1 //===-- ARMAddressingModes.h - ARM Addressing Modes -------------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains the ARM addressing mode implementation stuff. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #ifndef LLVM_LIB_TARGET_ARM_MCTARGETDESC_ARMADDRESSINGMODES_H 14 #define LLVM_LIB_TARGET_ARM_MCTARGETDESC_ARMADDRESSINGMODES_H 15 16 #include "llvm/ADT/APFloat.h" 17 #include "llvm/ADT/APInt.h" 18 #include "llvm/ADT/bit.h" 19 #include "llvm/Support/ErrorHandling.h" 20 #include "llvm/Support/MathExtras.h" 21 #include <cassert> 22 23 namespace llvm { 24 25 /// ARM_AM - ARM Addressing Mode Stuff 26 namespace ARM_AM { 27 enum ShiftOpc { 28 no_shift = 0, 29 asr, 30 lsl, 31 lsr, 32 ror, 33 rrx, 34 uxtw 35 }; 36 37 enum AddrOpc { 38 sub = 0, 39 add 40 }; 41 getAddrOpcStr(AddrOpc Op)42 inline const char *getAddrOpcStr(AddrOpc Op) { return Op == sub ? "-" : ""; } 43 getShiftOpcStr(ShiftOpc Op)44 inline const char *getShiftOpcStr(ShiftOpc Op) { 45 switch (Op) { 46 default: llvm_unreachable("Unknown shift opc!"); 47 case ARM_AM::asr: return "asr"; 48 case ARM_AM::lsl: return "lsl"; 49 case ARM_AM::lsr: return "lsr"; 50 case ARM_AM::ror: return "ror"; 51 case ARM_AM::rrx: return "rrx"; 52 case ARM_AM::uxtw: return "uxtw"; 53 } 54 } 55 getShiftOpcEncoding(ShiftOpc Op)56 inline unsigned getShiftOpcEncoding(ShiftOpc Op) { 57 switch (Op) { 58 default: llvm_unreachable("Unknown shift opc!"); 59 case ARM_AM::asr: return 2; 60 case ARM_AM::lsl: return 0; 61 case ARM_AM::lsr: return 1; 62 case ARM_AM::ror: return 3; 63 } 64 } 65 66 enum AMSubMode { 67 bad_am_submode = 0, 68 ia, 69 ib, 70 da, 71 db 72 }; 73 getAMSubModeStr(AMSubMode Mode)74 inline const char *getAMSubModeStr(AMSubMode Mode) { 75 switch (Mode) { 76 default: llvm_unreachable("Unknown addressing sub-mode!"); 77 case ARM_AM::ia: return "ia"; 78 case ARM_AM::ib: return "ib"; 79 case ARM_AM::da: return "da"; 80 case ARM_AM::db: return "db"; 81 } 82 } 83 84 /// rotr32 - Rotate a 32-bit unsigned value right by a specified # bits. 85 /// rotr32(unsigned Val,unsigned Amt)86 inline unsigned rotr32(unsigned Val, unsigned Amt) { 87 assert(Amt < 32 && "Invalid rotate amount"); 88 return (Val >> Amt) | (Val << ((32-Amt)&31)); 89 } 90 91 /// rotl32 - Rotate a 32-bit unsigned value left by a specified # bits. 92 /// rotl32(unsigned Val,unsigned Amt)93 inline unsigned rotl32(unsigned Val, unsigned Amt) { 94 assert(Amt < 32 && "Invalid rotate amount"); 95 return (Val << Amt) | (Val >> ((32-Amt)&31)); 96 } 97 98 //===--------------------------------------------------------------------===// 99 // Addressing Mode #1: shift_operand with registers 100 //===--------------------------------------------------------------------===// 101 // 102 // This 'addressing mode' is used for arithmetic instructions. It can 103 // represent things like: 104 // reg 105 // reg [asr|lsl|lsr|ror|rrx] reg 106 // reg [asr|lsl|lsr|ror|rrx] imm 107 // 108 // This is stored three operands [rega, regb, opc]. The first is the base 109 // reg, the second is the shift amount (or reg0 if not present or imm). The 110 // third operand encodes the shift opcode and the imm if a reg isn't present. 111 // getSORegOpc(ShiftOpc ShOp,unsigned Imm)112 inline unsigned getSORegOpc(ShiftOpc ShOp, unsigned Imm) { 113 return ShOp | (Imm << 3); 114 } getSORegOffset(unsigned Op)115 inline unsigned getSORegOffset(unsigned Op) { return Op >> 3; } getSORegShOp(unsigned Op)116 inline ShiftOpc getSORegShOp(unsigned Op) { return (ShiftOpc)(Op & 7); } 117 118 /// getSOImmValImm - Given an encoded imm field for the reg/imm form, return 119 /// the 8-bit imm value. getSOImmValImm(unsigned Imm)120 inline unsigned getSOImmValImm(unsigned Imm) { return Imm & 0xFF; } 121 /// getSOImmValRot - Given an encoded imm field for the reg/imm form, return 122 /// the rotate amount. getSOImmValRot(unsigned Imm)123 inline unsigned getSOImmValRot(unsigned Imm) { return (Imm >> 8) * 2; } 124 125 /// getSOImmValRotate - Try to handle Imm with an immediate shifter operand, 126 /// computing the rotate amount to use. If this immediate value cannot be 127 /// handled with a single shifter-op, determine a good rotate amount that will 128 /// take a maximal chunk of bits out of the immediate. getSOImmValRotate(unsigned Imm)129 inline unsigned getSOImmValRotate(unsigned Imm) { 130 // 8-bit (or less) immediates are trivially shifter_operands with a rotate 131 // of zero. 132 if ((Imm & ~255U) == 0) return 0; 133 134 // Use CTZ to compute the rotate amount. 135 unsigned TZ = countTrailingZeros(Imm); 136 137 // Rotate amount must be even. Something like 0x200 must be rotated 8 bits, 138 // not 9. 139 unsigned RotAmt = TZ & ~1; 140 141 // If we can handle this spread, return it. 142 if ((rotr32(Imm, RotAmt) & ~255U) == 0) 143 return (32-RotAmt)&31; // HW rotates right, not left. 144 145 // For values like 0xF000000F, we should ignore the low 6 bits, then 146 // retry the hunt. 147 if (Imm & 63U) { 148 unsigned TZ2 = countTrailingZeros(Imm & ~63U); 149 unsigned RotAmt2 = TZ2 & ~1; 150 if ((rotr32(Imm, RotAmt2) & ~255U) == 0) 151 return (32-RotAmt2)&31; // HW rotates right, not left. 152 } 153 154 // Otherwise, we have no way to cover this span of bits with a single 155 // shifter_op immediate. Return a chunk of bits that will be useful to 156 // handle. 157 return (32-RotAmt)&31; // HW rotates right, not left. 158 } 159 160 /// getSOImmVal - Given a 32-bit immediate, if it is something that can fit 161 /// into an shifter_operand immediate operand, return the 12-bit encoding for 162 /// it. If not, return -1. getSOImmVal(unsigned Arg)163 inline int getSOImmVal(unsigned Arg) { 164 // 8-bit (or less) immediates are trivially shifter_operands with a rotate 165 // of zero. 166 if ((Arg & ~255U) == 0) return Arg; 167 168 unsigned RotAmt = getSOImmValRotate(Arg); 169 170 // If this cannot be handled with a single shifter_op, bail out. 171 if (rotr32(~255U, RotAmt) & Arg) 172 return -1; 173 174 // Encode this correctly. 175 return rotl32(Arg, RotAmt) | ((RotAmt>>1) << 8); 176 } 177 178 /// isSOImmTwoPartVal - Return true if the specified value can be obtained by 179 /// or'ing together two SOImmVal's. isSOImmTwoPartVal(unsigned V)180 inline bool isSOImmTwoPartVal(unsigned V) { 181 // If this can be handled with a single shifter_op, bail out. 182 V = rotr32(~255U, getSOImmValRotate(V)) & V; 183 if (V == 0) 184 return false; 185 186 // If this can be handled with two shifter_op's, accept. 187 V = rotr32(~255U, getSOImmValRotate(V)) & V; 188 return V == 0; 189 } 190 191 /// getSOImmTwoPartFirst - If V is a value that satisfies isSOImmTwoPartVal, 192 /// return the first chunk of it. getSOImmTwoPartFirst(unsigned V)193 inline unsigned getSOImmTwoPartFirst(unsigned V) { 194 return rotr32(255U, getSOImmValRotate(V)) & V; 195 } 196 197 /// getSOImmTwoPartSecond - If V is a value that satisfies isSOImmTwoPartVal, 198 /// return the second chunk of it. getSOImmTwoPartSecond(unsigned V)199 inline unsigned getSOImmTwoPartSecond(unsigned V) { 200 // Mask out the first hunk. 201 V = rotr32(~255U, getSOImmValRotate(V)) & V; 202 203 // Take what's left. 204 assert(V == (rotr32(255U, getSOImmValRotate(V)) & V)); 205 return V; 206 } 207 208 /// getThumbImmValShift - Try to handle Imm with a 8-bit immediate followed 209 /// by a left shift. Returns the shift amount to use. getThumbImmValShift(unsigned Imm)210 inline unsigned getThumbImmValShift(unsigned Imm) { 211 // 8-bit (or less) immediates are trivially immediate operand with a shift 212 // of zero. 213 if ((Imm & ~255U) == 0) return 0; 214 215 // Use CTZ to compute the shift amount. 216 return countTrailingZeros(Imm); 217 } 218 219 /// isThumbImmShiftedVal - Return true if the specified value can be obtained 220 /// by left shifting a 8-bit immediate. isThumbImmShiftedVal(unsigned V)221 inline bool isThumbImmShiftedVal(unsigned V) { 222 // If this can be handled with 223 V = (~255U << getThumbImmValShift(V)) & V; 224 return V == 0; 225 } 226 227 /// getThumbImm16ValShift - Try to handle Imm with a 16-bit immediate followed 228 /// by a left shift. Returns the shift amount to use. getThumbImm16ValShift(unsigned Imm)229 inline unsigned getThumbImm16ValShift(unsigned Imm) { 230 // 16-bit (or less) immediates are trivially immediate operand with a shift 231 // of zero. 232 if ((Imm & ~65535U) == 0) return 0; 233 234 // Use CTZ to compute the shift amount. 235 return countTrailingZeros(Imm); 236 } 237 238 /// isThumbImm16ShiftedVal - Return true if the specified value can be 239 /// obtained by left shifting a 16-bit immediate. isThumbImm16ShiftedVal(unsigned V)240 inline bool isThumbImm16ShiftedVal(unsigned V) { 241 // If this can be handled with 242 V = (~65535U << getThumbImm16ValShift(V)) & V; 243 return V == 0; 244 } 245 246 /// getThumbImmNonShiftedVal - If V is a value that satisfies 247 /// isThumbImmShiftedVal, return the non-shiftd value. getThumbImmNonShiftedVal(unsigned V)248 inline unsigned getThumbImmNonShiftedVal(unsigned V) { 249 return V >> getThumbImmValShift(V); 250 } 251 252 253 /// getT2SOImmValSplat - Return the 12-bit encoded representation 254 /// if the specified value can be obtained by splatting the low 8 bits 255 /// into every other byte or every byte of a 32-bit value. i.e., 256 /// 00000000 00000000 00000000 abcdefgh control = 0 257 /// 00000000 abcdefgh 00000000 abcdefgh control = 1 258 /// abcdefgh 00000000 abcdefgh 00000000 control = 2 259 /// abcdefgh abcdefgh abcdefgh abcdefgh control = 3 260 /// Return -1 if none of the above apply. 261 /// See ARM Reference Manual A6.3.2. getT2SOImmValSplatVal(unsigned V)262 inline int getT2SOImmValSplatVal(unsigned V) { 263 unsigned u, Vs, Imm; 264 // control = 0 265 if ((V & 0xffffff00) == 0) 266 return V; 267 268 // If the value is zeroes in the first byte, just shift those off 269 Vs = ((V & 0xff) == 0) ? V >> 8 : V; 270 // Any passing value only has 8 bits of payload, splatted across the word 271 Imm = Vs & 0xff; 272 // Likewise, any passing values have the payload splatted into the 3rd byte 273 u = Imm | (Imm << 16); 274 275 // control = 1 or 2 276 if (Vs == u) 277 return (((Vs == V) ? 1 : 2) << 8) | Imm; 278 279 // control = 3 280 if (Vs == (u | (u << 8))) 281 return (3 << 8) | Imm; 282 283 return -1; 284 } 285 286 /// getT2SOImmValRotateVal - Return the 12-bit encoded representation if the 287 /// specified value is a rotated 8-bit value. Return -1 if no rotation 288 /// encoding is possible. 289 /// See ARM Reference Manual A6.3.2. getT2SOImmValRotateVal(unsigned V)290 inline int getT2SOImmValRotateVal(unsigned V) { 291 unsigned RotAmt = countLeadingZeros(V); 292 if (RotAmt >= 24) 293 return -1; 294 295 // If 'Arg' can be handled with a single shifter_op return the value. 296 if ((rotr32(0xff000000U, RotAmt) & V) == V) 297 return (rotr32(V, 24 - RotAmt) & 0x7f) | ((RotAmt + 8) << 7); 298 299 return -1; 300 } 301 302 /// getT2SOImmVal - Given a 32-bit immediate, if it is something that can fit 303 /// into a Thumb-2 shifter_operand immediate operand, return the 12-bit 304 /// encoding for it. If not, return -1. 305 /// See ARM Reference Manual A6.3.2. getT2SOImmVal(unsigned Arg)306 inline int getT2SOImmVal(unsigned Arg) { 307 // If 'Arg' is an 8-bit splat, then get the encoded value. 308 int Splat = getT2SOImmValSplatVal(Arg); 309 if (Splat != -1) 310 return Splat; 311 312 // If 'Arg' can be handled with a single shifter_op return the value. 313 int Rot = getT2SOImmValRotateVal(Arg); 314 if (Rot != -1) 315 return Rot; 316 317 return -1; 318 } 319 getT2SOImmValRotate(unsigned V)320 inline unsigned getT2SOImmValRotate(unsigned V) { 321 if ((V & ~255U) == 0) return 0; 322 // Use CTZ to compute the rotate amount. 323 unsigned RotAmt = countTrailingZeros(V); 324 return (32 - RotAmt) & 31; 325 } 326 isT2SOImmTwoPartVal(unsigned Imm)327 inline bool isT2SOImmTwoPartVal(unsigned Imm) { 328 unsigned V = Imm; 329 // Passing values can be any combination of splat values and shifter 330 // values. If this can be handled with a single shifter or splat, bail 331 // out. Those should be handled directly, not with a two-part val. 332 if (getT2SOImmValSplatVal(V) != -1) 333 return false; 334 V = rotr32 (~255U, getT2SOImmValRotate(V)) & V; 335 if (V == 0) 336 return false; 337 338 // If this can be handled as an immediate, accept. 339 if (getT2SOImmVal(V) != -1) return true; 340 341 // Likewise, try masking out a splat value first. 342 V = Imm; 343 if (getT2SOImmValSplatVal(V & 0xff00ff00U) != -1) 344 V &= ~0xff00ff00U; 345 else if (getT2SOImmValSplatVal(V & 0x00ff00ffU) != -1) 346 V &= ~0x00ff00ffU; 347 // If what's left can be handled as an immediate, accept. 348 if (getT2SOImmVal(V) != -1) return true; 349 350 // Otherwise, do not accept. 351 return false; 352 } 353 getT2SOImmTwoPartFirst(unsigned Imm)354 inline unsigned getT2SOImmTwoPartFirst(unsigned Imm) { 355 assert (isT2SOImmTwoPartVal(Imm) && 356 "Immedate cannot be encoded as two part immediate!"); 357 // Try a shifter operand as one part 358 unsigned V = rotr32 (~255, getT2SOImmValRotate(Imm)) & Imm; 359 // If the rest is encodable as an immediate, then return it. 360 if (getT2SOImmVal(V) != -1) return V; 361 362 // Try masking out a splat value first. 363 if (getT2SOImmValSplatVal(Imm & 0xff00ff00U) != -1) 364 return Imm & 0xff00ff00U; 365 366 // The other splat is all that's left as an option. 367 assert (getT2SOImmValSplatVal(Imm & 0x00ff00ffU) != -1); 368 return Imm & 0x00ff00ffU; 369 } 370 getT2SOImmTwoPartSecond(unsigned Imm)371 inline unsigned getT2SOImmTwoPartSecond(unsigned Imm) { 372 // Mask out the first hunk 373 Imm ^= getT2SOImmTwoPartFirst(Imm); 374 // Return what's left 375 assert (getT2SOImmVal(Imm) != -1 && 376 "Unable to encode second part of T2 two part SO immediate"); 377 return Imm; 378 } 379 380 381 //===--------------------------------------------------------------------===// 382 // Addressing Mode #2 383 //===--------------------------------------------------------------------===// 384 // 385 // This is used for most simple load/store instructions. 386 // 387 // addrmode2 := reg +/- reg shop imm 388 // addrmode2 := reg +/- imm12 389 // 390 // The first operand is always a Reg. The second operand is a reg if in 391 // reg/reg form, otherwise it's reg#0. The third field encodes the operation 392 // in bit 12, the immediate in bits 0-11, and the shift op in 13-15. The 393 // fourth operand 16-17 encodes the index mode. 394 // 395 // If this addressing mode is a frame index (before prolog/epilog insertion 396 // and code rewriting), this operand will have the form: FI#, reg0, <offs> 397 // with no shift amount for the frame offset. 398 // 399 inline unsigned getAM2Opc(AddrOpc Opc, unsigned Imm12, ShiftOpc SO, 400 unsigned IdxMode = 0) { 401 assert(Imm12 < (1 << 12) && "Imm too large!"); 402 bool isSub = Opc == sub; 403 return Imm12 | ((int)isSub << 12) | (SO << 13) | (IdxMode << 16) ; 404 } getAM2Offset(unsigned AM2Opc)405 inline unsigned getAM2Offset(unsigned AM2Opc) { 406 return AM2Opc & ((1 << 12)-1); 407 } getAM2Op(unsigned AM2Opc)408 inline AddrOpc getAM2Op(unsigned AM2Opc) { 409 return ((AM2Opc >> 12) & 1) ? sub : add; 410 } getAM2ShiftOpc(unsigned AM2Opc)411 inline ShiftOpc getAM2ShiftOpc(unsigned AM2Opc) { 412 return (ShiftOpc)((AM2Opc >> 13) & 7); 413 } getAM2IdxMode(unsigned AM2Opc)414 inline unsigned getAM2IdxMode(unsigned AM2Opc) { return (AM2Opc >> 16); } 415 416 //===--------------------------------------------------------------------===// 417 // Addressing Mode #3 418 //===--------------------------------------------------------------------===// 419 // 420 // This is used for sign-extending loads, and load/store-pair instructions. 421 // 422 // addrmode3 := reg +/- reg 423 // addrmode3 := reg +/- imm8 424 // 425 // The first operand is always a Reg. The second operand is a reg if in 426 // reg/reg form, otherwise it's reg#0. The third field encodes the operation 427 // in bit 8, the immediate in bits 0-7. The fourth operand 9-10 encodes the 428 // index mode. 429 430 /// getAM3Opc - This function encodes the addrmode3 opc field. 431 inline unsigned getAM3Opc(AddrOpc Opc, unsigned char Offset, 432 unsigned IdxMode = 0) { 433 bool isSub = Opc == sub; 434 return ((int)isSub << 8) | Offset | (IdxMode << 9); 435 } getAM3Offset(unsigned AM3Opc)436 inline unsigned char getAM3Offset(unsigned AM3Opc) { return AM3Opc & 0xFF; } getAM3Op(unsigned AM3Opc)437 inline AddrOpc getAM3Op(unsigned AM3Opc) { 438 return ((AM3Opc >> 8) & 1) ? sub : add; 439 } getAM3IdxMode(unsigned AM3Opc)440 inline unsigned getAM3IdxMode(unsigned AM3Opc) { return (AM3Opc >> 9); } 441 442 //===--------------------------------------------------------------------===// 443 // Addressing Mode #4 444 //===--------------------------------------------------------------------===// 445 // 446 // This is used for load / store multiple instructions. 447 // 448 // addrmode4 := reg, <mode> 449 // 450 // The four modes are: 451 // IA - Increment after 452 // IB - Increment before 453 // DA - Decrement after 454 // DB - Decrement before 455 // For VFP instructions, only the IA and DB modes are valid. 456 getAM4SubMode(unsigned Mode)457 inline AMSubMode getAM4SubMode(unsigned Mode) { 458 return (AMSubMode)(Mode & 0x7); 459 } 460 getAM4ModeImm(AMSubMode SubMode)461 inline unsigned getAM4ModeImm(AMSubMode SubMode) { return (int)SubMode; } 462 463 //===--------------------------------------------------------------------===// 464 // Addressing Mode #5 465 //===--------------------------------------------------------------------===// 466 // 467 // This is used for coprocessor instructions, such as FP load/stores. 468 // 469 // addrmode5 := reg +/- imm8*4 470 // 471 // The first operand is always a Reg. The second operand encodes the 472 // operation (add or subtract) in bit 8 and the immediate in bits 0-7. 473 474 /// getAM5Opc - This function encodes the addrmode5 opc field. getAM5Opc(AddrOpc Opc,unsigned char Offset)475 inline unsigned getAM5Opc(AddrOpc Opc, unsigned char Offset) { 476 bool isSub = Opc == sub; 477 return ((int)isSub << 8) | Offset; 478 } getAM5Offset(unsigned AM5Opc)479 inline unsigned char getAM5Offset(unsigned AM5Opc) { return AM5Opc & 0xFF; } getAM5Op(unsigned AM5Opc)480 inline AddrOpc getAM5Op(unsigned AM5Opc) { 481 return ((AM5Opc >> 8) & 1) ? sub : add; 482 } 483 484 //===--------------------------------------------------------------------===// 485 // Addressing Mode #5 FP16 486 //===--------------------------------------------------------------------===// 487 // 488 // This is used for coprocessor instructions, such as 16-bit FP load/stores. 489 // 490 // addrmode5fp16 := reg +/- imm8*2 491 // 492 // The first operand is always a Reg. The second operand encodes the 493 // operation (add or subtract) in bit 8 and the immediate in bits 0-7. 494 495 /// getAM5FP16Opc - This function encodes the addrmode5fp16 opc field. getAM5FP16Opc(AddrOpc Opc,unsigned char Offset)496 inline unsigned getAM5FP16Opc(AddrOpc Opc, unsigned char Offset) { 497 bool isSub = Opc == sub; 498 return ((int)isSub << 8) | Offset; 499 } getAM5FP16Offset(unsigned AM5Opc)500 inline unsigned char getAM5FP16Offset(unsigned AM5Opc) { 501 return AM5Opc & 0xFF; 502 } getAM5FP16Op(unsigned AM5Opc)503 inline AddrOpc getAM5FP16Op(unsigned AM5Opc) { 504 return ((AM5Opc >> 8) & 1) ? sub : add; 505 } 506 507 //===--------------------------------------------------------------------===// 508 // Addressing Mode #6 509 //===--------------------------------------------------------------------===// 510 // 511 // This is used for NEON load / store instructions. 512 // 513 // addrmode6 := reg with optional alignment 514 // 515 // This is stored in two operands [regaddr, align]. The first is the 516 // address register. The second operand is the value of the alignment 517 // specifier in bytes or zero if no explicit alignment. 518 // Valid alignments depend on the specific instruction. 519 520 //===--------------------------------------------------------------------===// 521 // NEON/MVE Modified Immediates 522 //===--------------------------------------------------------------------===// 523 // 524 // Several NEON and MVE instructions (e.g., VMOV) take a "modified immediate" 525 // vector operand, where a small immediate encoded in the instruction 526 // specifies a full NEON vector value. These modified immediates are 527 // represented here as encoded integers. The low 8 bits hold the immediate 528 // value; bit 12 holds the "Op" field of the instruction, and bits 11-8 hold 529 // the "Cmode" field of the instruction. The interfaces below treat the 530 // Op and Cmode values as a single 5-bit value. 531 createVMOVModImm(unsigned OpCmode,unsigned Val)532 inline unsigned createVMOVModImm(unsigned OpCmode, unsigned Val) { 533 return (OpCmode << 8) | Val; 534 } getVMOVModImmOpCmode(unsigned ModImm)535 inline unsigned getVMOVModImmOpCmode(unsigned ModImm) { 536 return (ModImm >> 8) & 0x1f; 537 } getVMOVModImmVal(unsigned ModImm)538 inline unsigned getVMOVModImmVal(unsigned ModImm) { return ModImm & 0xff; } 539 540 /// decodeVMOVModImm - Decode a NEON/MVE modified immediate value into the 541 /// element value and the element size in bits. (If the element size is 542 /// smaller than the vector, it is splatted into all the elements.) decodeVMOVModImm(unsigned ModImm,unsigned & EltBits)543 inline uint64_t decodeVMOVModImm(unsigned ModImm, unsigned &EltBits) { 544 unsigned OpCmode = getVMOVModImmOpCmode(ModImm); 545 unsigned Imm8 = getVMOVModImmVal(ModImm); 546 uint64_t Val = 0; 547 548 if (OpCmode == 0xe) { 549 // 8-bit vector elements 550 Val = Imm8; 551 EltBits = 8; 552 } else if ((OpCmode & 0xc) == 0x8) { 553 // 16-bit vector elements 554 unsigned ByteNum = (OpCmode & 0x6) >> 1; 555 Val = Imm8 << (8 * ByteNum); 556 EltBits = 16; 557 } else if ((OpCmode & 0x8) == 0) { 558 // 32-bit vector elements, zero with one byte set 559 unsigned ByteNum = (OpCmode & 0x6) >> 1; 560 Val = Imm8 << (8 * ByteNum); 561 EltBits = 32; 562 } else if ((OpCmode & 0xe) == 0xc) { 563 // 32-bit vector elements, one byte with low bits set 564 unsigned ByteNum = 1 + (OpCmode & 0x1); 565 Val = (Imm8 << (8 * ByteNum)) | (0xffff >> (8 * (2 - ByteNum))); 566 EltBits = 32; 567 } else if (OpCmode == 0x1e) { 568 // 64-bit vector elements 569 for (unsigned ByteNum = 0; ByteNum < 8; ++ByteNum) { 570 if ((ModImm >> ByteNum) & 1) 571 Val |= (uint64_t)0xff << (8 * ByteNum); 572 } 573 EltBits = 64; 574 } else { 575 llvm_unreachable("Unsupported VMOV immediate"); 576 } 577 return Val; 578 } 579 580 // Generic validation for single-byte immediate (0X00, 00X0, etc). isNEONBytesplat(unsigned Value,unsigned Size)581 inline bool isNEONBytesplat(unsigned Value, unsigned Size) { 582 assert(Size >= 1 && Size <= 4 && "Invalid size"); 583 unsigned count = 0; 584 for (unsigned i = 0; i < Size; ++i) { 585 if (Value & 0xff) count++; 586 Value >>= 8; 587 } 588 return count == 1; 589 } 590 591 /// Checks if Value is a correct immediate for instructions like VBIC/VORR. isNEONi16splat(unsigned Value)592 inline bool isNEONi16splat(unsigned Value) { 593 if (Value > 0xffff) 594 return false; 595 // i16 value with set bits only in one byte X0 or 0X. 596 return Value == 0 || isNEONBytesplat(Value, 2); 597 } 598 599 // Encode NEON 16 bits Splat immediate for instructions like VBIC/VORR encodeNEONi16splat(unsigned Value)600 inline unsigned encodeNEONi16splat(unsigned Value) { 601 assert(isNEONi16splat(Value) && "Invalid NEON splat value"); 602 if (Value >= 0x100) 603 Value = (Value >> 8) | 0xa00; 604 else 605 Value |= 0x800; 606 return Value; 607 } 608 609 /// Checks if Value is a correct immediate for instructions like VBIC/VORR. isNEONi32splat(unsigned Value)610 inline bool isNEONi32splat(unsigned Value) { 611 // i32 value with set bits only in one byte X000, 0X00, 00X0, or 000X. 612 return Value == 0 || isNEONBytesplat(Value, 4); 613 } 614 615 /// Encode NEON 32 bits Splat immediate for instructions like VBIC/VORR. encodeNEONi32splat(unsigned Value)616 inline unsigned encodeNEONi32splat(unsigned Value) { 617 assert(isNEONi32splat(Value) && "Invalid NEON splat value"); 618 if (Value >= 0x100 && Value <= 0xff00) 619 Value = (Value >> 8) | 0x200; 620 else if (Value > 0xffff && Value <= 0xff0000) 621 Value = (Value >> 16) | 0x400; 622 else if (Value > 0xffffff) 623 Value = (Value >> 24) | 0x600; 624 return Value; 625 } 626 627 //===--------------------------------------------------------------------===// 628 // Floating-point Immediates 629 // getFPImmFloat(unsigned Imm)630 inline float getFPImmFloat(unsigned Imm) { 631 // We expect an 8-bit binary encoding of a floating-point number here. 632 633 uint8_t Sign = (Imm >> 7) & 0x1; 634 uint8_t Exp = (Imm >> 4) & 0x7; 635 uint8_t Mantissa = Imm & 0xf; 636 637 // 8-bit FP IEEE Float Encoding 638 // abcd efgh aBbbbbbc defgh000 00000000 00000000 639 // 640 // where B = NOT(b); 641 uint32_t I = 0; 642 I |= Sign << 31; 643 I |= ((Exp & 0x4) != 0 ? 0 : 1) << 30; 644 I |= ((Exp & 0x4) != 0 ? 0x1f : 0) << 25; 645 I |= (Exp & 0x3) << 23; 646 I |= Mantissa << 19; 647 return bit_cast<float>(I); 648 } 649 650 /// getFP16Imm - Return an 8-bit floating-point version of the 16-bit 651 /// floating-point value. If the value cannot be represented as an 8-bit 652 /// floating-point value, then return -1. getFP16Imm(const APInt & Imm)653 inline int getFP16Imm(const APInt &Imm) { 654 uint32_t Sign = Imm.lshr(15).getZExtValue() & 1; 655 int32_t Exp = (Imm.lshr(10).getSExtValue() & 0x1f) - 15; // -14 to 15 656 int64_t Mantissa = Imm.getZExtValue() & 0x3ff; // 10 bits 657 658 // We can handle 4 bits of mantissa. 659 // mantissa = (16+UInt(e:f:g:h))/16. 660 if (Mantissa & 0x3f) 661 return -1; 662 Mantissa >>= 6; 663 664 // We can handle 3 bits of exponent: exp == UInt(NOT(b):c:d)-3 665 if (Exp < -3 || Exp > 4) 666 return -1; 667 Exp = ((Exp+3) & 0x7) ^ 4; 668 669 return ((int)Sign << 7) | (Exp << 4) | Mantissa; 670 } 671 getFP16Imm(const APFloat & FPImm)672 inline int getFP16Imm(const APFloat &FPImm) { 673 return getFP16Imm(FPImm.bitcastToAPInt()); 674 } 675 676 /// getFP32Imm - Return an 8-bit floating-point version of the 32-bit 677 /// floating-point value. If the value cannot be represented as an 8-bit 678 /// floating-point value, then return -1. getFP32Imm(const APInt & Imm)679 inline int getFP32Imm(const APInt &Imm) { 680 uint32_t Sign = Imm.lshr(31).getZExtValue() & 1; 681 int32_t Exp = (Imm.lshr(23).getSExtValue() & 0xff) - 127; // -126 to 127 682 int64_t Mantissa = Imm.getZExtValue() & 0x7fffff; // 23 bits 683 684 // We can handle 4 bits of mantissa. 685 // mantissa = (16+UInt(e:f:g:h))/16. 686 if (Mantissa & 0x7ffff) 687 return -1; 688 Mantissa >>= 19; 689 if ((Mantissa & 0xf) != Mantissa) 690 return -1; 691 692 // We can handle 3 bits of exponent: exp == UInt(NOT(b):c:d)-3 693 if (Exp < -3 || Exp > 4) 694 return -1; 695 Exp = ((Exp+3) & 0x7) ^ 4; 696 697 return ((int)Sign << 7) | (Exp << 4) | Mantissa; 698 } 699 getFP32Imm(const APFloat & FPImm)700 inline int getFP32Imm(const APFloat &FPImm) { 701 return getFP32Imm(FPImm.bitcastToAPInt()); 702 } 703 704 /// getFP64Imm - Return an 8-bit floating-point version of the 64-bit 705 /// floating-point value. If the value cannot be represented as an 8-bit 706 /// floating-point value, then return -1. getFP64Imm(const APInt & Imm)707 inline int getFP64Imm(const APInt &Imm) { 708 uint64_t Sign = Imm.lshr(63).getZExtValue() & 1; 709 int64_t Exp = (Imm.lshr(52).getSExtValue() & 0x7ff) - 1023; // -1022 to 1023 710 uint64_t Mantissa = Imm.getZExtValue() & 0xfffffffffffffULL; 711 712 // We can handle 4 bits of mantissa. 713 // mantissa = (16+UInt(e:f:g:h))/16. 714 if (Mantissa & 0xffffffffffffULL) 715 return -1; 716 Mantissa >>= 48; 717 if ((Mantissa & 0xf) != Mantissa) 718 return -1; 719 720 // We can handle 3 bits of exponent: exp == UInt(NOT(b):c:d)-3 721 if (Exp < -3 || Exp > 4) 722 return -1; 723 Exp = ((Exp+3) & 0x7) ^ 4; 724 725 return ((int)Sign << 7) | (Exp << 4) | Mantissa; 726 } 727 getFP64Imm(const APFloat & FPImm)728 inline int getFP64Imm(const APFloat &FPImm) { 729 return getFP64Imm(FPImm.bitcastToAPInt()); 730 } 731 732 } // end namespace ARM_AM 733 } // end namespace llvm 734 735 #endif 736 737