1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3 * Scheduler internal types and methods:
4 */
5 #include <linux/sched.h>
6
7 #include <linux/sched/autogroup.h>
8 #include <linux/sched/clock.h>
9 #include <linux/sched/coredump.h>
10 #include <linux/sched/cpufreq.h>
11 #include <linux/sched/cputime.h>
12 #include <linux/sched/deadline.h>
13 #include <linux/sched/debug.h>
14 #include <linux/sched/hotplug.h>
15 #include <linux/sched/idle.h>
16 #include <linux/sched/init.h>
17 #include <linux/sched/isolation.h>
18 #include <linux/sched/jobctl.h>
19 #include <linux/sched/loadavg.h>
20 #include <linux/sched/mm.h>
21 #include <linux/sched/nohz.h>
22 #include <linux/sched/numa_balancing.h>
23 #include <linux/sched/prio.h>
24 #include <linux/sched/rt.h>
25 #include <linux/sched/signal.h>
26 #include <linux/sched/smt.h>
27 #include <linux/sched/stat.h>
28 #include <linux/sched/sysctl.h>
29 #include <linux/sched/task.h>
30 #include <linux/sched/task_stack.h>
31 #include <linux/sched/topology.h>
32 #include <linux/sched/user.h>
33 #include <linux/sched/wake_q.h>
34 #include <linux/sched/xacct.h>
35
36 #include <uapi/linux/sched/types.h>
37
38 #include <linux/binfmts.h>
39 #include <linux/blkdev.h>
40 #include <linux/compat.h>
41 #include <linux/context_tracking.h>
42 #include <linux/cpufreq.h>
43 #include <linux/cpuidle.h>
44 #include <linux/cpuset.h>
45 #include <linux/ctype.h>
46 #include <linux/debugfs.h>
47 #include <linux/delayacct.h>
48 #include <linux/energy_model.h>
49 #include <linux/init_task.h>
50 #include <linux/kprobes.h>
51 #include <linux/kthread.h>
52 #include <linux/membarrier.h>
53 #include <linux/migrate.h>
54 #include <linux/mmu_context.h>
55 #include <linux/nmi.h>
56 #include <linux/proc_fs.h>
57 #include <linux/prefetch.h>
58 #include <linux/profile.h>
59 #include <linux/psi.h>
60 #include <linux/rcupdate_wait.h>
61 #include <linux/security.h>
62 #include <linux/stop_machine.h>
63 #include <linux/suspend.h>
64 #include <linux/swait.h>
65 #include <linux/syscalls.h>
66 #include <linux/task_work.h>
67 #include <linux/tsacct_kern.h>
68
69 #include <asm/tlb.h>
70 #include <asm-generic/vmlinux.lds.h>
71
72 #ifdef CONFIG_PARAVIRT
73 # include <asm/paravirt.h>
74 #endif
75
76 #include "cpupri.h"
77 #include "cpudeadline.h"
78
79 #include <trace/events/sched.h>
80
81 #ifdef CONFIG_SCHED_DEBUG
82 # define SCHED_WARN_ON(x) WARN_ONCE(x, #x)
83 #else
84 # define SCHED_WARN_ON(x) ({ (void)(x), 0; })
85 #endif
86
87 struct rq;
88 struct cpuidle_state;
89
90 #ifdef CONFIG_SCHED_RT_CAS
91 extern unsigned long uclamp_task_util(struct task_struct *p);
92 #endif
93
94 #ifdef CONFIG_SCHED_WALT
95 extern unsigned int sched_ravg_window;
96 extern unsigned int walt_cpu_util_freq_divisor;
97
98 struct walt_sched_stats {
99 u64 cumulative_runnable_avg_scaled;
100 };
101
102 struct load_subtractions {
103 u64 window_start;
104 u64 subs;
105 u64 new_subs;
106 };
107
108 #define NUM_TRACKED_WINDOWS 2
109
110 struct sched_cluster {
111 raw_spinlock_t load_lock;
112 struct list_head list;
113 struct cpumask cpus;
114 int id;
115 int max_power_cost;
116 int min_power_cost;
117 int max_possible_capacity;
118 int capacity;
119 int efficiency; /* Differentiate cpus with different IPC capability */
120 int load_scale_factor;
121 unsigned int exec_scale_factor;
122 /*
123 * max_freq = user maximum
124 * max_possible_freq = maximum supported by hardware
125 */
126 unsigned int cur_freq, max_freq, min_freq;
127 unsigned int max_possible_freq;
128 bool freq_init_done;
129 };
130
131 extern unsigned int sched_disable_window_stats;
132 #endif /* CONFIG_SCHED_WALT */
133
134
135 /* task_struct::on_rq states: */
136 #define TASK_ON_RQ_QUEUED 1
137 #define TASK_ON_RQ_MIGRATING 2
138
139 extern __read_mostly int scheduler_running;
140
141 extern unsigned long calc_load_update;
142 extern atomic_long_t calc_load_tasks;
143
144 extern void calc_global_load_tick(struct rq *this_rq);
145 extern long calc_load_fold_active(struct rq *this_rq, long adjust);
146
147 #ifdef CONFIG_SMP
148 extern void init_sched_groups_capacity(int cpu, struct sched_domain *sd);
149 #endif
150
151 extern void call_trace_sched_update_nr_running(struct rq *rq, int count);
152 /*
153 * Helpers for converting nanosecond timing to jiffy resolution
154 */
155 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
156
157 #ifdef CONFIG_SCHED_LATENCY_NICE
158 /*
159 * Latency nice is meant to provide scheduler hints about the relative
160 * latency requirements of a task with respect to other tasks.
161 * Thus a task with latency_nice == 19 can be hinted as the task with no
162 * latency requirements, in contrast to the task with latency_nice == -20
163 * which should be given priority in terms of lower latency.
164 */
165 #define MAX_LATENCY_NICE 19
166 #define MIN_LATENCY_NICE -20
167
168 #define LATENCY_NICE_WIDTH \
169 (MAX_LATENCY_NICE - MIN_LATENCY_NICE + 1)
170
171 /*
172 * Default tasks should be treated as a task with latency_nice = 0.
173 */
174 #define DEFAULT_LATENCY_NICE 0
175 #define DEFAULT_LATENCY_PRIO (DEFAULT_LATENCY_NICE + LATENCY_NICE_WIDTH/2)
176
177 /*
178 * Convert user-nice values [ -20 ... 0 ... 19 ]
179 * to static latency [ 0..39 ],
180 * and back.
181 */
182 #define NICE_TO_LATENCY(nice) ((nice) + DEFAULT_LATENCY_PRIO)
183 #define LATENCY_TO_NICE(prio) ((prio) - DEFAULT_LATENCY_PRIO)
184 #define NICE_LATENCY_SHIFT (SCHED_FIXEDPOINT_SHIFT)
185 #define NICE_LATENCY_WEIGHT_MAX (1L << NICE_LATENCY_SHIFT)
186 #endif /* CONFIG_SCHED_LATENCY_NICE */
187
188 /*
189 * Increase resolution of nice-level calculations for 64-bit architectures.
190 * The extra resolution improves shares distribution and load balancing of
191 * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup
192 * hierarchies, especially on larger systems. This is not a user-visible change
193 * and does not change the user-interface for setting shares/weights.
194 *
195 * We increase resolution only if we have enough bits to allow this increased
196 * resolution (i.e. 64-bit). The costs for increasing resolution when 32-bit
197 * are pretty high and the returns do not justify the increased costs.
198 *
199 * Really only required when CONFIG_FAIR_GROUP_SCHED=y is also set, but to
200 * increase coverage and consistency always enable it on 64-bit platforms.
201 */
202 #ifdef CONFIG_64BIT
203 # define NICE_0_LOAD_SHIFT (SCHED_FIXEDPOINT_SHIFT + SCHED_FIXEDPOINT_SHIFT)
204 # define scale_load(w) ((w) << SCHED_FIXEDPOINT_SHIFT)
205 # define scale_load_down(w) \
206 ({ \
207 unsigned long __w = (w); \
208 if (__w) \
209 __w = max(2UL, __w >> SCHED_FIXEDPOINT_SHIFT); \
210 __w; \
211 })
212 #else
213 # define NICE_0_LOAD_SHIFT (SCHED_FIXEDPOINT_SHIFT)
214 # define scale_load(w) (w)
215 # define scale_load_down(w) (w)
216 #endif
217
218 /*
219 * Task weight (visible to users) and its load (invisible to users) have
220 * independent resolution, but they should be well calibrated. We use
221 * scale_load() and scale_load_down(w) to convert between them. The
222 * following must be true:
223 *
224 * scale_load(sched_prio_to_weight[USER_PRIO(NICE_TO_PRIO(0))]) == NICE_0_LOAD
225 *
226 */
227 #define NICE_0_LOAD (1L << NICE_0_LOAD_SHIFT)
228
229 /*
230 * Single value that decides SCHED_DEADLINE internal math precision.
231 * 10 -> just above 1us
232 * 9 -> just above 0.5us
233 */
234 #define DL_SCALE 10
235
236 /*
237 * Single value that denotes runtime == period, ie unlimited time.
238 */
239 #define RUNTIME_INF ((u64)~0ULL)
240
idle_policy(int policy)241 static inline int idle_policy(int policy)
242 {
243 return policy == SCHED_IDLE;
244 }
fair_policy(int policy)245 static inline int fair_policy(int policy)
246 {
247 return policy == SCHED_NORMAL || policy == SCHED_BATCH;
248 }
249
rt_policy(int policy)250 static inline int rt_policy(int policy)
251 {
252 return policy == SCHED_FIFO || policy == SCHED_RR;
253 }
254
dl_policy(int policy)255 static inline int dl_policy(int policy)
256 {
257 return policy == SCHED_DEADLINE;
258 }
valid_policy(int policy)259 static inline bool valid_policy(int policy)
260 {
261 return idle_policy(policy) || fair_policy(policy) ||
262 rt_policy(policy) || dl_policy(policy);
263 }
264
task_has_idle_policy(struct task_struct * p)265 static inline int task_has_idle_policy(struct task_struct *p)
266 {
267 return idle_policy(p->policy);
268 }
269
task_has_rt_policy(struct task_struct * p)270 static inline int task_has_rt_policy(struct task_struct *p)
271 {
272 return rt_policy(p->policy);
273 }
274
task_has_dl_policy(struct task_struct * p)275 static inline int task_has_dl_policy(struct task_struct *p)
276 {
277 return dl_policy(p->policy);
278 }
279
280 #define cap_scale(v, s) ((v)*(s) >> SCHED_CAPACITY_SHIFT)
281
update_avg(u64 * avg,u64 sample)282 static inline void update_avg(u64 *avg, u64 sample)
283 {
284 s64 diff = sample - *avg;
285 *avg += diff / 8;
286 }
287
288 /*
289 * Shifting a value by an exponent greater *or equal* to the size of said value
290 * is UB; cap at size-1.
291 */
292 #define shr_bound(val, shift) \
293 (val >> min_t(typeof(shift), shift, BITS_PER_TYPE(typeof(val)) - 1))
294
295 /*
296 * !! For sched_setattr_nocheck() (kernel) only !!
297 *
298 * This is actually gross. :(
299 *
300 * It is used to make schedutil kworker(s) higher priority than SCHED_DEADLINE
301 * tasks, but still be able to sleep. We need this on platforms that cannot
302 * atomically change clock frequency. Remove once fast switching will be
303 * available on such platforms.
304 *
305 * SUGOV stands for SchedUtil GOVernor.
306 */
307 #define SCHED_FLAG_SUGOV 0x10000000
308
309 #define SCHED_DL_FLAGS (SCHED_FLAG_RECLAIM | SCHED_FLAG_DL_OVERRUN | SCHED_FLAG_SUGOV)
310
dl_entity_is_special(struct sched_dl_entity * dl_se)311 static inline bool dl_entity_is_special(struct sched_dl_entity *dl_se)
312 {
313 #ifdef CONFIG_CPU_FREQ_GOV_SCHEDUTIL
314 return unlikely(dl_se->flags & SCHED_FLAG_SUGOV);
315 #else
316 return false;
317 #endif
318 }
319
320 /*
321 * Tells if entity @a should preempt entity @b.
322 */
323 static inline bool
dl_entity_preempt(struct sched_dl_entity * a,struct sched_dl_entity * b)324 dl_entity_preempt(struct sched_dl_entity *a, struct sched_dl_entity *b)
325 {
326 return dl_entity_is_special(a) ||
327 dl_time_before(a->deadline, b->deadline);
328 }
329
330 /*
331 * This is the priority-queue data structure of the RT scheduling class:
332 */
333 struct rt_prio_array {
334 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
335 struct list_head queue[MAX_RT_PRIO];
336 };
337
338 struct rt_bandwidth {
339 /* nests inside the rq lock: */
340 raw_spinlock_t rt_runtime_lock;
341 ktime_t rt_period;
342 u64 rt_runtime;
343 struct hrtimer rt_period_timer;
344 unsigned int rt_period_active;
345 };
346
347 void __dl_clear_params(struct task_struct *p);
348
349 struct dl_bandwidth {
350 raw_spinlock_t dl_runtime_lock;
351 u64 dl_runtime;
352 u64 dl_period;
353 };
354
dl_bandwidth_enabled(void)355 static inline int dl_bandwidth_enabled(void)
356 {
357 return sysctl_sched_rt_runtime >= 0;
358 }
359
360 /*
361 * To keep the bandwidth of -deadline tasks under control
362 * we need some place where:
363 * - store the maximum -deadline bandwidth of each cpu;
364 * - cache the fraction of bandwidth that is currently allocated in
365 * each root domain;
366 *
367 * This is all done in the data structure below. It is similar to the
368 * one used for RT-throttling (rt_bandwidth), with the main difference
369 * that, since here we are only interested in admission control, we
370 * do not decrease any runtime while the group "executes", neither we
371 * need a timer to replenish it.
372 *
373 * With respect to SMP, bandwidth is given on a per root domain basis,
374 * meaning that:
375 * - bw (< 100%) is the deadline bandwidth of each CPU;
376 * - total_bw is the currently allocated bandwidth in each root domain;
377 */
378 struct dl_bw {
379 raw_spinlock_t lock;
380 u64 bw;
381 u64 total_bw;
382 };
383
384 static inline void __dl_update(struct dl_bw *dl_b, s64 bw);
385
386 static inline
__dl_sub(struct dl_bw * dl_b,u64 tsk_bw,int cpus)387 void __dl_sub(struct dl_bw *dl_b, u64 tsk_bw, int cpus)
388 {
389 dl_b->total_bw -= tsk_bw;
390 __dl_update(dl_b, (s32)tsk_bw / cpus);
391 }
392
393 static inline
__dl_add(struct dl_bw * dl_b,u64 tsk_bw,int cpus)394 void __dl_add(struct dl_bw *dl_b, u64 tsk_bw, int cpus)
395 {
396 dl_b->total_bw += tsk_bw;
397 __dl_update(dl_b, -((s32)tsk_bw / cpus));
398 }
399
__dl_overflow(struct dl_bw * dl_b,unsigned long cap,u64 old_bw,u64 new_bw)400 static inline bool __dl_overflow(struct dl_bw *dl_b, unsigned long cap,
401 u64 old_bw, u64 new_bw)
402 {
403 return dl_b->bw != -1 &&
404 cap_scale(dl_b->bw, cap) < dl_b->total_bw - old_bw + new_bw;
405 }
406
407 /*
408 * Verify the fitness of task @p to run on @cpu taking into account the
409 * CPU original capacity and the runtime/deadline ratio of the task.
410 *
411 * The function will return true if the CPU original capacity of the
412 * @cpu scaled by SCHED_CAPACITY_SCALE >= runtime/deadline ratio of the
413 * task and false otherwise.
414 */
dl_task_fits_capacity(struct task_struct * p,int cpu)415 static inline bool dl_task_fits_capacity(struct task_struct *p, int cpu)
416 {
417 unsigned long cap = arch_scale_cpu_capacity(cpu);
418
419 return cap_scale(p->dl.dl_deadline, cap) >= p->dl.dl_runtime;
420 }
421
422 extern void init_dl_bw(struct dl_bw *dl_b);
423 extern int sched_dl_global_validate(void);
424 extern void sched_dl_do_global(void);
425 extern int sched_dl_overflow(struct task_struct *p, int policy, const struct sched_attr *attr);
426 extern void __setparam_dl(struct task_struct *p, const struct sched_attr *attr);
427 extern void __getparam_dl(struct task_struct *p, struct sched_attr *attr);
428 extern bool __checkparam_dl(const struct sched_attr *attr);
429 extern bool dl_param_changed(struct task_struct *p, const struct sched_attr *attr);
430 extern int dl_task_can_attach(struct task_struct *p, const struct cpumask *cs_cpus_allowed);
431 extern int dl_cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial);
432 extern bool dl_cpu_busy(unsigned int cpu);
433
434 #ifdef CONFIG_CGROUP_SCHED
435
436 #include <linux/cgroup.h>
437 #include <linux/psi.h>
438
439 struct cfs_rq;
440 struct rt_rq;
441
442 extern struct list_head task_groups;
443
444 struct cfs_bandwidth {
445 #ifdef CONFIG_CFS_BANDWIDTH
446 raw_spinlock_t lock;
447 ktime_t period;
448 u64 quota;
449 u64 runtime;
450 s64 hierarchical_quota;
451
452 u8 idle;
453 u8 period_active;
454 u8 slack_started;
455 struct hrtimer period_timer;
456 struct hrtimer slack_timer;
457 struct list_head throttled_cfs_rq;
458
459 /* Statistics: */
460 int nr_periods;
461 int nr_throttled;
462 u64 throttled_time;
463 #endif
464 };
465
466 /* Task group related information */
467 struct task_group {
468 struct cgroup_subsys_state css;
469
470 #ifdef CONFIG_FAIR_GROUP_SCHED
471 /* schedulable entities of this group on each CPU */
472 struct sched_entity **se;
473 /* runqueue "owned" by this group on each CPU */
474 struct cfs_rq **cfs_rq;
475 unsigned long shares;
476
477 #ifdef CONFIG_SMP
478 /*
479 * load_avg can be heavily contended at clock tick time, so put
480 * it in its own cacheline separated from the fields above which
481 * will also be accessed at each tick.
482 */
483 atomic_long_t load_avg ____cacheline_aligned;
484 #endif
485 #endif
486
487 #ifdef CONFIG_RT_GROUP_SCHED
488 struct sched_rt_entity **rt_se;
489 struct rt_rq **rt_rq;
490
491 struct rt_bandwidth rt_bandwidth;
492 #endif
493
494 struct rcu_head rcu;
495 struct list_head list;
496
497 struct task_group *parent;
498 struct list_head siblings;
499 struct list_head children;
500
501 #ifdef CONFIG_SCHED_AUTOGROUP
502 struct autogroup *autogroup;
503 #endif
504
505 struct cfs_bandwidth cfs_bandwidth;
506
507 #ifdef CONFIG_UCLAMP_TASK_GROUP
508 /* The two decimal precision [%] value requested from user-space */
509 unsigned int uclamp_pct[UCLAMP_CNT];
510 /* Clamp values requested for a task group */
511 struct uclamp_se uclamp_req[UCLAMP_CNT];
512 /* Effective clamp values used for a task group */
513 struct uclamp_se uclamp[UCLAMP_CNT];
514 #endif
515
516 #ifdef CONFIG_SCHED_RTG_CGROUP
517 /*
518 * Controls whether tasks of this cgroup should be colocated with each
519 * other and tasks of other cgroups that have the same flag turned on.
520 */
521 bool colocate;
522
523 /* Controls whether further updates are allowed to the colocate flag */
524 bool colocate_update_disabled;
525 #endif
526 };
527
528 #ifdef CONFIG_FAIR_GROUP_SCHED
529 #define ROOT_TASK_GROUP_LOAD NICE_0_LOAD
530
531 /*
532 * A weight of 0 or 1 can cause arithmetics problems.
533 * A weight of a cfs_rq is the sum of weights of which entities
534 * are queued on this cfs_rq, so a weight of a entity should not be
535 * too large, so as the shares value of a task group.
536 * (The default weight is 1024 - so there's no practical
537 * limitation from this.)
538 */
539 #define MIN_SHARES (1UL << 1)
540 #define MAX_SHARES (1UL << 18)
541 #endif
542
543 typedef int (*tg_visitor)(struct task_group *, void *);
544
545 extern int walk_tg_tree_from(struct task_group *from,
546 tg_visitor down, tg_visitor up, void *data);
547
548 /*
549 * Iterate the full tree, calling @down when first entering a node and @up when
550 * leaving it for the final time.
551 *
552 * Caller must hold rcu_lock or sufficient equivalent.
553 */
walk_tg_tree(tg_visitor down,tg_visitor up,void * data)554 static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
555 {
556 return walk_tg_tree_from(&root_task_group, down, up, data);
557 }
558
559 extern int tg_nop(struct task_group *tg, void *data);
560
561 extern void free_fair_sched_group(struct task_group *tg);
562 extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent);
563 extern void online_fair_sched_group(struct task_group *tg);
564 extern void unregister_fair_sched_group(struct task_group *tg);
565 extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
566 struct sched_entity *se, int cpu,
567 struct sched_entity *parent);
568 extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
569
570 extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b);
571 extern void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
572 extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq);
573
574 extern void free_rt_sched_group(struct task_group *tg);
575 extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent);
576 extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
577 struct sched_rt_entity *rt_se, int cpu,
578 struct sched_rt_entity *parent);
579 extern int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us);
580 extern int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us);
581 extern long sched_group_rt_runtime(struct task_group *tg);
582 extern long sched_group_rt_period(struct task_group *tg);
583 extern int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk);
584
585 extern struct task_group *sched_create_group(struct task_group *parent);
586 extern void sched_online_group(struct task_group *tg,
587 struct task_group *parent);
588 extern void sched_destroy_group(struct task_group *tg);
589 extern void sched_offline_group(struct task_group *tg);
590
591 extern void sched_move_task(struct task_struct *tsk);
592
593 #ifdef CONFIG_FAIR_GROUP_SCHED
594 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
595
596 #ifdef CONFIG_SMP
597 extern void set_task_rq_fair(struct sched_entity *se,
598 struct cfs_rq *prev, struct cfs_rq *next);
599 #else /* !CONFIG_SMP */
set_task_rq_fair(struct sched_entity * se,struct cfs_rq * prev,struct cfs_rq * next)600 static inline void set_task_rq_fair(struct sched_entity *se,
601 struct cfs_rq *prev, struct cfs_rq *next) { }
602 #endif /* CONFIG_SMP */
603 #endif /* CONFIG_FAIR_GROUP_SCHED */
604
605 #else /* CONFIG_CGROUP_SCHED */
606
607 struct cfs_bandwidth { };
608
609 #endif /* CONFIG_CGROUP_SCHED */
610
611 /* CFS-related fields in a runqueue */
612 struct cfs_rq {
613 struct load_weight load;
614 unsigned int nr_running;
615 unsigned int h_nr_running; /* SCHED_{NORMAL,BATCH,IDLE} */
616 unsigned int idle_h_nr_running; /* SCHED_IDLE */
617
618 u64 exec_clock;
619 u64 min_vruntime;
620 #ifndef CONFIG_64BIT
621 u64 min_vruntime_copy;
622 #endif
623
624 struct rb_root_cached tasks_timeline;
625
626 /*
627 * 'curr' points to currently running entity on this cfs_rq.
628 * It is set to NULL otherwise (i.e when none are currently running).
629 */
630 struct sched_entity *curr;
631 struct sched_entity *next;
632 struct sched_entity *last;
633 struct sched_entity *skip;
634
635 #ifdef CONFIG_SCHED_DEBUG
636 unsigned int nr_spread_over;
637 #endif
638
639 #ifdef CONFIG_SMP
640 /*
641 * CFS load tracking
642 */
643 struct sched_avg avg;
644 #ifndef CONFIG_64BIT
645 u64 load_last_update_time_copy;
646 #endif
647 struct {
648 raw_spinlock_t lock ____cacheline_aligned;
649 int nr;
650 unsigned long load_avg;
651 unsigned long util_avg;
652 unsigned long runnable_avg;
653 } removed;
654
655 #ifdef CONFIG_FAIR_GROUP_SCHED
656 unsigned long tg_load_avg_contrib;
657 long propagate;
658 long prop_runnable_sum;
659
660 /*
661 * h_load = weight * f(tg)
662 *
663 * Where f(tg) is the recursive weight fraction assigned to
664 * this group.
665 */
666 unsigned long h_load;
667 u64 last_h_load_update;
668 struct sched_entity *h_load_next;
669 #endif /* CONFIG_FAIR_GROUP_SCHED */
670 #endif /* CONFIG_SMP */
671
672 #ifdef CONFIG_FAIR_GROUP_SCHED
673 struct rq *rq; /* CPU runqueue to which this cfs_rq is attached */
674
675 /*
676 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
677 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
678 * (like users, containers etc.)
679 *
680 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a CPU.
681 * This list is used during load balance.
682 */
683 int on_list;
684 struct list_head leaf_cfs_rq_list;
685 struct task_group *tg; /* group that "owns" this runqueue */
686
687 #ifdef CONFIG_SCHED_WALT
688 struct walt_sched_stats walt_stats;
689 #endif
690
691 #ifdef CONFIG_CFS_BANDWIDTH
692 int runtime_enabled;
693 s64 runtime_remaining;
694
695 u64 throttled_clock;
696 u64 throttled_clock_task;
697 u64 throttled_clock_task_time;
698 int throttled;
699 int throttle_count;
700 struct list_head throttled_list;
701 #ifdef CONFIG_SCHED_WALT
702 u64 cumulative_runnable_avg;
703 #endif
704 #endif /* CONFIG_CFS_BANDWIDTH */
705 #endif /* CONFIG_FAIR_GROUP_SCHED */
706 };
707
rt_bandwidth_enabled(void)708 static inline int rt_bandwidth_enabled(void)
709 {
710 return sysctl_sched_rt_runtime >= 0;
711 }
712
713 /* RT IPI pull logic requires IRQ_WORK */
714 #if defined(CONFIG_IRQ_WORK) && defined(CONFIG_SMP)
715 # define HAVE_RT_PUSH_IPI
716 #endif
717
718 /* Real-Time classes' related field in a runqueue: */
719 struct rt_rq {
720 struct rt_prio_array active;
721 unsigned int rt_nr_running;
722 unsigned int rr_nr_running;
723 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
724 struct {
725 int curr; /* highest queued rt task prio */
726 #ifdef CONFIG_SMP
727 int next; /* next highest */
728 #endif
729 } highest_prio;
730 #endif
731 #ifdef CONFIG_SMP
732 unsigned long rt_nr_migratory;
733 unsigned long rt_nr_total;
734 int overloaded;
735 struct plist_head pushable_tasks;
736
737 #endif /* CONFIG_SMP */
738 int rt_queued;
739
740 int rt_throttled;
741 u64 rt_time;
742 u64 rt_runtime;
743 /* Nests inside the rq lock: */
744 raw_spinlock_t rt_runtime_lock;
745
746 #ifdef CONFIG_RT_GROUP_SCHED
747 unsigned long rt_nr_boosted;
748
749 struct rq *rq;
750 struct task_group *tg;
751 #endif
752 };
753
rt_rq_is_runnable(struct rt_rq * rt_rq)754 static inline bool rt_rq_is_runnable(struct rt_rq *rt_rq)
755 {
756 return rt_rq->rt_queued && rt_rq->rt_nr_running;
757 }
758
759 /* Deadline class' related fields in a runqueue */
760 struct dl_rq {
761 /* runqueue is an rbtree, ordered by deadline */
762 struct rb_root_cached root;
763
764 unsigned long dl_nr_running;
765
766 #ifdef CONFIG_SMP
767 /*
768 * Deadline values of the currently executing and the
769 * earliest ready task on this rq. Caching these facilitates
770 * the decision whether or not a ready but not running task
771 * should migrate somewhere else.
772 */
773 struct {
774 u64 curr;
775 u64 next;
776 } earliest_dl;
777
778 unsigned long dl_nr_migratory;
779 int overloaded;
780
781 /*
782 * Tasks on this rq that can be pushed away. They are kept in
783 * an rb-tree, ordered by tasks' deadlines, with caching
784 * of the leftmost (earliest deadline) element.
785 */
786 struct rb_root_cached pushable_dl_tasks_root;
787 #else
788 struct dl_bw dl_bw;
789 #endif
790 /*
791 * "Active utilization" for this runqueue: increased when a
792 * task wakes up (becomes TASK_RUNNING) and decreased when a
793 * task blocks
794 */
795 u64 running_bw;
796
797 /*
798 * Utilization of the tasks "assigned" to this runqueue (including
799 * the tasks that are in runqueue and the tasks that executed on this
800 * CPU and blocked). Increased when a task moves to this runqueue, and
801 * decreased when the task moves away (migrates, changes scheduling
802 * policy, or terminates).
803 * This is needed to compute the "inactive utilization" for the
804 * runqueue (inactive utilization = this_bw - running_bw).
805 */
806 u64 this_bw;
807 u64 extra_bw;
808
809 /*
810 * Inverse of the fraction of CPU utilization that can be reclaimed
811 * by the GRUB algorithm.
812 */
813 u64 bw_ratio;
814 };
815
816 #ifdef CONFIG_FAIR_GROUP_SCHED
817 /* An entity is a task if it doesn't "own" a runqueue */
818 #define entity_is_task(se) (!se->my_q)
819
se_update_runnable(struct sched_entity * se)820 static inline void se_update_runnable(struct sched_entity *se)
821 {
822 if (!entity_is_task(se))
823 se->runnable_weight = se->my_q->h_nr_running;
824 }
825
se_runnable(struct sched_entity * se)826 static inline long se_runnable(struct sched_entity *se)
827 {
828 if (entity_is_task(se))
829 return !!se->on_rq;
830 else
831 return se->runnable_weight;
832 }
833
834 #else
835 #define entity_is_task(se) 1
836
se_update_runnable(struct sched_entity * se)837 static inline void se_update_runnable(struct sched_entity *se) {}
838
se_runnable(struct sched_entity * se)839 static inline long se_runnable(struct sched_entity *se)
840 {
841 return !!se->on_rq;
842 }
843 #endif
844
845 #ifdef CONFIG_SMP
846 /*
847 * XXX we want to get rid of these helpers and use the full load resolution.
848 */
se_weight(struct sched_entity * se)849 static inline long se_weight(struct sched_entity *se)
850 {
851 return scale_load_down(se->load.weight);
852 }
853
854
sched_asym_prefer(int a,int b)855 static inline bool sched_asym_prefer(int a, int b)
856 {
857 return arch_asym_cpu_priority(a) > arch_asym_cpu_priority(b);
858 }
859
860 struct perf_domain {
861 struct em_perf_domain *em_pd;
862 struct perf_domain *next;
863 struct rcu_head rcu;
864 };
865
866 /* Scheduling group status flags */
867 #define SG_OVERLOAD 0x1 /* More than one runnable task on a CPU. */
868 #define SG_OVERUTILIZED 0x2 /* One or more CPUs are over-utilized. */
869
870 /*
871 * We add the notion of a root-domain which will be used to define per-domain
872 * variables. Each exclusive cpuset essentially defines an island domain by
873 * fully partitioning the member CPUs from any other cpuset. Whenever a new
874 * exclusive cpuset is created, we also create and attach a new root-domain
875 * object.
876 *
877 */
878 struct root_domain {
879 atomic_t refcount;
880 atomic_t rto_count;
881 struct rcu_head rcu;
882 cpumask_var_t span;
883 cpumask_var_t online;
884
885 /*
886 * Indicate pullable load on at least one CPU, e.g:
887 * - More than one runnable task
888 * - Running task is misfit
889 */
890 int overload;
891
892 /* Indicate one or more cpus over-utilized (tipping point) */
893 int overutilized;
894
895 /*
896 * The bit corresponding to a CPU gets set here if such CPU has more
897 * than one runnable -deadline task (as it is below for RT tasks).
898 */
899 cpumask_var_t dlo_mask;
900 atomic_t dlo_count;
901 struct dl_bw dl_bw;
902 struct cpudl cpudl;
903
904 #ifdef HAVE_RT_PUSH_IPI
905 /*
906 * For IPI pull requests, loop across the rto_mask.
907 */
908 struct irq_work rto_push_work;
909 raw_spinlock_t rto_lock;
910 /* These are only updated and read within rto_lock */
911 int rto_loop;
912 int rto_cpu;
913 /* These atomics are updated outside of a lock */
914 atomic_t rto_loop_next;
915 atomic_t rto_loop_start;
916 #endif
917 /*
918 * The "RT overload" flag: it gets set if a CPU has more than
919 * one runnable RT task.
920 */
921 cpumask_var_t rto_mask;
922 struct cpupri cpupri;
923
924 unsigned long max_cpu_capacity;
925
926 /*
927 * NULL-terminated list of performance domains intersecting with the
928 * CPUs of the rd. Protected by RCU.
929 */
930 struct perf_domain __rcu *pd;
931 #ifdef CONFIG_SCHED_RT_CAS
932 int max_cap_orig_cpu;
933 #endif
934 };
935
936 extern void init_defrootdomain(void);
937 extern int sched_init_domains(const struct cpumask *cpu_map);
938 extern void rq_attach_root(struct rq *rq, struct root_domain *rd);
939 extern void sched_get_rd(struct root_domain *rd);
940 extern void sched_put_rd(struct root_domain *rd);
941
942 #ifdef HAVE_RT_PUSH_IPI
943 extern void rto_push_irq_work_func(struct irq_work *work);
944 #endif
945 #endif /* CONFIG_SMP */
946
947 #ifdef CONFIG_UCLAMP_TASK
948 /*
949 * struct uclamp_bucket - Utilization clamp bucket
950 * @value: utilization clamp value for tasks on this clamp bucket
951 * @tasks: number of RUNNABLE tasks on this clamp bucket
952 *
953 * Keep track of how many tasks are RUNNABLE for a given utilization
954 * clamp value.
955 */
956 struct uclamp_bucket {
957 unsigned long value : bits_per(SCHED_CAPACITY_SCALE);
958 unsigned long tasks : BITS_PER_LONG - bits_per(SCHED_CAPACITY_SCALE);
959 };
960
961 /*
962 * struct uclamp_rq - rq's utilization clamp
963 * @value: currently active clamp values for a rq
964 * @bucket: utilization clamp buckets affecting a rq
965 *
966 * Keep track of RUNNABLE tasks on a rq to aggregate their clamp values.
967 * A clamp value is affecting a rq when there is at least one task RUNNABLE
968 * (or actually running) with that value.
969 *
970 * There are up to UCLAMP_CNT possible different clamp values, currently there
971 * are only two: minimum utilization and maximum utilization.
972 *
973 * All utilization clamping values are MAX aggregated, since:
974 * - for util_min: we want to run the CPU at least at the max of the minimum
975 * utilization required by its currently RUNNABLE tasks.
976 * - for util_max: we want to allow the CPU to run up to the max of the
977 * maximum utilization allowed by its currently RUNNABLE tasks.
978 *
979 * Since on each system we expect only a limited number of different
980 * utilization clamp values (UCLAMP_BUCKETS), use a simple array to track
981 * the metrics required to compute all the per-rq utilization clamp values.
982 */
983 struct uclamp_rq {
984 unsigned int value;
985 struct uclamp_bucket bucket[UCLAMP_BUCKETS];
986 };
987
988 DECLARE_STATIC_KEY_FALSE(sched_uclamp_used);
989 #endif /* CONFIG_UCLAMP_TASK */
990
991 /*
992 * This is the main, per-CPU runqueue data structure.
993 *
994 * Locking rule: those places that want to lock multiple runqueues
995 * (such as the load balancing or the thread migration code), lock
996 * acquire operations must be ordered by ascending &runqueue.
997 */
998 struct rq {
999 /* runqueue lock: */
1000 raw_spinlock_t lock;
1001
1002 /*
1003 * nr_running and cpu_load should be in the same cacheline because
1004 * remote CPUs use both these fields when doing load calculation.
1005 */
1006 unsigned int nr_running;
1007 #ifdef CONFIG_NUMA_BALANCING
1008 unsigned int nr_numa_running;
1009 unsigned int nr_preferred_running;
1010 unsigned int numa_migrate_on;
1011 #endif
1012 #ifdef CONFIG_NO_HZ_COMMON
1013 #ifdef CONFIG_SMP
1014 unsigned long last_blocked_load_update_tick;
1015 unsigned int has_blocked_load;
1016 call_single_data_t nohz_csd;
1017 #endif /* CONFIG_SMP */
1018 unsigned int nohz_tick_stopped;
1019 atomic_t nohz_flags;
1020 #endif /* CONFIG_NO_HZ_COMMON */
1021
1022 #ifdef CONFIG_SMP
1023 unsigned int ttwu_pending;
1024 #endif
1025 u64 nr_switches;
1026
1027 #ifdef CONFIG_UCLAMP_TASK
1028 /* Utilization clamp values based on CPU's RUNNABLE tasks */
1029 struct uclamp_rq uclamp[UCLAMP_CNT] ____cacheline_aligned;
1030 unsigned int uclamp_flags;
1031 #define UCLAMP_FLAG_IDLE 0x01
1032 #endif
1033
1034 struct cfs_rq cfs;
1035 struct rt_rq rt;
1036 struct dl_rq dl;
1037
1038 #ifdef CONFIG_FAIR_GROUP_SCHED
1039 /* list of leaf cfs_rq on this CPU: */
1040 struct list_head leaf_cfs_rq_list;
1041 struct list_head *tmp_alone_branch;
1042 #endif /* CONFIG_FAIR_GROUP_SCHED */
1043
1044 /*
1045 * This is part of a global counter where only the total sum
1046 * over all CPUs matters. A task can increase this counter on
1047 * one CPU and if it got migrated afterwards it may decrease
1048 * it on another CPU. Always updated under the runqueue lock:
1049 */
1050 unsigned long nr_uninterruptible;
1051
1052 struct task_struct __rcu *curr;
1053 struct task_struct *idle;
1054 struct task_struct *stop;
1055 unsigned long next_balance;
1056 struct mm_struct *prev_mm;
1057
1058 unsigned int clock_update_flags;
1059 u64 clock;
1060 /* Ensure that all clocks are in the same cache line */
1061 u64 clock_task ____cacheline_aligned;
1062 u64 clock_pelt;
1063 unsigned long lost_idle_time;
1064
1065 atomic_t nr_iowait;
1066
1067 #ifdef CONFIG_MEMBARRIER
1068 int membarrier_state;
1069 #endif
1070
1071 #ifdef CONFIG_SMP
1072 struct root_domain *rd;
1073 struct sched_domain __rcu *sd;
1074
1075 unsigned long cpu_capacity;
1076 unsigned long cpu_capacity_orig;
1077
1078 struct callback_head *balance_callback;
1079
1080 unsigned char nohz_idle_balance;
1081 unsigned char idle_balance;
1082
1083 unsigned long misfit_task_load;
1084
1085 /* For active balancing */
1086 int active_balance;
1087 int push_cpu;
1088 #ifdef CONFIG_SCHED_EAS
1089 struct task_struct *push_task;
1090 #endif
1091 struct cpu_stop_work active_balance_work;
1092
1093 /* For rt active balancing */
1094 #ifdef CONFIG_SCHED_RT_ACTIVE_LB
1095 int rt_active_balance;
1096 struct task_struct *rt_push_task;
1097 struct cpu_stop_work rt_active_balance_work;
1098 #endif
1099
1100 /* CPU of this runqueue: */
1101 int cpu;
1102 int online;
1103
1104 struct list_head cfs_tasks;
1105
1106 struct sched_avg avg_rt;
1107 struct sched_avg avg_dl;
1108 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
1109 struct sched_avg avg_irq;
1110 #endif
1111 #ifdef CONFIG_SCHED_THERMAL_PRESSURE
1112 struct sched_avg avg_thermal;
1113 #endif
1114 u64 idle_stamp;
1115 u64 avg_idle;
1116
1117 /* This is used to determine avg_idle's max value */
1118 u64 max_idle_balance_cost;
1119 #endif /* CONFIG_SMP */
1120
1121 #ifdef CONFIG_SCHED_WALT
1122 struct sched_cluster *cluster;
1123 struct cpumask freq_domain_cpumask;
1124 struct walt_sched_stats walt_stats;
1125
1126 u64 window_start;
1127 unsigned long walt_flags;
1128
1129 u64 cur_irqload;
1130 u64 avg_irqload;
1131 u64 irqload_ts;
1132 u64 curr_runnable_sum;
1133 u64 prev_runnable_sum;
1134 u64 nt_curr_runnable_sum;
1135 u64 nt_prev_runnable_sum;
1136 u64 cum_window_demand_scaled;
1137 struct load_subtractions load_subs[NUM_TRACKED_WINDOWS];
1138 #ifdef CONFIG_SCHED_RTG
1139 struct group_cpu_time grp_time;
1140 #endif
1141 #endif /* CONFIG_SCHED_WALT */
1142
1143 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
1144 u64 prev_irq_time;
1145 #endif
1146 #ifdef CONFIG_PARAVIRT
1147 u64 prev_steal_time;
1148 #endif
1149 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
1150 u64 prev_steal_time_rq;
1151 #endif
1152
1153 /* calc_load related fields */
1154 unsigned long calc_load_update;
1155 long calc_load_active;
1156
1157 #ifdef CONFIG_SCHED_HRTICK
1158 #ifdef CONFIG_SMP
1159 call_single_data_t hrtick_csd;
1160 #endif
1161 struct hrtimer hrtick_timer;
1162 ktime_t hrtick_time;
1163 #endif
1164
1165 #ifdef CONFIG_SCHEDSTATS
1166 /* latency stats */
1167 struct sched_info rq_sched_info;
1168 unsigned long long rq_cpu_time;
1169 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
1170
1171 /* sys_sched_yield() stats */
1172 unsigned int yld_count;
1173
1174 /* schedule() stats */
1175 unsigned int sched_count;
1176 unsigned int sched_goidle;
1177
1178 /* try_to_wake_up() stats */
1179 unsigned int ttwu_count;
1180 unsigned int ttwu_local;
1181 #endif
1182
1183 #ifdef CONFIG_CPU_IDLE
1184 /* Must be inspected within a rcu lock section */
1185 struct cpuidle_state *idle_state;
1186 #endif
1187 };
1188
1189 #ifdef CONFIG_FAIR_GROUP_SCHED
1190
1191 /* CPU runqueue to which this cfs_rq is attached */
rq_of(struct cfs_rq * cfs_rq)1192 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
1193 {
1194 return cfs_rq->rq;
1195 }
1196
1197 #else
1198
rq_of(struct cfs_rq * cfs_rq)1199 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
1200 {
1201 return container_of(cfs_rq, struct rq, cfs);
1202 }
1203 #endif
1204
cpu_of(struct rq * rq)1205 static inline int cpu_of(struct rq *rq)
1206 {
1207 #ifdef CONFIG_SMP
1208 return rq->cpu;
1209 #else
1210 return 0;
1211 #endif
1212 }
1213
1214
1215 #ifdef CONFIG_SCHED_SMT
1216 extern void __update_idle_core(struct rq *rq);
1217
update_idle_core(struct rq * rq)1218 static inline void update_idle_core(struct rq *rq)
1219 {
1220 if (static_branch_unlikely(&sched_smt_present))
1221 __update_idle_core(rq);
1222 }
1223
1224 #else
update_idle_core(struct rq * rq)1225 static inline void update_idle_core(struct rq *rq) { }
1226 #endif
1227
1228 DECLARE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
1229
1230 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
1231 #define this_rq() this_cpu_ptr(&runqueues)
1232 #define task_rq(p) cpu_rq(task_cpu(p))
1233 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
1234 #define raw_rq() raw_cpu_ptr(&runqueues)
1235
1236 extern void update_rq_clock(struct rq *rq);
1237
__rq_clock_broken(struct rq * rq)1238 static inline u64 __rq_clock_broken(struct rq *rq)
1239 {
1240 return READ_ONCE(rq->clock);
1241 }
1242
1243 /*
1244 * rq::clock_update_flags bits
1245 *
1246 * %RQCF_REQ_SKIP - will request skipping of clock update on the next
1247 * call to __schedule(). This is an optimisation to avoid
1248 * neighbouring rq clock updates.
1249 *
1250 * %RQCF_ACT_SKIP - is set from inside of __schedule() when skipping is
1251 * in effect and calls to update_rq_clock() are being ignored.
1252 *
1253 * %RQCF_UPDATED - is a debug flag that indicates whether a call has been
1254 * made to update_rq_clock() since the last time rq::lock was pinned.
1255 *
1256 * If inside of __schedule(), clock_update_flags will have been
1257 * shifted left (a left shift is a cheap operation for the fast path
1258 * to promote %RQCF_REQ_SKIP to %RQCF_ACT_SKIP), so you must use,
1259 *
1260 * if (rq-clock_update_flags >= RQCF_UPDATED)
1261 *
1262 * to check if %RQCF_UPADTED is set. It'll never be shifted more than
1263 * one position though, because the next rq_unpin_lock() will shift it
1264 * back.
1265 */
1266 #define RQCF_REQ_SKIP 0x01
1267 #define RQCF_ACT_SKIP 0x02
1268 #define RQCF_UPDATED 0x04
1269
assert_clock_updated(struct rq * rq)1270 static inline void assert_clock_updated(struct rq *rq)
1271 {
1272 /*
1273 * The only reason for not seeing a clock update since the
1274 * last rq_pin_lock() is if we're currently skipping updates.
1275 */
1276 SCHED_WARN_ON(rq->clock_update_flags < RQCF_ACT_SKIP);
1277 }
1278
rq_clock(struct rq * rq)1279 static inline u64 rq_clock(struct rq *rq)
1280 {
1281 lockdep_assert_held(&rq->lock);
1282 assert_clock_updated(rq);
1283
1284 return rq->clock;
1285 }
1286
rq_clock_task(struct rq * rq)1287 static inline u64 rq_clock_task(struct rq *rq)
1288 {
1289 lockdep_assert_held(&rq->lock);
1290 assert_clock_updated(rq);
1291
1292 return rq->clock_task;
1293 }
1294
1295 /**
1296 * By default the decay is the default pelt decay period.
1297 * The decay shift can change the decay period in
1298 * multiples of 32.
1299 * Decay shift Decay period(ms)
1300 * 0 32
1301 * 1 64
1302 * 2 128
1303 * 3 256
1304 * 4 512
1305 */
1306 extern int sched_thermal_decay_shift;
1307
rq_clock_thermal(struct rq * rq)1308 static inline u64 rq_clock_thermal(struct rq *rq)
1309 {
1310 return rq_clock_task(rq) >> sched_thermal_decay_shift;
1311 }
1312
rq_clock_skip_update(struct rq * rq)1313 static inline void rq_clock_skip_update(struct rq *rq)
1314 {
1315 lockdep_assert_held(&rq->lock);
1316 rq->clock_update_flags |= RQCF_REQ_SKIP;
1317 }
1318
1319 /*
1320 * See rt task throttling, which is the only time a skip
1321 * request is cancelled.
1322 */
rq_clock_cancel_skipupdate(struct rq * rq)1323 static inline void rq_clock_cancel_skipupdate(struct rq *rq)
1324 {
1325 lockdep_assert_held(&rq->lock);
1326 rq->clock_update_flags &= ~RQCF_REQ_SKIP;
1327 }
1328
1329 struct rq_flags {
1330 unsigned long flags;
1331 struct pin_cookie cookie;
1332 #ifdef CONFIG_SCHED_DEBUG
1333 /*
1334 * A copy of (rq::clock_update_flags & RQCF_UPDATED) for the
1335 * current pin context is stashed here in case it needs to be
1336 * restored in rq_repin_lock().
1337 */
1338 unsigned int clock_update_flags;
1339 #endif
1340 };
1341
1342 /*
1343 * Lockdep annotation that avoids accidental unlocks; it's like a
1344 * sticky/continuous lockdep_assert_held().
1345 *
1346 * This avoids code that has access to 'struct rq *rq' (basically everything in
1347 * the scheduler) from accidentally unlocking the rq if they do not also have a
1348 * copy of the (on-stack) 'struct rq_flags rf'.
1349 *
1350 * Also see Documentation/locking/lockdep-design.rst.
1351 */
rq_pin_lock(struct rq * rq,struct rq_flags * rf)1352 static inline void rq_pin_lock(struct rq *rq, struct rq_flags *rf)
1353 {
1354 rf->cookie = lockdep_pin_lock(&rq->lock);
1355
1356 #ifdef CONFIG_SCHED_DEBUG
1357 rq->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP);
1358 rf->clock_update_flags = 0;
1359 #endif
1360 }
1361
rq_unpin_lock(struct rq * rq,struct rq_flags * rf)1362 static inline void rq_unpin_lock(struct rq *rq, struct rq_flags *rf)
1363 {
1364 #ifdef CONFIG_SCHED_DEBUG
1365 if (rq->clock_update_flags > RQCF_ACT_SKIP)
1366 rf->clock_update_flags = RQCF_UPDATED;
1367 #endif
1368
1369 lockdep_unpin_lock(&rq->lock, rf->cookie);
1370 }
1371
rq_repin_lock(struct rq * rq,struct rq_flags * rf)1372 static inline void rq_repin_lock(struct rq *rq, struct rq_flags *rf)
1373 {
1374 lockdep_repin_lock(&rq->lock, rf->cookie);
1375
1376 #ifdef CONFIG_SCHED_DEBUG
1377 /*
1378 * Restore the value we stashed in @rf for this pin context.
1379 */
1380 rq->clock_update_flags |= rf->clock_update_flags;
1381 #endif
1382 }
1383
1384 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
1385 __acquires(rq->lock);
1386
1387 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
1388 __acquires(p->pi_lock)
1389 __acquires(rq->lock);
1390
__task_rq_unlock(struct rq * rq,struct rq_flags * rf)1391 static inline void __task_rq_unlock(struct rq *rq, struct rq_flags *rf)
1392 __releases(rq->lock)
1393 {
1394 rq_unpin_lock(rq, rf);
1395 raw_spin_unlock(&rq->lock);
1396 }
1397
1398 static inline void
task_rq_unlock(struct rq * rq,struct task_struct * p,struct rq_flags * rf)1399 task_rq_unlock(struct rq *rq, struct task_struct *p, struct rq_flags *rf)
1400 __releases(rq->lock)
1401 __releases(p->pi_lock)
1402 {
1403 rq_unpin_lock(rq, rf);
1404 raw_spin_unlock(&rq->lock);
1405 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
1406 }
1407
1408 static inline void
rq_lock_irqsave(struct rq * rq,struct rq_flags * rf)1409 rq_lock_irqsave(struct rq *rq, struct rq_flags *rf)
1410 __acquires(rq->lock)
1411 {
1412 raw_spin_lock_irqsave(&rq->lock, rf->flags);
1413 rq_pin_lock(rq, rf);
1414 }
1415
1416 static inline void
rq_lock_irq(struct rq * rq,struct rq_flags * rf)1417 rq_lock_irq(struct rq *rq, struct rq_flags *rf)
1418 __acquires(rq->lock)
1419 {
1420 raw_spin_lock_irq(&rq->lock);
1421 rq_pin_lock(rq, rf);
1422 }
1423
1424 static inline void
rq_lock(struct rq * rq,struct rq_flags * rf)1425 rq_lock(struct rq *rq, struct rq_flags *rf)
1426 __acquires(rq->lock)
1427 {
1428 raw_spin_lock(&rq->lock);
1429 rq_pin_lock(rq, rf);
1430 }
1431
1432 static inline void
rq_relock(struct rq * rq,struct rq_flags * rf)1433 rq_relock(struct rq *rq, struct rq_flags *rf)
1434 __acquires(rq->lock)
1435 {
1436 raw_spin_lock(&rq->lock);
1437 rq_repin_lock(rq, rf);
1438 }
1439
1440 static inline void
rq_unlock_irqrestore(struct rq * rq,struct rq_flags * rf)1441 rq_unlock_irqrestore(struct rq *rq, struct rq_flags *rf)
1442 __releases(rq->lock)
1443 {
1444 rq_unpin_lock(rq, rf);
1445 raw_spin_unlock_irqrestore(&rq->lock, rf->flags);
1446 }
1447
1448 static inline void
rq_unlock_irq(struct rq * rq,struct rq_flags * rf)1449 rq_unlock_irq(struct rq *rq, struct rq_flags *rf)
1450 __releases(rq->lock)
1451 {
1452 rq_unpin_lock(rq, rf);
1453 raw_spin_unlock_irq(&rq->lock);
1454 }
1455
1456 static inline void
rq_unlock(struct rq * rq,struct rq_flags * rf)1457 rq_unlock(struct rq *rq, struct rq_flags *rf)
1458 __releases(rq->lock)
1459 {
1460 rq_unpin_lock(rq, rf);
1461 raw_spin_unlock(&rq->lock);
1462 }
1463
1464 static inline struct rq *
this_rq_lock_irq(struct rq_flags * rf)1465 this_rq_lock_irq(struct rq_flags *rf)
1466 __acquires(rq->lock)
1467 {
1468 struct rq *rq;
1469
1470 local_irq_disable();
1471 rq = this_rq();
1472 rq_lock(rq, rf);
1473 return rq;
1474 }
1475
1476 #ifdef CONFIG_NUMA
1477 enum numa_topology_type {
1478 NUMA_DIRECT,
1479 NUMA_GLUELESS_MESH,
1480 NUMA_BACKPLANE,
1481 };
1482 extern enum numa_topology_type sched_numa_topology_type;
1483 extern int sched_max_numa_distance;
1484 extern bool find_numa_distance(int distance);
1485 extern void sched_init_numa(void);
1486 extern void sched_domains_numa_masks_set(unsigned int cpu);
1487 extern void sched_domains_numa_masks_clear(unsigned int cpu);
1488 extern int sched_numa_find_closest(const struct cpumask *cpus, int cpu);
1489 #else
sched_init_numa(void)1490 static inline void sched_init_numa(void) { }
sched_domains_numa_masks_set(unsigned int cpu)1491 static inline void sched_domains_numa_masks_set(unsigned int cpu) { }
sched_domains_numa_masks_clear(unsigned int cpu)1492 static inline void sched_domains_numa_masks_clear(unsigned int cpu) { }
sched_numa_find_closest(const struct cpumask * cpus,int cpu)1493 static inline int sched_numa_find_closest(const struct cpumask *cpus, int cpu)
1494 {
1495 return nr_cpu_ids;
1496 }
1497 #endif
1498
1499 #ifdef CONFIG_NUMA_BALANCING
1500 /* The regions in numa_faults array from task_struct */
1501 enum numa_faults_stats {
1502 NUMA_MEM = 0,
1503 NUMA_CPU,
1504 NUMA_MEMBUF,
1505 NUMA_CPUBUF
1506 };
1507 extern void sched_setnuma(struct task_struct *p, int node);
1508 extern int migrate_task_to(struct task_struct *p, int cpu);
1509 extern int migrate_swap(struct task_struct *p, struct task_struct *t,
1510 int cpu, int scpu);
1511 extern void init_numa_balancing(unsigned long clone_flags, struct task_struct *p);
1512 #else
1513 static inline void
init_numa_balancing(unsigned long clone_flags,struct task_struct * p)1514 init_numa_balancing(unsigned long clone_flags, struct task_struct *p)
1515 {
1516 }
1517 #endif /* CONFIG_NUMA_BALANCING */
1518
1519 #ifdef CONFIG_SMP
1520
1521 static inline void
queue_balance_callback(struct rq * rq,struct callback_head * head,void (* func)(struct rq * rq))1522 queue_balance_callback(struct rq *rq,
1523 struct callback_head *head,
1524 void (*func)(struct rq *rq))
1525 {
1526 lockdep_assert_held(&rq->lock);
1527
1528 if (unlikely(head->next))
1529 return;
1530
1531 head->func = (void (*)(struct callback_head *))func;
1532 head->next = rq->balance_callback;
1533 rq->balance_callback = head;
1534 }
1535
1536 #define rcu_dereference_check_sched_domain(p) \
1537 rcu_dereference_check((p), \
1538 lockdep_is_held(&sched_domains_mutex))
1539
1540 /*
1541 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1542 * See destroy_sched_domains: call_rcu for details.
1543 *
1544 * The domain tree of any CPU may only be accessed from within
1545 * preempt-disabled sections.
1546 */
1547 #define for_each_domain(cpu, __sd) \
1548 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \
1549 __sd; __sd = __sd->parent)
1550
1551 /**
1552 * highest_flag_domain - Return highest sched_domain containing flag.
1553 * @cpu: The CPU whose highest level of sched domain is to
1554 * be returned.
1555 * @flag: The flag to check for the highest sched_domain
1556 * for the given CPU.
1557 *
1558 * Returns the highest sched_domain of a CPU which contains the given flag.
1559 */
highest_flag_domain(int cpu,int flag)1560 static inline struct sched_domain *highest_flag_domain(int cpu, int flag)
1561 {
1562 struct sched_domain *sd, *hsd = NULL;
1563
1564 for_each_domain(cpu, sd) {
1565 if (!(sd->flags & flag))
1566 break;
1567 hsd = sd;
1568 }
1569
1570 return hsd;
1571 }
1572
lowest_flag_domain(int cpu,int flag)1573 static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
1574 {
1575 struct sched_domain *sd;
1576
1577 for_each_domain(cpu, sd) {
1578 if (sd->flags & flag)
1579 break;
1580 }
1581
1582 return sd;
1583 }
1584
1585 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_llc);
1586 DECLARE_PER_CPU(int, sd_llc_size);
1587 DECLARE_PER_CPU(int, sd_llc_id);
1588 DECLARE_PER_CPU(struct sched_domain_shared __rcu *, sd_llc_shared);
1589 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_numa);
1590 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_asym_packing);
1591 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_asym_cpucapacity);
1592 extern struct static_key_false sched_asym_cpucapacity;
1593
1594 struct sched_group_capacity {
1595 atomic_t ref;
1596 /*
1597 * CPU capacity of this group, SCHED_CAPACITY_SCALE being max capacity
1598 * for a single CPU.
1599 */
1600 unsigned long capacity;
1601 unsigned long min_capacity; /* Min per-CPU capacity in group */
1602 unsigned long max_capacity; /* Max per-CPU capacity in group */
1603 unsigned long next_update;
1604 int imbalance; /* XXX unrelated to capacity but shared group state */
1605
1606 #ifdef CONFIG_SCHED_DEBUG
1607 int id;
1608 #endif
1609
1610 unsigned long cpumask[]; /* Balance mask */
1611 };
1612
1613 struct sched_group {
1614 struct sched_group *next; /* Must be a circular list */
1615 atomic_t ref;
1616
1617 unsigned int group_weight;
1618 struct sched_group_capacity *sgc;
1619 int asym_prefer_cpu; /* CPU of highest priority in group */
1620
1621 /*
1622 * The CPUs this group covers.
1623 *
1624 * NOTE: this field is variable length. (Allocated dynamically
1625 * by attaching extra space to the end of the structure,
1626 * depending on how many CPUs the kernel has booted up with)
1627 */
1628 unsigned long cpumask[];
1629 };
1630
sched_group_span(struct sched_group * sg)1631 static inline struct cpumask *sched_group_span(struct sched_group *sg)
1632 {
1633 return to_cpumask(sg->cpumask);
1634 }
1635
1636 /*
1637 * See build_balance_mask().
1638 */
group_balance_mask(struct sched_group * sg)1639 static inline struct cpumask *group_balance_mask(struct sched_group *sg)
1640 {
1641 return to_cpumask(sg->sgc->cpumask);
1642 }
1643
1644 /**
1645 * group_first_cpu - Returns the first CPU in the cpumask of a sched_group.
1646 * @group: The group whose first CPU is to be returned.
1647 */
group_first_cpu(struct sched_group * group)1648 static inline unsigned int group_first_cpu(struct sched_group *group)
1649 {
1650 return cpumask_first(sched_group_span(group));
1651 }
1652
1653 extern int group_balance_cpu(struct sched_group *sg);
1654
1655 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
1656 void register_sched_domain_sysctl(void);
1657 void dirty_sched_domain_sysctl(int cpu);
1658 void unregister_sched_domain_sysctl(void);
1659 #else
register_sched_domain_sysctl(void)1660 static inline void register_sched_domain_sysctl(void)
1661 {
1662 }
dirty_sched_domain_sysctl(int cpu)1663 static inline void dirty_sched_domain_sysctl(int cpu)
1664 {
1665 }
unregister_sched_domain_sysctl(void)1666 static inline void unregister_sched_domain_sysctl(void)
1667 {
1668 }
1669 #endif
1670
1671 extern void flush_smp_call_function_from_idle(void);
1672
1673 #else /* !CONFIG_SMP: */
flush_smp_call_function_from_idle(void)1674 static inline void flush_smp_call_function_from_idle(void) { }
1675 #endif
1676
1677 #include "stats.h"
1678 #include "autogroup.h"
1679
1680 #ifdef CONFIG_CGROUP_SCHED
1681
1682 /*
1683 * Return the group to which this tasks belongs.
1684 *
1685 * We cannot use task_css() and friends because the cgroup subsystem
1686 * changes that value before the cgroup_subsys::attach() method is called,
1687 * therefore we cannot pin it and might observe the wrong value.
1688 *
1689 * The same is true for autogroup's p->signal->autogroup->tg, the autogroup
1690 * core changes this before calling sched_move_task().
1691 *
1692 * Instead we use a 'copy' which is updated from sched_move_task() while
1693 * holding both task_struct::pi_lock and rq::lock.
1694 */
task_group(struct task_struct * p)1695 static inline struct task_group *task_group(struct task_struct *p)
1696 {
1697 return p->sched_task_group;
1698 }
1699
1700 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
set_task_rq(struct task_struct * p,unsigned int cpu)1701 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
1702 {
1703 #if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED)
1704 struct task_group *tg = task_group(p);
1705 #endif
1706
1707 #ifdef CONFIG_FAIR_GROUP_SCHED
1708 set_task_rq_fair(&p->se, p->se.cfs_rq, tg->cfs_rq[cpu]);
1709 p->se.cfs_rq = tg->cfs_rq[cpu];
1710 p->se.parent = tg->se[cpu];
1711 #endif
1712
1713 #ifdef CONFIG_RT_GROUP_SCHED
1714 p->rt.rt_rq = tg->rt_rq[cpu];
1715 p->rt.parent = tg->rt_se[cpu];
1716 #endif
1717 }
1718
1719 #else /* CONFIG_CGROUP_SCHED */
1720
set_task_rq(struct task_struct * p,unsigned int cpu)1721 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
task_group(struct task_struct * p)1722 static inline struct task_group *task_group(struct task_struct *p)
1723 {
1724 return NULL;
1725 }
1726
1727 #endif /* CONFIG_CGROUP_SCHED */
1728
__set_task_cpu(struct task_struct * p,unsigned int cpu)1729 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1730 {
1731 set_task_rq(p, cpu);
1732 #ifdef CONFIG_SMP
1733 /*
1734 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1735 * successfully executed on another CPU. We must ensure that updates of
1736 * per-task data have been completed by this moment.
1737 */
1738 smp_wmb();
1739 #ifdef CONFIG_THREAD_INFO_IN_TASK
1740 WRITE_ONCE(p->cpu, cpu);
1741 #else
1742 WRITE_ONCE(task_thread_info(p)->cpu, cpu);
1743 #endif
1744 p->wake_cpu = cpu;
1745 #endif
1746 }
1747
1748 /*
1749 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
1750 */
1751 #ifdef CONFIG_SCHED_DEBUG
1752 # include <linux/static_key.h>
1753 # define const_debug __read_mostly
1754 #else
1755 # define const_debug const
1756 #endif
1757
1758 #define SCHED_FEAT(name, enabled) \
1759 __SCHED_FEAT_##name ,
1760
1761 enum {
1762 #include "features.h"
1763 __SCHED_FEAT_NR,
1764 };
1765
1766 #undef SCHED_FEAT
1767
1768 #ifdef CONFIG_SCHED_DEBUG
1769
1770 /*
1771 * To support run-time toggling of sched features, all the translation units
1772 * (but core.c) reference the sysctl_sched_features defined in core.c.
1773 */
1774 extern const_debug unsigned int sysctl_sched_features;
1775
1776 #ifdef CONFIG_JUMP_LABEL
1777 #define SCHED_FEAT(name, enabled) \
1778 static __always_inline bool static_branch_##name(struct static_key *key) \
1779 { \
1780 return static_key_##enabled(key); \
1781 }
1782
1783 #include "features.h"
1784 #undef SCHED_FEAT
1785
1786 extern struct static_key sched_feat_keys[__SCHED_FEAT_NR];
1787 #define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x]))
1788
1789 #else /* !CONFIG_JUMP_LABEL */
1790
1791 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
1792
1793 #endif /* CONFIG_JUMP_LABEL */
1794
1795 #else /* !SCHED_DEBUG */
1796
1797 /*
1798 * Each translation unit has its own copy of sysctl_sched_features to allow
1799 * constants propagation at compile time and compiler optimization based on
1800 * features default.
1801 */
1802 #define SCHED_FEAT(name, enabled) \
1803 (1UL << __SCHED_FEAT_##name) * enabled |
1804 static const_debug __maybe_unused unsigned int sysctl_sched_features =
1805 #include "features.h"
1806 0;
1807 #undef SCHED_FEAT
1808
1809 #define sched_feat(x) !!(sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
1810
1811 #endif /* SCHED_DEBUG */
1812
1813 extern struct static_key_false sched_numa_balancing;
1814 extern struct static_key_false sched_schedstats;
1815
global_rt_period(void)1816 static inline u64 global_rt_period(void)
1817 {
1818 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
1819 }
1820
global_rt_runtime(void)1821 static inline u64 global_rt_runtime(void)
1822 {
1823 if (sysctl_sched_rt_runtime < 0)
1824 return RUNTIME_INF;
1825
1826 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
1827 }
1828
task_current(struct rq * rq,struct task_struct * p)1829 static inline int task_current(struct rq *rq, struct task_struct *p)
1830 {
1831 return rq->curr == p;
1832 }
1833
task_running(struct rq * rq,struct task_struct * p)1834 static inline int task_running(struct rq *rq, struct task_struct *p)
1835 {
1836 #ifdef CONFIG_SMP
1837 return p->on_cpu;
1838 #else
1839 return task_current(rq, p);
1840 #endif
1841 }
1842
task_on_rq_queued(struct task_struct * p)1843 static inline int task_on_rq_queued(struct task_struct *p)
1844 {
1845 return p->on_rq == TASK_ON_RQ_QUEUED;
1846 }
1847
task_on_rq_migrating(struct task_struct * p)1848 static inline int task_on_rq_migrating(struct task_struct *p)
1849 {
1850 return READ_ONCE(p->on_rq) == TASK_ON_RQ_MIGRATING;
1851 }
1852
1853 /*
1854 * wake flags
1855 */
1856 #define WF_SYNC 0x01 /* Waker goes to sleep after wakeup */
1857 #define WF_FORK 0x02 /* Child wakeup after fork */
1858 #define WF_MIGRATED 0x04 /* Internal use, task got migrated */
1859 #define WF_ON_CPU 0x08 /* Wakee is on_cpu */
1860
1861 /*
1862 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1863 * of tasks with abnormal "nice" values across CPUs the contribution that
1864 * each task makes to its run queue's load is weighted according to its
1865 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1866 * scaled version of the new time slice allocation that they receive on time
1867 * slice expiry etc.
1868 */
1869
1870 #define WEIGHT_IDLEPRIO 3
1871 #define WMULT_IDLEPRIO 1431655765
1872
1873 extern const int sched_prio_to_weight[40];
1874 extern const u32 sched_prio_to_wmult[40];
1875 #ifdef CONFIG_SCHED_LATENCY_NICE
1876 extern const int sched_latency_to_weight[40];
1877 #endif
1878
1879 /*
1880 * {de,en}queue flags:
1881 *
1882 * DEQUEUE_SLEEP - task is no longer runnable
1883 * ENQUEUE_WAKEUP - task just became runnable
1884 *
1885 * SAVE/RESTORE - an otherwise spurious dequeue/enqueue, done to ensure tasks
1886 * are in a known state which allows modification. Such pairs
1887 * should preserve as much state as possible.
1888 *
1889 * MOVE - paired with SAVE/RESTORE, explicitly does not preserve the location
1890 * in the runqueue.
1891 *
1892 * ENQUEUE_HEAD - place at front of runqueue (tail if not specified)
1893 * ENQUEUE_REPLENISH - CBS (replenish runtime and postpone deadline)
1894 * ENQUEUE_MIGRATED - the task was migrated during wakeup
1895 *
1896 */
1897
1898 #define DEQUEUE_SLEEP 0x01
1899 #define DEQUEUE_SAVE 0x02 /* Matches ENQUEUE_RESTORE */
1900 #define DEQUEUE_MOVE 0x04 /* Matches ENQUEUE_MOVE */
1901 #define DEQUEUE_NOCLOCK 0x08 /* Matches ENQUEUE_NOCLOCK */
1902
1903 #define ENQUEUE_WAKEUP 0x01
1904 #define ENQUEUE_RESTORE 0x02
1905 #define ENQUEUE_MOVE 0x04
1906 #define ENQUEUE_NOCLOCK 0x08
1907
1908 #define ENQUEUE_HEAD 0x10
1909 #define ENQUEUE_REPLENISH 0x20
1910 #ifdef CONFIG_SMP
1911 #define ENQUEUE_MIGRATED 0x40
1912 #else
1913 #define ENQUEUE_MIGRATED 0x00
1914 #endif
1915
1916 #define RETRY_TASK ((void *)-1UL)
1917
1918 struct sched_class {
1919
1920 #ifdef CONFIG_UCLAMP_TASK
1921 int uclamp_enabled;
1922 #endif
1923
1924 void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags);
1925 void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags);
1926 void (*yield_task) (struct rq *rq);
1927 bool (*yield_to_task)(struct rq *rq, struct task_struct *p);
1928
1929 void (*check_preempt_curr)(struct rq *rq, struct task_struct *p, int flags);
1930
1931 struct task_struct *(*pick_next_task)(struct rq *rq);
1932
1933 void (*put_prev_task)(struct rq *rq, struct task_struct *p);
1934 void (*set_next_task)(struct rq *rq, struct task_struct *p, bool first);
1935
1936 #ifdef CONFIG_SMP
1937 int (*balance)(struct rq *rq, struct task_struct *prev, struct rq_flags *rf);
1938 int (*select_task_rq)(struct task_struct *p, int task_cpu, int sd_flag, int flags);
1939 void (*migrate_task_rq)(struct task_struct *p, int new_cpu);
1940
1941 void (*task_woken)(struct rq *this_rq, struct task_struct *task);
1942
1943 void (*set_cpus_allowed)(struct task_struct *p,
1944 const struct cpumask *newmask);
1945
1946 void (*rq_online)(struct rq *rq);
1947 void (*rq_offline)(struct rq *rq);
1948 #endif
1949
1950 void (*task_tick)(struct rq *rq, struct task_struct *p, int queued);
1951 void (*task_fork)(struct task_struct *p);
1952 void (*task_dead)(struct task_struct *p);
1953
1954 /*
1955 * The switched_from() call is allowed to drop rq->lock, therefore we
1956 * cannot assume the switched_from/switched_to pair is serliazed by
1957 * rq->lock. They are however serialized by p->pi_lock.
1958 */
1959 void (*switched_from)(struct rq *this_rq, struct task_struct *task);
1960 void (*switched_to) (struct rq *this_rq, struct task_struct *task);
1961 void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
1962 int oldprio);
1963
1964 unsigned int (*get_rr_interval)(struct rq *rq,
1965 struct task_struct *task);
1966
1967 void (*update_curr)(struct rq *rq);
1968
1969 #define TASK_SET_GROUP 0
1970 #define TASK_MOVE_GROUP 1
1971
1972 #ifdef CONFIG_FAIR_GROUP_SCHED
1973 void (*task_change_group)(struct task_struct *p, int type);
1974 #endif
1975 #ifdef CONFIG_SCHED_WALT
1976 void (*fixup_walt_sched_stats)(struct rq *rq, struct task_struct *p,
1977 u16 updated_demand_scaled);
1978 #endif
1979 #ifdef CONFIG_SCHED_EAS
1980 void (*check_for_migration)(struct rq *rq, struct task_struct *p);
1981 #endif
1982 } __aligned(STRUCT_ALIGNMENT); /* STRUCT_ALIGN(), vmlinux.lds.h */
1983
put_prev_task(struct rq * rq,struct task_struct * prev)1984 static inline void put_prev_task(struct rq *rq, struct task_struct *prev)
1985 {
1986 WARN_ON_ONCE(rq->curr != prev);
1987 prev->sched_class->put_prev_task(rq, prev);
1988 }
1989
set_next_task(struct rq * rq,struct task_struct * next)1990 static inline void set_next_task(struct rq *rq, struct task_struct *next)
1991 {
1992 WARN_ON_ONCE(rq->curr != next);
1993 next->sched_class->set_next_task(rq, next, false);
1994 }
1995
1996 /* Defined in include/asm-generic/vmlinux.lds.h */
1997 extern struct sched_class __begin_sched_classes[];
1998 extern struct sched_class __end_sched_classes[];
1999
2000 #define sched_class_highest (__end_sched_classes - 1)
2001 #define sched_class_lowest (__begin_sched_classes - 1)
2002
2003 #define for_class_range(class, _from, _to) \
2004 for (class = (_from); class != (_to); class--)
2005
2006 #define for_each_class(class) \
2007 for_class_range(class, sched_class_highest, sched_class_lowest)
2008
2009 extern const struct sched_class stop_sched_class;
2010 extern const struct sched_class dl_sched_class;
2011 extern const struct sched_class rt_sched_class;
2012 extern const struct sched_class fair_sched_class;
2013 extern const struct sched_class idle_sched_class;
2014
sched_stop_runnable(struct rq * rq)2015 static inline bool sched_stop_runnable(struct rq *rq)
2016 {
2017 return rq->stop && task_on_rq_queued(rq->stop);
2018 }
2019
sched_dl_runnable(struct rq * rq)2020 static inline bool sched_dl_runnable(struct rq *rq)
2021 {
2022 return rq->dl.dl_nr_running > 0;
2023 }
2024
sched_rt_runnable(struct rq * rq)2025 static inline bool sched_rt_runnable(struct rq *rq)
2026 {
2027 return rq->rt.rt_queued > 0;
2028 }
2029
sched_fair_runnable(struct rq * rq)2030 static inline bool sched_fair_runnable(struct rq *rq)
2031 {
2032 return rq->cfs.nr_running > 0;
2033 }
2034
2035 extern struct task_struct *pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf);
2036 extern struct task_struct *pick_next_task_idle(struct rq *rq);
2037
2038 #ifdef CONFIG_SMP
2039
2040 extern void update_group_capacity(struct sched_domain *sd, int cpu);
2041
2042 extern void trigger_load_balance(struct rq *rq);
2043
2044 extern void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask);
2045
2046 #endif
2047
2048 #ifdef CONFIG_CPU_IDLE
idle_set_state(struct rq * rq,struct cpuidle_state * idle_state)2049 static inline void idle_set_state(struct rq *rq,
2050 struct cpuidle_state *idle_state)
2051 {
2052 rq->idle_state = idle_state;
2053 }
2054
idle_get_state(struct rq * rq)2055 static inline struct cpuidle_state *idle_get_state(struct rq *rq)
2056 {
2057 SCHED_WARN_ON(!rcu_read_lock_held());
2058
2059 return rq->idle_state;
2060 }
2061 #else
idle_set_state(struct rq * rq,struct cpuidle_state * idle_state)2062 static inline void idle_set_state(struct rq *rq,
2063 struct cpuidle_state *idle_state)
2064 {
2065 }
2066
idle_get_state(struct rq * rq)2067 static inline struct cpuidle_state *idle_get_state(struct rq *rq)
2068 {
2069 return NULL;
2070 }
2071 #endif
2072
2073 extern void schedule_idle(void);
2074
2075 extern void sysrq_sched_debug_show(void);
2076 extern void sched_init_granularity(void);
2077 extern void update_max_interval(void);
2078
2079 extern void init_sched_dl_class(void);
2080 extern void init_sched_rt_class(void);
2081 extern void init_sched_fair_class(void);
2082
2083 extern void reweight_task(struct task_struct *p, int prio);
2084
2085 extern void resched_curr(struct rq *rq);
2086 extern void resched_cpu(int cpu);
2087
2088 extern struct rt_bandwidth def_rt_bandwidth;
2089 extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime);
2090
2091 extern struct dl_bandwidth def_dl_bandwidth;
2092 extern void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime);
2093 extern void init_dl_task_timer(struct sched_dl_entity *dl_se);
2094 extern void init_dl_inactive_task_timer(struct sched_dl_entity *dl_se);
2095
2096 #define BW_SHIFT 20
2097 #define BW_UNIT (1 << BW_SHIFT)
2098 #define RATIO_SHIFT 8
2099 #define MAX_BW_BITS (64 - BW_SHIFT)
2100 #define MAX_BW ((1ULL << MAX_BW_BITS) - 1)
2101 unsigned long to_ratio(u64 period, u64 runtime);
2102
2103 extern void init_entity_runnable_average(struct sched_entity *se);
2104 extern void post_init_entity_util_avg(struct task_struct *p);
2105
2106 #ifdef CONFIG_NO_HZ_FULL
2107 extern bool sched_can_stop_tick(struct rq *rq);
2108 extern int __init sched_tick_offload_init(void);
2109
2110 /*
2111 * Tick may be needed by tasks in the runqueue depending on their policy and
2112 * requirements. If tick is needed, lets send the target an IPI to kick it out of
2113 * nohz mode if necessary.
2114 */
sched_update_tick_dependency(struct rq * rq)2115 static inline void sched_update_tick_dependency(struct rq *rq)
2116 {
2117 int cpu = cpu_of(rq);
2118
2119 if (!tick_nohz_full_cpu(cpu))
2120 return;
2121
2122 if (sched_can_stop_tick(rq))
2123 tick_nohz_dep_clear_cpu(cpu, TICK_DEP_BIT_SCHED);
2124 else
2125 tick_nohz_dep_set_cpu(cpu, TICK_DEP_BIT_SCHED);
2126 }
2127 #else
sched_tick_offload_init(void)2128 static inline int sched_tick_offload_init(void) { return 0; }
sched_update_tick_dependency(struct rq * rq)2129 static inline void sched_update_tick_dependency(struct rq *rq) { }
2130 #endif
2131
add_nr_running(struct rq * rq,unsigned count)2132 static inline void add_nr_running(struct rq *rq, unsigned count)
2133 {
2134 unsigned prev_nr = rq->nr_running;
2135
2136 rq->nr_running = prev_nr + count;
2137 if (trace_sched_update_nr_running_tp_enabled()) {
2138 call_trace_sched_update_nr_running(rq, count);
2139 }
2140
2141 #ifdef CONFIG_SMP
2142 if (prev_nr < 2 && rq->nr_running >= 2) {
2143 if (!READ_ONCE(rq->rd->overload))
2144 WRITE_ONCE(rq->rd->overload, 1);
2145 }
2146 #endif
2147
2148 sched_update_tick_dependency(rq);
2149 }
2150
sub_nr_running(struct rq * rq,unsigned count)2151 static inline void sub_nr_running(struct rq *rq, unsigned count)
2152 {
2153 rq->nr_running -= count;
2154 if (trace_sched_update_nr_running_tp_enabled()) {
2155 call_trace_sched_update_nr_running(rq, -count);
2156 }
2157
2158 /* Check if we still need preemption */
2159 sched_update_tick_dependency(rq);
2160 }
2161
2162 extern void activate_task(struct rq *rq, struct task_struct *p, int flags);
2163 extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags);
2164
2165 extern void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
2166
2167 extern const_debug unsigned int sysctl_sched_nr_migrate;
2168 extern const_debug unsigned int sysctl_sched_migration_cost;
2169
2170 #ifdef CONFIG_SCHED_HRTICK
2171
2172 /*
2173 * Use hrtick when:
2174 * - enabled by features
2175 * - hrtimer is actually high res
2176 */
hrtick_enabled(struct rq * rq)2177 static inline int hrtick_enabled(struct rq *rq)
2178 {
2179 if (!sched_feat(HRTICK))
2180 return 0;
2181 if (!cpu_active(cpu_of(rq)))
2182 return 0;
2183 return hrtimer_is_hres_active(&rq->hrtick_timer);
2184 }
2185
2186 void hrtick_start(struct rq *rq, u64 delay);
2187
2188 #else
2189
hrtick_enabled(struct rq * rq)2190 static inline int hrtick_enabled(struct rq *rq)
2191 {
2192 return 0;
2193 }
2194
2195 #endif /* CONFIG_SCHED_HRTICK */
2196
2197 #ifdef CONFIG_SCHED_WALT
2198 u64 sched_ktime_clock(void);
2199 #else
sched_ktime_clock(void)2200 static inline u64 sched_ktime_clock(void)
2201 {
2202 return sched_clock();
2203 }
2204 #endif
2205
2206 #ifndef arch_scale_freq_tick
2207 static __always_inline
arch_scale_freq_tick(void)2208 void arch_scale_freq_tick(void)
2209 {
2210 }
2211 #endif
2212
2213 #ifndef arch_scale_freq_capacity
2214 /**
2215 * arch_scale_freq_capacity - get the frequency scale factor of a given CPU.
2216 * @cpu: the CPU in question.
2217 *
2218 * Return: the frequency scale factor normalized against SCHED_CAPACITY_SCALE, i.e.
2219 *
2220 * f_curr
2221 * ------ * SCHED_CAPACITY_SCALE
2222 * f_max
2223 */
2224 static __always_inline
arch_scale_freq_capacity(int cpu)2225 unsigned long arch_scale_freq_capacity(int cpu)
2226 {
2227 return SCHED_CAPACITY_SCALE;
2228 }
2229 #endif
2230
2231 unsigned long capacity_curr_of(int cpu);
2232 unsigned long cpu_util(int cpu);
2233
2234 #ifdef CONFIG_SMP
2235 #ifdef CONFIG_SCHED_WALT
2236 extern unsigned int sysctl_sched_use_walt_cpu_util;
2237 extern unsigned int walt_disabled;
2238 #endif
2239 #ifdef CONFIG_PREEMPTION
2240
2241 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2);
2242
2243 /*
2244 * fair double_lock_balance: Safely acquires both rq->locks in a fair
2245 * way at the expense of forcing extra atomic operations in all
2246 * invocations. This assures that the double_lock is acquired using the
2247 * same underlying policy as the spinlock_t on this architecture, which
2248 * reduces latency compared to the unfair variant below. However, it
2249 * also adds more overhead and therefore may reduce throughput.
2250 */
_double_lock_balance(struct rq * this_rq,struct rq * busiest)2251 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
2252 __releases(this_rq->lock)
2253 __acquires(busiest->lock)
2254 __acquires(this_rq->lock)
2255 {
2256 raw_spin_unlock(&this_rq->lock);
2257 double_rq_lock(this_rq, busiest);
2258
2259 return 1;
2260 }
2261
2262 #else
2263 /*
2264 * Unfair double_lock_balance: Optimizes throughput at the expense of
2265 * latency by eliminating extra atomic operations when the locks are
2266 * already in proper order on entry. This favors lower CPU-ids and will
2267 * grant the double lock to lower CPUs over higher ids under contention,
2268 * regardless of entry order into the function.
2269 */
_double_lock_balance(struct rq * this_rq,struct rq * busiest)2270 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
2271 __releases(this_rq->lock)
2272 __acquires(busiest->lock)
2273 __acquires(this_rq->lock)
2274 {
2275 int ret = 0;
2276
2277 if (unlikely(!raw_spin_trylock(&busiest->lock))) {
2278 if (busiest < this_rq) {
2279 raw_spin_unlock(&this_rq->lock);
2280 raw_spin_lock(&busiest->lock);
2281 raw_spin_lock_nested(&this_rq->lock,
2282 SINGLE_DEPTH_NESTING);
2283 ret = 1;
2284 } else
2285 raw_spin_lock_nested(&busiest->lock,
2286 SINGLE_DEPTH_NESTING);
2287 }
2288 return ret;
2289 }
2290
2291 #endif /* CONFIG_PREEMPTION */
2292
2293 /*
2294 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2295 */
double_lock_balance(struct rq * this_rq,struct rq * busiest)2296 static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest)
2297 {
2298 if (unlikely(!irqs_disabled())) {
2299 /* printk() doesn't work well under rq->lock */
2300 raw_spin_unlock(&this_rq->lock);
2301 BUG_ON(1);
2302 }
2303
2304 return _double_lock_balance(this_rq, busiest);
2305 }
2306
double_unlock_balance(struct rq * this_rq,struct rq * busiest)2307 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
2308 __releases(busiest->lock)
2309 {
2310 raw_spin_unlock(&busiest->lock);
2311 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
2312 }
2313
double_lock(spinlock_t * l1,spinlock_t * l2)2314 static inline void double_lock(spinlock_t *l1, spinlock_t *l2)
2315 {
2316 if (l1 > l2)
2317 swap(l1, l2);
2318
2319 spin_lock(l1);
2320 spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
2321 }
2322
double_lock_irq(spinlock_t * l1,spinlock_t * l2)2323 static inline void double_lock_irq(spinlock_t *l1, spinlock_t *l2)
2324 {
2325 if (l1 > l2)
2326 swap(l1, l2);
2327
2328 spin_lock_irq(l1);
2329 spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
2330 }
2331
double_raw_lock(raw_spinlock_t * l1,raw_spinlock_t * l2)2332 static inline void double_raw_lock(raw_spinlock_t *l1, raw_spinlock_t *l2)
2333 {
2334 if (l1 > l2)
2335 swap(l1, l2);
2336
2337 raw_spin_lock(l1);
2338 raw_spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
2339 }
2340
2341 /*
2342 * double_rq_lock - safely lock two runqueues
2343 *
2344 * Note this does not disable interrupts like task_rq_lock,
2345 * you need to do so manually before calling.
2346 */
double_rq_lock(struct rq * rq1,struct rq * rq2)2347 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
2348 __acquires(rq1->lock)
2349 __acquires(rq2->lock)
2350 {
2351 BUG_ON(!irqs_disabled());
2352 if (rq1 == rq2) {
2353 raw_spin_lock(&rq1->lock);
2354 __acquire(rq2->lock); /* Fake it out ;) */
2355 } else {
2356 if (rq1 < rq2) {
2357 raw_spin_lock(&rq1->lock);
2358 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
2359 } else {
2360 raw_spin_lock(&rq2->lock);
2361 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
2362 }
2363 }
2364 }
2365
2366 /*
2367 * double_rq_unlock - safely unlock two runqueues
2368 *
2369 * Note this does not restore interrupts like task_rq_unlock,
2370 * you need to do so manually after calling.
2371 */
double_rq_unlock(struct rq * rq1,struct rq * rq2)2372 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2373 __releases(rq1->lock)
2374 __releases(rq2->lock)
2375 {
2376 raw_spin_unlock(&rq1->lock);
2377 if (rq1 != rq2)
2378 raw_spin_unlock(&rq2->lock);
2379 else
2380 __release(rq2->lock);
2381 }
2382
2383 extern void set_rq_online (struct rq *rq);
2384 extern void set_rq_offline(struct rq *rq);
2385 extern bool sched_smp_initialized;
2386
2387 #else /* CONFIG_SMP */
2388
2389 /*
2390 * double_rq_lock - safely lock two runqueues
2391 *
2392 * Note this does not disable interrupts like task_rq_lock,
2393 * you need to do so manually before calling.
2394 */
double_rq_lock(struct rq * rq1,struct rq * rq2)2395 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
2396 __acquires(rq1->lock)
2397 __acquires(rq2->lock)
2398 {
2399 BUG_ON(!irqs_disabled());
2400 BUG_ON(rq1 != rq2);
2401 raw_spin_lock(&rq1->lock);
2402 __acquire(rq2->lock); /* Fake it out ;) */
2403 }
2404
2405 /*
2406 * double_rq_unlock - safely unlock two runqueues
2407 *
2408 * Note this does not restore interrupts like task_rq_unlock,
2409 * you need to do so manually after calling.
2410 */
double_rq_unlock(struct rq * rq1,struct rq * rq2)2411 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2412 __releases(rq1->lock)
2413 __releases(rq2->lock)
2414 {
2415 BUG_ON(rq1 != rq2);
2416 raw_spin_unlock(&rq1->lock);
2417 __release(rq2->lock);
2418 }
2419
2420 #endif
2421
2422 extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq);
2423 extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq);
2424
2425 #ifdef CONFIG_SCHED_DEBUG
2426 extern bool sched_debug_enabled;
2427
2428 extern void print_cfs_stats(struct seq_file *m, int cpu);
2429 extern void print_rt_stats(struct seq_file *m, int cpu);
2430 extern void print_dl_stats(struct seq_file *m, int cpu);
2431 extern void print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
2432 extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq);
2433 extern void print_dl_rq(struct seq_file *m, int cpu, struct dl_rq *dl_rq);
2434 #ifdef CONFIG_NUMA_BALANCING
2435 extern void
2436 show_numa_stats(struct task_struct *p, struct seq_file *m);
2437 extern void
2438 print_numa_stats(struct seq_file *m, int node, unsigned long tsf,
2439 unsigned long tpf, unsigned long gsf, unsigned long gpf);
2440 #endif /* CONFIG_NUMA_BALANCING */
2441 #endif /* CONFIG_SCHED_DEBUG */
2442
2443 extern void init_cfs_rq(struct cfs_rq *cfs_rq);
2444 extern void init_rt_rq(struct rt_rq *rt_rq);
2445 extern void init_dl_rq(struct dl_rq *dl_rq);
2446
2447 extern void cfs_bandwidth_usage_inc(void);
2448 extern void cfs_bandwidth_usage_dec(void);
2449
2450 #ifdef CONFIG_NO_HZ_COMMON
2451 #define NOHZ_BALANCE_KICK_BIT 0
2452 #define NOHZ_STATS_KICK_BIT 1
2453
2454 #define NOHZ_BALANCE_KICK BIT(NOHZ_BALANCE_KICK_BIT)
2455 #define NOHZ_STATS_KICK BIT(NOHZ_STATS_KICK_BIT)
2456
2457 #define NOHZ_KICK_MASK (NOHZ_BALANCE_KICK | NOHZ_STATS_KICK)
2458
2459 #define nohz_flags(cpu) (&cpu_rq(cpu)->nohz_flags)
2460
2461 extern void nohz_balance_exit_idle(struct rq *rq);
2462 #else
nohz_balance_exit_idle(struct rq * rq)2463 static inline void nohz_balance_exit_idle(struct rq *rq) { }
2464 #endif
2465
2466
2467 #ifdef CONFIG_SMP
2468 static inline
__dl_update(struct dl_bw * dl_b,s64 bw)2469 void __dl_update(struct dl_bw *dl_b, s64 bw)
2470 {
2471 struct root_domain *rd = container_of(dl_b, struct root_domain, dl_bw);
2472 int i;
2473
2474 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2475 "sched RCU must be held");
2476 for_each_cpu_and(i, rd->span, cpu_active_mask) {
2477 struct rq *rq = cpu_rq(i);
2478
2479 rq->dl.extra_bw += bw;
2480 }
2481 }
2482 #else
2483 static inline
__dl_update(struct dl_bw * dl_b,s64 bw)2484 void __dl_update(struct dl_bw *dl_b, s64 bw)
2485 {
2486 struct dl_rq *dl = container_of(dl_b, struct dl_rq, dl_bw);
2487
2488 dl->extra_bw += bw;
2489 }
2490 #endif
2491
2492
2493 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
2494 struct irqtime {
2495 u64 total;
2496 u64 tick_delta;
2497 u64 irq_start_time;
2498 struct u64_stats_sync sync;
2499 };
2500
2501 DECLARE_PER_CPU(struct irqtime, cpu_irqtime);
2502
2503 /*
2504 * Returns the irqtime minus the softirq time computed by ksoftirqd.
2505 * Otherwise ksoftirqd's sum_exec_runtime is substracted its own runtime
2506 * and never move forward.
2507 */
irq_time_read(int cpu)2508 static inline u64 irq_time_read(int cpu)
2509 {
2510 struct irqtime *irqtime = &per_cpu(cpu_irqtime, cpu);
2511 unsigned int seq;
2512 u64 total;
2513
2514 do {
2515 seq = __u64_stats_fetch_begin(&irqtime->sync);
2516 total = irqtime->total;
2517 } while (__u64_stats_fetch_retry(&irqtime->sync, seq));
2518
2519 return total;
2520 }
2521 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
2522
2523 #ifdef CONFIG_CPU_FREQ
2524 DECLARE_PER_CPU(struct update_util_data __rcu *, cpufreq_update_util_data);
2525
2526 /**
2527 * cpufreq_update_util - Take a note about CPU utilization changes.
2528 * @rq: Runqueue to carry out the update for.
2529 * @flags: Update reason flags.
2530 *
2531 * This function is called by the scheduler on the CPU whose utilization is
2532 * being updated.
2533 *
2534 * It can only be called from RCU-sched read-side critical sections.
2535 *
2536 * The way cpufreq is currently arranged requires it to evaluate the CPU
2537 * performance state (frequency/voltage) on a regular basis to prevent it from
2538 * being stuck in a completely inadequate performance level for too long.
2539 * That is not guaranteed to happen if the updates are only triggered from CFS
2540 * and DL, though, because they may not be coming in if only RT tasks are
2541 * active all the time (or there are RT tasks only).
2542 *
2543 * As a workaround for that issue, this function is called periodically by the
2544 * RT sched class to trigger extra cpufreq updates to prevent it from stalling,
2545 * but that really is a band-aid. Going forward it should be replaced with
2546 * solutions targeted more specifically at RT tasks.
2547 */
cpufreq_update_util(struct rq * rq,unsigned int flags)2548 static inline void cpufreq_update_util(struct rq *rq, unsigned int flags)
2549 {
2550 struct update_util_data *data;
2551 u64 clock;
2552
2553 #ifdef CONFIG_SCHED_WALT
2554 if (!(flags & SCHED_CPUFREQ_WALT))
2555 return;
2556
2557 clock = sched_ktime_clock();
2558 #else
2559 clock = rq_clock(rq);
2560 #endif
2561 data = rcu_dereference_sched(*per_cpu_ptr(&cpufreq_update_util_data,
2562 cpu_of(rq)));
2563 if (data)
2564 data->func(data, clock, flags);
2565 }
2566 #else
cpufreq_update_util(struct rq * rq,unsigned int flags)2567 static inline void cpufreq_update_util(struct rq *rq, unsigned int flags) {}
2568 #endif /* CONFIG_CPU_FREQ */
2569
2570 #ifdef CONFIG_UCLAMP_TASK
2571 unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id);
2572
2573 /**
2574 * uclamp_rq_util_with - clamp @util with @rq and @p effective uclamp values.
2575 * @rq: The rq to clamp against. Must not be NULL.
2576 * @util: The util value to clamp.
2577 * @p: The task to clamp against. Can be NULL if you want to clamp
2578 * against @rq only.
2579 *
2580 * Clamps the passed @util to the max(@rq, @p) effective uclamp values.
2581 *
2582 * If sched_uclamp_used static key is disabled, then just return the util
2583 * without any clamping since uclamp aggregation at the rq level in the fast
2584 * path is disabled, rendering this operation a NOP.
2585 *
2586 * Use uclamp_eff_value() if you don't care about uclamp values at rq level. It
2587 * will return the correct effective uclamp value of the task even if the
2588 * static key is disabled.
2589 */
2590 static __always_inline
uclamp_rq_util_with(struct rq * rq,unsigned long util,struct task_struct * p)2591 unsigned long uclamp_rq_util_with(struct rq *rq, unsigned long util,
2592 struct task_struct *p)
2593 {
2594 unsigned long min_util = 0;
2595 unsigned long max_util = 0;
2596
2597 if (!static_branch_likely(&sched_uclamp_used))
2598 return util;
2599
2600 if (p) {
2601 min_util = uclamp_eff_value(p, UCLAMP_MIN);
2602 max_util = uclamp_eff_value(p, UCLAMP_MAX);
2603
2604 /*
2605 * Ignore last runnable task's max clamp, as this task will
2606 * reset it. Similarly, no need to read the rq's min clamp.
2607 */
2608 if (rq->uclamp_flags & UCLAMP_FLAG_IDLE)
2609 goto out;
2610 }
2611
2612 min_util = max_t(unsigned long, min_util, READ_ONCE(rq->uclamp[UCLAMP_MIN].value));
2613 max_util = max_t(unsigned long, max_util, READ_ONCE(rq->uclamp[UCLAMP_MAX].value));
2614 out:
2615 /*
2616 * Since CPU's {min,max}_util clamps are MAX aggregated considering
2617 * RUNNABLE tasks with _different_ clamps, we can end up with an
2618 * inversion. Fix it now when the clamps are applied.
2619 */
2620 if (unlikely(min_util >= max_util))
2621 return min_util;
2622
2623 return clamp(util, min_util, max_util);
2624 }
2625
uclamp_boosted(struct task_struct * p)2626 static inline bool uclamp_boosted(struct task_struct *p)
2627 {
2628 return uclamp_eff_value(p, UCLAMP_MIN) > 0;
2629 }
2630
2631 /*
2632 * When uclamp is compiled in, the aggregation at rq level is 'turned off'
2633 * by default in the fast path and only gets turned on once userspace performs
2634 * an operation that requires it.
2635 *
2636 * Returns true if userspace opted-in to use uclamp and aggregation at rq level
2637 * hence is active.
2638 */
uclamp_is_used(void)2639 static inline bool uclamp_is_used(void)
2640 {
2641 return static_branch_likely(&sched_uclamp_used);
2642 }
2643 #else /* CONFIG_UCLAMP_TASK */
2644 static inline
uclamp_rq_util_with(struct rq * rq,unsigned long util,struct task_struct * p)2645 unsigned long uclamp_rq_util_with(struct rq *rq, unsigned long util,
2646 struct task_struct *p)
2647 {
2648 return util;
2649 }
2650
uclamp_boosted(struct task_struct * p)2651 static inline bool uclamp_boosted(struct task_struct *p)
2652 {
2653 return false;
2654 }
2655
uclamp_is_used(void)2656 static inline bool uclamp_is_used(void)
2657 {
2658 return false;
2659 }
2660 #endif /* CONFIG_UCLAMP_TASK */
2661
2662 #ifdef arch_scale_freq_capacity
2663 # ifndef arch_scale_freq_invariant
2664 # define arch_scale_freq_invariant() true
2665 # endif
2666 #else
2667 # define arch_scale_freq_invariant() false
2668 #endif
2669
2670 #ifdef CONFIG_SMP
capacity_of(int cpu)2671 static inline unsigned long capacity_of(int cpu)
2672 {
2673 return cpu_rq(cpu)->cpu_capacity;
2674 }
2675
capacity_orig_of(int cpu)2676 static inline unsigned long capacity_orig_of(int cpu)
2677 {
2678 return cpu_rq(cpu)->cpu_capacity_orig;
2679 }
2680 #endif
2681
2682 /**
2683 * enum schedutil_type - CPU utilization type
2684 * @FREQUENCY_UTIL: Utilization used to select frequency
2685 * @ENERGY_UTIL: Utilization used during energy calculation
2686 *
2687 * The utilization signals of all scheduling classes (CFS/RT/DL) and IRQ time
2688 * need to be aggregated differently depending on the usage made of them. This
2689 * enum is used within schedutil_freq_util() to differentiate the types of
2690 * utilization expected by the callers, and adjust the aggregation accordingly.
2691 */
2692 enum schedutil_type {
2693 FREQUENCY_UTIL,
2694 ENERGY_UTIL,
2695 };
2696
2697 #ifdef CONFIG_CPU_FREQ_GOV_SCHEDUTIL
2698
2699 unsigned long schedutil_cpu_util(int cpu, unsigned long util_cfs,
2700 unsigned long max, enum schedutil_type type,
2701 struct task_struct *p);
2702
cpu_bw_dl(struct rq * rq)2703 static inline unsigned long cpu_bw_dl(struct rq *rq)
2704 {
2705 return (rq->dl.running_bw * SCHED_CAPACITY_SCALE) >> BW_SHIFT;
2706 }
2707
cpu_util_dl(struct rq * rq)2708 static inline unsigned long cpu_util_dl(struct rq *rq)
2709 {
2710 return READ_ONCE(rq->avg_dl.util_avg);
2711 }
2712
cpu_util_cfs(struct rq * rq)2713 static inline unsigned long cpu_util_cfs(struct rq *rq)
2714 {
2715 unsigned long util = READ_ONCE(rq->cfs.avg.util_avg);
2716
2717 if (sched_feat(UTIL_EST)) {
2718 util = max_t(unsigned long, util,
2719 READ_ONCE(rq->cfs.avg.util_est.enqueued));
2720 }
2721
2722 return util;
2723 }
2724
cpu_util_rt(struct rq * rq)2725 static inline unsigned long cpu_util_rt(struct rq *rq)
2726 {
2727 return READ_ONCE(rq->avg_rt.util_avg);
2728 }
2729 #else /* CONFIG_CPU_FREQ_GOV_SCHEDUTIL */
schedutil_cpu_util(int cpu,unsigned long util_cfs,unsigned long max,enum schedutil_type type,struct task_struct * p)2730 static inline unsigned long schedutil_cpu_util(int cpu, unsigned long util_cfs,
2731 unsigned long max, enum schedutil_type type,
2732 struct task_struct *p)
2733 {
2734 return 0;
2735 }
2736 #endif /* CONFIG_CPU_FREQ_GOV_SCHEDUTIL */
2737
2738 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
cpu_util_irq(struct rq * rq)2739 static inline unsigned long cpu_util_irq(struct rq *rq)
2740 {
2741 return rq->avg_irq.util_avg;
2742 }
2743
2744 static inline
scale_irq_capacity(unsigned long util,unsigned long irq,unsigned long max)2745 unsigned long scale_irq_capacity(unsigned long util, unsigned long irq, unsigned long max)
2746 {
2747 util *= (max - irq);
2748 util /= max;
2749
2750 return util;
2751
2752 }
2753 #else
cpu_util_irq(struct rq * rq)2754 static inline unsigned long cpu_util_irq(struct rq *rq)
2755 {
2756 return 0;
2757 }
2758
2759 static inline
scale_irq_capacity(unsigned long util,unsigned long irq,unsigned long max)2760 unsigned long scale_irq_capacity(unsigned long util, unsigned long irq, unsigned long max)
2761 {
2762 return util;
2763 }
2764 #endif
2765
2766 #if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL)
2767
2768 #define perf_domain_span(pd) (to_cpumask(((pd)->em_pd->cpus)))
2769
2770 DECLARE_STATIC_KEY_FALSE(sched_energy_present);
2771
sched_energy_enabled(void)2772 static inline bool sched_energy_enabled(void)
2773 {
2774 return static_branch_unlikely(&sched_energy_present);
2775 }
2776
2777 #else /* ! (CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL) */
2778
2779 #define perf_domain_span(pd) NULL
sched_energy_enabled(void)2780 static inline bool sched_energy_enabled(void) { return false; }
2781
2782 #endif /* CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL */
2783
2784 #ifdef CONFIG_MEMBARRIER
2785 /*
2786 * The scheduler provides memory barriers required by membarrier between:
2787 * - prior user-space memory accesses and store to rq->membarrier_state,
2788 * - store to rq->membarrier_state and following user-space memory accesses.
2789 * In the same way it provides those guarantees around store to rq->curr.
2790 */
membarrier_switch_mm(struct rq * rq,struct mm_struct * prev_mm,struct mm_struct * next_mm)2791 static inline void membarrier_switch_mm(struct rq *rq,
2792 struct mm_struct *prev_mm,
2793 struct mm_struct *next_mm)
2794 {
2795 int membarrier_state;
2796
2797 if (prev_mm == next_mm)
2798 return;
2799
2800 membarrier_state = atomic_read(&next_mm->membarrier_state);
2801 if (READ_ONCE(rq->membarrier_state) == membarrier_state)
2802 return;
2803
2804 WRITE_ONCE(rq->membarrier_state, membarrier_state);
2805 }
2806 #else
membarrier_switch_mm(struct rq * rq,struct mm_struct * prev_mm,struct mm_struct * next_mm)2807 static inline void membarrier_switch_mm(struct rq *rq,
2808 struct mm_struct *prev_mm,
2809 struct mm_struct *next_mm)
2810 {
2811 }
2812 #endif
2813
2814 #ifdef CONFIG_SMP
is_per_cpu_kthread(struct task_struct * p)2815 static inline bool is_per_cpu_kthread(struct task_struct *p)
2816 {
2817 if (!(p->flags & PF_KTHREAD))
2818 return false;
2819
2820 if (p->nr_cpus_allowed != 1)
2821 return false;
2822
2823 return true;
2824 }
2825 #endif
2826
2827 void swake_up_all_locked(struct swait_queue_head *q);
2828 void __prepare_to_swait(struct swait_queue_head *q, struct swait_queue *wait);
2829
2830 #ifdef CONFIG_SCHED_RTG
2831 extern bool task_fits_max(struct task_struct *p, int cpu);
2832 extern unsigned long capacity_spare_without(int cpu, struct task_struct *p);
2833 extern int update_preferred_cluster(struct related_thread_group *grp,
2834 struct task_struct *p, u32 old_load, bool from_tick);
2835 extern struct cpumask *find_rtg_target(struct task_struct *p);
2836 #endif
2837
2838 #ifdef CONFIG_SCHED_WALT
cluster_first_cpu(struct sched_cluster * cluster)2839 static inline int cluster_first_cpu(struct sched_cluster *cluster)
2840 {
2841 return cpumask_first(&cluster->cpus);
2842 }
2843
2844 extern struct list_head cluster_head;
2845 extern struct sched_cluster *sched_cluster[NR_CPUS];
2846
2847 #define for_each_sched_cluster(cluster) \
2848 list_for_each_entry_rcu(cluster, &cluster_head, list)
2849
2850 extern struct mutex policy_mutex;
2851 extern unsigned int sched_disable_window_stats;
2852 extern unsigned int max_possible_freq;
2853 extern unsigned int min_max_freq;
2854 extern unsigned int max_possible_efficiency;
2855 extern unsigned int min_possible_efficiency;
2856 extern unsigned int max_capacity;
2857 extern unsigned int min_capacity;
2858 extern unsigned int max_load_scale_factor;
2859 extern unsigned int max_possible_capacity;
2860 extern unsigned int min_max_possible_capacity;
2861 extern unsigned int max_power_cost;
2862 extern unsigned int __read_mostly sched_init_task_load_windows;
2863 extern unsigned int sysctl_sched_restrict_cluster_spill;
2864 extern unsigned int sched_pred_alert_load;
2865 extern struct sched_cluster init_cluster;
2866
walt_fixup_cum_window_demand(struct rq * rq,s64 scaled_delta)2867 static inline void walt_fixup_cum_window_demand(struct rq *rq, s64 scaled_delta)
2868 {
2869 rq->cum_window_demand_scaled += scaled_delta;
2870 if (unlikely((s64)rq->cum_window_demand_scaled < 0))
2871 rq->cum_window_demand_scaled = 0;
2872 }
2873
2874 /* Is frequency of two cpus synchronized with each other? */
same_freq_domain(int src_cpu,int dst_cpu)2875 static inline int same_freq_domain(int src_cpu, int dst_cpu)
2876 {
2877 struct rq *rq = cpu_rq(src_cpu);
2878
2879 if (src_cpu == dst_cpu)
2880 return 1;
2881
2882 return cpumask_test_cpu(dst_cpu, &rq->freq_domain_cpumask);
2883 }
2884
2885 extern void reset_task_stats(struct task_struct *p);
2886
2887 #define CPU_RESERVED 1
is_reserved(int cpu)2888 static inline int is_reserved(int cpu)
2889 {
2890 struct rq *rq = cpu_rq(cpu);
2891
2892 return test_bit(CPU_RESERVED, &rq->walt_flags);
2893 }
2894
mark_reserved(int cpu)2895 static inline int mark_reserved(int cpu)
2896 {
2897 struct rq *rq = cpu_rq(cpu);
2898
2899 return test_and_set_bit(CPU_RESERVED, &rq->walt_flags);
2900 }
2901
clear_reserved(int cpu)2902 static inline void clear_reserved(int cpu)
2903 {
2904 struct rq *rq = cpu_rq(cpu);
2905
2906 clear_bit(CPU_RESERVED, &rq->walt_flags);
2907 }
2908
cpu_capacity(int cpu)2909 static inline int cpu_capacity(int cpu)
2910 {
2911 return cpu_rq(cpu)->cluster->capacity;
2912 }
2913
cpu_max_possible_capacity(int cpu)2914 static inline int cpu_max_possible_capacity(int cpu)
2915 {
2916 return cpu_rq(cpu)->cluster->max_possible_capacity;
2917 }
2918
cpu_load_scale_factor(int cpu)2919 static inline int cpu_load_scale_factor(int cpu)
2920 {
2921 return cpu_rq(cpu)->cluster->load_scale_factor;
2922 }
2923
cluster_max_freq(struct sched_cluster * cluster)2924 static inline unsigned int cluster_max_freq(struct sched_cluster *cluster)
2925 {
2926 /*
2927 * Governor and thermal driver don't know the other party's mitigation
2928 * voting. So struct cluster saves both and return min() for current
2929 * cluster fmax.
2930 */
2931 return cluster->max_freq;
2932 }
2933
2934 /* Keep track of max/min capacity possible across CPUs "currently" */
__update_min_max_capacity(void)2935 static inline void __update_min_max_capacity(void)
2936 {
2937 int i;
2938 int max_cap = 0, min_cap = INT_MAX;
2939
2940 for_each_possible_cpu(i) {
2941 if (!cpu_active(i))
2942 continue;
2943
2944 max_cap = max(max_cap, cpu_capacity(i));
2945 min_cap = min(min_cap, cpu_capacity(i));
2946 }
2947
2948 max_capacity = max_cap;
2949 min_capacity = min_cap;
2950 }
2951
2952 /*
2953 * Return load_scale_factor of a cpu in reference to "most" efficient cpu, so
2954 * that "most" efficient cpu gets a load_scale_factor of 1
2955 */
2956 static inline unsigned long
load_scale_cpu_efficiency(struct sched_cluster * cluster)2957 load_scale_cpu_efficiency(struct sched_cluster *cluster)
2958 {
2959 return DIV_ROUND_UP(1024 * max_possible_efficiency,
2960 cluster->efficiency);
2961 }
2962
2963 /*
2964 * Return load_scale_factor of a cpu in reference to cpu with best max_freq
2965 * (max_possible_freq), so that one with best max_freq gets a load_scale_factor
2966 * of 1.
2967 */
load_scale_cpu_freq(struct sched_cluster * cluster)2968 static inline unsigned long load_scale_cpu_freq(struct sched_cluster *cluster)
2969 {
2970 return DIV_ROUND_UP(1024 * max_possible_freq,
2971 cluster_max_freq(cluster));
2972 }
2973
compute_load_scale_factor(struct sched_cluster * cluster)2974 static inline int compute_load_scale_factor(struct sched_cluster *cluster)
2975 {
2976 int load_scale = 1024;
2977
2978 /*
2979 * load_scale_factor accounts for the fact that task load
2980 * is in reference to "best" performing cpu. Task's load will need to be
2981 * scaled (up) by a factor to determine suitability to be placed on a
2982 * (little) cpu.
2983 */
2984 load_scale *= load_scale_cpu_efficiency(cluster);
2985 load_scale >>= 10;
2986
2987 load_scale *= load_scale_cpu_freq(cluster);
2988 load_scale >>= 10;
2989
2990 return load_scale;
2991 }
2992
is_max_capacity_cpu(int cpu)2993 static inline bool is_max_capacity_cpu(int cpu)
2994 {
2995 return cpu_max_possible_capacity(cpu) == max_possible_capacity;
2996 }
2997
is_min_capacity_cpu(int cpu)2998 static inline bool is_min_capacity_cpu(int cpu)
2999 {
3000 return cpu_max_possible_capacity(cpu) == min_max_possible_capacity;
3001 }
3002
3003 /*
3004 * Return 'capacity' of a cpu in reference to "least" efficient cpu, such that
3005 * least efficient cpu gets capacity of 1024
3006 */
3007 static unsigned long
capacity_scale_cpu_efficiency(struct sched_cluster * cluster)3008 capacity_scale_cpu_efficiency(struct sched_cluster *cluster)
3009 {
3010 return (1024 * cluster->efficiency) / min_possible_efficiency;
3011 }
3012
3013 /*
3014 * Return 'capacity' of a cpu in reference to cpu with lowest max_freq
3015 * (min_max_freq), such that one with lowest max_freq gets capacity of 1024.
3016 */
capacity_scale_cpu_freq(struct sched_cluster * cluster)3017 static unsigned long capacity_scale_cpu_freq(struct sched_cluster *cluster)
3018 {
3019 return (1024 * cluster_max_freq(cluster)) / min_max_freq;
3020 }
3021
compute_capacity(struct sched_cluster * cluster)3022 static inline int compute_capacity(struct sched_cluster *cluster)
3023 {
3024 int capacity = 1024;
3025
3026 capacity *= capacity_scale_cpu_efficiency(cluster);
3027 capacity >>= 10;
3028
3029 capacity *= capacity_scale_cpu_freq(cluster);
3030 capacity >>= 10;
3031
3032 return capacity;
3033 }
3034
power_cost(int cpu,u64 demand)3035 static inline unsigned int power_cost(int cpu, u64 demand)
3036 {
3037 return cpu_max_possible_capacity(cpu);
3038 }
3039
cpu_util_freq_walt(int cpu)3040 static inline unsigned long cpu_util_freq_walt(int cpu)
3041 {
3042 u64 util;
3043 struct rq *rq = cpu_rq(cpu);
3044 unsigned long capacity = capacity_orig_of(cpu);
3045
3046 if (unlikely(walt_disabled || !sysctl_sched_use_walt_cpu_util))
3047 return cpu_util(cpu);
3048
3049 util = rq->prev_runnable_sum << SCHED_CAPACITY_SHIFT;
3050 util = div_u64(util, sched_ravg_window);
3051
3052 return (util >= capacity) ? capacity : util;
3053 }
3054
hmp_capable(void)3055 static inline bool hmp_capable(void)
3056 {
3057 return max_possible_capacity != min_max_possible_capacity;
3058 }
3059 #else /* CONFIG_SCHED_WALT */
walt_fixup_cum_window_demand(struct rq * rq,s64 scaled_delta)3060 static inline void walt_fixup_cum_window_demand(struct rq *rq,
3061 s64 scaled_delta) { }
3062
same_freq_domain(int src_cpu,int dst_cpu)3063 static inline int same_freq_domain(int src_cpu, int dst_cpu)
3064 {
3065 return 1;
3066 }
3067
is_reserved(int cpu)3068 static inline int is_reserved(int cpu)
3069 {
3070 return 0;
3071 }
3072
clear_reserved(int cpu)3073 static inline void clear_reserved(int cpu) { }
3074
hmp_capable(void)3075 static inline bool hmp_capable(void)
3076 {
3077 return false;
3078 }
3079 #endif /* CONFIG_SCHED_WALT */
3080
3081 struct sched_avg_stats {
3082 int nr;
3083 int nr_misfit;
3084 int nr_max;
3085 int nr_scaled;
3086 };
3087 #ifdef CONFIG_SCHED_RUNNING_AVG
3088 extern void sched_get_nr_running_avg(struct sched_avg_stats *stats);
3089 #else
sched_get_nr_running_avg(struct sched_avg_stats * stats)3090 static inline void sched_get_nr_running_avg(struct sched_avg_stats *stats) { }
3091 #endif
3092
3093 #ifdef CONFIG_CPU_ISOLATION_OPT
3094 extern int group_balance_cpu_not_isolated(struct sched_group *sg);
3095 #else
group_balance_cpu_not_isolated(struct sched_group * sg)3096 static inline int group_balance_cpu_not_isolated(struct sched_group *sg)
3097 {
3098 return group_balance_cpu(sg);
3099 }
3100 #endif /* CONFIG_CPU_ISOLATION_OPT */
3101
3102 #ifdef CONFIG_HOTPLUG_CPU
3103 extern void migrate_tasks(struct rq *dead_rq, struct rq_flags *rf,
3104 bool migrate_pinned_tasks);
3105 #endif
3106