func, FILE_PREDICATE);
2836          if (i->src(0).isIndirect(0)) {
2837             bld.mkOp2(OP_ADD, TYPE_U64, ptr, ptr, i->getIndirect(0, 0));
2838             bld.mkOp2(OP_ADD, TYPE_U32, offset, offset, i->getIndirect(0, 0));
2839          }
2840          i->getSrc(0)->reg.file = FILE_MEMORY_GLOBAL;
2841          i->setIndirect(0, 1, NULL);
2842          i->setIndirect(0, 0, ptr);
2843          bld.mkCmp(OP_SET, CC_GT, TYPE_U32, pred, TYPE_U32, offset, length);
2844          i->setPredicate(CC_NOT_P, pred);
2845          Value *zero, *dst = i->getDef(0);
2846          i->setDef(0, bld.getSSA());
2847 
2848          bld.setPosition(i, true);
2849          bld.mkMov((zero = bld.getSSA()), bld.mkImm(0))
2850             ->setPredicate(CC_P, pred);
2851          bld.mkOp2(OP_UNION, TYPE_U32, dst, i->getDef(0), zero);
2852       } else if (i->src(0).isIndirect(1)) {
2853          Value *ptr;
2854          if (i->src(0).isIndirect(0))
2855             ptr = bld.mkOp3v(OP_INSBF, TYPE_U32, bld.getSSA(),
2856                              i->getIndirect(0, 1), bld.mkImm(0x1010),
2857                              i->getIndirect(0, 0));
2858          else
2859             ptr = bld.mkOp2v(OP_SHL, TYPE_U32, bld.getSSA(),
2860                              i->getIndirect(0, 1), bld.mkImm(16));
2861          i->setIndirect(0, 1, NULL);
2862          i->setIndirect(0, 0, ptr);
2863          i->subOp = NV50_IR_SUBOP_LDC_IS;
2864       }
2865    } else if (i->src(0).getFile() == FILE_SHADER_OUTPUT) {
2866       assert(prog->getType() == Program::TYPE_TESSELLATION_CONTROL);
2867       i->op = OP_VFETCH;
2868    } else if (i->src(0).getFile() == FILE_MEMORY_BUFFER) {
2869       Value *ind = i->getIndirect(0, 1);
2870       Value *ptr = loadBufInfo64(ind, i->getSrc(0)->reg.fileIndex * 16);
2871       // XXX come up with a way not to do this for EVERY little access but
2872       // rather to batch these up somehow. Unfortunately we've lost the
2873       // information about the field width by the time we get here.
2874       Value *offset = bld.loadImm(NULL, i->getSrc(0)->reg.data.offset + typeSizeof(i->sType));
2875       Value *length = loadBufLength32(ind, i->getSrc(0)->reg.fileIndex * 16);
2876       Value *pred = new_LValue(func, FILE_PREDICATE);
2877       if (i->src(0).isIndirect(0)) {
2878          bld.mkOp2(OP_ADD, TYPE_U64, ptr, ptr, i->getIndirect(0, 0));
2879          bld.mkOp2(OP_ADD, TYPE_U32, offset, offset, i->getIndirect(0, 0));
2880       }
2881       i->setIndirect(0, 1, NULL);
2882       i->setIndirect(0, 0, ptr);
2883       i->getSrc(0)->reg.file = FILE_MEMORY_GLOBAL;
2884       bld.mkCmp(OP_SET, CC_GT, TYPE_U32, pred, TYPE_U32, offset, length);
2885       i->setPredicate(CC_NOT_P, pred);
2886       if (i->defExists(0)) {
2887          Value *zero, *dst = i->getDef(0);
2888          i->setDef(0, bld.getSSA());
2889 
2890          bld.setPosition(i, true);
2891          bld.mkMov((zero = bld.getSSA()), bld.mkImm(0))
2892             ->setPredicate(CC_P, pred);
2893          bld.mkOp2(OP_UNION, TYPE_U32, dst, i->getDef(0), zero);
2894       }
2895    }
2896 }
2897 
2898 void
readTessCoord(LValue * dst,int c)2899 NVC0LoweringPass::readTessCoord(LValue *dst, int c)
2900 {
2901    Value *laneid = bld.getSSA();
2902    Value *x, *y;
2903 
2904    bld.mkOp1(OP_RDSV, TYPE_U32, laneid, bld.mkSysVal(SV_LANEID, 0));
2905 
2906    if (c == 0) {
2907       x = dst;
2908       y = NULL;
2909    } else
2910    if (c == 1) {
2911       x = NULL;
2912       y = dst;
2913    } else {
2914       assert(c == 2);
2915       if (prog->driver_out->prop.tp.domain != PIPE_PRIM_TRIANGLES) {
2916          bld.mkMov(dst, bld.loadImm(NULL, 0));
2917          return;
2918       }
2919       x = bld.getSSA();
2920       y = bld.getSSA();
2921    }
2922    if (x)
2923       bld.mkFetch(x, TYPE_F32, FILE_SHADER_OUTPUT, 0x2f0, NULL, laneid);
2924    if (y)
2925       bld.mkFetch(y, TYPE_F32, FILE_SHADER_OUTPUT, 0x2f4, NULL, laneid);
2926 
2927    if (c == 2) {
2928       bld.mkOp2(OP_ADD, TYPE_F32, dst, x, y);
2929       bld.mkOp2(OP_SUB, TYPE_F32, dst, bld.loadImm(NULL, 1.0f), dst);
2930    }
2931 }
2932 
2933 bool
handleRDSV(Instruction * i)2934 NVC0LoweringPass::handleRDSV(Instruction *i)
2935 {
2936    Symbol *sym = i->getSrc(0)->asSym();
2937    const SVSemantic sv = sym->reg.data.sv.sv;
2938    Value *vtx = NULL;
2939    Instruction *ld;
2940    uint32_t addr = targ->getSVAddress(FILE_SHADER_INPUT, sym);
2941 
2942    if (addr >= 0x400) {
2943       // mov $sreg
2944       if (sym->reg.data.sv.index == 3) {
2945          // TGSI backend may use 4th component of TID,NTID,CTAID,NCTAID
2946          i->op = OP_MOV;
2947          i->setSrc(0, bld.mkImm((sv == SV_NTID || sv == SV_NCTAID) ? 1 : 0));
2948       } else
2949       if (sv == SV_TID) {
2950          // Help CSE combine TID fetches
2951          Value *tid = bld.mkOp1v(OP_RDSV, TYPE_U32, bld.getScratch(),
2952                                  bld.mkSysVal(SV_COMBINED_TID, 0));
2953          i->op = OP_EXTBF;
2954          i->setSrc(0, tid);
2955          switch (sym->reg.data.sv.index) {
2956          case 0: i->setSrc(1, bld.mkImm(0x1000)); break;
2957          case 1: i->setSrc(1, bld.mkImm(0x0a10)); break;
2958          case 2: i->setSrc(1, bld.mkImm(0x061a)); break;
2959          }
2960       }
2961       if (sv == SV_VERTEX_COUNT) {
2962          bld.setPosition(i, true);
2963          bld.mkOp2(OP_EXTBF, TYPE_U32, i->getDef(0), i->getDef(0), bld.mkImm(0x808));
2964       }
2965       return true;
2966    }
2967 
2968    switch (sv) {
2969    case SV_POSITION:
2970       assert(prog->getType() == Program::TYPE_FRAGMENT);
2971       if (i->srcExists(1)) {
2972          // Pass offset through to the interpolation logic
2973          ld = bld.mkInterp(NV50_IR_INTERP_LINEAR | NV50_IR_INTERP_OFFSET,
2974                            i->getDef(0), addr, NULL);
2975          ld->setSrc(1, i->getSrc(1));
2976       } else {
2977          bld.mkInterp(NV50_IR_INTERP_LINEAR, i->getDef(0), addr, NULL);
2978       }
2979       break;
2980    case SV_FACE:
2981    {
2982       Value *face = i->getDef(0);
2983       bld.mkInterp(NV50_IR_INTERP_FLAT, face, addr, NULL);
2984       if (i->dType == TYPE_F32) {
2985          bld.mkOp2(OP_OR, TYPE_U32, face, face, bld.mkImm(0x00000001));
2986          bld.mkOp1(OP_NEG, TYPE_S32, face, face);
2987          bld.mkCvt(OP_CVT, TYPE_F32, face, TYPE_S32, face);
2988       }
2989    }
2990       break;
2991    case SV_TESS_COORD:
2992       assert(prog->getType() == Program::TYPE_TESSELLATION_EVAL);
2993       readTessCoord(i->getDef(0)->asLValue(), i->getSrc(0)->reg.data.sv.index);
2994       break;
2995    case SV_NTID:
2996    case SV_NCTAID:
2997    case SV_GRIDID:
2998       assert(targ->getChipset() >= NVISA_GK104_CHIPSET); // mov $sreg otherwise
2999       if (sym->reg.data.sv.index == 3) {
3000          i->op = OP_MOV;
3001          i->setSrc(0, bld.mkImm(sv == SV_GRIDID ? 0 : 1));
3002          return true;
3003       }
3004       FALLTHROUGH;
3005    case SV_WORK_DIM:
3006       addr += prog->driver->prop.cp.gridInfoBase;
3007       bld.mkLoad(TYPE_U32, i->getDef(0),
3008                  bld.mkSymbol(FILE_MEMORY_CONST, prog->driver->io.auxCBSlot,
3009                               TYPE_U32, addr), NULL);
3010       break;
3011    case SV_SAMPLE_INDEX:
3012       // TODO: Properly pass source as an address in the PIX address space
3013       // (which can be of the form [r0+offset]). But this is currently
3014       // unnecessary.
3015       ld = bld.mkOp1(OP_PIXLD, TYPE_U32, i->getDef(0), bld.mkImm(0));
3016       ld->subOp = NV50_IR_SUBOP_PIXLD_SAMPLEID;
3017       break;
3018    case SV_SAMPLE_POS: {
3019       Value *sampleID = bld.getScratch();
3020       ld = bld.mkOp1(OP_PIXLD, TYPE_U32, sampleID, bld.mkImm(0));
3021       ld->subOp = NV50_IR_SUBOP_PIXLD_SAMPLEID;
3022       Value *offset = calculateSampleOffset(sampleID);
3023 
3024       assert(prog->driver_out->prop.fp.readsSampleLocations);
3025 
3026       if (targ->getChipset() >= NVISA_GM200_CHIPSET) {
3027          bld.mkLoad(TYPE_F32,
3028                     i->getDef(0),
3029                     bld.mkSymbol(
3030                           FILE_MEMORY_CONST, prog->driver->io.auxCBSlot,
3031                           TYPE_U32, prog->driver->io.sampleInfoBase),
3032                     offset);
3033          bld.mkOp2(OP_EXTBF, TYPE_U32, i->getDef(0), i->getDef(0),
3034                    bld.mkImm(0x040c + sym->reg.data.sv.index * 16));
3035          bld.mkCvt(OP_CVT, TYPE_F32, i->getDef(0), TYPE_U32, i->getDef(0));
3036          bld.mkOp2(OP_MUL, TYPE_F32, i->getDef(0), i->getDef(0), bld.mkImm(1.0f / 16.0f));
3037       } else {
3038          bld.mkLoad(TYPE_F32,
3039                     i->getDef(0),
3040                     bld.mkSymbol(
3041                           FILE_MEMORY_CONST, prog->driver->io.auxCBSlot,
3042                           TYPE_U32, prog->driver->io.sampleInfoBase +
3043                           4 * sym->reg.data.sv.index),
3044                     offset);
3045       }
3046       break;
3047    }
3048    case SV_SAMPLE_MASK: {
3049       ld = bld.mkOp1(OP_PIXLD, TYPE_U32, i->getDef(0), bld.mkImm(0));
3050       ld->subOp = NV50_IR_SUBOP_PIXLD_COVMASK;
3051       Instruction *sampleid =
3052          bld.mkOp1(OP_PIXLD, TYPE_U32, bld.getSSA(), bld.mkImm(0));
3053       sampleid->subOp = NV50_IR_SUBOP_PIXLD_SAMPLEID;
3054       Value *masked =
3055          bld.mkOp2v(OP_AND, TYPE_U32, bld.getSSA(), ld->getDef(0),
3056                     bld.mkOp2v(OP_SHL, TYPE_U32, bld.getSSA(),
3057                                bld.loadImm(NULL, 1), sampleid->getDef(0)));
3058       if (prog->persampleInvocation) {
3059          bld.mkMov(i->getDef(0), masked);
3060       } else {
3061          bld.mkOp3(OP_SELP, TYPE_U32, i->getDef(0), ld->getDef(0), masked,
3062                    bld.mkImm(0))
3063             ->subOp = 1;
3064       }
3065       break;
3066    }
3067    case SV_BASEVERTEX:
3068    case SV_BASEINSTANCE:
3069    case SV_DRAWID:
3070       ld = bld.mkLoad(TYPE_U32, i->getDef(0),
3071                       bld.mkSymbol(FILE_MEMORY_CONST,
3072                                    prog->driver->io.auxCBSlot,
3073                                    TYPE_U32,
3074                                    prog->driver->io.drawInfoBase +
3075                                    4 * (sv - SV_BASEVERTEX)),
3076                       NULL);
3077       break;
3078    default:
3079       if (prog->getType() == Program::TYPE_TESSELLATION_EVAL && !i->perPatch)
3080          vtx = bld.mkOp1v(OP_PFETCH, TYPE_U32, bld.getSSA(), bld.mkImm(0));
3081       if (prog->getType() == Program::TYPE_FRAGMENT) {
3082          bld.mkInterp(NV50_IR_INTERP_FLAT, i->getDef(0), addr, NULL);
3083       } else {
3084          ld = bld.mkFetch(i->getDef(0), i->dType,
3085                           FILE_SHADER_INPUT, addr, i->getIndirect(0, 0), vtx);
3086          ld->perPatch = i->perPatch;
3087       }
3088       break;
3089    }
3090    bld.getBB()->remove(i);
3091    return true;
3092 }
3093 
3094 bool
handleDIV(Instruction * i)3095 NVC0LoweringPass::handleDIV(Instruction *i)
3096 {
3097    if (!isFloatType(i->dType))
3098       return true;
3099    bld.setPosition(i, false);
3100    Instruction *rcp = bld.mkOp1(OP_RCP, i->dType, bld.getSSA(typeSizeof(i->dType)), i->getSrc(1));
3101    i->op = OP_MUL;
3102    i->setSrc(1, rcp->getDef(0));
3103    return true;
3104 }
3105 
3106 bool
handleMOD(Instruction * i)3107 NVC0LoweringPass::handleMOD(Instruction *i)
3108 {
3109    if (!isFloatType(i->dType))
3110       return true;
3111    LValue *value = bld.getScratch(typeSizeof(i->dType));
3112    bld.mkOp1(OP_RCP, i->dType, value, i->getSrc(1));
3113    bld.mkOp2(OP_MUL, i->dType, value, i->getSrc(0), value);
3114    bld.mkOp1(OP_TRUNC, i->dType, value, value);
3115    bld.mkOp2(OP_MUL, i->dType, value, i->getSrc(1), value);
3116    i->op = OP_SUB;
3117    i->setSrc(1, value);
3118    return true;
3119 }
3120 
3121 bool
handleSQRT(Instruction * i)3122 NVC0LoweringPass::handleSQRT(Instruction *i)
3123 {
3124    if (targ->isOpSupported(OP_SQRT, i->dType))
3125       return true;
3126 
3127    if (i->dType == TYPE_F64) {
3128       Value *pred = bld.getSSA(1, FILE_PREDICATE);
3129       Value *zero = bld.loadImm(NULL, 0.0);
3130       Value *dst = bld.getSSA(8);
3131       bld.mkOp1(OP_RSQ, i->dType, dst, i->getSrc(0));
3132       bld.mkCmp(OP_SET, CC_LE, i->dType, pred, i->dType, i->getSrc(0), zero);
3133       bld.mkOp3(OP_SELP, TYPE_U64, dst, zero, dst, pred);
3134       i->op = OP_MUL;
3135       i->setSrc(1, dst);
3136       // TODO: Handle this properly with a library function
3137    } else {
3138       bld.setPosition(i, true);
3139       i->op = OP_RSQ;
3140       bld.mkOp1(OP_RCP, i->dType, i->getDef(0), i->getDef(0));
3141    }
3142 
3143    return true;
3144 }
3145 
3146 bool
handlePOW(Instruction * i)3147 NVC0LoweringPass::handlePOW(Instruction *i)
3148 {
3149    LValue *val = bld.getScratch();
3150 
3151    bld.mkOp1(OP_LG2, TYPE_F32, val, i->getSrc(0));
3152    bld.mkOp2(OP_MUL, TYPE_F32, val, i->getSrc(1), val)->dnz = 1;
3153    bld.mkOp1(OP_PREEX2, TYPE_F32, val, val);
3154 
3155    i->op = OP_EX2;
3156    i->setSrc(0, val);
3157    i->setSrc(1, NULL);
3158 
3159    return true;
3160 }
3161 
3162 bool
handleEXPORT(Instruction * i)3163 NVC0LoweringPass::handleEXPORT(Instruction *i)
3164 {
3165    if (prog->getType() == Program::TYPE_FRAGMENT) {
3166       int id = i->getSrc(0)->reg.data.offset / 4;
3167 
3168       if (i->src(0).isIndirect(0)) // TODO, ugly
3169          return false;
3170       i->op = OP_MOV;
3171       i->subOp = NV50_IR_SUBOP_MOV_FINAL;
3172       i->src(0).set(i->src(1));
3173       i->setSrc(1, NULL);
3174       i->setDef(0, new_LValue(func, FILE_GPR));
3175       i->getDef(0)->reg.data.id = id;
3176 
3177       prog->maxGPR = MAX2(prog->maxGPR, id);
3178    } else
3179    if (prog->getType() == Program::TYPE_GEOMETRY) {
3180       i->setIndirect(0, 1, gpEmitAddress);
3181    }
3182    return true;
3183 }
3184 
3185 bool
handleOUT(Instruction * i)3186 NVC0LoweringPass::handleOUT(Instruction *i)
3187 {
3188    Instruction *prev = i->prev;
3189    ImmediateValue stream, prevStream;
3190 
3191    // Only merge if the stream ids match. Also, note that the previous
3192    // instruction would have already been lowered, so we take arg1 from it.
3193    if (i->op == OP_RESTART && prev && prev->op == OP_EMIT &&
3194        i->src(0).getImmediate(stream) &&
3195        prev->src(1).getImmediate(prevStream) &&
3196        stream.reg.data.u32 == prevStream.reg.data.u32) {
3197       i->prev->subOp = NV50_IR_SUBOP_EMIT_RESTART;
3198       delete_Instruction(prog, i);
3199    } else {
3200       assert(gpEmitAddress);
3201       i->setDef(0, gpEmitAddress);
3202       i->setSrc(1, i->getSrc(0));
3203       i->setSrc(0, gpEmitAddress);
3204    }
3205    return true;
3206 }
3207 
3208 Value *
calculateSampleOffset(Value * sampleID)3209 NVC0LoweringPass::calculateSampleOffset(Value *sampleID)
3210 {
3211    Value *offset = bld.getScratch();
3212    if (targ->getChipset() >= NVISA_GM200_CHIPSET) {
3213       // Sample location offsets (in bytes) are calculated like so:
3214       // offset = (SV_POSITION.y % 4 * 2) + (SV_POSITION.x % 2)
3215       // offset = offset * 32 + sampleID % 8 * 4;
3216       // which is equivalent to:
3217       // offset = (SV_POSITION.y & 0x3) << 6 + (SV_POSITION.x & 0x1) << 5;
3218       // offset += sampleID << 2
3219 
3220       // The second operand (src1) of the INSBF instructions are like so:
3221       // 0xssll where ss is the size and ll is the offset.
3222       // so: dest = src2 | (src0 & (1 << ss - 1)) << ll
3223 
3224       // Add sample ID (offset = (sampleID & 0x7) << 2)
3225       bld.mkOp3(OP_INSBF, TYPE_U32, offset, sampleID, bld.mkImm(0x0302), bld.mkImm(0x0));
3226 
3227       Symbol *xSym = bld.mkSysVal(SV_POSITION, 0);
3228       Symbol *ySym = bld.mkSysVal(SV_POSITION, 1);
3229       Value *coord = bld.getScratch();
3230 
3231       // Add X coordinate (offset |= (SV_POSITION.x & 0x1) << 5)
3232       bld.mkInterp(NV50_IR_INTERP_LINEAR, coord,
3233                    targ->getSVAddress(FILE_SHADER_INPUT, xSym), NULL);
3234       bld.mkCvt(OP_CVT, TYPE_U32, coord, TYPE_F32, coord)
3235          ->rnd = ROUND_ZI;
3236       bld.mkOp3(OP_INSBF, TYPE_U32, offset, coord, bld.mkImm(0x0105), offset);
3237 
3238       // Add Y coordinate (offset |= (SV_POSITION.y & 0x3) << 6)
3239       bld.mkInterp(NV50_IR_INTERP_LINEAR, coord,
3240                    targ->getSVAddress(FILE_SHADER_INPUT, ySym), NULL);
3241       bld.mkCvt(OP_CVT, TYPE_U32, coord, TYPE_F32, coord)
3242          ->rnd = ROUND_ZI;
3243       bld.mkOp3(OP_INSBF, TYPE_U32, offset, coord, bld.mkImm(0x0206), offset);
3244    } else {
3245       bld.mkOp2(OP_SHL, TYPE_U32, offset, sampleID, bld.mkImm(3));
3246    }
3247    return offset;
3248 }
3249 
3250 // Handle programmable sample locations for GM20x+
3251 void
handlePIXLD(Instruction * i)3252 NVC0LoweringPass::handlePIXLD(Instruction *i)
3253 {
3254    if (i->subOp != NV50_IR_SUBOP_PIXLD_OFFSET)
3255       return;
3256    if (targ->getChipset() < NVISA_GM200_CHIPSET)
3257       return;
3258 
3259    assert(prog->driver_out->prop.fp.readsSampleLocations);
3260 
3261    bld.mkLoad(TYPE_F32,
3262               i->getDef(0),
3263               bld.mkSymbol(
3264                     FILE_MEMORY_CONST, prog->driver->io.auxCBSlot,
3265                     TYPE_U32, prog->driver->io.sampleInfoBase),
3266               calculateSampleOffset(i->getSrc(0)));
3267 
3268    bld.getBB()->remove(i);
3269 }
3270 
3271 // Generate a binary predicate if an instruction is predicated by
3272 // e.g. an f32 value.
3273 void
checkPredicate(Instruction * insn)3274 NVC0LoweringPass::checkPredicate(Instruction *insn)
3275 {
3276    Value *pred = insn->getPredicate();
3277    Value *pdst;
3278 
3279    if (!pred || pred->reg.file == FILE_PREDICATE)
3280       return;
3281    pdst = new_LValue(func, FILE_PREDICATE);
3282 
3283    // CAUTION: don't use pdst->getInsn, the definition might not be unique,
3284    //  delay turning PSET(FSET(x,y),0) into PSET(x,y) to a later pass
3285 
3286    bld.mkCmp(OP_SET, CC_NEU, insn->dType, pdst, insn->dType, bld.mkImm(0), pred);
3287 
3288    insn->setPredicate(insn->cc, pdst);
3289 }
3290 
3291 //
3292 // - add quadop dance for texturing
3293 // - put FP outputs in GPRs
3294 // - convert instruction sequences
3295 //
3296 bool
visit(Instruction * i)3297 NVC0LoweringPass::visit(Instruction *i)
3298 {
3299    bool ret = true;
3300    bld.setPosition(i, false);
3301 
3302    if (i->cc != CC_ALWAYS)
3303       checkPredicate(i);
3304 
3305    switch (i->op) {
3306    case OP_TEX:
3307    case OP_TXB:
3308    case OP_TXL:
3309    case OP_TXF:
3310    case OP_TXG:
3311       return handleTEX(i->asTex());
3312    case OP_TXD:
3313       return handleTXD(i->asTex());
3314    case OP_TXLQ:
3315       return handleTXLQ(i->asTex());
3316    case OP_TXQ:
3317      return handleTXQ(i->asTex());
3318    case OP_EX2:
3319       bld.mkOp1(OP_PREEX2, TYPE_F32, i->getDef(0), i->getSrc(0));
3320       i->setSrc(0, i->getDef(0));
3321       break;
3322    case OP_POW:
3323       return handlePOW(i);
3324    case OP_DIV:
3325       return handleDIV(i);
3326    case OP_MOD:
3327       return handleMOD(i);
3328    case OP_SQRT:
3329       return handleSQRT(i);
3330    case OP_EXPORT:
3331       ret = handleEXPORT(i);
3332       break;
3333    case OP_EMIT:
3334    case OP_RESTART:
3335       return handleOUT(i);
3336    case OP_RDSV:
3337       return handleRDSV(i);
3338    case OP_WRSV:
3339       return handleWRSV(i);
3340    case OP_STORE:
3341    case OP_LOAD:
3342       handleLDST(i);
3343       break;
3344    case OP_ATOM:
3345    {
3346       const bool cctl = i->src(0).getFile() == FILE_MEMORY_BUFFER;
3347       handleATOM(i);
3348       handleCasExch(i, cctl);
3349    }
3350       break;
3351    case OP_SULDB:
3352    case OP_SULDP:
3353    case OP_SUSTB:
3354    case OP_SUSTP:
3355    case OP_SUREDB:
3356    case OP_SUREDP:
3357       if (targ->getChipset() >= NVISA_GM107_CHIPSET)
3358          handleSurfaceOpGM107(i->asTex());
3359       else if (targ->getChipset() >= NVISA_GK104_CHIPSET)
3360          handleSurfaceOpNVE4(i->asTex());
3361       else
3362          handleSurfaceOpNVC0(i->asTex());
3363       break;
3364    case OP_SUQ:
3365       handleSUQ(i->asTex());
3366       break;
3367    case OP_BUFQ:
3368       handleBUFQ(i);
3369       break;
3370    case OP_PIXLD:
3371       handlePIXLD(i);
3372       break;
3373    default:
3374       break;
3375    }
3376 
3377    /* Kepler+ has a special opcode to compute a new base address to be used
3378     * for indirect loads.
3379     *
3380     * Maxwell+ has an additional similar requirement for indirect
3381     * interpolation ops in frag shaders.
3382     */
3383    bool doAfetch = false;
3384    if (targ->getChipset() >= NVISA_GK104_CHIPSET &&
3385        !i->perPatch &&
3386        (i->op == OP_VFETCH || i->op == OP_EXPORT) &&
3387        i->src(0).isIndirect(0)) {
3388       doAfetch = true;
3389    }
3390    if (targ->getChipset() >= NVISA_GM107_CHIPSET &&
3391        (i->op == OP_LINTERP || i->op == OP_PINTERP) &&
3392        i->src(0).isIndirect(0)) {
3393       doAfetch = true;
3394    }
3395 
3396    if (doAfetch) {
3397       Value *addr = cloneShallow(func, i->getSrc(0));
3398       Instruction *afetch = bld.mkOp1(OP_AFETCH, TYPE_U32, bld.getSSA(),
3399                                       i->getSrc(0));
3400       afetch->setIndirect(0, 0, i->getIndirect(0, 0));
3401       addr->reg.data.offset = 0;
3402       i->setSrc(0, addr);
3403       i->setIndirect(0, 0, afetch->getDef(0));
3404    }
3405 
3406    return ret;
3407 }
3408 
3409 bool
runLegalizePass(Program * prog,CGStage stage) const3410 TargetNVC0::runLegalizePass(Program *prog, CGStage stage) const
3411 {
3412    if (stage == CG_STAGE_PRE_SSA) {
3413       NVC0LoweringPass pass(prog);
3414       return pass.run(prog, false, true);
3415    } else
3416    if (stage == CG_STAGE_POST_RA) {
3417       NVC0LegalizePostRA pass(prog);
3418       return pass.run(prog, false, true);
3419    } else
3420    if (stage == CG_STAGE_SSA) {
3421       NVC0LegalizeSSA pass;
3422       return pass.run(prog, false, true);
3423    }
3424    return false;
3425 }
3426 
3427 } // namespace nv50_ir
3428