• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Generic ring buffer
4  *
5  * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
6  */
7 #include <linux/trace_events.h>
8 #include <linux/ring_buffer.h>
9 #include <linux/trace_clock.h>
10 #include <linux/sched/clock.h>
11 #include <linux/trace_seq.h>
12 #include <linux/spinlock.h>
13 #include <linux/irq_work.h>
14 #include <linux/security.h>
15 #include <linux/uaccess.h>
16 #include <linux/hardirq.h>
17 #include <linux/kthread.h>	/* for self test */
18 #include <linux/module.h>
19 #include <linux/percpu.h>
20 #include <linux/mutex.h>
21 #include <linux/delay.h>
22 #include <linux/slab.h>
23 #include <linux/init.h>
24 #include <linux/hash.h>
25 #include <linux/list.h>
26 #include <linux/cpu.h>
27 #include <linux/oom.h>
28 
29 #include <asm/local.h>
30 
31 static void update_pages_handler(struct work_struct *work);
32 
33 /*
34  * The ring buffer header is special. We must manually up keep it.
35  */
ring_buffer_print_entry_header(struct trace_seq * s)36 int ring_buffer_print_entry_header(struct trace_seq *s)
37 {
38 	trace_seq_puts(s, "# compressed entry header\n");
39 	trace_seq_puts(s, "\ttype_len    :    5 bits\n");
40 	trace_seq_puts(s, "\ttime_delta  :   27 bits\n");
41 	trace_seq_puts(s, "\tarray       :   32 bits\n");
42 	trace_seq_putc(s, '\n');
43 	trace_seq_printf(s, "\tpadding     : type == %d\n",
44 			 RINGBUF_TYPE_PADDING);
45 	trace_seq_printf(s, "\ttime_extend : type == %d\n",
46 			 RINGBUF_TYPE_TIME_EXTEND);
47 	trace_seq_printf(s, "\ttime_stamp : type == %d\n",
48 			 RINGBUF_TYPE_TIME_STAMP);
49 	trace_seq_printf(s, "\tdata max type_len  == %d\n",
50 			 RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
51 
52 	return !trace_seq_has_overflowed(s);
53 }
54 
55 /*
56  * The ring buffer is made up of a list of pages. A separate list of pages is
57  * allocated for each CPU. A writer may only write to a buffer that is
58  * associated with the CPU it is currently executing on.  A reader may read
59  * from any per cpu buffer.
60  *
61  * The reader is special. For each per cpu buffer, the reader has its own
62  * reader page. When a reader has read the entire reader page, this reader
63  * page is swapped with another page in the ring buffer.
64  *
65  * Now, as long as the writer is off the reader page, the reader can do what
66  * ever it wants with that page. The writer will never write to that page
67  * again (as long as it is out of the ring buffer).
68  *
69  * Here's some silly ASCII art.
70  *
71  *   +------+
72  *   |reader|          RING BUFFER
73  *   |page  |
74  *   +------+        +---+   +---+   +---+
75  *                   |   |-->|   |-->|   |
76  *                   +---+   +---+   +---+
77  *                     ^               |
78  *                     |               |
79  *                     +---------------+
80  *
81  *
82  *   +------+
83  *   |reader|          RING BUFFER
84  *   |page  |------------------v
85  *   +------+        +---+   +---+   +---+
86  *                   |   |-->|   |-->|   |
87  *                   +---+   +---+   +---+
88  *                     ^               |
89  *                     |               |
90  *                     +---------------+
91  *
92  *
93  *   +------+
94  *   |reader|          RING BUFFER
95  *   |page  |------------------v
96  *   +------+        +---+   +---+   +---+
97  *      ^            |   |-->|   |-->|   |
98  *      |            +---+   +---+   +---+
99  *      |                              |
100  *      |                              |
101  *      +------------------------------+
102  *
103  *
104  *   +------+
105  *   |buffer|          RING BUFFER
106  *   |page  |------------------v
107  *   +------+        +---+   +---+   +---+
108  *      ^            |   |   |   |-->|   |
109  *      |   New      +---+   +---+   +---+
110  *      |  Reader------^               |
111  *      |   page                       |
112  *      +------------------------------+
113  *
114  *
115  * After we make this swap, the reader can hand this page off to the splice
116  * code and be done with it. It can even allocate a new page if it needs to
117  * and swap that into the ring buffer.
118  *
119  * We will be using cmpxchg soon to make all this lockless.
120  *
121  */
122 
123 /* Used for individual buffers (after the counter) */
124 #define RB_BUFFER_OFF		(1 << 20)
125 
126 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
127 
128 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
129 #define RB_ALIGNMENT		4U
130 #define RB_MAX_SMALL_DATA	(RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
131 #define RB_EVNT_MIN_SIZE	8U	/* two 32bit words */
132 
133 #ifndef CONFIG_HAVE_64BIT_ALIGNED_ACCESS
134 # define RB_FORCE_8BYTE_ALIGNMENT	0
135 # define RB_ARCH_ALIGNMENT		RB_ALIGNMENT
136 #else
137 # define RB_FORCE_8BYTE_ALIGNMENT	1
138 # define RB_ARCH_ALIGNMENT		8U
139 #endif
140 
141 #define RB_ALIGN_DATA		__aligned(RB_ARCH_ALIGNMENT)
142 
143 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
144 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
145 
146 enum {
147 	RB_LEN_TIME_EXTEND = 8,
148 	RB_LEN_TIME_STAMP =  8,
149 };
150 
151 #define skip_time_extend(event) \
152 	((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND))
153 
154 #define extended_time(event) \
155 	(event->type_len >= RINGBUF_TYPE_TIME_EXTEND)
156 
rb_null_event(struct ring_buffer_event * event)157 static inline int rb_null_event(struct ring_buffer_event *event)
158 {
159 	return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
160 }
161 
rb_event_set_padding(struct ring_buffer_event * event)162 static void rb_event_set_padding(struct ring_buffer_event *event)
163 {
164 	/* padding has a NULL time_delta */
165 	event->type_len = RINGBUF_TYPE_PADDING;
166 	event->time_delta = 0;
167 }
168 
169 static unsigned
rb_event_data_length(struct ring_buffer_event * event)170 rb_event_data_length(struct ring_buffer_event *event)
171 {
172 	unsigned length;
173 
174 	if (event->type_len)
175 		length = event->type_len * RB_ALIGNMENT;
176 	else
177 		length = event->array[0];
178 	return length + RB_EVNT_HDR_SIZE;
179 }
180 
181 /*
182  * Return the length of the given event. Will return
183  * the length of the time extend if the event is a
184  * time extend.
185  */
186 static inline unsigned
rb_event_length(struct ring_buffer_event * event)187 rb_event_length(struct ring_buffer_event *event)
188 {
189 	switch (event->type_len) {
190 	case RINGBUF_TYPE_PADDING:
191 		if (rb_null_event(event))
192 			/* undefined */
193 			return -1;
194 		return  event->array[0] + RB_EVNT_HDR_SIZE;
195 
196 	case RINGBUF_TYPE_TIME_EXTEND:
197 		return RB_LEN_TIME_EXTEND;
198 
199 	case RINGBUF_TYPE_TIME_STAMP:
200 		return RB_LEN_TIME_STAMP;
201 
202 	case RINGBUF_TYPE_DATA:
203 		return rb_event_data_length(event);
204 	default:
205 		WARN_ON_ONCE(1);
206 	}
207 	/* not hit */
208 	return 0;
209 }
210 
211 /*
212  * Return total length of time extend and data,
213  *   or just the event length for all other events.
214  */
215 static inline unsigned
rb_event_ts_length(struct ring_buffer_event * event)216 rb_event_ts_length(struct ring_buffer_event *event)
217 {
218 	unsigned len = 0;
219 
220 	if (extended_time(event)) {
221 		/* time extends include the data event after it */
222 		len = RB_LEN_TIME_EXTEND;
223 		event = skip_time_extend(event);
224 	}
225 	return len + rb_event_length(event);
226 }
227 
228 /**
229  * ring_buffer_event_length - return the length of the event
230  * @event: the event to get the length of
231  *
232  * Returns the size of the data load of a data event.
233  * If the event is something other than a data event, it
234  * returns the size of the event itself. With the exception
235  * of a TIME EXTEND, where it still returns the size of the
236  * data load of the data event after it.
237  */
ring_buffer_event_length(struct ring_buffer_event * event)238 unsigned ring_buffer_event_length(struct ring_buffer_event *event)
239 {
240 	unsigned length;
241 
242 	if (extended_time(event))
243 		event = skip_time_extend(event);
244 
245 	length = rb_event_length(event);
246 	if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
247 		return length;
248 	length -= RB_EVNT_HDR_SIZE;
249 	if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
250                 length -= sizeof(event->array[0]);
251 	return length;
252 }
253 EXPORT_SYMBOL_GPL(ring_buffer_event_length);
254 
255 /* inline for ring buffer fast paths */
256 static __always_inline void *
rb_event_data(struct ring_buffer_event * event)257 rb_event_data(struct ring_buffer_event *event)
258 {
259 	if (extended_time(event))
260 		event = skip_time_extend(event);
261 	WARN_ON_ONCE(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
262 	/* If length is in len field, then array[0] has the data */
263 	if (event->type_len)
264 		return (void *)&event->array[0];
265 	/* Otherwise length is in array[0] and array[1] has the data */
266 	return (void *)&event->array[1];
267 }
268 
269 /**
270  * ring_buffer_event_data - return the data of the event
271  * @event: the event to get the data from
272  */
ring_buffer_event_data(struct ring_buffer_event * event)273 void *ring_buffer_event_data(struct ring_buffer_event *event)
274 {
275 	return rb_event_data(event);
276 }
277 EXPORT_SYMBOL_GPL(ring_buffer_event_data);
278 
279 #define for_each_buffer_cpu(buffer, cpu)		\
280 	for_each_cpu(cpu, buffer->cpumask)
281 
282 #define for_each_online_buffer_cpu(buffer, cpu)		\
283 	for_each_cpu_and(cpu, buffer->cpumask, cpu_online_mask)
284 
285 #define TS_SHIFT	27
286 #define TS_MASK		((1ULL << TS_SHIFT) - 1)
287 #define TS_DELTA_TEST	(~TS_MASK)
288 
289 /**
290  * ring_buffer_event_time_stamp - return the event's extended timestamp
291  * @event: the event to get the timestamp of
292  *
293  * Returns the extended timestamp associated with a data event.
294  * An extended time_stamp is a 64-bit timestamp represented
295  * internally in a special way that makes the best use of space
296  * contained within a ring buffer event.  This function decodes
297  * it and maps it to a straight u64 value.
298  */
ring_buffer_event_time_stamp(struct ring_buffer_event * event)299 u64 ring_buffer_event_time_stamp(struct ring_buffer_event *event)
300 {
301 	u64 ts;
302 
303 	ts = event->array[0];
304 	ts <<= TS_SHIFT;
305 	ts += event->time_delta;
306 
307 	return ts;
308 }
309 
310 /* Flag when events were overwritten */
311 #define RB_MISSED_EVENTS	(1 << 31)
312 /* Missed count stored at end */
313 #define RB_MISSED_STORED	(1 << 30)
314 
315 struct buffer_data_page {
316 	u64		 time_stamp;	/* page time stamp */
317 	local_t		 commit;	/* write committed index */
318 	unsigned char	 data[] RB_ALIGN_DATA;	/* data of buffer page */
319 };
320 
321 /*
322  * Note, the buffer_page list must be first. The buffer pages
323  * are allocated in cache lines, which means that each buffer
324  * page will be at the beginning of a cache line, and thus
325  * the least significant bits will be zero. We use this to
326  * add flags in the list struct pointers, to make the ring buffer
327  * lockless.
328  */
329 struct buffer_page {
330 	struct list_head list;		/* list of buffer pages */
331 	local_t		 write;		/* index for next write */
332 	unsigned	 read;		/* index for next read */
333 	local_t		 entries;	/* entries on this page */
334 	unsigned long	 real_end;	/* real end of data */
335 	struct buffer_data_page *page;	/* Actual data page */
336 };
337 
338 /*
339  * The buffer page counters, write and entries, must be reset
340  * atomically when crossing page boundaries. To synchronize this
341  * update, two counters are inserted into the number. One is
342  * the actual counter for the write position or count on the page.
343  *
344  * The other is a counter of updaters. Before an update happens
345  * the update partition of the counter is incremented. This will
346  * allow the updater to update the counter atomically.
347  *
348  * The counter is 20 bits, and the state data is 12.
349  */
350 #define RB_WRITE_MASK		0xfffff
351 #define RB_WRITE_INTCNT		(1 << 20)
352 
rb_init_page(struct buffer_data_page * bpage)353 static void rb_init_page(struct buffer_data_page *bpage)
354 {
355 	local_set(&bpage->commit, 0);
356 }
357 
358 /*
359  * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
360  * this issue out.
361  */
free_buffer_page(struct buffer_page * bpage)362 static void free_buffer_page(struct buffer_page *bpage)
363 {
364 	free_page((unsigned long)bpage->page);
365 	kfree(bpage);
366 }
367 
368 /*
369  * We need to fit the time_stamp delta into 27 bits.
370  */
test_time_stamp(u64 delta)371 static inline int test_time_stamp(u64 delta)
372 {
373 	if (delta & TS_DELTA_TEST)
374 		return 1;
375 	return 0;
376 }
377 
378 #define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
379 
380 /* Max payload is BUF_PAGE_SIZE - header (8bytes) */
381 #define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
382 
ring_buffer_print_page_header(struct trace_seq * s)383 int ring_buffer_print_page_header(struct trace_seq *s)
384 {
385 	struct buffer_data_page field;
386 
387 	trace_seq_printf(s, "\tfield: u64 timestamp;\t"
388 			 "offset:0;\tsize:%u;\tsigned:%u;\n",
389 			 (unsigned int)sizeof(field.time_stamp),
390 			 (unsigned int)is_signed_type(u64));
391 
392 	trace_seq_printf(s, "\tfield: local_t commit;\t"
393 			 "offset:%u;\tsize:%u;\tsigned:%u;\n",
394 			 (unsigned int)offsetof(typeof(field), commit),
395 			 (unsigned int)sizeof(field.commit),
396 			 (unsigned int)is_signed_type(long));
397 
398 	trace_seq_printf(s, "\tfield: int overwrite;\t"
399 			 "offset:%u;\tsize:%u;\tsigned:%u;\n",
400 			 (unsigned int)offsetof(typeof(field), commit),
401 			 1,
402 			 (unsigned int)is_signed_type(long));
403 
404 	trace_seq_printf(s, "\tfield: char data;\t"
405 			 "offset:%u;\tsize:%u;\tsigned:%u;\n",
406 			 (unsigned int)offsetof(typeof(field), data),
407 			 (unsigned int)BUF_PAGE_SIZE,
408 			 (unsigned int)is_signed_type(char));
409 
410 	return !trace_seq_has_overflowed(s);
411 }
412 
413 struct rb_irq_work {
414 	struct irq_work			work;
415 	wait_queue_head_t		waiters;
416 	wait_queue_head_t		full_waiters;
417 	bool				waiters_pending;
418 	bool				full_waiters_pending;
419 	bool				wakeup_full;
420 };
421 
422 /*
423  * Structure to hold event state and handle nested events.
424  */
425 struct rb_event_info {
426 	u64			ts;
427 	u64			delta;
428 	u64			before;
429 	u64			after;
430 	unsigned long		length;
431 	struct buffer_page	*tail_page;
432 	int			add_timestamp;
433 };
434 
435 /*
436  * Used for the add_timestamp
437  *  NONE
438  *  EXTEND - wants a time extend
439  *  ABSOLUTE - the buffer requests all events to have absolute time stamps
440  *  FORCE - force a full time stamp.
441  */
442 enum {
443 	RB_ADD_STAMP_NONE		= 0,
444 	RB_ADD_STAMP_EXTEND		= BIT(1),
445 	RB_ADD_STAMP_ABSOLUTE		= BIT(2),
446 	RB_ADD_STAMP_FORCE		= BIT(3)
447 };
448 /*
449  * Used for which event context the event is in.
450  *  TRANSITION = 0
451  *  NMI     = 1
452  *  IRQ     = 2
453  *  SOFTIRQ = 3
454  *  NORMAL  = 4
455  *
456  * See trace_recursive_lock() comment below for more details.
457  */
458 enum {
459 	RB_CTX_TRANSITION,
460 	RB_CTX_NMI,
461 	RB_CTX_IRQ,
462 	RB_CTX_SOFTIRQ,
463 	RB_CTX_NORMAL,
464 	RB_CTX_MAX
465 };
466 
467 #if BITS_PER_LONG == 32
468 #define RB_TIME_32
469 #endif
470 
471 /* To test on 64 bit machines */
472 //#define RB_TIME_32
473 
474 #ifdef RB_TIME_32
475 
476 struct rb_time_struct {
477 	local_t		cnt;
478 	local_t		top;
479 	local_t		bottom;
480 };
481 #else
482 #include <asm/local64.h>
483 struct rb_time_struct {
484 	local64_t	time;
485 };
486 #endif
487 typedef struct rb_time_struct rb_time_t;
488 
489 /*
490  * head_page == tail_page && head == tail then buffer is empty.
491  */
492 struct ring_buffer_per_cpu {
493 	int				cpu;
494 	atomic_t			record_disabled;
495 	atomic_t			resize_disabled;
496 	struct trace_buffer	*buffer;
497 	raw_spinlock_t			reader_lock;	/* serialize readers */
498 	arch_spinlock_t			lock;
499 	struct lock_class_key		lock_key;
500 	struct buffer_data_page		*free_page;
501 	unsigned long			nr_pages;
502 	unsigned int			current_context;
503 	struct list_head		*pages;
504 	struct buffer_page		*head_page;	/* read from head */
505 	struct buffer_page		*tail_page;	/* write to tail */
506 	struct buffer_page		*commit_page;	/* committed pages */
507 	struct buffer_page		*reader_page;
508 	unsigned long			lost_events;
509 	unsigned long			last_overrun;
510 	unsigned long			nest;
511 	local_t				entries_bytes;
512 	local_t				entries;
513 	local_t				overrun;
514 	local_t				commit_overrun;
515 	local_t				dropped_events;
516 	local_t				committing;
517 	local_t				commits;
518 	local_t				pages_touched;
519 	local_t				pages_read;
520 	long				last_pages_touch;
521 	size_t				shortest_full;
522 	unsigned long			read;
523 	unsigned long			read_bytes;
524 	rb_time_t			write_stamp;
525 	rb_time_t			before_stamp;
526 	u64				read_stamp;
527 	/* ring buffer pages to update, > 0 to add, < 0 to remove */
528 	long				nr_pages_to_update;
529 	struct list_head		new_pages; /* new pages to add */
530 	struct work_struct		update_pages_work;
531 	struct completion		update_done;
532 
533 	struct rb_irq_work		irq_work;
534 };
535 
536 struct trace_buffer {
537 	unsigned			flags;
538 	int				cpus;
539 	atomic_t			record_disabled;
540 	cpumask_var_t			cpumask;
541 
542 	struct lock_class_key		*reader_lock_key;
543 
544 	struct mutex			mutex;
545 
546 	struct ring_buffer_per_cpu	**buffers;
547 
548 	struct hlist_node		node;
549 	u64				(*clock)(void);
550 
551 	struct rb_irq_work		irq_work;
552 	bool				time_stamp_abs;
553 };
554 
555 struct ring_buffer_iter {
556 	struct ring_buffer_per_cpu	*cpu_buffer;
557 	unsigned long			head;
558 	unsigned long			next_event;
559 	struct buffer_page		*head_page;
560 	struct buffer_page		*cache_reader_page;
561 	unsigned long			cache_read;
562 	u64				read_stamp;
563 	u64				page_stamp;
564 	struct ring_buffer_event	*event;
565 	int				missed_events;
566 };
567 
568 #ifdef RB_TIME_32
569 
570 /*
571  * On 32 bit machines, local64_t is very expensive. As the ring
572  * buffer doesn't need all the features of a true 64 bit atomic,
573  * on 32 bit, it uses these functions (64 still uses local64_t).
574  *
575  * For the ring buffer, 64 bit required operations for the time is
576  * the following:
577  *
578  *  - Only need 59 bits (uses 60 to make it even).
579  *  - Reads may fail if it interrupted a modification of the time stamp.
580  *      It will succeed if it did not interrupt another write even if
581  *      the read itself is interrupted by a write.
582  *      It returns whether it was successful or not.
583  *
584  *  - Writes always succeed and will overwrite other writes and writes
585  *      that were done by events interrupting the current write.
586  *
587  *  - A write followed by a read of the same time stamp will always succeed,
588  *      but may not contain the same value.
589  *
590  *  - A cmpxchg will fail if it interrupted another write or cmpxchg.
591  *      Other than that, it acts like a normal cmpxchg.
592  *
593  * The 60 bit time stamp is broken up by 30 bits in a top and bottom half
594  *  (bottom being the least significant 30 bits of the 60 bit time stamp).
595  *
596  * The two most significant bits of each half holds a 2 bit counter (0-3).
597  * Each update will increment this counter by one.
598  * When reading the top and bottom, if the two counter bits match then the
599  *  top and bottom together make a valid 60 bit number.
600  */
601 #define RB_TIME_SHIFT	30
602 #define RB_TIME_VAL_MASK ((1 << RB_TIME_SHIFT) - 1)
603 
rb_time_cnt(unsigned long val)604 static inline int rb_time_cnt(unsigned long val)
605 {
606 	return (val >> RB_TIME_SHIFT) & 3;
607 }
608 
rb_time_val(unsigned long top,unsigned long bottom)609 static inline u64 rb_time_val(unsigned long top, unsigned long bottom)
610 {
611 	u64 val;
612 
613 	val = top & RB_TIME_VAL_MASK;
614 	val <<= RB_TIME_SHIFT;
615 	val |= bottom & RB_TIME_VAL_MASK;
616 
617 	return val;
618 }
619 
__rb_time_read(rb_time_t * t,u64 * ret,unsigned long * cnt)620 static inline bool __rb_time_read(rb_time_t *t, u64 *ret, unsigned long *cnt)
621 {
622 	unsigned long top, bottom;
623 	unsigned long c;
624 
625 	/*
626 	 * If the read is interrupted by a write, then the cnt will
627 	 * be different. Loop until both top and bottom have been read
628 	 * without interruption.
629 	 */
630 	do {
631 		c = local_read(&t->cnt);
632 		top = local_read(&t->top);
633 		bottom = local_read(&t->bottom);
634 	} while (c != local_read(&t->cnt));
635 
636 	*cnt = rb_time_cnt(top);
637 
638 	/* If top and bottom counts don't match, this interrupted a write */
639 	if (*cnt != rb_time_cnt(bottom))
640 		return false;
641 
642 	*ret = rb_time_val(top, bottom);
643 	return true;
644 }
645 
rb_time_read(rb_time_t * t,u64 * ret)646 static bool rb_time_read(rb_time_t *t, u64 *ret)
647 {
648 	unsigned long cnt;
649 
650 	return __rb_time_read(t, ret, &cnt);
651 }
652 
rb_time_val_cnt(unsigned long val,unsigned long cnt)653 static inline unsigned long rb_time_val_cnt(unsigned long val, unsigned long cnt)
654 {
655 	return (val & RB_TIME_VAL_MASK) | ((cnt & 3) << RB_TIME_SHIFT);
656 }
657 
rb_time_split(u64 val,unsigned long * top,unsigned long * bottom)658 static inline void rb_time_split(u64 val, unsigned long *top, unsigned long *bottom)
659 {
660 	*top = (unsigned long)((val >> RB_TIME_SHIFT) & RB_TIME_VAL_MASK);
661 	*bottom = (unsigned long)(val & RB_TIME_VAL_MASK);
662 }
663 
rb_time_val_set(local_t * t,unsigned long val,unsigned long cnt)664 static inline void rb_time_val_set(local_t *t, unsigned long val, unsigned long cnt)
665 {
666 	val = rb_time_val_cnt(val, cnt);
667 	local_set(t, val);
668 }
669 
rb_time_set(rb_time_t * t,u64 val)670 static void rb_time_set(rb_time_t *t, u64 val)
671 {
672 	unsigned long cnt, top, bottom;
673 
674 	rb_time_split(val, &top, &bottom);
675 
676 	/* Writes always succeed with a valid number even if it gets interrupted. */
677 	do {
678 		cnt = local_inc_return(&t->cnt);
679 		rb_time_val_set(&t->top, top, cnt);
680 		rb_time_val_set(&t->bottom, bottom, cnt);
681 	} while (cnt != local_read(&t->cnt));
682 }
683 
684 static inline bool
rb_time_read_cmpxchg(local_t * l,unsigned long expect,unsigned long set)685 rb_time_read_cmpxchg(local_t *l, unsigned long expect, unsigned long set)
686 {
687 	unsigned long ret;
688 
689 	ret = local_cmpxchg(l, expect, set);
690 	return ret == expect;
691 }
692 
rb_time_cmpxchg(rb_time_t * t,u64 expect,u64 set)693 static int rb_time_cmpxchg(rb_time_t *t, u64 expect, u64 set)
694 {
695 	unsigned long cnt, top, bottom;
696 	unsigned long cnt2, top2, bottom2;
697 	u64 val;
698 
699 	/* The cmpxchg always fails if it interrupted an update */
700 	 if (!__rb_time_read(t, &val, &cnt2))
701 		 return false;
702 
703 	 if (val != expect)
704 		 return false;
705 
706 	 cnt = local_read(&t->cnt);
707 	 if ((cnt & 3) != cnt2)
708 		 return false;
709 
710 	 cnt2 = cnt + 1;
711 
712 	 rb_time_split(val, &top, &bottom);
713 	 top = rb_time_val_cnt(top, cnt);
714 	 bottom = rb_time_val_cnt(bottom, cnt);
715 
716 	 rb_time_split(set, &top2, &bottom2);
717 	 top2 = rb_time_val_cnt(top2, cnt2);
718 	 bottom2 = rb_time_val_cnt(bottom2, cnt2);
719 
720 	if (!rb_time_read_cmpxchg(&t->cnt, cnt, cnt2))
721 		return false;
722 	if (!rb_time_read_cmpxchg(&t->top, top, top2))
723 		return false;
724 	if (!rb_time_read_cmpxchg(&t->bottom, bottom, bottom2))
725 		return false;
726 	return true;
727 }
728 
729 #else /* 64 bits */
730 
731 /* local64_t always succeeds */
732 
rb_time_read(rb_time_t * t,u64 * ret)733 static inline bool rb_time_read(rb_time_t *t, u64 *ret)
734 {
735 	*ret = local64_read(&t->time);
736 	return true;
737 }
rb_time_set(rb_time_t * t,u64 val)738 static void rb_time_set(rb_time_t *t, u64 val)
739 {
740 	local64_set(&t->time, val);
741 }
742 
rb_time_cmpxchg(rb_time_t * t,u64 expect,u64 set)743 static bool rb_time_cmpxchg(rb_time_t *t, u64 expect, u64 set)
744 {
745 	u64 val;
746 	val = local64_cmpxchg(&t->time, expect, set);
747 	return val == expect;
748 }
749 #endif
750 
751 /**
752  * ring_buffer_nr_pages - get the number of buffer pages in the ring buffer
753  * @buffer: The ring_buffer to get the number of pages from
754  * @cpu: The cpu of the ring_buffer to get the number of pages from
755  *
756  * Returns the number of pages used by a per_cpu buffer of the ring buffer.
757  */
ring_buffer_nr_pages(struct trace_buffer * buffer,int cpu)758 size_t ring_buffer_nr_pages(struct trace_buffer *buffer, int cpu)
759 {
760 	return buffer->buffers[cpu]->nr_pages;
761 }
762 
763 /**
764  * ring_buffer_nr_pages_dirty - get the number of used pages in the ring buffer
765  * @buffer: The ring_buffer to get the number of pages from
766  * @cpu: The cpu of the ring_buffer to get the number of pages from
767  *
768  * Returns the number of pages that have content in the ring buffer.
769  */
ring_buffer_nr_dirty_pages(struct trace_buffer * buffer,int cpu)770 size_t ring_buffer_nr_dirty_pages(struct trace_buffer *buffer, int cpu)
771 {
772 	size_t read;
773 	size_t cnt;
774 
775 	read = local_read(&buffer->buffers[cpu]->pages_read);
776 	cnt = local_read(&buffer->buffers[cpu]->pages_touched);
777 	/* The reader can read an empty page, but not more than that */
778 	if (cnt < read) {
779 		WARN_ON_ONCE(read > cnt + 1);
780 		return 0;
781 	}
782 
783 	return cnt - read;
784 }
785 
786 /*
787  * rb_wake_up_waiters - wake up tasks waiting for ring buffer input
788  *
789  * Schedules a delayed work to wake up any task that is blocked on the
790  * ring buffer waiters queue.
791  */
rb_wake_up_waiters(struct irq_work * work)792 static void rb_wake_up_waiters(struct irq_work *work)
793 {
794 	struct rb_irq_work *rbwork = container_of(work, struct rb_irq_work, work);
795 
796 	wake_up_all(&rbwork->waiters);
797 	if (rbwork->wakeup_full) {
798 		rbwork->wakeup_full = false;
799 		wake_up_all(&rbwork->full_waiters);
800 	}
801 }
802 
803 /**
804  * ring_buffer_wait - wait for input to the ring buffer
805  * @buffer: buffer to wait on
806  * @cpu: the cpu buffer to wait on
807  * @full: wait until the percentage of pages are available, if @cpu != RING_BUFFER_ALL_CPUS
808  *
809  * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
810  * as data is added to any of the @buffer's cpu buffers. Otherwise
811  * it will wait for data to be added to a specific cpu buffer.
812  */
ring_buffer_wait(struct trace_buffer * buffer,int cpu,int full)813 int ring_buffer_wait(struct trace_buffer *buffer, int cpu, int full)
814 {
815 	struct ring_buffer_per_cpu *cpu_buffer;
816 	DEFINE_WAIT(wait);
817 	struct rb_irq_work *work;
818 	int ret = 0;
819 
820 	/*
821 	 * Depending on what the caller is waiting for, either any
822 	 * data in any cpu buffer, or a specific buffer, put the
823 	 * caller on the appropriate wait queue.
824 	 */
825 	if (cpu == RING_BUFFER_ALL_CPUS) {
826 		work = &buffer->irq_work;
827 		/* Full only makes sense on per cpu reads */
828 		full = 0;
829 	} else {
830 		if (!cpumask_test_cpu(cpu, buffer->cpumask))
831 			return -ENODEV;
832 		cpu_buffer = buffer->buffers[cpu];
833 		work = &cpu_buffer->irq_work;
834 	}
835 
836 
837 	while (true) {
838 		if (full)
839 			prepare_to_wait(&work->full_waiters, &wait, TASK_INTERRUPTIBLE);
840 		else
841 			prepare_to_wait(&work->waiters, &wait, TASK_INTERRUPTIBLE);
842 
843 		/*
844 		 * The events can happen in critical sections where
845 		 * checking a work queue can cause deadlocks.
846 		 * After adding a task to the queue, this flag is set
847 		 * only to notify events to try to wake up the queue
848 		 * using irq_work.
849 		 *
850 		 * We don't clear it even if the buffer is no longer
851 		 * empty. The flag only causes the next event to run
852 		 * irq_work to do the work queue wake up. The worse
853 		 * that can happen if we race with !trace_empty() is that
854 		 * an event will cause an irq_work to try to wake up
855 		 * an empty queue.
856 		 *
857 		 * There's no reason to protect this flag either, as
858 		 * the work queue and irq_work logic will do the necessary
859 		 * synchronization for the wake ups. The only thing
860 		 * that is necessary is that the wake up happens after
861 		 * a task has been queued. It's OK for spurious wake ups.
862 		 */
863 		if (full)
864 			work->full_waiters_pending = true;
865 		else
866 			work->waiters_pending = true;
867 
868 		if (signal_pending(current)) {
869 			ret = -EINTR;
870 			break;
871 		}
872 
873 		if (cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer))
874 			break;
875 
876 		if (cpu != RING_BUFFER_ALL_CPUS &&
877 		    !ring_buffer_empty_cpu(buffer, cpu)) {
878 			unsigned long flags;
879 			bool pagebusy;
880 			size_t nr_pages;
881 			size_t dirty;
882 
883 			if (!full)
884 				break;
885 
886 			raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
887 			pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page;
888 			nr_pages = cpu_buffer->nr_pages;
889 			dirty = ring_buffer_nr_dirty_pages(buffer, cpu);
890 			if (!cpu_buffer->shortest_full ||
891 			    cpu_buffer->shortest_full < full)
892 				cpu_buffer->shortest_full = full;
893 			raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
894 			if (!pagebusy &&
895 			    (!nr_pages || (dirty * 100) > full * nr_pages))
896 				break;
897 		}
898 
899 		schedule();
900 	}
901 
902 	if (full)
903 		finish_wait(&work->full_waiters, &wait);
904 	else
905 		finish_wait(&work->waiters, &wait);
906 
907 	return ret;
908 }
909 
910 /**
911  * ring_buffer_poll_wait - poll on buffer input
912  * @buffer: buffer to wait on
913  * @cpu: the cpu buffer to wait on
914  * @filp: the file descriptor
915  * @poll_table: The poll descriptor
916  *
917  * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
918  * as data is added to any of the @buffer's cpu buffers. Otherwise
919  * it will wait for data to be added to a specific cpu buffer.
920  *
921  * Returns EPOLLIN | EPOLLRDNORM if data exists in the buffers,
922  * zero otherwise.
923  */
ring_buffer_poll_wait(struct trace_buffer * buffer,int cpu,struct file * filp,poll_table * poll_table)924 __poll_t ring_buffer_poll_wait(struct trace_buffer *buffer, int cpu,
925 			  struct file *filp, poll_table *poll_table)
926 {
927 	struct ring_buffer_per_cpu *cpu_buffer;
928 	struct rb_irq_work *work;
929 
930 	if (cpu == RING_BUFFER_ALL_CPUS)
931 		work = &buffer->irq_work;
932 	else {
933 		if (!cpumask_test_cpu(cpu, buffer->cpumask))
934 			return -EINVAL;
935 
936 		cpu_buffer = buffer->buffers[cpu];
937 		work = &cpu_buffer->irq_work;
938 	}
939 
940 	poll_wait(filp, &work->waiters, poll_table);
941 	work->waiters_pending = true;
942 	/*
943 	 * There's a tight race between setting the waiters_pending and
944 	 * checking if the ring buffer is empty.  Once the waiters_pending bit
945 	 * is set, the next event will wake the task up, but we can get stuck
946 	 * if there's only a single event in.
947 	 *
948 	 * FIXME: Ideally, we need a memory barrier on the writer side as well,
949 	 * but adding a memory barrier to all events will cause too much of a
950 	 * performance hit in the fast path.  We only need a memory barrier when
951 	 * the buffer goes from empty to having content.  But as this race is
952 	 * extremely small, and it's not a problem if another event comes in, we
953 	 * will fix it later.
954 	 */
955 	smp_mb();
956 
957 	if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) ||
958 	    (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu)))
959 		return EPOLLIN | EPOLLRDNORM;
960 	return 0;
961 }
962 
963 /* buffer may be either ring_buffer or ring_buffer_per_cpu */
964 #define RB_WARN_ON(b, cond)						\
965 	({								\
966 		int _____ret = unlikely(cond);				\
967 		if (_____ret) {						\
968 			if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
969 				struct ring_buffer_per_cpu *__b =	\
970 					(void *)b;			\
971 				atomic_inc(&__b->buffer->record_disabled); \
972 			} else						\
973 				atomic_inc(&b->record_disabled);	\
974 			WARN_ON(1);					\
975 		}							\
976 		_____ret;						\
977 	})
978 
979 /* Up this if you want to test the TIME_EXTENTS and normalization */
980 #define DEBUG_SHIFT 0
981 
rb_time_stamp(struct trace_buffer * buffer)982 static inline u64 rb_time_stamp(struct trace_buffer *buffer)
983 {
984 	u64 ts;
985 
986 	/* Skip retpolines :-( */
987 	if (IS_ENABLED(CONFIG_RETPOLINE) && likely(buffer->clock == trace_clock_local))
988 		ts = trace_clock_local();
989 	else
990 		ts = buffer->clock();
991 
992 	/* shift to debug/test normalization and TIME_EXTENTS */
993 	return ts << DEBUG_SHIFT;
994 }
995 
ring_buffer_time_stamp(struct trace_buffer * buffer,int cpu)996 u64 ring_buffer_time_stamp(struct trace_buffer *buffer, int cpu)
997 {
998 	u64 time;
999 
1000 	preempt_disable_notrace();
1001 	time = rb_time_stamp(buffer);
1002 	preempt_enable_notrace();
1003 
1004 	return time;
1005 }
1006 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
1007 
ring_buffer_normalize_time_stamp(struct trace_buffer * buffer,int cpu,u64 * ts)1008 void ring_buffer_normalize_time_stamp(struct trace_buffer *buffer,
1009 				      int cpu, u64 *ts)
1010 {
1011 	/* Just stupid testing the normalize function and deltas */
1012 	*ts >>= DEBUG_SHIFT;
1013 }
1014 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
1015 
1016 /*
1017  * Making the ring buffer lockless makes things tricky.
1018  * Although writes only happen on the CPU that they are on,
1019  * and they only need to worry about interrupts. Reads can
1020  * happen on any CPU.
1021  *
1022  * The reader page is always off the ring buffer, but when the
1023  * reader finishes with a page, it needs to swap its page with
1024  * a new one from the buffer. The reader needs to take from
1025  * the head (writes go to the tail). But if a writer is in overwrite
1026  * mode and wraps, it must push the head page forward.
1027  *
1028  * Here lies the problem.
1029  *
1030  * The reader must be careful to replace only the head page, and
1031  * not another one. As described at the top of the file in the
1032  * ASCII art, the reader sets its old page to point to the next
1033  * page after head. It then sets the page after head to point to
1034  * the old reader page. But if the writer moves the head page
1035  * during this operation, the reader could end up with the tail.
1036  *
1037  * We use cmpxchg to help prevent this race. We also do something
1038  * special with the page before head. We set the LSB to 1.
1039  *
1040  * When the writer must push the page forward, it will clear the
1041  * bit that points to the head page, move the head, and then set
1042  * the bit that points to the new head page.
1043  *
1044  * We also don't want an interrupt coming in and moving the head
1045  * page on another writer. Thus we use the second LSB to catch
1046  * that too. Thus:
1047  *
1048  * head->list->prev->next        bit 1          bit 0
1049  *                              -------        -------
1050  * Normal page                     0              0
1051  * Points to head page             0              1
1052  * New head page                   1              0
1053  *
1054  * Note we can not trust the prev pointer of the head page, because:
1055  *
1056  * +----+       +-----+        +-----+
1057  * |    |------>|  T  |---X--->|  N  |
1058  * |    |<------|     |        |     |
1059  * +----+       +-----+        +-----+
1060  *   ^                           ^ |
1061  *   |          +-----+          | |
1062  *   +----------|  R  |----------+ |
1063  *              |     |<-----------+
1064  *              +-----+
1065  *
1066  * Key:  ---X-->  HEAD flag set in pointer
1067  *         T      Tail page
1068  *         R      Reader page
1069  *         N      Next page
1070  *
1071  * (see __rb_reserve_next() to see where this happens)
1072  *
1073  *  What the above shows is that the reader just swapped out
1074  *  the reader page with a page in the buffer, but before it
1075  *  could make the new header point back to the new page added
1076  *  it was preempted by a writer. The writer moved forward onto
1077  *  the new page added by the reader and is about to move forward
1078  *  again.
1079  *
1080  *  You can see, it is legitimate for the previous pointer of
1081  *  the head (or any page) not to point back to itself. But only
1082  *  temporarily.
1083  */
1084 
1085 #define RB_PAGE_NORMAL		0UL
1086 #define RB_PAGE_HEAD		1UL
1087 #define RB_PAGE_UPDATE		2UL
1088 
1089 
1090 #define RB_FLAG_MASK		3UL
1091 
1092 /* PAGE_MOVED is not part of the mask */
1093 #define RB_PAGE_MOVED		4UL
1094 
1095 /*
1096  * rb_list_head - remove any bit
1097  */
rb_list_head(struct list_head * list)1098 static struct list_head *rb_list_head(struct list_head *list)
1099 {
1100 	unsigned long val = (unsigned long)list;
1101 
1102 	return (struct list_head *)(val & ~RB_FLAG_MASK);
1103 }
1104 
1105 /*
1106  * rb_is_head_page - test if the given page is the head page
1107  *
1108  * Because the reader may move the head_page pointer, we can
1109  * not trust what the head page is (it may be pointing to
1110  * the reader page). But if the next page is a header page,
1111  * its flags will be non zero.
1112  */
1113 static inline int
rb_is_head_page(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page * page,struct list_head * list)1114 rb_is_head_page(struct ring_buffer_per_cpu *cpu_buffer,
1115 		struct buffer_page *page, struct list_head *list)
1116 {
1117 	unsigned long val;
1118 
1119 	val = (unsigned long)list->next;
1120 
1121 	if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
1122 		return RB_PAGE_MOVED;
1123 
1124 	return val & RB_FLAG_MASK;
1125 }
1126 
1127 /*
1128  * rb_is_reader_page
1129  *
1130  * The unique thing about the reader page, is that, if the
1131  * writer is ever on it, the previous pointer never points
1132  * back to the reader page.
1133  */
rb_is_reader_page(struct buffer_page * page)1134 static bool rb_is_reader_page(struct buffer_page *page)
1135 {
1136 	struct list_head *list = page->list.prev;
1137 
1138 	return rb_list_head(list->next) != &page->list;
1139 }
1140 
1141 /*
1142  * rb_set_list_to_head - set a list_head to be pointing to head.
1143  */
rb_set_list_to_head(struct ring_buffer_per_cpu * cpu_buffer,struct list_head * list)1144 static void rb_set_list_to_head(struct ring_buffer_per_cpu *cpu_buffer,
1145 				struct list_head *list)
1146 {
1147 	unsigned long *ptr;
1148 
1149 	ptr = (unsigned long *)&list->next;
1150 	*ptr |= RB_PAGE_HEAD;
1151 	*ptr &= ~RB_PAGE_UPDATE;
1152 }
1153 
1154 /*
1155  * rb_head_page_activate - sets up head page
1156  */
rb_head_page_activate(struct ring_buffer_per_cpu * cpu_buffer)1157 static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
1158 {
1159 	struct buffer_page *head;
1160 
1161 	head = cpu_buffer->head_page;
1162 	if (!head)
1163 		return;
1164 
1165 	/*
1166 	 * Set the previous list pointer to have the HEAD flag.
1167 	 */
1168 	rb_set_list_to_head(cpu_buffer, head->list.prev);
1169 }
1170 
rb_list_head_clear(struct list_head * list)1171 static void rb_list_head_clear(struct list_head *list)
1172 {
1173 	unsigned long *ptr = (unsigned long *)&list->next;
1174 
1175 	*ptr &= ~RB_FLAG_MASK;
1176 }
1177 
1178 /*
1179  * rb_head_page_deactivate - clears head page ptr (for free list)
1180  */
1181 static void
rb_head_page_deactivate(struct ring_buffer_per_cpu * cpu_buffer)1182 rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
1183 {
1184 	struct list_head *hd;
1185 
1186 	/* Go through the whole list and clear any pointers found. */
1187 	rb_list_head_clear(cpu_buffer->pages);
1188 
1189 	list_for_each(hd, cpu_buffer->pages)
1190 		rb_list_head_clear(hd);
1191 }
1192 
rb_head_page_set(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page * head,struct buffer_page * prev,int old_flag,int new_flag)1193 static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
1194 			    struct buffer_page *head,
1195 			    struct buffer_page *prev,
1196 			    int old_flag, int new_flag)
1197 {
1198 	struct list_head *list;
1199 	unsigned long val = (unsigned long)&head->list;
1200 	unsigned long ret;
1201 
1202 	list = &prev->list;
1203 
1204 	val &= ~RB_FLAG_MASK;
1205 
1206 	ret = cmpxchg((unsigned long *)&list->next,
1207 		      val | old_flag, val | new_flag);
1208 
1209 	/* check if the reader took the page */
1210 	if ((ret & ~RB_FLAG_MASK) != val)
1211 		return RB_PAGE_MOVED;
1212 
1213 	return ret & RB_FLAG_MASK;
1214 }
1215 
rb_head_page_set_update(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page * head,struct buffer_page * prev,int old_flag)1216 static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
1217 				   struct buffer_page *head,
1218 				   struct buffer_page *prev,
1219 				   int old_flag)
1220 {
1221 	return rb_head_page_set(cpu_buffer, head, prev,
1222 				old_flag, RB_PAGE_UPDATE);
1223 }
1224 
rb_head_page_set_head(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page * head,struct buffer_page * prev,int old_flag)1225 static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
1226 				 struct buffer_page *head,
1227 				 struct buffer_page *prev,
1228 				 int old_flag)
1229 {
1230 	return rb_head_page_set(cpu_buffer, head, prev,
1231 				old_flag, RB_PAGE_HEAD);
1232 }
1233 
rb_head_page_set_normal(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page * head,struct buffer_page * prev,int old_flag)1234 static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
1235 				   struct buffer_page *head,
1236 				   struct buffer_page *prev,
1237 				   int old_flag)
1238 {
1239 	return rb_head_page_set(cpu_buffer, head, prev,
1240 				old_flag, RB_PAGE_NORMAL);
1241 }
1242 
rb_inc_page(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page ** bpage)1243 static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
1244 			       struct buffer_page **bpage)
1245 {
1246 	struct list_head *p = rb_list_head((*bpage)->list.next);
1247 
1248 	*bpage = list_entry(p, struct buffer_page, list);
1249 }
1250 
1251 static struct buffer_page *
rb_set_head_page(struct ring_buffer_per_cpu * cpu_buffer)1252 rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
1253 {
1254 	struct buffer_page *head;
1255 	struct buffer_page *page;
1256 	struct list_head *list;
1257 	int i;
1258 
1259 	if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
1260 		return NULL;
1261 
1262 	/* sanity check */
1263 	list = cpu_buffer->pages;
1264 	if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
1265 		return NULL;
1266 
1267 	page = head = cpu_buffer->head_page;
1268 	/*
1269 	 * It is possible that the writer moves the header behind
1270 	 * where we started, and we miss in one loop.
1271 	 * A second loop should grab the header, but we'll do
1272 	 * three loops just because I'm paranoid.
1273 	 */
1274 	for (i = 0; i < 3; i++) {
1275 		do {
1276 			if (rb_is_head_page(cpu_buffer, page, page->list.prev)) {
1277 				cpu_buffer->head_page = page;
1278 				return page;
1279 			}
1280 			rb_inc_page(cpu_buffer, &page);
1281 		} while (page != head);
1282 	}
1283 
1284 	RB_WARN_ON(cpu_buffer, 1);
1285 
1286 	return NULL;
1287 }
1288 
rb_head_page_replace(struct buffer_page * old,struct buffer_page * new)1289 static int rb_head_page_replace(struct buffer_page *old,
1290 				struct buffer_page *new)
1291 {
1292 	unsigned long *ptr = (unsigned long *)&old->list.prev->next;
1293 	unsigned long val;
1294 	unsigned long ret;
1295 
1296 	val = *ptr & ~RB_FLAG_MASK;
1297 	val |= RB_PAGE_HEAD;
1298 
1299 	ret = cmpxchg(ptr, val, (unsigned long)&new->list);
1300 
1301 	return ret == val;
1302 }
1303 
1304 /*
1305  * rb_tail_page_update - move the tail page forward
1306  */
rb_tail_page_update(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page * tail_page,struct buffer_page * next_page)1307 static void rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
1308 			       struct buffer_page *tail_page,
1309 			       struct buffer_page *next_page)
1310 {
1311 	unsigned long old_entries;
1312 	unsigned long old_write;
1313 
1314 	/*
1315 	 * The tail page now needs to be moved forward.
1316 	 *
1317 	 * We need to reset the tail page, but without messing
1318 	 * with possible erasing of data brought in by interrupts
1319 	 * that have moved the tail page and are currently on it.
1320 	 *
1321 	 * We add a counter to the write field to denote this.
1322 	 */
1323 	old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
1324 	old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
1325 
1326 	local_inc(&cpu_buffer->pages_touched);
1327 	/*
1328 	 * Just make sure we have seen our old_write and synchronize
1329 	 * with any interrupts that come in.
1330 	 */
1331 	barrier();
1332 
1333 	/*
1334 	 * If the tail page is still the same as what we think
1335 	 * it is, then it is up to us to update the tail
1336 	 * pointer.
1337 	 */
1338 	if (tail_page == READ_ONCE(cpu_buffer->tail_page)) {
1339 		/* Zero the write counter */
1340 		unsigned long val = old_write & ~RB_WRITE_MASK;
1341 		unsigned long eval = old_entries & ~RB_WRITE_MASK;
1342 
1343 		/*
1344 		 * This will only succeed if an interrupt did
1345 		 * not come in and change it. In which case, we
1346 		 * do not want to modify it.
1347 		 *
1348 		 * We add (void) to let the compiler know that we do not care
1349 		 * about the return value of these functions. We use the
1350 		 * cmpxchg to only update if an interrupt did not already
1351 		 * do it for us. If the cmpxchg fails, we don't care.
1352 		 */
1353 		(void)local_cmpxchg(&next_page->write, old_write, val);
1354 		(void)local_cmpxchg(&next_page->entries, old_entries, eval);
1355 
1356 		/*
1357 		 * No need to worry about races with clearing out the commit.
1358 		 * it only can increment when a commit takes place. But that
1359 		 * only happens in the outer most nested commit.
1360 		 */
1361 		local_set(&next_page->page->commit, 0);
1362 
1363 		/* Again, either we update tail_page or an interrupt does */
1364 		(void)cmpxchg(&cpu_buffer->tail_page, tail_page, next_page);
1365 	}
1366 }
1367 
rb_check_bpage(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page * bpage)1368 static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
1369 			  struct buffer_page *bpage)
1370 {
1371 	unsigned long val = (unsigned long)bpage;
1372 
1373 	if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK))
1374 		return 1;
1375 
1376 	return 0;
1377 }
1378 
1379 /**
1380  * rb_check_list - make sure a pointer to a list has the last bits zero
1381  */
rb_check_list(struct ring_buffer_per_cpu * cpu_buffer,struct list_head * list)1382 static int rb_check_list(struct ring_buffer_per_cpu *cpu_buffer,
1383 			 struct list_head *list)
1384 {
1385 	if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev) != list->prev))
1386 		return 1;
1387 	if (RB_WARN_ON(cpu_buffer, rb_list_head(list->next) != list->next))
1388 		return 1;
1389 	return 0;
1390 }
1391 
1392 /**
1393  * rb_check_pages - integrity check of buffer pages
1394  * @cpu_buffer: CPU buffer with pages to test
1395  *
1396  * As a safety measure we check to make sure the data pages have not
1397  * been corrupted.
1398  */
rb_check_pages(struct ring_buffer_per_cpu * cpu_buffer)1399 static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
1400 {
1401 	struct list_head *head = cpu_buffer->pages;
1402 	struct buffer_page *bpage, *tmp;
1403 
1404 	/* Reset the head page if it exists */
1405 	if (cpu_buffer->head_page)
1406 		rb_set_head_page(cpu_buffer);
1407 
1408 	rb_head_page_deactivate(cpu_buffer);
1409 
1410 	if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
1411 		return -1;
1412 	if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
1413 		return -1;
1414 
1415 	if (rb_check_list(cpu_buffer, head))
1416 		return -1;
1417 
1418 	list_for_each_entry_safe(bpage, tmp, head, list) {
1419 		if (RB_WARN_ON(cpu_buffer,
1420 			       bpage->list.next->prev != &bpage->list))
1421 			return -1;
1422 		if (RB_WARN_ON(cpu_buffer,
1423 			       bpage->list.prev->next != &bpage->list))
1424 			return -1;
1425 		if (rb_check_list(cpu_buffer, &bpage->list))
1426 			return -1;
1427 	}
1428 
1429 	rb_head_page_activate(cpu_buffer);
1430 
1431 	return 0;
1432 }
1433 
__rb_allocate_pages(long nr_pages,struct list_head * pages,int cpu)1434 static int __rb_allocate_pages(long nr_pages, struct list_head *pages, int cpu)
1435 {
1436 	struct buffer_page *bpage, *tmp;
1437 	bool user_thread = current->mm != NULL;
1438 	gfp_t mflags;
1439 	long i;
1440 
1441 	/*
1442 	 * Check if the available memory is there first.
1443 	 * Note, si_mem_available() only gives us a rough estimate of available
1444 	 * memory. It may not be accurate. But we don't care, we just want
1445 	 * to prevent doing any allocation when it is obvious that it is
1446 	 * not going to succeed.
1447 	 */
1448 	i = si_mem_available();
1449 	if (i < nr_pages)
1450 		return -ENOMEM;
1451 
1452 	/*
1453 	 * __GFP_RETRY_MAYFAIL flag makes sure that the allocation fails
1454 	 * gracefully without invoking oom-killer and the system is not
1455 	 * destabilized.
1456 	 */
1457 	mflags = GFP_KERNEL | __GFP_RETRY_MAYFAIL;
1458 
1459 	/*
1460 	 * If a user thread allocates too much, and si_mem_available()
1461 	 * reports there's enough memory, even though there is not.
1462 	 * Make sure the OOM killer kills this thread. This can happen
1463 	 * even with RETRY_MAYFAIL because another task may be doing
1464 	 * an allocation after this task has taken all memory.
1465 	 * This is the task the OOM killer needs to take out during this
1466 	 * loop, even if it was triggered by an allocation somewhere else.
1467 	 */
1468 	if (user_thread)
1469 		set_current_oom_origin();
1470 	for (i = 0; i < nr_pages; i++) {
1471 		struct page *page;
1472 
1473 		bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1474 				    mflags, cpu_to_node(cpu));
1475 		if (!bpage)
1476 			goto free_pages;
1477 
1478 		list_add(&bpage->list, pages);
1479 
1480 		page = alloc_pages_node(cpu_to_node(cpu), mflags, 0);
1481 		if (!page)
1482 			goto free_pages;
1483 		bpage->page = page_address(page);
1484 		rb_init_page(bpage->page);
1485 
1486 		if (user_thread && fatal_signal_pending(current))
1487 			goto free_pages;
1488 	}
1489 	if (user_thread)
1490 		clear_current_oom_origin();
1491 
1492 	return 0;
1493 
1494 free_pages:
1495 	list_for_each_entry_safe(bpage, tmp, pages, list) {
1496 		list_del_init(&bpage->list);
1497 		free_buffer_page(bpage);
1498 	}
1499 	if (user_thread)
1500 		clear_current_oom_origin();
1501 
1502 	return -ENOMEM;
1503 }
1504 
rb_allocate_pages(struct ring_buffer_per_cpu * cpu_buffer,unsigned long nr_pages)1505 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
1506 			     unsigned long nr_pages)
1507 {
1508 	LIST_HEAD(pages);
1509 
1510 	WARN_ON(!nr_pages);
1511 
1512 	if (__rb_allocate_pages(nr_pages, &pages, cpu_buffer->cpu))
1513 		return -ENOMEM;
1514 
1515 	/*
1516 	 * The ring buffer page list is a circular list that does not
1517 	 * start and end with a list head. All page list items point to
1518 	 * other pages.
1519 	 */
1520 	cpu_buffer->pages = pages.next;
1521 	list_del(&pages);
1522 
1523 	cpu_buffer->nr_pages = nr_pages;
1524 
1525 	rb_check_pages(cpu_buffer);
1526 
1527 	return 0;
1528 }
1529 
1530 static struct ring_buffer_per_cpu *
rb_allocate_cpu_buffer(struct trace_buffer * buffer,long nr_pages,int cpu)1531 rb_allocate_cpu_buffer(struct trace_buffer *buffer, long nr_pages, int cpu)
1532 {
1533 	struct ring_buffer_per_cpu *cpu_buffer;
1534 	struct buffer_page *bpage;
1535 	struct page *page;
1536 	int ret;
1537 
1538 	cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
1539 				  GFP_KERNEL, cpu_to_node(cpu));
1540 	if (!cpu_buffer)
1541 		return NULL;
1542 
1543 	cpu_buffer->cpu = cpu;
1544 	cpu_buffer->buffer = buffer;
1545 	raw_spin_lock_init(&cpu_buffer->reader_lock);
1546 	lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
1547 	cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
1548 	INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler);
1549 	init_completion(&cpu_buffer->update_done);
1550 	init_irq_work(&cpu_buffer->irq_work.work, rb_wake_up_waiters);
1551 	init_waitqueue_head(&cpu_buffer->irq_work.waiters);
1552 	init_waitqueue_head(&cpu_buffer->irq_work.full_waiters);
1553 
1554 	bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1555 			    GFP_KERNEL, cpu_to_node(cpu));
1556 	if (!bpage)
1557 		goto fail_free_buffer;
1558 
1559 	rb_check_bpage(cpu_buffer, bpage);
1560 
1561 	cpu_buffer->reader_page = bpage;
1562 	page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, 0);
1563 	if (!page)
1564 		goto fail_free_reader;
1565 	bpage->page = page_address(page);
1566 	rb_init_page(bpage->page);
1567 
1568 	INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
1569 	INIT_LIST_HEAD(&cpu_buffer->new_pages);
1570 
1571 	ret = rb_allocate_pages(cpu_buffer, nr_pages);
1572 	if (ret < 0)
1573 		goto fail_free_reader;
1574 
1575 	cpu_buffer->head_page
1576 		= list_entry(cpu_buffer->pages, struct buffer_page, list);
1577 	cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
1578 
1579 	rb_head_page_activate(cpu_buffer);
1580 
1581 	return cpu_buffer;
1582 
1583  fail_free_reader:
1584 	free_buffer_page(cpu_buffer->reader_page);
1585 
1586  fail_free_buffer:
1587 	kfree(cpu_buffer);
1588 	return NULL;
1589 }
1590 
rb_free_cpu_buffer(struct ring_buffer_per_cpu * cpu_buffer)1591 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
1592 {
1593 	struct list_head *head = cpu_buffer->pages;
1594 	struct buffer_page *bpage, *tmp;
1595 
1596 	free_buffer_page(cpu_buffer->reader_page);
1597 
1598 	rb_head_page_deactivate(cpu_buffer);
1599 
1600 	if (head) {
1601 		list_for_each_entry_safe(bpage, tmp, head, list) {
1602 			list_del_init(&bpage->list);
1603 			free_buffer_page(bpage);
1604 		}
1605 		bpage = list_entry(head, struct buffer_page, list);
1606 		free_buffer_page(bpage);
1607 	}
1608 
1609 	kfree(cpu_buffer);
1610 }
1611 
1612 /**
1613  * __ring_buffer_alloc - allocate a new ring_buffer
1614  * @size: the size in bytes per cpu that is needed.
1615  * @flags: attributes to set for the ring buffer.
1616  * @key: ring buffer reader_lock_key.
1617  *
1618  * Currently the only flag that is available is the RB_FL_OVERWRITE
1619  * flag. This flag means that the buffer will overwrite old data
1620  * when the buffer wraps. If this flag is not set, the buffer will
1621  * drop data when the tail hits the head.
1622  */
__ring_buffer_alloc(unsigned long size,unsigned flags,struct lock_class_key * key)1623 struct trace_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
1624 					struct lock_class_key *key)
1625 {
1626 	struct trace_buffer *buffer;
1627 	long nr_pages;
1628 	int bsize;
1629 	int cpu;
1630 	int ret;
1631 
1632 	/* keep it in its own cache line */
1633 	buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
1634 			 GFP_KERNEL);
1635 	if (!buffer)
1636 		return NULL;
1637 
1638 	if (!zalloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
1639 		goto fail_free_buffer;
1640 
1641 	nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1642 	buffer->flags = flags;
1643 	buffer->clock = trace_clock_local;
1644 	buffer->reader_lock_key = key;
1645 
1646 	init_irq_work(&buffer->irq_work.work, rb_wake_up_waiters);
1647 	init_waitqueue_head(&buffer->irq_work.waiters);
1648 
1649 	/* need at least two pages */
1650 	if (nr_pages < 2)
1651 		nr_pages = 2;
1652 
1653 	buffer->cpus = nr_cpu_ids;
1654 
1655 	bsize = sizeof(void *) * nr_cpu_ids;
1656 	buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
1657 				  GFP_KERNEL);
1658 	if (!buffer->buffers)
1659 		goto fail_free_cpumask;
1660 
1661 	cpu = raw_smp_processor_id();
1662 	cpumask_set_cpu(cpu, buffer->cpumask);
1663 	buffer->buffers[cpu] = rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
1664 	if (!buffer->buffers[cpu])
1665 		goto fail_free_buffers;
1666 
1667 	ret = cpuhp_state_add_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node);
1668 	if (ret < 0)
1669 		goto fail_free_buffers;
1670 
1671 	mutex_init(&buffer->mutex);
1672 
1673 	return buffer;
1674 
1675  fail_free_buffers:
1676 	for_each_buffer_cpu(buffer, cpu) {
1677 		if (buffer->buffers[cpu])
1678 			rb_free_cpu_buffer(buffer->buffers[cpu]);
1679 	}
1680 	kfree(buffer->buffers);
1681 
1682  fail_free_cpumask:
1683 	free_cpumask_var(buffer->cpumask);
1684 
1685  fail_free_buffer:
1686 	kfree(buffer);
1687 	return NULL;
1688 }
1689 EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
1690 
1691 /**
1692  * ring_buffer_free - free a ring buffer.
1693  * @buffer: the buffer to free.
1694  */
1695 void
ring_buffer_free(struct trace_buffer * buffer)1696 ring_buffer_free(struct trace_buffer *buffer)
1697 {
1698 	int cpu;
1699 
1700 	cpuhp_state_remove_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node);
1701 
1702 	for_each_buffer_cpu(buffer, cpu)
1703 		rb_free_cpu_buffer(buffer->buffers[cpu]);
1704 
1705 	kfree(buffer->buffers);
1706 	free_cpumask_var(buffer->cpumask);
1707 
1708 	kfree(buffer);
1709 }
1710 EXPORT_SYMBOL_GPL(ring_buffer_free);
1711 
ring_buffer_set_clock(struct trace_buffer * buffer,u64 (* clock)(void))1712 void ring_buffer_set_clock(struct trace_buffer *buffer,
1713 			   u64 (*clock)(void))
1714 {
1715 	buffer->clock = clock;
1716 }
1717 
ring_buffer_set_time_stamp_abs(struct trace_buffer * buffer,bool abs)1718 void ring_buffer_set_time_stamp_abs(struct trace_buffer *buffer, bool abs)
1719 {
1720 	buffer->time_stamp_abs = abs;
1721 }
1722 
ring_buffer_time_stamp_abs(struct trace_buffer * buffer)1723 bool ring_buffer_time_stamp_abs(struct trace_buffer *buffer)
1724 {
1725 	return buffer->time_stamp_abs;
1726 }
1727 
1728 static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
1729 
rb_page_entries(struct buffer_page * bpage)1730 static inline unsigned long rb_page_entries(struct buffer_page *bpage)
1731 {
1732 	return local_read(&bpage->entries) & RB_WRITE_MASK;
1733 }
1734 
rb_page_write(struct buffer_page * bpage)1735 static inline unsigned long rb_page_write(struct buffer_page *bpage)
1736 {
1737 	return local_read(&bpage->write) & RB_WRITE_MASK;
1738 }
1739 
1740 static int
rb_remove_pages(struct ring_buffer_per_cpu * cpu_buffer,unsigned long nr_pages)1741 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned long nr_pages)
1742 {
1743 	struct list_head *tail_page, *to_remove, *next_page;
1744 	struct buffer_page *to_remove_page, *tmp_iter_page;
1745 	struct buffer_page *last_page, *first_page;
1746 	unsigned long nr_removed;
1747 	unsigned long head_bit;
1748 	int page_entries;
1749 
1750 	head_bit = 0;
1751 
1752 	raw_spin_lock_irq(&cpu_buffer->reader_lock);
1753 	atomic_inc(&cpu_buffer->record_disabled);
1754 	/*
1755 	 * We don't race with the readers since we have acquired the reader
1756 	 * lock. We also don't race with writers after disabling recording.
1757 	 * This makes it easy to figure out the first and the last page to be
1758 	 * removed from the list. We unlink all the pages in between including
1759 	 * the first and last pages. This is done in a busy loop so that we
1760 	 * lose the least number of traces.
1761 	 * The pages are freed after we restart recording and unlock readers.
1762 	 */
1763 	tail_page = &cpu_buffer->tail_page->list;
1764 
1765 	/*
1766 	 * tail page might be on reader page, we remove the next page
1767 	 * from the ring buffer
1768 	 */
1769 	if (cpu_buffer->tail_page == cpu_buffer->reader_page)
1770 		tail_page = rb_list_head(tail_page->next);
1771 	to_remove = tail_page;
1772 
1773 	/* start of pages to remove */
1774 	first_page = list_entry(rb_list_head(to_remove->next),
1775 				struct buffer_page, list);
1776 
1777 	for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) {
1778 		to_remove = rb_list_head(to_remove)->next;
1779 		head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD;
1780 	}
1781 
1782 	next_page = rb_list_head(to_remove)->next;
1783 
1784 	/*
1785 	 * Now we remove all pages between tail_page and next_page.
1786 	 * Make sure that we have head_bit value preserved for the
1787 	 * next page
1788 	 */
1789 	tail_page->next = (struct list_head *)((unsigned long)next_page |
1790 						head_bit);
1791 	next_page = rb_list_head(next_page);
1792 	next_page->prev = tail_page;
1793 
1794 	/* make sure pages points to a valid page in the ring buffer */
1795 	cpu_buffer->pages = next_page;
1796 
1797 	/* update head page */
1798 	if (head_bit)
1799 		cpu_buffer->head_page = list_entry(next_page,
1800 						struct buffer_page, list);
1801 
1802 	/*
1803 	 * change read pointer to make sure any read iterators reset
1804 	 * themselves
1805 	 */
1806 	cpu_buffer->read = 0;
1807 
1808 	/* pages are removed, resume tracing and then free the pages */
1809 	atomic_dec(&cpu_buffer->record_disabled);
1810 	raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1811 
1812 	RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages));
1813 
1814 	/* last buffer page to remove */
1815 	last_page = list_entry(rb_list_head(to_remove), struct buffer_page,
1816 				list);
1817 	tmp_iter_page = first_page;
1818 
1819 	do {
1820 		cond_resched();
1821 
1822 		to_remove_page = tmp_iter_page;
1823 		rb_inc_page(cpu_buffer, &tmp_iter_page);
1824 
1825 		/* update the counters */
1826 		page_entries = rb_page_entries(to_remove_page);
1827 		if (page_entries) {
1828 			/*
1829 			 * If something was added to this page, it was full
1830 			 * since it is not the tail page. So we deduct the
1831 			 * bytes consumed in ring buffer from here.
1832 			 * Increment overrun to account for the lost events.
1833 			 */
1834 			local_add(page_entries, &cpu_buffer->overrun);
1835 			local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
1836 		}
1837 
1838 		/*
1839 		 * We have already removed references to this list item, just
1840 		 * free up the buffer_page and its page
1841 		 */
1842 		free_buffer_page(to_remove_page);
1843 		nr_removed--;
1844 
1845 	} while (to_remove_page != last_page);
1846 
1847 	RB_WARN_ON(cpu_buffer, nr_removed);
1848 
1849 	return nr_removed == 0;
1850 }
1851 
1852 static int
rb_insert_pages(struct ring_buffer_per_cpu * cpu_buffer)1853 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer)
1854 {
1855 	struct list_head *pages = &cpu_buffer->new_pages;
1856 	int retries, success;
1857 
1858 	raw_spin_lock_irq(&cpu_buffer->reader_lock);
1859 	/*
1860 	 * We are holding the reader lock, so the reader page won't be swapped
1861 	 * in the ring buffer. Now we are racing with the writer trying to
1862 	 * move head page and the tail page.
1863 	 * We are going to adapt the reader page update process where:
1864 	 * 1. We first splice the start and end of list of new pages between
1865 	 *    the head page and its previous page.
1866 	 * 2. We cmpxchg the prev_page->next to point from head page to the
1867 	 *    start of new pages list.
1868 	 * 3. Finally, we update the head->prev to the end of new list.
1869 	 *
1870 	 * We will try this process 10 times, to make sure that we don't keep
1871 	 * spinning.
1872 	 */
1873 	retries = 10;
1874 	success = 0;
1875 	while (retries--) {
1876 		struct list_head *head_page, *prev_page, *r;
1877 		struct list_head *last_page, *first_page;
1878 		struct list_head *head_page_with_bit;
1879 
1880 		head_page = &rb_set_head_page(cpu_buffer)->list;
1881 		if (!head_page)
1882 			break;
1883 		prev_page = head_page->prev;
1884 
1885 		first_page = pages->next;
1886 		last_page  = pages->prev;
1887 
1888 		head_page_with_bit = (struct list_head *)
1889 				     ((unsigned long)head_page | RB_PAGE_HEAD);
1890 
1891 		last_page->next = head_page_with_bit;
1892 		first_page->prev = prev_page;
1893 
1894 		r = cmpxchg(&prev_page->next, head_page_with_bit, first_page);
1895 
1896 		if (r == head_page_with_bit) {
1897 			/*
1898 			 * yay, we replaced the page pointer to our new list,
1899 			 * now, we just have to update to head page's prev
1900 			 * pointer to point to end of list
1901 			 */
1902 			head_page->prev = last_page;
1903 			success = 1;
1904 			break;
1905 		}
1906 	}
1907 
1908 	if (success)
1909 		INIT_LIST_HEAD(pages);
1910 	/*
1911 	 * If we weren't successful in adding in new pages, warn and stop
1912 	 * tracing
1913 	 */
1914 	RB_WARN_ON(cpu_buffer, !success);
1915 	raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1916 
1917 	/* free pages if they weren't inserted */
1918 	if (!success) {
1919 		struct buffer_page *bpage, *tmp;
1920 		list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1921 					 list) {
1922 			list_del_init(&bpage->list);
1923 			free_buffer_page(bpage);
1924 		}
1925 	}
1926 	return success;
1927 }
1928 
rb_update_pages(struct ring_buffer_per_cpu * cpu_buffer)1929 static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer)
1930 {
1931 	int success;
1932 
1933 	if (cpu_buffer->nr_pages_to_update > 0)
1934 		success = rb_insert_pages(cpu_buffer);
1935 	else
1936 		success = rb_remove_pages(cpu_buffer,
1937 					-cpu_buffer->nr_pages_to_update);
1938 
1939 	if (success)
1940 		cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update;
1941 }
1942 
update_pages_handler(struct work_struct * work)1943 static void update_pages_handler(struct work_struct *work)
1944 {
1945 	struct ring_buffer_per_cpu *cpu_buffer = container_of(work,
1946 			struct ring_buffer_per_cpu, update_pages_work);
1947 	rb_update_pages(cpu_buffer);
1948 	complete(&cpu_buffer->update_done);
1949 }
1950 
1951 /**
1952  * ring_buffer_resize - resize the ring buffer
1953  * @buffer: the buffer to resize.
1954  * @size: the new size.
1955  * @cpu_id: the cpu buffer to resize
1956  *
1957  * Minimum size is 2 * BUF_PAGE_SIZE.
1958  *
1959  * Returns 0 on success and < 0 on failure.
1960  */
ring_buffer_resize(struct trace_buffer * buffer,unsigned long size,int cpu_id)1961 int ring_buffer_resize(struct trace_buffer *buffer, unsigned long size,
1962 			int cpu_id)
1963 {
1964 	struct ring_buffer_per_cpu *cpu_buffer;
1965 	unsigned long nr_pages;
1966 	int cpu, err;
1967 
1968 	/*
1969 	 * Always succeed at resizing a non-existent buffer:
1970 	 */
1971 	if (!buffer)
1972 		return 0;
1973 
1974 	/* Make sure the requested buffer exists */
1975 	if (cpu_id != RING_BUFFER_ALL_CPUS &&
1976 	    !cpumask_test_cpu(cpu_id, buffer->cpumask))
1977 		return 0;
1978 
1979 	nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1980 
1981 	/* we need a minimum of two pages */
1982 	if (nr_pages < 2)
1983 		nr_pages = 2;
1984 
1985 	size = nr_pages * BUF_PAGE_SIZE;
1986 
1987 	/* prevent another thread from changing buffer sizes */
1988 	mutex_lock(&buffer->mutex);
1989 
1990 
1991 	if (cpu_id == RING_BUFFER_ALL_CPUS) {
1992 		/*
1993 		 * Don't succeed if resizing is disabled, as a reader might be
1994 		 * manipulating the ring buffer and is expecting a sane state while
1995 		 * this is true.
1996 		 */
1997 		for_each_buffer_cpu(buffer, cpu) {
1998 			cpu_buffer = buffer->buffers[cpu];
1999 			if (atomic_read(&cpu_buffer->resize_disabled)) {
2000 				err = -EBUSY;
2001 				goto out_err_unlock;
2002 			}
2003 		}
2004 
2005 		/* calculate the pages to update */
2006 		for_each_buffer_cpu(buffer, cpu) {
2007 			cpu_buffer = buffer->buffers[cpu];
2008 
2009 			cpu_buffer->nr_pages_to_update = nr_pages -
2010 							cpu_buffer->nr_pages;
2011 			/*
2012 			 * nothing more to do for removing pages or no update
2013 			 */
2014 			if (cpu_buffer->nr_pages_to_update <= 0)
2015 				continue;
2016 			/*
2017 			 * to add pages, make sure all new pages can be
2018 			 * allocated without receiving ENOMEM
2019 			 */
2020 			INIT_LIST_HEAD(&cpu_buffer->new_pages);
2021 			if (__rb_allocate_pages(cpu_buffer->nr_pages_to_update,
2022 						&cpu_buffer->new_pages, cpu)) {
2023 				/* not enough memory for new pages */
2024 				err = -ENOMEM;
2025 				goto out_err;
2026 			}
2027 		}
2028 
2029 		get_online_cpus();
2030 		/*
2031 		 * Fire off all the required work handlers
2032 		 * We can't schedule on offline CPUs, but it's not necessary
2033 		 * since we can change their buffer sizes without any race.
2034 		 */
2035 		for_each_buffer_cpu(buffer, cpu) {
2036 			cpu_buffer = buffer->buffers[cpu];
2037 			if (!cpu_buffer->nr_pages_to_update)
2038 				continue;
2039 
2040 			/* Can't run something on an offline CPU. */
2041 			if (!cpu_online(cpu)) {
2042 				rb_update_pages(cpu_buffer);
2043 				cpu_buffer->nr_pages_to_update = 0;
2044 			} else {
2045 				schedule_work_on(cpu,
2046 						&cpu_buffer->update_pages_work);
2047 			}
2048 		}
2049 
2050 		/* wait for all the updates to complete */
2051 		for_each_buffer_cpu(buffer, cpu) {
2052 			cpu_buffer = buffer->buffers[cpu];
2053 			if (!cpu_buffer->nr_pages_to_update)
2054 				continue;
2055 
2056 			if (cpu_online(cpu))
2057 				wait_for_completion(&cpu_buffer->update_done);
2058 			cpu_buffer->nr_pages_to_update = 0;
2059 		}
2060 
2061 		put_online_cpus();
2062 	} else {
2063 		/* Make sure this CPU has been initialized */
2064 		if (!cpumask_test_cpu(cpu_id, buffer->cpumask))
2065 			goto out;
2066 
2067 		cpu_buffer = buffer->buffers[cpu_id];
2068 
2069 		if (nr_pages == cpu_buffer->nr_pages)
2070 			goto out;
2071 
2072 		/*
2073 		 * Don't succeed if resizing is disabled, as a reader might be
2074 		 * manipulating the ring buffer and is expecting a sane state while
2075 		 * this is true.
2076 		 */
2077 		if (atomic_read(&cpu_buffer->resize_disabled)) {
2078 			err = -EBUSY;
2079 			goto out_err_unlock;
2080 		}
2081 
2082 		cpu_buffer->nr_pages_to_update = nr_pages -
2083 						cpu_buffer->nr_pages;
2084 
2085 		INIT_LIST_HEAD(&cpu_buffer->new_pages);
2086 		if (cpu_buffer->nr_pages_to_update > 0 &&
2087 			__rb_allocate_pages(cpu_buffer->nr_pages_to_update,
2088 					    &cpu_buffer->new_pages, cpu_id)) {
2089 			err = -ENOMEM;
2090 			goto out_err;
2091 		}
2092 
2093 		get_online_cpus();
2094 
2095 		/* Can't run something on an offline CPU. */
2096 		if (!cpu_online(cpu_id))
2097 			rb_update_pages(cpu_buffer);
2098 		else {
2099 			schedule_work_on(cpu_id,
2100 					 &cpu_buffer->update_pages_work);
2101 			wait_for_completion(&cpu_buffer->update_done);
2102 		}
2103 
2104 		cpu_buffer->nr_pages_to_update = 0;
2105 		put_online_cpus();
2106 	}
2107 
2108  out:
2109 	/*
2110 	 * The ring buffer resize can happen with the ring buffer
2111 	 * enabled, so that the update disturbs the tracing as little
2112 	 * as possible. But if the buffer is disabled, we do not need
2113 	 * to worry about that, and we can take the time to verify
2114 	 * that the buffer is not corrupt.
2115 	 */
2116 	if (atomic_read(&buffer->record_disabled)) {
2117 		atomic_inc(&buffer->record_disabled);
2118 		/*
2119 		 * Even though the buffer was disabled, we must make sure
2120 		 * that it is truly disabled before calling rb_check_pages.
2121 		 * There could have been a race between checking
2122 		 * record_disable and incrementing it.
2123 		 */
2124 		synchronize_rcu();
2125 		for_each_buffer_cpu(buffer, cpu) {
2126 			cpu_buffer = buffer->buffers[cpu];
2127 			rb_check_pages(cpu_buffer);
2128 		}
2129 		atomic_dec(&buffer->record_disabled);
2130 	}
2131 
2132 	mutex_unlock(&buffer->mutex);
2133 	return 0;
2134 
2135  out_err:
2136 	for_each_buffer_cpu(buffer, cpu) {
2137 		struct buffer_page *bpage, *tmp;
2138 
2139 		cpu_buffer = buffer->buffers[cpu];
2140 		cpu_buffer->nr_pages_to_update = 0;
2141 
2142 		if (list_empty(&cpu_buffer->new_pages))
2143 			continue;
2144 
2145 		list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
2146 					list) {
2147 			list_del_init(&bpage->list);
2148 			free_buffer_page(bpage);
2149 		}
2150 	}
2151  out_err_unlock:
2152 	mutex_unlock(&buffer->mutex);
2153 	return err;
2154 }
2155 EXPORT_SYMBOL_GPL(ring_buffer_resize);
2156 
ring_buffer_change_overwrite(struct trace_buffer * buffer,int val)2157 void ring_buffer_change_overwrite(struct trace_buffer *buffer, int val)
2158 {
2159 	mutex_lock(&buffer->mutex);
2160 	if (val)
2161 		buffer->flags |= RB_FL_OVERWRITE;
2162 	else
2163 		buffer->flags &= ~RB_FL_OVERWRITE;
2164 	mutex_unlock(&buffer->mutex);
2165 }
2166 EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite);
2167 
__rb_page_index(struct buffer_page * bpage,unsigned index)2168 static __always_inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
2169 {
2170 	return bpage->page->data + index;
2171 }
2172 
2173 static __always_inline struct ring_buffer_event *
rb_reader_event(struct ring_buffer_per_cpu * cpu_buffer)2174 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
2175 {
2176 	return __rb_page_index(cpu_buffer->reader_page,
2177 			       cpu_buffer->reader_page->read);
2178 }
2179 
rb_page_commit(struct buffer_page * bpage)2180 static __always_inline unsigned rb_page_commit(struct buffer_page *bpage)
2181 {
2182 	return local_read(&bpage->page->commit);
2183 }
2184 
2185 static struct ring_buffer_event *
rb_iter_head_event(struct ring_buffer_iter * iter)2186 rb_iter_head_event(struct ring_buffer_iter *iter)
2187 {
2188 	struct ring_buffer_event *event;
2189 	struct buffer_page *iter_head_page = iter->head_page;
2190 	unsigned long commit;
2191 	unsigned length;
2192 
2193 	if (iter->head != iter->next_event)
2194 		return iter->event;
2195 
2196 	/*
2197 	 * When the writer goes across pages, it issues a cmpxchg which
2198 	 * is a mb(), which will synchronize with the rmb here.
2199 	 * (see rb_tail_page_update() and __rb_reserve_next())
2200 	 */
2201 	commit = rb_page_commit(iter_head_page);
2202 	smp_rmb();
2203 	event = __rb_page_index(iter_head_page, iter->head);
2204 	length = rb_event_length(event);
2205 
2206 	/*
2207 	 * READ_ONCE() doesn't work on functions and we don't want the
2208 	 * compiler doing any crazy optimizations with length.
2209 	 */
2210 	barrier();
2211 
2212 	if ((iter->head + length) > commit || length > BUF_MAX_DATA_SIZE)
2213 		/* Writer corrupted the read? */
2214 		goto reset;
2215 
2216 	memcpy(iter->event, event, length);
2217 	/*
2218 	 * If the page stamp is still the same after this rmb() then the
2219 	 * event was safely copied without the writer entering the page.
2220 	 */
2221 	smp_rmb();
2222 
2223 	/* Make sure the page didn't change since we read this */
2224 	if (iter->page_stamp != iter_head_page->page->time_stamp ||
2225 	    commit > rb_page_commit(iter_head_page))
2226 		goto reset;
2227 
2228 	iter->next_event = iter->head + length;
2229 	return iter->event;
2230  reset:
2231 	/* Reset to the beginning */
2232 	iter->page_stamp = iter->read_stamp = iter->head_page->page->time_stamp;
2233 	iter->head = 0;
2234 	iter->next_event = 0;
2235 	iter->missed_events = 1;
2236 	return NULL;
2237 }
2238 
2239 /* Size is determined by what has been committed */
rb_page_size(struct buffer_page * bpage)2240 static __always_inline unsigned rb_page_size(struct buffer_page *bpage)
2241 {
2242 	return rb_page_commit(bpage);
2243 }
2244 
2245 static __always_inline unsigned
rb_commit_index(struct ring_buffer_per_cpu * cpu_buffer)2246 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
2247 {
2248 	return rb_page_commit(cpu_buffer->commit_page);
2249 }
2250 
2251 static __always_inline unsigned
rb_event_index(struct ring_buffer_event * event)2252 rb_event_index(struct ring_buffer_event *event)
2253 {
2254 	unsigned long addr = (unsigned long)event;
2255 
2256 	return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE;
2257 }
2258 
rb_inc_iter(struct ring_buffer_iter * iter)2259 static void rb_inc_iter(struct ring_buffer_iter *iter)
2260 {
2261 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
2262 
2263 	/*
2264 	 * The iterator could be on the reader page (it starts there).
2265 	 * But the head could have moved, since the reader was
2266 	 * found. Check for this case and assign the iterator
2267 	 * to the head page instead of next.
2268 	 */
2269 	if (iter->head_page == cpu_buffer->reader_page)
2270 		iter->head_page = rb_set_head_page(cpu_buffer);
2271 	else
2272 		rb_inc_page(cpu_buffer, &iter->head_page);
2273 
2274 	iter->page_stamp = iter->read_stamp = iter->head_page->page->time_stamp;
2275 	iter->head = 0;
2276 	iter->next_event = 0;
2277 }
2278 
2279 /*
2280  * rb_handle_head_page - writer hit the head page
2281  *
2282  * Returns: +1 to retry page
2283  *           0 to continue
2284  *          -1 on error
2285  */
2286 static int
rb_handle_head_page(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page * tail_page,struct buffer_page * next_page)2287 rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
2288 		    struct buffer_page *tail_page,
2289 		    struct buffer_page *next_page)
2290 {
2291 	struct buffer_page *new_head;
2292 	int entries;
2293 	int type;
2294 	int ret;
2295 
2296 	entries = rb_page_entries(next_page);
2297 
2298 	/*
2299 	 * The hard part is here. We need to move the head
2300 	 * forward, and protect against both readers on
2301 	 * other CPUs and writers coming in via interrupts.
2302 	 */
2303 	type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
2304 				       RB_PAGE_HEAD);
2305 
2306 	/*
2307 	 * type can be one of four:
2308 	 *  NORMAL - an interrupt already moved it for us
2309 	 *  HEAD   - we are the first to get here.
2310 	 *  UPDATE - we are the interrupt interrupting
2311 	 *           a current move.
2312 	 *  MOVED  - a reader on another CPU moved the next
2313 	 *           pointer to its reader page. Give up
2314 	 *           and try again.
2315 	 */
2316 
2317 	switch (type) {
2318 	case RB_PAGE_HEAD:
2319 		/*
2320 		 * We changed the head to UPDATE, thus
2321 		 * it is our responsibility to update
2322 		 * the counters.
2323 		 */
2324 		local_add(entries, &cpu_buffer->overrun);
2325 		local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
2326 
2327 		/*
2328 		 * The entries will be zeroed out when we move the
2329 		 * tail page.
2330 		 */
2331 
2332 		/* still more to do */
2333 		break;
2334 
2335 	case RB_PAGE_UPDATE:
2336 		/*
2337 		 * This is an interrupt that interrupt the
2338 		 * previous update. Still more to do.
2339 		 */
2340 		break;
2341 	case RB_PAGE_NORMAL:
2342 		/*
2343 		 * An interrupt came in before the update
2344 		 * and processed this for us.
2345 		 * Nothing left to do.
2346 		 */
2347 		return 1;
2348 	case RB_PAGE_MOVED:
2349 		/*
2350 		 * The reader is on another CPU and just did
2351 		 * a swap with our next_page.
2352 		 * Try again.
2353 		 */
2354 		return 1;
2355 	default:
2356 		RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
2357 		return -1;
2358 	}
2359 
2360 	/*
2361 	 * Now that we are here, the old head pointer is
2362 	 * set to UPDATE. This will keep the reader from
2363 	 * swapping the head page with the reader page.
2364 	 * The reader (on another CPU) will spin till
2365 	 * we are finished.
2366 	 *
2367 	 * We just need to protect against interrupts
2368 	 * doing the job. We will set the next pointer
2369 	 * to HEAD. After that, we set the old pointer
2370 	 * to NORMAL, but only if it was HEAD before.
2371 	 * otherwise we are an interrupt, and only
2372 	 * want the outer most commit to reset it.
2373 	 */
2374 	new_head = next_page;
2375 	rb_inc_page(cpu_buffer, &new_head);
2376 
2377 	ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
2378 				    RB_PAGE_NORMAL);
2379 
2380 	/*
2381 	 * Valid returns are:
2382 	 *  HEAD   - an interrupt came in and already set it.
2383 	 *  NORMAL - One of two things:
2384 	 *            1) We really set it.
2385 	 *            2) A bunch of interrupts came in and moved
2386 	 *               the page forward again.
2387 	 */
2388 	switch (ret) {
2389 	case RB_PAGE_HEAD:
2390 	case RB_PAGE_NORMAL:
2391 		/* OK */
2392 		break;
2393 	default:
2394 		RB_WARN_ON(cpu_buffer, 1);
2395 		return -1;
2396 	}
2397 
2398 	/*
2399 	 * It is possible that an interrupt came in,
2400 	 * set the head up, then more interrupts came in
2401 	 * and moved it again. When we get back here,
2402 	 * the page would have been set to NORMAL but we
2403 	 * just set it back to HEAD.
2404 	 *
2405 	 * How do you detect this? Well, if that happened
2406 	 * the tail page would have moved.
2407 	 */
2408 	if (ret == RB_PAGE_NORMAL) {
2409 		struct buffer_page *buffer_tail_page;
2410 
2411 		buffer_tail_page = READ_ONCE(cpu_buffer->tail_page);
2412 		/*
2413 		 * If the tail had moved passed next, then we need
2414 		 * to reset the pointer.
2415 		 */
2416 		if (buffer_tail_page != tail_page &&
2417 		    buffer_tail_page != next_page)
2418 			rb_head_page_set_normal(cpu_buffer, new_head,
2419 						next_page,
2420 						RB_PAGE_HEAD);
2421 	}
2422 
2423 	/*
2424 	 * If this was the outer most commit (the one that
2425 	 * changed the original pointer from HEAD to UPDATE),
2426 	 * then it is up to us to reset it to NORMAL.
2427 	 */
2428 	if (type == RB_PAGE_HEAD) {
2429 		ret = rb_head_page_set_normal(cpu_buffer, next_page,
2430 					      tail_page,
2431 					      RB_PAGE_UPDATE);
2432 		if (RB_WARN_ON(cpu_buffer,
2433 			       ret != RB_PAGE_UPDATE))
2434 			return -1;
2435 	}
2436 
2437 	return 0;
2438 }
2439 
2440 static inline void
rb_reset_tail(struct ring_buffer_per_cpu * cpu_buffer,unsigned long tail,struct rb_event_info * info)2441 rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
2442 	      unsigned long tail, struct rb_event_info *info)
2443 {
2444 	struct buffer_page *tail_page = info->tail_page;
2445 	struct ring_buffer_event *event;
2446 	unsigned long length = info->length;
2447 
2448 	/*
2449 	 * Only the event that crossed the page boundary
2450 	 * must fill the old tail_page with padding.
2451 	 */
2452 	if (tail >= BUF_PAGE_SIZE) {
2453 		/*
2454 		 * If the page was filled, then we still need
2455 		 * to update the real_end. Reset it to zero
2456 		 * and the reader will ignore it.
2457 		 */
2458 		if (tail == BUF_PAGE_SIZE)
2459 			tail_page->real_end = 0;
2460 
2461 		local_sub(length, &tail_page->write);
2462 		return;
2463 	}
2464 
2465 	event = __rb_page_index(tail_page, tail);
2466 
2467 	/* account for padding bytes */
2468 	local_add(BUF_PAGE_SIZE - tail, &cpu_buffer->entries_bytes);
2469 
2470 	/*
2471 	 * Save the original length to the meta data.
2472 	 * This will be used by the reader to add lost event
2473 	 * counter.
2474 	 */
2475 	tail_page->real_end = tail;
2476 
2477 	/*
2478 	 * If this event is bigger than the minimum size, then
2479 	 * we need to be careful that we don't subtract the
2480 	 * write counter enough to allow another writer to slip
2481 	 * in on this page.
2482 	 * We put in a discarded commit instead, to make sure
2483 	 * that this space is not used again.
2484 	 *
2485 	 * If we are less than the minimum size, we don't need to
2486 	 * worry about it.
2487 	 */
2488 	if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) {
2489 		/* No room for any events */
2490 
2491 		/* Mark the rest of the page with padding */
2492 		rb_event_set_padding(event);
2493 
2494 		/* Set the write back to the previous setting */
2495 		local_sub(length, &tail_page->write);
2496 		return;
2497 	}
2498 
2499 	/* Put in a discarded event */
2500 	event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE;
2501 	event->type_len = RINGBUF_TYPE_PADDING;
2502 	/* time delta must be non zero */
2503 	event->time_delta = 1;
2504 
2505 	/* Set write to end of buffer */
2506 	length = (tail + length) - BUF_PAGE_SIZE;
2507 	local_sub(length, &tail_page->write);
2508 }
2509 
2510 static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer);
2511 
2512 /*
2513  * This is the slow path, force gcc not to inline it.
2514  */
2515 static noinline struct ring_buffer_event *
rb_move_tail(struct ring_buffer_per_cpu * cpu_buffer,unsigned long tail,struct rb_event_info * info)2516 rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
2517 	     unsigned long tail, struct rb_event_info *info)
2518 {
2519 	struct buffer_page *tail_page = info->tail_page;
2520 	struct buffer_page *commit_page = cpu_buffer->commit_page;
2521 	struct trace_buffer *buffer = cpu_buffer->buffer;
2522 	struct buffer_page *next_page;
2523 	int ret;
2524 
2525 	next_page = tail_page;
2526 
2527 	rb_inc_page(cpu_buffer, &next_page);
2528 
2529 	/*
2530 	 * If for some reason, we had an interrupt storm that made
2531 	 * it all the way around the buffer, bail, and warn
2532 	 * about it.
2533 	 */
2534 	if (unlikely(next_page == commit_page)) {
2535 		local_inc(&cpu_buffer->commit_overrun);
2536 		goto out_reset;
2537 	}
2538 
2539 	/*
2540 	 * This is where the fun begins!
2541 	 *
2542 	 * We are fighting against races between a reader that
2543 	 * could be on another CPU trying to swap its reader
2544 	 * page with the buffer head.
2545 	 *
2546 	 * We are also fighting against interrupts coming in and
2547 	 * moving the head or tail on us as well.
2548 	 *
2549 	 * If the next page is the head page then we have filled
2550 	 * the buffer, unless the commit page is still on the
2551 	 * reader page.
2552 	 */
2553 	if (rb_is_head_page(cpu_buffer, next_page, &tail_page->list)) {
2554 
2555 		/*
2556 		 * If the commit is not on the reader page, then
2557 		 * move the header page.
2558 		 */
2559 		if (!rb_is_reader_page(cpu_buffer->commit_page)) {
2560 			/*
2561 			 * If we are not in overwrite mode,
2562 			 * this is easy, just stop here.
2563 			 */
2564 			if (!(buffer->flags & RB_FL_OVERWRITE)) {
2565 				local_inc(&cpu_buffer->dropped_events);
2566 				goto out_reset;
2567 			}
2568 
2569 			ret = rb_handle_head_page(cpu_buffer,
2570 						  tail_page,
2571 						  next_page);
2572 			if (ret < 0)
2573 				goto out_reset;
2574 			if (ret)
2575 				goto out_again;
2576 		} else {
2577 			/*
2578 			 * We need to be careful here too. The
2579 			 * commit page could still be on the reader
2580 			 * page. We could have a small buffer, and
2581 			 * have filled up the buffer with events
2582 			 * from interrupts and such, and wrapped.
2583 			 *
2584 			 * Note, if the tail page is also the on the
2585 			 * reader_page, we let it move out.
2586 			 */
2587 			if (unlikely((cpu_buffer->commit_page !=
2588 				      cpu_buffer->tail_page) &&
2589 				     (cpu_buffer->commit_page ==
2590 				      cpu_buffer->reader_page))) {
2591 				local_inc(&cpu_buffer->commit_overrun);
2592 				goto out_reset;
2593 			}
2594 		}
2595 	}
2596 
2597 	rb_tail_page_update(cpu_buffer, tail_page, next_page);
2598 
2599  out_again:
2600 
2601 	rb_reset_tail(cpu_buffer, tail, info);
2602 
2603 	/* Commit what we have for now. */
2604 	rb_end_commit(cpu_buffer);
2605 	/* rb_end_commit() decs committing */
2606 	local_inc(&cpu_buffer->committing);
2607 
2608 	/* fail and let the caller try again */
2609 	return ERR_PTR(-EAGAIN);
2610 
2611  out_reset:
2612 	/* reset write */
2613 	rb_reset_tail(cpu_buffer, tail, info);
2614 
2615 	return NULL;
2616 }
2617 
2618 /* Slow path */
2619 static struct ring_buffer_event *
rb_add_time_stamp(struct ring_buffer_event * event,u64 delta,bool abs)2620 rb_add_time_stamp(struct ring_buffer_event *event, u64 delta, bool abs)
2621 {
2622 	if (abs)
2623 		event->type_len = RINGBUF_TYPE_TIME_STAMP;
2624 	else
2625 		event->type_len = RINGBUF_TYPE_TIME_EXTEND;
2626 
2627 	/* Not the first event on the page, or not delta? */
2628 	if (abs || rb_event_index(event)) {
2629 		event->time_delta = delta & TS_MASK;
2630 		event->array[0] = delta >> TS_SHIFT;
2631 	} else {
2632 		/* nope, just zero it */
2633 		event->time_delta = 0;
2634 		event->array[0] = 0;
2635 	}
2636 
2637 	return skip_time_extend(event);
2638 }
2639 
2640 static inline bool rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
2641 				     struct ring_buffer_event *event);
2642 
2643 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
sched_clock_stable(void)2644 static inline bool sched_clock_stable(void)
2645 {
2646 	return true;
2647 }
2648 #endif
2649 
2650 static void
rb_check_timestamp(struct ring_buffer_per_cpu * cpu_buffer,struct rb_event_info * info)2651 rb_check_timestamp(struct ring_buffer_per_cpu *cpu_buffer,
2652 		   struct rb_event_info *info)
2653 {
2654 	u64 write_stamp;
2655 
2656 	WARN_ONCE(1, "Delta way too big! %llu ts=%llu before=%llu after=%llu write stamp=%llu\n%s",
2657 		  (unsigned long long)info->delta,
2658 		  (unsigned long long)info->ts,
2659 		  (unsigned long long)info->before,
2660 		  (unsigned long long)info->after,
2661 		  (unsigned long long)(rb_time_read(&cpu_buffer->write_stamp, &write_stamp) ? write_stamp : 0),
2662 		  sched_clock_stable() ? "" :
2663 		  "If you just came from a suspend/resume,\n"
2664 		  "please switch to the trace global clock:\n"
2665 		  "  echo global > /sys/kernel/debug/tracing/trace_clock\n"
2666 		  "or add trace_clock=global to the kernel command line\n");
2667 }
2668 
rb_add_timestamp(struct ring_buffer_per_cpu * cpu_buffer,struct ring_buffer_event ** event,struct rb_event_info * info,u64 * delta,unsigned int * length)2669 static void rb_add_timestamp(struct ring_buffer_per_cpu *cpu_buffer,
2670 				      struct ring_buffer_event **event,
2671 				      struct rb_event_info *info,
2672 				      u64 *delta,
2673 				      unsigned int *length)
2674 {
2675 	bool abs = info->add_timestamp &
2676 		(RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE);
2677 
2678 	if (unlikely(info->delta > (1ULL << 59))) {
2679 		/* did the clock go backwards */
2680 		if (info->before == info->after && info->before > info->ts) {
2681 			/* not interrupted */
2682 			static int once;
2683 
2684 			/*
2685 			 * This is possible with a recalibrating of the TSC.
2686 			 * Do not produce a call stack, but just report it.
2687 			 */
2688 			if (!once) {
2689 				once++;
2690 				pr_warn("Ring buffer clock went backwards: %llu -> %llu\n",
2691 					info->before, info->ts);
2692 			}
2693 		} else
2694 			rb_check_timestamp(cpu_buffer, info);
2695 		if (!abs)
2696 			info->delta = 0;
2697 	}
2698 	*event = rb_add_time_stamp(*event, info->delta, abs);
2699 	*length -= RB_LEN_TIME_EXTEND;
2700 	*delta = 0;
2701 }
2702 
2703 /**
2704  * rb_update_event - update event type and data
2705  * @cpu_buffer: The per cpu buffer of the @event
2706  * @event: the event to update
2707  * @info: The info to update the @event with (contains length and delta)
2708  *
2709  * Update the type and data fields of the @event. The length
2710  * is the actual size that is written to the ring buffer,
2711  * and with this, we can determine what to place into the
2712  * data field.
2713  */
2714 static void
rb_update_event(struct ring_buffer_per_cpu * cpu_buffer,struct ring_buffer_event * event,struct rb_event_info * info)2715 rb_update_event(struct ring_buffer_per_cpu *cpu_buffer,
2716 		struct ring_buffer_event *event,
2717 		struct rb_event_info *info)
2718 {
2719 	unsigned length = info->length;
2720 	u64 delta = info->delta;
2721 
2722 	/*
2723 	 * If we need to add a timestamp, then we
2724 	 * add it to the start of the reserved space.
2725 	 */
2726 	if (unlikely(info->add_timestamp))
2727 		rb_add_timestamp(cpu_buffer, &event, info, &delta, &length);
2728 
2729 	event->time_delta = delta;
2730 	length -= RB_EVNT_HDR_SIZE;
2731 	if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) {
2732 		event->type_len = 0;
2733 		event->array[0] = length;
2734 	} else
2735 		event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
2736 }
2737 
rb_calculate_event_length(unsigned length)2738 static unsigned rb_calculate_event_length(unsigned length)
2739 {
2740 	struct ring_buffer_event event; /* Used only for sizeof array */
2741 
2742 	/* zero length can cause confusions */
2743 	if (!length)
2744 		length++;
2745 
2746 	if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT)
2747 		length += sizeof(event.array[0]);
2748 
2749 	length += RB_EVNT_HDR_SIZE;
2750 	length = ALIGN(length, RB_ARCH_ALIGNMENT);
2751 
2752 	/*
2753 	 * In case the time delta is larger than the 27 bits for it
2754 	 * in the header, we need to add a timestamp. If another
2755 	 * event comes in when trying to discard this one to increase
2756 	 * the length, then the timestamp will be added in the allocated
2757 	 * space of this event. If length is bigger than the size needed
2758 	 * for the TIME_EXTEND, then padding has to be used. The events
2759 	 * length must be either RB_LEN_TIME_EXTEND, or greater than or equal
2760 	 * to RB_LEN_TIME_EXTEND + 8, as 8 is the minimum size for padding.
2761 	 * As length is a multiple of 4, we only need to worry if it
2762 	 * is 12 (RB_LEN_TIME_EXTEND + 4).
2763 	 */
2764 	if (length == RB_LEN_TIME_EXTEND + RB_ALIGNMENT)
2765 		length += RB_ALIGNMENT;
2766 
2767 	return length;
2768 }
2769 
2770 static __always_inline bool
rb_event_is_commit(struct ring_buffer_per_cpu * cpu_buffer,struct ring_buffer_event * event)2771 rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
2772 		   struct ring_buffer_event *event)
2773 {
2774 	unsigned long addr = (unsigned long)event;
2775 	unsigned long index;
2776 
2777 	index = rb_event_index(event);
2778 	addr &= PAGE_MASK;
2779 
2780 	return cpu_buffer->commit_page->page == (void *)addr &&
2781 		rb_commit_index(cpu_buffer) == index;
2782 }
2783 
rb_time_delta(struct ring_buffer_event * event)2784 static u64 rb_time_delta(struct ring_buffer_event *event)
2785 {
2786 	switch (event->type_len) {
2787 	case RINGBUF_TYPE_PADDING:
2788 		return 0;
2789 
2790 	case RINGBUF_TYPE_TIME_EXTEND:
2791 		return ring_buffer_event_time_stamp(event);
2792 
2793 	case RINGBUF_TYPE_TIME_STAMP:
2794 		return 0;
2795 
2796 	case RINGBUF_TYPE_DATA:
2797 		return event->time_delta;
2798 	default:
2799 		return 0;
2800 	}
2801 }
2802 
2803 static inline int
rb_try_to_discard(struct ring_buffer_per_cpu * cpu_buffer,struct ring_buffer_event * event)2804 rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
2805 		  struct ring_buffer_event *event)
2806 {
2807 	unsigned long new_index, old_index;
2808 	struct buffer_page *bpage;
2809 	unsigned long index;
2810 	unsigned long addr;
2811 	u64 write_stamp;
2812 	u64 delta;
2813 
2814 	new_index = rb_event_index(event);
2815 	old_index = new_index + rb_event_ts_length(event);
2816 	addr = (unsigned long)event;
2817 	addr &= PAGE_MASK;
2818 
2819 	bpage = READ_ONCE(cpu_buffer->tail_page);
2820 
2821 	delta = rb_time_delta(event);
2822 
2823 	if (!rb_time_read(&cpu_buffer->write_stamp, &write_stamp))
2824 		return 0;
2825 
2826 	/* Make sure the write stamp is read before testing the location */
2827 	barrier();
2828 
2829 	if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
2830 		unsigned long write_mask =
2831 			local_read(&bpage->write) & ~RB_WRITE_MASK;
2832 		unsigned long event_length = rb_event_length(event);
2833 
2834 		/* Something came in, can't discard */
2835 		if (!rb_time_cmpxchg(&cpu_buffer->write_stamp,
2836 				       write_stamp, write_stamp - delta))
2837 			return 0;
2838 
2839 		/*
2840 		 * It's possible that the event time delta is zero
2841 		 * (has the same time stamp as the previous event)
2842 		 * in which case write_stamp and before_stamp could
2843 		 * be the same. In such a case, force before_stamp
2844 		 * to be different than write_stamp. It doesn't
2845 		 * matter what it is, as long as its different.
2846 		 */
2847 		if (!delta)
2848 			rb_time_set(&cpu_buffer->before_stamp, 0);
2849 
2850 		/*
2851 		 * If an event were to come in now, it would see that the
2852 		 * write_stamp and the before_stamp are different, and assume
2853 		 * that this event just added itself before updating
2854 		 * the write stamp. The interrupting event will fix the
2855 		 * write stamp for us, and use the before stamp as its delta.
2856 		 */
2857 
2858 		/*
2859 		 * This is on the tail page. It is possible that
2860 		 * a write could come in and move the tail page
2861 		 * and write to the next page. That is fine
2862 		 * because we just shorten what is on this page.
2863 		 */
2864 		old_index += write_mask;
2865 		new_index += write_mask;
2866 		index = local_cmpxchg(&bpage->write, old_index, new_index);
2867 		if (index == old_index) {
2868 			/* update counters */
2869 			local_sub(event_length, &cpu_buffer->entries_bytes);
2870 			return 1;
2871 		}
2872 	}
2873 
2874 	/* could not discard */
2875 	return 0;
2876 }
2877 
rb_start_commit(struct ring_buffer_per_cpu * cpu_buffer)2878 static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
2879 {
2880 	local_inc(&cpu_buffer->committing);
2881 	local_inc(&cpu_buffer->commits);
2882 }
2883 
2884 static __always_inline void
rb_set_commit_to_write(struct ring_buffer_per_cpu * cpu_buffer)2885 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
2886 {
2887 	unsigned long max_count;
2888 
2889 	/*
2890 	 * We only race with interrupts and NMIs on this CPU.
2891 	 * If we own the commit event, then we can commit
2892 	 * all others that interrupted us, since the interruptions
2893 	 * are in stack format (they finish before they come
2894 	 * back to us). This allows us to do a simple loop to
2895 	 * assign the commit to the tail.
2896 	 */
2897  again:
2898 	max_count = cpu_buffer->nr_pages * 100;
2899 
2900 	while (cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)) {
2901 		if (RB_WARN_ON(cpu_buffer, !(--max_count)))
2902 			return;
2903 		if (RB_WARN_ON(cpu_buffer,
2904 			       rb_is_reader_page(cpu_buffer->tail_page)))
2905 			return;
2906 		local_set(&cpu_buffer->commit_page->page->commit,
2907 			  rb_page_write(cpu_buffer->commit_page));
2908 		rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
2909 		/* add barrier to keep gcc from optimizing too much */
2910 		barrier();
2911 	}
2912 	while (rb_commit_index(cpu_buffer) !=
2913 	       rb_page_write(cpu_buffer->commit_page)) {
2914 
2915 		local_set(&cpu_buffer->commit_page->page->commit,
2916 			  rb_page_write(cpu_buffer->commit_page));
2917 		RB_WARN_ON(cpu_buffer,
2918 			   local_read(&cpu_buffer->commit_page->page->commit) &
2919 			   ~RB_WRITE_MASK);
2920 		barrier();
2921 	}
2922 
2923 	/* again, keep gcc from optimizing */
2924 	barrier();
2925 
2926 	/*
2927 	 * If an interrupt came in just after the first while loop
2928 	 * and pushed the tail page forward, we will be left with
2929 	 * a dangling commit that will never go forward.
2930 	 */
2931 	if (unlikely(cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)))
2932 		goto again;
2933 }
2934 
rb_end_commit(struct ring_buffer_per_cpu * cpu_buffer)2935 static __always_inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
2936 {
2937 	unsigned long commits;
2938 
2939 	if (RB_WARN_ON(cpu_buffer,
2940 		       !local_read(&cpu_buffer->committing)))
2941 		return;
2942 
2943  again:
2944 	commits = local_read(&cpu_buffer->commits);
2945 	/* synchronize with interrupts */
2946 	barrier();
2947 	if (local_read(&cpu_buffer->committing) == 1)
2948 		rb_set_commit_to_write(cpu_buffer);
2949 
2950 	local_dec(&cpu_buffer->committing);
2951 
2952 	/* synchronize with interrupts */
2953 	barrier();
2954 
2955 	/*
2956 	 * Need to account for interrupts coming in between the
2957 	 * updating of the commit page and the clearing of the
2958 	 * committing counter.
2959 	 */
2960 	if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
2961 	    !local_read(&cpu_buffer->committing)) {
2962 		local_inc(&cpu_buffer->committing);
2963 		goto again;
2964 	}
2965 }
2966 
rb_event_discard(struct ring_buffer_event * event)2967 static inline void rb_event_discard(struct ring_buffer_event *event)
2968 {
2969 	if (extended_time(event))
2970 		event = skip_time_extend(event);
2971 
2972 	/* array[0] holds the actual length for the discarded event */
2973 	event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
2974 	event->type_len = RINGBUF_TYPE_PADDING;
2975 	/* time delta must be non zero */
2976 	if (!event->time_delta)
2977 		event->time_delta = 1;
2978 }
2979 
rb_commit(struct ring_buffer_per_cpu * cpu_buffer,struct ring_buffer_event * event)2980 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
2981 		      struct ring_buffer_event *event)
2982 {
2983 	local_inc(&cpu_buffer->entries);
2984 	rb_end_commit(cpu_buffer);
2985 }
2986 
2987 static __always_inline void
rb_wakeups(struct trace_buffer * buffer,struct ring_buffer_per_cpu * cpu_buffer)2988 rb_wakeups(struct trace_buffer *buffer, struct ring_buffer_per_cpu *cpu_buffer)
2989 {
2990 	size_t nr_pages;
2991 	size_t dirty;
2992 	size_t full;
2993 
2994 	if (buffer->irq_work.waiters_pending) {
2995 		buffer->irq_work.waiters_pending = false;
2996 		/* irq_work_queue() supplies it's own memory barriers */
2997 		irq_work_queue(&buffer->irq_work.work);
2998 	}
2999 
3000 	if (cpu_buffer->irq_work.waiters_pending) {
3001 		cpu_buffer->irq_work.waiters_pending = false;
3002 		/* irq_work_queue() supplies it's own memory barriers */
3003 		irq_work_queue(&cpu_buffer->irq_work.work);
3004 	}
3005 
3006 	if (cpu_buffer->last_pages_touch == local_read(&cpu_buffer->pages_touched))
3007 		return;
3008 
3009 	if (cpu_buffer->reader_page == cpu_buffer->commit_page)
3010 		return;
3011 
3012 	if (!cpu_buffer->irq_work.full_waiters_pending)
3013 		return;
3014 
3015 	cpu_buffer->last_pages_touch = local_read(&cpu_buffer->pages_touched);
3016 
3017 	full = cpu_buffer->shortest_full;
3018 	nr_pages = cpu_buffer->nr_pages;
3019 	dirty = ring_buffer_nr_dirty_pages(buffer, cpu_buffer->cpu);
3020 	if (full && nr_pages && (dirty * 100) <= full * nr_pages)
3021 		return;
3022 
3023 	cpu_buffer->irq_work.wakeup_full = true;
3024 	cpu_buffer->irq_work.full_waiters_pending = false;
3025 	/* irq_work_queue() supplies it's own memory barriers */
3026 	irq_work_queue(&cpu_buffer->irq_work.work);
3027 }
3028 
3029 /*
3030  * The lock and unlock are done within a preempt disable section.
3031  * The current_context per_cpu variable can only be modified
3032  * by the current task between lock and unlock. But it can
3033  * be modified more than once via an interrupt. To pass this
3034  * information from the lock to the unlock without having to
3035  * access the 'in_interrupt()' functions again (which do show
3036  * a bit of overhead in something as critical as function tracing,
3037  * we use a bitmask trick.
3038  *
3039  *  bit 1 =  NMI context
3040  *  bit 2 =  IRQ context
3041  *  bit 3 =  SoftIRQ context
3042  *  bit 4 =  normal context.
3043  *
3044  * This works because this is the order of contexts that can
3045  * preempt other contexts. A SoftIRQ never preempts an IRQ
3046  * context.
3047  *
3048  * When the context is determined, the corresponding bit is
3049  * checked and set (if it was set, then a recursion of that context
3050  * happened).
3051  *
3052  * On unlock, we need to clear this bit. To do so, just subtract
3053  * 1 from the current_context and AND it to itself.
3054  *
3055  * (binary)
3056  *  101 - 1 = 100
3057  *  101 & 100 = 100 (clearing bit zero)
3058  *
3059  *  1010 - 1 = 1001
3060  *  1010 & 1001 = 1000 (clearing bit 1)
3061  *
3062  * The least significant bit can be cleared this way, and it
3063  * just so happens that it is the same bit corresponding to
3064  * the current context.
3065  *
3066  * Now the TRANSITION bit breaks the above slightly. The TRANSITION bit
3067  * is set when a recursion is detected at the current context, and if
3068  * the TRANSITION bit is already set, it will fail the recursion.
3069  * This is needed because there's a lag between the changing of
3070  * interrupt context and updating the preempt count. In this case,
3071  * a false positive will be found. To handle this, one extra recursion
3072  * is allowed, and this is done by the TRANSITION bit. If the TRANSITION
3073  * bit is already set, then it is considered a recursion and the function
3074  * ends. Otherwise, the TRANSITION bit is set, and that bit is returned.
3075  *
3076  * On the trace_recursive_unlock(), the TRANSITION bit will be the first
3077  * to be cleared. Even if it wasn't the context that set it. That is,
3078  * if an interrupt comes in while NORMAL bit is set and the ring buffer
3079  * is called before preempt_count() is updated, since the check will
3080  * be on the NORMAL bit, the TRANSITION bit will then be set. If an
3081  * NMI then comes in, it will set the NMI bit, but when the NMI code
3082  * does the trace_recursive_unlock() it will clear the TRANSTION bit
3083  * and leave the NMI bit set. But this is fine, because the interrupt
3084  * code that set the TRANSITION bit will then clear the NMI bit when it
3085  * calls trace_recursive_unlock(). If another NMI comes in, it will
3086  * set the TRANSITION bit and continue.
3087  *
3088  * Note: The TRANSITION bit only handles a single transition between context.
3089  */
3090 
3091 static __always_inline int
trace_recursive_lock(struct ring_buffer_per_cpu * cpu_buffer)3092 trace_recursive_lock(struct ring_buffer_per_cpu *cpu_buffer)
3093 {
3094 	unsigned int val = cpu_buffer->current_context;
3095 	unsigned long pc = preempt_count();
3096 	int bit;
3097 
3098 	if (!(pc & (NMI_MASK | HARDIRQ_MASK | SOFTIRQ_OFFSET)))
3099 		bit = RB_CTX_NORMAL;
3100 	else
3101 		bit = pc & NMI_MASK ? RB_CTX_NMI :
3102 			pc & HARDIRQ_MASK ? RB_CTX_IRQ : RB_CTX_SOFTIRQ;
3103 
3104 	if (unlikely(val & (1 << (bit + cpu_buffer->nest)))) {
3105 		/*
3106 		 * It is possible that this was called by transitioning
3107 		 * between interrupt context, and preempt_count() has not
3108 		 * been updated yet. In this case, use the TRANSITION bit.
3109 		 */
3110 		bit = RB_CTX_TRANSITION;
3111 		if (val & (1 << (bit + cpu_buffer->nest)))
3112 			return 1;
3113 	}
3114 
3115 	val |= (1 << (bit + cpu_buffer->nest));
3116 	cpu_buffer->current_context = val;
3117 
3118 	return 0;
3119 }
3120 
3121 static __always_inline void
trace_recursive_unlock(struct ring_buffer_per_cpu * cpu_buffer)3122 trace_recursive_unlock(struct ring_buffer_per_cpu *cpu_buffer)
3123 {
3124 	cpu_buffer->current_context &=
3125 		cpu_buffer->current_context - (1 << cpu_buffer->nest);
3126 }
3127 
3128 /* The recursive locking above uses 5 bits */
3129 #define NESTED_BITS 5
3130 
3131 /**
3132  * ring_buffer_nest_start - Allow to trace while nested
3133  * @buffer: The ring buffer to modify
3134  *
3135  * The ring buffer has a safety mechanism to prevent recursion.
3136  * But there may be a case where a trace needs to be done while
3137  * tracing something else. In this case, calling this function
3138  * will allow this function to nest within a currently active
3139  * ring_buffer_lock_reserve().
3140  *
3141  * Call this function before calling another ring_buffer_lock_reserve() and
3142  * call ring_buffer_nest_end() after the nested ring_buffer_unlock_commit().
3143  */
ring_buffer_nest_start(struct trace_buffer * buffer)3144 void ring_buffer_nest_start(struct trace_buffer *buffer)
3145 {
3146 	struct ring_buffer_per_cpu *cpu_buffer;
3147 	int cpu;
3148 
3149 	/* Enabled by ring_buffer_nest_end() */
3150 	preempt_disable_notrace();
3151 	cpu = raw_smp_processor_id();
3152 	cpu_buffer = buffer->buffers[cpu];
3153 	/* This is the shift value for the above recursive locking */
3154 	cpu_buffer->nest += NESTED_BITS;
3155 }
3156 
3157 /**
3158  * ring_buffer_nest_end - Allow to trace while nested
3159  * @buffer: The ring buffer to modify
3160  *
3161  * Must be called after ring_buffer_nest_start() and after the
3162  * ring_buffer_unlock_commit().
3163  */
ring_buffer_nest_end(struct trace_buffer * buffer)3164 void ring_buffer_nest_end(struct trace_buffer *buffer)
3165 {
3166 	struct ring_buffer_per_cpu *cpu_buffer;
3167 	int cpu;
3168 
3169 	/* disabled by ring_buffer_nest_start() */
3170 	cpu = raw_smp_processor_id();
3171 	cpu_buffer = buffer->buffers[cpu];
3172 	/* This is the shift value for the above recursive locking */
3173 	cpu_buffer->nest -= NESTED_BITS;
3174 	preempt_enable_notrace();
3175 }
3176 
3177 /**
3178  * ring_buffer_unlock_commit - commit a reserved
3179  * @buffer: The buffer to commit to
3180  * @event: The event pointer to commit.
3181  *
3182  * This commits the data to the ring buffer, and releases any locks held.
3183  *
3184  * Must be paired with ring_buffer_lock_reserve.
3185  */
ring_buffer_unlock_commit(struct trace_buffer * buffer,struct ring_buffer_event * event)3186 int ring_buffer_unlock_commit(struct trace_buffer *buffer,
3187 			      struct ring_buffer_event *event)
3188 {
3189 	struct ring_buffer_per_cpu *cpu_buffer;
3190 	int cpu = raw_smp_processor_id();
3191 
3192 	cpu_buffer = buffer->buffers[cpu];
3193 
3194 	rb_commit(cpu_buffer, event);
3195 
3196 	rb_wakeups(buffer, cpu_buffer);
3197 
3198 	trace_recursive_unlock(cpu_buffer);
3199 
3200 	preempt_enable_notrace();
3201 
3202 	return 0;
3203 }
3204 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
3205 
3206 static struct ring_buffer_event *
__rb_reserve_next(struct ring_buffer_per_cpu * cpu_buffer,struct rb_event_info * info)3207 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
3208 		  struct rb_event_info *info)
3209 {
3210 	struct ring_buffer_event *event;
3211 	struct buffer_page *tail_page;
3212 	unsigned long tail, write, w;
3213 	bool a_ok;
3214 	bool b_ok;
3215 
3216 	/* Don't let the compiler play games with cpu_buffer->tail_page */
3217 	tail_page = info->tail_page = READ_ONCE(cpu_buffer->tail_page);
3218 
3219  /*A*/	w = local_read(&tail_page->write) & RB_WRITE_MASK;
3220 	barrier();
3221 	b_ok = rb_time_read(&cpu_buffer->before_stamp, &info->before);
3222 	a_ok = rb_time_read(&cpu_buffer->write_stamp, &info->after);
3223 	barrier();
3224 	info->ts = rb_time_stamp(cpu_buffer->buffer);
3225 
3226 	if ((info->add_timestamp & RB_ADD_STAMP_ABSOLUTE)) {
3227 		info->delta = info->ts;
3228 	} else {
3229 		/*
3230 		 * If interrupting an event time update, we may need an
3231 		 * absolute timestamp.
3232 		 * Don't bother if this is the start of a new page (w == 0).
3233 		 */
3234 		if (unlikely(!a_ok || !b_ok || (info->before != info->after && w))) {
3235 			info->add_timestamp |= RB_ADD_STAMP_FORCE | RB_ADD_STAMP_EXTEND;
3236 			info->length += RB_LEN_TIME_EXTEND;
3237 		} else {
3238 			info->delta = info->ts - info->after;
3239 			if (unlikely(test_time_stamp(info->delta))) {
3240 				info->add_timestamp |= RB_ADD_STAMP_EXTEND;
3241 				info->length += RB_LEN_TIME_EXTEND;
3242 			}
3243 		}
3244 	}
3245 
3246  /*B*/	rb_time_set(&cpu_buffer->before_stamp, info->ts);
3247 
3248  /*C*/	write = local_add_return(info->length, &tail_page->write);
3249 
3250 	/* set write to only the index of the write */
3251 	write &= RB_WRITE_MASK;
3252 
3253 	tail = write - info->length;
3254 
3255 	/* See if we shot pass the end of this buffer page */
3256 	if (unlikely(write > BUF_PAGE_SIZE)) {
3257 		/* before and after may now different, fix it up*/
3258 		b_ok = rb_time_read(&cpu_buffer->before_stamp, &info->before);
3259 		a_ok = rb_time_read(&cpu_buffer->write_stamp, &info->after);
3260 		if (a_ok && b_ok && info->before != info->after)
3261 			(void)rb_time_cmpxchg(&cpu_buffer->before_stamp,
3262 					      info->before, info->after);
3263 		return rb_move_tail(cpu_buffer, tail, info);
3264 	}
3265 
3266 	if (likely(tail == w)) {
3267 		u64 save_before;
3268 		bool s_ok;
3269 
3270 		/* Nothing interrupted us between A and C */
3271  /*D*/		rb_time_set(&cpu_buffer->write_stamp, info->ts);
3272 		barrier();
3273  /*E*/		s_ok = rb_time_read(&cpu_buffer->before_stamp, &save_before);
3274 		RB_WARN_ON(cpu_buffer, !s_ok);
3275 		if (likely(!(info->add_timestamp &
3276 			     (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE))))
3277 			/* This did not interrupt any time update */
3278 			info->delta = info->ts - info->after;
3279 		else
3280 			/* Just use full timestamp for inerrupting event */
3281 			info->delta = info->ts;
3282 		barrier();
3283 		if (unlikely(info->ts != save_before)) {
3284 			/* SLOW PATH - Interrupted between C and E */
3285 
3286 			a_ok = rb_time_read(&cpu_buffer->write_stamp, &info->after);
3287 			RB_WARN_ON(cpu_buffer, !a_ok);
3288 
3289 			/* Write stamp must only go forward */
3290 			if (save_before > info->after) {
3291 				/*
3292 				 * We do not care about the result, only that
3293 				 * it gets updated atomically.
3294 				 */
3295 				(void)rb_time_cmpxchg(&cpu_buffer->write_stamp,
3296 						      info->after, save_before);
3297 			}
3298 		}
3299 	} else {
3300 		u64 ts;
3301 		/* SLOW PATH - Interrupted between A and C */
3302 		a_ok = rb_time_read(&cpu_buffer->write_stamp, &info->after);
3303 		/* Was interrupted before here, write_stamp must be valid */
3304 		RB_WARN_ON(cpu_buffer, !a_ok);
3305 		ts = rb_time_stamp(cpu_buffer->buffer);
3306 		barrier();
3307  /*E*/		if (write == (local_read(&tail_page->write) & RB_WRITE_MASK) &&
3308 		    info->after < ts &&
3309 		    rb_time_cmpxchg(&cpu_buffer->write_stamp,
3310 				    info->after, ts)) {
3311 			/* Nothing came after this event between C and E */
3312 			info->delta = ts - info->after;
3313 			info->ts = ts;
3314 		} else {
3315 			/*
3316 			 * Interrupted beween C and E:
3317 			 * Lost the previous events time stamp. Just set the
3318 			 * delta to zero, and this will be the same time as
3319 			 * the event this event interrupted. And the events that
3320 			 * came after this will still be correct (as they would
3321 			 * have built their delta on the previous event.
3322 			 */
3323 			info->delta = 0;
3324 		}
3325 		info->add_timestamp &= ~RB_ADD_STAMP_FORCE;
3326 	}
3327 
3328 	/*
3329 	 * If this is the first commit on the page, then it has the same
3330 	 * timestamp as the page itself.
3331 	 */
3332 	if (unlikely(!tail && !(info->add_timestamp &
3333 				(RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE))))
3334 		info->delta = 0;
3335 
3336 	/* We reserved something on the buffer */
3337 
3338 	event = __rb_page_index(tail_page, tail);
3339 	rb_update_event(cpu_buffer, event, info);
3340 
3341 	local_inc(&tail_page->entries);
3342 
3343 	/*
3344 	 * If this is the first commit on the page, then update
3345 	 * its timestamp.
3346 	 */
3347 	if (unlikely(!tail))
3348 		tail_page->page->time_stamp = info->ts;
3349 
3350 	/* account for these added bytes */
3351 	local_add(info->length, &cpu_buffer->entries_bytes);
3352 
3353 	return event;
3354 }
3355 
3356 static __always_inline struct ring_buffer_event *
rb_reserve_next_event(struct trace_buffer * buffer,struct ring_buffer_per_cpu * cpu_buffer,unsigned long length)3357 rb_reserve_next_event(struct trace_buffer *buffer,
3358 		      struct ring_buffer_per_cpu *cpu_buffer,
3359 		      unsigned long length)
3360 {
3361 	struct ring_buffer_event *event;
3362 	struct rb_event_info info;
3363 	int nr_loops = 0;
3364 	int add_ts_default;
3365 
3366 	rb_start_commit(cpu_buffer);
3367 	/* The commit page can not change after this */
3368 
3369 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
3370 	/*
3371 	 * Due to the ability to swap a cpu buffer from a buffer
3372 	 * it is possible it was swapped before we committed.
3373 	 * (committing stops a swap). We check for it here and
3374 	 * if it happened, we have to fail the write.
3375 	 */
3376 	barrier();
3377 	if (unlikely(READ_ONCE(cpu_buffer->buffer) != buffer)) {
3378 		local_dec(&cpu_buffer->committing);
3379 		local_dec(&cpu_buffer->commits);
3380 		return NULL;
3381 	}
3382 #endif
3383 
3384 	info.length = rb_calculate_event_length(length);
3385 
3386 	if (ring_buffer_time_stamp_abs(cpu_buffer->buffer)) {
3387 		add_ts_default = RB_ADD_STAMP_ABSOLUTE;
3388 		info.length += RB_LEN_TIME_EXTEND;
3389 	} else {
3390 		add_ts_default = RB_ADD_STAMP_NONE;
3391 	}
3392 
3393  again:
3394 	info.add_timestamp = add_ts_default;
3395 	info.delta = 0;
3396 
3397 	/*
3398 	 * We allow for interrupts to reenter here and do a trace.
3399 	 * If one does, it will cause this original code to loop
3400 	 * back here. Even with heavy interrupts happening, this
3401 	 * should only happen a few times in a row. If this happens
3402 	 * 1000 times in a row, there must be either an interrupt
3403 	 * storm or we have something buggy.
3404 	 * Bail!
3405 	 */
3406 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
3407 		goto out_fail;
3408 
3409 	event = __rb_reserve_next(cpu_buffer, &info);
3410 
3411 	if (unlikely(PTR_ERR(event) == -EAGAIN)) {
3412 		if (info.add_timestamp & (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_EXTEND))
3413 			info.length -= RB_LEN_TIME_EXTEND;
3414 		goto again;
3415 	}
3416 
3417 	if (likely(event))
3418 		return event;
3419  out_fail:
3420 	rb_end_commit(cpu_buffer);
3421 	return NULL;
3422 }
3423 
3424 /**
3425  * ring_buffer_lock_reserve - reserve a part of the buffer
3426  * @buffer: the ring buffer to reserve from
3427  * @length: the length of the data to reserve (excluding event header)
3428  *
3429  * Returns a reserved event on the ring buffer to copy directly to.
3430  * The user of this interface will need to get the body to write into
3431  * and can use the ring_buffer_event_data() interface.
3432  *
3433  * The length is the length of the data needed, not the event length
3434  * which also includes the event header.
3435  *
3436  * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
3437  * If NULL is returned, then nothing has been allocated or locked.
3438  */
3439 struct ring_buffer_event *
ring_buffer_lock_reserve(struct trace_buffer * buffer,unsigned long length)3440 ring_buffer_lock_reserve(struct trace_buffer *buffer, unsigned long length)
3441 {
3442 	struct ring_buffer_per_cpu *cpu_buffer;
3443 	struct ring_buffer_event *event;
3444 	int cpu;
3445 
3446 	/* If we are tracing schedule, we don't want to recurse */
3447 	preempt_disable_notrace();
3448 
3449 	if (unlikely(atomic_read(&buffer->record_disabled)))
3450 		goto out;
3451 
3452 	cpu = raw_smp_processor_id();
3453 
3454 	if (unlikely(!cpumask_test_cpu(cpu, buffer->cpumask)))
3455 		goto out;
3456 
3457 	cpu_buffer = buffer->buffers[cpu];
3458 
3459 	if (unlikely(atomic_read(&cpu_buffer->record_disabled)))
3460 		goto out;
3461 
3462 	if (unlikely(length > BUF_MAX_DATA_SIZE))
3463 		goto out;
3464 
3465 	if (unlikely(trace_recursive_lock(cpu_buffer)))
3466 		goto out;
3467 
3468 	event = rb_reserve_next_event(buffer, cpu_buffer, length);
3469 	if (!event)
3470 		goto out_unlock;
3471 
3472 	return event;
3473 
3474  out_unlock:
3475 	trace_recursive_unlock(cpu_buffer);
3476  out:
3477 	preempt_enable_notrace();
3478 	return NULL;
3479 }
3480 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
3481 
3482 /*
3483  * Decrement the entries to the page that an event is on.
3484  * The event does not even need to exist, only the pointer
3485  * to the page it is on. This may only be called before the commit
3486  * takes place.
3487  */
3488 static inline void
rb_decrement_entry(struct ring_buffer_per_cpu * cpu_buffer,struct ring_buffer_event * event)3489 rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
3490 		   struct ring_buffer_event *event)
3491 {
3492 	unsigned long addr = (unsigned long)event;
3493 	struct buffer_page *bpage = cpu_buffer->commit_page;
3494 	struct buffer_page *start;
3495 
3496 	addr &= PAGE_MASK;
3497 
3498 	/* Do the likely case first */
3499 	if (likely(bpage->page == (void *)addr)) {
3500 		local_dec(&bpage->entries);
3501 		return;
3502 	}
3503 
3504 	/*
3505 	 * Because the commit page may be on the reader page we
3506 	 * start with the next page and check the end loop there.
3507 	 */
3508 	rb_inc_page(cpu_buffer, &bpage);
3509 	start = bpage;
3510 	do {
3511 		if (bpage->page == (void *)addr) {
3512 			local_dec(&bpage->entries);
3513 			return;
3514 		}
3515 		rb_inc_page(cpu_buffer, &bpage);
3516 	} while (bpage != start);
3517 
3518 	/* commit not part of this buffer?? */
3519 	RB_WARN_ON(cpu_buffer, 1);
3520 }
3521 
3522 /**
3523  * ring_buffer_commit_discard - discard an event that has not been committed
3524  * @buffer: the ring buffer
3525  * @event: non committed event to discard
3526  *
3527  * Sometimes an event that is in the ring buffer needs to be ignored.
3528  * This function lets the user discard an event in the ring buffer
3529  * and then that event will not be read later.
3530  *
3531  * This function only works if it is called before the item has been
3532  * committed. It will try to free the event from the ring buffer
3533  * if another event has not been added behind it.
3534  *
3535  * If another event has been added behind it, it will set the event
3536  * up as discarded, and perform the commit.
3537  *
3538  * If this function is called, do not call ring_buffer_unlock_commit on
3539  * the event.
3540  */
ring_buffer_discard_commit(struct trace_buffer * buffer,struct ring_buffer_event * event)3541 void ring_buffer_discard_commit(struct trace_buffer *buffer,
3542 				struct ring_buffer_event *event)
3543 {
3544 	struct ring_buffer_per_cpu *cpu_buffer;
3545 	int cpu;
3546 
3547 	/* The event is discarded regardless */
3548 	rb_event_discard(event);
3549 
3550 	cpu = smp_processor_id();
3551 	cpu_buffer = buffer->buffers[cpu];
3552 
3553 	/*
3554 	 * This must only be called if the event has not been
3555 	 * committed yet. Thus we can assume that preemption
3556 	 * is still disabled.
3557 	 */
3558 	RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
3559 
3560 	rb_decrement_entry(cpu_buffer, event);
3561 	if (rb_try_to_discard(cpu_buffer, event))
3562 		goto out;
3563 
3564  out:
3565 	rb_end_commit(cpu_buffer);
3566 
3567 	trace_recursive_unlock(cpu_buffer);
3568 
3569 	preempt_enable_notrace();
3570 
3571 }
3572 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
3573 
3574 /**
3575  * ring_buffer_write - write data to the buffer without reserving
3576  * @buffer: The ring buffer to write to.
3577  * @length: The length of the data being written (excluding the event header)
3578  * @data: The data to write to the buffer.
3579  *
3580  * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
3581  * one function. If you already have the data to write to the buffer, it
3582  * may be easier to simply call this function.
3583  *
3584  * Note, like ring_buffer_lock_reserve, the length is the length of the data
3585  * and not the length of the event which would hold the header.
3586  */
ring_buffer_write(struct trace_buffer * buffer,unsigned long length,void * data)3587 int ring_buffer_write(struct trace_buffer *buffer,
3588 		      unsigned long length,
3589 		      void *data)
3590 {
3591 	struct ring_buffer_per_cpu *cpu_buffer;
3592 	struct ring_buffer_event *event;
3593 	void *body;
3594 	int ret = -EBUSY;
3595 	int cpu;
3596 
3597 	preempt_disable_notrace();
3598 
3599 	if (atomic_read(&buffer->record_disabled))
3600 		goto out;
3601 
3602 	cpu = raw_smp_processor_id();
3603 
3604 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3605 		goto out;
3606 
3607 	cpu_buffer = buffer->buffers[cpu];
3608 
3609 	if (atomic_read(&cpu_buffer->record_disabled))
3610 		goto out;
3611 
3612 	if (length > BUF_MAX_DATA_SIZE)
3613 		goto out;
3614 
3615 	if (unlikely(trace_recursive_lock(cpu_buffer)))
3616 		goto out;
3617 
3618 	event = rb_reserve_next_event(buffer, cpu_buffer, length);
3619 	if (!event)
3620 		goto out_unlock;
3621 
3622 	body = rb_event_data(event);
3623 
3624 	memcpy(body, data, length);
3625 
3626 	rb_commit(cpu_buffer, event);
3627 
3628 	rb_wakeups(buffer, cpu_buffer);
3629 
3630 	ret = 0;
3631 
3632  out_unlock:
3633 	trace_recursive_unlock(cpu_buffer);
3634 
3635  out:
3636 	preempt_enable_notrace();
3637 
3638 	return ret;
3639 }
3640 EXPORT_SYMBOL_GPL(ring_buffer_write);
3641 
rb_per_cpu_empty(struct ring_buffer_per_cpu * cpu_buffer)3642 static bool rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
3643 {
3644 	struct buffer_page *reader = cpu_buffer->reader_page;
3645 	struct buffer_page *head = rb_set_head_page(cpu_buffer);
3646 	struct buffer_page *commit = cpu_buffer->commit_page;
3647 
3648 	/* In case of error, head will be NULL */
3649 	if (unlikely(!head))
3650 		return true;
3651 
3652 	/* Reader should exhaust content in reader page */
3653 	if (reader->read != rb_page_commit(reader))
3654 		return false;
3655 
3656 	/*
3657 	 * If writers are committing on the reader page, knowing all
3658 	 * committed content has been read, the ring buffer is empty.
3659 	 */
3660 	if (commit == reader)
3661 		return true;
3662 
3663 	/*
3664 	 * If writers are committing on a page other than reader page
3665 	 * and head page, there should always be content to read.
3666 	 */
3667 	if (commit != head)
3668 		return false;
3669 
3670 	/*
3671 	 * Writers are committing on the head page, we just need
3672 	 * to care about there're committed data, and the reader will
3673 	 * swap reader page with head page when it is to read data.
3674 	 */
3675 	return rb_page_commit(commit) == 0;
3676 }
3677 
3678 /**
3679  * ring_buffer_record_disable - stop all writes into the buffer
3680  * @buffer: The ring buffer to stop writes to.
3681  *
3682  * This prevents all writes to the buffer. Any attempt to write
3683  * to the buffer after this will fail and return NULL.
3684  *
3685  * The caller should call synchronize_rcu() after this.
3686  */
ring_buffer_record_disable(struct trace_buffer * buffer)3687 void ring_buffer_record_disable(struct trace_buffer *buffer)
3688 {
3689 	atomic_inc(&buffer->record_disabled);
3690 }
3691 EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
3692 
3693 /**
3694  * ring_buffer_record_enable - enable writes to the buffer
3695  * @buffer: The ring buffer to enable writes
3696  *
3697  * Note, multiple disables will need the same number of enables
3698  * to truly enable the writing (much like preempt_disable).
3699  */
ring_buffer_record_enable(struct trace_buffer * buffer)3700 void ring_buffer_record_enable(struct trace_buffer *buffer)
3701 {
3702 	atomic_dec(&buffer->record_disabled);
3703 }
3704 EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
3705 
3706 /**
3707  * ring_buffer_record_off - stop all writes into the buffer
3708  * @buffer: The ring buffer to stop writes to.
3709  *
3710  * This prevents all writes to the buffer. Any attempt to write
3711  * to the buffer after this will fail and return NULL.
3712  *
3713  * This is different than ring_buffer_record_disable() as
3714  * it works like an on/off switch, where as the disable() version
3715  * must be paired with a enable().
3716  */
ring_buffer_record_off(struct trace_buffer * buffer)3717 void ring_buffer_record_off(struct trace_buffer *buffer)
3718 {
3719 	unsigned int rd;
3720 	unsigned int new_rd;
3721 
3722 	do {
3723 		rd = atomic_read(&buffer->record_disabled);
3724 		new_rd = rd | RB_BUFFER_OFF;
3725 	} while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3726 }
3727 EXPORT_SYMBOL_GPL(ring_buffer_record_off);
3728 
3729 /**
3730  * ring_buffer_record_on - restart writes into the buffer
3731  * @buffer: The ring buffer to start writes to.
3732  *
3733  * This enables all writes to the buffer that was disabled by
3734  * ring_buffer_record_off().
3735  *
3736  * This is different than ring_buffer_record_enable() as
3737  * it works like an on/off switch, where as the enable() version
3738  * must be paired with a disable().
3739  */
ring_buffer_record_on(struct trace_buffer * buffer)3740 void ring_buffer_record_on(struct trace_buffer *buffer)
3741 {
3742 	unsigned int rd;
3743 	unsigned int new_rd;
3744 
3745 	do {
3746 		rd = atomic_read(&buffer->record_disabled);
3747 		new_rd = rd & ~RB_BUFFER_OFF;
3748 	} while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3749 }
3750 EXPORT_SYMBOL_GPL(ring_buffer_record_on);
3751 
3752 /**
3753  * ring_buffer_record_is_on - return true if the ring buffer can write
3754  * @buffer: The ring buffer to see if write is enabled
3755  *
3756  * Returns true if the ring buffer is in a state that it accepts writes.
3757  */
ring_buffer_record_is_on(struct trace_buffer * buffer)3758 bool ring_buffer_record_is_on(struct trace_buffer *buffer)
3759 {
3760 	return !atomic_read(&buffer->record_disabled);
3761 }
3762 
3763 /**
3764  * ring_buffer_record_is_set_on - return true if the ring buffer is set writable
3765  * @buffer: The ring buffer to see if write is set enabled
3766  *
3767  * Returns true if the ring buffer is set writable by ring_buffer_record_on().
3768  * Note that this does NOT mean it is in a writable state.
3769  *
3770  * It may return true when the ring buffer has been disabled by
3771  * ring_buffer_record_disable(), as that is a temporary disabling of
3772  * the ring buffer.
3773  */
ring_buffer_record_is_set_on(struct trace_buffer * buffer)3774 bool ring_buffer_record_is_set_on(struct trace_buffer *buffer)
3775 {
3776 	return !(atomic_read(&buffer->record_disabled) & RB_BUFFER_OFF);
3777 }
3778 
3779 /**
3780  * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
3781  * @buffer: The ring buffer to stop writes to.
3782  * @cpu: The CPU buffer to stop
3783  *
3784  * This prevents all writes to the buffer. Any attempt to write
3785  * to the buffer after this will fail and return NULL.
3786  *
3787  * The caller should call synchronize_rcu() after this.
3788  */
ring_buffer_record_disable_cpu(struct trace_buffer * buffer,int cpu)3789 void ring_buffer_record_disable_cpu(struct trace_buffer *buffer, int cpu)
3790 {
3791 	struct ring_buffer_per_cpu *cpu_buffer;
3792 
3793 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3794 		return;
3795 
3796 	cpu_buffer = buffer->buffers[cpu];
3797 	atomic_inc(&cpu_buffer->record_disabled);
3798 }
3799 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
3800 
3801 /**
3802  * ring_buffer_record_enable_cpu - enable writes to the buffer
3803  * @buffer: The ring buffer to enable writes
3804  * @cpu: The CPU to enable.
3805  *
3806  * Note, multiple disables will need the same number of enables
3807  * to truly enable the writing (much like preempt_disable).
3808  */
ring_buffer_record_enable_cpu(struct trace_buffer * buffer,int cpu)3809 void ring_buffer_record_enable_cpu(struct trace_buffer *buffer, int cpu)
3810 {
3811 	struct ring_buffer_per_cpu *cpu_buffer;
3812 
3813 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3814 		return;
3815 
3816 	cpu_buffer = buffer->buffers[cpu];
3817 	atomic_dec(&cpu_buffer->record_disabled);
3818 }
3819 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
3820 
3821 /*
3822  * The total entries in the ring buffer is the running counter
3823  * of entries entered into the ring buffer, minus the sum of
3824  * the entries read from the ring buffer and the number of
3825  * entries that were overwritten.
3826  */
3827 static inline unsigned long
rb_num_of_entries(struct ring_buffer_per_cpu * cpu_buffer)3828 rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer)
3829 {
3830 	return local_read(&cpu_buffer->entries) -
3831 		(local_read(&cpu_buffer->overrun) + cpu_buffer->read);
3832 }
3833 
3834 /**
3835  * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer
3836  * @buffer: The ring buffer
3837  * @cpu: The per CPU buffer to read from.
3838  */
ring_buffer_oldest_event_ts(struct trace_buffer * buffer,int cpu)3839 u64 ring_buffer_oldest_event_ts(struct trace_buffer *buffer, int cpu)
3840 {
3841 	unsigned long flags;
3842 	struct ring_buffer_per_cpu *cpu_buffer;
3843 	struct buffer_page *bpage;
3844 	u64 ret = 0;
3845 
3846 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3847 		return 0;
3848 
3849 	cpu_buffer = buffer->buffers[cpu];
3850 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3851 	/*
3852 	 * if the tail is on reader_page, oldest time stamp is on the reader
3853 	 * page
3854 	 */
3855 	if (cpu_buffer->tail_page == cpu_buffer->reader_page)
3856 		bpage = cpu_buffer->reader_page;
3857 	else
3858 		bpage = rb_set_head_page(cpu_buffer);
3859 	if (bpage)
3860 		ret = bpage->page->time_stamp;
3861 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3862 
3863 	return ret;
3864 }
3865 EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts);
3866 
3867 /**
3868  * ring_buffer_bytes_cpu - get the number of bytes consumed in a cpu buffer
3869  * @buffer: The ring buffer
3870  * @cpu: The per CPU buffer to read from.
3871  */
ring_buffer_bytes_cpu(struct trace_buffer * buffer,int cpu)3872 unsigned long ring_buffer_bytes_cpu(struct trace_buffer *buffer, int cpu)
3873 {
3874 	struct ring_buffer_per_cpu *cpu_buffer;
3875 	unsigned long ret;
3876 
3877 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3878 		return 0;
3879 
3880 	cpu_buffer = buffer->buffers[cpu];
3881 	ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes;
3882 
3883 	return ret;
3884 }
3885 EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu);
3886 
3887 /**
3888  * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
3889  * @buffer: The ring buffer
3890  * @cpu: The per CPU buffer to get the entries from.
3891  */
ring_buffer_entries_cpu(struct trace_buffer * buffer,int cpu)3892 unsigned long ring_buffer_entries_cpu(struct trace_buffer *buffer, int cpu)
3893 {
3894 	struct ring_buffer_per_cpu *cpu_buffer;
3895 
3896 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3897 		return 0;
3898 
3899 	cpu_buffer = buffer->buffers[cpu];
3900 
3901 	return rb_num_of_entries(cpu_buffer);
3902 }
3903 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
3904 
3905 /**
3906  * ring_buffer_overrun_cpu - get the number of overruns caused by the ring
3907  * buffer wrapping around (only if RB_FL_OVERWRITE is on).
3908  * @buffer: The ring buffer
3909  * @cpu: The per CPU buffer to get the number of overruns from
3910  */
ring_buffer_overrun_cpu(struct trace_buffer * buffer,int cpu)3911 unsigned long ring_buffer_overrun_cpu(struct trace_buffer *buffer, int cpu)
3912 {
3913 	struct ring_buffer_per_cpu *cpu_buffer;
3914 	unsigned long ret;
3915 
3916 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3917 		return 0;
3918 
3919 	cpu_buffer = buffer->buffers[cpu];
3920 	ret = local_read(&cpu_buffer->overrun);
3921 
3922 	return ret;
3923 }
3924 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
3925 
3926 /**
3927  * ring_buffer_commit_overrun_cpu - get the number of overruns caused by
3928  * commits failing due to the buffer wrapping around while there are uncommitted
3929  * events, such as during an interrupt storm.
3930  * @buffer: The ring buffer
3931  * @cpu: The per CPU buffer to get the number of overruns from
3932  */
3933 unsigned long
ring_buffer_commit_overrun_cpu(struct trace_buffer * buffer,int cpu)3934 ring_buffer_commit_overrun_cpu(struct trace_buffer *buffer, int cpu)
3935 {
3936 	struct ring_buffer_per_cpu *cpu_buffer;
3937 	unsigned long ret;
3938 
3939 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3940 		return 0;
3941 
3942 	cpu_buffer = buffer->buffers[cpu];
3943 	ret = local_read(&cpu_buffer->commit_overrun);
3944 
3945 	return ret;
3946 }
3947 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
3948 
3949 /**
3950  * ring_buffer_dropped_events_cpu - get the number of dropped events caused by
3951  * the ring buffer filling up (only if RB_FL_OVERWRITE is off).
3952  * @buffer: The ring buffer
3953  * @cpu: The per CPU buffer to get the number of overruns from
3954  */
3955 unsigned long
ring_buffer_dropped_events_cpu(struct trace_buffer * buffer,int cpu)3956 ring_buffer_dropped_events_cpu(struct trace_buffer *buffer, int cpu)
3957 {
3958 	struct ring_buffer_per_cpu *cpu_buffer;
3959 	unsigned long ret;
3960 
3961 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3962 		return 0;
3963 
3964 	cpu_buffer = buffer->buffers[cpu];
3965 	ret = local_read(&cpu_buffer->dropped_events);
3966 
3967 	return ret;
3968 }
3969 EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu);
3970 
3971 /**
3972  * ring_buffer_read_events_cpu - get the number of events successfully read
3973  * @buffer: The ring buffer
3974  * @cpu: The per CPU buffer to get the number of events read
3975  */
3976 unsigned long
ring_buffer_read_events_cpu(struct trace_buffer * buffer,int cpu)3977 ring_buffer_read_events_cpu(struct trace_buffer *buffer, int cpu)
3978 {
3979 	struct ring_buffer_per_cpu *cpu_buffer;
3980 
3981 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3982 		return 0;
3983 
3984 	cpu_buffer = buffer->buffers[cpu];
3985 	return cpu_buffer->read;
3986 }
3987 EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu);
3988 
3989 /**
3990  * ring_buffer_entries - get the number of entries in a buffer
3991  * @buffer: The ring buffer
3992  *
3993  * Returns the total number of entries in the ring buffer
3994  * (all CPU entries)
3995  */
ring_buffer_entries(struct trace_buffer * buffer)3996 unsigned long ring_buffer_entries(struct trace_buffer *buffer)
3997 {
3998 	struct ring_buffer_per_cpu *cpu_buffer;
3999 	unsigned long entries = 0;
4000 	int cpu;
4001 
4002 	/* if you care about this being correct, lock the buffer */
4003 	for_each_buffer_cpu(buffer, cpu) {
4004 		cpu_buffer = buffer->buffers[cpu];
4005 		entries += rb_num_of_entries(cpu_buffer);
4006 	}
4007 
4008 	return entries;
4009 }
4010 EXPORT_SYMBOL_GPL(ring_buffer_entries);
4011 
4012 /**
4013  * ring_buffer_overruns - get the number of overruns in buffer
4014  * @buffer: The ring buffer
4015  *
4016  * Returns the total number of overruns in the ring buffer
4017  * (all CPU entries)
4018  */
ring_buffer_overruns(struct trace_buffer * buffer)4019 unsigned long ring_buffer_overruns(struct trace_buffer *buffer)
4020 {
4021 	struct ring_buffer_per_cpu *cpu_buffer;
4022 	unsigned long overruns = 0;
4023 	int cpu;
4024 
4025 	/* if you care about this being correct, lock the buffer */
4026 	for_each_buffer_cpu(buffer, cpu) {
4027 		cpu_buffer = buffer->buffers[cpu];
4028 		overruns += local_read(&cpu_buffer->overrun);
4029 	}
4030 
4031 	return overruns;
4032 }
4033 EXPORT_SYMBOL_GPL(ring_buffer_overruns);
4034 
rb_iter_reset(struct ring_buffer_iter * iter)4035 static void rb_iter_reset(struct ring_buffer_iter *iter)
4036 {
4037 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4038 
4039 	/* Iterator usage is expected to have record disabled */
4040 	iter->head_page = cpu_buffer->reader_page;
4041 	iter->head = cpu_buffer->reader_page->read;
4042 	iter->next_event = iter->head;
4043 
4044 	iter->cache_reader_page = iter->head_page;
4045 	iter->cache_read = cpu_buffer->read;
4046 
4047 	if (iter->head) {
4048 		iter->read_stamp = cpu_buffer->read_stamp;
4049 		iter->page_stamp = cpu_buffer->reader_page->page->time_stamp;
4050 	} else {
4051 		iter->read_stamp = iter->head_page->page->time_stamp;
4052 		iter->page_stamp = iter->read_stamp;
4053 	}
4054 }
4055 
4056 /**
4057  * ring_buffer_iter_reset - reset an iterator
4058  * @iter: The iterator to reset
4059  *
4060  * Resets the iterator, so that it will start from the beginning
4061  * again.
4062  */
ring_buffer_iter_reset(struct ring_buffer_iter * iter)4063 void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
4064 {
4065 	struct ring_buffer_per_cpu *cpu_buffer;
4066 	unsigned long flags;
4067 
4068 	if (!iter)
4069 		return;
4070 
4071 	cpu_buffer = iter->cpu_buffer;
4072 
4073 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4074 	rb_iter_reset(iter);
4075 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4076 }
4077 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
4078 
4079 /**
4080  * ring_buffer_iter_empty - check if an iterator has no more to read
4081  * @iter: The iterator to check
4082  */
ring_buffer_iter_empty(struct ring_buffer_iter * iter)4083 int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
4084 {
4085 	struct ring_buffer_per_cpu *cpu_buffer;
4086 	struct buffer_page *reader;
4087 	struct buffer_page *head_page;
4088 	struct buffer_page *commit_page;
4089 	struct buffer_page *curr_commit_page;
4090 	unsigned commit;
4091 	u64 curr_commit_ts;
4092 	u64 commit_ts;
4093 
4094 	cpu_buffer = iter->cpu_buffer;
4095 	reader = cpu_buffer->reader_page;
4096 	head_page = cpu_buffer->head_page;
4097 	commit_page = cpu_buffer->commit_page;
4098 	commit_ts = commit_page->page->time_stamp;
4099 
4100 	/*
4101 	 * When the writer goes across pages, it issues a cmpxchg which
4102 	 * is a mb(), which will synchronize with the rmb here.
4103 	 * (see rb_tail_page_update())
4104 	 */
4105 	smp_rmb();
4106 	commit = rb_page_commit(commit_page);
4107 	/* We want to make sure that the commit page doesn't change */
4108 	smp_rmb();
4109 
4110 	/* Make sure commit page didn't change */
4111 	curr_commit_page = READ_ONCE(cpu_buffer->commit_page);
4112 	curr_commit_ts = READ_ONCE(curr_commit_page->page->time_stamp);
4113 
4114 	/* If the commit page changed, then there's more data */
4115 	if (curr_commit_page != commit_page ||
4116 	    curr_commit_ts != commit_ts)
4117 		return 0;
4118 
4119 	/* Still racy, as it may return a false positive, but that's OK */
4120 	return ((iter->head_page == commit_page && iter->head >= commit) ||
4121 		(iter->head_page == reader && commit_page == head_page &&
4122 		 head_page->read == commit &&
4123 		 iter->head == rb_page_commit(cpu_buffer->reader_page)));
4124 }
4125 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
4126 
4127 static void
rb_update_read_stamp(struct ring_buffer_per_cpu * cpu_buffer,struct ring_buffer_event * event)4128 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
4129 		     struct ring_buffer_event *event)
4130 {
4131 	u64 delta;
4132 
4133 	switch (event->type_len) {
4134 	case RINGBUF_TYPE_PADDING:
4135 		return;
4136 
4137 	case RINGBUF_TYPE_TIME_EXTEND:
4138 		delta = ring_buffer_event_time_stamp(event);
4139 		cpu_buffer->read_stamp += delta;
4140 		return;
4141 
4142 	case RINGBUF_TYPE_TIME_STAMP:
4143 		delta = ring_buffer_event_time_stamp(event);
4144 		cpu_buffer->read_stamp = delta;
4145 		return;
4146 
4147 	case RINGBUF_TYPE_DATA:
4148 		cpu_buffer->read_stamp += event->time_delta;
4149 		return;
4150 
4151 	default:
4152 		RB_WARN_ON(cpu_buffer, 1);
4153 	}
4154 	return;
4155 }
4156 
4157 static void
rb_update_iter_read_stamp(struct ring_buffer_iter * iter,struct ring_buffer_event * event)4158 rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
4159 			  struct ring_buffer_event *event)
4160 {
4161 	u64 delta;
4162 
4163 	switch (event->type_len) {
4164 	case RINGBUF_TYPE_PADDING:
4165 		return;
4166 
4167 	case RINGBUF_TYPE_TIME_EXTEND:
4168 		delta = ring_buffer_event_time_stamp(event);
4169 		iter->read_stamp += delta;
4170 		return;
4171 
4172 	case RINGBUF_TYPE_TIME_STAMP:
4173 		delta = ring_buffer_event_time_stamp(event);
4174 		iter->read_stamp = delta;
4175 		return;
4176 
4177 	case RINGBUF_TYPE_DATA:
4178 		iter->read_stamp += event->time_delta;
4179 		return;
4180 
4181 	default:
4182 		RB_WARN_ON(iter->cpu_buffer, 1);
4183 	}
4184 	return;
4185 }
4186 
4187 static struct buffer_page *
rb_get_reader_page(struct ring_buffer_per_cpu * cpu_buffer)4188 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
4189 {
4190 	struct buffer_page *reader = NULL;
4191 	unsigned long overwrite;
4192 	unsigned long flags;
4193 	int nr_loops = 0;
4194 	int ret;
4195 
4196 	local_irq_save(flags);
4197 	arch_spin_lock(&cpu_buffer->lock);
4198 
4199  again:
4200 	/*
4201 	 * This should normally only loop twice. But because the
4202 	 * start of the reader inserts an empty page, it causes
4203 	 * a case where we will loop three times. There should be no
4204 	 * reason to loop four times (that I know of).
4205 	 */
4206 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
4207 		reader = NULL;
4208 		goto out;
4209 	}
4210 
4211 	reader = cpu_buffer->reader_page;
4212 
4213 	/* If there's more to read, return this page */
4214 	if (cpu_buffer->reader_page->read < rb_page_size(reader))
4215 		goto out;
4216 
4217 	/* Never should we have an index greater than the size */
4218 	if (RB_WARN_ON(cpu_buffer,
4219 		       cpu_buffer->reader_page->read > rb_page_size(reader)))
4220 		goto out;
4221 
4222 	/* check if we caught up to the tail */
4223 	reader = NULL;
4224 	if (cpu_buffer->commit_page == cpu_buffer->reader_page)
4225 		goto out;
4226 
4227 	/* Don't bother swapping if the ring buffer is empty */
4228 	if (rb_num_of_entries(cpu_buffer) == 0)
4229 		goto out;
4230 
4231 	/*
4232 	 * Reset the reader page to size zero.
4233 	 */
4234 	local_set(&cpu_buffer->reader_page->write, 0);
4235 	local_set(&cpu_buffer->reader_page->entries, 0);
4236 	local_set(&cpu_buffer->reader_page->page->commit, 0);
4237 	cpu_buffer->reader_page->real_end = 0;
4238 
4239  spin:
4240 	/*
4241 	 * Splice the empty reader page into the list around the head.
4242 	 */
4243 	reader = rb_set_head_page(cpu_buffer);
4244 	if (!reader)
4245 		goto out;
4246 	cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next);
4247 	cpu_buffer->reader_page->list.prev = reader->list.prev;
4248 
4249 	/*
4250 	 * cpu_buffer->pages just needs to point to the buffer, it
4251 	 *  has no specific buffer page to point to. Lets move it out
4252 	 *  of our way so we don't accidentally swap it.
4253 	 */
4254 	cpu_buffer->pages = reader->list.prev;
4255 
4256 	/* The reader page will be pointing to the new head */
4257 	rb_set_list_to_head(cpu_buffer, &cpu_buffer->reader_page->list);
4258 
4259 	/*
4260 	 * We want to make sure we read the overruns after we set up our
4261 	 * pointers to the next object. The writer side does a
4262 	 * cmpxchg to cross pages which acts as the mb on the writer
4263 	 * side. Note, the reader will constantly fail the swap
4264 	 * while the writer is updating the pointers, so this
4265 	 * guarantees that the overwrite recorded here is the one we
4266 	 * want to compare with the last_overrun.
4267 	 */
4268 	smp_mb();
4269 	overwrite = local_read(&(cpu_buffer->overrun));
4270 
4271 	/*
4272 	 * Here's the tricky part.
4273 	 *
4274 	 * We need to move the pointer past the header page.
4275 	 * But we can only do that if a writer is not currently
4276 	 * moving it. The page before the header page has the
4277 	 * flag bit '1' set if it is pointing to the page we want.
4278 	 * but if the writer is in the process of moving it
4279 	 * than it will be '2' or already moved '0'.
4280 	 */
4281 
4282 	ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
4283 
4284 	/*
4285 	 * If we did not convert it, then we must try again.
4286 	 */
4287 	if (!ret)
4288 		goto spin;
4289 
4290 	/*
4291 	 * Yay! We succeeded in replacing the page.
4292 	 *
4293 	 * Now make the new head point back to the reader page.
4294 	 */
4295 	rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list;
4296 	rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
4297 
4298 	local_inc(&cpu_buffer->pages_read);
4299 
4300 	/* Finally update the reader page to the new head */
4301 	cpu_buffer->reader_page = reader;
4302 	cpu_buffer->reader_page->read = 0;
4303 
4304 	if (overwrite != cpu_buffer->last_overrun) {
4305 		cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun;
4306 		cpu_buffer->last_overrun = overwrite;
4307 	}
4308 
4309 	goto again;
4310 
4311  out:
4312 	/* Update the read_stamp on the first event */
4313 	if (reader && reader->read == 0)
4314 		cpu_buffer->read_stamp = reader->page->time_stamp;
4315 
4316 	arch_spin_unlock(&cpu_buffer->lock);
4317 	local_irq_restore(flags);
4318 
4319 	return reader;
4320 }
4321 
rb_advance_reader(struct ring_buffer_per_cpu * cpu_buffer)4322 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
4323 {
4324 	struct ring_buffer_event *event;
4325 	struct buffer_page *reader;
4326 	unsigned length;
4327 
4328 	reader = rb_get_reader_page(cpu_buffer);
4329 
4330 	/* This function should not be called when buffer is empty */
4331 	if (RB_WARN_ON(cpu_buffer, !reader))
4332 		return;
4333 
4334 	event = rb_reader_event(cpu_buffer);
4335 
4336 	if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
4337 		cpu_buffer->read++;
4338 
4339 	rb_update_read_stamp(cpu_buffer, event);
4340 
4341 	length = rb_event_length(event);
4342 	cpu_buffer->reader_page->read += length;
4343 }
4344 
rb_advance_iter(struct ring_buffer_iter * iter)4345 static void rb_advance_iter(struct ring_buffer_iter *iter)
4346 {
4347 	struct ring_buffer_per_cpu *cpu_buffer;
4348 
4349 	cpu_buffer = iter->cpu_buffer;
4350 
4351 	/* If head == next_event then we need to jump to the next event */
4352 	if (iter->head == iter->next_event) {
4353 		/* If the event gets overwritten again, there's nothing to do */
4354 		if (rb_iter_head_event(iter) == NULL)
4355 			return;
4356 	}
4357 
4358 	iter->head = iter->next_event;
4359 
4360 	/*
4361 	 * Check if we are at the end of the buffer.
4362 	 */
4363 	if (iter->next_event >= rb_page_size(iter->head_page)) {
4364 		/* discarded commits can make the page empty */
4365 		if (iter->head_page == cpu_buffer->commit_page)
4366 			return;
4367 		rb_inc_iter(iter);
4368 		return;
4369 	}
4370 
4371 	rb_update_iter_read_stamp(iter, iter->event);
4372 }
4373 
rb_lost_events(struct ring_buffer_per_cpu * cpu_buffer)4374 static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer)
4375 {
4376 	return cpu_buffer->lost_events;
4377 }
4378 
4379 static struct ring_buffer_event *
rb_buffer_peek(struct ring_buffer_per_cpu * cpu_buffer,u64 * ts,unsigned long * lost_events)4380 rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts,
4381 	       unsigned long *lost_events)
4382 {
4383 	struct ring_buffer_event *event;
4384 	struct buffer_page *reader;
4385 	int nr_loops = 0;
4386 
4387 	if (ts)
4388 		*ts = 0;
4389  again:
4390 	/*
4391 	 * We repeat when a time extend is encountered.
4392 	 * Since the time extend is always attached to a data event,
4393 	 * we should never loop more than once.
4394 	 * (We never hit the following condition more than twice).
4395 	 */
4396 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
4397 		return NULL;
4398 
4399 	reader = rb_get_reader_page(cpu_buffer);
4400 	if (!reader)
4401 		return NULL;
4402 
4403 	event = rb_reader_event(cpu_buffer);
4404 
4405 	switch (event->type_len) {
4406 	case RINGBUF_TYPE_PADDING:
4407 		if (rb_null_event(event))
4408 			RB_WARN_ON(cpu_buffer, 1);
4409 		/*
4410 		 * Because the writer could be discarding every
4411 		 * event it creates (which would probably be bad)
4412 		 * if we were to go back to "again" then we may never
4413 		 * catch up, and will trigger the warn on, or lock
4414 		 * the box. Return the padding, and we will release
4415 		 * the current locks, and try again.
4416 		 */
4417 		return event;
4418 
4419 	case RINGBUF_TYPE_TIME_EXTEND:
4420 		/* Internal data, OK to advance */
4421 		rb_advance_reader(cpu_buffer);
4422 		goto again;
4423 
4424 	case RINGBUF_TYPE_TIME_STAMP:
4425 		if (ts) {
4426 			*ts = ring_buffer_event_time_stamp(event);
4427 			ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
4428 							 cpu_buffer->cpu, ts);
4429 		}
4430 		/* Internal data, OK to advance */
4431 		rb_advance_reader(cpu_buffer);
4432 		goto again;
4433 
4434 	case RINGBUF_TYPE_DATA:
4435 		if (ts && !(*ts)) {
4436 			*ts = cpu_buffer->read_stamp + event->time_delta;
4437 			ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
4438 							 cpu_buffer->cpu, ts);
4439 		}
4440 		if (lost_events)
4441 			*lost_events = rb_lost_events(cpu_buffer);
4442 		return event;
4443 
4444 	default:
4445 		RB_WARN_ON(cpu_buffer, 1);
4446 	}
4447 
4448 	return NULL;
4449 }
4450 EXPORT_SYMBOL_GPL(ring_buffer_peek);
4451 
4452 static struct ring_buffer_event *
rb_iter_peek(struct ring_buffer_iter * iter,u64 * ts)4453 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
4454 {
4455 	struct trace_buffer *buffer;
4456 	struct ring_buffer_per_cpu *cpu_buffer;
4457 	struct ring_buffer_event *event;
4458 	int nr_loops = 0;
4459 
4460 	if (ts)
4461 		*ts = 0;
4462 
4463 	cpu_buffer = iter->cpu_buffer;
4464 	buffer = cpu_buffer->buffer;
4465 
4466 	/*
4467 	 * Check if someone performed a consuming read to
4468 	 * the buffer. A consuming read invalidates the iterator
4469 	 * and we need to reset the iterator in this case.
4470 	 */
4471 	if (unlikely(iter->cache_read != cpu_buffer->read ||
4472 		     iter->cache_reader_page != cpu_buffer->reader_page))
4473 		rb_iter_reset(iter);
4474 
4475  again:
4476 	if (ring_buffer_iter_empty(iter))
4477 		return NULL;
4478 
4479 	/*
4480 	 * As the writer can mess with what the iterator is trying
4481 	 * to read, just give up if we fail to get an event after
4482 	 * three tries. The iterator is not as reliable when reading
4483 	 * the ring buffer with an active write as the consumer is.
4484 	 * Do not warn if the three failures is reached.
4485 	 */
4486 	if (++nr_loops > 3)
4487 		return NULL;
4488 
4489 	if (rb_per_cpu_empty(cpu_buffer))
4490 		return NULL;
4491 
4492 	if (iter->head >= rb_page_size(iter->head_page)) {
4493 		rb_inc_iter(iter);
4494 		goto again;
4495 	}
4496 
4497 	event = rb_iter_head_event(iter);
4498 	if (!event)
4499 		goto again;
4500 
4501 	switch (event->type_len) {
4502 	case RINGBUF_TYPE_PADDING:
4503 		if (rb_null_event(event)) {
4504 			rb_inc_iter(iter);
4505 			goto again;
4506 		}
4507 		rb_advance_iter(iter);
4508 		return event;
4509 
4510 	case RINGBUF_TYPE_TIME_EXTEND:
4511 		/* Internal data, OK to advance */
4512 		rb_advance_iter(iter);
4513 		goto again;
4514 
4515 	case RINGBUF_TYPE_TIME_STAMP:
4516 		if (ts) {
4517 			*ts = ring_buffer_event_time_stamp(event);
4518 			ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
4519 							 cpu_buffer->cpu, ts);
4520 		}
4521 		/* Internal data, OK to advance */
4522 		rb_advance_iter(iter);
4523 		goto again;
4524 
4525 	case RINGBUF_TYPE_DATA:
4526 		if (ts && !(*ts)) {
4527 			*ts = iter->read_stamp + event->time_delta;
4528 			ring_buffer_normalize_time_stamp(buffer,
4529 							 cpu_buffer->cpu, ts);
4530 		}
4531 		return event;
4532 
4533 	default:
4534 		RB_WARN_ON(cpu_buffer, 1);
4535 	}
4536 
4537 	return NULL;
4538 }
4539 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
4540 
rb_reader_lock(struct ring_buffer_per_cpu * cpu_buffer)4541 static inline bool rb_reader_lock(struct ring_buffer_per_cpu *cpu_buffer)
4542 {
4543 	if (likely(!in_nmi())) {
4544 		raw_spin_lock(&cpu_buffer->reader_lock);
4545 		return true;
4546 	}
4547 
4548 	/*
4549 	 * If an NMI die dumps out the content of the ring buffer
4550 	 * trylock must be used to prevent a deadlock if the NMI
4551 	 * preempted a task that holds the ring buffer locks. If
4552 	 * we get the lock then all is fine, if not, then continue
4553 	 * to do the read, but this can corrupt the ring buffer,
4554 	 * so it must be permanently disabled from future writes.
4555 	 * Reading from NMI is a oneshot deal.
4556 	 */
4557 	if (raw_spin_trylock(&cpu_buffer->reader_lock))
4558 		return true;
4559 
4560 	/* Continue without locking, but disable the ring buffer */
4561 	atomic_inc(&cpu_buffer->record_disabled);
4562 	return false;
4563 }
4564 
4565 static inline void
rb_reader_unlock(struct ring_buffer_per_cpu * cpu_buffer,bool locked)4566 rb_reader_unlock(struct ring_buffer_per_cpu *cpu_buffer, bool locked)
4567 {
4568 	if (likely(locked))
4569 		raw_spin_unlock(&cpu_buffer->reader_lock);
4570 	return;
4571 }
4572 
4573 /**
4574  * ring_buffer_peek - peek at the next event to be read
4575  * @buffer: The ring buffer to read
4576  * @cpu: The cpu to peak at
4577  * @ts: The timestamp counter of this event.
4578  * @lost_events: a variable to store if events were lost (may be NULL)
4579  *
4580  * This will return the event that will be read next, but does
4581  * not consume the data.
4582  */
4583 struct ring_buffer_event *
ring_buffer_peek(struct trace_buffer * buffer,int cpu,u64 * ts,unsigned long * lost_events)4584 ring_buffer_peek(struct trace_buffer *buffer, int cpu, u64 *ts,
4585 		 unsigned long *lost_events)
4586 {
4587 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4588 	struct ring_buffer_event *event;
4589 	unsigned long flags;
4590 	bool dolock;
4591 
4592 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4593 		return NULL;
4594 
4595  again:
4596 	local_irq_save(flags);
4597 	dolock = rb_reader_lock(cpu_buffer);
4598 	event = rb_buffer_peek(cpu_buffer, ts, lost_events);
4599 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
4600 		rb_advance_reader(cpu_buffer);
4601 	rb_reader_unlock(cpu_buffer, dolock);
4602 	local_irq_restore(flags);
4603 
4604 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
4605 		goto again;
4606 
4607 	return event;
4608 }
4609 
4610 /** ring_buffer_iter_dropped - report if there are dropped events
4611  * @iter: The ring buffer iterator
4612  *
4613  * Returns true if there was dropped events since the last peek.
4614  */
ring_buffer_iter_dropped(struct ring_buffer_iter * iter)4615 bool ring_buffer_iter_dropped(struct ring_buffer_iter *iter)
4616 {
4617 	bool ret = iter->missed_events != 0;
4618 
4619 	iter->missed_events = 0;
4620 	return ret;
4621 }
4622 EXPORT_SYMBOL_GPL(ring_buffer_iter_dropped);
4623 
4624 /**
4625  * ring_buffer_iter_peek - peek at the next event to be read
4626  * @iter: The ring buffer iterator
4627  * @ts: The timestamp counter of this event.
4628  *
4629  * This will return the event that will be read next, but does
4630  * not increment the iterator.
4631  */
4632 struct ring_buffer_event *
ring_buffer_iter_peek(struct ring_buffer_iter * iter,u64 * ts)4633 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
4634 {
4635 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4636 	struct ring_buffer_event *event;
4637 	unsigned long flags;
4638 
4639  again:
4640 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4641 	event = rb_iter_peek(iter, ts);
4642 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4643 
4644 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
4645 		goto again;
4646 
4647 	return event;
4648 }
4649 
4650 /**
4651  * ring_buffer_consume - return an event and consume it
4652  * @buffer: The ring buffer to get the next event from
4653  * @cpu: the cpu to read the buffer from
4654  * @ts: a variable to store the timestamp (may be NULL)
4655  * @lost_events: a variable to store if events were lost (may be NULL)
4656  *
4657  * Returns the next event in the ring buffer, and that event is consumed.
4658  * Meaning, that sequential reads will keep returning a different event,
4659  * and eventually empty the ring buffer if the producer is slower.
4660  */
4661 struct ring_buffer_event *
ring_buffer_consume(struct trace_buffer * buffer,int cpu,u64 * ts,unsigned long * lost_events)4662 ring_buffer_consume(struct trace_buffer *buffer, int cpu, u64 *ts,
4663 		    unsigned long *lost_events)
4664 {
4665 	struct ring_buffer_per_cpu *cpu_buffer;
4666 	struct ring_buffer_event *event = NULL;
4667 	unsigned long flags;
4668 	bool dolock;
4669 
4670  again:
4671 	/* might be called in atomic */
4672 	preempt_disable();
4673 
4674 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4675 		goto out;
4676 
4677 	cpu_buffer = buffer->buffers[cpu];
4678 	local_irq_save(flags);
4679 	dolock = rb_reader_lock(cpu_buffer);
4680 
4681 	event = rb_buffer_peek(cpu_buffer, ts, lost_events);
4682 	if (event) {
4683 		cpu_buffer->lost_events = 0;
4684 		rb_advance_reader(cpu_buffer);
4685 	}
4686 
4687 	rb_reader_unlock(cpu_buffer, dolock);
4688 	local_irq_restore(flags);
4689 
4690  out:
4691 	preempt_enable();
4692 
4693 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
4694 		goto again;
4695 
4696 	return event;
4697 }
4698 EXPORT_SYMBOL_GPL(ring_buffer_consume);
4699 
4700 /**
4701  * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer
4702  * @buffer: The ring buffer to read from
4703  * @cpu: The cpu buffer to iterate over
4704  * @flags: gfp flags to use for memory allocation
4705  *
4706  * This performs the initial preparations necessary to iterate
4707  * through the buffer.  Memory is allocated, buffer recording
4708  * is disabled, and the iterator pointer is returned to the caller.
4709  *
4710  * Disabling buffer recording prevents the reading from being
4711  * corrupted. This is not a consuming read, so a producer is not
4712  * expected.
4713  *
4714  * After a sequence of ring_buffer_read_prepare calls, the user is
4715  * expected to make at least one call to ring_buffer_read_prepare_sync.
4716  * Afterwards, ring_buffer_read_start is invoked to get things going
4717  * for real.
4718  *
4719  * This overall must be paired with ring_buffer_read_finish.
4720  */
4721 struct ring_buffer_iter *
ring_buffer_read_prepare(struct trace_buffer * buffer,int cpu,gfp_t flags)4722 ring_buffer_read_prepare(struct trace_buffer *buffer, int cpu, gfp_t flags)
4723 {
4724 	struct ring_buffer_per_cpu *cpu_buffer;
4725 	struct ring_buffer_iter *iter;
4726 
4727 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4728 		return NULL;
4729 
4730 	iter = kzalloc(sizeof(*iter), flags);
4731 	if (!iter)
4732 		return NULL;
4733 
4734 	iter->event = kmalloc(BUF_MAX_DATA_SIZE, flags);
4735 	if (!iter->event) {
4736 		kfree(iter);
4737 		return NULL;
4738 	}
4739 
4740 	cpu_buffer = buffer->buffers[cpu];
4741 
4742 	iter->cpu_buffer = cpu_buffer;
4743 
4744 	atomic_inc(&cpu_buffer->resize_disabled);
4745 
4746 	return iter;
4747 }
4748 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare);
4749 
4750 /**
4751  * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls
4752  *
4753  * All previously invoked ring_buffer_read_prepare calls to prepare
4754  * iterators will be synchronized.  Afterwards, read_buffer_read_start
4755  * calls on those iterators are allowed.
4756  */
4757 void
ring_buffer_read_prepare_sync(void)4758 ring_buffer_read_prepare_sync(void)
4759 {
4760 	synchronize_rcu();
4761 }
4762 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync);
4763 
4764 /**
4765  * ring_buffer_read_start - start a non consuming read of the buffer
4766  * @iter: The iterator returned by ring_buffer_read_prepare
4767  *
4768  * This finalizes the startup of an iteration through the buffer.
4769  * The iterator comes from a call to ring_buffer_read_prepare and
4770  * an intervening ring_buffer_read_prepare_sync must have been
4771  * performed.
4772  *
4773  * Must be paired with ring_buffer_read_finish.
4774  */
4775 void
ring_buffer_read_start(struct ring_buffer_iter * iter)4776 ring_buffer_read_start(struct ring_buffer_iter *iter)
4777 {
4778 	struct ring_buffer_per_cpu *cpu_buffer;
4779 	unsigned long flags;
4780 
4781 	if (!iter)
4782 		return;
4783 
4784 	cpu_buffer = iter->cpu_buffer;
4785 
4786 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4787 	arch_spin_lock(&cpu_buffer->lock);
4788 	rb_iter_reset(iter);
4789 	arch_spin_unlock(&cpu_buffer->lock);
4790 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4791 }
4792 EXPORT_SYMBOL_GPL(ring_buffer_read_start);
4793 
4794 /**
4795  * ring_buffer_read_finish - finish reading the iterator of the buffer
4796  * @iter: The iterator retrieved by ring_buffer_start
4797  *
4798  * This re-enables the recording to the buffer, and frees the
4799  * iterator.
4800  */
4801 void
ring_buffer_read_finish(struct ring_buffer_iter * iter)4802 ring_buffer_read_finish(struct ring_buffer_iter *iter)
4803 {
4804 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4805 	unsigned long flags;
4806 
4807 	/*
4808 	 * Ring buffer is disabled from recording, here's a good place
4809 	 * to check the integrity of the ring buffer.
4810 	 * Must prevent readers from trying to read, as the check
4811 	 * clears the HEAD page and readers require it.
4812 	 */
4813 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4814 	rb_check_pages(cpu_buffer);
4815 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4816 
4817 	atomic_dec(&cpu_buffer->resize_disabled);
4818 	kfree(iter->event);
4819 	kfree(iter);
4820 }
4821 EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
4822 
4823 /**
4824  * ring_buffer_iter_advance - advance the iterator to the next location
4825  * @iter: The ring buffer iterator
4826  *
4827  * Move the location of the iterator such that the next read will
4828  * be the next location of the iterator.
4829  */
ring_buffer_iter_advance(struct ring_buffer_iter * iter)4830 void ring_buffer_iter_advance(struct ring_buffer_iter *iter)
4831 {
4832 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4833 	unsigned long flags;
4834 
4835 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4836 
4837 	rb_advance_iter(iter);
4838 
4839 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4840 }
4841 EXPORT_SYMBOL_GPL(ring_buffer_iter_advance);
4842 
4843 /**
4844  * ring_buffer_size - return the size of the ring buffer (in bytes)
4845  * @buffer: The ring buffer.
4846  * @cpu: The CPU to get ring buffer size from.
4847  */
ring_buffer_size(struct trace_buffer * buffer,int cpu)4848 unsigned long ring_buffer_size(struct trace_buffer *buffer, int cpu)
4849 {
4850 	/*
4851 	 * Earlier, this method returned
4852 	 *	BUF_PAGE_SIZE * buffer->nr_pages
4853 	 * Since the nr_pages field is now removed, we have converted this to
4854 	 * return the per cpu buffer value.
4855 	 */
4856 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4857 		return 0;
4858 
4859 	return BUF_PAGE_SIZE * buffer->buffers[cpu]->nr_pages;
4860 }
4861 EXPORT_SYMBOL_GPL(ring_buffer_size);
4862 
4863 static void
rb_reset_cpu(struct ring_buffer_per_cpu * cpu_buffer)4864 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
4865 {
4866 	rb_head_page_deactivate(cpu_buffer);
4867 
4868 	cpu_buffer->head_page
4869 		= list_entry(cpu_buffer->pages, struct buffer_page, list);
4870 	local_set(&cpu_buffer->head_page->write, 0);
4871 	local_set(&cpu_buffer->head_page->entries, 0);
4872 	local_set(&cpu_buffer->head_page->page->commit, 0);
4873 
4874 	cpu_buffer->head_page->read = 0;
4875 
4876 	cpu_buffer->tail_page = cpu_buffer->head_page;
4877 	cpu_buffer->commit_page = cpu_buffer->head_page;
4878 
4879 	INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
4880 	INIT_LIST_HEAD(&cpu_buffer->new_pages);
4881 	local_set(&cpu_buffer->reader_page->write, 0);
4882 	local_set(&cpu_buffer->reader_page->entries, 0);
4883 	local_set(&cpu_buffer->reader_page->page->commit, 0);
4884 	cpu_buffer->reader_page->read = 0;
4885 
4886 	local_set(&cpu_buffer->entries_bytes, 0);
4887 	local_set(&cpu_buffer->overrun, 0);
4888 	local_set(&cpu_buffer->commit_overrun, 0);
4889 	local_set(&cpu_buffer->dropped_events, 0);
4890 	local_set(&cpu_buffer->entries, 0);
4891 	local_set(&cpu_buffer->committing, 0);
4892 	local_set(&cpu_buffer->commits, 0);
4893 	local_set(&cpu_buffer->pages_touched, 0);
4894 	local_set(&cpu_buffer->pages_read, 0);
4895 	cpu_buffer->last_pages_touch = 0;
4896 	cpu_buffer->shortest_full = 0;
4897 	cpu_buffer->read = 0;
4898 	cpu_buffer->read_bytes = 0;
4899 
4900 	rb_time_set(&cpu_buffer->write_stamp, 0);
4901 	rb_time_set(&cpu_buffer->before_stamp, 0);
4902 
4903 	cpu_buffer->lost_events = 0;
4904 	cpu_buffer->last_overrun = 0;
4905 
4906 	rb_head_page_activate(cpu_buffer);
4907 }
4908 
4909 /* Must have disabled the cpu buffer then done a synchronize_rcu */
reset_disabled_cpu_buffer(struct ring_buffer_per_cpu * cpu_buffer)4910 static void reset_disabled_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
4911 {
4912 	unsigned long flags;
4913 
4914 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4915 
4916 	if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
4917 		goto out;
4918 
4919 	arch_spin_lock(&cpu_buffer->lock);
4920 
4921 	rb_reset_cpu(cpu_buffer);
4922 
4923 	arch_spin_unlock(&cpu_buffer->lock);
4924 
4925  out:
4926 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4927 }
4928 
4929 /**
4930  * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
4931  * @buffer: The ring buffer to reset a per cpu buffer of
4932  * @cpu: The CPU buffer to be reset
4933  */
ring_buffer_reset_cpu(struct trace_buffer * buffer,int cpu)4934 void ring_buffer_reset_cpu(struct trace_buffer *buffer, int cpu)
4935 {
4936 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4937 
4938 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4939 		return;
4940 
4941 	/* prevent another thread from changing buffer sizes */
4942 	mutex_lock(&buffer->mutex);
4943 
4944 	atomic_inc(&cpu_buffer->resize_disabled);
4945 	atomic_inc(&cpu_buffer->record_disabled);
4946 
4947 	/* Make sure all commits have finished */
4948 	synchronize_rcu();
4949 
4950 	reset_disabled_cpu_buffer(cpu_buffer);
4951 
4952 	atomic_dec(&cpu_buffer->record_disabled);
4953 	atomic_dec(&cpu_buffer->resize_disabled);
4954 
4955 	mutex_unlock(&buffer->mutex);
4956 }
4957 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
4958 
4959 /**
4960  * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
4961  * @buffer: The ring buffer to reset a per cpu buffer of
4962  * @cpu: The CPU buffer to be reset
4963  */
ring_buffer_reset_online_cpus(struct trace_buffer * buffer)4964 void ring_buffer_reset_online_cpus(struct trace_buffer *buffer)
4965 {
4966 	struct ring_buffer_per_cpu *cpu_buffer;
4967 	int cpu;
4968 
4969 	/* prevent another thread from changing buffer sizes */
4970 	mutex_lock(&buffer->mutex);
4971 
4972 	for_each_online_buffer_cpu(buffer, cpu) {
4973 		cpu_buffer = buffer->buffers[cpu];
4974 
4975 		atomic_inc(&cpu_buffer->resize_disabled);
4976 		atomic_inc(&cpu_buffer->record_disabled);
4977 	}
4978 
4979 	/* Make sure all commits have finished */
4980 	synchronize_rcu();
4981 
4982 	for_each_online_buffer_cpu(buffer, cpu) {
4983 		cpu_buffer = buffer->buffers[cpu];
4984 
4985 		reset_disabled_cpu_buffer(cpu_buffer);
4986 
4987 		atomic_dec(&cpu_buffer->record_disabled);
4988 		atomic_dec(&cpu_buffer->resize_disabled);
4989 	}
4990 
4991 	mutex_unlock(&buffer->mutex);
4992 }
4993 
4994 /**
4995  * ring_buffer_reset - reset a ring buffer
4996  * @buffer: The ring buffer to reset all cpu buffers
4997  */
ring_buffer_reset(struct trace_buffer * buffer)4998 void ring_buffer_reset(struct trace_buffer *buffer)
4999 {
5000 	struct ring_buffer_per_cpu *cpu_buffer;
5001 	int cpu;
5002 
5003 	/* prevent another thread from changing buffer sizes */
5004 	mutex_lock(&buffer->mutex);
5005 
5006 	for_each_buffer_cpu(buffer, cpu) {
5007 		cpu_buffer = buffer->buffers[cpu];
5008 
5009 		atomic_inc(&cpu_buffer->resize_disabled);
5010 		atomic_inc(&cpu_buffer->record_disabled);
5011 	}
5012 
5013 	/* Make sure all commits have finished */
5014 	synchronize_rcu();
5015 
5016 	for_each_buffer_cpu(buffer, cpu) {
5017 		cpu_buffer = buffer->buffers[cpu];
5018 
5019 		reset_disabled_cpu_buffer(cpu_buffer);
5020 
5021 		atomic_dec(&cpu_buffer->record_disabled);
5022 		atomic_dec(&cpu_buffer->resize_disabled);
5023 	}
5024 
5025 	mutex_unlock(&buffer->mutex);
5026 }
5027 EXPORT_SYMBOL_GPL(ring_buffer_reset);
5028 
5029 /**
5030  * rind_buffer_empty - is the ring buffer empty?
5031  * @buffer: The ring buffer to test
5032  */
ring_buffer_empty(struct trace_buffer * buffer)5033 bool ring_buffer_empty(struct trace_buffer *buffer)
5034 {
5035 	struct ring_buffer_per_cpu *cpu_buffer;
5036 	unsigned long flags;
5037 	bool dolock;
5038 	int cpu;
5039 	int ret;
5040 
5041 	/* yes this is racy, but if you don't like the race, lock the buffer */
5042 	for_each_buffer_cpu(buffer, cpu) {
5043 		cpu_buffer = buffer->buffers[cpu];
5044 		local_irq_save(flags);
5045 		dolock = rb_reader_lock(cpu_buffer);
5046 		ret = rb_per_cpu_empty(cpu_buffer);
5047 		rb_reader_unlock(cpu_buffer, dolock);
5048 		local_irq_restore(flags);
5049 
5050 		if (!ret)
5051 			return false;
5052 	}
5053 
5054 	return true;
5055 }
5056 EXPORT_SYMBOL_GPL(ring_buffer_empty);
5057 
5058 /**
5059  * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
5060  * @buffer: The ring buffer
5061  * @cpu: The CPU buffer to test
5062  */
ring_buffer_empty_cpu(struct trace_buffer * buffer,int cpu)5063 bool ring_buffer_empty_cpu(struct trace_buffer *buffer, int cpu)
5064 {
5065 	struct ring_buffer_per_cpu *cpu_buffer;
5066 	unsigned long flags;
5067 	bool dolock;
5068 	int ret;
5069 
5070 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
5071 		return true;
5072 
5073 	cpu_buffer = buffer->buffers[cpu];
5074 	local_irq_save(flags);
5075 	dolock = rb_reader_lock(cpu_buffer);
5076 	ret = rb_per_cpu_empty(cpu_buffer);
5077 	rb_reader_unlock(cpu_buffer, dolock);
5078 	local_irq_restore(flags);
5079 
5080 	return ret;
5081 }
5082 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
5083 
5084 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
5085 /**
5086  * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
5087  * @buffer_a: One buffer to swap with
5088  * @buffer_b: The other buffer to swap with
5089  * @cpu: the CPU of the buffers to swap
5090  *
5091  * This function is useful for tracers that want to take a "snapshot"
5092  * of a CPU buffer and has another back up buffer lying around.
5093  * it is expected that the tracer handles the cpu buffer not being
5094  * used at the moment.
5095  */
ring_buffer_swap_cpu(struct trace_buffer * buffer_a,struct trace_buffer * buffer_b,int cpu)5096 int ring_buffer_swap_cpu(struct trace_buffer *buffer_a,
5097 			 struct trace_buffer *buffer_b, int cpu)
5098 {
5099 	struct ring_buffer_per_cpu *cpu_buffer_a;
5100 	struct ring_buffer_per_cpu *cpu_buffer_b;
5101 	int ret = -EINVAL;
5102 
5103 	if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
5104 	    !cpumask_test_cpu(cpu, buffer_b->cpumask))
5105 		goto out;
5106 
5107 	cpu_buffer_a = buffer_a->buffers[cpu];
5108 	cpu_buffer_b = buffer_b->buffers[cpu];
5109 
5110 	/* At least make sure the two buffers are somewhat the same */
5111 	if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages)
5112 		goto out;
5113 
5114 	ret = -EAGAIN;
5115 
5116 	if (atomic_read(&buffer_a->record_disabled))
5117 		goto out;
5118 
5119 	if (atomic_read(&buffer_b->record_disabled))
5120 		goto out;
5121 
5122 	if (atomic_read(&cpu_buffer_a->record_disabled))
5123 		goto out;
5124 
5125 	if (atomic_read(&cpu_buffer_b->record_disabled))
5126 		goto out;
5127 
5128 	/*
5129 	 * We can't do a synchronize_rcu here because this
5130 	 * function can be called in atomic context.
5131 	 * Normally this will be called from the same CPU as cpu.
5132 	 * If not it's up to the caller to protect this.
5133 	 */
5134 	atomic_inc(&cpu_buffer_a->record_disabled);
5135 	atomic_inc(&cpu_buffer_b->record_disabled);
5136 
5137 	ret = -EBUSY;
5138 	if (local_read(&cpu_buffer_a->committing))
5139 		goto out_dec;
5140 	if (local_read(&cpu_buffer_b->committing))
5141 		goto out_dec;
5142 
5143 	buffer_a->buffers[cpu] = cpu_buffer_b;
5144 	buffer_b->buffers[cpu] = cpu_buffer_a;
5145 
5146 	cpu_buffer_b->buffer = buffer_a;
5147 	cpu_buffer_a->buffer = buffer_b;
5148 
5149 	ret = 0;
5150 
5151 out_dec:
5152 	atomic_dec(&cpu_buffer_a->record_disabled);
5153 	atomic_dec(&cpu_buffer_b->record_disabled);
5154 out:
5155 	return ret;
5156 }
5157 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
5158 #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
5159 
5160 /**
5161  * ring_buffer_alloc_read_page - allocate a page to read from buffer
5162  * @buffer: the buffer to allocate for.
5163  * @cpu: the cpu buffer to allocate.
5164  *
5165  * This function is used in conjunction with ring_buffer_read_page.
5166  * When reading a full page from the ring buffer, these functions
5167  * can be used to speed up the process. The calling function should
5168  * allocate a few pages first with this function. Then when it
5169  * needs to get pages from the ring buffer, it passes the result
5170  * of this function into ring_buffer_read_page, which will swap
5171  * the page that was allocated, with the read page of the buffer.
5172  *
5173  * Returns:
5174  *  The page allocated, or ERR_PTR
5175  */
ring_buffer_alloc_read_page(struct trace_buffer * buffer,int cpu)5176 void *ring_buffer_alloc_read_page(struct trace_buffer *buffer, int cpu)
5177 {
5178 	struct ring_buffer_per_cpu *cpu_buffer;
5179 	struct buffer_data_page *bpage = NULL;
5180 	unsigned long flags;
5181 	struct page *page;
5182 
5183 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
5184 		return ERR_PTR(-ENODEV);
5185 
5186 	cpu_buffer = buffer->buffers[cpu];
5187 	local_irq_save(flags);
5188 	arch_spin_lock(&cpu_buffer->lock);
5189 
5190 	if (cpu_buffer->free_page) {
5191 		bpage = cpu_buffer->free_page;
5192 		cpu_buffer->free_page = NULL;
5193 	}
5194 
5195 	arch_spin_unlock(&cpu_buffer->lock);
5196 	local_irq_restore(flags);
5197 
5198 	if (bpage)
5199 		goto out;
5200 
5201 	page = alloc_pages_node(cpu_to_node(cpu),
5202 				GFP_KERNEL | __GFP_NORETRY, 0);
5203 	if (!page)
5204 		return ERR_PTR(-ENOMEM);
5205 
5206 	bpage = page_address(page);
5207 
5208  out:
5209 	rb_init_page(bpage);
5210 
5211 	return bpage;
5212 }
5213 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
5214 
5215 /**
5216  * ring_buffer_free_read_page - free an allocated read page
5217  * @buffer: the buffer the page was allocate for
5218  * @cpu: the cpu buffer the page came from
5219  * @data: the page to free
5220  *
5221  * Free a page allocated from ring_buffer_alloc_read_page.
5222  */
ring_buffer_free_read_page(struct trace_buffer * buffer,int cpu,void * data)5223 void ring_buffer_free_read_page(struct trace_buffer *buffer, int cpu, void *data)
5224 {
5225 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
5226 	struct buffer_data_page *bpage = data;
5227 	struct page *page = virt_to_page(bpage);
5228 	unsigned long flags;
5229 
5230 	/* If the page is still in use someplace else, we can't reuse it */
5231 	if (page_ref_count(page) > 1)
5232 		goto out;
5233 
5234 	local_irq_save(flags);
5235 	arch_spin_lock(&cpu_buffer->lock);
5236 
5237 	if (!cpu_buffer->free_page) {
5238 		cpu_buffer->free_page = bpage;
5239 		bpage = NULL;
5240 	}
5241 
5242 	arch_spin_unlock(&cpu_buffer->lock);
5243 	local_irq_restore(flags);
5244 
5245  out:
5246 	free_page((unsigned long)bpage);
5247 }
5248 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
5249 
5250 /**
5251  * ring_buffer_read_page - extract a page from the ring buffer
5252  * @buffer: buffer to extract from
5253  * @data_page: the page to use allocated from ring_buffer_alloc_read_page
5254  * @len: amount to extract
5255  * @cpu: the cpu of the buffer to extract
5256  * @full: should the extraction only happen when the page is full.
5257  *
5258  * This function will pull out a page from the ring buffer and consume it.
5259  * @data_page must be the address of the variable that was returned
5260  * from ring_buffer_alloc_read_page. This is because the page might be used
5261  * to swap with a page in the ring buffer.
5262  *
5263  * for example:
5264  *	rpage = ring_buffer_alloc_read_page(buffer, cpu);
5265  *	if (IS_ERR(rpage))
5266  *		return PTR_ERR(rpage);
5267  *	ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
5268  *	if (ret >= 0)
5269  *		process_page(rpage, ret);
5270  *
5271  * When @full is set, the function will not return true unless
5272  * the writer is off the reader page.
5273  *
5274  * Note: it is up to the calling functions to handle sleeps and wakeups.
5275  *  The ring buffer can be used anywhere in the kernel and can not
5276  *  blindly call wake_up. The layer that uses the ring buffer must be
5277  *  responsible for that.
5278  *
5279  * Returns:
5280  *  >=0 if data has been transferred, returns the offset of consumed data.
5281  *  <0 if no data has been transferred.
5282  */
ring_buffer_read_page(struct trace_buffer * buffer,void ** data_page,size_t len,int cpu,int full)5283 int ring_buffer_read_page(struct trace_buffer *buffer,
5284 			  void **data_page, size_t len, int cpu, int full)
5285 {
5286 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
5287 	struct ring_buffer_event *event;
5288 	struct buffer_data_page *bpage;
5289 	struct buffer_page *reader;
5290 	unsigned long missed_events;
5291 	unsigned long flags;
5292 	unsigned int commit;
5293 	unsigned int read;
5294 	u64 save_timestamp;
5295 	int ret = -1;
5296 
5297 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
5298 		goto out;
5299 
5300 	/*
5301 	 * If len is not big enough to hold the page header, then
5302 	 * we can not copy anything.
5303 	 */
5304 	if (len <= BUF_PAGE_HDR_SIZE)
5305 		goto out;
5306 
5307 	len -= BUF_PAGE_HDR_SIZE;
5308 
5309 	if (!data_page)
5310 		goto out;
5311 
5312 	bpage = *data_page;
5313 	if (!bpage)
5314 		goto out;
5315 
5316 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5317 
5318 	reader = rb_get_reader_page(cpu_buffer);
5319 	if (!reader)
5320 		goto out_unlock;
5321 
5322 	event = rb_reader_event(cpu_buffer);
5323 
5324 	read = reader->read;
5325 	commit = rb_page_commit(reader);
5326 
5327 	/* Check if any events were dropped */
5328 	missed_events = cpu_buffer->lost_events;
5329 
5330 	/*
5331 	 * If this page has been partially read or
5332 	 * if len is not big enough to read the rest of the page or
5333 	 * a writer is still on the page, then
5334 	 * we must copy the data from the page to the buffer.
5335 	 * Otherwise, we can simply swap the page with the one passed in.
5336 	 */
5337 	if (read || (len < (commit - read)) ||
5338 	    cpu_buffer->reader_page == cpu_buffer->commit_page) {
5339 		struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
5340 		unsigned int rpos = read;
5341 		unsigned int pos = 0;
5342 		unsigned int size;
5343 
5344 		if (full)
5345 			goto out_unlock;
5346 
5347 		if (len > (commit - read))
5348 			len = (commit - read);
5349 
5350 		/* Always keep the time extend and data together */
5351 		size = rb_event_ts_length(event);
5352 
5353 		if (len < size)
5354 			goto out_unlock;
5355 
5356 		/* save the current timestamp, since the user will need it */
5357 		save_timestamp = cpu_buffer->read_stamp;
5358 
5359 		/* Need to copy one event at a time */
5360 		do {
5361 			/* We need the size of one event, because
5362 			 * rb_advance_reader only advances by one event,
5363 			 * whereas rb_event_ts_length may include the size of
5364 			 * one or two events.
5365 			 * We have already ensured there's enough space if this
5366 			 * is a time extend. */
5367 			size = rb_event_length(event);
5368 			memcpy(bpage->data + pos, rpage->data + rpos, size);
5369 
5370 			len -= size;
5371 
5372 			rb_advance_reader(cpu_buffer);
5373 			rpos = reader->read;
5374 			pos += size;
5375 
5376 			if (rpos >= commit)
5377 				break;
5378 
5379 			event = rb_reader_event(cpu_buffer);
5380 			/* Always keep the time extend and data together */
5381 			size = rb_event_ts_length(event);
5382 		} while (len >= size);
5383 
5384 		/* update bpage */
5385 		local_set(&bpage->commit, pos);
5386 		bpage->time_stamp = save_timestamp;
5387 
5388 		/* we copied everything to the beginning */
5389 		read = 0;
5390 	} else {
5391 		/* update the entry counter */
5392 		cpu_buffer->read += rb_page_entries(reader);
5393 		cpu_buffer->read_bytes += BUF_PAGE_SIZE;
5394 
5395 		/* swap the pages */
5396 		rb_init_page(bpage);
5397 		bpage = reader->page;
5398 		reader->page = *data_page;
5399 		local_set(&reader->write, 0);
5400 		local_set(&reader->entries, 0);
5401 		reader->read = 0;
5402 		*data_page = bpage;
5403 
5404 		/*
5405 		 * Use the real_end for the data size,
5406 		 * This gives us a chance to store the lost events
5407 		 * on the page.
5408 		 */
5409 		if (reader->real_end)
5410 			local_set(&bpage->commit, reader->real_end);
5411 	}
5412 	ret = read;
5413 
5414 	cpu_buffer->lost_events = 0;
5415 
5416 	commit = local_read(&bpage->commit);
5417 	/*
5418 	 * Set a flag in the commit field if we lost events
5419 	 */
5420 	if (missed_events) {
5421 		/* If there is room at the end of the page to save the
5422 		 * missed events, then record it there.
5423 		 */
5424 		if (BUF_PAGE_SIZE - commit >= sizeof(missed_events)) {
5425 			memcpy(&bpage->data[commit], &missed_events,
5426 			       sizeof(missed_events));
5427 			local_add(RB_MISSED_STORED, &bpage->commit);
5428 			commit += sizeof(missed_events);
5429 		}
5430 		local_add(RB_MISSED_EVENTS, &bpage->commit);
5431 	}
5432 
5433 	/*
5434 	 * This page may be off to user land. Zero it out here.
5435 	 */
5436 	if (commit < BUF_PAGE_SIZE)
5437 		memset(&bpage->data[commit], 0, BUF_PAGE_SIZE - commit);
5438 
5439  out_unlock:
5440 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5441 
5442  out:
5443 	return ret;
5444 }
5445 EXPORT_SYMBOL_GPL(ring_buffer_read_page);
5446 
5447 /*
5448  * We only allocate new buffers, never free them if the CPU goes down.
5449  * If we were to free the buffer, then the user would lose any trace that was in
5450  * the buffer.
5451  */
trace_rb_cpu_prepare(unsigned int cpu,struct hlist_node * node)5452 int trace_rb_cpu_prepare(unsigned int cpu, struct hlist_node *node)
5453 {
5454 	struct trace_buffer *buffer;
5455 	long nr_pages_same;
5456 	int cpu_i;
5457 	unsigned long nr_pages;
5458 
5459 	buffer = container_of(node, struct trace_buffer, node);
5460 	if (cpumask_test_cpu(cpu, buffer->cpumask))
5461 		return 0;
5462 
5463 	nr_pages = 0;
5464 	nr_pages_same = 1;
5465 	/* check if all cpu sizes are same */
5466 	for_each_buffer_cpu(buffer, cpu_i) {
5467 		/* fill in the size from first enabled cpu */
5468 		if (nr_pages == 0)
5469 			nr_pages = buffer->buffers[cpu_i]->nr_pages;
5470 		if (nr_pages != buffer->buffers[cpu_i]->nr_pages) {
5471 			nr_pages_same = 0;
5472 			break;
5473 		}
5474 	}
5475 	/* allocate minimum pages, user can later expand it */
5476 	if (!nr_pages_same)
5477 		nr_pages = 2;
5478 	buffer->buffers[cpu] =
5479 		rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
5480 	if (!buffer->buffers[cpu]) {
5481 		WARN(1, "failed to allocate ring buffer on CPU %u\n",
5482 		     cpu);
5483 		return -ENOMEM;
5484 	}
5485 	smp_wmb();
5486 	cpumask_set_cpu(cpu, buffer->cpumask);
5487 	return 0;
5488 }
5489 
5490 #ifdef CONFIG_RING_BUFFER_STARTUP_TEST
5491 /*
5492  * This is a basic integrity check of the ring buffer.
5493  * Late in the boot cycle this test will run when configured in.
5494  * It will kick off a thread per CPU that will go into a loop
5495  * writing to the per cpu ring buffer various sizes of data.
5496  * Some of the data will be large items, some small.
5497  *
5498  * Another thread is created that goes into a spin, sending out
5499  * IPIs to the other CPUs to also write into the ring buffer.
5500  * this is to test the nesting ability of the buffer.
5501  *
5502  * Basic stats are recorded and reported. If something in the
5503  * ring buffer should happen that's not expected, a big warning
5504  * is displayed and all ring buffers are disabled.
5505  */
5506 static struct task_struct *rb_threads[NR_CPUS] __initdata;
5507 
5508 struct rb_test_data {
5509 	struct trace_buffer *buffer;
5510 	unsigned long		events;
5511 	unsigned long		bytes_written;
5512 	unsigned long		bytes_alloc;
5513 	unsigned long		bytes_dropped;
5514 	unsigned long		events_nested;
5515 	unsigned long		bytes_written_nested;
5516 	unsigned long		bytes_alloc_nested;
5517 	unsigned long		bytes_dropped_nested;
5518 	int			min_size_nested;
5519 	int			max_size_nested;
5520 	int			max_size;
5521 	int			min_size;
5522 	int			cpu;
5523 	int			cnt;
5524 };
5525 
5526 static struct rb_test_data rb_data[NR_CPUS] __initdata;
5527 
5528 /* 1 meg per cpu */
5529 #define RB_TEST_BUFFER_SIZE	1048576
5530 
5531 static char rb_string[] __initdata =
5532 	"abcdefghijklmnopqrstuvwxyz1234567890!@#$%^&*()?+\\"
5533 	"?+|:';\",.<>/?abcdefghijklmnopqrstuvwxyz1234567890"
5534 	"!@#$%^&*()?+\\?+|:';\",.<>/?abcdefghijklmnopqrstuv";
5535 
5536 static bool rb_test_started __initdata;
5537 
5538 struct rb_item {
5539 	int size;
5540 	char str[];
5541 };
5542 
rb_write_something(struct rb_test_data * data,bool nested)5543 static __init int rb_write_something(struct rb_test_data *data, bool nested)
5544 {
5545 	struct ring_buffer_event *event;
5546 	struct rb_item *item;
5547 	bool started;
5548 	int event_len;
5549 	int size;
5550 	int len;
5551 	int cnt;
5552 
5553 	/* Have nested writes different that what is written */
5554 	cnt = data->cnt + (nested ? 27 : 0);
5555 
5556 	/* Multiply cnt by ~e, to make some unique increment */
5557 	size = (cnt * 68 / 25) % (sizeof(rb_string) - 1);
5558 
5559 	len = size + sizeof(struct rb_item);
5560 
5561 	started = rb_test_started;
5562 	/* read rb_test_started before checking buffer enabled */
5563 	smp_rmb();
5564 
5565 	event = ring_buffer_lock_reserve(data->buffer, len);
5566 	if (!event) {
5567 		/* Ignore dropped events before test starts. */
5568 		if (started) {
5569 			if (nested)
5570 				data->bytes_dropped += len;
5571 			else
5572 				data->bytes_dropped_nested += len;
5573 		}
5574 		return len;
5575 	}
5576 
5577 	event_len = ring_buffer_event_length(event);
5578 
5579 	if (RB_WARN_ON(data->buffer, event_len < len))
5580 		goto out;
5581 
5582 	item = ring_buffer_event_data(event);
5583 	item->size = size;
5584 	memcpy(item->str, rb_string, size);
5585 
5586 	if (nested) {
5587 		data->bytes_alloc_nested += event_len;
5588 		data->bytes_written_nested += len;
5589 		data->events_nested++;
5590 		if (!data->min_size_nested || len < data->min_size_nested)
5591 			data->min_size_nested = len;
5592 		if (len > data->max_size_nested)
5593 			data->max_size_nested = len;
5594 	} else {
5595 		data->bytes_alloc += event_len;
5596 		data->bytes_written += len;
5597 		data->events++;
5598 		if (!data->min_size || len < data->min_size)
5599 			data->max_size = len;
5600 		if (len > data->max_size)
5601 			data->max_size = len;
5602 	}
5603 
5604  out:
5605 	ring_buffer_unlock_commit(data->buffer, event);
5606 
5607 	return 0;
5608 }
5609 
rb_test(void * arg)5610 static __init int rb_test(void *arg)
5611 {
5612 	struct rb_test_data *data = arg;
5613 
5614 	while (!kthread_should_stop()) {
5615 		rb_write_something(data, false);
5616 		data->cnt++;
5617 
5618 		set_current_state(TASK_INTERRUPTIBLE);
5619 		/* Now sleep between a min of 100-300us and a max of 1ms */
5620 		usleep_range(((data->cnt % 3) + 1) * 100, 1000);
5621 	}
5622 
5623 	return 0;
5624 }
5625 
rb_ipi(void * ignore)5626 static __init void rb_ipi(void *ignore)
5627 {
5628 	struct rb_test_data *data;
5629 	int cpu = smp_processor_id();
5630 
5631 	data = &rb_data[cpu];
5632 	rb_write_something(data, true);
5633 }
5634 
rb_hammer_test(void * arg)5635 static __init int rb_hammer_test(void *arg)
5636 {
5637 	while (!kthread_should_stop()) {
5638 
5639 		/* Send an IPI to all cpus to write data! */
5640 		smp_call_function(rb_ipi, NULL, 1);
5641 		/* No sleep, but for non preempt, let others run */
5642 		schedule();
5643 	}
5644 
5645 	return 0;
5646 }
5647 
test_ringbuffer(void)5648 static __init int test_ringbuffer(void)
5649 {
5650 	struct task_struct *rb_hammer;
5651 	struct trace_buffer *buffer;
5652 	int cpu;
5653 	int ret = 0;
5654 
5655 	if (security_locked_down(LOCKDOWN_TRACEFS)) {
5656 		pr_warn("Lockdown is enabled, skipping ring buffer tests\n");
5657 		return 0;
5658 	}
5659 
5660 	pr_info("Running ring buffer tests...\n");
5661 
5662 	buffer = ring_buffer_alloc(RB_TEST_BUFFER_SIZE, RB_FL_OVERWRITE);
5663 	if (WARN_ON(!buffer))
5664 		return 0;
5665 
5666 	/* Disable buffer so that threads can't write to it yet */
5667 	ring_buffer_record_off(buffer);
5668 
5669 	for_each_online_cpu(cpu) {
5670 		rb_data[cpu].buffer = buffer;
5671 		rb_data[cpu].cpu = cpu;
5672 		rb_data[cpu].cnt = cpu;
5673 		rb_threads[cpu] = kthread_create(rb_test, &rb_data[cpu],
5674 						 "rbtester/%d", cpu);
5675 		if (WARN_ON(IS_ERR(rb_threads[cpu]))) {
5676 			pr_cont("FAILED\n");
5677 			ret = PTR_ERR(rb_threads[cpu]);
5678 			goto out_free;
5679 		}
5680 
5681 		kthread_bind(rb_threads[cpu], cpu);
5682  		wake_up_process(rb_threads[cpu]);
5683 	}
5684 
5685 	/* Now create the rb hammer! */
5686 	rb_hammer = kthread_run(rb_hammer_test, NULL, "rbhammer");
5687 	if (WARN_ON(IS_ERR(rb_hammer))) {
5688 		pr_cont("FAILED\n");
5689 		ret = PTR_ERR(rb_hammer);
5690 		goto out_free;
5691 	}
5692 
5693 	ring_buffer_record_on(buffer);
5694 	/*
5695 	 * Show buffer is enabled before setting rb_test_started.
5696 	 * Yes there's a small race window where events could be
5697 	 * dropped and the thread wont catch it. But when a ring
5698 	 * buffer gets enabled, there will always be some kind of
5699 	 * delay before other CPUs see it. Thus, we don't care about
5700 	 * those dropped events. We care about events dropped after
5701 	 * the threads see that the buffer is active.
5702 	 */
5703 	smp_wmb();
5704 	rb_test_started = true;
5705 
5706 	set_current_state(TASK_INTERRUPTIBLE);
5707 	/* Just run for 10 seconds */;
5708 	schedule_timeout(10 * HZ);
5709 
5710 	kthread_stop(rb_hammer);
5711 
5712  out_free:
5713 	for_each_online_cpu(cpu) {
5714 		if (!rb_threads[cpu])
5715 			break;
5716 		kthread_stop(rb_threads[cpu]);
5717 	}
5718 	if (ret) {
5719 		ring_buffer_free(buffer);
5720 		return ret;
5721 	}
5722 
5723 	/* Report! */
5724 	pr_info("finished\n");
5725 	for_each_online_cpu(cpu) {
5726 		struct ring_buffer_event *event;
5727 		struct rb_test_data *data = &rb_data[cpu];
5728 		struct rb_item *item;
5729 		unsigned long total_events;
5730 		unsigned long total_dropped;
5731 		unsigned long total_written;
5732 		unsigned long total_alloc;
5733 		unsigned long total_read = 0;
5734 		unsigned long total_size = 0;
5735 		unsigned long total_len = 0;
5736 		unsigned long total_lost = 0;
5737 		unsigned long lost;
5738 		int big_event_size;
5739 		int small_event_size;
5740 
5741 		ret = -1;
5742 
5743 		total_events = data->events + data->events_nested;
5744 		total_written = data->bytes_written + data->bytes_written_nested;
5745 		total_alloc = data->bytes_alloc + data->bytes_alloc_nested;
5746 		total_dropped = data->bytes_dropped + data->bytes_dropped_nested;
5747 
5748 		big_event_size = data->max_size + data->max_size_nested;
5749 		small_event_size = data->min_size + data->min_size_nested;
5750 
5751 		pr_info("CPU %d:\n", cpu);
5752 		pr_info("              events:    %ld\n", total_events);
5753 		pr_info("       dropped bytes:    %ld\n", total_dropped);
5754 		pr_info("       alloced bytes:    %ld\n", total_alloc);
5755 		pr_info("       written bytes:    %ld\n", total_written);
5756 		pr_info("       biggest event:    %d\n", big_event_size);
5757 		pr_info("      smallest event:    %d\n", small_event_size);
5758 
5759 		if (RB_WARN_ON(buffer, total_dropped))
5760 			break;
5761 
5762 		ret = 0;
5763 
5764 		while ((event = ring_buffer_consume(buffer, cpu, NULL, &lost))) {
5765 			total_lost += lost;
5766 			item = ring_buffer_event_data(event);
5767 			total_len += ring_buffer_event_length(event);
5768 			total_size += item->size + sizeof(struct rb_item);
5769 			if (memcmp(&item->str[0], rb_string, item->size) != 0) {
5770 				pr_info("FAILED!\n");
5771 				pr_info("buffer had: %.*s\n", item->size, item->str);
5772 				pr_info("expected:   %.*s\n", item->size, rb_string);
5773 				RB_WARN_ON(buffer, 1);
5774 				ret = -1;
5775 				break;
5776 			}
5777 			total_read++;
5778 		}
5779 		if (ret)
5780 			break;
5781 
5782 		ret = -1;
5783 
5784 		pr_info("         read events:   %ld\n", total_read);
5785 		pr_info("         lost events:   %ld\n", total_lost);
5786 		pr_info("        total events:   %ld\n", total_lost + total_read);
5787 		pr_info("  recorded len bytes:   %ld\n", total_len);
5788 		pr_info(" recorded size bytes:   %ld\n", total_size);
5789 		if (total_lost)
5790 			pr_info(" With dropped events, record len and size may not match\n"
5791 				" alloced and written from above\n");
5792 		if (!total_lost) {
5793 			if (RB_WARN_ON(buffer, total_len != total_alloc ||
5794 				       total_size != total_written))
5795 				break;
5796 		}
5797 		if (RB_WARN_ON(buffer, total_lost + total_read != total_events))
5798 			break;
5799 
5800 		ret = 0;
5801 	}
5802 	if (!ret)
5803 		pr_info("Ring buffer PASSED!\n");
5804 
5805 	ring_buffer_free(buffer);
5806 	return 0;
5807 }
5808 
5809 late_initcall(test_ringbuffer);
5810 #endif /* CONFIG_RING_BUFFER_STARTUP_TEST */
5811