1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
4 *
5 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
6 *
7 * Interactivity improvements by Mike Galbraith
8 * (C) 2007 Mike Galbraith <efault@gmx.de>
9 *
10 * Various enhancements by Dmitry Adamushko.
11 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
12 *
13 * Group scheduling enhancements by Srivatsa Vaddagiri
14 * Copyright IBM Corporation, 2007
15 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
16 *
17 * Scaled math optimizations by Thomas Gleixner
18 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
19 *
20 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
21 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
22 */
23 #include "sched.h"
24 #include "walt.h"
25 #include "rtg/rtg.h"
26
27 #ifdef CONFIG_SCHED_WALT
28 static void walt_fixup_sched_stats_fair(struct rq *rq, struct task_struct *p,
29 u16 updated_demand_scaled);
30 #endif
31
32 #if defined(CONFIG_SCHED_WALT) && defined(CONFIG_CFS_BANDWIDTH)
33 static void walt_init_cfs_rq_stats(struct cfs_rq *cfs_rq);
34 static void walt_inc_cfs_rq_stats(struct cfs_rq *cfs_rq,
35 struct task_struct *p);
36 static void walt_dec_cfs_rq_stats(struct cfs_rq *cfs_rq,
37 struct task_struct *p);
38 static void walt_inc_throttled_cfs_rq_stats(struct walt_sched_stats *stats,
39 struct cfs_rq *cfs_rq);
40 static void walt_dec_throttled_cfs_rq_stats(struct walt_sched_stats *stats,
41 struct cfs_rq *cfs_rq);
42 #else
walt_init_cfs_rq_stats(struct cfs_rq * cfs_rq)43 static inline void walt_init_cfs_rq_stats(struct cfs_rq *cfs_rq) {}
44 static inline void
walt_inc_cfs_rq_stats(struct cfs_rq * cfs_rq,struct task_struct * p)45 walt_inc_cfs_rq_stats(struct cfs_rq *cfs_rq, struct task_struct *p) {}
46 static inline void
walt_dec_cfs_rq_stats(struct cfs_rq * cfs_rq,struct task_struct * p)47 walt_dec_cfs_rq_stats(struct cfs_rq *cfs_rq, struct task_struct *p) {}
48
49 #define walt_inc_throttled_cfs_rq_stats(...)
50 #define walt_dec_throttled_cfs_rq_stats(...)
51
52 #endif
53
54 /*
55 * Targeted preemption latency for CPU-bound tasks:
56 *
57 * NOTE: this latency value is not the same as the concept of
58 * 'timeslice length' - timeslices in CFS are of variable length
59 * and have no persistent notion like in traditional, time-slice
60 * based scheduling concepts.
61 *
62 * (to see the precise effective timeslice length of your workload,
63 * run vmstat and monitor the context-switches (cs) field)
64 *
65 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
66 */
67 unsigned int sysctl_sched_latency = 6000000ULL;
68 static unsigned int normalized_sysctl_sched_latency = 6000000ULL;
69
70 /*
71 * The initial- and re-scaling of tunables is configurable
72 *
73 * Options are:
74 *
75 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
76 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
77 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
78 *
79 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
80 */
81 enum sched_tunable_scaling sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG;
82
83 /*
84 * Minimal preemption granularity for CPU-bound tasks:
85 *
86 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
87 */
88 unsigned int sysctl_sched_min_granularity = 750000ULL;
89 static unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
90
91 /*
92 * This value is kept at sysctl_sched_latency/sysctl_sched_min_granularity
93 */
94 static unsigned int sched_nr_latency = 8;
95
96 /*
97 * After fork, child runs first. If set to 0 (default) then
98 * parent will (try to) run first.
99 */
100 unsigned int sysctl_sched_child_runs_first __read_mostly;
101
102 /*
103 * SCHED_OTHER wake-up granularity.
104 *
105 * This option delays the preemption effects of decoupled workloads
106 * and reduces their over-scheduling. Synchronous workloads will still
107 * have immediate wakeup/sleep latencies.
108 *
109 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
110 */
111 unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
112 static unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
113
114 const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
115
116 int sched_thermal_decay_shift;
setup_sched_thermal_decay_shift(char * str)117 static int __init setup_sched_thermal_decay_shift(char *str)
118 {
119 int _shift = 0;
120
121 if (kstrtoint(str, 0, &_shift))
122 pr_warn("Unable to set scheduler thermal pressure decay shift parameter\n");
123
124 sched_thermal_decay_shift = clamp(_shift, 0, 10);
125 return 1;
126 }
127 __setup("sched_thermal_decay_shift=", setup_sched_thermal_decay_shift);
128
129 #ifdef CONFIG_SMP
130 /*
131 * For asym packing, by default the lower numbered CPU has higher priority.
132 */
arch_asym_cpu_priority(int cpu)133 int __weak arch_asym_cpu_priority(int cpu)
134 {
135 return -cpu;
136 }
137
138 /*
139 * The margin used when comparing utilization with CPU capacity.
140 *
141 * (default: ~20%)
142 */
143 #define fits_capacity(cap, max) ((cap) * 1280 < (max) * 1024)
144
145 #endif
146
147 #ifdef CONFIG_CFS_BANDWIDTH
148 /*
149 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
150 * each time a cfs_rq requests quota.
151 *
152 * Note: in the case that the slice exceeds the runtime remaining (either due
153 * to consumption or the quota being specified to be smaller than the slice)
154 * we will always only issue the remaining available time.
155 *
156 * (default: 5 msec, units: microseconds)
157 */
158 unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
159 #endif
160
update_load_add(struct load_weight * lw,unsigned long inc)161 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
162 {
163 lw->weight += inc;
164 lw->inv_weight = 0;
165 }
166
update_load_sub(struct load_weight * lw,unsigned long dec)167 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
168 {
169 lw->weight -= dec;
170 lw->inv_weight = 0;
171 }
172
update_load_set(struct load_weight * lw,unsigned long w)173 static inline void update_load_set(struct load_weight *lw, unsigned long w)
174 {
175 lw->weight = w;
176 lw->inv_weight = 0;
177 }
178
179 /*
180 * Increase the granularity value when there are more CPUs,
181 * because with more CPUs the 'effective latency' as visible
182 * to users decreases. But the relationship is not linear,
183 * so pick a second-best guess by going with the log2 of the
184 * number of CPUs.
185 *
186 * This idea comes from the SD scheduler of Con Kolivas:
187 */
get_update_sysctl_factor(void)188 static unsigned int get_update_sysctl_factor(void)
189 {
190 unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
191 unsigned int factor;
192
193 switch (sysctl_sched_tunable_scaling) {
194 case SCHED_TUNABLESCALING_NONE:
195 factor = 1;
196 break;
197 case SCHED_TUNABLESCALING_LINEAR:
198 factor = cpus;
199 break;
200 case SCHED_TUNABLESCALING_LOG:
201 default:
202 factor = 1 + ilog2(cpus);
203 break;
204 }
205
206 return factor;
207 }
208
update_sysctl(void)209 static void update_sysctl(void)
210 {
211 unsigned int factor = get_update_sysctl_factor();
212
213 #define SET_SYSCTL(name) \
214 (sysctl_##name = (factor) * normalized_sysctl_##name)
215 SET_SYSCTL(sched_min_granularity);
216 SET_SYSCTL(sched_latency);
217 SET_SYSCTL(sched_wakeup_granularity);
218 #undef SET_SYSCTL
219 }
220
sched_init_granularity(void)221 void __init sched_init_granularity(void)
222 {
223 update_sysctl();
224 }
225
226 #define WMULT_CONST (~0U)
227 #define WMULT_SHIFT 32
228
__update_inv_weight(struct load_weight * lw)229 static void __update_inv_weight(struct load_weight *lw)
230 {
231 unsigned long w;
232
233 if (likely(lw->inv_weight))
234 return;
235
236 w = scale_load_down(lw->weight);
237
238 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
239 lw->inv_weight = 1;
240 else if (unlikely(!w))
241 lw->inv_weight = WMULT_CONST;
242 else
243 lw->inv_weight = WMULT_CONST / w;
244 }
245
246 /*
247 * delta_exec * weight / lw.weight
248 * OR
249 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
250 *
251 * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case
252 * we're guaranteed shift stays positive because inv_weight is guaranteed to
253 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
254 *
255 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
256 * weight/lw.weight <= 1, and therefore our shift will also be positive.
257 */
__calc_delta(u64 delta_exec,unsigned long weight,struct load_weight * lw)258 static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
259 {
260 u64 fact = scale_load_down(weight);
261 int shift = WMULT_SHIFT;
262
263 __update_inv_weight(lw);
264
265 if (unlikely(fact >> 32)) {
266 while (fact >> 32) {
267 fact >>= 1;
268 shift--;
269 }
270 }
271
272 fact = mul_u32_u32(fact, lw->inv_weight);
273
274 while (fact >> 32) {
275 fact >>= 1;
276 shift--;
277 }
278
279 return mul_u64_u32_shr(delta_exec, fact, shift);
280 }
281
282
283 const struct sched_class fair_sched_class;
284
285 /**************************************************************
286 * CFS operations on generic schedulable entities:
287 */
288
289 #ifdef CONFIG_FAIR_GROUP_SCHED
task_of(struct sched_entity * se)290 static inline struct task_struct *task_of(struct sched_entity *se)
291 {
292 SCHED_WARN_ON(!entity_is_task(se));
293 return container_of(se, struct task_struct, se);
294 }
295
296 /* Walk up scheduling entities hierarchy */
297 #define for_each_sched_entity(se) \
298 for (; se; se = se->parent)
299
task_cfs_rq(struct task_struct * p)300 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
301 {
302 return p->se.cfs_rq;
303 }
304
305 /* runqueue on which this entity is (to be) queued */
cfs_rq_of(struct sched_entity * se)306 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
307 {
308 return se->cfs_rq;
309 }
310
311 /* runqueue "owned" by this group */
group_cfs_rq(struct sched_entity * grp)312 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
313 {
314 return grp->my_q;
315 }
316
cfs_rq_tg_path(struct cfs_rq * cfs_rq,char * path,int len)317 static inline void cfs_rq_tg_path(struct cfs_rq *cfs_rq, char *path, int len)
318 {
319 if (!path)
320 return;
321
322 if (cfs_rq && task_group_is_autogroup(cfs_rq->tg))
323 autogroup_path(cfs_rq->tg, path, len);
324 else if (cfs_rq && cfs_rq->tg->css.cgroup)
325 cgroup_path(cfs_rq->tg->css.cgroup, path, len);
326 else
327 strlcpy(path, "(null)", len);
328 }
329
list_add_leaf_cfs_rq(struct cfs_rq * cfs_rq)330 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
331 {
332 struct rq *rq = rq_of(cfs_rq);
333 int cpu = cpu_of(rq);
334
335 if (cfs_rq->on_list)
336 return rq->tmp_alone_branch == &rq->leaf_cfs_rq_list;
337
338 cfs_rq->on_list = 1;
339
340 /*
341 * Ensure we either appear before our parent (if already
342 * enqueued) or force our parent to appear after us when it is
343 * enqueued. The fact that we always enqueue bottom-up
344 * reduces this to two cases and a special case for the root
345 * cfs_rq. Furthermore, it also means that we will always reset
346 * tmp_alone_branch either when the branch is connected
347 * to a tree or when we reach the top of the tree
348 */
349 if (cfs_rq->tg->parent &&
350 cfs_rq->tg->parent->cfs_rq[cpu]->on_list) {
351 /*
352 * If parent is already on the list, we add the child
353 * just before. Thanks to circular linked property of
354 * the list, this means to put the child at the tail
355 * of the list that starts by parent.
356 */
357 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
358 &(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list));
359 /*
360 * The branch is now connected to its tree so we can
361 * reset tmp_alone_branch to the beginning of the
362 * list.
363 */
364 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
365 return true;
366 }
367
368 if (!cfs_rq->tg->parent) {
369 /*
370 * cfs rq without parent should be put
371 * at the tail of the list.
372 */
373 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
374 &rq->leaf_cfs_rq_list);
375 /*
376 * We have reach the top of a tree so we can reset
377 * tmp_alone_branch to the beginning of the list.
378 */
379 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
380 return true;
381 }
382
383 /*
384 * The parent has not already been added so we want to
385 * make sure that it will be put after us.
386 * tmp_alone_branch points to the begin of the branch
387 * where we will add parent.
388 */
389 list_add_rcu(&cfs_rq->leaf_cfs_rq_list, rq->tmp_alone_branch);
390 /*
391 * update tmp_alone_branch to points to the new begin
392 * of the branch
393 */
394 rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list;
395 return false;
396 }
397
list_del_leaf_cfs_rq(struct cfs_rq * cfs_rq)398 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
399 {
400 if (cfs_rq->on_list) {
401 struct rq *rq = rq_of(cfs_rq);
402
403 /*
404 * With cfs_rq being unthrottled/throttled during an enqueue,
405 * it can happen the tmp_alone_branch points the a leaf that
406 * we finally want to del. In this case, tmp_alone_branch moves
407 * to the prev element but it will point to rq->leaf_cfs_rq_list
408 * at the end of the enqueue.
409 */
410 if (rq->tmp_alone_branch == &cfs_rq->leaf_cfs_rq_list)
411 rq->tmp_alone_branch = cfs_rq->leaf_cfs_rq_list.prev;
412
413 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
414 cfs_rq->on_list = 0;
415 }
416 }
417
assert_list_leaf_cfs_rq(struct rq * rq)418 static inline void assert_list_leaf_cfs_rq(struct rq *rq)
419 {
420 SCHED_WARN_ON(rq->tmp_alone_branch != &rq->leaf_cfs_rq_list);
421 }
422
423 /* Iterate thr' all leaf cfs_rq's on a runqueue */
424 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \
425 list_for_each_entry_safe(cfs_rq, pos, &rq->leaf_cfs_rq_list, \
426 leaf_cfs_rq_list)
427
428 /* Do the two (enqueued) entities belong to the same group ? */
429 static inline struct cfs_rq *
is_same_group(struct sched_entity * se,struct sched_entity * pse)430 is_same_group(struct sched_entity *se, struct sched_entity *pse)
431 {
432 if (se->cfs_rq == pse->cfs_rq)
433 return se->cfs_rq;
434
435 return NULL;
436 }
437
parent_entity(struct sched_entity * se)438 static inline struct sched_entity *parent_entity(struct sched_entity *se)
439 {
440 return se->parent;
441 }
442
443 static void
find_matching_se(struct sched_entity ** se,struct sched_entity ** pse)444 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
445 {
446 int se_depth, pse_depth;
447
448 /*
449 * preemption test can be made between sibling entities who are in the
450 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
451 * both tasks until we find their ancestors who are siblings of common
452 * parent.
453 */
454
455 /* First walk up until both entities are at same depth */
456 se_depth = (*se)->depth;
457 pse_depth = (*pse)->depth;
458
459 while (se_depth > pse_depth) {
460 se_depth--;
461 *se = parent_entity(*se);
462 }
463
464 while (pse_depth > se_depth) {
465 pse_depth--;
466 *pse = parent_entity(*pse);
467 }
468
469 while (!is_same_group(*se, *pse)) {
470 *se = parent_entity(*se);
471 *pse = parent_entity(*pse);
472 }
473 }
474
475 #else /* !CONFIG_FAIR_GROUP_SCHED */
476
task_of(struct sched_entity * se)477 static inline struct task_struct *task_of(struct sched_entity *se)
478 {
479 return container_of(se, struct task_struct, se);
480 }
481
482 #define for_each_sched_entity(se) \
483 for (; se; se = NULL)
484
task_cfs_rq(struct task_struct * p)485 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
486 {
487 return &task_rq(p)->cfs;
488 }
489
cfs_rq_of(struct sched_entity * se)490 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
491 {
492 struct task_struct *p = task_of(se);
493 struct rq *rq = task_rq(p);
494
495 return &rq->cfs;
496 }
497
498 /* runqueue "owned" by this group */
group_cfs_rq(struct sched_entity * grp)499 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
500 {
501 return NULL;
502 }
503
cfs_rq_tg_path(struct cfs_rq * cfs_rq,char * path,int len)504 static inline void cfs_rq_tg_path(struct cfs_rq *cfs_rq, char *path, int len)
505 {
506 if (path)
507 strlcpy(path, "(null)", len);
508 }
509
list_add_leaf_cfs_rq(struct cfs_rq * cfs_rq)510 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
511 {
512 return true;
513 }
514
list_del_leaf_cfs_rq(struct cfs_rq * cfs_rq)515 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
516 {
517 }
518
assert_list_leaf_cfs_rq(struct rq * rq)519 static inline void assert_list_leaf_cfs_rq(struct rq *rq)
520 {
521 }
522
523 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \
524 for (cfs_rq = &rq->cfs, pos = NULL; cfs_rq; cfs_rq = pos)
525
parent_entity(struct sched_entity * se)526 static inline struct sched_entity *parent_entity(struct sched_entity *se)
527 {
528 return NULL;
529 }
530
531 static inline void
find_matching_se(struct sched_entity ** se,struct sched_entity ** pse)532 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
533 {
534 }
535
536 #endif /* CONFIG_FAIR_GROUP_SCHED */
537
538 static __always_inline
539 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
540
541 /**************************************************************
542 * Scheduling class tree data structure manipulation methods:
543 */
544
max_vruntime(u64 max_vruntime,u64 vruntime)545 static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
546 {
547 s64 delta = (s64)(vruntime - max_vruntime);
548 if (delta > 0)
549 max_vruntime = vruntime;
550
551 return max_vruntime;
552 }
553
min_vruntime(u64 min_vruntime,u64 vruntime)554 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
555 {
556 s64 delta = (s64)(vruntime - min_vruntime);
557 if (delta < 0)
558 min_vruntime = vruntime;
559
560 return min_vruntime;
561 }
562
entity_before(struct sched_entity * a,struct sched_entity * b)563 static inline int entity_before(struct sched_entity *a,
564 struct sched_entity *b)
565 {
566 return (s64)(a->vruntime - b->vruntime) < 0;
567 }
568
update_min_vruntime(struct cfs_rq * cfs_rq)569 static void update_min_vruntime(struct cfs_rq *cfs_rq)
570 {
571 struct sched_entity *curr = cfs_rq->curr;
572 struct rb_node *leftmost = rb_first_cached(&cfs_rq->tasks_timeline);
573
574 u64 vruntime = cfs_rq->min_vruntime;
575
576 if (curr) {
577 if (curr->on_rq)
578 vruntime = curr->vruntime;
579 else
580 curr = NULL;
581 }
582
583 if (leftmost) { /* non-empty tree */
584 struct sched_entity *se;
585 se = rb_entry(leftmost, struct sched_entity, run_node);
586
587 if (!curr)
588 vruntime = se->vruntime;
589 else
590 vruntime = min_vruntime(vruntime, se->vruntime);
591 }
592
593 /* ensure we never gain time by being placed backwards. */
594 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
595 #ifndef CONFIG_64BIT
596 smp_wmb();
597 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
598 #endif
599 }
600
601 /*
602 * Enqueue an entity into the rb-tree:
603 */
__enqueue_entity(struct cfs_rq * cfs_rq,struct sched_entity * se)604 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
605 {
606 struct rb_node **link = &cfs_rq->tasks_timeline.rb_root.rb_node;
607 struct rb_node *parent = NULL;
608 struct sched_entity *entry;
609 bool leftmost = true;
610
611 /*
612 * Find the right place in the rbtree:
613 */
614 while (*link) {
615 parent = *link;
616 entry = rb_entry(parent, struct sched_entity, run_node);
617 /*
618 * We dont care about collisions. Nodes with
619 * the same key stay together.
620 */
621 if (entity_before(se, entry)) {
622 link = &parent->rb_left;
623 } else {
624 link = &parent->rb_right;
625 leftmost = false;
626 }
627 }
628
629 rb_link_node(&se->run_node, parent, link);
630 rb_insert_color_cached(&se->run_node,
631 &cfs_rq->tasks_timeline, leftmost);
632 }
633
__dequeue_entity(struct cfs_rq * cfs_rq,struct sched_entity * se)634 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
635 {
636 rb_erase_cached(&se->run_node, &cfs_rq->tasks_timeline);
637 }
638
__pick_first_entity(struct cfs_rq * cfs_rq)639 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
640 {
641 struct rb_node *left = rb_first_cached(&cfs_rq->tasks_timeline);
642
643 if (!left)
644 return NULL;
645
646 return rb_entry(left, struct sched_entity, run_node);
647 }
648
__pick_next_entity(struct sched_entity * se)649 static struct sched_entity *__pick_next_entity(struct sched_entity *se)
650 {
651 struct rb_node *next = rb_next(&se->run_node);
652
653 if (!next)
654 return NULL;
655
656 return rb_entry(next, struct sched_entity, run_node);
657 }
658
659 #ifdef CONFIG_SCHED_DEBUG
__pick_last_entity(struct cfs_rq * cfs_rq)660 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
661 {
662 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline.rb_root);
663
664 if (!last)
665 return NULL;
666
667 return rb_entry(last, struct sched_entity, run_node);
668 }
669
670 /**************************************************************
671 * Scheduling class statistics methods:
672 */
673
sched_proc_update_handler(struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)674 int sched_proc_update_handler(struct ctl_table *table, int write,
675 void *buffer, size_t *lenp, loff_t *ppos)
676 {
677 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
678 unsigned int factor = get_update_sysctl_factor();
679
680 if (ret || !write)
681 return ret;
682
683 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
684 sysctl_sched_min_granularity);
685
686 #define WRT_SYSCTL(name) \
687 (normalized_sysctl_##name = sysctl_##name / (factor))
688 WRT_SYSCTL(sched_min_granularity);
689 WRT_SYSCTL(sched_latency);
690 WRT_SYSCTL(sched_wakeup_granularity);
691 #undef WRT_SYSCTL
692
693 return 0;
694 }
695 #endif
696
697 /*
698 * delta /= w
699 */
calc_delta_fair(u64 delta,struct sched_entity * se)700 static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
701 {
702 if (unlikely(se->load.weight != NICE_0_LOAD))
703 delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
704
705 return delta;
706 }
707
708 /*
709 * The idea is to set a period in which each task runs once.
710 *
711 * When there are too many tasks (sched_nr_latency) we have to stretch
712 * this period because otherwise the slices get too small.
713 *
714 * p = (nr <= nl) ? l : l*nr/nl
715 */
__sched_period(unsigned long nr_running)716 static u64 __sched_period(unsigned long nr_running)
717 {
718 if (unlikely(nr_running > sched_nr_latency))
719 return nr_running * sysctl_sched_min_granularity;
720 else
721 return sysctl_sched_latency;
722 }
723
724 /*
725 * We calculate the wall-time slice from the period by taking a part
726 * proportional to the weight.
727 *
728 * s = p*P[w/rw]
729 */
sched_slice(struct cfs_rq * cfs_rq,struct sched_entity * se)730 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
731 {
732 unsigned int nr_running = cfs_rq->nr_running;
733 u64 slice;
734
735 if (sched_feat(ALT_PERIOD))
736 nr_running = rq_of(cfs_rq)->cfs.h_nr_running;
737
738 slice = __sched_period(nr_running + !se->on_rq);
739
740 for_each_sched_entity(se) {
741 struct load_weight *load;
742 struct load_weight lw;
743
744 cfs_rq = cfs_rq_of(se);
745 load = &cfs_rq->load;
746
747 if (unlikely(!se->on_rq)) {
748 lw = cfs_rq->load;
749
750 update_load_add(&lw, se->load.weight);
751 load = &lw;
752 }
753 slice = __calc_delta(slice, se->load.weight, load);
754 }
755
756 if (sched_feat(BASE_SLICE))
757 slice = max(slice, (u64)sysctl_sched_min_granularity);
758
759 return slice;
760 }
761
762 /*
763 * We calculate the vruntime slice of a to-be-inserted task.
764 *
765 * vs = s/w
766 */
sched_vslice(struct cfs_rq * cfs_rq,struct sched_entity * se)767 static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
768 {
769 return calc_delta_fair(sched_slice(cfs_rq, se), se);
770 }
771
772 #include "pelt.h"
773 #ifdef CONFIG_SMP
774
775 static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu);
776 static unsigned long task_h_load(struct task_struct *p);
777
778 /* Give new sched_entity start runnable values to heavy its load in infant time */
init_entity_runnable_average(struct sched_entity * se)779 void init_entity_runnable_average(struct sched_entity *se)
780 {
781 struct sched_avg *sa = &se->avg;
782
783 memset(sa, 0, sizeof(*sa));
784
785 /*
786 * Tasks are initialized with full load to be seen as heavy tasks until
787 * they get a chance to stabilize to their real load level.
788 * Group entities are initialized with zero load to reflect the fact that
789 * nothing has been attached to the task group yet.
790 */
791 if (entity_is_task(se))
792 sa->load_avg = scale_load_down(se->load.weight);
793
794 /* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */
795 }
796
797 static void attach_entity_cfs_rq(struct sched_entity *se);
798
799 /*
800 * With new tasks being created, their initial util_avgs are extrapolated
801 * based on the cfs_rq's current util_avg:
802 *
803 * util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight
804 *
805 * However, in many cases, the above util_avg does not give a desired
806 * value. Moreover, the sum of the util_avgs may be divergent, such
807 * as when the series is a harmonic series.
808 *
809 * To solve this problem, we also cap the util_avg of successive tasks to
810 * only 1/2 of the left utilization budget:
811 *
812 * util_avg_cap = (cpu_scale - cfs_rq->avg.util_avg) / 2^n
813 *
814 * where n denotes the nth task and cpu_scale the CPU capacity.
815 *
816 * For example, for a CPU with 1024 of capacity, a simplest series from
817 * the beginning would be like:
818 *
819 * task util_avg: 512, 256, 128, 64, 32, 16, 8, ...
820 * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ...
821 *
822 * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap)
823 * if util_avg > util_avg_cap.
824 */
post_init_entity_util_avg(struct task_struct * p)825 void post_init_entity_util_avg(struct task_struct *p)
826 {
827 struct sched_entity *se = &p->se;
828 struct cfs_rq *cfs_rq = cfs_rq_of(se);
829 struct sched_avg *sa = &se->avg;
830 long cpu_scale = arch_scale_cpu_capacity(cpu_of(rq_of(cfs_rq)));
831 long cap = (long)(cpu_scale - cfs_rq->avg.util_avg) / 2;
832
833 if (cap > 0) {
834 if (cfs_rq->avg.util_avg != 0) {
835 sa->util_avg = cfs_rq->avg.util_avg * se->load.weight;
836 sa->util_avg /= (cfs_rq->avg.load_avg + 1);
837
838 if (sa->util_avg > cap)
839 sa->util_avg = cap;
840 } else {
841 sa->util_avg = cap;
842 }
843 }
844
845 sa->runnable_avg = sa->util_avg;
846
847 if (p->sched_class != &fair_sched_class) {
848 /*
849 * For !fair tasks do:
850 *
851 update_cfs_rq_load_avg(now, cfs_rq);
852 attach_entity_load_avg(cfs_rq, se);
853 switched_from_fair(rq, p);
854 *
855 * such that the next switched_to_fair() has the
856 * expected state.
857 */
858 se->avg.last_update_time = cfs_rq_clock_pelt(cfs_rq);
859 return;
860 }
861
862 attach_entity_cfs_rq(se);
863 }
864
865 #else /* !CONFIG_SMP */
init_entity_runnable_average(struct sched_entity * se)866 void init_entity_runnable_average(struct sched_entity *se)
867 {
868 }
post_init_entity_util_avg(struct task_struct * p)869 void post_init_entity_util_avg(struct task_struct *p)
870 {
871 }
update_tg_load_avg(struct cfs_rq * cfs_rq)872 static void update_tg_load_avg(struct cfs_rq *cfs_rq)
873 {
874 }
875 #endif /* CONFIG_SMP */
876
877 /*
878 * Update the current task's runtime statistics.
879 */
update_curr(struct cfs_rq * cfs_rq)880 static void update_curr(struct cfs_rq *cfs_rq)
881 {
882 struct sched_entity *curr = cfs_rq->curr;
883 u64 now = rq_clock_task(rq_of(cfs_rq));
884 u64 delta_exec;
885
886 if (unlikely(!curr))
887 return;
888
889 delta_exec = now - curr->exec_start;
890 if (unlikely((s64)delta_exec <= 0))
891 return;
892
893 curr->exec_start = now;
894
895 schedstat_set(curr->statistics.exec_max,
896 max(delta_exec, curr->statistics.exec_max));
897
898 curr->sum_exec_runtime += delta_exec;
899 schedstat_add(cfs_rq->exec_clock, delta_exec);
900
901 curr->vruntime += calc_delta_fair(delta_exec, curr);
902 update_min_vruntime(cfs_rq);
903
904 if (entity_is_task(curr)) {
905 struct task_struct *curtask = task_of(curr);
906
907 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
908 cgroup_account_cputime(curtask, delta_exec);
909 account_group_exec_runtime(curtask, delta_exec);
910 }
911
912 account_cfs_rq_runtime(cfs_rq, delta_exec);
913 }
914
update_curr_fair(struct rq * rq)915 static void update_curr_fair(struct rq *rq)
916 {
917 update_curr(cfs_rq_of(&rq->curr->se));
918 }
919
920 static inline void
update_stats_wait_start(struct cfs_rq * cfs_rq,struct sched_entity * se)921 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
922 {
923 u64 wait_start, prev_wait_start;
924
925 if (!schedstat_enabled())
926 return;
927
928 wait_start = rq_clock(rq_of(cfs_rq));
929 prev_wait_start = schedstat_val(se->statistics.wait_start);
930
931 if (entity_is_task(se) && task_on_rq_migrating(task_of(se)) &&
932 likely(wait_start > prev_wait_start))
933 wait_start -= prev_wait_start;
934
935 __schedstat_set(se->statistics.wait_start, wait_start);
936 }
937
938 static inline void
update_stats_wait_end(struct cfs_rq * cfs_rq,struct sched_entity * se)939 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
940 {
941 struct task_struct *p;
942 u64 delta;
943
944 if (!schedstat_enabled())
945 return;
946
947 delta = rq_clock(rq_of(cfs_rq)) - schedstat_val(se->statistics.wait_start);
948
949 if (entity_is_task(se)) {
950 p = task_of(se);
951 if (task_on_rq_migrating(p)) {
952 /*
953 * Preserve migrating task's wait time so wait_start
954 * time stamp can be adjusted to accumulate wait time
955 * prior to migration.
956 */
957 __schedstat_set(se->statistics.wait_start, delta);
958 return;
959 }
960 trace_sched_stat_wait(p, delta);
961 }
962
963 __schedstat_set(se->statistics.wait_max,
964 max(schedstat_val(se->statistics.wait_max), delta));
965 __schedstat_inc(se->statistics.wait_count);
966 __schedstat_add(se->statistics.wait_sum, delta);
967 __schedstat_set(se->statistics.wait_start, 0);
968 }
969
970 static inline void
update_stats_enqueue_sleeper(struct cfs_rq * cfs_rq,struct sched_entity * se)971 update_stats_enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
972 {
973 struct task_struct *tsk = NULL;
974 u64 sleep_start, block_start;
975
976 if (!schedstat_enabled())
977 return;
978
979 sleep_start = schedstat_val(se->statistics.sleep_start);
980 block_start = schedstat_val(se->statistics.block_start);
981
982 if (entity_is_task(se))
983 tsk = task_of(se);
984
985 if (sleep_start) {
986 u64 delta = rq_clock(rq_of(cfs_rq)) - sleep_start;
987
988 if ((s64)delta < 0)
989 delta = 0;
990
991 if (unlikely(delta > schedstat_val(se->statistics.sleep_max)))
992 __schedstat_set(se->statistics.sleep_max, delta);
993
994 __schedstat_set(se->statistics.sleep_start, 0);
995 __schedstat_add(se->statistics.sum_sleep_runtime, delta);
996
997 if (tsk) {
998 account_scheduler_latency(tsk, delta >> 10, 1);
999 trace_sched_stat_sleep(tsk, delta);
1000 }
1001 }
1002 if (block_start) {
1003 u64 delta = rq_clock(rq_of(cfs_rq)) - block_start;
1004
1005 if ((s64)delta < 0)
1006 delta = 0;
1007
1008 if (unlikely(delta > schedstat_val(se->statistics.block_max)))
1009 __schedstat_set(se->statistics.block_max, delta);
1010
1011 __schedstat_set(se->statistics.block_start, 0);
1012 __schedstat_add(se->statistics.sum_sleep_runtime, delta);
1013
1014 if (tsk) {
1015 if (tsk->in_iowait) {
1016 __schedstat_add(se->statistics.iowait_sum, delta);
1017 __schedstat_inc(se->statistics.iowait_count);
1018 trace_sched_stat_iowait(tsk, delta);
1019 }
1020
1021 trace_sched_stat_blocked(tsk, delta);
1022
1023 /*
1024 * Blocking time is in units of nanosecs, so shift by
1025 * 20 to get a milliseconds-range estimation of the
1026 * amount of time that the task spent sleeping:
1027 */
1028 if (unlikely(prof_on == SLEEP_PROFILING)) {
1029 profile_hits(SLEEP_PROFILING,
1030 (void *)get_wchan(tsk),
1031 delta >> 20);
1032 }
1033 account_scheduler_latency(tsk, delta >> 10, 0);
1034 }
1035 }
1036 }
1037
1038 /*
1039 * Task is being enqueued - update stats:
1040 */
1041 static inline void
update_stats_enqueue(struct cfs_rq * cfs_rq,struct sched_entity * se,int flags)1042 update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1043 {
1044 if (!schedstat_enabled())
1045 return;
1046
1047 /*
1048 * Are we enqueueing a waiting task? (for current tasks
1049 * a dequeue/enqueue event is a NOP)
1050 */
1051 if (se != cfs_rq->curr)
1052 update_stats_wait_start(cfs_rq, se);
1053
1054 if (flags & ENQUEUE_WAKEUP)
1055 update_stats_enqueue_sleeper(cfs_rq, se);
1056 }
1057
1058 static inline void
update_stats_dequeue(struct cfs_rq * cfs_rq,struct sched_entity * se,int flags)1059 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1060 {
1061
1062 if (!schedstat_enabled())
1063 return;
1064
1065 /*
1066 * Mark the end of the wait period if dequeueing a
1067 * waiting task:
1068 */
1069 if (se != cfs_rq->curr)
1070 update_stats_wait_end(cfs_rq, se);
1071
1072 if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) {
1073 struct task_struct *tsk = task_of(se);
1074
1075 if (tsk->state & TASK_INTERRUPTIBLE)
1076 __schedstat_set(se->statistics.sleep_start,
1077 rq_clock(rq_of(cfs_rq)));
1078 if (tsk->state & TASK_UNINTERRUPTIBLE)
1079 __schedstat_set(se->statistics.block_start,
1080 rq_clock(rq_of(cfs_rq)));
1081 }
1082 }
1083
1084 /*
1085 * We are picking a new current task - update its stats:
1086 */
1087 static inline void
update_stats_curr_start(struct cfs_rq * cfs_rq,struct sched_entity * se)1088 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
1089 {
1090 /*
1091 * We are starting a new run period:
1092 */
1093 se->exec_start = rq_clock_task(rq_of(cfs_rq));
1094 }
1095
1096 /**************************************************
1097 * Scheduling class queueing methods:
1098 */
1099
1100 #ifdef CONFIG_NUMA_BALANCING
1101 /*
1102 * Approximate time to scan a full NUMA task in ms. The task scan period is
1103 * calculated based on the tasks virtual memory size and
1104 * numa_balancing_scan_size.
1105 */
1106 unsigned int sysctl_numa_balancing_scan_period_min = 1000;
1107 unsigned int sysctl_numa_balancing_scan_period_max = 60000;
1108
1109 /* Portion of address space to scan in MB */
1110 unsigned int sysctl_numa_balancing_scan_size = 256;
1111
1112 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
1113 unsigned int sysctl_numa_balancing_scan_delay = 1000;
1114
1115 struct numa_group {
1116 refcount_t refcount;
1117
1118 spinlock_t lock; /* nr_tasks, tasks */
1119 int nr_tasks;
1120 pid_t gid;
1121 int active_nodes;
1122
1123 struct rcu_head rcu;
1124 unsigned long total_faults;
1125 unsigned long max_faults_cpu;
1126 /*
1127 * Faults_cpu is used to decide whether memory should move
1128 * towards the CPU. As a consequence, these stats are weighted
1129 * more by CPU use than by memory faults.
1130 */
1131 unsigned long *faults_cpu;
1132 unsigned long faults[];
1133 };
1134
1135 /*
1136 * For functions that can be called in multiple contexts that permit reading
1137 * ->numa_group (see struct task_struct for locking rules).
1138 */
deref_task_numa_group(struct task_struct * p)1139 static struct numa_group *deref_task_numa_group(struct task_struct *p)
1140 {
1141 return rcu_dereference_check(p->numa_group, p == current ||
1142 (lockdep_is_held(&task_rq(p)->lock) && !READ_ONCE(p->on_cpu)));
1143 }
1144
deref_curr_numa_group(struct task_struct * p)1145 static struct numa_group *deref_curr_numa_group(struct task_struct *p)
1146 {
1147 return rcu_dereference_protected(p->numa_group, p == current);
1148 }
1149
1150 static inline unsigned long group_faults_priv(struct numa_group *ng);
1151 static inline unsigned long group_faults_shared(struct numa_group *ng);
1152
task_nr_scan_windows(struct task_struct * p)1153 static unsigned int task_nr_scan_windows(struct task_struct *p)
1154 {
1155 unsigned long rss = 0;
1156 unsigned long nr_scan_pages;
1157
1158 /*
1159 * Calculations based on RSS as non-present and empty pages are skipped
1160 * by the PTE scanner and NUMA hinting faults should be trapped based
1161 * on resident pages
1162 */
1163 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
1164 rss = get_mm_rss(p->mm);
1165 if (!rss)
1166 rss = nr_scan_pages;
1167
1168 rss = round_up(rss, nr_scan_pages);
1169 return rss / nr_scan_pages;
1170 }
1171
1172 /* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
1173 #define MAX_SCAN_WINDOW 2560
1174
task_scan_min(struct task_struct * p)1175 static unsigned int task_scan_min(struct task_struct *p)
1176 {
1177 unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
1178 unsigned int scan, floor;
1179 unsigned int windows = 1;
1180
1181 if (scan_size < MAX_SCAN_WINDOW)
1182 windows = MAX_SCAN_WINDOW / scan_size;
1183 floor = 1000 / windows;
1184
1185 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
1186 return max_t(unsigned int, floor, scan);
1187 }
1188
task_scan_start(struct task_struct * p)1189 static unsigned int task_scan_start(struct task_struct *p)
1190 {
1191 unsigned long smin = task_scan_min(p);
1192 unsigned long period = smin;
1193 struct numa_group *ng;
1194
1195 /* Scale the maximum scan period with the amount of shared memory. */
1196 rcu_read_lock();
1197 ng = rcu_dereference(p->numa_group);
1198 if (ng) {
1199 unsigned long shared = group_faults_shared(ng);
1200 unsigned long private = group_faults_priv(ng);
1201
1202 period *= refcount_read(&ng->refcount);
1203 period *= shared + 1;
1204 period /= private + shared + 1;
1205 }
1206 rcu_read_unlock();
1207
1208 return max(smin, period);
1209 }
1210
task_scan_max(struct task_struct * p)1211 static unsigned int task_scan_max(struct task_struct *p)
1212 {
1213 unsigned long smin = task_scan_min(p);
1214 unsigned long smax;
1215 struct numa_group *ng;
1216
1217 /* Watch for min being lower than max due to floor calculations */
1218 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
1219
1220 /* Scale the maximum scan period with the amount of shared memory. */
1221 ng = deref_curr_numa_group(p);
1222 if (ng) {
1223 unsigned long shared = group_faults_shared(ng);
1224 unsigned long private = group_faults_priv(ng);
1225 unsigned long period = smax;
1226
1227 period *= refcount_read(&ng->refcount);
1228 period *= shared + 1;
1229 period /= private + shared + 1;
1230
1231 smax = max(smax, period);
1232 }
1233
1234 return max(smin, smax);
1235 }
1236
account_numa_enqueue(struct rq * rq,struct task_struct * p)1237 static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
1238 {
1239 rq->nr_numa_running += (p->numa_preferred_nid != NUMA_NO_NODE);
1240 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
1241 }
1242
account_numa_dequeue(struct rq * rq,struct task_struct * p)1243 static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
1244 {
1245 rq->nr_numa_running -= (p->numa_preferred_nid != NUMA_NO_NODE);
1246 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
1247 }
1248
1249 /* Shared or private faults. */
1250 #define NR_NUMA_HINT_FAULT_TYPES 2
1251
1252 /* Memory and CPU locality */
1253 #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
1254
1255 /* Averaged statistics, and temporary buffers. */
1256 #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
1257
task_numa_group_id(struct task_struct * p)1258 pid_t task_numa_group_id(struct task_struct *p)
1259 {
1260 struct numa_group *ng;
1261 pid_t gid = 0;
1262
1263 rcu_read_lock();
1264 ng = rcu_dereference(p->numa_group);
1265 if (ng)
1266 gid = ng->gid;
1267 rcu_read_unlock();
1268
1269 return gid;
1270 }
1271
1272 /*
1273 * The averaged statistics, shared & private, memory & CPU,
1274 * occupy the first half of the array. The second half of the
1275 * array is for current counters, which are averaged into the
1276 * first set by task_numa_placement.
1277 */
task_faults_idx(enum numa_faults_stats s,int nid,int priv)1278 static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
1279 {
1280 return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
1281 }
1282
task_faults(struct task_struct * p,int nid)1283 static inline unsigned long task_faults(struct task_struct *p, int nid)
1284 {
1285 if (!p->numa_faults)
1286 return 0;
1287
1288 return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1289 p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
1290 }
1291
group_faults(struct task_struct * p,int nid)1292 static inline unsigned long group_faults(struct task_struct *p, int nid)
1293 {
1294 struct numa_group *ng = deref_task_numa_group(p);
1295
1296 if (!ng)
1297 return 0;
1298
1299 return ng->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1300 ng->faults[task_faults_idx(NUMA_MEM, nid, 1)];
1301 }
1302
group_faults_cpu(struct numa_group * group,int nid)1303 static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
1304 {
1305 return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] +
1306 group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)];
1307 }
1308
group_faults_priv(struct numa_group * ng)1309 static inline unsigned long group_faults_priv(struct numa_group *ng)
1310 {
1311 unsigned long faults = 0;
1312 int node;
1313
1314 for_each_online_node(node) {
1315 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
1316 }
1317
1318 return faults;
1319 }
1320
group_faults_shared(struct numa_group * ng)1321 static inline unsigned long group_faults_shared(struct numa_group *ng)
1322 {
1323 unsigned long faults = 0;
1324 int node;
1325
1326 for_each_online_node(node) {
1327 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 0)];
1328 }
1329
1330 return faults;
1331 }
1332
1333 /*
1334 * A node triggering more than 1/3 as many NUMA faults as the maximum is
1335 * considered part of a numa group's pseudo-interleaving set. Migrations
1336 * between these nodes are slowed down, to allow things to settle down.
1337 */
1338 #define ACTIVE_NODE_FRACTION 3
1339
numa_is_active_node(int nid,struct numa_group * ng)1340 static bool numa_is_active_node(int nid, struct numa_group *ng)
1341 {
1342 return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu;
1343 }
1344
1345 /* Handle placement on systems where not all nodes are directly connected. */
score_nearby_nodes(struct task_struct * p,int nid,int maxdist,bool task)1346 static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
1347 int maxdist, bool task)
1348 {
1349 unsigned long score = 0;
1350 int node;
1351
1352 /*
1353 * All nodes are directly connected, and the same distance
1354 * from each other. No need for fancy placement algorithms.
1355 */
1356 if (sched_numa_topology_type == NUMA_DIRECT)
1357 return 0;
1358
1359 /*
1360 * This code is called for each node, introducing N^2 complexity,
1361 * which should be ok given the number of nodes rarely exceeds 8.
1362 */
1363 for_each_online_node(node) {
1364 unsigned long faults;
1365 int dist = node_distance(nid, node);
1366
1367 /*
1368 * The furthest away nodes in the system are not interesting
1369 * for placement; nid was already counted.
1370 */
1371 if (dist == sched_max_numa_distance || node == nid)
1372 continue;
1373
1374 /*
1375 * On systems with a backplane NUMA topology, compare groups
1376 * of nodes, and move tasks towards the group with the most
1377 * memory accesses. When comparing two nodes at distance
1378 * "hoplimit", only nodes closer by than "hoplimit" are part
1379 * of each group. Skip other nodes.
1380 */
1381 if (sched_numa_topology_type == NUMA_BACKPLANE &&
1382 dist >= maxdist)
1383 continue;
1384
1385 /* Add up the faults from nearby nodes. */
1386 if (task)
1387 faults = task_faults(p, node);
1388 else
1389 faults = group_faults(p, node);
1390
1391 /*
1392 * On systems with a glueless mesh NUMA topology, there are
1393 * no fixed "groups of nodes". Instead, nodes that are not
1394 * directly connected bounce traffic through intermediate
1395 * nodes; a numa_group can occupy any set of nodes.
1396 * The further away a node is, the less the faults count.
1397 * This seems to result in good task placement.
1398 */
1399 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1400 faults *= (sched_max_numa_distance - dist);
1401 faults /= (sched_max_numa_distance - LOCAL_DISTANCE);
1402 }
1403
1404 score += faults;
1405 }
1406
1407 return score;
1408 }
1409
1410 /*
1411 * These return the fraction of accesses done by a particular task, or
1412 * task group, on a particular numa node. The group weight is given a
1413 * larger multiplier, in order to group tasks together that are almost
1414 * evenly spread out between numa nodes.
1415 */
task_weight(struct task_struct * p,int nid,int dist)1416 static inline unsigned long task_weight(struct task_struct *p, int nid,
1417 int dist)
1418 {
1419 unsigned long faults, total_faults;
1420
1421 if (!p->numa_faults)
1422 return 0;
1423
1424 total_faults = p->total_numa_faults;
1425
1426 if (!total_faults)
1427 return 0;
1428
1429 faults = task_faults(p, nid);
1430 faults += score_nearby_nodes(p, nid, dist, true);
1431
1432 return 1000 * faults / total_faults;
1433 }
1434
group_weight(struct task_struct * p,int nid,int dist)1435 static inline unsigned long group_weight(struct task_struct *p, int nid,
1436 int dist)
1437 {
1438 struct numa_group *ng = deref_task_numa_group(p);
1439 unsigned long faults, total_faults;
1440
1441 if (!ng)
1442 return 0;
1443
1444 total_faults = ng->total_faults;
1445
1446 if (!total_faults)
1447 return 0;
1448
1449 faults = group_faults(p, nid);
1450 faults += score_nearby_nodes(p, nid, dist, false);
1451
1452 return 1000 * faults / total_faults;
1453 }
1454
should_numa_migrate_memory(struct task_struct * p,struct page * page,int src_nid,int dst_cpu)1455 bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
1456 int src_nid, int dst_cpu)
1457 {
1458 struct numa_group *ng = deref_curr_numa_group(p);
1459 int dst_nid = cpu_to_node(dst_cpu);
1460 int last_cpupid, this_cpupid;
1461
1462 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
1463 last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
1464
1465 /*
1466 * Allow first faults or private faults to migrate immediately early in
1467 * the lifetime of a task. The magic number 4 is based on waiting for
1468 * two full passes of the "multi-stage node selection" test that is
1469 * executed below.
1470 */
1471 if ((p->numa_preferred_nid == NUMA_NO_NODE || p->numa_scan_seq <= 4) &&
1472 (cpupid_pid_unset(last_cpupid) || cpupid_match_pid(p, last_cpupid)))
1473 return true;
1474
1475 /*
1476 * Multi-stage node selection is used in conjunction with a periodic
1477 * migration fault to build a temporal task<->page relation. By using
1478 * a two-stage filter we remove short/unlikely relations.
1479 *
1480 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
1481 * a task's usage of a particular page (n_p) per total usage of this
1482 * page (n_t) (in a given time-span) to a probability.
1483 *
1484 * Our periodic faults will sample this probability and getting the
1485 * same result twice in a row, given these samples are fully
1486 * independent, is then given by P(n)^2, provided our sample period
1487 * is sufficiently short compared to the usage pattern.
1488 *
1489 * This quadric squishes small probabilities, making it less likely we
1490 * act on an unlikely task<->page relation.
1491 */
1492 if (!cpupid_pid_unset(last_cpupid) &&
1493 cpupid_to_nid(last_cpupid) != dst_nid)
1494 return false;
1495
1496 /* Always allow migrate on private faults */
1497 if (cpupid_match_pid(p, last_cpupid))
1498 return true;
1499
1500 /* A shared fault, but p->numa_group has not been set up yet. */
1501 if (!ng)
1502 return true;
1503
1504 /*
1505 * Destination node is much more heavily used than the source
1506 * node? Allow migration.
1507 */
1508 if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) *
1509 ACTIVE_NODE_FRACTION)
1510 return true;
1511
1512 /*
1513 * Distribute memory according to CPU & memory use on each node,
1514 * with 3/4 hysteresis to avoid unnecessary memory migrations:
1515 *
1516 * faults_cpu(dst) 3 faults_cpu(src)
1517 * --------------- * - > ---------------
1518 * faults_mem(dst) 4 faults_mem(src)
1519 */
1520 return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 >
1521 group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4;
1522 }
1523
1524 /*
1525 * 'numa_type' describes the node at the moment of load balancing.
1526 */
1527 enum numa_type {
1528 /* The node has spare capacity that can be used to run more tasks. */
1529 node_has_spare = 0,
1530 /*
1531 * The node is fully used and the tasks don't compete for more CPU
1532 * cycles. Nevertheless, some tasks might wait before running.
1533 */
1534 node_fully_busy,
1535 /*
1536 * The node is overloaded and can't provide expected CPU cycles to all
1537 * tasks.
1538 */
1539 node_overloaded
1540 };
1541
1542 /* Cached statistics for all CPUs within a node */
1543 struct numa_stats {
1544 unsigned long load;
1545 unsigned long runnable;
1546 unsigned long util;
1547 /* Total compute capacity of CPUs on a node */
1548 unsigned long compute_capacity;
1549 unsigned int nr_running;
1550 unsigned int weight;
1551 enum numa_type node_type;
1552 int idle_cpu;
1553 };
1554
is_core_idle(int cpu)1555 static inline bool is_core_idle(int cpu)
1556 {
1557 #ifdef CONFIG_SCHED_SMT
1558 int sibling;
1559
1560 for_each_cpu(sibling, cpu_smt_mask(cpu)) {
1561 if (cpu == sibling)
1562 continue;
1563
1564 if (!idle_cpu(sibling))
1565 return false;
1566 }
1567 #endif
1568
1569 return true;
1570 }
1571
1572 struct task_numa_env {
1573 struct task_struct *p;
1574
1575 int src_cpu, src_nid;
1576 int dst_cpu, dst_nid;
1577
1578 struct numa_stats src_stats, dst_stats;
1579
1580 int imbalance_pct;
1581 int dist;
1582
1583 struct task_struct *best_task;
1584 long best_imp;
1585 int best_cpu;
1586 };
1587
1588 static unsigned long cpu_load(struct rq *rq);
1589 static unsigned long cpu_runnable(struct rq *rq);
1590 static inline long adjust_numa_imbalance(int imbalance, int nr_running);
1591
1592 static inline enum
numa_classify(unsigned int imbalance_pct,struct numa_stats * ns)1593 numa_type numa_classify(unsigned int imbalance_pct,
1594 struct numa_stats *ns)
1595 {
1596 if ((ns->nr_running > ns->weight) &&
1597 (((ns->compute_capacity * 100) < (ns->util * imbalance_pct)) ||
1598 ((ns->compute_capacity * imbalance_pct) < (ns->runnable * 100))))
1599 return node_overloaded;
1600
1601 if ((ns->nr_running < ns->weight) ||
1602 (((ns->compute_capacity * 100) > (ns->util * imbalance_pct)) &&
1603 ((ns->compute_capacity * imbalance_pct) > (ns->runnable * 100))))
1604 return node_has_spare;
1605
1606 return node_fully_busy;
1607 }
1608
1609 #ifdef CONFIG_SCHED_SMT
1610 /* Forward declarations of select_idle_sibling helpers */
1611 static inline bool test_idle_cores(int cpu, bool def);
numa_idle_core(int idle_core,int cpu)1612 static inline int numa_idle_core(int idle_core, int cpu)
1613 {
1614 if (!static_branch_likely(&sched_smt_present) ||
1615 idle_core >= 0 || !test_idle_cores(cpu, false))
1616 return idle_core;
1617
1618 /*
1619 * Prefer cores instead of packing HT siblings
1620 * and triggering future load balancing.
1621 */
1622 if (is_core_idle(cpu))
1623 idle_core = cpu;
1624
1625 return idle_core;
1626 }
1627 #else
numa_idle_core(int idle_core,int cpu)1628 static inline int numa_idle_core(int idle_core, int cpu)
1629 {
1630 return idle_core;
1631 }
1632 #endif
1633
1634 /*
1635 * Gather all necessary information to make NUMA balancing placement
1636 * decisions that are compatible with standard load balancer. This
1637 * borrows code and logic from update_sg_lb_stats but sharing a
1638 * common implementation is impractical.
1639 */
update_numa_stats(struct task_numa_env * env,struct numa_stats * ns,int nid,bool find_idle)1640 static void update_numa_stats(struct task_numa_env *env,
1641 struct numa_stats *ns, int nid,
1642 bool find_idle)
1643 {
1644 int cpu, idle_core = -1;
1645
1646 memset(ns, 0, sizeof(*ns));
1647 ns->idle_cpu = -1;
1648
1649 rcu_read_lock();
1650 for_each_cpu(cpu, cpumask_of_node(nid)) {
1651 struct rq *rq = cpu_rq(cpu);
1652
1653 ns->load += cpu_load(rq);
1654 ns->runnable += cpu_runnable(rq);
1655 ns->util += cpu_util(cpu);
1656 ns->nr_running += rq->cfs.h_nr_running;
1657 ns->compute_capacity += capacity_of(cpu);
1658
1659 if (find_idle && !rq->nr_running && idle_cpu(cpu)) {
1660 if (READ_ONCE(rq->numa_migrate_on) ||
1661 !cpumask_test_cpu(cpu, env->p->cpus_ptr))
1662 continue;
1663
1664 if (ns->idle_cpu == -1)
1665 ns->idle_cpu = cpu;
1666
1667 idle_core = numa_idle_core(idle_core, cpu);
1668 }
1669 }
1670 rcu_read_unlock();
1671
1672 ns->weight = cpumask_weight(cpumask_of_node(nid));
1673
1674 ns->node_type = numa_classify(env->imbalance_pct, ns);
1675
1676 if (idle_core >= 0)
1677 ns->idle_cpu = idle_core;
1678 }
1679
task_numa_assign(struct task_numa_env * env,struct task_struct * p,long imp)1680 static void task_numa_assign(struct task_numa_env *env,
1681 struct task_struct *p, long imp)
1682 {
1683 struct rq *rq = cpu_rq(env->dst_cpu);
1684
1685 /* Check if run-queue part of active NUMA balance. */
1686 if (env->best_cpu != env->dst_cpu && xchg(&rq->numa_migrate_on, 1)) {
1687 int cpu;
1688 int start = env->dst_cpu;
1689
1690 /* Find alternative idle CPU. */
1691 for_each_cpu_wrap(cpu, cpumask_of_node(env->dst_nid), start) {
1692 if (cpu == env->best_cpu || !idle_cpu(cpu) ||
1693 !cpumask_test_cpu(cpu, env->p->cpus_ptr)) {
1694 continue;
1695 }
1696
1697 env->dst_cpu = cpu;
1698 rq = cpu_rq(env->dst_cpu);
1699 if (!xchg(&rq->numa_migrate_on, 1))
1700 goto assign;
1701 }
1702
1703 /* Failed to find an alternative idle CPU */
1704 return;
1705 }
1706
1707 assign:
1708 /*
1709 * Clear previous best_cpu/rq numa-migrate flag, since task now
1710 * found a better CPU to move/swap.
1711 */
1712 if (env->best_cpu != -1 && env->best_cpu != env->dst_cpu) {
1713 rq = cpu_rq(env->best_cpu);
1714 WRITE_ONCE(rq->numa_migrate_on, 0);
1715 }
1716
1717 if (env->best_task)
1718 put_task_struct(env->best_task);
1719 if (p)
1720 get_task_struct(p);
1721
1722 env->best_task = p;
1723 env->best_imp = imp;
1724 env->best_cpu = env->dst_cpu;
1725 }
1726
load_too_imbalanced(long src_load,long dst_load,struct task_numa_env * env)1727 static bool load_too_imbalanced(long src_load, long dst_load,
1728 struct task_numa_env *env)
1729 {
1730 long imb, old_imb;
1731 long orig_src_load, orig_dst_load;
1732 long src_capacity, dst_capacity;
1733
1734 /*
1735 * The load is corrected for the CPU capacity available on each node.
1736 *
1737 * src_load dst_load
1738 * ------------ vs ---------
1739 * src_capacity dst_capacity
1740 */
1741 src_capacity = env->src_stats.compute_capacity;
1742 dst_capacity = env->dst_stats.compute_capacity;
1743
1744 imb = abs(dst_load * src_capacity - src_load * dst_capacity);
1745
1746 orig_src_load = env->src_stats.load;
1747 orig_dst_load = env->dst_stats.load;
1748
1749 old_imb = abs(orig_dst_load * src_capacity - orig_src_load * dst_capacity);
1750
1751 /* Would this change make things worse? */
1752 return (imb > old_imb);
1753 }
1754
1755 /*
1756 * Maximum NUMA importance can be 1998 (2*999);
1757 * SMALLIMP @ 30 would be close to 1998/64.
1758 * Used to deter task migration.
1759 */
1760 #define SMALLIMP 30
1761
1762 /*
1763 * This checks if the overall compute and NUMA accesses of the system would
1764 * be improved if the source tasks was migrated to the target dst_cpu taking
1765 * into account that it might be best if task running on the dst_cpu should
1766 * be exchanged with the source task
1767 */
task_numa_compare(struct task_numa_env * env,long taskimp,long groupimp,bool maymove)1768 static bool task_numa_compare(struct task_numa_env *env,
1769 long taskimp, long groupimp, bool maymove)
1770 {
1771 struct numa_group *cur_ng, *p_ng = deref_curr_numa_group(env->p);
1772 struct rq *dst_rq = cpu_rq(env->dst_cpu);
1773 long imp = p_ng ? groupimp : taskimp;
1774 struct task_struct *cur;
1775 long src_load, dst_load;
1776 int dist = env->dist;
1777 long moveimp = imp;
1778 long load;
1779 bool stopsearch = false;
1780
1781 if (READ_ONCE(dst_rq->numa_migrate_on))
1782 return false;
1783
1784 rcu_read_lock();
1785 cur = rcu_dereference(dst_rq->curr);
1786 if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur)))
1787 cur = NULL;
1788
1789 /*
1790 * Because we have preemption enabled we can get migrated around and
1791 * end try selecting ourselves (current == env->p) as a swap candidate.
1792 */
1793 if (cur == env->p) {
1794 stopsearch = true;
1795 goto unlock;
1796 }
1797
1798 if (!cur) {
1799 if (maymove && moveimp >= env->best_imp)
1800 goto assign;
1801 else
1802 goto unlock;
1803 }
1804
1805 /* Skip this swap candidate if cannot move to the source cpu. */
1806 if (!cpumask_test_cpu(env->src_cpu, cur->cpus_ptr))
1807 goto unlock;
1808
1809 /*
1810 * Skip this swap candidate if it is not moving to its preferred
1811 * node and the best task is.
1812 */
1813 if (env->best_task &&
1814 env->best_task->numa_preferred_nid == env->src_nid &&
1815 cur->numa_preferred_nid != env->src_nid) {
1816 goto unlock;
1817 }
1818
1819 /*
1820 * "imp" is the fault differential for the source task between the
1821 * source and destination node. Calculate the total differential for
1822 * the source task and potential destination task. The more negative
1823 * the value is, the more remote accesses that would be expected to
1824 * be incurred if the tasks were swapped.
1825 *
1826 * If dst and source tasks are in the same NUMA group, or not
1827 * in any group then look only at task weights.
1828 */
1829 cur_ng = rcu_dereference(cur->numa_group);
1830 if (cur_ng == p_ng) {
1831 imp = taskimp + task_weight(cur, env->src_nid, dist) -
1832 task_weight(cur, env->dst_nid, dist);
1833 /*
1834 * Add some hysteresis to prevent swapping the
1835 * tasks within a group over tiny differences.
1836 */
1837 if (cur_ng)
1838 imp -= imp / 16;
1839 } else {
1840 /*
1841 * Compare the group weights. If a task is all by itself
1842 * (not part of a group), use the task weight instead.
1843 */
1844 if (cur_ng && p_ng)
1845 imp += group_weight(cur, env->src_nid, dist) -
1846 group_weight(cur, env->dst_nid, dist);
1847 else
1848 imp += task_weight(cur, env->src_nid, dist) -
1849 task_weight(cur, env->dst_nid, dist);
1850 }
1851
1852 /* Discourage picking a task already on its preferred node */
1853 if (cur->numa_preferred_nid == env->dst_nid)
1854 imp -= imp / 16;
1855
1856 /*
1857 * Encourage picking a task that moves to its preferred node.
1858 * This potentially makes imp larger than it's maximum of
1859 * 1998 (see SMALLIMP and task_weight for why) but in this
1860 * case, it does not matter.
1861 */
1862 if (cur->numa_preferred_nid == env->src_nid)
1863 imp += imp / 8;
1864
1865 if (maymove && moveimp > imp && moveimp > env->best_imp) {
1866 imp = moveimp;
1867 cur = NULL;
1868 goto assign;
1869 }
1870
1871 /*
1872 * Prefer swapping with a task moving to its preferred node over a
1873 * task that is not.
1874 */
1875 if (env->best_task && cur->numa_preferred_nid == env->src_nid &&
1876 env->best_task->numa_preferred_nid != env->src_nid) {
1877 goto assign;
1878 }
1879
1880 /*
1881 * If the NUMA importance is less than SMALLIMP,
1882 * task migration might only result in ping pong
1883 * of tasks and also hurt performance due to cache
1884 * misses.
1885 */
1886 if (imp < SMALLIMP || imp <= env->best_imp + SMALLIMP / 2)
1887 goto unlock;
1888
1889 /*
1890 * In the overloaded case, try and keep the load balanced.
1891 */
1892 load = task_h_load(env->p) - task_h_load(cur);
1893 if (!load)
1894 goto assign;
1895
1896 dst_load = env->dst_stats.load + load;
1897 src_load = env->src_stats.load - load;
1898
1899 if (load_too_imbalanced(src_load, dst_load, env))
1900 goto unlock;
1901
1902 assign:
1903 /* Evaluate an idle CPU for a task numa move. */
1904 if (!cur) {
1905 int cpu = env->dst_stats.idle_cpu;
1906
1907 /* Nothing cached so current CPU went idle since the search. */
1908 if (cpu < 0)
1909 cpu = env->dst_cpu;
1910
1911 /*
1912 * If the CPU is no longer truly idle and the previous best CPU
1913 * is, keep using it.
1914 */
1915 if (!idle_cpu(cpu) && env->best_cpu >= 0 &&
1916 idle_cpu(env->best_cpu)) {
1917 cpu = env->best_cpu;
1918 }
1919
1920 env->dst_cpu = cpu;
1921 }
1922
1923 task_numa_assign(env, cur, imp);
1924
1925 /*
1926 * If a move to idle is allowed because there is capacity or load
1927 * balance improves then stop the search. While a better swap
1928 * candidate may exist, a search is not free.
1929 */
1930 if (maymove && !cur && env->best_cpu >= 0 && idle_cpu(env->best_cpu))
1931 stopsearch = true;
1932
1933 /*
1934 * If a swap candidate must be identified and the current best task
1935 * moves its preferred node then stop the search.
1936 */
1937 if (!maymove && env->best_task &&
1938 env->best_task->numa_preferred_nid == env->src_nid) {
1939 stopsearch = true;
1940 }
1941 unlock:
1942 rcu_read_unlock();
1943
1944 return stopsearch;
1945 }
1946
task_numa_find_cpu(struct task_numa_env * env,long taskimp,long groupimp)1947 static void task_numa_find_cpu(struct task_numa_env *env,
1948 long taskimp, long groupimp)
1949 {
1950 bool maymove = false;
1951 int cpu;
1952
1953 /*
1954 * If dst node has spare capacity, then check if there is an
1955 * imbalance that would be overruled by the load balancer.
1956 */
1957 if (env->dst_stats.node_type == node_has_spare) {
1958 unsigned int imbalance;
1959 int src_running, dst_running;
1960
1961 /*
1962 * Would movement cause an imbalance? Note that if src has
1963 * more running tasks that the imbalance is ignored as the
1964 * move improves the imbalance from the perspective of the
1965 * CPU load balancer.
1966 * */
1967 src_running = env->src_stats.nr_running - 1;
1968 dst_running = env->dst_stats.nr_running + 1;
1969 imbalance = max(0, dst_running - src_running);
1970 imbalance = adjust_numa_imbalance(imbalance, dst_running);
1971
1972 /* Use idle CPU if there is no imbalance */
1973 if (!imbalance) {
1974 maymove = true;
1975 if (env->dst_stats.idle_cpu >= 0) {
1976 env->dst_cpu = env->dst_stats.idle_cpu;
1977 task_numa_assign(env, NULL, 0);
1978 return;
1979 }
1980 }
1981 } else {
1982 long src_load, dst_load, load;
1983 /*
1984 * If the improvement from just moving env->p direction is better
1985 * than swapping tasks around, check if a move is possible.
1986 */
1987 load = task_h_load(env->p);
1988 dst_load = env->dst_stats.load + load;
1989 src_load = env->src_stats.load - load;
1990 maymove = !load_too_imbalanced(src_load, dst_load, env);
1991 }
1992
1993 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1994 /* Skip this CPU if the source task cannot migrate */
1995 if (!cpumask_test_cpu(cpu, env->p->cpus_ptr))
1996 continue;
1997
1998 env->dst_cpu = cpu;
1999 if (task_numa_compare(env, taskimp, groupimp, maymove))
2000 break;
2001 }
2002 }
2003
task_numa_migrate(struct task_struct * p)2004 static int task_numa_migrate(struct task_struct *p)
2005 {
2006 struct task_numa_env env = {
2007 .p = p,
2008
2009 .src_cpu = task_cpu(p),
2010 .src_nid = task_node(p),
2011
2012 .imbalance_pct = 112,
2013
2014 .best_task = NULL,
2015 .best_imp = 0,
2016 .best_cpu = -1,
2017 };
2018 unsigned long taskweight, groupweight;
2019 struct sched_domain *sd;
2020 long taskimp, groupimp;
2021 struct numa_group *ng;
2022 struct rq *best_rq;
2023 int nid, ret, dist;
2024
2025 /*
2026 * Pick the lowest SD_NUMA domain, as that would have the smallest
2027 * imbalance and would be the first to start moving tasks about.
2028 *
2029 * And we want to avoid any moving of tasks about, as that would create
2030 * random movement of tasks -- counter the numa conditions we're trying
2031 * to satisfy here.
2032 */
2033 rcu_read_lock();
2034 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
2035 if (sd)
2036 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
2037 rcu_read_unlock();
2038
2039 /*
2040 * Cpusets can break the scheduler domain tree into smaller
2041 * balance domains, some of which do not cross NUMA boundaries.
2042 * Tasks that are "trapped" in such domains cannot be migrated
2043 * elsewhere, so there is no point in (re)trying.
2044 */
2045 if (unlikely(!sd)) {
2046 sched_setnuma(p, task_node(p));
2047 return -EINVAL;
2048 }
2049
2050 env.dst_nid = p->numa_preferred_nid;
2051 dist = env.dist = node_distance(env.src_nid, env.dst_nid);
2052 taskweight = task_weight(p, env.src_nid, dist);
2053 groupweight = group_weight(p, env.src_nid, dist);
2054 update_numa_stats(&env, &env.src_stats, env.src_nid, false);
2055 taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
2056 groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
2057 update_numa_stats(&env, &env.dst_stats, env.dst_nid, true);
2058
2059 /* Try to find a spot on the preferred nid. */
2060 task_numa_find_cpu(&env, taskimp, groupimp);
2061
2062 /*
2063 * Look at other nodes in these cases:
2064 * - there is no space available on the preferred_nid
2065 * - the task is part of a numa_group that is interleaved across
2066 * multiple NUMA nodes; in order to better consolidate the group,
2067 * we need to check other locations.
2068 */
2069 ng = deref_curr_numa_group(p);
2070 if (env.best_cpu == -1 || (ng && ng->active_nodes > 1)) {
2071 for_each_online_node(nid) {
2072 if (nid == env.src_nid || nid == p->numa_preferred_nid)
2073 continue;
2074
2075 dist = node_distance(env.src_nid, env.dst_nid);
2076 if (sched_numa_topology_type == NUMA_BACKPLANE &&
2077 dist != env.dist) {
2078 taskweight = task_weight(p, env.src_nid, dist);
2079 groupweight = group_weight(p, env.src_nid, dist);
2080 }
2081
2082 /* Only consider nodes where both task and groups benefit */
2083 taskimp = task_weight(p, nid, dist) - taskweight;
2084 groupimp = group_weight(p, nid, dist) - groupweight;
2085 if (taskimp < 0 && groupimp < 0)
2086 continue;
2087
2088 env.dist = dist;
2089 env.dst_nid = nid;
2090 update_numa_stats(&env, &env.dst_stats, env.dst_nid, true);
2091 task_numa_find_cpu(&env, taskimp, groupimp);
2092 }
2093 }
2094
2095 /*
2096 * If the task is part of a workload that spans multiple NUMA nodes,
2097 * and is migrating into one of the workload's active nodes, remember
2098 * this node as the task's preferred numa node, so the workload can
2099 * settle down.
2100 * A task that migrated to a second choice node will be better off
2101 * trying for a better one later. Do not set the preferred node here.
2102 */
2103 if (ng) {
2104 if (env.best_cpu == -1)
2105 nid = env.src_nid;
2106 else
2107 nid = cpu_to_node(env.best_cpu);
2108
2109 if (nid != p->numa_preferred_nid)
2110 sched_setnuma(p, nid);
2111 }
2112
2113 /* No better CPU than the current one was found. */
2114 if (env.best_cpu == -1) {
2115 trace_sched_stick_numa(p, env.src_cpu, NULL, -1);
2116 return -EAGAIN;
2117 }
2118
2119 best_rq = cpu_rq(env.best_cpu);
2120 if (env.best_task == NULL) {
2121 ret = migrate_task_to(p, env.best_cpu);
2122 WRITE_ONCE(best_rq->numa_migrate_on, 0);
2123 if (ret != 0)
2124 trace_sched_stick_numa(p, env.src_cpu, NULL, env.best_cpu);
2125 return ret;
2126 }
2127
2128 ret = migrate_swap(p, env.best_task, env.best_cpu, env.src_cpu);
2129 WRITE_ONCE(best_rq->numa_migrate_on, 0);
2130
2131 if (ret != 0)
2132 trace_sched_stick_numa(p, env.src_cpu, env.best_task, env.best_cpu);
2133 put_task_struct(env.best_task);
2134 return ret;
2135 }
2136
2137 /* Attempt to migrate a task to a CPU on the preferred node. */
numa_migrate_preferred(struct task_struct * p)2138 static void numa_migrate_preferred(struct task_struct *p)
2139 {
2140 unsigned long interval = HZ;
2141
2142 /* This task has no NUMA fault statistics yet */
2143 if (unlikely(p->numa_preferred_nid == NUMA_NO_NODE || !p->numa_faults))
2144 return;
2145
2146 /* Periodically retry migrating the task to the preferred node */
2147 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
2148 p->numa_migrate_retry = jiffies + interval;
2149
2150 /* Success if task is already running on preferred CPU */
2151 if (task_node(p) == p->numa_preferred_nid)
2152 return;
2153
2154 /* Otherwise, try migrate to a CPU on the preferred node */
2155 task_numa_migrate(p);
2156 }
2157
2158 /*
2159 * Find out how many nodes on the workload is actively running on. Do this by
2160 * tracking the nodes from which NUMA hinting faults are triggered. This can
2161 * be different from the set of nodes where the workload's memory is currently
2162 * located.
2163 */
numa_group_count_active_nodes(struct numa_group * numa_group)2164 static void numa_group_count_active_nodes(struct numa_group *numa_group)
2165 {
2166 unsigned long faults, max_faults = 0;
2167 int nid, active_nodes = 0;
2168
2169 for_each_online_node(nid) {
2170 faults = group_faults_cpu(numa_group, nid);
2171 if (faults > max_faults)
2172 max_faults = faults;
2173 }
2174
2175 for_each_online_node(nid) {
2176 faults = group_faults_cpu(numa_group, nid);
2177 if (faults * ACTIVE_NODE_FRACTION > max_faults)
2178 active_nodes++;
2179 }
2180
2181 numa_group->max_faults_cpu = max_faults;
2182 numa_group->active_nodes = active_nodes;
2183 }
2184
2185 /*
2186 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
2187 * increments. The more local the fault statistics are, the higher the scan
2188 * period will be for the next scan window. If local/(local+remote) ratio is
2189 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
2190 * the scan period will decrease. Aim for 70% local accesses.
2191 */
2192 #define NUMA_PERIOD_SLOTS 10
2193 #define NUMA_PERIOD_THRESHOLD 7
2194
2195 /*
2196 * Increase the scan period (slow down scanning) if the majority of
2197 * our memory is already on our local node, or if the majority of
2198 * the page accesses are shared with other processes.
2199 * Otherwise, decrease the scan period.
2200 */
update_task_scan_period(struct task_struct * p,unsigned long shared,unsigned long private)2201 static void update_task_scan_period(struct task_struct *p,
2202 unsigned long shared, unsigned long private)
2203 {
2204 unsigned int period_slot;
2205 int lr_ratio, ps_ratio;
2206 int diff;
2207
2208 unsigned long remote = p->numa_faults_locality[0];
2209 unsigned long local = p->numa_faults_locality[1];
2210
2211 /*
2212 * If there were no record hinting faults then either the task is
2213 * completely idle or all activity is areas that are not of interest
2214 * to automatic numa balancing. Related to that, if there were failed
2215 * migration then it implies we are migrating too quickly or the local
2216 * node is overloaded. In either case, scan slower
2217 */
2218 if (local + shared == 0 || p->numa_faults_locality[2]) {
2219 p->numa_scan_period = min(p->numa_scan_period_max,
2220 p->numa_scan_period << 1);
2221
2222 p->mm->numa_next_scan = jiffies +
2223 msecs_to_jiffies(p->numa_scan_period);
2224
2225 return;
2226 }
2227
2228 /*
2229 * Prepare to scale scan period relative to the current period.
2230 * == NUMA_PERIOD_THRESHOLD scan period stays the same
2231 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
2232 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
2233 */
2234 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
2235 lr_ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
2236 ps_ratio = (private * NUMA_PERIOD_SLOTS) / (private + shared);
2237
2238 if (ps_ratio >= NUMA_PERIOD_THRESHOLD) {
2239 /*
2240 * Most memory accesses are local. There is no need to
2241 * do fast NUMA scanning, since memory is already local.
2242 */
2243 int slot = ps_ratio - NUMA_PERIOD_THRESHOLD;
2244 if (!slot)
2245 slot = 1;
2246 diff = slot * period_slot;
2247 } else if (lr_ratio >= NUMA_PERIOD_THRESHOLD) {
2248 /*
2249 * Most memory accesses are shared with other tasks.
2250 * There is no point in continuing fast NUMA scanning,
2251 * since other tasks may just move the memory elsewhere.
2252 */
2253 int slot = lr_ratio - NUMA_PERIOD_THRESHOLD;
2254 if (!slot)
2255 slot = 1;
2256 diff = slot * period_slot;
2257 } else {
2258 /*
2259 * Private memory faults exceed (SLOTS-THRESHOLD)/SLOTS,
2260 * yet they are not on the local NUMA node. Speed up
2261 * NUMA scanning to get the memory moved over.
2262 */
2263 int ratio = max(lr_ratio, ps_ratio);
2264 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
2265 }
2266
2267 p->numa_scan_period = clamp(p->numa_scan_period + diff,
2268 task_scan_min(p), task_scan_max(p));
2269 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2270 }
2271
2272 /*
2273 * Get the fraction of time the task has been running since the last
2274 * NUMA placement cycle. The scheduler keeps similar statistics, but
2275 * decays those on a 32ms period, which is orders of magnitude off
2276 * from the dozens-of-seconds NUMA balancing period. Use the scheduler
2277 * stats only if the task is so new there are no NUMA statistics yet.
2278 */
numa_get_avg_runtime(struct task_struct * p,u64 * period)2279 static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
2280 {
2281 u64 runtime, delta, now;
2282 /* Use the start of this time slice to avoid calculations. */
2283 now = p->se.exec_start;
2284 runtime = p->se.sum_exec_runtime;
2285
2286 if (p->last_task_numa_placement) {
2287 delta = runtime - p->last_sum_exec_runtime;
2288 *period = now - p->last_task_numa_placement;
2289
2290 /* Avoid time going backwards, prevent potential divide error: */
2291 if (unlikely((s64)*period < 0))
2292 *period = 0;
2293 } else {
2294 delta = p->se.avg.load_sum;
2295 *period = LOAD_AVG_MAX;
2296 }
2297
2298 p->last_sum_exec_runtime = runtime;
2299 p->last_task_numa_placement = now;
2300
2301 return delta;
2302 }
2303
2304 /*
2305 * Determine the preferred nid for a task in a numa_group. This needs to
2306 * be done in a way that produces consistent results with group_weight,
2307 * otherwise workloads might not converge.
2308 */
preferred_group_nid(struct task_struct * p,int nid)2309 static int preferred_group_nid(struct task_struct *p, int nid)
2310 {
2311 nodemask_t nodes;
2312 int dist;
2313
2314 /* Direct connections between all NUMA nodes. */
2315 if (sched_numa_topology_type == NUMA_DIRECT)
2316 return nid;
2317
2318 /*
2319 * On a system with glueless mesh NUMA topology, group_weight
2320 * scores nodes according to the number of NUMA hinting faults on
2321 * both the node itself, and on nearby nodes.
2322 */
2323 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
2324 unsigned long score, max_score = 0;
2325 int node, max_node = nid;
2326
2327 dist = sched_max_numa_distance;
2328
2329 for_each_online_node(node) {
2330 score = group_weight(p, node, dist);
2331 if (score > max_score) {
2332 max_score = score;
2333 max_node = node;
2334 }
2335 }
2336 return max_node;
2337 }
2338
2339 /*
2340 * Finding the preferred nid in a system with NUMA backplane
2341 * interconnect topology is more involved. The goal is to locate
2342 * tasks from numa_groups near each other in the system, and
2343 * untangle workloads from different sides of the system. This requires
2344 * searching down the hierarchy of node groups, recursively searching
2345 * inside the highest scoring group of nodes. The nodemask tricks
2346 * keep the complexity of the search down.
2347 */
2348 nodes = node_online_map;
2349 for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
2350 unsigned long max_faults = 0;
2351 nodemask_t max_group = NODE_MASK_NONE;
2352 int a, b;
2353
2354 /* Are there nodes at this distance from each other? */
2355 if (!find_numa_distance(dist))
2356 continue;
2357
2358 for_each_node_mask(a, nodes) {
2359 unsigned long faults = 0;
2360 nodemask_t this_group;
2361 nodes_clear(this_group);
2362
2363 /* Sum group's NUMA faults; includes a==b case. */
2364 for_each_node_mask(b, nodes) {
2365 if (node_distance(a, b) < dist) {
2366 faults += group_faults(p, b);
2367 node_set(b, this_group);
2368 node_clear(b, nodes);
2369 }
2370 }
2371
2372 /* Remember the top group. */
2373 if (faults > max_faults) {
2374 max_faults = faults;
2375 max_group = this_group;
2376 /*
2377 * subtle: at the smallest distance there is
2378 * just one node left in each "group", the
2379 * winner is the preferred nid.
2380 */
2381 nid = a;
2382 }
2383 }
2384 /* Next round, evaluate the nodes within max_group. */
2385 if (!max_faults)
2386 break;
2387 nodes = max_group;
2388 }
2389 return nid;
2390 }
2391
task_numa_placement(struct task_struct * p)2392 static void task_numa_placement(struct task_struct *p)
2393 {
2394 int seq, nid, max_nid = NUMA_NO_NODE;
2395 unsigned long max_faults = 0;
2396 unsigned long fault_types[2] = { 0, 0 };
2397 unsigned long total_faults;
2398 u64 runtime, period;
2399 spinlock_t *group_lock = NULL;
2400 struct numa_group *ng;
2401
2402 /*
2403 * The p->mm->numa_scan_seq field gets updated without
2404 * exclusive access. Use READ_ONCE() here to ensure
2405 * that the field is read in a single access:
2406 */
2407 seq = READ_ONCE(p->mm->numa_scan_seq);
2408 if (p->numa_scan_seq == seq)
2409 return;
2410 p->numa_scan_seq = seq;
2411 p->numa_scan_period_max = task_scan_max(p);
2412
2413 total_faults = p->numa_faults_locality[0] +
2414 p->numa_faults_locality[1];
2415 runtime = numa_get_avg_runtime(p, &period);
2416
2417 /* If the task is part of a group prevent parallel updates to group stats */
2418 ng = deref_curr_numa_group(p);
2419 if (ng) {
2420 group_lock = &ng->lock;
2421 spin_lock_irq(group_lock);
2422 }
2423
2424 /* Find the node with the highest number of faults */
2425 for_each_online_node(nid) {
2426 /* Keep track of the offsets in numa_faults array */
2427 int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
2428 unsigned long faults = 0, group_faults = 0;
2429 int priv;
2430
2431 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
2432 long diff, f_diff, f_weight;
2433
2434 mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
2435 membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
2436 cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
2437 cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
2438
2439 /* Decay existing window, copy faults since last scan */
2440 diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
2441 fault_types[priv] += p->numa_faults[membuf_idx];
2442 p->numa_faults[membuf_idx] = 0;
2443
2444 /*
2445 * Normalize the faults_from, so all tasks in a group
2446 * count according to CPU use, instead of by the raw
2447 * number of faults. Tasks with little runtime have
2448 * little over-all impact on throughput, and thus their
2449 * faults are less important.
2450 */
2451 f_weight = div64_u64(runtime << 16, period + 1);
2452 f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
2453 (total_faults + 1);
2454 f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
2455 p->numa_faults[cpubuf_idx] = 0;
2456
2457 p->numa_faults[mem_idx] += diff;
2458 p->numa_faults[cpu_idx] += f_diff;
2459 faults += p->numa_faults[mem_idx];
2460 p->total_numa_faults += diff;
2461 if (ng) {
2462 /*
2463 * safe because we can only change our own group
2464 *
2465 * mem_idx represents the offset for a given
2466 * nid and priv in a specific region because it
2467 * is at the beginning of the numa_faults array.
2468 */
2469 ng->faults[mem_idx] += diff;
2470 ng->faults_cpu[mem_idx] += f_diff;
2471 ng->total_faults += diff;
2472 group_faults += ng->faults[mem_idx];
2473 }
2474 }
2475
2476 if (!ng) {
2477 if (faults > max_faults) {
2478 max_faults = faults;
2479 max_nid = nid;
2480 }
2481 } else if (group_faults > max_faults) {
2482 max_faults = group_faults;
2483 max_nid = nid;
2484 }
2485 }
2486
2487 if (ng) {
2488 numa_group_count_active_nodes(ng);
2489 spin_unlock_irq(group_lock);
2490 max_nid = preferred_group_nid(p, max_nid);
2491 }
2492
2493 if (max_faults) {
2494 /* Set the new preferred node */
2495 if (max_nid != p->numa_preferred_nid)
2496 sched_setnuma(p, max_nid);
2497 }
2498
2499 update_task_scan_period(p, fault_types[0], fault_types[1]);
2500 }
2501
get_numa_group(struct numa_group * grp)2502 static inline int get_numa_group(struct numa_group *grp)
2503 {
2504 return refcount_inc_not_zero(&grp->refcount);
2505 }
2506
put_numa_group(struct numa_group * grp)2507 static inline void put_numa_group(struct numa_group *grp)
2508 {
2509 if (refcount_dec_and_test(&grp->refcount))
2510 kfree_rcu(grp, rcu);
2511 }
2512
task_numa_group(struct task_struct * p,int cpupid,int flags,int * priv)2513 static void task_numa_group(struct task_struct *p, int cpupid, int flags,
2514 int *priv)
2515 {
2516 struct numa_group *grp, *my_grp;
2517 struct task_struct *tsk;
2518 bool join = false;
2519 int cpu = cpupid_to_cpu(cpupid);
2520 int i;
2521
2522 if (unlikely(!deref_curr_numa_group(p))) {
2523 unsigned int size = sizeof(struct numa_group) +
2524 4*nr_node_ids*sizeof(unsigned long);
2525
2526 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
2527 if (!grp)
2528 return;
2529
2530 refcount_set(&grp->refcount, 1);
2531 grp->active_nodes = 1;
2532 grp->max_faults_cpu = 0;
2533 spin_lock_init(&grp->lock);
2534 grp->gid = p->pid;
2535 /* Second half of the array tracks nids where faults happen */
2536 grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
2537 nr_node_ids;
2538
2539 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2540 grp->faults[i] = p->numa_faults[i];
2541
2542 grp->total_faults = p->total_numa_faults;
2543
2544 grp->nr_tasks++;
2545 rcu_assign_pointer(p->numa_group, grp);
2546 }
2547
2548 rcu_read_lock();
2549 tsk = READ_ONCE(cpu_rq(cpu)->curr);
2550
2551 if (!cpupid_match_pid(tsk, cpupid))
2552 goto no_join;
2553
2554 grp = rcu_dereference(tsk->numa_group);
2555 if (!grp)
2556 goto no_join;
2557
2558 my_grp = deref_curr_numa_group(p);
2559 if (grp == my_grp)
2560 goto no_join;
2561
2562 /*
2563 * Only join the other group if its bigger; if we're the bigger group,
2564 * the other task will join us.
2565 */
2566 if (my_grp->nr_tasks > grp->nr_tasks)
2567 goto no_join;
2568
2569 /*
2570 * Tie-break on the grp address.
2571 */
2572 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
2573 goto no_join;
2574
2575 /* Always join threads in the same process. */
2576 if (tsk->mm == current->mm)
2577 join = true;
2578
2579 /* Simple filter to avoid false positives due to PID collisions */
2580 if (flags & TNF_SHARED)
2581 join = true;
2582
2583 /* Update priv based on whether false sharing was detected */
2584 *priv = !join;
2585
2586 if (join && !get_numa_group(grp))
2587 goto no_join;
2588
2589 rcu_read_unlock();
2590
2591 if (!join)
2592 return;
2593
2594 BUG_ON(irqs_disabled());
2595 double_lock_irq(&my_grp->lock, &grp->lock);
2596
2597 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
2598 my_grp->faults[i] -= p->numa_faults[i];
2599 grp->faults[i] += p->numa_faults[i];
2600 }
2601 my_grp->total_faults -= p->total_numa_faults;
2602 grp->total_faults += p->total_numa_faults;
2603
2604 my_grp->nr_tasks--;
2605 grp->nr_tasks++;
2606
2607 spin_unlock(&my_grp->lock);
2608 spin_unlock_irq(&grp->lock);
2609
2610 rcu_assign_pointer(p->numa_group, grp);
2611
2612 put_numa_group(my_grp);
2613 return;
2614
2615 no_join:
2616 rcu_read_unlock();
2617 return;
2618 }
2619
2620 /*
2621 * Get rid of NUMA staticstics associated with a task (either current or dead).
2622 * If @final is set, the task is dead and has reached refcount zero, so we can
2623 * safely free all relevant data structures. Otherwise, there might be
2624 * concurrent reads from places like load balancing and procfs, and we should
2625 * reset the data back to default state without freeing ->numa_faults.
2626 */
task_numa_free(struct task_struct * p,bool final)2627 void task_numa_free(struct task_struct *p, bool final)
2628 {
2629 /* safe: p either is current or is being freed by current */
2630 struct numa_group *grp = rcu_dereference_raw(p->numa_group);
2631 unsigned long *numa_faults = p->numa_faults;
2632 unsigned long flags;
2633 int i;
2634
2635 if (!numa_faults)
2636 return;
2637
2638 if (grp) {
2639 spin_lock_irqsave(&grp->lock, flags);
2640 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2641 grp->faults[i] -= p->numa_faults[i];
2642 grp->total_faults -= p->total_numa_faults;
2643
2644 grp->nr_tasks--;
2645 spin_unlock_irqrestore(&grp->lock, flags);
2646 RCU_INIT_POINTER(p->numa_group, NULL);
2647 put_numa_group(grp);
2648 }
2649
2650 if (final) {
2651 p->numa_faults = NULL;
2652 kfree(numa_faults);
2653 } else {
2654 p->total_numa_faults = 0;
2655 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2656 numa_faults[i] = 0;
2657 }
2658 }
2659
2660 /*
2661 * Got a PROT_NONE fault for a page on @node.
2662 */
task_numa_fault(int last_cpupid,int mem_node,int pages,int flags)2663 void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
2664 {
2665 struct task_struct *p = current;
2666 bool migrated = flags & TNF_MIGRATED;
2667 int cpu_node = task_node(current);
2668 int local = !!(flags & TNF_FAULT_LOCAL);
2669 struct numa_group *ng;
2670 int priv;
2671
2672 if (!static_branch_likely(&sched_numa_balancing))
2673 return;
2674
2675 /* for example, ksmd faulting in a user's mm */
2676 if (!p->mm)
2677 return;
2678
2679 /* Allocate buffer to track faults on a per-node basis */
2680 if (unlikely(!p->numa_faults)) {
2681 int size = sizeof(*p->numa_faults) *
2682 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
2683
2684 p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
2685 if (!p->numa_faults)
2686 return;
2687
2688 p->total_numa_faults = 0;
2689 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2690 }
2691
2692 /*
2693 * First accesses are treated as private, otherwise consider accesses
2694 * to be private if the accessing pid has not changed
2695 */
2696 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
2697 priv = 1;
2698 } else {
2699 priv = cpupid_match_pid(p, last_cpupid);
2700 if (!priv && !(flags & TNF_NO_GROUP))
2701 task_numa_group(p, last_cpupid, flags, &priv);
2702 }
2703
2704 /*
2705 * If a workload spans multiple NUMA nodes, a shared fault that
2706 * occurs wholly within the set of nodes that the workload is
2707 * actively using should be counted as local. This allows the
2708 * scan rate to slow down when a workload has settled down.
2709 */
2710 ng = deref_curr_numa_group(p);
2711 if (!priv && !local && ng && ng->active_nodes > 1 &&
2712 numa_is_active_node(cpu_node, ng) &&
2713 numa_is_active_node(mem_node, ng))
2714 local = 1;
2715
2716 /*
2717 * Retry to migrate task to preferred node periodically, in case it
2718 * previously failed, or the scheduler moved us.
2719 */
2720 if (time_after(jiffies, p->numa_migrate_retry)) {
2721 task_numa_placement(p);
2722 numa_migrate_preferred(p);
2723 }
2724
2725 if (migrated)
2726 p->numa_pages_migrated += pages;
2727 if (flags & TNF_MIGRATE_FAIL)
2728 p->numa_faults_locality[2] += pages;
2729
2730 p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
2731 p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
2732 p->numa_faults_locality[local] += pages;
2733 }
2734
reset_ptenuma_scan(struct task_struct * p)2735 static void reset_ptenuma_scan(struct task_struct *p)
2736 {
2737 /*
2738 * We only did a read acquisition of the mmap sem, so
2739 * p->mm->numa_scan_seq is written to without exclusive access
2740 * and the update is not guaranteed to be atomic. That's not
2741 * much of an issue though, since this is just used for
2742 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
2743 * expensive, to avoid any form of compiler optimizations:
2744 */
2745 WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
2746 p->mm->numa_scan_offset = 0;
2747 }
2748
2749 /*
2750 * The expensive part of numa migration is done from task_work context.
2751 * Triggered from task_tick_numa().
2752 */
task_numa_work(struct callback_head * work)2753 static void task_numa_work(struct callback_head *work)
2754 {
2755 unsigned long migrate, next_scan, now = jiffies;
2756 struct task_struct *p = current;
2757 struct mm_struct *mm = p->mm;
2758 u64 runtime = p->se.sum_exec_runtime;
2759 struct vm_area_struct *vma;
2760 unsigned long start, end;
2761 unsigned long nr_pte_updates = 0;
2762 long pages, virtpages;
2763
2764 SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work));
2765
2766 work->next = work;
2767 /*
2768 * Who cares about NUMA placement when they're dying.
2769 *
2770 * NOTE: make sure not to dereference p->mm before this check,
2771 * exit_task_work() happens _after_ exit_mm() so we could be called
2772 * without p->mm even though we still had it when we enqueued this
2773 * work.
2774 */
2775 if (p->flags & PF_EXITING)
2776 return;
2777
2778 if (!mm->numa_next_scan) {
2779 mm->numa_next_scan = now +
2780 msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2781 }
2782
2783 /*
2784 * Enforce maximal scan/migration frequency..
2785 */
2786 migrate = mm->numa_next_scan;
2787 if (time_before(now, migrate))
2788 return;
2789
2790 if (p->numa_scan_period == 0) {
2791 p->numa_scan_period_max = task_scan_max(p);
2792 p->numa_scan_period = task_scan_start(p);
2793 }
2794
2795 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
2796 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
2797 return;
2798
2799 /*
2800 * Delay this task enough that another task of this mm will likely win
2801 * the next time around.
2802 */
2803 p->node_stamp += 2 * TICK_NSEC;
2804
2805 start = mm->numa_scan_offset;
2806 pages = sysctl_numa_balancing_scan_size;
2807 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
2808 virtpages = pages * 8; /* Scan up to this much virtual space */
2809 if (!pages)
2810 return;
2811
2812
2813 if (!mmap_read_trylock(mm))
2814 return;
2815 vma = find_vma(mm, start);
2816 if (!vma) {
2817 reset_ptenuma_scan(p);
2818 start = 0;
2819 vma = mm->mmap;
2820 }
2821 for (; vma; vma = vma->vm_next) {
2822 if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
2823 is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
2824 continue;
2825 }
2826
2827 /*
2828 * Shared library pages mapped by multiple processes are not
2829 * migrated as it is expected they are cache replicated. Avoid
2830 * hinting faults in read-only file-backed mappings or the vdso
2831 * as migrating the pages will be of marginal benefit.
2832 */
2833 if (!vma->vm_mm ||
2834 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
2835 continue;
2836
2837 /*
2838 * Skip inaccessible VMAs to avoid any confusion between
2839 * PROT_NONE and NUMA hinting ptes
2840 */
2841 if (!vma_is_accessible(vma))
2842 continue;
2843
2844 do {
2845 start = max(start, vma->vm_start);
2846 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
2847 end = min(end, vma->vm_end);
2848 nr_pte_updates = change_prot_numa(vma, start, end);
2849
2850 /*
2851 * Try to scan sysctl_numa_balancing_size worth of
2852 * hpages that have at least one present PTE that
2853 * is not already pte-numa. If the VMA contains
2854 * areas that are unused or already full of prot_numa
2855 * PTEs, scan up to virtpages, to skip through those
2856 * areas faster.
2857 */
2858 if (nr_pte_updates)
2859 pages -= (end - start) >> PAGE_SHIFT;
2860 virtpages -= (end - start) >> PAGE_SHIFT;
2861
2862 start = end;
2863 if (pages <= 0 || virtpages <= 0)
2864 goto out;
2865
2866 cond_resched();
2867 } while (end != vma->vm_end);
2868 }
2869
2870 out:
2871 /*
2872 * It is possible to reach the end of the VMA list but the last few
2873 * VMAs are not guaranteed to the vma_migratable. If they are not, we
2874 * would find the !migratable VMA on the next scan but not reset the
2875 * scanner to the start so check it now.
2876 */
2877 if (vma)
2878 mm->numa_scan_offset = start;
2879 else
2880 reset_ptenuma_scan(p);
2881 mmap_read_unlock(mm);
2882
2883 /*
2884 * Make sure tasks use at least 32x as much time to run other code
2885 * than they used here, to limit NUMA PTE scanning overhead to 3% max.
2886 * Usually update_task_scan_period slows down scanning enough; on an
2887 * overloaded system we need to limit overhead on a per task basis.
2888 */
2889 if (unlikely(p->se.sum_exec_runtime != runtime)) {
2890 u64 diff = p->se.sum_exec_runtime - runtime;
2891 p->node_stamp += 32 * diff;
2892 }
2893 }
2894
init_numa_balancing(unsigned long clone_flags,struct task_struct * p)2895 void init_numa_balancing(unsigned long clone_flags, struct task_struct *p)
2896 {
2897 int mm_users = 0;
2898 struct mm_struct *mm = p->mm;
2899
2900 if (mm) {
2901 mm_users = atomic_read(&mm->mm_users);
2902 if (mm_users == 1) {
2903 mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2904 mm->numa_scan_seq = 0;
2905 }
2906 }
2907 p->node_stamp = 0;
2908 p->numa_scan_seq = mm ? mm->numa_scan_seq : 0;
2909 p->numa_scan_period = sysctl_numa_balancing_scan_delay;
2910 /* Protect against double add, see task_tick_numa and task_numa_work */
2911 p->numa_work.next = &p->numa_work;
2912 p->numa_faults = NULL;
2913 RCU_INIT_POINTER(p->numa_group, NULL);
2914 p->last_task_numa_placement = 0;
2915 p->last_sum_exec_runtime = 0;
2916
2917 init_task_work(&p->numa_work, task_numa_work);
2918
2919 /* New address space, reset the preferred nid */
2920 if (!(clone_flags & CLONE_VM)) {
2921 p->numa_preferred_nid = NUMA_NO_NODE;
2922 return;
2923 }
2924
2925 /*
2926 * New thread, keep existing numa_preferred_nid which should be copied
2927 * already by arch_dup_task_struct but stagger when scans start.
2928 */
2929 if (mm) {
2930 unsigned int delay;
2931
2932 delay = min_t(unsigned int, task_scan_max(current),
2933 current->numa_scan_period * mm_users * NSEC_PER_MSEC);
2934 delay += 2 * TICK_NSEC;
2935 p->node_stamp = delay;
2936 }
2937 }
2938
2939 /*
2940 * Drive the periodic memory faults..
2941 */
task_tick_numa(struct rq * rq,struct task_struct * curr)2942 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2943 {
2944 struct callback_head *work = &curr->numa_work;
2945 u64 period, now;
2946
2947 /*
2948 * We don't care about NUMA placement if we don't have memory.
2949 */
2950 if ((curr->flags & (PF_EXITING | PF_KTHREAD)) || work->next != work)
2951 return;
2952
2953 /*
2954 * Using runtime rather than walltime has the dual advantage that
2955 * we (mostly) drive the selection from busy threads and that the
2956 * task needs to have done some actual work before we bother with
2957 * NUMA placement.
2958 */
2959 now = curr->se.sum_exec_runtime;
2960 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
2961
2962 if (now > curr->node_stamp + period) {
2963 if (!curr->node_stamp)
2964 curr->numa_scan_period = task_scan_start(curr);
2965 curr->node_stamp += period;
2966
2967 if (!time_before(jiffies, curr->mm->numa_next_scan))
2968 task_work_add(curr, work, TWA_RESUME);
2969 }
2970 }
2971
update_scan_period(struct task_struct * p,int new_cpu)2972 static void update_scan_period(struct task_struct *p, int new_cpu)
2973 {
2974 int src_nid = cpu_to_node(task_cpu(p));
2975 int dst_nid = cpu_to_node(new_cpu);
2976
2977 if (!static_branch_likely(&sched_numa_balancing))
2978 return;
2979
2980 if (!p->mm || !p->numa_faults || (p->flags & PF_EXITING))
2981 return;
2982
2983 if (src_nid == dst_nid)
2984 return;
2985
2986 /*
2987 * Allow resets if faults have been trapped before one scan
2988 * has completed. This is most likely due to a new task that
2989 * is pulled cross-node due to wakeups or load balancing.
2990 */
2991 if (p->numa_scan_seq) {
2992 /*
2993 * Avoid scan adjustments if moving to the preferred
2994 * node or if the task was not previously running on
2995 * the preferred node.
2996 */
2997 if (dst_nid == p->numa_preferred_nid ||
2998 (p->numa_preferred_nid != NUMA_NO_NODE &&
2999 src_nid != p->numa_preferred_nid))
3000 return;
3001 }
3002
3003 p->numa_scan_period = task_scan_start(p);
3004 }
3005
3006 #else
task_tick_numa(struct rq * rq,struct task_struct * curr)3007 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
3008 {
3009 }
3010
account_numa_enqueue(struct rq * rq,struct task_struct * p)3011 static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
3012 {
3013 }
3014
account_numa_dequeue(struct rq * rq,struct task_struct * p)3015 static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
3016 {
3017 }
3018
update_scan_period(struct task_struct * p,int new_cpu)3019 static inline void update_scan_period(struct task_struct *p, int new_cpu)
3020 {
3021 }
3022
3023 #endif /* CONFIG_NUMA_BALANCING */
3024
3025 static void
account_entity_enqueue(struct cfs_rq * cfs_rq,struct sched_entity * se)3026 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
3027 {
3028 update_load_add(&cfs_rq->load, se->load.weight);
3029 #ifdef CONFIG_SMP
3030 if (entity_is_task(se)) {
3031 struct rq *rq = rq_of(cfs_rq);
3032
3033 account_numa_enqueue(rq, task_of(se));
3034 list_add(&se->group_node, &rq->cfs_tasks);
3035 }
3036 #endif
3037 cfs_rq->nr_running++;
3038 }
3039
3040 static void
account_entity_dequeue(struct cfs_rq * cfs_rq,struct sched_entity * se)3041 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
3042 {
3043 update_load_sub(&cfs_rq->load, se->load.weight);
3044 #ifdef CONFIG_SMP
3045 if (entity_is_task(se)) {
3046 account_numa_dequeue(rq_of(cfs_rq), task_of(se));
3047 list_del_init(&se->group_node);
3048 }
3049 #endif
3050 cfs_rq->nr_running--;
3051 }
3052
3053 /*
3054 * Signed add and clamp on underflow.
3055 *
3056 * Explicitly do a load-store to ensure the intermediate value never hits
3057 * memory. This allows lockless observations without ever seeing the negative
3058 * values.
3059 */
3060 #define add_positive(_ptr, _val) do { \
3061 typeof(_ptr) ptr = (_ptr); \
3062 typeof(_val) val = (_val); \
3063 typeof(*ptr) res, var = READ_ONCE(*ptr); \
3064 \
3065 res = var + val; \
3066 \
3067 if (val < 0 && res > var) \
3068 res = 0; \
3069 \
3070 WRITE_ONCE(*ptr, res); \
3071 } while (0)
3072
3073 /*
3074 * Unsigned subtract and clamp on underflow.
3075 *
3076 * Explicitly do a load-store to ensure the intermediate value never hits
3077 * memory. This allows lockless observations without ever seeing the negative
3078 * values.
3079 */
3080 #define sub_positive(_ptr, _val) do { \
3081 typeof(_ptr) ptr = (_ptr); \
3082 typeof(*ptr) val = (_val); \
3083 typeof(*ptr) res, var = READ_ONCE(*ptr); \
3084 res = var - val; \
3085 if (res > var) \
3086 res = 0; \
3087 WRITE_ONCE(*ptr, res); \
3088 } while (0)
3089
3090 /*
3091 * Remove and clamp on negative, from a local variable.
3092 *
3093 * A variant of sub_positive(), which does not use explicit load-store
3094 * and is thus optimized for local variable updates.
3095 */
3096 #define lsub_positive(_ptr, _val) do { \
3097 typeof(_ptr) ptr = (_ptr); \
3098 *ptr -= min_t(typeof(*ptr), *ptr, _val); \
3099 } while (0)
3100
3101 #ifdef CONFIG_SMP
3102 static inline void
enqueue_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se)3103 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3104 {
3105 cfs_rq->avg.load_avg += se->avg.load_avg;
3106 cfs_rq->avg.load_sum += se_weight(se) * se->avg.load_sum;
3107 }
3108
3109 static inline void
dequeue_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se)3110 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3111 {
3112 sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg);
3113 sub_positive(&cfs_rq->avg.load_sum, se_weight(se) * se->avg.load_sum);
3114 }
3115 #else
3116 static inline void
enqueue_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se)3117 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
3118 static inline void
dequeue_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se)3119 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
3120 #endif
3121
reweight_entity(struct cfs_rq * cfs_rq,struct sched_entity * se,unsigned long weight)3122 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
3123 unsigned long weight)
3124 {
3125 if (se->on_rq) {
3126 /* commit outstanding execution time */
3127 if (cfs_rq->curr == se)
3128 update_curr(cfs_rq);
3129 update_load_sub(&cfs_rq->load, se->load.weight);
3130 }
3131 dequeue_load_avg(cfs_rq, se);
3132
3133 update_load_set(&se->load, weight);
3134
3135 #ifdef CONFIG_SMP
3136 do {
3137 u32 divider = get_pelt_divider(&se->avg);
3138
3139 se->avg.load_avg = div_u64(se_weight(se) * se->avg.load_sum, divider);
3140 } while (0);
3141 #endif
3142
3143 enqueue_load_avg(cfs_rq, se);
3144 if (se->on_rq)
3145 update_load_add(&cfs_rq->load, se->load.weight);
3146
3147 }
3148
reweight_task(struct task_struct * p,int prio)3149 void reweight_task(struct task_struct *p, int prio)
3150 {
3151 struct sched_entity *se = &p->se;
3152 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3153 struct load_weight *load = &se->load;
3154 unsigned long weight = scale_load(sched_prio_to_weight[prio]);
3155
3156 reweight_entity(cfs_rq, se, weight);
3157 load->inv_weight = sched_prio_to_wmult[prio];
3158 }
3159
3160 #ifdef CONFIG_FAIR_GROUP_SCHED
3161 #ifdef CONFIG_SMP
3162 /*
3163 * All this does is approximate the hierarchical proportion which includes that
3164 * global sum we all love to hate.
3165 *
3166 * That is, the weight of a group entity, is the proportional share of the
3167 * group weight based on the group runqueue weights. That is:
3168 *
3169 * tg->weight * grq->load.weight
3170 * ge->load.weight = ----------------------------- (1)
3171 * \Sum grq->load.weight
3172 *
3173 * Now, because computing that sum is prohibitively expensive to compute (been
3174 * there, done that) we approximate it with this average stuff. The average
3175 * moves slower and therefore the approximation is cheaper and more stable.
3176 *
3177 * So instead of the above, we substitute:
3178 *
3179 * grq->load.weight -> grq->avg.load_avg (2)
3180 *
3181 * which yields the following:
3182 *
3183 * tg->weight * grq->avg.load_avg
3184 * ge->load.weight = ------------------------------ (3)
3185 * tg->load_avg
3186 *
3187 * Where: tg->load_avg ~= \Sum grq->avg.load_avg
3188 *
3189 * That is shares_avg, and it is right (given the approximation (2)).
3190 *
3191 * The problem with it is that because the average is slow -- it was designed
3192 * to be exactly that of course -- this leads to transients in boundary
3193 * conditions. In specific, the case where the group was idle and we start the
3194 * one task. It takes time for our CPU's grq->avg.load_avg to build up,
3195 * yielding bad latency etc..
3196 *
3197 * Now, in that special case (1) reduces to:
3198 *
3199 * tg->weight * grq->load.weight
3200 * ge->load.weight = ----------------------------- = tg->weight (4)
3201 * grp->load.weight
3202 *
3203 * That is, the sum collapses because all other CPUs are idle; the UP scenario.
3204 *
3205 * So what we do is modify our approximation (3) to approach (4) in the (near)
3206 * UP case, like:
3207 *
3208 * ge->load.weight =
3209 *
3210 * tg->weight * grq->load.weight
3211 * --------------------------------------------------- (5)
3212 * tg->load_avg - grq->avg.load_avg + grq->load.weight
3213 *
3214 * But because grq->load.weight can drop to 0, resulting in a divide by zero,
3215 * we need to use grq->avg.load_avg as its lower bound, which then gives:
3216 *
3217 *
3218 * tg->weight * grq->load.weight
3219 * ge->load.weight = ----------------------------- (6)
3220 * tg_load_avg'
3221 *
3222 * Where:
3223 *
3224 * tg_load_avg' = tg->load_avg - grq->avg.load_avg +
3225 * max(grq->load.weight, grq->avg.load_avg)
3226 *
3227 * And that is shares_weight and is icky. In the (near) UP case it approaches
3228 * (4) while in the normal case it approaches (3). It consistently
3229 * overestimates the ge->load.weight and therefore:
3230 *
3231 * \Sum ge->load.weight >= tg->weight
3232 *
3233 * hence icky!
3234 */
calc_group_shares(struct cfs_rq * cfs_rq)3235 static long calc_group_shares(struct cfs_rq *cfs_rq)
3236 {
3237 long tg_weight, tg_shares, load, shares;
3238 struct task_group *tg = cfs_rq->tg;
3239
3240 tg_shares = READ_ONCE(tg->shares);
3241
3242 load = max(scale_load_down(cfs_rq->load.weight), cfs_rq->avg.load_avg);
3243
3244 tg_weight = atomic_long_read(&tg->load_avg);
3245
3246 /* Ensure tg_weight >= load */
3247 tg_weight -= cfs_rq->tg_load_avg_contrib;
3248 tg_weight += load;
3249
3250 shares = (tg_shares * load);
3251 if (tg_weight)
3252 shares /= tg_weight;
3253
3254 /*
3255 * MIN_SHARES has to be unscaled here to support per-CPU partitioning
3256 * of a group with small tg->shares value. It is a floor value which is
3257 * assigned as a minimum load.weight to the sched_entity representing
3258 * the group on a CPU.
3259 *
3260 * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024
3261 * on an 8-core system with 8 tasks each runnable on one CPU shares has
3262 * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In
3263 * case no task is runnable on a CPU MIN_SHARES=2 should be returned
3264 * instead of 0.
3265 */
3266 return clamp_t(long, shares, MIN_SHARES, tg_shares);
3267 }
3268 #endif /* CONFIG_SMP */
3269
3270 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
3271
3272 /*
3273 * Recomputes the group entity based on the current state of its group
3274 * runqueue.
3275 */
update_cfs_group(struct sched_entity * se)3276 static void update_cfs_group(struct sched_entity *se)
3277 {
3278 struct cfs_rq *gcfs_rq = group_cfs_rq(se);
3279 long shares;
3280
3281 if (!gcfs_rq)
3282 return;
3283
3284 if (throttled_hierarchy(gcfs_rq))
3285 return;
3286
3287 #ifndef CONFIG_SMP
3288 shares = READ_ONCE(gcfs_rq->tg->shares);
3289
3290 if (likely(se->load.weight == shares))
3291 return;
3292 #else
3293 shares = calc_group_shares(gcfs_rq);
3294 #endif
3295
3296 reweight_entity(cfs_rq_of(se), se, shares);
3297 }
3298
3299 #else /* CONFIG_FAIR_GROUP_SCHED */
update_cfs_group(struct sched_entity * se)3300 static inline void update_cfs_group(struct sched_entity *se)
3301 {
3302 }
3303 #endif /* CONFIG_FAIR_GROUP_SCHED */
3304
cfs_rq_util_change(struct cfs_rq * cfs_rq,int flags)3305 static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq, int flags)
3306 {
3307 struct rq *rq = rq_of(cfs_rq);
3308
3309 if (&rq->cfs == cfs_rq) {
3310 /*
3311 * There are a few boundary cases this might miss but it should
3312 * get called often enough that that should (hopefully) not be
3313 * a real problem.
3314 *
3315 * It will not get called when we go idle, because the idle
3316 * thread is a different class (!fair), nor will the utilization
3317 * number include things like RT tasks.
3318 *
3319 * As is, the util number is not freq-invariant (we'd have to
3320 * implement arch_scale_freq_capacity() for that).
3321 *
3322 * See cpu_util().
3323 */
3324 cpufreq_update_util(rq, flags);
3325 }
3326 }
3327
3328 #ifdef CONFIG_SMP
3329 #ifdef CONFIG_FAIR_GROUP_SCHED
3330 /**
3331 * update_tg_load_avg - update the tg's load avg
3332 * @cfs_rq: the cfs_rq whose avg changed
3333 *
3334 * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load.
3335 * However, because tg->load_avg is a global value there are performance
3336 * considerations.
3337 *
3338 * In order to avoid having to look at the other cfs_rq's, we use a
3339 * differential update where we store the last value we propagated. This in
3340 * turn allows skipping updates if the differential is 'small'.
3341 *
3342 * Updating tg's load_avg is necessary before update_cfs_share().
3343 */
update_tg_load_avg(struct cfs_rq * cfs_rq)3344 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq)
3345 {
3346 long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
3347
3348 /*
3349 * No need to update load_avg for root_task_group as it is not used.
3350 */
3351 if (cfs_rq->tg == &root_task_group)
3352 return;
3353
3354 if (abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
3355 atomic_long_add(delta, &cfs_rq->tg->load_avg);
3356 cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
3357 }
3358 }
3359
3360 /*
3361 * Called within set_task_rq() right before setting a task's CPU. The
3362 * caller only guarantees p->pi_lock is held; no other assumptions,
3363 * including the state of rq->lock, should be made.
3364 */
set_task_rq_fair(struct sched_entity * se,struct cfs_rq * prev,struct cfs_rq * next)3365 void set_task_rq_fair(struct sched_entity *se,
3366 struct cfs_rq *prev, struct cfs_rq *next)
3367 {
3368 u64 p_last_update_time;
3369 u64 n_last_update_time;
3370
3371 if (!sched_feat(ATTACH_AGE_LOAD))
3372 return;
3373
3374 /*
3375 * We are supposed to update the task to "current" time, then its up to
3376 * date and ready to go to new CPU/cfs_rq. But we have difficulty in
3377 * getting what current time is, so simply throw away the out-of-date
3378 * time. This will result in the wakee task is less decayed, but giving
3379 * the wakee more load sounds not bad.
3380 */
3381 if (!(se->avg.last_update_time && prev))
3382 return;
3383
3384 #ifndef CONFIG_64BIT
3385 {
3386 u64 p_last_update_time_copy;
3387 u64 n_last_update_time_copy;
3388
3389 do {
3390 p_last_update_time_copy = prev->load_last_update_time_copy;
3391 n_last_update_time_copy = next->load_last_update_time_copy;
3392
3393 smp_rmb();
3394
3395 p_last_update_time = prev->avg.last_update_time;
3396 n_last_update_time = next->avg.last_update_time;
3397
3398 } while (p_last_update_time != p_last_update_time_copy ||
3399 n_last_update_time != n_last_update_time_copy);
3400 }
3401 #else
3402 p_last_update_time = prev->avg.last_update_time;
3403 n_last_update_time = next->avg.last_update_time;
3404 #endif
3405 __update_load_avg_blocked_se(p_last_update_time, se);
3406 se->avg.last_update_time = n_last_update_time;
3407 }
3408
3409 /*
3410 * When on migration a sched_entity joins/leaves the PELT hierarchy, we need to
3411 * propagate its contribution. The key to this propagation is the invariant
3412 * that for each group:
3413 *
3414 * ge->avg == grq->avg (1)
3415 *
3416 * _IFF_ we look at the pure running and runnable sums. Because they
3417 * represent the very same entity, just at different points in the hierarchy.
3418 *
3419 * Per the above update_tg_cfs_util() and update_tg_cfs_runnable() are trivial
3420 * and simply copies the running/runnable sum over (but still wrong, because
3421 * the group entity and group rq do not have their PELT windows aligned).
3422 *
3423 * However, update_tg_cfs_load() is more complex. So we have:
3424 *
3425 * ge->avg.load_avg = ge->load.weight * ge->avg.runnable_avg (2)
3426 *
3427 * And since, like util, the runnable part should be directly transferable,
3428 * the following would _appear_ to be the straight forward approach:
3429 *
3430 * grq->avg.load_avg = grq->load.weight * grq->avg.runnable_avg (3)
3431 *
3432 * And per (1) we have:
3433 *
3434 * ge->avg.runnable_avg == grq->avg.runnable_avg
3435 *
3436 * Which gives:
3437 *
3438 * ge->load.weight * grq->avg.load_avg
3439 * ge->avg.load_avg = ----------------------------------- (4)
3440 * grq->load.weight
3441 *
3442 * Except that is wrong!
3443 *
3444 * Because while for entities historical weight is not important and we
3445 * really only care about our future and therefore can consider a pure
3446 * runnable sum, runqueues can NOT do this.
3447 *
3448 * We specifically want runqueues to have a load_avg that includes
3449 * historical weights. Those represent the blocked load, the load we expect
3450 * to (shortly) return to us. This only works by keeping the weights as
3451 * integral part of the sum. We therefore cannot decompose as per (3).
3452 *
3453 * Another reason this doesn't work is that runnable isn't a 0-sum entity.
3454 * Imagine a rq with 2 tasks that each are runnable 2/3 of the time. Then the
3455 * rq itself is runnable anywhere between 2/3 and 1 depending on how the
3456 * runnable section of these tasks overlap (or not). If they were to perfectly
3457 * align the rq as a whole would be runnable 2/3 of the time. If however we
3458 * always have at least 1 runnable task, the rq as a whole is always runnable.
3459 *
3460 * So we'll have to approximate.. :/
3461 *
3462 * Given the constraint:
3463 *
3464 * ge->avg.running_sum <= ge->avg.runnable_sum <= LOAD_AVG_MAX
3465 *
3466 * We can construct a rule that adds runnable to a rq by assuming minimal
3467 * overlap.
3468 *
3469 * On removal, we'll assume each task is equally runnable; which yields:
3470 *
3471 * grq->avg.runnable_sum = grq->avg.load_sum / grq->load.weight
3472 *
3473 * XXX: only do this for the part of runnable > running ?
3474 *
3475 */
3476 static inline void
update_tg_cfs_util(struct cfs_rq * cfs_rq,struct sched_entity * se,struct cfs_rq * gcfs_rq)3477 update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
3478 {
3479 long delta = gcfs_rq->avg.util_avg - se->avg.util_avg;
3480 u32 divider;
3481
3482 /* Nothing to update */
3483 if (!delta)
3484 return;
3485
3486 /*
3487 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
3488 * See ___update_load_avg() for details.
3489 */
3490 divider = get_pelt_divider(&cfs_rq->avg);
3491
3492 /* Set new sched_entity's utilization */
3493 se->avg.util_avg = gcfs_rq->avg.util_avg;
3494 se->avg.util_sum = se->avg.util_avg * divider;
3495
3496 /* Update parent cfs_rq utilization */
3497 add_positive(&cfs_rq->avg.util_avg, delta);
3498 cfs_rq->avg.util_sum = cfs_rq->avg.util_avg * divider;
3499 }
3500
3501 static inline void
update_tg_cfs_runnable(struct cfs_rq * cfs_rq,struct sched_entity * se,struct cfs_rq * gcfs_rq)3502 update_tg_cfs_runnable(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
3503 {
3504 long delta = gcfs_rq->avg.runnable_avg - se->avg.runnable_avg;
3505 u32 divider;
3506
3507 /* Nothing to update */
3508 if (!delta)
3509 return;
3510
3511 /*
3512 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
3513 * See ___update_load_avg() for details.
3514 */
3515 divider = get_pelt_divider(&cfs_rq->avg);
3516
3517 /* Set new sched_entity's runnable */
3518 se->avg.runnable_avg = gcfs_rq->avg.runnable_avg;
3519 se->avg.runnable_sum = se->avg.runnable_avg * divider;
3520
3521 /* Update parent cfs_rq runnable */
3522 add_positive(&cfs_rq->avg.runnable_avg, delta);
3523 cfs_rq->avg.runnable_sum = cfs_rq->avg.runnable_avg * divider;
3524 }
3525
3526 static inline void
update_tg_cfs_load(struct cfs_rq * cfs_rq,struct sched_entity * se,struct cfs_rq * gcfs_rq)3527 update_tg_cfs_load(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
3528 {
3529 long delta, running_sum, runnable_sum = gcfs_rq->prop_runnable_sum;
3530 unsigned long load_avg;
3531 u64 load_sum = 0;
3532 u32 divider;
3533
3534 if (!runnable_sum)
3535 return;
3536
3537 gcfs_rq->prop_runnable_sum = 0;
3538
3539 /*
3540 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
3541 * See ___update_load_avg() for details.
3542 */
3543 divider = get_pelt_divider(&cfs_rq->avg);
3544
3545 if (runnable_sum >= 0) {
3546 /*
3547 * Add runnable; clip at LOAD_AVG_MAX. Reflects that until
3548 * the CPU is saturated running == runnable.
3549 */
3550 runnable_sum += se->avg.load_sum;
3551 runnable_sum = min_t(long, runnable_sum, divider);
3552 } else {
3553 /*
3554 * Estimate the new unweighted runnable_sum of the gcfs_rq by
3555 * assuming all tasks are equally runnable.
3556 */
3557 if (scale_load_down(gcfs_rq->load.weight)) {
3558 load_sum = div_s64(gcfs_rq->avg.load_sum,
3559 scale_load_down(gcfs_rq->load.weight));
3560 }
3561
3562 /* But make sure to not inflate se's runnable */
3563 runnable_sum = min(se->avg.load_sum, load_sum);
3564 }
3565
3566 /*
3567 * runnable_sum can't be lower than running_sum
3568 * Rescale running sum to be in the same range as runnable sum
3569 * running_sum is in [0 : LOAD_AVG_MAX << SCHED_CAPACITY_SHIFT]
3570 * runnable_sum is in [0 : LOAD_AVG_MAX]
3571 */
3572 running_sum = se->avg.util_sum >> SCHED_CAPACITY_SHIFT;
3573 runnable_sum = max(runnable_sum, running_sum);
3574
3575 load_sum = (s64)se_weight(se) * runnable_sum;
3576 load_avg = div_s64(load_sum, divider);
3577
3578 delta = load_avg - se->avg.load_avg;
3579
3580 se->avg.load_sum = runnable_sum;
3581 se->avg.load_avg = load_avg;
3582
3583 add_positive(&cfs_rq->avg.load_avg, delta);
3584 cfs_rq->avg.load_sum = cfs_rq->avg.load_avg * divider;
3585 }
3586
add_tg_cfs_propagate(struct cfs_rq * cfs_rq,long runnable_sum)3587 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum)
3588 {
3589 cfs_rq->propagate = 1;
3590 cfs_rq->prop_runnable_sum += runnable_sum;
3591 }
3592
3593 /* Update task and its cfs_rq load average */
propagate_entity_load_avg(struct sched_entity * se)3594 static inline int propagate_entity_load_avg(struct sched_entity *se)
3595 {
3596 struct cfs_rq *cfs_rq, *gcfs_rq;
3597
3598 if (entity_is_task(se))
3599 return 0;
3600
3601 gcfs_rq = group_cfs_rq(se);
3602 if (!gcfs_rq->propagate)
3603 return 0;
3604
3605 gcfs_rq->propagate = 0;
3606
3607 cfs_rq = cfs_rq_of(se);
3608
3609 add_tg_cfs_propagate(cfs_rq, gcfs_rq->prop_runnable_sum);
3610
3611 update_tg_cfs_util(cfs_rq, se, gcfs_rq);
3612 update_tg_cfs_runnable(cfs_rq, se, gcfs_rq);
3613 update_tg_cfs_load(cfs_rq, se, gcfs_rq);
3614
3615 trace_pelt_cfs_tp(cfs_rq);
3616 trace_pelt_se_tp(se);
3617
3618 return 1;
3619 }
3620
3621 /*
3622 * Check if we need to update the load and the utilization of a blocked
3623 * group_entity:
3624 */
skip_blocked_update(struct sched_entity * se)3625 static inline bool skip_blocked_update(struct sched_entity *se)
3626 {
3627 struct cfs_rq *gcfs_rq = group_cfs_rq(se);
3628
3629 /*
3630 * If sched_entity still have not zero load or utilization, we have to
3631 * decay it:
3632 */
3633 if (se->avg.load_avg || se->avg.util_avg)
3634 return false;
3635
3636 /*
3637 * If there is a pending propagation, we have to update the load and
3638 * the utilization of the sched_entity:
3639 */
3640 if (gcfs_rq->propagate)
3641 return false;
3642
3643 /*
3644 * Otherwise, the load and the utilization of the sched_entity is
3645 * already zero and there is no pending propagation, so it will be a
3646 * waste of time to try to decay it:
3647 */
3648 return true;
3649 }
3650
3651 #else /* CONFIG_FAIR_GROUP_SCHED */
3652
update_tg_load_avg(struct cfs_rq * cfs_rq)3653 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq) {}
3654
propagate_entity_load_avg(struct sched_entity * se)3655 static inline int propagate_entity_load_avg(struct sched_entity *se)
3656 {
3657 return 0;
3658 }
3659
add_tg_cfs_propagate(struct cfs_rq * cfs_rq,long runnable_sum)3660 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) {}
3661
3662 #endif /* CONFIG_FAIR_GROUP_SCHED */
3663
3664 /**
3665 * update_cfs_rq_load_avg - update the cfs_rq's load/util averages
3666 * @now: current time, as per cfs_rq_clock_pelt()
3667 * @cfs_rq: cfs_rq to update
3668 *
3669 * The cfs_rq avg is the direct sum of all its entities (blocked and runnable)
3670 * avg. The immediate corollary is that all (fair) tasks must be attached, see
3671 * post_init_entity_util_avg().
3672 *
3673 * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example.
3674 *
3675 * Returns true if the load decayed or we removed load.
3676 *
3677 * Since both these conditions indicate a changed cfs_rq->avg.load we should
3678 * call update_tg_load_avg() when this function returns true.
3679 */
3680 static inline int
update_cfs_rq_load_avg(u64 now,struct cfs_rq * cfs_rq)3681 update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq)
3682 {
3683 unsigned long removed_load = 0, removed_util = 0, removed_runnable = 0;
3684 struct sched_avg *sa = &cfs_rq->avg;
3685 int decayed = 0;
3686
3687 if (cfs_rq->removed.nr) {
3688 unsigned long r;
3689 u32 divider = get_pelt_divider(&cfs_rq->avg);
3690
3691 raw_spin_lock(&cfs_rq->removed.lock);
3692 swap(cfs_rq->removed.util_avg, removed_util);
3693 swap(cfs_rq->removed.load_avg, removed_load);
3694 swap(cfs_rq->removed.runnable_avg, removed_runnable);
3695 cfs_rq->removed.nr = 0;
3696 raw_spin_unlock(&cfs_rq->removed.lock);
3697
3698 r = removed_load;
3699 sub_positive(&sa->load_avg, r);
3700 sa->load_sum = sa->load_avg * divider;
3701
3702 r = removed_util;
3703 sub_positive(&sa->util_avg, r);
3704 sub_positive(&sa->util_sum, r * divider);
3705 /*
3706 * Because of rounding, se->util_sum might ends up being +1 more than
3707 * cfs->util_sum. Although this is not a problem by itself, detaching
3708 * a lot of tasks with the rounding problem between 2 updates of
3709 * util_avg (~1ms) can make cfs->util_sum becoming null whereas
3710 * cfs_util_avg is not.
3711 * Check that util_sum is still above its lower bound for the new
3712 * util_avg. Given that period_contrib might have moved since the last
3713 * sync, we are only sure that util_sum must be above or equal to
3714 * util_avg * minimum possible divider
3715 */
3716 sa->util_sum = max_t(u32, sa->util_sum, sa->util_avg * PELT_MIN_DIVIDER);
3717
3718 r = removed_runnable;
3719 sub_positive(&sa->runnable_avg, r);
3720 sa->runnable_sum = sa->runnable_avg * divider;
3721
3722 /*
3723 * removed_runnable is the unweighted version of removed_load so we
3724 * can use it to estimate removed_load_sum.
3725 */
3726 add_tg_cfs_propagate(cfs_rq,
3727 -(long)(removed_runnable * divider) >> SCHED_CAPACITY_SHIFT);
3728
3729 decayed = 1;
3730 }
3731
3732 decayed |= __update_load_avg_cfs_rq(now, cfs_rq);
3733
3734 #ifndef CONFIG_64BIT
3735 smp_wmb();
3736 cfs_rq->load_last_update_time_copy = sa->last_update_time;
3737 #endif
3738
3739 return decayed;
3740 }
3741
3742 /**
3743 * attach_entity_load_avg - attach this entity to its cfs_rq load avg
3744 * @cfs_rq: cfs_rq to attach to
3745 * @se: sched_entity to attach
3746 *
3747 * Must call update_cfs_rq_load_avg() before this, since we rely on
3748 * cfs_rq->avg.last_update_time being current.
3749 */
attach_entity_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se)3750 static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3751 {
3752 /*
3753 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
3754 * See ___update_load_avg() for details.
3755 */
3756 u32 divider = get_pelt_divider(&cfs_rq->avg);
3757
3758 /*
3759 * When we attach the @se to the @cfs_rq, we must align the decay
3760 * window because without that, really weird and wonderful things can
3761 * happen.
3762 *
3763 * XXX illustrate
3764 */
3765 se->avg.last_update_time = cfs_rq->avg.last_update_time;
3766 se->avg.period_contrib = cfs_rq->avg.period_contrib;
3767
3768 /*
3769 * Hell(o) Nasty stuff.. we need to recompute _sum based on the new
3770 * period_contrib. This isn't strictly correct, but since we're
3771 * entirely outside of the PELT hierarchy, nobody cares if we truncate
3772 * _sum a little.
3773 */
3774 se->avg.util_sum = se->avg.util_avg * divider;
3775
3776 se->avg.runnable_sum = se->avg.runnable_avg * divider;
3777
3778 se->avg.load_sum = divider;
3779 if (se_weight(se)) {
3780 se->avg.load_sum =
3781 div_u64(se->avg.load_avg * se->avg.load_sum, se_weight(se));
3782 }
3783
3784 enqueue_load_avg(cfs_rq, se);
3785 cfs_rq->avg.util_avg += se->avg.util_avg;
3786 cfs_rq->avg.util_sum += se->avg.util_sum;
3787 cfs_rq->avg.runnable_avg += se->avg.runnable_avg;
3788 cfs_rq->avg.runnable_sum += se->avg.runnable_sum;
3789
3790 add_tg_cfs_propagate(cfs_rq, se->avg.load_sum);
3791
3792 cfs_rq_util_change(cfs_rq, 0);
3793
3794 trace_pelt_cfs_tp(cfs_rq);
3795 }
3796
3797 /**
3798 * detach_entity_load_avg - detach this entity from its cfs_rq load avg
3799 * @cfs_rq: cfs_rq to detach from
3800 * @se: sched_entity to detach
3801 *
3802 * Must call update_cfs_rq_load_avg() before this, since we rely on
3803 * cfs_rq->avg.last_update_time being current.
3804 */
detach_entity_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se)3805 static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3806 {
3807 /*
3808 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
3809 * See ___update_load_avg() for details.
3810 */
3811 u32 divider = get_pelt_divider(&cfs_rq->avg);
3812
3813 dequeue_load_avg(cfs_rq, se);
3814 sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg);
3815 cfs_rq->avg.util_sum = cfs_rq->avg.util_avg * divider;
3816 sub_positive(&cfs_rq->avg.runnable_avg, se->avg.runnable_avg);
3817 cfs_rq->avg.runnable_sum = cfs_rq->avg.runnable_avg * divider;
3818
3819 add_tg_cfs_propagate(cfs_rq, -se->avg.load_sum);
3820
3821 cfs_rq_util_change(cfs_rq, 0);
3822
3823 trace_pelt_cfs_tp(cfs_rq);
3824 }
3825
3826 /*
3827 * Optional action to be done while updating the load average
3828 */
3829 #define UPDATE_TG 0x1
3830 #define SKIP_AGE_LOAD 0x2
3831 #define DO_ATTACH 0x4
3832
3833 /* Update task and its cfs_rq load average */
update_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se,int flags)3834 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3835 {
3836 u64 now = cfs_rq_clock_pelt(cfs_rq);
3837 int decayed;
3838
3839 /*
3840 * Track task load average for carrying it to new CPU after migrated, and
3841 * track group sched_entity load average for task_h_load calc in migration
3842 */
3843 if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD))
3844 __update_load_avg_se(now, cfs_rq, se);
3845
3846 decayed = update_cfs_rq_load_avg(now, cfs_rq);
3847 decayed |= propagate_entity_load_avg(se);
3848
3849 if (!se->avg.last_update_time && (flags & DO_ATTACH)) {
3850
3851 /*
3852 * DO_ATTACH means we're here from enqueue_entity().
3853 * !last_update_time means we've passed through
3854 * migrate_task_rq_fair() indicating we migrated.
3855 *
3856 * IOW we're enqueueing a task on a new CPU.
3857 */
3858 attach_entity_load_avg(cfs_rq, se);
3859 update_tg_load_avg(cfs_rq);
3860
3861 } else if (decayed) {
3862 cfs_rq_util_change(cfs_rq, 0);
3863
3864 if (flags & UPDATE_TG)
3865 update_tg_load_avg(cfs_rq);
3866 }
3867 }
3868
3869 #ifndef CONFIG_64BIT
cfs_rq_last_update_time(struct cfs_rq * cfs_rq)3870 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3871 {
3872 u64 last_update_time_copy;
3873 u64 last_update_time;
3874
3875 do {
3876 last_update_time_copy = cfs_rq->load_last_update_time_copy;
3877 smp_rmb();
3878 last_update_time = cfs_rq->avg.last_update_time;
3879 } while (last_update_time != last_update_time_copy);
3880
3881 return last_update_time;
3882 }
3883 #else
cfs_rq_last_update_time(struct cfs_rq * cfs_rq)3884 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3885 {
3886 return cfs_rq->avg.last_update_time;
3887 }
3888 #endif
3889
3890 /*
3891 * Synchronize entity load avg of dequeued entity without locking
3892 * the previous rq.
3893 */
sync_entity_load_avg(struct sched_entity * se)3894 static void sync_entity_load_avg(struct sched_entity *se)
3895 {
3896 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3897 u64 last_update_time;
3898
3899 last_update_time = cfs_rq_last_update_time(cfs_rq);
3900 __update_load_avg_blocked_se(last_update_time, se);
3901 }
3902
3903 /*
3904 * Task first catches up with cfs_rq, and then subtract
3905 * itself from the cfs_rq (task must be off the queue now).
3906 */
remove_entity_load_avg(struct sched_entity * se)3907 static void remove_entity_load_avg(struct sched_entity *se)
3908 {
3909 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3910 unsigned long flags;
3911
3912 /*
3913 * tasks cannot exit without having gone through wake_up_new_task() ->
3914 * post_init_entity_util_avg() which will have added things to the
3915 * cfs_rq, so we can remove unconditionally.
3916 */
3917
3918 sync_entity_load_avg(se);
3919
3920 raw_spin_lock_irqsave(&cfs_rq->removed.lock, flags);
3921 ++cfs_rq->removed.nr;
3922 cfs_rq->removed.util_avg += se->avg.util_avg;
3923 cfs_rq->removed.load_avg += se->avg.load_avg;
3924 cfs_rq->removed.runnable_avg += se->avg.runnable_avg;
3925 raw_spin_unlock_irqrestore(&cfs_rq->removed.lock, flags);
3926 }
3927
cfs_rq_runnable_avg(struct cfs_rq * cfs_rq)3928 static inline unsigned long cfs_rq_runnable_avg(struct cfs_rq *cfs_rq)
3929 {
3930 return cfs_rq->avg.runnable_avg;
3931 }
3932
cfs_rq_load_avg(struct cfs_rq * cfs_rq)3933 static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
3934 {
3935 return cfs_rq->avg.load_avg;
3936 }
3937
3938 static int newidle_balance(struct rq *this_rq, struct rq_flags *rf);
3939
task_util(struct task_struct * p)3940 static inline unsigned long task_util(struct task_struct *p)
3941 {
3942 #ifdef CONFIG_SCHED_WALT
3943 if (likely(!walt_disabled && sysctl_sched_use_walt_task_util))
3944 return p->ravg.demand_scaled;
3945 #endif
3946 return READ_ONCE(p->se.avg.util_avg);
3947 }
3948
_task_util_est(struct task_struct * p)3949 static inline unsigned long _task_util_est(struct task_struct *p)
3950 {
3951 struct util_est ue = READ_ONCE(p->se.avg.util_est);
3952
3953 return max(ue.ewma, (ue.enqueued & ~UTIL_AVG_UNCHANGED));
3954 }
3955
task_util_est(struct task_struct * p)3956 static inline unsigned long task_util_est(struct task_struct *p)
3957 {
3958 #ifdef CONFIG_SCHED_WALT
3959 if (likely(!walt_disabled && sysctl_sched_use_walt_task_util))
3960 return p->ravg.demand_scaled;
3961 #endif
3962 return max(task_util(p), _task_util_est(p));
3963 }
3964
3965 #ifdef CONFIG_UCLAMP_TASK
3966 #ifdef CONFIG_SCHED_RT_CAS
uclamp_task_util(struct task_struct * p)3967 unsigned long uclamp_task_util(struct task_struct *p)
3968 #else
3969 static inline unsigned long uclamp_task_util(struct task_struct *p)
3970 #endif
3971 {
3972 return clamp(task_util_est(p),
3973 uclamp_eff_value(p, UCLAMP_MIN),
3974 uclamp_eff_value(p, UCLAMP_MAX));
3975 }
3976 #else
3977 #ifdef CONFIG_SCHED_RT_CAS
uclamp_task_util(struct task_struct * p)3978 unsigned long uclamp_task_util(struct task_struct *p)
3979 #else
3980 static inline unsigned long uclamp_task_util(struct task_struct *p)
3981 #endif
3982 {
3983 return task_util_est(p);
3984 }
3985 #endif
3986
util_est_enqueue(struct cfs_rq * cfs_rq,struct task_struct * p)3987 static inline void util_est_enqueue(struct cfs_rq *cfs_rq,
3988 struct task_struct *p)
3989 {
3990 unsigned int enqueued;
3991
3992 if (!sched_feat(UTIL_EST))
3993 return;
3994
3995 /* Update root cfs_rq's estimated utilization */
3996 enqueued = cfs_rq->avg.util_est.enqueued;
3997 enqueued += _task_util_est(p);
3998 WRITE_ONCE(cfs_rq->avg.util_est.enqueued, enqueued);
3999
4000 trace_sched_util_est_cfs_tp(cfs_rq);
4001 }
4002
util_est_dequeue(struct cfs_rq * cfs_rq,struct task_struct * p)4003 static inline void util_est_dequeue(struct cfs_rq *cfs_rq,
4004 struct task_struct *p)
4005 {
4006 unsigned int enqueued;
4007
4008 if (!sched_feat(UTIL_EST))
4009 return;
4010
4011 /* Update root cfs_rq's estimated utilization */
4012 enqueued = cfs_rq->avg.util_est.enqueued;
4013 enqueued -= min_t(unsigned int, enqueued, _task_util_est(p));
4014 WRITE_ONCE(cfs_rq->avg.util_est.enqueued, enqueued);
4015
4016 trace_sched_util_est_cfs_tp(cfs_rq);
4017 }
4018
4019 #define UTIL_EST_MARGIN (SCHED_CAPACITY_SCALE / 100)
4020
4021 /*
4022 * Check if a (signed) value is within a specified (unsigned) margin,
4023 * based on the observation that:
4024 *
4025 * abs(x) < y := (unsigned)(x + y - 1) < (2 * y - 1)
4026 *
4027 * NOTE: this only works when value + maring < INT_MAX.
4028 */
within_margin(int value,int margin)4029 static inline bool within_margin(int value, int margin)
4030 {
4031 return ((unsigned int)(value + margin - 1) < (2 * margin - 1));
4032 }
4033
util_est_update(struct cfs_rq * cfs_rq,struct task_struct * p,bool task_sleep)4034 static inline void util_est_update(struct cfs_rq *cfs_rq,
4035 struct task_struct *p,
4036 bool task_sleep)
4037 {
4038 long last_ewma_diff, last_enqueued_diff;
4039 struct util_est ue;
4040
4041 if (!sched_feat(UTIL_EST))
4042 return;
4043
4044 /*
4045 * Skip update of task's estimated utilization when the task has not
4046 * yet completed an activation, e.g. being migrated.
4047 */
4048 if (!task_sleep)
4049 return;
4050
4051 /*
4052 * If the PELT values haven't changed since enqueue time,
4053 * skip the util_est update.
4054 */
4055 ue = p->se.avg.util_est;
4056 if (ue.enqueued & UTIL_AVG_UNCHANGED)
4057 return;
4058
4059 last_enqueued_diff = ue.enqueued;
4060
4061 /*
4062 * Reset EWMA on utilization increases, the moving average is used only
4063 * to smooth utilization decreases.
4064 */
4065 ue.enqueued = task_util(p);
4066 if (sched_feat(UTIL_EST_FASTUP)) {
4067 if (ue.ewma < ue.enqueued) {
4068 ue.ewma = ue.enqueued;
4069 goto done;
4070 }
4071 }
4072
4073 /*
4074 * Skip update of task's estimated utilization when its members are
4075 * already ~1% close to its last activation value.
4076 */
4077 last_ewma_diff = ue.enqueued - ue.ewma;
4078 last_enqueued_diff -= ue.enqueued;
4079 if (within_margin(last_ewma_diff, UTIL_EST_MARGIN)) {
4080 if (!within_margin(last_enqueued_diff, UTIL_EST_MARGIN))
4081 goto done;
4082
4083 return;
4084 }
4085
4086 /*
4087 * To avoid overestimation of actual task utilization, skip updates if
4088 * we cannot grant there is idle time in this CPU.
4089 */
4090 if (task_util(p) > capacity_orig_of(cpu_of(rq_of(cfs_rq))))
4091 return;
4092
4093 /*
4094 * Update Task's estimated utilization
4095 *
4096 * When *p completes an activation we can consolidate another sample
4097 * of the task size. This is done by storing the current PELT value
4098 * as ue.enqueued and by using this value to update the Exponential
4099 * Weighted Moving Average (EWMA):
4100 *
4101 * ewma(t) = w * task_util(p) + (1-w) * ewma(t-1)
4102 * = w * task_util(p) + ewma(t-1) - w * ewma(t-1)
4103 * = w * (task_util(p) - ewma(t-1)) + ewma(t-1)
4104 * = w * ( last_ewma_diff ) + ewma(t-1)
4105 * = w * (last_ewma_diff + ewma(t-1) / w)
4106 *
4107 * Where 'w' is the weight of new samples, which is configured to be
4108 * 0.25, thus making w=1/4 ( >>= UTIL_EST_WEIGHT_SHIFT)
4109 */
4110 ue.ewma <<= UTIL_EST_WEIGHT_SHIFT;
4111 ue.ewma += last_ewma_diff;
4112 ue.ewma >>= UTIL_EST_WEIGHT_SHIFT;
4113 done:
4114 ue.enqueued |= UTIL_AVG_UNCHANGED;
4115 WRITE_ONCE(p->se.avg.util_est, ue);
4116
4117 trace_sched_util_est_se_tp(&p->se);
4118 }
4119
task_fits_capacity(struct task_struct * p,long capacity)4120 static inline int task_fits_capacity(struct task_struct *p, long capacity)
4121 {
4122 return fits_capacity(uclamp_task_util(p), capacity);
4123 }
4124
4125 #ifdef CONFIG_SCHED_RTG
task_fits_max(struct task_struct * p,int cpu)4126 bool task_fits_max(struct task_struct *p, int cpu)
4127 {
4128 unsigned long capacity = capacity_orig_of(cpu);
4129 unsigned long max_capacity = cpu_rq(cpu)->rd->max_cpu_capacity;
4130
4131 if (capacity == max_capacity)
4132 return true;
4133
4134 return task_fits_capacity(p, capacity);
4135 }
4136 #endif
4137
update_misfit_status(struct task_struct * p,struct rq * rq)4138 static inline void update_misfit_status(struct task_struct *p, struct rq *rq)
4139 {
4140 bool task_fits = false;
4141 #ifdef CONFIG_SCHED_RTG
4142 int cpu = cpu_of(rq);
4143 struct cpumask *rtg_target = NULL;
4144 #endif
4145
4146 if (!static_branch_unlikely(&sched_asym_cpucapacity))
4147 return;
4148
4149 if (!p || p->nr_cpus_allowed == 1) {
4150 rq->misfit_task_load = 0;
4151 return;
4152 }
4153
4154 #ifdef CONFIG_SCHED_RTG
4155 rtg_target = find_rtg_target(p);
4156 if (rtg_target)
4157 task_fits = capacity_orig_of(cpu) >=
4158 capacity_orig_of(cpumask_first(rtg_target));
4159 else
4160 task_fits = task_fits_capacity(p, capacity_of(cpu_of(rq)));
4161 #else
4162 task_fits = task_fits_capacity(p, capacity_of(cpu_of(rq)));
4163 #endif
4164 if (task_fits) {
4165 rq->misfit_task_load = 0;
4166 return;
4167 }
4168
4169 /*
4170 * Make sure that misfit_task_load will not be null even if
4171 * task_h_load() returns 0.
4172 */
4173 rq->misfit_task_load = max_t(unsigned long, task_h_load(p), 1);
4174 }
4175
4176 #else /* CONFIG_SMP */
4177
4178 #define UPDATE_TG 0x0
4179 #define SKIP_AGE_LOAD 0x0
4180 #define DO_ATTACH 0x0
4181
update_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se,int not_used1)4182 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int not_used1)
4183 {
4184 cfs_rq_util_change(cfs_rq, 0);
4185 }
4186
remove_entity_load_avg(struct sched_entity * se)4187 static inline void remove_entity_load_avg(struct sched_entity *se) {}
4188
4189 static inline void
attach_entity_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se)4190 attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
4191 static inline void
detach_entity_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se)4192 detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
4193
newidle_balance(struct rq * rq,struct rq_flags * rf)4194 static inline int newidle_balance(struct rq *rq, struct rq_flags *rf)
4195 {
4196 return 0;
4197 }
4198
4199 static inline void
util_est_enqueue(struct cfs_rq * cfs_rq,struct task_struct * p)4200 util_est_enqueue(struct cfs_rq *cfs_rq, struct task_struct *p) {}
4201
4202 static inline void
util_est_dequeue(struct cfs_rq * cfs_rq,struct task_struct * p)4203 util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p) {}
4204
4205 static inline void
util_est_update(struct cfs_rq * cfs_rq,struct task_struct * p,bool task_sleep)4206 util_est_update(struct cfs_rq *cfs_rq, struct task_struct *p,
4207 bool task_sleep) {}
update_misfit_status(struct task_struct * p,struct rq * rq)4208 static inline void update_misfit_status(struct task_struct *p, struct rq *rq) {}
4209
4210 #endif /* CONFIG_SMP */
4211
check_spread(struct cfs_rq * cfs_rq,struct sched_entity * se)4212 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
4213 {
4214 #ifdef CONFIG_SCHED_DEBUG
4215 s64 d = se->vruntime - cfs_rq->min_vruntime;
4216
4217 if (d < 0)
4218 d = -d;
4219
4220 if (d > 3*sysctl_sched_latency)
4221 schedstat_inc(cfs_rq->nr_spread_over);
4222 #endif
4223 }
4224
4225 static void
place_entity(struct cfs_rq * cfs_rq,struct sched_entity * se,int initial)4226 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
4227 {
4228 u64 vruntime = cfs_rq->min_vruntime;
4229
4230 /*
4231 * The 'current' period is already promised to the current tasks,
4232 * however the extra weight of the new task will slow them down a
4233 * little, place the new task so that it fits in the slot that
4234 * stays open at the end.
4235 */
4236 if (initial && sched_feat(START_DEBIT))
4237 vruntime += sched_vslice(cfs_rq, se);
4238
4239 /* sleeps up to a single latency don't count. */
4240 if (!initial) {
4241 unsigned long thresh = sysctl_sched_latency;
4242
4243 /*
4244 * Halve their sleep time's effect, to allow
4245 * for a gentler effect of sleepers:
4246 */
4247 if (sched_feat(GENTLE_FAIR_SLEEPERS))
4248 thresh >>= 1;
4249
4250 vruntime -= thresh;
4251 }
4252
4253 /* ensure we never gain time by being placed backwards. */
4254 se->vruntime = max_vruntime(se->vruntime, vruntime);
4255 }
4256
4257 static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
4258
check_schedstat_required(void)4259 static inline void check_schedstat_required(void)
4260 {
4261 #ifdef CONFIG_SCHEDSTATS
4262 if (schedstat_enabled())
4263 return;
4264
4265 /* Force schedstat enabled if a dependent tracepoint is active */
4266 if (trace_sched_stat_wait_enabled() ||
4267 trace_sched_stat_sleep_enabled() ||
4268 trace_sched_stat_iowait_enabled() ||
4269 trace_sched_stat_blocked_enabled() ||
4270 trace_sched_stat_runtime_enabled()) {
4271 printk_deferred_once("Scheduler tracepoints stat_sleep, stat_iowait, "
4272 "stat_blocked and stat_runtime require the "
4273 "kernel parameter schedstats=enable or "
4274 "kernel.sched_schedstats=1\n");
4275 }
4276 #endif
4277 }
4278
4279 static inline bool cfs_bandwidth_used(void);
4280
4281 /*
4282 * MIGRATION
4283 *
4284 * dequeue
4285 * update_curr()
4286 * update_min_vruntime()
4287 * vruntime -= min_vruntime
4288 *
4289 * enqueue
4290 * update_curr()
4291 * update_min_vruntime()
4292 * vruntime += min_vruntime
4293 *
4294 * this way the vruntime transition between RQs is done when both
4295 * min_vruntime are up-to-date.
4296 *
4297 * WAKEUP (remote)
4298 *
4299 * ->migrate_task_rq_fair() (p->state == TASK_WAKING)
4300 * vruntime -= min_vruntime
4301 *
4302 * enqueue
4303 * update_curr()
4304 * update_min_vruntime()
4305 * vruntime += min_vruntime
4306 *
4307 * this way we don't have the most up-to-date min_vruntime on the originating
4308 * CPU and an up-to-date min_vruntime on the destination CPU.
4309 */
4310
4311 static void
enqueue_entity(struct cfs_rq * cfs_rq,struct sched_entity * se,int flags)4312 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
4313 {
4314 bool renorm = !(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_MIGRATED);
4315 bool curr = cfs_rq->curr == se;
4316
4317 /*
4318 * If we're the current task, we must renormalise before calling
4319 * update_curr().
4320 */
4321 if (renorm && curr)
4322 se->vruntime += cfs_rq->min_vruntime;
4323
4324 update_curr(cfs_rq);
4325
4326 /*
4327 * Otherwise, renormalise after, such that we're placed at the current
4328 * moment in time, instead of some random moment in the past. Being
4329 * placed in the past could significantly boost this task to the
4330 * fairness detriment of existing tasks.
4331 */
4332 if (renorm && !curr)
4333 se->vruntime += cfs_rq->min_vruntime;
4334
4335 /*
4336 * When enqueuing a sched_entity, we must:
4337 * - Update loads to have both entity and cfs_rq synced with now.
4338 * - Add its load to cfs_rq->runnable_avg
4339 * - For group_entity, update its weight to reflect the new share of
4340 * its group cfs_rq
4341 * - Add its new weight to cfs_rq->load.weight
4342 */
4343 update_load_avg(cfs_rq, se, UPDATE_TG | DO_ATTACH);
4344 se_update_runnable(se);
4345 update_cfs_group(se);
4346 account_entity_enqueue(cfs_rq, se);
4347
4348 if (flags & ENQUEUE_WAKEUP)
4349 place_entity(cfs_rq, se, 0);
4350
4351 check_schedstat_required();
4352 update_stats_enqueue(cfs_rq, se, flags);
4353 check_spread(cfs_rq, se);
4354 if (!curr)
4355 __enqueue_entity(cfs_rq, se);
4356 se->on_rq = 1;
4357
4358 /*
4359 * When bandwidth control is enabled, cfs might have been removed
4360 * because of a parent been throttled but cfs->nr_running > 1. Try to
4361 * add it unconditionnally.
4362 */
4363 if (cfs_rq->nr_running == 1 || cfs_bandwidth_used())
4364 list_add_leaf_cfs_rq(cfs_rq);
4365
4366 if (cfs_rq->nr_running == 1)
4367 check_enqueue_throttle(cfs_rq);
4368 }
4369
__clear_buddies_last(struct sched_entity * se)4370 static void __clear_buddies_last(struct sched_entity *se)
4371 {
4372 for_each_sched_entity(se) {
4373 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4374 if (cfs_rq->last != se)
4375 break;
4376
4377 cfs_rq->last = NULL;
4378 }
4379 }
4380
__clear_buddies_next(struct sched_entity * se)4381 static void __clear_buddies_next(struct sched_entity *se)
4382 {
4383 for_each_sched_entity(se) {
4384 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4385 if (cfs_rq->next != se)
4386 break;
4387
4388 cfs_rq->next = NULL;
4389 }
4390 }
4391
__clear_buddies_skip(struct sched_entity * se)4392 static void __clear_buddies_skip(struct sched_entity *se)
4393 {
4394 for_each_sched_entity(se) {
4395 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4396 if (cfs_rq->skip != se)
4397 break;
4398
4399 cfs_rq->skip = NULL;
4400 }
4401 }
4402
clear_buddies(struct cfs_rq * cfs_rq,struct sched_entity * se)4403 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
4404 {
4405 if (cfs_rq->last == se)
4406 __clear_buddies_last(se);
4407
4408 if (cfs_rq->next == se)
4409 __clear_buddies_next(se);
4410
4411 if (cfs_rq->skip == se)
4412 __clear_buddies_skip(se);
4413 }
4414
4415 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
4416
4417 static void
dequeue_entity(struct cfs_rq * cfs_rq,struct sched_entity * se,int flags)4418 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
4419 {
4420 /*
4421 * Update run-time statistics of the 'current'.
4422 */
4423 update_curr(cfs_rq);
4424
4425 /*
4426 * When dequeuing a sched_entity, we must:
4427 * - Update loads to have both entity and cfs_rq synced with now.
4428 * - Subtract its load from the cfs_rq->runnable_avg.
4429 * - Subtract its previous weight from cfs_rq->load.weight.
4430 * - For group entity, update its weight to reflect the new share
4431 * of its group cfs_rq.
4432 */
4433 update_load_avg(cfs_rq, se, UPDATE_TG);
4434 se_update_runnable(se);
4435
4436 update_stats_dequeue(cfs_rq, se, flags);
4437
4438 clear_buddies(cfs_rq, se);
4439
4440 if (se != cfs_rq->curr)
4441 __dequeue_entity(cfs_rq, se);
4442 se->on_rq = 0;
4443 account_entity_dequeue(cfs_rq, se);
4444
4445 /*
4446 * Normalize after update_curr(); which will also have moved
4447 * min_vruntime if @se is the one holding it back. But before doing
4448 * update_min_vruntime() again, which will discount @se's position and
4449 * can move min_vruntime forward still more.
4450 */
4451 if (!(flags & DEQUEUE_SLEEP))
4452 se->vruntime -= cfs_rq->min_vruntime;
4453
4454 /* return excess runtime on last dequeue */
4455 return_cfs_rq_runtime(cfs_rq);
4456
4457 update_cfs_group(se);
4458
4459 /*
4460 * Now advance min_vruntime if @se was the entity holding it back,
4461 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be
4462 * put back on, and if we advance min_vruntime, we'll be placed back
4463 * further than we started -- ie. we'll be penalized.
4464 */
4465 if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) != DEQUEUE_SAVE)
4466 update_min_vruntime(cfs_rq);
4467 }
4468
4469 /*
4470 * Preempt the current task with a newly woken task if needed:
4471 */
4472 static void
check_preempt_tick(struct cfs_rq * cfs_rq,struct sched_entity * curr)4473 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
4474 {
4475 unsigned long ideal_runtime, delta_exec;
4476 struct sched_entity *se;
4477 s64 delta;
4478
4479 ideal_runtime = sched_slice(cfs_rq, curr);
4480 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
4481 if (delta_exec > ideal_runtime) {
4482 resched_curr(rq_of(cfs_rq));
4483 /*
4484 * The current task ran long enough, ensure it doesn't get
4485 * re-elected due to buddy favours.
4486 */
4487 clear_buddies(cfs_rq, curr);
4488 return;
4489 }
4490
4491 /*
4492 * Ensure that a task that missed wakeup preemption by a
4493 * narrow margin doesn't have to wait for a full slice.
4494 * This also mitigates buddy induced latencies under load.
4495 */
4496 if (delta_exec < sysctl_sched_min_granularity)
4497 return;
4498
4499 se = __pick_first_entity(cfs_rq);
4500 delta = curr->vruntime - se->vruntime;
4501
4502 if (delta < 0)
4503 return;
4504
4505 if (delta > ideal_runtime)
4506 resched_curr(rq_of(cfs_rq));
4507 }
4508
4509 static void
set_next_entity(struct cfs_rq * cfs_rq,struct sched_entity * se)4510 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
4511 {
4512 /* 'current' is not kept within the tree. */
4513 if (se->on_rq) {
4514 /*
4515 * Any task has to be enqueued before it get to execute on
4516 * a CPU. So account for the time it spent waiting on the
4517 * runqueue.
4518 */
4519 update_stats_wait_end(cfs_rq, se);
4520 __dequeue_entity(cfs_rq, se);
4521 update_load_avg(cfs_rq, se, UPDATE_TG);
4522 }
4523
4524 update_stats_curr_start(cfs_rq, se);
4525 cfs_rq->curr = se;
4526
4527 /*
4528 * Track our maximum slice length, if the CPU's load is at
4529 * least twice that of our own weight (i.e. dont track it
4530 * when there are only lesser-weight tasks around):
4531 */
4532 if (schedstat_enabled() &&
4533 rq_of(cfs_rq)->cfs.load.weight >= 2*se->load.weight) {
4534 schedstat_set(se->statistics.slice_max,
4535 max((u64)schedstat_val(se->statistics.slice_max),
4536 se->sum_exec_runtime - se->prev_sum_exec_runtime));
4537 }
4538
4539 se->prev_sum_exec_runtime = se->sum_exec_runtime;
4540 }
4541
4542 static int
4543 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
4544
4545 /*
4546 * Pick the next process, keeping these things in mind, in this order:
4547 * 1) keep things fair between processes/task groups
4548 * 2) pick the "next" process, since someone really wants that to run
4549 * 3) pick the "last" process, for cache locality
4550 * 4) do not run the "skip" process, if something else is available
4551 */
4552 static struct sched_entity *
pick_next_entity(struct cfs_rq * cfs_rq,struct sched_entity * curr)4553 pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
4554 {
4555 struct sched_entity *left = __pick_first_entity(cfs_rq);
4556 struct sched_entity *se;
4557
4558 /*
4559 * If curr is set we have to see if its left of the leftmost entity
4560 * still in the tree, provided there was anything in the tree at all.
4561 */
4562 if (!left || (curr && entity_before(curr, left)))
4563 left = curr;
4564
4565 se = left; /* ideally we run the leftmost entity */
4566
4567 /*
4568 * Avoid running the skip buddy, if running something else can
4569 * be done without getting too unfair.
4570 */
4571 if (cfs_rq->skip == se) {
4572 struct sched_entity *second;
4573
4574 if (se == curr) {
4575 second = __pick_first_entity(cfs_rq);
4576 } else {
4577 second = __pick_next_entity(se);
4578 if (!second || (curr && entity_before(curr, second)))
4579 second = curr;
4580 }
4581
4582 if (second && wakeup_preempt_entity(second, left) < 1)
4583 se = second;
4584 }
4585
4586 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1) {
4587 /*
4588 * Someone really wants this to run. If it's not unfair, run it.
4589 */
4590 se = cfs_rq->next;
4591 } else if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1) {
4592 /*
4593 * Prefer last buddy, try to return the CPU to a preempted task.
4594 */
4595 se = cfs_rq->last;
4596 }
4597
4598 clear_buddies(cfs_rq, se);
4599
4600 return se;
4601 }
4602
4603 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
4604
put_prev_entity(struct cfs_rq * cfs_rq,struct sched_entity * prev)4605 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
4606 {
4607 /*
4608 * If still on the runqueue then deactivate_task()
4609 * was not called and update_curr() has to be done:
4610 */
4611 if (prev->on_rq)
4612 update_curr(cfs_rq);
4613
4614 /* throttle cfs_rqs exceeding runtime */
4615 check_cfs_rq_runtime(cfs_rq);
4616
4617 check_spread(cfs_rq, prev);
4618
4619 if (prev->on_rq) {
4620 update_stats_wait_start(cfs_rq, prev);
4621 /* Put 'current' back into the tree. */
4622 __enqueue_entity(cfs_rq, prev);
4623 /* in !on_rq case, update occurred at dequeue */
4624 update_load_avg(cfs_rq, prev, 0);
4625 }
4626 cfs_rq->curr = NULL;
4627 }
4628
4629 static void
entity_tick(struct cfs_rq * cfs_rq,struct sched_entity * curr,int queued)4630 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
4631 {
4632 /*
4633 * Update run-time statistics of the 'current'.
4634 */
4635 update_curr(cfs_rq);
4636
4637 /*
4638 * Ensure that runnable average is periodically updated.
4639 */
4640 update_load_avg(cfs_rq, curr, UPDATE_TG);
4641 update_cfs_group(curr);
4642
4643 #ifdef CONFIG_SCHED_HRTICK
4644 /*
4645 * queued ticks are scheduled to match the slice, so don't bother
4646 * validating it and just reschedule.
4647 */
4648 if (queued) {
4649 resched_curr(rq_of(cfs_rq));
4650 return;
4651 }
4652 /*
4653 * don't let the period tick interfere with the hrtick preemption
4654 */
4655 if (!sched_feat(DOUBLE_TICK) &&
4656 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
4657 return;
4658 #endif
4659
4660 if (cfs_rq->nr_running > 1)
4661 check_preempt_tick(cfs_rq, curr);
4662 }
4663
4664
4665 /**************************************************
4666 * CFS bandwidth control machinery
4667 */
4668
4669 #ifdef CONFIG_CFS_BANDWIDTH
4670
4671 #ifdef CONFIG_JUMP_LABEL
4672 static struct static_key __cfs_bandwidth_used;
4673
cfs_bandwidth_used(void)4674 static inline bool cfs_bandwidth_used(void)
4675 {
4676 return static_key_false(&__cfs_bandwidth_used);
4677 }
4678
cfs_bandwidth_usage_inc(void)4679 void cfs_bandwidth_usage_inc(void)
4680 {
4681 static_key_slow_inc_cpuslocked(&__cfs_bandwidth_used);
4682 }
4683
cfs_bandwidth_usage_dec(void)4684 void cfs_bandwidth_usage_dec(void)
4685 {
4686 static_key_slow_dec_cpuslocked(&__cfs_bandwidth_used);
4687 }
4688 #else /* CONFIG_JUMP_LABEL */
cfs_bandwidth_used(void)4689 static bool cfs_bandwidth_used(void)
4690 {
4691 return true;
4692 }
4693
cfs_bandwidth_usage_inc(void)4694 void cfs_bandwidth_usage_inc(void) {}
cfs_bandwidth_usage_dec(void)4695 void cfs_bandwidth_usage_dec(void) {}
4696 #endif /* CONFIG_JUMP_LABEL */
4697
4698 /*
4699 * default period for cfs group bandwidth.
4700 * default: 0.1s, units: nanoseconds
4701 */
default_cfs_period(void)4702 static inline u64 default_cfs_period(void)
4703 {
4704 return 100000000ULL;
4705 }
4706
sched_cfs_bandwidth_slice(void)4707 static inline u64 sched_cfs_bandwidth_slice(void)
4708 {
4709 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
4710 }
4711
4712 /*
4713 * Replenish runtime according to assigned quota. We use sched_clock_cpu
4714 * directly instead of rq->clock to avoid adding additional synchronization
4715 * around rq->lock.
4716 *
4717 * requires cfs_b->lock
4718 */
__refill_cfs_bandwidth_runtime(struct cfs_bandwidth * cfs_b)4719 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
4720 {
4721 if (cfs_b->quota != RUNTIME_INF)
4722 cfs_b->runtime = cfs_b->quota;
4723 }
4724
tg_cfs_bandwidth(struct task_group * tg)4725 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
4726 {
4727 return &tg->cfs_bandwidth;
4728 }
4729
4730 /* returns 0 on failure to allocate runtime */
__assign_cfs_rq_runtime(struct cfs_bandwidth * cfs_b,struct cfs_rq * cfs_rq,u64 target_runtime)4731 static int __assign_cfs_rq_runtime(struct cfs_bandwidth *cfs_b,
4732 struct cfs_rq *cfs_rq, u64 target_runtime)
4733 {
4734 u64 min_amount, amount = 0;
4735
4736 lockdep_assert_held(&cfs_b->lock);
4737
4738 /* note: this is a positive sum as runtime_remaining <= 0 */
4739 min_amount = target_runtime - cfs_rq->runtime_remaining;
4740
4741 if (cfs_b->quota == RUNTIME_INF)
4742 amount = min_amount;
4743 else {
4744 start_cfs_bandwidth(cfs_b);
4745
4746 if (cfs_b->runtime > 0) {
4747 amount = min(cfs_b->runtime, min_amount);
4748 cfs_b->runtime -= amount;
4749 cfs_b->idle = 0;
4750 }
4751 }
4752
4753 cfs_rq->runtime_remaining += amount;
4754
4755 return cfs_rq->runtime_remaining > 0;
4756 }
4757
4758 /* returns 0 on failure to allocate runtime */
assign_cfs_rq_runtime(struct cfs_rq * cfs_rq)4759 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4760 {
4761 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4762 int ret;
4763
4764 raw_spin_lock(&cfs_b->lock);
4765 ret = __assign_cfs_rq_runtime(cfs_b, cfs_rq, sched_cfs_bandwidth_slice());
4766 raw_spin_unlock(&cfs_b->lock);
4767
4768 return ret;
4769 }
4770
__account_cfs_rq_runtime(struct cfs_rq * cfs_rq,u64 delta_exec)4771 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
4772 {
4773 /* dock delta_exec before expiring quota (as it could span periods) */
4774 cfs_rq->runtime_remaining -= delta_exec;
4775
4776 if (likely(cfs_rq->runtime_remaining > 0))
4777 return;
4778
4779 if (cfs_rq->throttled)
4780 return;
4781 /*
4782 * if we're unable to extend our runtime we resched so that the active
4783 * hierarchy can be throttled
4784 */
4785 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
4786 resched_curr(rq_of(cfs_rq));
4787 }
4788
4789 static __always_inline
account_cfs_rq_runtime(struct cfs_rq * cfs_rq,u64 delta_exec)4790 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
4791 {
4792 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
4793 return;
4794
4795 __account_cfs_rq_runtime(cfs_rq, delta_exec);
4796 }
4797
cfs_rq_throttled(struct cfs_rq * cfs_rq)4798 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
4799 {
4800 return cfs_bandwidth_used() && cfs_rq->throttled;
4801 }
4802
4803 /* check whether cfs_rq, or any parent, is throttled */
throttled_hierarchy(struct cfs_rq * cfs_rq)4804 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
4805 {
4806 return cfs_bandwidth_used() && cfs_rq->throttle_count;
4807 }
4808
4809 /*
4810 * Ensure that neither of the group entities corresponding to src_cpu or
4811 * dest_cpu are members of a throttled hierarchy when performing group
4812 * load-balance operations.
4813 */
throttled_lb_pair(struct task_group * tg,int src_cpu,int dest_cpu)4814 static inline int throttled_lb_pair(struct task_group *tg,
4815 int src_cpu, int dest_cpu)
4816 {
4817 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
4818
4819 src_cfs_rq = tg->cfs_rq[src_cpu];
4820 dest_cfs_rq = tg->cfs_rq[dest_cpu];
4821
4822 return throttled_hierarchy(src_cfs_rq) ||
4823 throttled_hierarchy(dest_cfs_rq);
4824 }
4825
tg_unthrottle_up(struct task_group * tg,void * data)4826 static int tg_unthrottle_up(struct task_group *tg, void *data)
4827 {
4828 struct rq *rq = data;
4829 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4830
4831 cfs_rq->throttle_count--;
4832 if (!cfs_rq->throttle_count) {
4833 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
4834 cfs_rq->throttled_clock_task;
4835
4836 /* Add cfs_rq with already running entity in the list */
4837 if (cfs_rq->nr_running >= 1)
4838 list_add_leaf_cfs_rq(cfs_rq);
4839 }
4840
4841 return 0;
4842 }
4843
tg_throttle_down(struct task_group * tg,void * data)4844 static int tg_throttle_down(struct task_group *tg, void *data)
4845 {
4846 struct rq *rq = data;
4847 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4848
4849 /* group is entering throttled state, stop time */
4850 if (!cfs_rq->throttle_count) {
4851 cfs_rq->throttled_clock_task = rq_clock_task(rq);
4852 list_del_leaf_cfs_rq(cfs_rq);
4853 }
4854 cfs_rq->throttle_count++;
4855
4856 return 0;
4857 }
4858
throttle_cfs_rq(struct cfs_rq * cfs_rq)4859 static bool throttle_cfs_rq(struct cfs_rq *cfs_rq)
4860 {
4861 struct rq *rq = rq_of(cfs_rq);
4862 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4863 struct sched_entity *se;
4864 long task_delta, idle_task_delta, dequeue = 1;
4865
4866 raw_spin_lock(&cfs_b->lock);
4867 /* This will start the period timer if necessary */
4868 if (__assign_cfs_rq_runtime(cfs_b, cfs_rq, 1)) {
4869 /*
4870 * We have raced with bandwidth becoming available, and if we
4871 * actually throttled the timer might not unthrottle us for an
4872 * entire period. We additionally needed to make sure that any
4873 * subsequent check_cfs_rq_runtime calls agree not to throttle
4874 * us, as we may commit to do cfs put_prev+pick_next, so we ask
4875 * for 1ns of runtime rather than just check cfs_b.
4876 */
4877 dequeue = 0;
4878 } else {
4879 list_add_tail_rcu(&cfs_rq->throttled_list,
4880 &cfs_b->throttled_cfs_rq);
4881 }
4882 raw_spin_unlock(&cfs_b->lock);
4883
4884 if (!dequeue)
4885 return false; /* Throttle no longer required. */
4886
4887 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
4888
4889 /* freeze hierarchy runnable averages while throttled */
4890 rcu_read_lock();
4891 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
4892 rcu_read_unlock();
4893
4894 task_delta = cfs_rq->h_nr_running;
4895 idle_task_delta = cfs_rq->idle_h_nr_running;
4896 for_each_sched_entity(se) {
4897 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
4898 /* throttled entity or throttle-on-deactivate */
4899 if (!se->on_rq)
4900 break;
4901
4902 if (dequeue) {
4903 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
4904 } else {
4905 update_load_avg(qcfs_rq, se, 0);
4906 se_update_runnable(se);
4907 }
4908
4909 qcfs_rq->h_nr_running -= task_delta;
4910 qcfs_rq->idle_h_nr_running -= idle_task_delta;
4911 walt_dec_throttled_cfs_rq_stats(&qcfs_rq->walt_stats, cfs_rq);
4912
4913 if (qcfs_rq->load.weight)
4914 dequeue = 0;
4915 }
4916
4917 if (!se) {
4918 sub_nr_running(rq, task_delta);
4919 walt_dec_throttled_cfs_rq_stats(&rq->walt_stats, cfs_rq);
4920 }
4921
4922 /*
4923 * Note: distribution will already see us throttled via the
4924 * throttled-list. rq->lock protects completion.
4925 */
4926 cfs_rq->throttled = 1;
4927 cfs_rq->throttled_clock = rq_clock(rq);
4928 return true;
4929 }
4930
unthrottle_cfs_rq(struct cfs_rq * cfs_rq)4931 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
4932 {
4933 struct rq *rq = rq_of(cfs_rq);
4934 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4935 struct sched_entity *se;
4936 long task_delta, idle_task_delta;
4937 struct cfs_rq *tcfs_rq __maybe_unused = cfs_rq;
4938
4939 se = cfs_rq->tg->se[cpu_of(rq)];
4940
4941 cfs_rq->throttled = 0;
4942
4943 update_rq_clock(rq);
4944
4945 raw_spin_lock(&cfs_b->lock);
4946 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
4947 list_del_rcu(&cfs_rq->throttled_list);
4948 raw_spin_unlock(&cfs_b->lock);
4949
4950 /* update hierarchical throttle state */
4951 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
4952
4953 if (!cfs_rq->load.weight)
4954 return;
4955
4956 task_delta = cfs_rq->h_nr_running;
4957 idle_task_delta = cfs_rq->idle_h_nr_running;
4958 for_each_sched_entity(se) {
4959 if (se->on_rq)
4960 break;
4961 cfs_rq = cfs_rq_of(se);
4962 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
4963
4964 cfs_rq->h_nr_running += task_delta;
4965 cfs_rq->idle_h_nr_running += idle_task_delta;
4966 walt_inc_throttled_cfs_rq_stats(&cfs_rq->walt_stats, tcfs_rq);
4967
4968 /* end evaluation on encountering a throttled cfs_rq */
4969 if (cfs_rq_throttled(cfs_rq))
4970 goto unthrottle_throttle;
4971 }
4972
4973 for_each_sched_entity(se) {
4974 cfs_rq = cfs_rq_of(se);
4975
4976 update_load_avg(cfs_rq, se, UPDATE_TG);
4977 se_update_runnable(se);
4978
4979 cfs_rq->h_nr_running += task_delta;
4980 cfs_rq->idle_h_nr_running += idle_task_delta;
4981 walt_inc_throttled_cfs_rq_stats(&cfs_rq->walt_stats, tcfs_rq);
4982
4983 /* end evaluation on encountering a throttled cfs_rq */
4984 if (cfs_rq_throttled(cfs_rq))
4985 goto unthrottle_throttle;
4986
4987 /*
4988 * One parent has been throttled and cfs_rq removed from the
4989 * list. Add it back to not break the leaf list.
4990 */
4991 if (throttled_hierarchy(cfs_rq))
4992 list_add_leaf_cfs_rq(cfs_rq);
4993 }
4994
4995 /* At this point se is NULL and we are at root level*/
4996 add_nr_running(rq, task_delta);
4997 walt_inc_throttled_cfs_rq_stats(&rq->walt_stats, tcfs_rq);
4998
4999 unthrottle_throttle:
5000 /*
5001 * The cfs_rq_throttled() breaks in the above iteration can result in
5002 * incomplete leaf list maintenance, resulting in triggering the
5003 * assertion below.
5004 */
5005 for_each_sched_entity(se) {
5006 cfs_rq = cfs_rq_of(se);
5007
5008 if (list_add_leaf_cfs_rq(cfs_rq))
5009 break;
5010 }
5011
5012 assert_list_leaf_cfs_rq(rq);
5013
5014 /* Determine whether we need to wake up potentially idle CPU: */
5015 if (rq->curr == rq->idle && rq->cfs.nr_running)
5016 resched_curr(rq);
5017 }
5018
distribute_cfs_runtime(struct cfs_bandwidth * cfs_b)5019 static void distribute_cfs_runtime(struct cfs_bandwidth *cfs_b)
5020 {
5021 struct cfs_rq *cfs_rq;
5022 u64 runtime, remaining = 1;
5023
5024 rcu_read_lock();
5025 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
5026 throttled_list) {
5027 struct rq *rq = rq_of(cfs_rq);
5028 struct rq_flags rf;
5029
5030 rq_lock_irqsave(rq, &rf);
5031 if (!cfs_rq_throttled(cfs_rq))
5032 goto next;
5033
5034 /* By the above check, this should never be true */
5035 SCHED_WARN_ON(cfs_rq->runtime_remaining > 0);
5036
5037 raw_spin_lock(&cfs_b->lock);
5038 runtime = -cfs_rq->runtime_remaining + 1;
5039 if (runtime > cfs_b->runtime)
5040 runtime = cfs_b->runtime;
5041 cfs_b->runtime -= runtime;
5042 remaining = cfs_b->runtime;
5043 raw_spin_unlock(&cfs_b->lock);
5044
5045 cfs_rq->runtime_remaining += runtime;
5046
5047 /* we check whether we're throttled above */
5048 if (cfs_rq->runtime_remaining > 0)
5049 unthrottle_cfs_rq(cfs_rq);
5050
5051 next:
5052 rq_unlock_irqrestore(rq, &rf);
5053
5054 if (!remaining)
5055 break;
5056 }
5057 rcu_read_unlock();
5058 }
5059
5060 /*
5061 * Responsible for refilling a task_group's bandwidth and unthrottling its
5062 * cfs_rqs as appropriate. If there has been no activity within the last
5063 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
5064 * used to track this state.
5065 */
do_sched_cfs_period_timer(struct cfs_bandwidth * cfs_b,int overrun,unsigned long flags)5066 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun, unsigned long flags)
5067 {
5068 int throttled;
5069
5070 /* no need to continue the timer with no bandwidth constraint */
5071 if (cfs_b->quota == RUNTIME_INF)
5072 goto out_deactivate;
5073
5074 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
5075 cfs_b->nr_periods += overrun;
5076
5077 /*
5078 * idle depends on !throttled (for the case of a large deficit), and if
5079 * we're going inactive then everything else can be deferred
5080 */
5081 if (cfs_b->idle && !throttled)
5082 goto out_deactivate;
5083
5084 __refill_cfs_bandwidth_runtime(cfs_b);
5085
5086 if (!throttled) {
5087 /* mark as potentially idle for the upcoming period */
5088 cfs_b->idle = 1;
5089 return 0;
5090 }
5091
5092 /* account preceding periods in which throttling occurred */
5093 cfs_b->nr_throttled += overrun;
5094
5095 /*
5096 * This check is repeated as we release cfs_b->lock while we unthrottle.
5097 */
5098 while (throttled && cfs_b->runtime > 0) {
5099 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
5100 /* we can't nest cfs_b->lock while distributing bandwidth */
5101 distribute_cfs_runtime(cfs_b);
5102 raw_spin_lock_irqsave(&cfs_b->lock, flags);
5103
5104 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
5105 }
5106
5107 /*
5108 * While we are ensured activity in the period following an
5109 * unthrottle, this also covers the case in which the new bandwidth is
5110 * insufficient to cover the existing bandwidth deficit. (Forcing the
5111 * timer to remain active while there are any throttled entities.)
5112 */
5113 cfs_b->idle = 0;
5114
5115 return 0;
5116
5117 out_deactivate:
5118 return 1;
5119 }
5120
5121 /* a cfs_rq won't donate quota below this amount */
5122 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
5123 /* minimum remaining period time to redistribute slack quota */
5124 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
5125 /* how long we wait to gather additional slack before distributing */
5126 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
5127
5128 /*
5129 * Are we near the end of the current quota period?
5130 *
5131 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
5132 * hrtimer base being cleared by hrtimer_start. In the case of
5133 * migrate_hrtimers, base is never cleared, so we are fine.
5134 */
runtime_refresh_within(struct cfs_bandwidth * cfs_b,u64 min_expire)5135 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
5136 {
5137 struct hrtimer *refresh_timer = &cfs_b->period_timer;
5138 s64 remaining;
5139
5140 /* if the call-back is running a quota refresh is already occurring */
5141 if (hrtimer_callback_running(refresh_timer))
5142 return 1;
5143
5144 /* is a quota refresh about to occur? */
5145 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
5146 if (remaining < (s64)min_expire)
5147 return 1;
5148
5149 return 0;
5150 }
5151
start_cfs_slack_bandwidth(struct cfs_bandwidth * cfs_b)5152 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
5153 {
5154 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
5155
5156 /* if there's a quota refresh soon don't bother with slack */
5157 if (runtime_refresh_within(cfs_b, min_left))
5158 return;
5159
5160 /* don't push forwards an existing deferred unthrottle */
5161 if (cfs_b->slack_started)
5162 return;
5163 cfs_b->slack_started = true;
5164
5165 hrtimer_start(&cfs_b->slack_timer,
5166 ns_to_ktime(cfs_bandwidth_slack_period),
5167 HRTIMER_MODE_REL);
5168 }
5169
5170 /* we know any runtime found here is valid as update_curr() precedes return */
__return_cfs_rq_runtime(struct cfs_rq * cfs_rq)5171 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5172 {
5173 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
5174 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
5175
5176 if (slack_runtime <= 0)
5177 return;
5178
5179 raw_spin_lock(&cfs_b->lock);
5180 if (cfs_b->quota != RUNTIME_INF) {
5181 cfs_b->runtime += slack_runtime;
5182
5183 /* we are under rq->lock, defer unthrottling using a timer */
5184 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
5185 !list_empty(&cfs_b->throttled_cfs_rq))
5186 start_cfs_slack_bandwidth(cfs_b);
5187 }
5188 raw_spin_unlock(&cfs_b->lock);
5189
5190 /* even if it's not valid for return we don't want to try again */
5191 cfs_rq->runtime_remaining -= slack_runtime;
5192 }
5193
return_cfs_rq_runtime(struct cfs_rq * cfs_rq)5194 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5195 {
5196 if (!cfs_bandwidth_used())
5197 return;
5198
5199 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
5200 return;
5201
5202 __return_cfs_rq_runtime(cfs_rq);
5203 }
5204
5205 /*
5206 * This is done with a timer (instead of inline with bandwidth return) since
5207 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
5208 */
do_sched_cfs_slack_timer(struct cfs_bandwidth * cfs_b)5209 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
5210 {
5211 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
5212 unsigned long flags;
5213
5214 /* confirm we're still not at a refresh boundary */
5215 raw_spin_lock_irqsave(&cfs_b->lock, flags);
5216 cfs_b->slack_started = false;
5217
5218 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
5219 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
5220 return;
5221 }
5222
5223 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
5224 runtime = cfs_b->runtime;
5225
5226 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
5227
5228 if (!runtime)
5229 return;
5230
5231 distribute_cfs_runtime(cfs_b);
5232
5233 raw_spin_lock_irqsave(&cfs_b->lock, flags);
5234 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
5235 }
5236
5237 /*
5238 * When a group wakes up we want to make sure that its quota is not already
5239 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
5240 * runtime as update_curr() throttling can not trigger until it's on-rq.
5241 */
check_enqueue_throttle(struct cfs_rq * cfs_rq)5242 static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
5243 {
5244 if (!cfs_bandwidth_used())
5245 return;
5246
5247 /* an active group must be handled by the update_curr()->put() path */
5248 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
5249 return;
5250
5251 /* ensure the group is not already throttled */
5252 if (cfs_rq_throttled(cfs_rq))
5253 return;
5254
5255 /* update runtime allocation */
5256 account_cfs_rq_runtime(cfs_rq, 0);
5257 if (cfs_rq->runtime_remaining <= 0)
5258 throttle_cfs_rq(cfs_rq);
5259 }
5260
sync_throttle(struct task_group * tg,int cpu)5261 static void sync_throttle(struct task_group *tg, int cpu)
5262 {
5263 struct cfs_rq *pcfs_rq, *cfs_rq;
5264
5265 if (!cfs_bandwidth_used())
5266 return;
5267
5268 if (!tg->parent)
5269 return;
5270
5271 cfs_rq = tg->cfs_rq[cpu];
5272 pcfs_rq = tg->parent->cfs_rq[cpu];
5273
5274 cfs_rq->throttle_count = pcfs_rq->throttle_count;
5275 cfs_rq->throttled_clock_task = rq_clock_task(cpu_rq(cpu));
5276 }
5277
5278 /* conditionally throttle active cfs_rq's from put_prev_entity() */
check_cfs_rq_runtime(struct cfs_rq * cfs_rq)5279 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5280 {
5281 if (!cfs_bandwidth_used())
5282 return false;
5283
5284 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
5285 return false;
5286
5287 /*
5288 * it's possible for a throttled entity to be forced into a running
5289 * state (e.g. set_curr_task), in this case we're finished.
5290 */
5291 if (cfs_rq_throttled(cfs_rq))
5292 return true;
5293
5294 return throttle_cfs_rq(cfs_rq);
5295 }
5296
sched_cfs_slack_timer(struct hrtimer * timer)5297 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
5298 {
5299 struct cfs_bandwidth *cfs_b =
5300 container_of(timer, struct cfs_bandwidth, slack_timer);
5301
5302 do_sched_cfs_slack_timer(cfs_b);
5303
5304 return HRTIMER_NORESTART;
5305 }
5306
5307 extern const u64 max_cfs_quota_period;
5308
sched_cfs_period_timer(struct hrtimer * timer)5309 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
5310 {
5311 struct cfs_bandwidth *cfs_b =
5312 container_of(timer, struct cfs_bandwidth, period_timer);
5313 unsigned long flags;
5314 int overrun;
5315 int idle = 0;
5316 int count = 0;
5317
5318 raw_spin_lock_irqsave(&cfs_b->lock, flags);
5319 for (;;) {
5320 overrun = hrtimer_forward_now(timer, cfs_b->period);
5321 if (!overrun)
5322 break;
5323
5324 idle = do_sched_cfs_period_timer(cfs_b, overrun, flags);
5325
5326 if (++count > 3) {
5327 u64 new, old = ktime_to_ns(cfs_b->period);
5328
5329 /*
5330 * Grow period by a factor of 2 to avoid losing precision.
5331 * Precision loss in the quota/period ratio can cause __cfs_schedulable
5332 * to fail.
5333 */
5334 new = old * 2;
5335 if (new < max_cfs_quota_period) {
5336 cfs_b->period = ns_to_ktime(new);
5337 cfs_b->quota *= 2;
5338
5339 pr_warn_ratelimited(
5340 "cfs_period_timer[cpu%d]: period too short, scaling up (new cfs_period_us = %lld, cfs_quota_us = %lld)\n",
5341 smp_processor_id(),
5342 div_u64(new, NSEC_PER_USEC),
5343 div_u64(cfs_b->quota, NSEC_PER_USEC));
5344 } else {
5345 pr_warn_ratelimited(
5346 "cfs_period_timer[cpu%d]: period too short, but cannot scale up without losing precision (cfs_period_us = %lld, cfs_quota_us = %lld)\n",
5347 smp_processor_id(),
5348 div_u64(old, NSEC_PER_USEC),
5349 div_u64(cfs_b->quota, NSEC_PER_USEC));
5350 }
5351
5352 /* reset count so we don't come right back in here */
5353 count = 0;
5354 }
5355 }
5356 if (idle)
5357 cfs_b->period_active = 0;
5358 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
5359
5360 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
5361 }
5362
init_cfs_bandwidth(struct cfs_bandwidth * cfs_b)5363 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
5364 {
5365 raw_spin_lock_init(&cfs_b->lock);
5366 cfs_b->runtime = 0;
5367 cfs_b->quota = RUNTIME_INF;
5368 cfs_b->period = ns_to_ktime(default_cfs_period());
5369
5370 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
5371 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
5372 cfs_b->period_timer.function = sched_cfs_period_timer;
5373 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
5374 cfs_b->slack_timer.function = sched_cfs_slack_timer;
5375 cfs_b->slack_started = false;
5376 }
5377
init_cfs_rq_runtime(struct cfs_rq * cfs_rq)5378 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5379 {
5380 cfs_rq->runtime_enabled = 0;
5381 INIT_LIST_HEAD(&cfs_rq->throttled_list);
5382 walt_init_cfs_rq_stats(cfs_rq);
5383 }
5384
start_cfs_bandwidth(struct cfs_bandwidth * cfs_b)5385 void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
5386 {
5387 lockdep_assert_held(&cfs_b->lock);
5388
5389 if (cfs_b->period_active)
5390 return;
5391
5392 cfs_b->period_active = 1;
5393 hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
5394 hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
5395 }
5396
destroy_cfs_bandwidth(struct cfs_bandwidth * cfs_b)5397 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
5398 {
5399 /* init_cfs_bandwidth() was not called */
5400 if (!cfs_b->throttled_cfs_rq.next)
5401 return;
5402
5403 hrtimer_cancel(&cfs_b->period_timer);
5404 hrtimer_cancel(&cfs_b->slack_timer);
5405 }
5406
5407 /*
5408 * Both these CPU hotplug callbacks race against unregister_fair_sched_group()
5409 *
5410 * The race is harmless, since modifying bandwidth settings of unhooked group
5411 * bits doesn't do much.
5412 */
5413
5414 /* cpu online calback */
update_runtime_enabled(struct rq * rq)5415 static void __maybe_unused update_runtime_enabled(struct rq *rq)
5416 {
5417 struct task_group *tg;
5418
5419 lockdep_assert_held(&rq->lock);
5420
5421 rcu_read_lock();
5422 list_for_each_entry_rcu(tg, &task_groups, list) {
5423 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
5424 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
5425
5426 raw_spin_lock(&cfs_b->lock);
5427 cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
5428 raw_spin_unlock(&cfs_b->lock);
5429 }
5430 rcu_read_unlock();
5431 }
5432
5433 /* cpu offline callback */
unthrottle_offline_cfs_rqs(struct rq * rq)5434 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
5435 {
5436 struct task_group *tg;
5437
5438 lockdep_assert_held(&rq->lock);
5439
5440 rcu_read_lock();
5441 list_for_each_entry_rcu(tg, &task_groups, list) {
5442 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
5443
5444 if (!cfs_rq->runtime_enabled)
5445 continue;
5446
5447 /*
5448 * clock_task is not advancing so we just need to make sure
5449 * there's some valid quota amount
5450 */
5451 cfs_rq->runtime_remaining = 1;
5452 /*
5453 * Offline rq is schedulable till CPU is completely disabled
5454 * in take_cpu_down(), so we prevent new cfs throttling here.
5455 */
5456 cfs_rq->runtime_enabled = 0;
5457
5458 if (cfs_rq_throttled(cfs_rq))
5459 unthrottle_cfs_rq(cfs_rq);
5460 }
5461 rcu_read_unlock();
5462 }
5463
5464 #else /* CONFIG_CFS_BANDWIDTH */
5465
cfs_bandwidth_used(void)5466 static inline bool cfs_bandwidth_used(void)
5467 {
5468 return false;
5469 }
5470
account_cfs_rq_runtime(struct cfs_rq * cfs_rq,u64 delta_exec)5471 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
check_cfs_rq_runtime(struct cfs_rq * cfs_rq)5472 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
check_enqueue_throttle(struct cfs_rq * cfs_rq)5473 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
sync_throttle(struct task_group * tg,int cpu)5474 static inline void sync_throttle(struct task_group *tg, int cpu) {}
return_cfs_rq_runtime(struct cfs_rq * cfs_rq)5475 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
5476
cfs_rq_throttled(struct cfs_rq * cfs_rq)5477 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
5478 {
5479 return 0;
5480 }
5481
throttled_hierarchy(struct cfs_rq * cfs_rq)5482 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
5483 {
5484 return 0;
5485 }
5486
throttled_lb_pair(struct task_group * tg,int src_cpu,int dest_cpu)5487 static inline int throttled_lb_pair(struct task_group *tg,
5488 int src_cpu, int dest_cpu)
5489 {
5490 return 0;
5491 }
5492
init_cfs_bandwidth(struct cfs_bandwidth * cfs_b)5493 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
5494
5495 #ifdef CONFIG_FAIR_GROUP_SCHED
init_cfs_rq_runtime(struct cfs_rq * cfs_rq)5496 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
5497 #endif
5498
tg_cfs_bandwidth(struct task_group * tg)5499 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
5500 {
5501 return NULL;
5502 }
destroy_cfs_bandwidth(struct cfs_bandwidth * cfs_b)5503 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
update_runtime_enabled(struct rq * rq)5504 static inline void update_runtime_enabled(struct rq *rq) {}
unthrottle_offline_cfs_rqs(struct rq * rq)5505 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
5506
5507 #endif /* CONFIG_CFS_BANDWIDTH */
5508
5509 /**************************************************
5510 * CFS operations on tasks:
5511 */
5512
5513 #ifdef CONFIG_SCHED_HRTICK
hrtick_start_fair(struct rq * rq,struct task_struct * p)5514 static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
5515 {
5516 struct sched_entity *se = &p->se;
5517 struct cfs_rq *cfs_rq = cfs_rq_of(se);
5518
5519 SCHED_WARN_ON(task_rq(p) != rq);
5520
5521 if (rq->cfs.h_nr_running > 1) {
5522 u64 slice = sched_slice(cfs_rq, se);
5523 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
5524 s64 delta = slice - ran;
5525
5526 if (delta < 0) {
5527 if (rq->curr == p)
5528 resched_curr(rq);
5529 return;
5530 }
5531 hrtick_start(rq, delta);
5532 }
5533 }
5534
5535 /*
5536 * called from enqueue/dequeue and updates the hrtick when the
5537 * current task is from our class and nr_running is low enough
5538 * to matter.
5539 */
hrtick_update(struct rq * rq)5540 static void hrtick_update(struct rq *rq)
5541 {
5542 struct task_struct *curr = rq->curr;
5543
5544 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
5545 return;
5546
5547 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
5548 hrtick_start_fair(rq, curr);
5549 }
5550 #else /* !CONFIG_SCHED_HRTICK */
5551 static inline void
hrtick_start_fair(struct rq * rq,struct task_struct * p)5552 hrtick_start_fair(struct rq *rq, struct task_struct *p)
5553 {
5554 }
5555
hrtick_update(struct rq * rq)5556 static inline void hrtick_update(struct rq *rq)
5557 {
5558 }
5559 #endif
5560
5561 #ifdef CONFIG_SMP
cpu_overutilized(int cpu)5562 static inline bool cpu_overutilized(int cpu)
5563 {
5564 return !fits_capacity(cpu_util(cpu), capacity_of(cpu));
5565 }
5566
update_overutilized_status(struct rq * rq)5567 static inline void update_overutilized_status(struct rq *rq)
5568 {
5569 if (!READ_ONCE(rq->rd->overutilized) && cpu_overutilized(rq->cpu)) {
5570 WRITE_ONCE(rq->rd->overutilized, SG_OVERUTILIZED);
5571 trace_sched_overutilized_tp(rq->rd, SG_OVERUTILIZED);
5572 }
5573 }
5574 #else
update_overutilized_status(struct rq * rq)5575 static inline void update_overutilized_status(struct rq *rq) { }
5576 #endif
5577
5578 /* Runqueue only has SCHED_IDLE tasks enqueued */
sched_idle_rq(struct rq * rq)5579 static int sched_idle_rq(struct rq *rq)
5580 {
5581 return unlikely(rq->nr_running == rq->cfs.idle_h_nr_running &&
5582 rq->nr_running);
5583 }
5584
5585 #ifdef CONFIG_SMP
sched_idle_cpu(int cpu)5586 static int sched_idle_cpu(int cpu)
5587 {
5588 return sched_idle_rq(cpu_rq(cpu));
5589 }
5590 #endif
5591
5592 static void set_next_buddy(struct sched_entity *se);
5593
5594 #ifdef CONFIG_SCHED_LATENCY_NICE
check_preempt_from_idle(struct cfs_rq * cfs,struct sched_entity * se)5595 static void check_preempt_from_idle(struct cfs_rq *cfs, struct sched_entity *se)
5596 {
5597 struct sched_entity *next;
5598
5599 if (se->latency_weight <= 0)
5600 return;
5601
5602 if (cfs->nr_running <= 1)
5603 return;
5604 /*
5605 * When waking from idle, we don't need to check to preempt at wakeup
5606 * the idle thread and don't set next buddy as a candidate for being
5607 * picked in priority.
5608 * In case of simultaneous wakeup from idle, the latency sensitive tasks
5609 * lost opportunity to preempt non sensitive tasks which woke up
5610 * simultaneously.
5611 */
5612
5613 if (cfs->next)
5614 next = cfs->next;
5615 else
5616 next = __pick_first_entity(cfs);
5617
5618 if (next && wakeup_preempt_entity(next, se) == 1)
5619 set_next_buddy(se);
5620 }
5621 #endif
5622
5623 /*
5624 * The enqueue_task method is called before nr_running is
5625 * increased. Here we update the fair scheduling stats and
5626 * then put the task into the rbtree:
5627 */
5628 static void
enqueue_task_fair(struct rq * rq,struct task_struct * p,int flags)5629 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
5630 {
5631 struct cfs_rq *cfs_rq;
5632 struct sched_entity *se = &p->se;
5633 int idle_h_nr_running = task_has_idle_policy(p);
5634 int task_new = !(flags & ENQUEUE_WAKEUP);
5635
5636 /*
5637 * The code below (indirectly) updates schedutil which looks at
5638 * the cfs_rq utilization to select a frequency.
5639 * Let's add the task's estimated utilization to the cfs_rq's
5640 * estimated utilization, before we update schedutil.
5641 */
5642 util_est_enqueue(&rq->cfs, p);
5643
5644 /*
5645 * If in_iowait is set, the code below may not trigger any cpufreq
5646 * utilization updates, so do it here explicitly with the IOWAIT flag
5647 * passed.
5648 */
5649 if (p->in_iowait)
5650 cpufreq_update_util(rq, SCHED_CPUFREQ_IOWAIT);
5651
5652 for_each_sched_entity(se) {
5653 if (se->on_rq)
5654 break;
5655 cfs_rq = cfs_rq_of(se);
5656 enqueue_entity(cfs_rq, se, flags);
5657
5658 cfs_rq->h_nr_running++;
5659 cfs_rq->idle_h_nr_running += idle_h_nr_running;
5660 walt_inc_cfs_rq_stats(cfs_rq, p);
5661
5662 /* end evaluation on encountering a throttled cfs_rq */
5663 if (cfs_rq_throttled(cfs_rq))
5664 goto enqueue_throttle;
5665
5666 flags = ENQUEUE_WAKEUP;
5667 }
5668
5669 for_each_sched_entity(se) {
5670 cfs_rq = cfs_rq_of(se);
5671
5672 update_load_avg(cfs_rq, se, UPDATE_TG);
5673 se_update_runnable(se);
5674 update_cfs_group(se);
5675
5676 cfs_rq->h_nr_running++;
5677 cfs_rq->idle_h_nr_running += idle_h_nr_running;
5678 walt_inc_cfs_rq_stats(cfs_rq, p);
5679
5680 /* end evaluation on encountering a throttled cfs_rq */
5681 if (cfs_rq_throttled(cfs_rq))
5682 goto enqueue_throttle;
5683
5684 /*
5685 * One parent has been throttled and cfs_rq removed from the
5686 * list. Add it back to not break the leaf list.
5687 */
5688 if (throttled_hierarchy(cfs_rq))
5689 list_add_leaf_cfs_rq(cfs_rq);
5690 }
5691
5692 /* At this point se is NULL and we are at root level*/
5693 add_nr_running(rq, 1);
5694 inc_rq_walt_stats(rq, p);
5695 /*
5696 * Since new tasks are assigned an initial util_avg equal to
5697 * half of the spare capacity of their CPU, tiny tasks have the
5698 * ability to cross the overutilized threshold, which will
5699 * result in the load balancer ruining all the task placement
5700 * done by EAS. As a way to mitigate that effect, do not account
5701 * for the first enqueue operation of new tasks during the
5702 * overutilized flag detection.
5703 *
5704 * A better way of solving this problem would be to wait for
5705 * the PELT signals of tasks to converge before taking them
5706 * into account, but that is not straightforward to implement,
5707 * and the following generally works well enough in practice.
5708 */
5709 if (!task_new)
5710 update_overutilized_status(rq);
5711
5712 #ifdef CONFIG_SCHED_LATENCY_NICE
5713 if (rq->curr == rq->idle)
5714 check_preempt_from_idle(cfs_rq_of(&p->se), &p->se);
5715 #endif
5716
5717 enqueue_throttle:
5718 if (cfs_bandwidth_used()) {
5719 /*
5720 * When bandwidth control is enabled; the cfs_rq_throttled()
5721 * breaks in the above iteration can result in incomplete
5722 * leaf list maintenance, resulting in triggering the assertion
5723 * below.
5724 */
5725 for_each_sched_entity(se) {
5726 cfs_rq = cfs_rq_of(se);
5727
5728 if (list_add_leaf_cfs_rq(cfs_rq))
5729 break;
5730 }
5731 }
5732
5733 assert_list_leaf_cfs_rq(rq);
5734
5735 hrtick_update(rq);
5736 }
5737
5738 /*
5739 * The dequeue_task method is called before nr_running is
5740 * decreased. We remove the task from the rbtree and
5741 * update the fair scheduling stats:
5742 */
dequeue_task_fair(struct rq * rq,struct task_struct * p,int flags)5743 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
5744 {
5745 struct cfs_rq *cfs_rq;
5746 struct sched_entity *se = &p->se;
5747 int task_sleep = flags & DEQUEUE_SLEEP;
5748 int idle_h_nr_running = task_has_idle_policy(p);
5749 bool was_sched_idle = sched_idle_rq(rq);
5750
5751 util_est_dequeue(&rq->cfs, p);
5752
5753 for_each_sched_entity(se) {
5754 cfs_rq = cfs_rq_of(se);
5755 dequeue_entity(cfs_rq, se, flags);
5756
5757 cfs_rq->h_nr_running--;
5758 cfs_rq->idle_h_nr_running -= idle_h_nr_running;
5759 walt_dec_cfs_rq_stats(cfs_rq, p);
5760
5761 /* end evaluation on encountering a throttled cfs_rq */
5762 if (cfs_rq_throttled(cfs_rq))
5763 goto dequeue_throttle;
5764
5765 /* Don't dequeue parent if it has other entities besides us */
5766 if (cfs_rq->load.weight) {
5767 /* Avoid re-evaluating load for this entity: */
5768 se = parent_entity(se);
5769 /*
5770 * Bias pick_next to pick a task from this cfs_rq, as
5771 * p is sleeping when it is within its sched_slice.
5772 */
5773 if (task_sleep && se && !throttled_hierarchy(cfs_rq))
5774 set_next_buddy(se);
5775 break;
5776 }
5777 flags |= DEQUEUE_SLEEP;
5778 }
5779
5780 for_each_sched_entity(se) {
5781 cfs_rq = cfs_rq_of(se);
5782
5783 update_load_avg(cfs_rq, se, UPDATE_TG);
5784 se_update_runnable(se);
5785 update_cfs_group(se);
5786
5787 cfs_rq->h_nr_running--;
5788 cfs_rq->idle_h_nr_running -= idle_h_nr_running;
5789 walt_dec_cfs_rq_stats(cfs_rq, p);
5790
5791 /* end evaluation on encountering a throttled cfs_rq */
5792 if (cfs_rq_throttled(cfs_rq))
5793 goto dequeue_throttle;
5794
5795 }
5796
5797 /* At this point se is NULL and we are at root level*/
5798 sub_nr_running(rq, 1);
5799 dec_rq_walt_stats(rq, p);
5800
5801 /* balance early to pull high priority tasks */
5802 if (unlikely(!was_sched_idle && sched_idle_rq(rq)))
5803 rq->next_balance = jiffies;
5804
5805 dequeue_throttle:
5806 util_est_update(&rq->cfs, p, task_sleep);
5807 hrtick_update(rq);
5808 }
5809
5810 #ifdef CONFIG_SMP
5811
5812 /* Working cpumask for: load_balance, load_balance_newidle. */
5813 DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
5814 DEFINE_PER_CPU(cpumask_var_t, select_idle_mask);
5815
5816 #ifdef CONFIG_NO_HZ_COMMON
5817
5818 static struct {
5819 cpumask_var_t idle_cpus_mask;
5820 atomic_t nr_cpus;
5821 int has_blocked; /* Idle CPUS has blocked load */
5822 unsigned long next_balance; /* in jiffy units */
5823 unsigned long next_blocked; /* Next update of blocked load in jiffies */
5824 } nohz ____cacheline_aligned;
5825
5826 #endif /* CONFIG_NO_HZ_COMMON */
5827
cpu_load(struct rq * rq)5828 static unsigned long cpu_load(struct rq *rq)
5829 {
5830 return cfs_rq_load_avg(&rq->cfs);
5831 }
5832
5833 /*
5834 * cpu_load_without - compute CPU load without any contributions from *p
5835 * @cpu: the CPU which load is requested
5836 * @p: the task which load should be discounted
5837 *
5838 * The load of a CPU is defined by the load of tasks currently enqueued on that
5839 * CPU as well as tasks which are currently sleeping after an execution on that
5840 * CPU.
5841 *
5842 * This method returns the load of the specified CPU by discounting the load of
5843 * the specified task, whenever the task is currently contributing to the CPU
5844 * load.
5845 */
cpu_load_without(struct rq * rq,struct task_struct * p)5846 static unsigned long cpu_load_without(struct rq *rq, struct task_struct *p)
5847 {
5848 struct cfs_rq *cfs_rq;
5849 unsigned int load;
5850
5851 /* Task has no contribution or is new */
5852 if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
5853 return cpu_load(rq);
5854
5855 cfs_rq = &rq->cfs;
5856 load = READ_ONCE(cfs_rq->avg.load_avg);
5857
5858 /* Discount task's util from CPU's util */
5859 lsub_positive(&load, task_h_load(p));
5860
5861 return load;
5862 }
5863
cpu_runnable(struct rq * rq)5864 static unsigned long cpu_runnable(struct rq *rq)
5865 {
5866 return cfs_rq_runnable_avg(&rq->cfs);
5867 }
5868
cpu_runnable_without(struct rq * rq,struct task_struct * p)5869 static unsigned long cpu_runnable_without(struct rq *rq, struct task_struct *p)
5870 {
5871 struct cfs_rq *cfs_rq;
5872 unsigned int runnable;
5873
5874 /* Task has no contribution or is new */
5875 if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
5876 return cpu_runnable(rq);
5877
5878 cfs_rq = &rq->cfs;
5879 runnable = READ_ONCE(cfs_rq->avg.runnable_avg);
5880
5881 /* Discount task's runnable from CPU's runnable */
5882 lsub_positive(&runnable, p->se.avg.runnable_avg);
5883
5884 return runnable;
5885 }
5886
record_wakee(struct task_struct * p)5887 static void record_wakee(struct task_struct *p)
5888 {
5889 /*
5890 * Only decay a single time; tasks that have less then 1 wakeup per
5891 * jiffy will not have built up many flips.
5892 */
5893 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
5894 current->wakee_flips >>= 1;
5895 current->wakee_flip_decay_ts = jiffies;
5896 }
5897
5898 if (current->last_wakee != p) {
5899 current->last_wakee = p;
5900 current->wakee_flips++;
5901 }
5902 }
5903
5904 /*
5905 * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
5906 *
5907 * A waker of many should wake a different task than the one last awakened
5908 * at a frequency roughly N times higher than one of its wakees.
5909 *
5910 * In order to determine whether we should let the load spread vs consolidating
5911 * to shared cache, we look for a minimum 'flip' frequency of llc_size in one
5912 * partner, and a factor of lls_size higher frequency in the other.
5913 *
5914 * With both conditions met, we can be relatively sure that the relationship is
5915 * non-monogamous, with partner count exceeding socket size.
5916 *
5917 * Waker/wakee being client/server, worker/dispatcher, interrupt source or
5918 * whatever is irrelevant, spread criteria is apparent partner count exceeds
5919 * socket size.
5920 */
wake_wide(struct task_struct * p)5921 static int wake_wide(struct task_struct *p)
5922 {
5923 unsigned int master = current->wakee_flips;
5924 unsigned int slave = p->wakee_flips;
5925 int factor = __this_cpu_read(sd_llc_size);
5926
5927 if (master < slave)
5928 swap(master, slave);
5929 if (slave < factor || master < slave * factor)
5930 return 0;
5931 return 1;
5932 }
5933
5934 /*
5935 * The purpose of wake_affine() is to quickly determine on which CPU we can run
5936 * soonest. For the purpose of speed we only consider the waking and previous
5937 * CPU.
5938 *
5939 * wake_affine_idle() - only considers 'now', it check if the waking CPU is
5940 * cache-affine and is (or will be) idle.
5941 *
5942 * wake_affine_weight() - considers the weight to reflect the average
5943 * scheduling latency of the CPUs. This seems to work
5944 * for the overloaded case.
5945 */
5946 static int
wake_affine_idle(int this_cpu,int prev_cpu,int sync)5947 wake_affine_idle(int this_cpu, int prev_cpu, int sync)
5948 {
5949 /*
5950 * If this_cpu is idle, it implies the wakeup is from interrupt
5951 * context. Only allow the move if cache is shared. Otherwise an
5952 * interrupt intensive workload could force all tasks onto one
5953 * node depending on the IO topology or IRQ affinity settings.
5954 *
5955 * If the prev_cpu is idle and cache affine then avoid a migration.
5956 * There is no guarantee that the cache hot data from an interrupt
5957 * is more important than cache hot data on the prev_cpu and from
5958 * a cpufreq perspective, it's better to have higher utilisation
5959 * on one CPU.
5960 */
5961 if (available_idle_cpu(this_cpu) && cpus_share_cache(this_cpu, prev_cpu))
5962 return available_idle_cpu(prev_cpu) ? prev_cpu : this_cpu;
5963
5964 if (sync && cpu_rq(this_cpu)->nr_running == 1)
5965 return this_cpu;
5966
5967 return nr_cpumask_bits;
5968 }
5969
5970 static int
wake_affine_weight(struct sched_domain * sd,struct task_struct * p,int this_cpu,int prev_cpu,int sync)5971 wake_affine_weight(struct sched_domain *sd, struct task_struct *p,
5972 int this_cpu, int prev_cpu, int sync)
5973 {
5974 s64 this_eff_load, prev_eff_load;
5975 unsigned long task_load;
5976
5977 this_eff_load = cpu_load(cpu_rq(this_cpu));
5978
5979 if (sync) {
5980 unsigned long current_load = task_h_load(current);
5981
5982 if (current_load > this_eff_load)
5983 return this_cpu;
5984
5985 this_eff_load -= current_load;
5986 }
5987
5988 task_load = task_h_load(p);
5989
5990 this_eff_load += task_load;
5991 if (sched_feat(WA_BIAS))
5992 this_eff_load *= 100;
5993 this_eff_load *= capacity_of(prev_cpu);
5994
5995 prev_eff_load = cpu_load(cpu_rq(prev_cpu));
5996 prev_eff_load -= task_load;
5997 if (sched_feat(WA_BIAS))
5998 prev_eff_load *= 100 + (sd->imbalance_pct - 100) / 2;
5999 prev_eff_load *= capacity_of(this_cpu);
6000
6001 /*
6002 * If sync, adjust the weight of prev_eff_load such that if
6003 * prev_eff == this_eff that select_idle_sibling() will consider
6004 * stacking the wakee on top of the waker if no other CPU is
6005 * idle.
6006 */
6007 if (sync)
6008 prev_eff_load += 1;
6009
6010 return this_eff_load < prev_eff_load ? this_cpu : nr_cpumask_bits;
6011 }
6012
wake_affine(struct sched_domain * sd,struct task_struct * p,int this_cpu,int prev_cpu,int sync)6013 static int wake_affine(struct sched_domain *sd, struct task_struct *p,
6014 int this_cpu, int prev_cpu, int sync)
6015 {
6016 int target = nr_cpumask_bits;
6017
6018 if (sched_feat(WA_IDLE))
6019 target = wake_affine_idle(this_cpu, prev_cpu, sync);
6020
6021 if (sched_feat(WA_WEIGHT) && target == nr_cpumask_bits)
6022 target = wake_affine_weight(sd, p, this_cpu, prev_cpu, sync);
6023
6024 schedstat_inc(p->se.statistics.nr_wakeups_affine_attempts);
6025 if (target == nr_cpumask_bits)
6026 return prev_cpu;
6027
6028 schedstat_inc(sd->ttwu_move_affine);
6029 schedstat_inc(p->se.statistics.nr_wakeups_affine);
6030 return target;
6031 }
6032
6033 static struct sched_group *
6034 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu);
6035
6036 /*
6037 * find_idlest_group_cpu - find the idlest CPU among the CPUs in the group.
6038 */
6039 static int
find_idlest_group_cpu(struct sched_group * group,struct task_struct * p,int this_cpu)6040 find_idlest_group_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
6041 {
6042 unsigned long load, min_load = ULONG_MAX;
6043 unsigned int min_exit_latency = UINT_MAX;
6044 u64 latest_idle_timestamp = 0;
6045 int least_loaded_cpu = this_cpu;
6046 int shallowest_idle_cpu = -1;
6047 int i;
6048
6049 /* Check if we have any choice: */
6050 if (group->group_weight == 1)
6051 return cpumask_first(sched_group_span(group));
6052
6053 /* Traverse only the allowed CPUs */
6054 for_each_cpu_and(i, sched_group_span(group), p->cpus_ptr) {
6055 if (cpu_isolated(i))
6056 continue;
6057
6058 if (sched_idle_cpu(i))
6059 return i;
6060
6061 if (available_idle_cpu(i)) {
6062 struct rq *rq = cpu_rq(i);
6063 struct cpuidle_state *idle = idle_get_state(rq);
6064 if (idle && idle->exit_latency < min_exit_latency) {
6065 /*
6066 * We give priority to a CPU whose idle state
6067 * has the smallest exit latency irrespective
6068 * of any idle timestamp.
6069 */
6070 min_exit_latency = idle->exit_latency;
6071 latest_idle_timestamp = rq->idle_stamp;
6072 shallowest_idle_cpu = i;
6073 } else if ((!idle || idle->exit_latency == min_exit_latency) &&
6074 rq->idle_stamp > latest_idle_timestamp) {
6075 /*
6076 * If equal or no active idle state, then
6077 * the most recently idled CPU might have
6078 * a warmer cache.
6079 */
6080 latest_idle_timestamp = rq->idle_stamp;
6081 shallowest_idle_cpu = i;
6082 }
6083 } else if (shallowest_idle_cpu == -1) {
6084 load = cpu_load(cpu_rq(i));
6085 if (load < min_load) {
6086 min_load = load;
6087 least_loaded_cpu = i;
6088 }
6089 }
6090 }
6091
6092 return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
6093 }
6094
find_idlest_cpu(struct sched_domain * sd,struct task_struct * p,int cpu,int prev_cpu,int sd_flag)6095 static inline int find_idlest_cpu(struct sched_domain *sd, struct task_struct *p,
6096 int cpu, int prev_cpu, int sd_flag)
6097 {
6098 int new_cpu = cpu;
6099
6100 if (!cpumask_intersects(sched_domain_span(sd), p->cpus_ptr))
6101 return prev_cpu;
6102
6103 /*
6104 * We need task's util for cpu_util_without, sync it up to
6105 * prev_cpu's last_update_time.
6106 */
6107 if (!(sd_flag & SD_BALANCE_FORK))
6108 sync_entity_load_avg(&p->se);
6109
6110 while (sd) {
6111 struct sched_group *group;
6112 struct sched_domain *tmp;
6113 int weight;
6114
6115 if (!(sd->flags & sd_flag)) {
6116 sd = sd->child;
6117 continue;
6118 }
6119
6120 group = find_idlest_group(sd, p, cpu);
6121 if (!group) {
6122 sd = sd->child;
6123 continue;
6124 }
6125
6126 new_cpu = find_idlest_group_cpu(group, p, cpu);
6127 if (new_cpu == cpu) {
6128 /* Now try balancing at a lower domain level of 'cpu': */
6129 sd = sd->child;
6130 continue;
6131 }
6132
6133 /* Now try balancing at a lower domain level of 'new_cpu': */
6134 cpu = new_cpu;
6135 weight = sd->span_weight;
6136 sd = NULL;
6137 for_each_domain(cpu, tmp) {
6138 if (weight <= tmp->span_weight)
6139 break;
6140 if (tmp->flags & sd_flag)
6141 sd = tmp;
6142 }
6143 }
6144
6145 return new_cpu;
6146 }
6147
6148 #ifdef CONFIG_SCHED_SMT
6149 DEFINE_STATIC_KEY_FALSE(sched_smt_present);
6150 EXPORT_SYMBOL_GPL(sched_smt_present);
6151
set_idle_cores(int cpu,int val)6152 static inline void set_idle_cores(int cpu, int val)
6153 {
6154 struct sched_domain_shared *sds;
6155
6156 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
6157 if (sds)
6158 WRITE_ONCE(sds->has_idle_cores, val);
6159 }
6160
test_idle_cores(int cpu,bool def)6161 static inline bool test_idle_cores(int cpu, bool def)
6162 {
6163 struct sched_domain_shared *sds;
6164
6165 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
6166 if (sds)
6167 return READ_ONCE(sds->has_idle_cores);
6168
6169 return def;
6170 }
6171
6172 /*
6173 * Scans the local SMT mask to see if the entire core is idle, and records this
6174 * information in sd_llc_shared->has_idle_cores.
6175 *
6176 * Since SMT siblings share all cache levels, inspecting this limited remote
6177 * state should be fairly cheap.
6178 */
__update_idle_core(struct rq * rq)6179 void __update_idle_core(struct rq *rq)
6180 {
6181 int core = cpu_of(rq);
6182 int cpu;
6183
6184 rcu_read_lock();
6185 if (test_idle_cores(core, true))
6186 goto unlock;
6187
6188 for_each_cpu(cpu, cpu_smt_mask(core)) {
6189 if (cpu == core)
6190 continue;
6191
6192 if (!available_idle_cpu(cpu))
6193 goto unlock;
6194 }
6195
6196 set_idle_cores(core, 1);
6197 unlock:
6198 rcu_read_unlock();
6199 }
6200
6201 /*
6202 * Scan the entire LLC domain for idle cores; this dynamically switches off if
6203 * there are no idle cores left in the system; tracked through
6204 * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above.
6205 */
select_idle_core(struct task_struct * p,struct sched_domain * sd,int target)6206 static int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target)
6207 {
6208 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_idle_mask);
6209 int core, cpu;
6210
6211 if (!static_branch_likely(&sched_smt_present))
6212 return -1;
6213
6214 if (!test_idle_cores(target, false))
6215 return -1;
6216
6217 cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr);
6218 #ifdef CONFIG_CPU_ISOLATION_OPT
6219 cpumask_andnot(cpus, cpus, cpu_isolated_mask);
6220 #endif
6221
6222 for_each_cpu_wrap(core, cpus, target) {
6223 bool idle = true;
6224
6225 for_each_cpu(cpu, cpu_smt_mask(core)) {
6226 if (!available_idle_cpu(cpu)) {
6227 idle = false;
6228 break;
6229 }
6230 }
6231 cpumask_andnot(cpus, cpus, cpu_smt_mask(core));
6232
6233 if (idle)
6234 return core;
6235 }
6236
6237 /*
6238 * Failed to find an idle core; stop looking for one.
6239 */
6240 set_idle_cores(target, 0);
6241
6242 return -1;
6243 }
6244
6245 /*
6246 * Scan the local SMT mask for idle CPUs.
6247 */
select_idle_smt(struct task_struct * p,struct sched_domain * sd,int target)6248 static int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
6249 {
6250 int cpu;
6251
6252 if (!static_branch_likely(&sched_smt_present))
6253 return -1;
6254
6255 for_each_cpu(cpu, cpu_smt_mask(target)) {
6256 if (!cpumask_test_cpu(cpu, p->cpus_ptr) ||
6257 !cpumask_test_cpu(cpu, sched_domain_span(sd)))
6258 continue;
6259 if (cpu_isolated(cpu))
6260 continue;
6261 if (available_idle_cpu(cpu) || sched_idle_cpu(cpu))
6262 return cpu;
6263 }
6264
6265 return -1;
6266 }
6267
6268 #else /* CONFIG_SCHED_SMT */
6269
select_idle_core(struct task_struct * p,struct sched_domain * sd,int target)6270 static inline int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target)
6271 {
6272 return -1;
6273 }
6274
select_idle_smt(struct task_struct * p,struct sched_domain * sd,int target)6275 static inline int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
6276 {
6277 return -1;
6278 }
6279
6280 #endif /* CONFIG_SCHED_SMT */
6281
6282 /*
6283 * Scan the LLC domain for idle CPUs; this is dynamically regulated by
6284 * comparing the average scan cost (tracked in sd->avg_scan_cost) against the
6285 * average idle time for this rq (as found in rq->avg_idle).
6286 */
select_idle_cpu(struct task_struct * p,struct sched_domain * sd,int target)6287 static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, int target)
6288 {
6289 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_idle_mask);
6290 struct sched_domain *this_sd;
6291 u64 avg_cost, avg_idle;
6292 u64 time;
6293 int this = smp_processor_id();
6294 int cpu, nr = INT_MAX;
6295
6296 this_sd = rcu_dereference(*this_cpu_ptr(&sd_llc));
6297 if (!this_sd)
6298 return -1;
6299
6300 /*
6301 * Due to large variance we need a large fuzz factor; hackbench in
6302 * particularly is sensitive here.
6303 */
6304 avg_idle = this_rq()->avg_idle / 512;
6305 avg_cost = this_sd->avg_scan_cost + 1;
6306
6307 if (sched_feat(SIS_AVG_CPU) && avg_idle < avg_cost)
6308 return -1;
6309
6310 if (sched_feat(SIS_PROP)) {
6311 u64 span_avg = sd->span_weight * avg_idle;
6312 if (span_avg > 4*avg_cost)
6313 nr = div_u64(span_avg, avg_cost);
6314 else
6315 nr = 4;
6316 }
6317
6318 time = cpu_clock(this);
6319
6320 cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr);
6321
6322 for_each_cpu_wrap(cpu, cpus, target) {
6323 if (!--nr)
6324 return -1;
6325 if (cpu_isolated(cpu))
6326 continue;
6327 if (available_idle_cpu(cpu) || sched_idle_cpu(cpu))
6328 break;
6329 }
6330
6331 time = cpu_clock(this) - time;
6332 update_avg(&this_sd->avg_scan_cost, time);
6333
6334 return cpu;
6335 }
6336
6337 /*
6338 * Scan the asym_capacity domain for idle CPUs; pick the first idle one on which
6339 * the task fits. If no CPU is big enough, but there are idle ones, try to
6340 * maximize capacity.
6341 */
6342 static int
select_idle_capacity(struct task_struct * p,struct sched_domain * sd,int target)6343 select_idle_capacity(struct task_struct *p, struct sched_domain *sd, int target)
6344 {
6345 unsigned long task_util, best_cap = 0;
6346 int cpu, best_cpu = -1;
6347 struct cpumask *cpus;
6348
6349 cpus = this_cpu_cpumask_var_ptr(select_idle_mask);
6350 cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr);
6351
6352 task_util = uclamp_task_util(p);
6353
6354 for_each_cpu_wrap(cpu, cpus, target) {
6355 unsigned long cpu_cap = capacity_of(cpu);
6356
6357 if (cpu_isolated(cpu))
6358 continue;
6359
6360 if (!available_idle_cpu(cpu) && !sched_idle_cpu(cpu))
6361 continue;
6362 if (fits_capacity(task_util, cpu_cap))
6363 return cpu;
6364
6365 if (cpu_cap > best_cap) {
6366 best_cap = cpu_cap;
6367 best_cpu = cpu;
6368 }
6369 }
6370
6371 return best_cpu;
6372 }
6373
asym_fits_capacity(int task_util,int cpu)6374 static inline bool asym_fits_capacity(int task_util, int cpu)
6375 {
6376 if (static_branch_unlikely(&sched_asym_cpucapacity))
6377 return fits_capacity(task_util, capacity_of(cpu));
6378
6379 return true;
6380 }
6381
6382 /*
6383 * Try and locate an idle core/thread in the LLC cache domain.
6384 */
select_idle_sibling(struct task_struct * p,int prev,int target)6385 static int select_idle_sibling(struct task_struct *p, int prev, int target)
6386 {
6387 struct sched_domain *sd;
6388 unsigned long task_util;
6389 int i, recent_used_cpu;
6390
6391 /*
6392 * On asymmetric system, update task utilization because we will check
6393 * that the task fits with cpu's capacity.
6394 */
6395 if (static_branch_unlikely(&sched_asym_cpucapacity)) {
6396 sync_entity_load_avg(&p->se);
6397 task_util = uclamp_task_util(p);
6398 }
6399
6400 if ((available_idle_cpu(target) || sched_idle_cpu(target)) &&
6401 !cpu_isolated(target) && asym_fits_capacity(task_util, target))
6402 return target;
6403
6404 /*
6405 * If the previous CPU is cache affine and idle, don't be stupid:
6406 */
6407 if (prev != target && cpus_share_cache(prev, target) &&
6408 ((available_idle_cpu(prev) || sched_idle_cpu(prev)) &&
6409 !cpu_isolated(target) && asym_fits_capacity(task_util, prev)))
6410 return prev;
6411
6412 /*
6413 * Allow a per-cpu kthread to stack with the wakee if the
6414 * kworker thread and the tasks previous CPUs are the same.
6415 * The assumption is that the wakee queued work for the
6416 * per-cpu kthread that is now complete and the wakeup is
6417 * essentially a sync wakeup. An obvious example of this
6418 * pattern is IO completions.
6419 */
6420 if (is_per_cpu_kthread(current) &&
6421 in_task() &&
6422 prev == smp_processor_id() &&
6423 this_rq()->nr_running <= 1 &&
6424 asym_fits_capacity(task_util, prev)) {
6425 return prev;
6426 }
6427
6428 /* Check a recently used CPU as a potential idle candidate: */
6429 recent_used_cpu = p->recent_used_cpu;
6430 if (recent_used_cpu != prev &&
6431 recent_used_cpu != target &&
6432 cpus_share_cache(recent_used_cpu, target) &&
6433 (available_idle_cpu(recent_used_cpu) || sched_idle_cpu(recent_used_cpu)) &&
6434 cpumask_test_cpu(p->recent_used_cpu, p->cpus_ptr) &&
6435 asym_fits_capacity(task_util, recent_used_cpu)) {
6436 /*
6437 * Replace recent_used_cpu with prev as it is a potential
6438 * candidate for the next wake:
6439 */
6440 p->recent_used_cpu = prev;
6441 return recent_used_cpu;
6442 }
6443
6444 /*
6445 * For asymmetric CPU capacity systems, our domain of interest is
6446 * sd_asym_cpucapacity rather than sd_llc.
6447 */
6448 if (static_branch_unlikely(&sched_asym_cpucapacity)) {
6449 sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, target));
6450 /*
6451 * On an asymmetric CPU capacity system where an exclusive
6452 * cpuset defines a symmetric island (i.e. one unique
6453 * capacity_orig value through the cpuset), the key will be set
6454 * but the CPUs within that cpuset will not have a domain with
6455 * SD_ASYM_CPUCAPACITY. These should follow the usual symmetric
6456 * capacity path.
6457 */
6458 if (sd) {
6459 i = select_idle_capacity(p, sd, target);
6460 return ((unsigned)i < nr_cpumask_bits) ? i : target;
6461 }
6462 }
6463
6464 sd = rcu_dereference(per_cpu(sd_llc, target));
6465 if (!sd)
6466 return target;
6467
6468 i = select_idle_core(p, sd, target);
6469 if ((unsigned)i < nr_cpumask_bits)
6470 return i;
6471
6472 i = select_idle_cpu(p, sd, target);
6473 if ((unsigned)i < nr_cpumask_bits)
6474 return i;
6475
6476 i = select_idle_smt(p, sd, target);
6477 if ((unsigned)i < nr_cpumask_bits)
6478 return i;
6479
6480 return target;
6481 }
6482
6483 /**
6484 * Amount of capacity of a CPU that is (estimated to be) used by CFS tasks
6485 * @cpu: the CPU to get the utilization of
6486 *
6487 * The unit of the return value must be the one of capacity so we can compare
6488 * the utilization with the capacity of the CPU that is available for CFS task
6489 * (ie cpu_capacity).
6490 *
6491 * cfs_rq.avg.util_avg is the sum of running time of runnable tasks plus the
6492 * recent utilization of currently non-runnable tasks on a CPU. It represents
6493 * the amount of utilization of a CPU in the range [0..capacity_orig] where
6494 * capacity_orig is the cpu_capacity available at the highest frequency
6495 * (arch_scale_freq_capacity()).
6496 * The utilization of a CPU converges towards a sum equal to or less than the
6497 * current capacity (capacity_curr <= capacity_orig) of the CPU because it is
6498 * the running time on this CPU scaled by capacity_curr.
6499 *
6500 * The estimated utilization of a CPU is defined to be the maximum between its
6501 * cfs_rq.avg.util_avg and the sum of the estimated utilization of the tasks
6502 * currently RUNNABLE on that CPU.
6503 * This allows to properly represent the expected utilization of a CPU which
6504 * has just got a big task running since a long sleep period. At the same time
6505 * however it preserves the benefits of the "blocked utilization" in
6506 * describing the potential for other tasks waking up on the same CPU.
6507 *
6508 * Nevertheless, cfs_rq.avg.util_avg can be higher than capacity_curr or even
6509 * higher than capacity_orig because of unfortunate rounding in
6510 * cfs.avg.util_avg or just after migrating tasks and new task wakeups until
6511 * the average stabilizes with the new running time. We need to check that the
6512 * utilization stays within the range of [0..capacity_orig] and cap it if
6513 * necessary. Without utilization capping, a group could be seen as overloaded
6514 * (CPU0 utilization at 121% + CPU1 utilization at 80%) whereas CPU1 has 20% of
6515 * available capacity. We allow utilization to overshoot capacity_curr (but not
6516 * capacity_orig) as it useful for predicting the capacity required after task
6517 * migrations (scheduler-driven DVFS).
6518 *
6519 * Return: the (estimated) utilization for the specified CPU
6520 */
cpu_util(int cpu)6521 unsigned long cpu_util(int cpu)
6522 {
6523 struct cfs_rq *cfs_rq;
6524 unsigned int util;
6525
6526 #ifdef CONFIG_SCHED_WALT
6527 if (likely(!walt_disabled && sysctl_sched_use_walt_cpu_util)) {
6528 u64 walt_cpu_util =
6529 cpu_rq(cpu)->walt_stats.cumulative_runnable_avg_scaled;
6530
6531 return min_t(unsigned long, walt_cpu_util,
6532 capacity_orig_of(cpu));
6533 }
6534 #endif
6535
6536 cfs_rq = &cpu_rq(cpu)->cfs;
6537 util = READ_ONCE(cfs_rq->avg.util_avg);
6538
6539 if (sched_feat(UTIL_EST))
6540 util = max(util, READ_ONCE(cfs_rq->avg.util_est.enqueued));
6541
6542 return min_t(unsigned long, util, capacity_orig_of(cpu));
6543 }
6544
6545 /*
6546 * cpu_util_without: compute cpu utilization without any contributions from *p
6547 * @cpu: the CPU which utilization is requested
6548 * @p: the task which utilization should be discounted
6549 *
6550 * The utilization of a CPU is defined by the utilization of tasks currently
6551 * enqueued on that CPU as well as tasks which are currently sleeping after an
6552 * execution on that CPU.
6553 *
6554 * This method returns the utilization of the specified CPU by discounting the
6555 * utilization of the specified task, whenever the task is currently
6556 * contributing to the CPU utilization.
6557 */
cpu_util_without(int cpu,struct task_struct * p)6558 static unsigned long cpu_util_without(int cpu, struct task_struct *p)
6559 {
6560 struct cfs_rq *cfs_rq;
6561 unsigned int util;
6562
6563 #ifdef CONFIG_SCHED_WALT
6564 /*
6565 * WALT does not decay idle tasks in the same manner
6566 * as PELT, so it makes little sense to subtract task
6567 * utilization from cpu utilization. Instead just use
6568 * cpu_util for this case.
6569 */
6570 if (likely(!walt_disabled && sysctl_sched_use_walt_cpu_util) &&
6571 p->state == TASK_WAKING)
6572 return cpu_util(cpu);
6573 #endif
6574
6575 /* Task has no contribution or is new */
6576 if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
6577 return cpu_util(cpu);
6578
6579 #ifdef CONFIG_SCHED_WALT
6580 if (likely(!walt_disabled && sysctl_sched_use_walt_cpu_util)) {
6581 util = max_t(long, cpu_util(cpu) - task_util(p), 0);
6582 return min_t(unsigned long, util, capacity_orig_of(cpu));
6583 }
6584 #endif
6585
6586 cfs_rq = &cpu_rq(cpu)->cfs;
6587 util = READ_ONCE(cfs_rq->avg.util_avg);
6588
6589 /* Discount task's util from CPU's util */
6590 lsub_positive(&util, task_util(p));
6591
6592 /*
6593 * Covered cases:
6594 *
6595 * a) if *p is the only task sleeping on this CPU, then:
6596 * cpu_util (== task_util) > util_est (== 0)
6597 * and thus we return:
6598 * cpu_util_without = (cpu_util - task_util) = 0
6599 *
6600 * b) if other tasks are SLEEPING on this CPU, which is now exiting
6601 * IDLE, then:
6602 * cpu_util >= task_util
6603 * cpu_util > util_est (== 0)
6604 * and thus we discount *p's blocked utilization to return:
6605 * cpu_util_without = (cpu_util - task_util) >= 0
6606 *
6607 * c) if other tasks are RUNNABLE on that CPU and
6608 * util_est > cpu_util
6609 * then we use util_est since it returns a more restrictive
6610 * estimation of the spare capacity on that CPU, by just
6611 * considering the expected utilization of tasks already
6612 * runnable on that CPU.
6613 *
6614 * Cases a) and b) are covered by the above code, while case c) is
6615 * covered by the following code when estimated utilization is
6616 * enabled.
6617 */
6618 if (sched_feat(UTIL_EST)) {
6619 unsigned int estimated =
6620 READ_ONCE(cfs_rq->avg.util_est.enqueued);
6621
6622 /*
6623 * Despite the following checks we still have a small window
6624 * for a possible race, when an execl's select_task_rq_fair()
6625 * races with LB's detach_task():
6626 *
6627 * detach_task()
6628 * p->on_rq = TASK_ON_RQ_MIGRATING;
6629 * ---------------------------------- A
6630 * deactivate_task() \
6631 * dequeue_task() + RaceTime
6632 * util_est_dequeue() /
6633 * ---------------------------------- B
6634 *
6635 * The additional check on "current == p" it's required to
6636 * properly fix the execl regression and it helps in further
6637 * reducing the chances for the above race.
6638 */
6639 if (unlikely(task_on_rq_queued(p) || current == p))
6640 lsub_positive(&estimated, _task_util_est(p));
6641
6642 util = max(util, estimated);
6643 }
6644
6645 /*
6646 * Utilization (estimated) can exceed the CPU capacity, thus let's
6647 * clamp to the maximum CPU capacity to ensure consistency with
6648 * the cpu_util call.
6649 */
6650 return min_t(unsigned long, util, capacity_orig_of(cpu));
6651 }
6652
6653 #ifdef CONFIG_SCHED_RTG
capacity_spare_without(int cpu,struct task_struct * p)6654 unsigned long capacity_spare_without(int cpu, struct task_struct *p)
6655 {
6656 return max_t(long, capacity_of(cpu) - cpu_util_without(cpu, p), 0);
6657 }
6658 #endif
6659 /*
6660 * Predicts what cpu_util(@cpu) would return if @p was migrated (and enqueued)
6661 * to @dst_cpu.
6662 */
cpu_util_next(int cpu,struct task_struct * p,int dst_cpu)6663 static unsigned long cpu_util_next(int cpu, struct task_struct *p, int dst_cpu)
6664 {
6665 struct cfs_rq *cfs_rq = &cpu_rq(cpu)->cfs;
6666 unsigned long util_est, util = READ_ONCE(cfs_rq->avg.util_avg);
6667
6668 /*
6669 * If @p migrates from @cpu to another, remove its contribution. Or,
6670 * if @p migrates from another CPU to @cpu, add its contribution. In
6671 * the other cases, @cpu is not impacted by the migration, so the
6672 * util_avg should already be correct.
6673 */
6674 if (task_cpu(p) == cpu && dst_cpu != cpu)
6675 sub_positive(&util, task_util(p));
6676 else if (task_cpu(p) != cpu && dst_cpu == cpu)
6677 util += task_util(p);
6678
6679 if (sched_feat(UTIL_EST)) {
6680 util_est = READ_ONCE(cfs_rq->avg.util_est.enqueued);
6681
6682 /*
6683 * During wake-up, the task isn't enqueued yet and doesn't
6684 * appear in the cfs_rq->avg.util_est.enqueued of any rq,
6685 * so just add it (if needed) to "simulate" what will be
6686 * cpu_util() after the task has been enqueued.
6687 */
6688 if (dst_cpu == cpu)
6689 util_est += _task_util_est(p);
6690
6691 util = max(util, util_est);
6692 }
6693
6694 return min(util, capacity_orig_of(cpu));
6695 }
6696
6697 /*
6698 * Returns the current capacity of cpu after applying both
6699 * cpu and freq scaling.
6700 */
capacity_curr_of(int cpu)6701 unsigned long capacity_curr_of(int cpu)
6702 {
6703 unsigned long max_cap = cpu_rq(cpu)->cpu_capacity_orig;
6704 unsigned long scale_freq = arch_scale_freq_capacity(cpu);
6705
6706 return cap_scale(max_cap, scale_freq);
6707 }
6708
6709 /*
6710 * compute_energy(): Estimates the energy that @pd would consume if @p was
6711 * migrated to @dst_cpu. compute_energy() predicts what will be the utilization
6712 * landscape of @pd's CPUs after the task migration, and uses the Energy Model
6713 * to compute what would be the energy if we decided to actually migrate that
6714 * task.
6715 */
6716 static long
compute_energy(struct task_struct * p,int dst_cpu,struct perf_domain * pd)6717 compute_energy(struct task_struct *p, int dst_cpu, struct perf_domain *pd)
6718 {
6719 struct cpumask *pd_mask = perf_domain_span(pd);
6720 unsigned long cpu_cap = arch_scale_cpu_capacity(cpumask_first(pd_mask));
6721 unsigned long max_util = 0, sum_util = 0;
6722 int cpu;
6723
6724 /*
6725 * The capacity state of CPUs of the current rd can be driven by CPUs
6726 * of another rd if they belong to the same pd. So, account for the
6727 * utilization of these CPUs too by masking pd with cpu_online_mask
6728 * instead of the rd span.
6729 *
6730 * If an entire pd is outside of the current rd, it will not appear in
6731 * its pd list and will not be accounted by compute_energy().
6732 */
6733 for_each_cpu_and(cpu, pd_mask, cpu_online_mask) {
6734 unsigned long cpu_util, util_cfs = cpu_util_next(cpu, p, dst_cpu);
6735 struct task_struct *tsk = cpu == dst_cpu ? p : NULL;
6736
6737 /*
6738 * Busy time computation: utilization clamping is not
6739 * required since the ratio (sum_util / cpu_capacity)
6740 * is already enough to scale the EM reported power
6741 * consumption at the (eventually clamped) cpu_capacity.
6742 */
6743 sum_util += schedutil_cpu_util(cpu, util_cfs, cpu_cap,
6744 ENERGY_UTIL, NULL);
6745
6746 /*
6747 * Performance domain frequency: utilization clamping
6748 * must be considered since it affects the selection
6749 * of the performance domain frequency.
6750 * NOTE: in case RT tasks are running, by default the
6751 * FREQUENCY_UTIL's utilization can be max OPP.
6752 */
6753 cpu_util = schedutil_cpu_util(cpu, util_cfs, cpu_cap,
6754 FREQUENCY_UTIL, tsk);
6755 max_util = max(max_util, cpu_util);
6756 }
6757
6758 return em_cpu_energy(pd->em_pd, max_util, sum_util);
6759 }
6760
6761 /*
6762 * find_energy_efficient_cpu(): Find most energy-efficient target CPU for the
6763 * waking task. find_energy_efficient_cpu() looks for the CPU with maximum
6764 * spare capacity in each performance domain and uses it as a potential
6765 * candidate to execute the task. Then, it uses the Energy Model to figure
6766 * out which of the CPU candidates is the most energy-efficient.
6767 *
6768 * The rationale for this heuristic is as follows. In a performance domain,
6769 * all the most energy efficient CPU candidates (according to the Energy
6770 * Model) are those for which we'll request a low frequency. When there are
6771 * several CPUs for which the frequency request will be the same, we don't
6772 * have enough data to break the tie between them, because the Energy Model
6773 * only includes active power costs. With this model, if we assume that
6774 * frequency requests follow utilization (e.g. using schedutil), the CPU with
6775 * the maximum spare capacity in a performance domain is guaranteed to be among
6776 * the best candidates of the performance domain.
6777 *
6778 * In practice, it could be preferable from an energy standpoint to pack
6779 * small tasks on a CPU in order to let other CPUs go in deeper idle states,
6780 * but that could also hurt our chances to go cluster idle, and we have no
6781 * ways to tell with the current Energy Model if this is actually a good
6782 * idea or not. So, find_energy_efficient_cpu() basically favors
6783 * cluster-packing, and spreading inside a cluster. That should at least be
6784 * a good thing for latency, and this is consistent with the idea that most
6785 * of the energy savings of EAS come from the asymmetry of the system, and
6786 * not so much from breaking the tie between identical CPUs. That's also the
6787 * reason why EAS is enabled in the topology code only for systems where
6788 * SD_ASYM_CPUCAPACITY is set.
6789 *
6790 * NOTE: Forkees are not accepted in the energy-aware wake-up path because
6791 * they don't have any useful utilization data yet and it's not possible to
6792 * forecast their impact on energy consumption. Consequently, they will be
6793 * placed by find_idlest_cpu() on the least loaded CPU, which might turn out
6794 * to be energy-inefficient in some use-cases. The alternative would be to
6795 * bias new tasks towards specific types of CPUs first, or to try to infer
6796 * their util_avg from the parent task, but those heuristics could hurt
6797 * other use-cases too. So, until someone finds a better way to solve this,
6798 * let's keep things simple by re-using the existing slow path.
6799 */
find_energy_efficient_cpu(struct task_struct * p,int prev_cpu)6800 static int find_energy_efficient_cpu(struct task_struct *p, int prev_cpu)
6801 {
6802 unsigned long prev_delta = ULONG_MAX, best_delta = ULONG_MAX;
6803 struct root_domain *rd = cpu_rq(smp_processor_id())->rd;
6804 unsigned long cpu_cap, util, base_energy = 0;
6805 int cpu, best_energy_cpu = prev_cpu;
6806 struct sched_domain *sd;
6807 struct perf_domain *pd;
6808
6809 rcu_read_lock();
6810 pd = rcu_dereference(rd->pd);
6811 if (!pd || READ_ONCE(rd->overutilized))
6812 goto fail;
6813
6814 /*
6815 * Energy-aware wake-up happens on the lowest sched_domain starting
6816 * from sd_asym_cpucapacity spanning over this_cpu and prev_cpu.
6817 */
6818 sd = rcu_dereference(*this_cpu_ptr(&sd_asym_cpucapacity));
6819 while (sd && !cpumask_test_cpu(prev_cpu, sched_domain_span(sd)))
6820 sd = sd->parent;
6821 if (!sd)
6822 goto fail;
6823
6824 sync_entity_load_avg(&p->se);
6825 if (!task_util_est(p))
6826 goto unlock;
6827
6828 for (; pd; pd = pd->next) {
6829 unsigned long cur_delta, spare_cap, max_spare_cap = 0;
6830 unsigned long base_energy_pd;
6831 int max_spare_cap_cpu = -1;
6832
6833 /* Compute the 'base' energy of the pd, without @p */
6834 base_energy_pd = compute_energy(p, -1, pd);
6835 base_energy += base_energy_pd;
6836
6837 for_each_cpu_and(cpu, perf_domain_span(pd), sched_domain_span(sd)) {
6838 if (!cpumask_test_cpu(cpu, p->cpus_ptr))
6839 continue;
6840
6841 util = cpu_util_next(cpu, p, cpu);
6842 cpu_cap = capacity_of(cpu);
6843 spare_cap = cpu_cap;
6844 lsub_positive(&spare_cap, util);
6845
6846 /*
6847 * Skip CPUs that cannot satisfy the capacity request.
6848 * IOW, placing the task there would make the CPU
6849 * overutilized. Take uclamp into account to see how
6850 * much capacity we can get out of the CPU; this is
6851 * aligned with schedutil_cpu_util().
6852 */
6853 util = uclamp_rq_util_with(cpu_rq(cpu), util, p);
6854 if (!fits_capacity(util, cpu_cap))
6855 continue;
6856
6857 /* Always use prev_cpu as a candidate. */
6858 if (cpu == prev_cpu) {
6859 prev_delta = compute_energy(p, prev_cpu, pd);
6860 prev_delta -= base_energy_pd;
6861 best_delta = min(best_delta, prev_delta);
6862 }
6863
6864 /*
6865 * Find the CPU with the maximum spare capacity in
6866 * the performance domain
6867 */
6868 if (spare_cap > max_spare_cap) {
6869 max_spare_cap = spare_cap;
6870 max_spare_cap_cpu = cpu;
6871 }
6872 }
6873
6874 /* Evaluate the energy impact of using this CPU. */
6875 if (max_spare_cap_cpu >= 0 && max_spare_cap_cpu != prev_cpu) {
6876 cur_delta = compute_energy(p, max_spare_cap_cpu, pd);
6877 cur_delta -= base_energy_pd;
6878 if (cur_delta < best_delta) {
6879 best_delta = cur_delta;
6880 best_energy_cpu = max_spare_cap_cpu;
6881 }
6882 }
6883 }
6884 unlock:
6885 rcu_read_unlock();
6886
6887 /*
6888 * Pick the best CPU if prev_cpu cannot be used, or if it saves at
6889 * least 6% of the energy used by prev_cpu.
6890 */
6891 if (prev_delta == ULONG_MAX)
6892 return best_energy_cpu;
6893
6894 if ((prev_delta - best_delta) > ((prev_delta + base_energy) >> 4))
6895 return best_energy_cpu;
6896
6897 return prev_cpu;
6898
6899 fail:
6900 rcu_read_unlock();
6901
6902 return -1;
6903 }
6904
6905 /*
6906 * select_task_rq_fair: Select target runqueue for the waking task in domains
6907 * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
6908 * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
6909 *
6910 * Balances load by selecting the idlest CPU in the idlest group, or under
6911 * certain conditions an idle sibling CPU if the domain has SD_WAKE_AFFINE set.
6912 *
6913 * Returns the target CPU number.
6914 *
6915 * preempt must be disabled.
6916 */
6917 static int
select_task_rq_fair(struct task_struct * p,int prev_cpu,int sd_flag,int wake_flags)6918 select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
6919 {
6920 struct sched_domain *tmp, *sd = NULL;
6921 int cpu = smp_processor_id();
6922 int new_cpu = prev_cpu;
6923 int want_affine = 0;
6924 int sync = (wake_flags & WF_SYNC) && !(current->flags & PF_EXITING);
6925 #ifdef CONFIG_SCHED_RTG
6926 int target_cpu = -1;
6927 target_cpu = find_rtg_cpu(p);
6928 if (target_cpu >= 0)
6929 return target_cpu;
6930 #endif
6931
6932 if (sd_flag & SD_BALANCE_WAKE) {
6933 record_wakee(p);
6934
6935 if (sched_energy_enabled()) {
6936 new_cpu = find_energy_efficient_cpu(p, prev_cpu);
6937 if (new_cpu >= 0)
6938 return new_cpu;
6939 new_cpu = prev_cpu;
6940 }
6941
6942 want_affine = !wake_wide(p) && cpumask_test_cpu(cpu, p->cpus_ptr);
6943 }
6944
6945 rcu_read_lock();
6946 for_each_domain(cpu, tmp) {
6947 /*
6948 * If both 'cpu' and 'prev_cpu' are part of this domain,
6949 * cpu is a valid SD_WAKE_AFFINE target.
6950 */
6951 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
6952 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
6953 if (cpu != prev_cpu)
6954 new_cpu = wake_affine(tmp, p, cpu, prev_cpu, sync);
6955
6956 sd = NULL; /* Prefer wake_affine over balance flags */
6957 break;
6958 }
6959
6960 if (tmp->flags & sd_flag)
6961 sd = tmp;
6962 else if (!want_affine)
6963 break;
6964 }
6965
6966 if (unlikely(sd)) {
6967 /* Slow path */
6968 new_cpu = find_idlest_cpu(sd, p, cpu, prev_cpu, sd_flag);
6969 } else if (sd_flag & SD_BALANCE_WAKE) { /* XXX always ? */
6970 /* Fast path */
6971
6972 new_cpu = select_idle_sibling(p, prev_cpu, new_cpu);
6973
6974 if (want_affine)
6975 current->recent_used_cpu = cpu;
6976 }
6977 rcu_read_unlock();
6978
6979 return new_cpu;
6980 }
6981
6982 static void detach_entity_cfs_rq(struct sched_entity *se);
6983
6984 /*
6985 * Called immediately before a task is migrated to a new CPU; task_cpu(p) and
6986 * cfs_rq_of(p) references at time of call are still valid and identify the
6987 * previous CPU. The caller guarantees p->pi_lock or task_rq(p)->lock is held.
6988 */
migrate_task_rq_fair(struct task_struct * p,int new_cpu)6989 static void migrate_task_rq_fair(struct task_struct *p, int new_cpu)
6990 {
6991 /*
6992 * As blocked tasks retain absolute vruntime the migration needs to
6993 * deal with this by subtracting the old and adding the new
6994 * min_vruntime -- the latter is done by enqueue_entity() when placing
6995 * the task on the new runqueue.
6996 */
6997 if (p->state == TASK_WAKING) {
6998 struct sched_entity *se = &p->se;
6999 struct cfs_rq *cfs_rq = cfs_rq_of(se);
7000 u64 min_vruntime;
7001
7002 #ifndef CONFIG_64BIT
7003 u64 min_vruntime_copy;
7004
7005 do {
7006 min_vruntime_copy = cfs_rq->min_vruntime_copy;
7007 smp_rmb();
7008 min_vruntime = cfs_rq->min_vruntime;
7009 } while (min_vruntime != min_vruntime_copy);
7010 #else
7011 min_vruntime = cfs_rq->min_vruntime;
7012 #endif
7013
7014 se->vruntime -= min_vruntime;
7015 }
7016
7017 if (p->on_rq == TASK_ON_RQ_MIGRATING) {
7018 /*
7019 * In case of TASK_ON_RQ_MIGRATING we in fact hold the 'old'
7020 * rq->lock and can modify state directly.
7021 */
7022 lockdep_assert_held(&task_rq(p)->lock);
7023 detach_entity_cfs_rq(&p->se);
7024
7025 } else {
7026 /*
7027 * We are supposed to update the task to "current" time, then
7028 * its up to date and ready to go to new CPU/cfs_rq. But we
7029 * have difficulty in getting what current time is, so simply
7030 * throw away the out-of-date time. This will result in the
7031 * wakee task is less decayed, but giving the wakee more load
7032 * sounds not bad.
7033 */
7034 remove_entity_load_avg(&p->se);
7035 }
7036
7037 /* Tell new CPU we are migrated */
7038 p->se.avg.last_update_time = 0;
7039
7040 /* We have migrated, no longer consider this task hot */
7041 p->se.exec_start = 0;
7042
7043 update_scan_period(p, new_cpu);
7044 }
7045
task_dead_fair(struct task_struct * p)7046 static void task_dead_fair(struct task_struct *p)
7047 {
7048 remove_entity_load_avg(&p->se);
7049 }
7050
7051 static int
balance_fair(struct rq * rq,struct task_struct * prev,struct rq_flags * rf)7052 balance_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
7053 {
7054 if (rq->nr_running)
7055 return 1;
7056
7057 return newidle_balance(rq, rf) != 0;
7058 }
7059 #endif /* CONFIG_SMP */
7060
7061 #ifdef CONFIG_SCHED_LATENCY_NICE
wakeup_latency_gran(struct sched_entity * curr,struct sched_entity * se)7062 static long wakeup_latency_gran(struct sched_entity *curr, struct sched_entity *se)
7063 {
7064 int latency_weight = se->latency_weight;
7065 long thresh = sysctl_sched_latency;
7066
7067 /*
7068 * A positive latency weigth means that the sched_entity has latency
7069 * requirement that needs to be evaluated versus other entity.
7070 * Otherwise, use the latency weight to evaluate how much scheduling
7071 * delay is acceptable by se.
7072 */
7073 if ((se->latency_weight > 0) || (curr->latency_weight > 0))
7074 latency_weight -= curr->latency_weight;
7075
7076 if (!latency_weight)
7077 return 0;
7078
7079 if (sched_feat(GENTLE_FAIR_SLEEPERS))
7080 thresh >>= 1;
7081
7082 /*
7083 * Clamp the delta to stay in the scheduler period range
7084 * [-sysctl_sched_latency:sysctl_sched_latency]
7085 */
7086 latency_weight = clamp_t(long, latency_weight,
7087 -1 * NICE_LATENCY_WEIGHT_MAX,
7088 NICE_LATENCY_WEIGHT_MAX);
7089
7090 return (thresh * latency_weight) >> NICE_LATENCY_SHIFT;
7091 }
7092 #endif
7093
wakeup_gran(struct sched_entity * se)7094 static unsigned long wakeup_gran(struct sched_entity *se)
7095 {
7096 unsigned long gran = sysctl_sched_wakeup_granularity;
7097
7098 /*
7099 * Since its curr running now, convert the gran from real-time
7100 * to virtual-time in his units.
7101 *
7102 * By using 'se' instead of 'curr' we penalize light tasks, so
7103 * they get preempted easier. That is, if 'se' < 'curr' then
7104 * the resulting gran will be larger, therefore penalizing the
7105 * lighter, if otoh 'se' > 'curr' then the resulting gran will
7106 * be smaller, again penalizing the lighter task.
7107 *
7108 * This is especially important for buddies when the leftmost
7109 * task is higher priority than the buddy.
7110 */
7111 return calc_delta_fair(gran, se);
7112 }
7113
7114 /*
7115 * Should 'se' preempt 'curr'.
7116 *
7117 * |s1
7118 * |s2
7119 * |s3
7120 * g
7121 * |<--->|c
7122 *
7123 * w(c, s1) = -1
7124 * w(c, s2) = 0
7125 * w(c, s3) = 1
7126 *
7127 */
7128 static int
wakeup_preempt_entity(struct sched_entity * curr,struct sched_entity * se)7129 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
7130 {
7131 s64 gran, vdiff = curr->vruntime - se->vruntime;
7132
7133 #ifdef CONFIG_SCHED_LATENCY_NICE
7134 /* Take into account latency priority */
7135 vdiff += wakeup_latency_gran(curr, se);
7136 #endif
7137
7138 if (vdiff <= 0)
7139 return -1;
7140
7141 gran = wakeup_gran(se);
7142 if (vdiff > gran)
7143 return 1;
7144
7145 return 0;
7146 }
7147
set_last_buddy(struct sched_entity * se)7148 static void set_last_buddy(struct sched_entity *se)
7149 {
7150 if (entity_is_task(se) && unlikely(task_has_idle_policy(task_of(se))))
7151 return;
7152
7153 for_each_sched_entity(se) {
7154 if (SCHED_WARN_ON(!se->on_rq))
7155 return;
7156 cfs_rq_of(se)->last = se;
7157 }
7158 }
7159
set_next_buddy(struct sched_entity * se)7160 static void set_next_buddy(struct sched_entity *se)
7161 {
7162 if (entity_is_task(se) && unlikely(task_has_idle_policy(task_of(se))))
7163 return;
7164
7165 for_each_sched_entity(se) {
7166 if (SCHED_WARN_ON(!se->on_rq))
7167 return;
7168 cfs_rq_of(se)->next = se;
7169 }
7170 }
7171
set_skip_buddy(struct sched_entity * se)7172 static void set_skip_buddy(struct sched_entity *se)
7173 {
7174 for_each_sched_entity(se)
7175 cfs_rq_of(se)->skip = se;
7176 }
7177
7178 /*
7179 * Preempt the current task with a newly woken task if needed:
7180 */
check_preempt_wakeup(struct rq * rq,struct task_struct * p,int wake_flags)7181 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
7182 {
7183 struct task_struct *curr = rq->curr;
7184 struct sched_entity *se = &curr->se, *pse = &p->se;
7185 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
7186 int scale = cfs_rq->nr_running >= sched_nr_latency;
7187 int next_buddy_marked = 0;
7188
7189 if (unlikely(se == pse))
7190 return;
7191
7192 /*
7193 * This is possible from callers such as attach_tasks(), in which we
7194 * unconditionally check_prempt_curr() after an enqueue (which may have
7195 * lead to a throttle). This both saves work and prevents false
7196 * next-buddy nomination below.
7197 */
7198 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
7199 return;
7200
7201 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
7202 set_next_buddy(pse);
7203 next_buddy_marked = 1;
7204 }
7205
7206 /*
7207 * We can come here with TIF_NEED_RESCHED already set from new task
7208 * wake up path.
7209 *
7210 * Note: this also catches the edge-case of curr being in a throttled
7211 * group (e.g. via set_curr_task), since update_curr() (in the
7212 * enqueue of curr) will have resulted in resched being set. This
7213 * prevents us from potentially nominating it as a false LAST_BUDDY
7214 * below.
7215 */
7216 if (test_tsk_need_resched(curr))
7217 return;
7218
7219 /* Idle tasks are by definition preempted by non-idle tasks. */
7220 if (unlikely(task_has_idle_policy(curr)) &&
7221 likely(!task_has_idle_policy(p)))
7222 goto preempt;
7223
7224 /*
7225 * Batch and idle tasks do not preempt non-idle tasks (their preemption
7226 * is driven by the tick):
7227 */
7228 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
7229 return;
7230
7231 find_matching_se(&se, &pse);
7232 update_curr(cfs_rq_of(se));
7233 BUG_ON(!pse);
7234 if (wakeup_preempt_entity(se, pse) == 1) {
7235 /*
7236 * Bias pick_next to pick the sched entity that is
7237 * triggering this preemption.
7238 */
7239 if (!next_buddy_marked)
7240 set_next_buddy(pse);
7241 goto preempt;
7242 }
7243
7244 return;
7245
7246 preempt:
7247 resched_curr(rq);
7248 /*
7249 * Only set the backward buddy when the current task is still
7250 * on the rq. This can happen when a wakeup gets interleaved
7251 * with schedule on the ->pre_schedule() or idle_balance()
7252 * point, either of which can * drop the rq lock.
7253 *
7254 * Also, during early boot the idle thread is in the fair class,
7255 * for obvious reasons its a bad idea to schedule back to it.
7256 */
7257 if (unlikely(!se->on_rq || curr == rq->idle))
7258 return;
7259
7260 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
7261 set_last_buddy(se);
7262 }
7263
7264 struct task_struct *
pick_next_task_fair(struct rq * rq,struct task_struct * prev,struct rq_flags * rf)7265 pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
7266 {
7267 struct cfs_rq *cfs_rq = &rq->cfs;
7268 struct sched_entity *se;
7269 struct task_struct *p;
7270 int new_tasks;
7271
7272 again:
7273 if (!sched_fair_runnable(rq))
7274 goto idle;
7275
7276 #ifdef CONFIG_FAIR_GROUP_SCHED
7277 if (!prev || prev->sched_class != &fair_sched_class)
7278 goto simple;
7279
7280 /*
7281 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
7282 * likely that a next task is from the same cgroup as the current.
7283 *
7284 * Therefore attempt to avoid putting and setting the entire cgroup
7285 * hierarchy, only change the part that actually changes.
7286 */
7287
7288 do {
7289 struct sched_entity *curr = cfs_rq->curr;
7290
7291 /*
7292 * Since we got here without doing put_prev_entity() we also
7293 * have to consider cfs_rq->curr. If it is still a runnable
7294 * entity, update_curr() will update its vruntime, otherwise
7295 * forget we've ever seen it.
7296 */
7297 if (curr) {
7298 if (curr->on_rq)
7299 update_curr(cfs_rq);
7300 else
7301 curr = NULL;
7302
7303 /*
7304 * This call to check_cfs_rq_runtime() will do the
7305 * throttle and dequeue its entity in the parent(s).
7306 * Therefore the nr_running test will indeed
7307 * be correct.
7308 */
7309 if (unlikely(check_cfs_rq_runtime(cfs_rq))) {
7310 cfs_rq = &rq->cfs;
7311
7312 if (!cfs_rq->nr_running)
7313 goto idle;
7314
7315 goto simple;
7316 }
7317 }
7318
7319 se = pick_next_entity(cfs_rq, curr);
7320 cfs_rq = group_cfs_rq(se);
7321 } while (cfs_rq);
7322
7323 p = task_of(se);
7324
7325 /*
7326 * Since we haven't yet done put_prev_entity and if the selected task
7327 * is a different task than we started out with, try and touch the
7328 * least amount of cfs_rqs.
7329 */
7330 if (prev != p) {
7331 struct sched_entity *pse = &prev->se;
7332
7333 while (!(cfs_rq = is_same_group(se, pse))) {
7334 int se_depth = se->depth;
7335 int pse_depth = pse->depth;
7336
7337 if (se_depth <= pse_depth) {
7338 put_prev_entity(cfs_rq_of(pse), pse);
7339 pse = parent_entity(pse);
7340 }
7341 if (se_depth >= pse_depth) {
7342 set_next_entity(cfs_rq_of(se), se);
7343 se = parent_entity(se);
7344 }
7345 }
7346
7347 put_prev_entity(cfs_rq, pse);
7348 set_next_entity(cfs_rq, se);
7349 }
7350
7351 goto done;
7352 simple:
7353 #endif
7354 if (prev)
7355 put_prev_task(rq, prev);
7356
7357 do {
7358 se = pick_next_entity(cfs_rq, NULL);
7359 set_next_entity(cfs_rq, se);
7360 cfs_rq = group_cfs_rq(se);
7361 } while (cfs_rq);
7362
7363 p = task_of(se);
7364
7365 done: __maybe_unused;
7366 #ifdef CONFIG_SMP
7367 /*
7368 * Move the next running task to the front of
7369 * the list, so our cfs_tasks list becomes MRU
7370 * one.
7371 */
7372 list_move(&p->se.group_node, &rq->cfs_tasks);
7373 #endif
7374
7375 if (hrtick_enabled(rq))
7376 hrtick_start_fair(rq, p);
7377
7378 update_misfit_status(p, rq);
7379
7380 return p;
7381
7382 idle:
7383 if (!rf)
7384 return NULL;
7385
7386 new_tasks = newidle_balance(rq, rf);
7387
7388 /*
7389 * Because newidle_balance() releases (and re-acquires) rq->lock, it is
7390 * possible for any higher priority task to appear. In that case we
7391 * must re-start the pick_next_entity() loop.
7392 */
7393 if (new_tasks < 0)
7394 return RETRY_TASK;
7395
7396 if (new_tasks > 0)
7397 goto again;
7398
7399 /*
7400 * rq is about to be idle, check if we need to update the
7401 * lost_idle_time of clock_pelt
7402 */
7403 update_idle_rq_clock_pelt(rq);
7404
7405 return NULL;
7406 }
7407
__pick_next_task_fair(struct rq * rq)7408 static struct task_struct *__pick_next_task_fair(struct rq *rq)
7409 {
7410 return pick_next_task_fair(rq, NULL, NULL);
7411 }
7412
7413 /*
7414 * Account for a descheduled task:
7415 */
put_prev_task_fair(struct rq * rq,struct task_struct * prev)7416 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
7417 {
7418 struct sched_entity *se = &prev->se;
7419 struct cfs_rq *cfs_rq;
7420
7421 for_each_sched_entity(se) {
7422 cfs_rq = cfs_rq_of(se);
7423 put_prev_entity(cfs_rq, se);
7424 }
7425 }
7426
7427 /*
7428 * sched_yield() is very simple
7429 *
7430 * The magic of dealing with the ->skip buddy is in pick_next_entity.
7431 */
yield_task_fair(struct rq * rq)7432 static void yield_task_fair(struct rq *rq)
7433 {
7434 struct task_struct *curr = rq->curr;
7435 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
7436 struct sched_entity *se = &curr->se;
7437
7438 /*
7439 * Are we the only task in the tree?
7440 */
7441 if (unlikely(rq->nr_running == 1))
7442 return;
7443
7444 clear_buddies(cfs_rq, se);
7445
7446 if (curr->policy != SCHED_BATCH) {
7447 update_rq_clock(rq);
7448 /*
7449 * Update run-time statistics of the 'current'.
7450 */
7451 update_curr(cfs_rq);
7452 /*
7453 * Tell update_rq_clock() that we've just updated,
7454 * so we don't do microscopic update in schedule()
7455 * and double the fastpath cost.
7456 */
7457 rq_clock_skip_update(rq);
7458 }
7459
7460 set_skip_buddy(se);
7461 }
7462
yield_to_task_fair(struct rq * rq,struct task_struct * p)7463 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p)
7464 {
7465 struct sched_entity *se = &p->se;
7466
7467 /* throttled hierarchies are not runnable */
7468 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
7469 return false;
7470
7471 /* Tell the scheduler that we'd really like pse to run next. */
7472 set_next_buddy(se);
7473
7474 yield_task_fair(rq);
7475
7476 return true;
7477 }
7478
7479 #ifdef CONFIG_SMP
7480 /**************************************************
7481 * Fair scheduling class load-balancing methods.
7482 *
7483 * BASICS
7484 *
7485 * The purpose of load-balancing is to achieve the same basic fairness the
7486 * per-CPU scheduler provides, namely provide a proportional amount of compute
7487 * time to each task. This is expressed in the following equation:
7488 *
7489 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
7490 *
7491 * Where W_i,n is the n-th weight average for CPU i. The instantaneous weight
7492 * W_i,0 is defined as:
7493 *
7494 * W_i,0 = \Sum_j w_i,j (2)
7495 *
7496 * Where w_i,j is the weight of the j-th runnable task on CPU i. This weight
7497 * is derived from the nice value as per sched_prio_to_weight[].
7498 *
7499 * The weight average is an exponential decay average of the instantaneous
7500 * weight:
7501 *
7502 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
7503 *
7504 * C_i is the compute capacity of CPU i, typically it is the
7505 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
7506 * can also include other factors [XXX].
7507 *
7508 * To achieve this balance we define a measure of imbalance which follows
7509 * directly from (1):
7510 *
7511 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4)
7512 *
7513 * We them move tasks around to minimize the imbalance. In the continuous
7514 * function space it is obvious this converges, in the discrete case we get
7515 * a few fun cases generally called infeasible weight scenarios.
7516 *
7517 * [XXX expand on:
7518 * - infeasible weights;
7519 * - local vs global optima in the discrete case. ]
7520 *
7521 *
7522 * SCHED DOMAINS
7523 *
7524 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
7525 * for all i,j solution, we create a tree of CPUs that follows the hardware
7526 * topology where each level pairs two lower groups (or better). This results
7527 * in O(log n) layers. Furthermore we reduce the number of CPUs going up the
7528 * tree to only the first of the previous level and we decrease the frequency
7529 * of load-balance at each level inv. proportional to the number of CPUs in
7530 * the groups.
7531 *
7532 * This yields:
7533 *
7534 * log_2 n 1 n
7535 * \Sum { --- * --- * 2^i } = O(n) (5)
7536 * i = 0 2^i 2^i
7537 * `- size of each group
7538 * | | `- number of CPUs doing load-balance
7539 * | `- freq
7540 * `- sum over all levels
7541 *
7542 * Coupled with a limit on how many tasks we can migrate every balance pass,
7543 * this makes (5) the runtime complexity of the balancer.
7544 *
7545 * An important property here is that each CPU is still (indirectly) connected
7546 * to every other CPU in at most O(log n) steps:
7547 *
7548 * The adjacency matrix of the resulting graph is given by:
7549 *
7550 * log_2 n
7551 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
7552 * k = 0
7553 *
7554 * And you'll find that:
7555 *
7556 * A^(log_2 n)_i,j != 0 for all i,j (7)
7557 *
7558 * Showing there's indeed a path between every CPU in at most O(log n) steps.
7559 * The task movement gives a factor of O(m), giving a convergence complexity
7560 * of:
7561 *
7562 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
7563 *
7564 *
7565 * WORK CONSERVING
7566 *
7567 * In order to avoid CPUs going idle while there's still work to do, new idle
7568 * balancing is more aggressive and has the newly idle CPU iterate up the domain
7569 * tree itself instead of relying on other CPUs to bring it work.
7570 *
7571 * This adds some complexity to both (5) and (8) but it reduces the total idle
7572 * time.
7573 *
7574 * [XXX more?]
7575 *
7576 *
7577 * CGROUPS
7578 *
7579 * Cgroups make a horror show out of (2), instead of a simple sum we get:
7580 *
7581 * s_k,i
7582 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
7583 * S_k
7584 *
7585 * Where
7586 *
7587 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
7588 *
7589 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on CPU i.
7590 *
7591 * The big problem is S_k, its a global sum needed to compute a local (W_i)
7592 * property.
7593 *
7594 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
7595 * rewrite all of this once again.]
7596 */
7597
7598 static unsigned long __read_mostly max_load_balance_interval = HZ/10;
7599
7600 enum fbq_type { regular, remote, all };
7601
7602 /*
7603 * 'group_type' describes the group of CPUs at the moment of load balancing.
7604 *
7605 * The enum is ordered by pulling priority, with the group with lowest priority
7606 * first so the group_type can simply be compared when selecting the busiest
7607 * group. See update_sd_pick_busiest().
7608 */
7609 enum group_type {
7610 /* The group has spare capacity that can be used to run more tasks. */
7611 group_has_spare = 0,
7612 /*
7613 * The group is fully used and the tasks don't compete for more CPU
7614 * cycles. Nevertheless, some tasks might wait before running.
7615 */
7616 group_fully_busy,
7617 /*
7618 * SD_ASYM_CPUCAPACITY only: One task doesn't fit with CPU's capacity
7619 * and must be migrated to a more powerful CPU.
7620 */
7621 group_misfit_task,
7622 /*
7623 * SD_ASYM_PACKING only: One local CPU with higher capacity is available,
7624 * and the task should be migrated to it instead of running on the
7625 * current CPU.
7626 */
7627 group_asym_packing,
7628 /*
7629 * The tasks' affinity constraints previously prevented the scheduler
7630 * from balancing the load across the system.
7631 */
7632 group_imbalanced,
7633 /*
7634 * The CPU is overloaded and can't provide expected CPU cycles to all
7635 * tasks.
7636 */
7637 group_overloaded
7638 };
7639
7640 enum migration_type {
7641 migrate_load = 0,
7642 migrate_util,
7643 migrate_task,
7644 migrate_misfit
7645 };
7646
7647 #define LBF_ALL_PINNED 0x01
7648 #define LBF_NEED_BREAK 0x02
7649 #define LBF_DST_PINNED 0x04
7650 #define LBF_SOME_PINNED 0x08
7651 #define LBF_NOHZ_STATS 0x10
7652 #define LBF_NOHZ_AGAIN 0x20
7653 #define LBF_IGNORE_PREFERRED_CLUSTER_TASKS 0x200
7654
7655 struct lb_env {
7656 struct sched_domain *sd;
7657
7658 struct rq *src_rq;
7659 int src_cpu;
7660
7661 int dst_cpu;
7662 struct rq *dst_rq;
7663
7664 struct cpumask *dst_grpmask;
7665 int new_dst_cpu;
7666 enum cpu_idle_type idle;
7667 long imbalance;
7668 /* The set of CPUs under consideration for load-balancing */
7669 struct cpumask *cpus;
7670
7671 unsigned int flags;
7672
7673 unsigned int loop;
7674 unsigned int loop_break;
7675 unsigned int loop_max;
7676
7677 enum fbq_type fbq_type;
7678 enum migration_type migration_type;
7679 struct list_head tasks;
7680 };
7681
7682 /*
7683 * Is this task likely cache-hot:
7684 */
task_hot(struct task_struct * p,struct lb_env * env)7685 static int task_hot(struct task_struct *p, struct lb_env *env)
7686 {
7687 s64 delta;
7688
7689 lockdep_assert_held(&env->src_rq->lock);
7690
7691 if (p->sched_class != &fair_sched_class)
7692 return 0;
7693
7694 if (unlikely(task_has_idle_policy(p)))
7695 return 0;
7696
7697 /* SMT siblings share cache */
7698 if (env->sd->flags & SD_SHARE_CPUCAPACITY)
7699 return 0;
7700
7701 /*
7702 * Buddy candidates are cache hot:
7703 */
7704 if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
7705 (&p->se == cfs_rq_of(&p->se)->next ||
7706 &p->se == cfs_rq_of(&p->se)->last))
7707 return 1;
7708
7709 if (sysctl_sched_migration_cost == -1)
7710 return 1;
7711 if (sysctl_sched_migration_cost == 0)
7712 return 0;
7713
7714 delta = rq_clock_task(env->src_rq) - p->se.exec_start;
7715
7716 return delta < (s64)sysctl_sched_migration_cost;
7717 }
7718
7719 #ifdef CONFIG_NUMA_BALANCING
7720 /*
7721 * Returns 1, if task migration degrades locality
7722 * Returns 0, if task migration improves locality i.e migration preferred.
7723 * Returns -1, if task migration is not affected by locality.
7724 */
migrate_degrades_locality(struct task_struct * p,struct lb_env * env)7725 static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
7726 {
7727 struct numa_group *numa_group = rcu_dereference(p->numa_group);
7728 unsigned long src_weight, dst_weight;
7729 int src_nid, dst_nid, dist;
7730
7731 if (!static_branch_likely(&sched_numa_balancing))
7732 return -1;
7733
7734 if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
7735 return -1;
7736
7737 src_nid = cpu_to_node(env->src_cpu);
7738 dst_nid = cpu_to_node(env->dst_cpu);
7739
7740 if (src_nid == dst_nid)
7741 return -1;
7742
7743 /* Migrating away from the preferred node is always bad. */
7744 if (src_nid == p->numa_preferred_nid) {
7745 if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
7746 return 1;
7747 else
7748 return -1;
7749 }
7750
7751 /* Encourage migration to the preferred node. */
7752 if (dst_nid == p->numa_preferred_nid)
7753 return 0;
7754
7755 /* Leaving a core idle is often worse than degrading locality. */
7756 if (env->idle == CPU_IDLE)
7757 return -1;
7758
7759 dist = node_distance(src_nid, dst_nid);
7760 if (numa_group) {
7761 src_weight = group_weight(p, src_nid, dist);
7762 dst_weight = group_weight(p, dst_nid, dist);
7763 } else {
7764 src_weight = task_weight(p, src_nid, dist);
7765 dst_weight = task_weight(p, dst_nid, dist);
7766 }
7767
7768 return dst_weight < src_weight;
7769 }
7770
7771 #else
migrate_degrades_locality(struct task_struct * p,struct lb_env * env)7772 static inline int migrate_degrades_locality(struct task_struct *p,
7773 struct lb_env *env)
7774 {
7775 return -1;
7776 }
7777 #endif
7778
7779 /*
7780 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
7781 */
7782 static
can_migrate_task(struct task_struct * p,struct lb_env * env)7783 int can_migrate_task(struct task_struct *p, struct lb_env *env)
7784 {
7785 int tsk_cache_hot;
7786
7787 lockdep_assert_held(&env->src_rq->lock);
7788
7789 /*
7790 * We do not migrate tasks that are:
7791 * 1) throttled_lb_pair, or
7792 * 2) cannot be migrated to this CPU due to cpus_ptr, or
7793 * 3) running (obviously), or
7794 * 4) are cache-hot on their current CPU.
7795 */
7796 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
7797 return 0;
7798
7799 /* Disregard pcpu kthreads; they are where they need to be. */
7800 if (kthread_is_per_cpu(p))
7801 return 0;
7802
7803 if (!cpumask_test_cpu(env->dst_cpu, p->cpus_ptr)) {
7804 int cpu;
7805
7806 schedstat_inc(p->se.statistics.nr_failed_migrations_affine);
7807
7808 env->flags |= LBF_SOME_PINNED;
7809
7810 /*
7811 * Remember if this task can be migrated to any other CPU in
7812 * our sched_group. We may want to revisit it if we couldn't
7813 * meet load balance goals by pulling other tasks on src_cpu.
7814 *
7815 * Avoid computing new_dst_cpu for NEWLY_IDLE or if we have
7816 * already computed one in current iteration.
7817 */
7818 if (env->idle == CPU_NEWLY_IDLE || (env->flags & LBF_DST_PINNED))
7819 return 0;
7820
7821 /* Prevent to re-select dst_cpu via env's CPUs: */
7822 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
7823 if (cpumask_test_cpu(cpu, p->cpus_ptr)) {
7824 env->flags |= LBF_DST_PINNED;
7825 env->new_dst_cpu = cpu;
7826 break;
7827 }
7828 }
7829
7830 return 0;
7831 }
7832
7833 /* Record that we found atleast one task that could run on dst_cpu */
7834 env->flags &= ~LBF_ALL_PINNED;
7835
7836
7837 #ifdef CONFIG_SCHED_RTG
7838 if (env->flags & LBF_IGNORE_PREFERRED_CLUSTER_TASKS &&
7839 !preferred_cluster(cpu_rq(env->dst_cpu)->cluster, p))
7840 return 0;
7841 #endif
7842
7843 if (task_running(env->src_rq, p)) {
7844 schedstat_inc(p->se.statistics.nr_failed_migrations_running);
7845 return 0;
7846 }
7847
7848 /*
7849 * Aggressive migration if:
7850 * 1) destination numa is preferred
7851 * 2) task is cache cold, or
7852 * 3) too many balance attempts have failed.
7853 */
7854 tsk_cache_hot = migrate_degrades_locality(p, env);
7855 if (tsk_cache_hot == -1)
7856 tsk_cache_hot = task_hot(p, env);
7857
7858 if (tsk_cache_hot <= 0 ||
7859 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
7860 if (tsk_cache_hot == 1) {
7861 schedstat_inc(env->sd->lb_hot_gained[env->idle]);
7862 schedstat_inc(p->se.statistics.nr_forced_migrations);
7863 }
7864 return 1;
7865 }
7866
7867 schedstat_inc(p->se.statistics.nr_failed_migrations_hot);
7868 return 0;
7869 }
7870
7871 /*
7872 * detach_task() -- detach the task for the migration specified in env
7873 */
detach_task(struct task_struct * p,struct lb_env * env)7874 static void detach_task(struct task_struct *p, struct lb_env *env)
7875 {
7876 lockdep_assert_held(&env->src_rq->lock);
7877
7878 deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK);
7879 #ifdef CONFIG_SCHED_WALT
7880 double_lock_balance(env->src_rq, env->dst_rq);
7881 if (!(env->src_rq->clock_update_flags & RQCF_UPDATED))
7882 update_rq_clock(env->src_rq);
7883 #endif
7884 set_task_cpu(p, env->dst_cpu);
7885 #ifdef CONFIG_SCHED_WALT
7886 double_unlock_balance(env->src_rq, env->dst_rq);
7887 #endif
7888 }
7889
7890 /*
7891 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
7892 * part of active balancing operations within "domain".
7893 *
7894 * Returns a task if successful and NULL otherwise.
7895 */
detach_one_task(struct lb_env * env)7896 static struct task_struct *detach_one_task(struct lb_env *env)
7897 {
7898 struct task_struct *p;
7899
7900 lockdep_assert_held(&env->src_rq->lock);
7901
7902 list_for_each_entry_reverse(p,
7903 &env->src_rq->cfs_tasks, se.group_node) {
7904 if (!can_migrate_task(p, env))
7905 continue;
7906
7907 detach_task(p, env);
7908
7909 /*
7910 * Right now, this is only the second place where
7911 * lb_gained[env->idle] is updated (other is detach_tasks)
7912 * so we can safely collect stats here rather than
7913 * inside detach_tasks().
7914 */
7915 schedstat_inc(env->sd->lb_gained[env->idle]);
7916 return p;
7917 }
7918 return NULL;
7919 }
7920
7921 static const unsigned int sched_nr_migrate_break = 32;
7922
7923 /*
7924 * detach_tasks() -- tries to detach up to imbalance load/util/tasks from
7925 * busiest_rq, as part of a balancing operation within domain "sd".
7926 *
7927 * Returns number of detached tasks if successful and 0 otherwise.
7928 */
detach_tasks(struct lb_env * env)7929 static int detach_tasks(struct lb_env *env)
7930 {
7931 struct list_head *tasks = &env->src_rq->cfs_tasks;
7932 unsigned long util, load;
7933 struct task_struct *p;
7934 int detached = 0;
7935 #ifdef CONFIG_SCHED_RTG
7936 int orig_loop = env->loop;
7937 #endif
7938
7939 lockdep_assert_held(&env->src_rq->lock);
7940
7941 if (env->imbalance <= 0)
7942 return 0;
7943
7944 #ifdef CONFIG_SCHED_RTG
7945 if (!same_cluster(env->dst_cpu, env->src_cpu))
7946 env->flags |= LBF_IGNORE_PREFERRED_CLUSTER_TASKS;
7947
7948 redo:
7949 #endif
7950 while (!list_empty(tasks)) {
7951 /*
7952 * We don't want to steal all, otherwise we may be treated likewise,
7953 * which could at worst lead to a livelock crash.
7954 */
7955 if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1)
7956 break;
7957
7958 p = list_last_entry(tasks, struct task_struct, se.group_node);
7959
7960 env->loop++;
7961 /* We've more or less seen every task there is, call it quits */
7962 if (env->loop > env->loop_max)
7963 break;
7964
7965 /* take a breather every nr_migrate tasks */
7966 if (env->loop > env->loop_break) {
7967 env->loop_break += sched_nr_migrate_break;
7968 env->flags |= LBF_NEED_BREAK;
7969 break;
7970 }
7971
7972 if (!can_migrate_task(p, env))
7973 goto next;
7974
7975 switch (env->migration_type) {
7976 case migrate_load:
7977 /*
7978 * Depending of the number of CPUs and tasks and the
7979 * cgroup hierarchy, task_h_load() can return a null
7980 * value. Make sure that env->imbalance decreases
7981 * otherwise detach_tasks() will stop only after
7982 * detaching up to loop_max tasks.
7983 */
7984 load = max_t(unsigned long, task_h_load(p), 1);
7985
7986 if (sched_feat(LB_MIN) &&
7987 load < 16 && !env->sd->nr_balance_failed)
7988 goto next;
7989
7990 /*
7991 * Make sure that we don't migrate too much load.
7992 * Nevertheless, let relax the constraint if
7993 * scheduler fails to find a good waiting task to
7994 * migrate.
7995 */
7996 if (shr_bound(load, env->sd->nr_balance_failed) > env->imbalance)
7997 goto next;
7998
7999 env->imbalance -= load;
8000 break;
8001
8002 case migrate_util:
8003 util = task_util_est(p);
8004
8005 if (util > env->imbalance)
8006 goto next;
8007
8008 env->imbalance -= util;
8009 break;
8010
8011 case migrate_task:
8012 env->imbalance--;
8013 break;
8014
8015 case migrate_misfit:
8016 /* This is not a misfit task */
8017 if (task_fits_capacity(p, capacity_of(env->src_cpu)))
8018 goto next;
8019
8020 env->imbalance = 0;
8021 break;
8022 }
8023
8024 detach_task(p, env);
8025 list_add(&p->se.group_node, &env->tasks);
8026
8027 detached++;
8028
8029 #ifdef CONFIG_PREEMPTION
8030 /*
8031 * NEWIDLE balancing is a source of latency, so preemptible
8032 * kernels will stop after the first task is detached to minimize
8033 * the critical section.
8034 */
8035 if (env->idle == CPU_NEWLY_IDLE)
8036 break;
8037 #endif
8038
8039 /*
8040 * We only want to steal up to the prescribed amount of
8041 * load/util/tasks.
8042 */
8043 if (env->imbalance <= 0)
8044 break;
8045
8046 continue;
8047 next:
8048 list_move(&p->se.group_node, tasks);
8049 }
8050
8051 #ifdef CONFIG_SCHED_RTG
8052 if (env->flags & LBF_IGNORE_PREFERRED_CLUSTER_TASKS && !detached) {
8053 tasks = &env->src_rq->cfs_tasks;
8054 env->flags &= ~LBF_IGNORE_PREFERRED_CLUSTER_TASKS;
8055 env->loop = orig_loop;
8056 goto redo;
8057 }
8058 #endif
8059
8060 /*
8061 * Right now, this is one of only two places we collect this stat
8062 * so we can safely collect detach_one_task() stats here rather
8063 * than inside detach_one_task().
8064 */
8065 schedstat_add(env->sd->lb_gained[env->idle], detached);
8066
8067 return detached;
8068 }
8069
8070 /*
8071 * attach_task() -- attach the task detached by detach_task() to its new rq.
8072 */
attach_task(struct rq * rq,struct task_struct * p)8073 static void attach_task(struct rq *rq, struct task_struct *p)
8074 {
8075 lockdep_assert_held(&rq->lock);
8076
8077 BUG_ON(task_rq(p) != rq);
8078 activate_task(rq, p, ENQUEUE_NOCLOCK);
8079 check_preempt_curr(rq, p, 0);
8080 }
8081
8082 /*
8083 * attach_one_task() -- attaches the task returned from detach_one_task() to
8084 * its new rq.
8085 */
attach_one_task(struct rq * rq,struct task_struct * p)8086 static void attach_one_task(struct rq *rq, struct task_struct *p)
8087 {
8088 struct rq_flags rf;
8089
8090 rq_lock(rq, &rf);
8091 update_rq_clock(rq);
8092 attach_task(rq, p);
8093 rq_unlock(rq, &rf);
8094 }
8095
8096 /*
8097 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
8098 * new rq.
8099 */
attach_tasks(struct lb_env * env)8100 static void attach_tasks(struct lb_env *env)
8101 {
8102 struct list_head *tasks = &env->tasks;
8103 struct task_struct *p;
8104 struct rq_flags rf;
8105
8106 rq_lock(env->dst_rq, &rf);
8107 update_rq_clock(env->dst_rq);
8108
8109 while (!list_empty(tasks)) {
8110 p = list_first_entry(tasks, struct task_struct, se.group_node);
8111 list_del_init(&p->se.group_node);
8112
8113 attach_task(env->dst_rq, p);
8114 }
8115
8116 rq_unlock(env->dst_rq, &rf);
8117 }
8118
8119 #ifdef CONFIG_NO_HZ_COMMON
cfs_rq_has_blocked(struct cfs_rq * cfs_rq)8120 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq)
8121 {
8122 if (cfs_rq->avg.load_avg)
8123 return true;
8124
8125 if (cfs_rq->avg.util_avg)
8126 return true;
8127
8128 return false;
8129 }
8130
others_have_blocked(struct rq * rq)8131 static inline bool others_have_blocked(struct rq *rq)
8132 {
8133 if (READ_ONCE(rq->avg_rt.util_avg))
8134 return true;
8135
8136 if (READ_ONCE(rq->avg_dl.util_avg))
8137 return true;
8138
8139 if (thermal_load_avg(rq))
8140 return true;
8141
8142 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
8143 if (READ_ONCE(rq->avg_irq.util_avg))
8144 return true;
8145 #endif
8146
8147 return false;
8148 }
8149
update_blocked_load_status(struct rq * rq,bool has_blocked)8150 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked)
8151 {
8152 rq->last_blocked_load_update_tick = jiffies;
8153
8154 if (!has_blocked)
8155 rq->has_blocked_load = 0;
8156 }
8157 #else
cfs_rq_has_blocked(struct cfs_rq * cfs_rq)8158 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq) { return false; }
others_have_blocked(struct rq * rq)8159 static inline bool others_have_blocked(struct rq *rq) { return false; }
update_blocked_load_status(struct rq * rq,bool has_blocked)8160 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked) {}
8161 #endif
8162
__update_blocked_others(struct rq * rq,bool * done)8163 static bool __update_blocked_others(struct rq *rq, bool *done)
8164 {
8165 const struct sched_class *curr_class;
8166 u64 now = rq_clock_pelt(rq);
8167 unsigned long thermal_pressure;
8168 bool decayed;
8169
8170 /*
8171 * update_load_avg() can call cpufreq_update_util(). Make sure that RT,
8172 * DL and IRQ signals have been updated before updating CFS.
8173 */
8174 curr_class = rq->curr->sched_class;
8175
8176 thermal_pressure = arch_scale_thermal_pressure(cpu_of(rq));
8177
8178 decayed = update_rt_rq_load_avg(now, rq, curr_class == &rt_sched_class) |
8179 update_dl_rq_load_avg(now, rq, curr_class == &dl_sched_class) |
8180 update_thermal_load_avg(rq_clock_thermal(rq), rq, thermal_pressure) |
8181 update_irq_load_avg(rq, 0);
8182
8183 if (others_have_blocked(rq))
8184 *done = false;
8185
8186 return decayed;
8187 }
8188
8189 #ifdef CONFIG_FAIR_GROUP_SCHED
8190
cfs_rq_is_decayed(struct cfs_rq * cfs_rq)8191 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq)
8192 {
8193 if (cfs_rq->load.weight)
8194 return false;
8195
8196 if (cfs_rq->avg.load_sum)
8197 return false;
8198
8199 if (cfs_rq->avg.util_sum)
8200 return false;
8201
8202 if (cfs_rq->avg.runnable_sum)
8203 return false;
8204
8205 return true;
8206 }
8207
__update_blocked_fair(struct rq * rq,bool * done)8208 static bool __update_blocked_fair(struct rq *rq, bool *done)
8209 {
8210 struct cfs_rq *cfs_rq, *pos;
8211 bool decayed = false;
8212 int cpu = cpu_of(rq);
8213
8214 /*
8215 * Iterates the task_group tree in a bottom up fashion, see
8216 * list_add_leaf_cfs_rq() for details.
8217 */
8218 for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) {
8219 struct sched_entity *se;
8220
8221 if (update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq)) {
8222 update_tg_load_avg(cfs_rq);
8223
8224 if (cfs_rq == &rq->cfs)
8225 decayed = true;
8226 }
8227
8228 /* Propagate pending load changes to the parent, if any: */
8229 se = cfs_rq->tg->se[cpu];
8230 if (se && !skip_blocked_update(se))
8231 update_load_avg(cfs_rq_of(se), se, UPDATE_TG);
8232
8233 /*
8234 * There can be a lot of idle CPU cgroups. Don't let fully
8235 * decayed cfs_rqs linger on the list.
8236 */
8237 if (cfs_rq_is_decayed(cfs_rq))
8238 list_del_leaf_cfs_rq(cfs_rq);
8239
8240 /* Don't need periodic decay once load/util_avg are null */
8241 if (cfs_rq_has_blocked(cfs_rq))
8242 *done = false;
8243 }
8244
8245 return decayed;
8246 }
8247
8248 /*
8249 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
8250 * This needs to be done in a top-down fashion because the load of a child
8251 * group is a fraction of its parents load.
8252 */
update_cfs_rq_h_load(struct cfs_rq * cfs_rq)8253 static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
8254 {
8255 struct rq *rq = rq_of(cfs_rq);
8256 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
8257 unsigned long now = jiffies;
8258 unsigned long load;
8259
8260 if (cfs_rq->last_h_load_update == now)
8261 return;
8262
8263 WRITE_ONCE(cfs_rq->h_load_next, NULL);
8264 for_each_sched_entity(se) {
8265 cfs_rq = cfs_rq_of(se);
8266 WRITE_ONCE(cfs_rq->h_load_next, se);
8267 if (cfs_rq->last_h_load_update == now)
8268 break;
8269 }
8270
8271 if (!se) {
8272 cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
8273 cfs_rq->last_h_load_update = now;
8274 }
8275
8276 while ((se = READ_ONCE(cfs_rq->h_load_next)) != NULL) {
8277 load = cfs_rq->h_load;
8278 load = div64_ul(load * se->avg.load_avg,
8279 cfs_rq_load_avg(cfs_rq) + 1);
8280 cfs_rq = group_cfs_rq(se);
8281 cfs_rq->h_load = load;
8282 cfs_rq->last_h_load_update = now;
8283 }
8284 }
8285
task_h_load(struct task_struct * p)8286 static unsigned long task_h_load(struct task_struct *p)
8287 {
8288 struct cfs_rq *cfs_rq = task_cfs_rq(p);
8289
8290 update_cfs_rq_h_load(cfs_rq);
8291 return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
8292 cfs_rq_load_avg(cfs_rq) + 1);
8293 }
8294 #else
__update_blocked_fair(struct rq * rq,bool * done)8295 static bool __update_blocked_fair(struct rq *rq, bool *done)
8296 {
8297 struct cfs_rq *cfs_rq = &rq->cfs;
8298 bool decayed;
8299
8300 decayed = update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq);
8301 if (cfs_rq_has_blocked(cfs_rq))
8302 *done = false;
8303
8304 return decayed;
8305 }
8306
task_h_load(struct task_struct * p)8307 static unsigned long task_h_load(struct task_struct *p)
8308 {
8309 return p->se.avg.load_avg;
8310 }
8311 #endif
8312
update_blocked_averages(int cpu)8313 static void update_blocked_averages(int cpu)
8314 {
8315 bool decayed = false, done = true;
8316 struct rq *rq = cpu_rq(cpu);
8317 struct rq_flags rf;
8318
8319 rq_lock_irqsave(rq, &rf);
8320 update_rq_clock(rq);
8321
8322 decayed |= __update_blocked_others(rq, &done);
8323 decayed |= __update_blocked_fair(rq, &done);
8324
8325 update_blocked_load_status(rq, !done);
8326 if (decayed)
8327 cpufreq_update_util(rq, 0);
8328 rq_unlock_irqrestore(rq, &rf);
8329 }
8330
8331 /********** Helpers for find_busiest_group ************************/
8332
8333 /*
8334 * sg_lb_stats - stats of a sched_group required for load_balancing
8335 */
8336 struct sg_lb_stats {
8337 unsigned long avg_load; /*Avg load across the CPUs of the group */
8338 unsigned long group_load; /* Total load over the CPUs of the group */
8339 unsigned long group_capacity;
8340 unsigned long group_util; /* Total utilization over the CPUs of the group */
8341 unsigned long group_runnable; /* Total runnable time over the CPUs of the group */
8342 unsigned int sum_nr_running; /* Nr of tasks running in the group */
8343 unsigned int sum_h_nr_running; /* Nr of CFS tasks running in the group */
8344 unsigned int idle_cpus;
8345 unsigned int group_weight;
8346 enum group_type group_type;
8347 unsigned int group_asym_packing; /* Tasks should be moved to preferred CPU */
8348 unsigned long group_misfit_task_load; /* A CPU has a task too big for its capacity */
8349 #ifdef CONFIG_NUMA_BALANCING
8350 unsigned int nr_numa_running;
8351 unsigned int nr_preferred_running;
8352 #endif
8353 };
8354
8355 /*
8356 * sd_lb_stats - Structure to store the statistics of a sched_domain
8357 * during load balancing.
8358 */
8359 struct sd_lb_stats {
8360 struct sched_group *busiest; /* Busiest group in this sd */
8361 struct sched_group *local; /* Local group in this sd */
8362 unsigned long total_load; /* Total load of all groups in sd */
8363 unsigned long total_capacity; /* Total capacity of all groups in sd */
8364 unsigned long avg_load; /* Average load across all groups in sd */
8365 unsigned int prefer_sibling; /* tasks should go to sibling first */
8366
8367 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
8368 struct sg_lb_stats local_stat; /* Statistics of the local group */
8369 };
8370
init_sd_lb_stats(struct sd_lb_stats * sds)8371 static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
8372 {
8373 /*
8374 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
8375 * local_stat because update_sg_lb_stats() does a full clear/assignment.
8376 * We must however set busiest_stat::group_type and
8377 * busiest_stat::idle_cpus to the worst busiest group because
8378 * update_sd_pick_busiest() reads these before assignment.
8379 */
8380 *sds = (struct sd_lb_stats){
8381 .busiest = NULL,
8382 .local = NULL,
8383 .total_load = 0UL,
8384 .total_capacity = 0UL,
8385 .busiest_stat = {
8386 .idle_cpus = UINT_MAX,
8387 .group_type = group_has_spare,
8388 },
8389 };
8390 }
8391
scale_rt_capacity(int cpu)8392 static unsigned long scale_rt_capacity(int cpu)
8393 {
8394 struct rq *rq = cpu_rq(cpu);
8395 unsigned long max = arch_scale_cpu_capacity(cpu);
8396 unsigned long used, free;
8397 unsigned long irq;
8398
8399 irq = cpu_util_irq(rq);
8400
8401 if (unlikely(irq >= max))
8402 return 1;
8403
8404 /*
8405 * avg_rt.util_avg and avg_dl.util_avg track binary signals
8406 * (running and not running) with weights 0 and 1024 respectively.
8407 * avg_thermal.load_avg tracks thermal pressure and the weighted
8408 * average uses the actual delta max capacity(load).
8409 */
8410 used = READ_ONCE(rq->avg_rt.util_avg);
8411 used += READ_ONCE(rq->avg_dl.util_avg);
8412 used += thermal_load_avg(rq);
8413
8414 if (unlikely(used >= max))
8415 return 1;
8416
8417 free = max - used;
8418
8419 return scale_irq_capacity(free, irq, max);
8420 }
8421
update_cpu_capacity(struct sched_domain * sd,int cpu)8422 static void update_cpu_capacity(struct sched_domain *sd, int cpu)
8423 {
8424 unsigned long capacity = scale_rt_capacity(cpu);
8425 struct sched_group *sdg = sd->groups;
8426
8427 cpu_rq(cpu)->cpu_capacity_orig = arch_scale_cpu_capacity(cpu);
8428
8429 if (!capacity)
8430 capacity = 1;
8431
8432 cpu_rq(cpu)->cpu_capacity = capacity;
8433 trace_sched_cpu_capacity_tp(cpu_rq(cpu));
8434
8435 sdg->sgc->capacity = capacity;
8436 sdg->sgc->min_capacity = capacity;
8437 sdg->sgc->max_capacity = capacity;
8438 }
8439
update_group_capacity(struct sched_domain * sd,int cpu)8440 void update_group_capacity(struct sched_domain *sd, int cpu)
8441 {
8442 struct sched_domain *child = sd->child;
8443 struct sched_group *group, *sdg = sd->groups;
8444 unsigned long capacity, min_capacity, max_capacity;
8445 unsigned long interval;
8446
8447 interval = msecs_to_jiffies(sd->balance_interval);
8448 interval = clamp(interval, 1UL, max_load_balance_interval);
8449 sdg->sgc->next_update = jiffies + interval;
8450
8451 if (!child) {
8452 update_cpu_capacity(sd, cpu);
8453 return;
8454 }
8455
8456 capacity = 0;
8457 min_capacity = ULONG_MAX;
8458 max_capacity = 0;
8459
8460 if (child->flags & SD_OVERLAP) {
8461 /*
8462 * SD_OVERLAP domains cannot assume that child groups
8463 * span the current group.
8464 */
8465
8466 for_each_cpu(cpu, sched_group_span(sdg)) {
8467 unsigned long cpu_cap = capacity_of(cpu);
8468
8469 if (cpu_isolated(cpu))
8470 continue;
8471
8472 capacity += cpu_cap;
8473 min_capacity = min(cpu_cap, min_capacity);
8474 max_capacity = max(cpu_cap, max_capacity);
8475 }
8476 } else {
8477 /*
8478 * !SD_OVERLAP domains can assume that child groups
8479 * span the current group.
8480 */
8481
8482 group = child->groups;
8483 do {
8484 struct sched_group_capacity *sgc = group->sgc;
8485 __maybe_unused cpumask_t *cpus =
8486 sched_group_span(group);
8487
8488 if (!cpu_isolated(cpumask_first(cpus))) {
8489 capacity += sgc->capacity;
8490 min_capacity = min(sgc->min_capacity,
8491 min_capacity);
8492 max_capacity = max(sgc->max_capacity,
8493 max_capacity);
8494 }
8495 group = group->next;
8496 } while (group != child->groups);
8497 }
8498
8499 sdg->sgc->capacity = capacity;
8500 sdg->sgc->min_capacity = min_capacity;
8501 sdg->sgc->max_capacity = max_capacity;
8502 }
8503
8504 /*
8505 * Check whether the capacity of the rq has been noticeably reduced by side
8506 * activity. The imbalance_pct is used for the threshold.
8507 * Return true is the capacity is reduced
8508 */
8509 static inline int
check_cpu_capacity(struct rq * rq,struct sched_domain * sd)8510 check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
8511 {
8512 return ((rq->cpu_capacity * sd->imbalance_pct) <
8513 (rq->cpu_capacity_orig * 100));
8514 }
8515
8516 /*
8517 * Check whether a rq has a misfit task and if it looks like we can actually
8518 * help that task: we can migrate the task to a CPU of higher capacity, or
8519 * the task's current CPU is heavily pressured.
8520 */
check_misfit_status(struct rq * rq,struct sched_domain * sd)8521 static inline int check_misfit_status(struct rq *rq, struct sched_domain *sd)
8522 {
8523 return rq->misfit_task_load &&
8524 (rq->cpu_capacity_orig < rq->rd->max_cpu_capacity ||
8525 check_cpu_capacity(rq, sd));
8526 }
8527
8528 /*
8529 * Group imbalance indicates (and tries to solve) the problem where balancing
8530 * groups is inadequate due to ->cpus_ptr constraints.
8531 *
8532 * Imagine a situation of two groups of 4 CPUs each and 4 tasks each with a
8533 * cpumask covering 1 CPU of the first group and 3 CPUs of the second group.
8534 * Something like:
8535 *
8536 * { 0 1 2 3 } { 4 5 6 7 }
8537 * * * * *
8538 *
8539 * If we were to balance group-wise we'd place two tasks in the first group and
8540 * two tasks in the second group. Clearly this is undesired as it will overload
8541 * cpu 3 and leave one of the CPUs in the second group unused.
8542 *
8543 * The current solution to this issue is detecting the skew in the first group
8544 * by noticing the lower domain failed to reach balance and had difficulty
8545 * moving tasks due to affinity constraints.
8546 *
8547 * When this is so detected; this group becomes a candidate for busiest; see
8548 * update_sd_pick_busiest(). And calculate_imbalance() and
8549 * find_busiest_group() avoid some of the usual balance conditions to allow it
8550 * to create an effective group imbalance.
8551 *
8552 * This is a somewhat tricky proposition since the next run might not find the
8553 * group imbalance and decide the groups need to be balanced again. A most
8554 * subtle and fragile situation.
8555 */
8556
sg_imbalanced(struct sched_group * group)8557 static inline int sg_imbalanced(struct sched_group *group)
8558 {
8559 return group->sgc->imbalance;
8560 }
8561
8562 /*
8563 * group_has_capacity returns true if the group has spare capacity that could
8564 * be used by some tasks.
8565 * We consider that a group has spare capacity if the * number of task is
8566 * smaller than the number of CPUs or if the utilization is lower than the
8567 * available capacity for CFS tasks.
8568 * For the latter, we use a threshold to stabilize the state, to take into
8569 * account the variance of the tasks' load and to return true if the available
8570 * capacity in meaningful for the load balancer.
8571 * As an example, an available capacity of 1% can appear but it doesn't make
8572 * any benefit for the load balance.
8573 */
8574 static inline bool
group_has_capacity(unsigned int imbalance_pct,struct sg_lb_stats * sgs)8575 group_has_capacity(unsigned int imbalance_pct, struct sg_lb_stats *sgs)
8576 {
8577 if (sgs->sum_nr_running < sgs->group_weight)
8578 return true;
8579
8580 if ((sgs->group_capacity * imbalance_pct) <
8581 (sgs->group_runnable * 100))
8582 return false;
8583
8584 if ((sgs->group_capacity * 100) >
8585 (sgs->group_util * imbalance_pct))
8586 return true;
8587
8588 return false;
8589 }
8590
8591 /*
8592 * group_is_overloaded returns true if the group has more tasks than it can
8593 * handle.
8594 * group_is_overloaded is not equals to !group_has_capacity because a group
8595 * with the exact right number of tasks, has no more spare capacity but is not
8596 * overloaded so both group_has_capacity and group_is_overloaded return
8597 * false.
8598 */
8599 static inline bool
group_is_overloaded(unsigned int imbalance_pct,struct sg_lb_stats * sgs)8600 group_is_overloaded(unsigned int imbalance_pct, struct sg_lb_stats *sgs)
8601 {
8602 if (sgs->sum_nr_running <= sgs->group_weight)
8603 return false;
8604
8605 if ((sgs->group_capacity * 100) <
8606 (sgs->group_util * imbalance_pct))
8607 return true;
8608
8609 if ((sgs->group_capacity * imbalance_pct) <
8610 (sgs->group_runnable * 100))
8611 return true;
8612
8613 return false;
8614 }
8615
8616 /*
8617 * group_smaller_min_cpu_capacity: Returns true if sched_group sg has smaller
8618 * per-CPU capacity than sched_group ref.
8619 */
8620 static inline bool
group_smaller_min_cpu_capacity(struct sched_group * sg,struct sched_group * ref)8621 group_smaller_min_cpu_capacity(struct sched_group *sg, struct sched_group *ref)
8622 {
8623 return fits_capacity(sg->sgc->min_capacity, ref->sgc->min_capacity);
8624 }
8625
8626 /*
8627 * group_smaller_max_cpu_capacity: Returns true if sched_group sg has smaller
8628 * per-CPU capacity_orig than sched_group ref.
8629 */
8630 static inline bool
group_smaller_max_cpu_capacity(struct sched_group * sg,struct sched_group * ref)8631 group_smaller_max_cpu_capacity(struct sched_group *sg, struct sched_group *ref)
8632 {
8633 return fits_capacity(sg->sgc->max_capacity, ref->sgc->max_capacity);
8634 }
8635
8636 static inline enum
group_classify(unsigned int imbalance_pct,struct sched_group * group,struct sg_lb_stats * sgs)8637 group_type group_classify(unsigned int imbalance_pct,
8638 struct sched_group *group,
8639 struct sg_lb_stats *sgs)
8640 {
8641 if (group_is_overloaded(imbalance_pct, sgs))
8642 return group_overloaded;
8643
8644 if (sg_imbalanced(group))
8645 return group_imbalanced;
8646
8647 if (sgs->group_asym_packing)
8648 return group_asym_packing;
8649
8650 if (sgs->group_misfit_task_load)
8651 return group_misfit_task;
8652
8653 if (!group_has_capacity(imbalance_pct, sgs))
8654 return group_fully_busy;
8655
8656 return group_has_spare;
8657 }
8658
update_nohz_stats(struct rq * rq,bool force)8659 static bool update_nohz_stats(struct rq *rq, bool force)
8660 {
8661 #ifdef CONFIG_NO_HZ_COMMON
8662 unsigned int cpu = rq->cpu;
8663
8664 if (!rq->has_blocked_load)
8665 return false;
8666
8667 if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask))
8668 return false;
8669
8670 if (!force && !time_after(jiffies, rq->last_blocked_load_update_tick))
8671 return true;
8672
8673 update_blocked_averages(cpu);
8674
8675 return rq->has_blocked_load;
8676 #else
8677 return false;
8678 #endif
8679 }
8680
8681 /**
8682 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
8683 * @env: The load balancing environment.
8684 * @group: sched_group whose statistics are to be updated.
8685 * @sgs: variable to hold the statistics for this group.
8686 * @sg_status: Holds flag indicating the status of the sched_group
8687 */
update_sg_lb_stats(struct lb_env * env,struct sched_group * group,struct sg_lb_stats * sgs,int * sg_status)8688 static inline void update_sg_lb_stats(struct lb_env *env,
8689 struct sched_group *group,
8690 struct sg_lb_stats *sgs,
8691 int *sg_status)
8692 {
8693 int i, nr_running, local_group;
8694
8695 memset(sgs, 0, sizeof(*sgs));
8696
8697 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(group));
8698
8699 for_each_cpu_and(i, sched_group_span(group), env->cpus) {
8700 struct rq *rq = cpu_rq(i);
8701
8702 if (cpu_isolated(i))
8703 continue;
8704
8705 if ((env->flags & LBF_NOHZ_STATS) && update_nohz_stats(rq, false))
8706 env->flags |= LBF_NOHZ_AGAIN;
8707
8708 sgs->group_load += cpu_load(rq);
8709 sgs->group_util += cpu_util(i);
8710 sgs->group_runnable += cpu_runnable(rq);
8711 sgs->sum_h_nr_running += rq->cfs.h_nr_running;
8712
8713 nr_running = rq->nr_running;
8714 sgs->sum_nr_running += nr_running;
8715
8716 if (nr_running > 1)
8717 *sg_status |= SG_OVERLOAD;
8718
8719 if (cpu_overutilized(i))
8720 *sg_status |= SG_OVERUTILIZED;
8721
8722 #ifdef CONFIG_NUMA_BALANCING
8723 sgs->nr_numa_running += rq->nr_numa_running;
8724 sgs->nr_preferred_running += rq->nr_preferred_running;
8725 #endif
8726 /*
8727 * No need to call idle_cpu() if nr_running is not 0
8728 */
8729 if (!nr_running && idle_cpu(i)) {
8730 sgs->idle_cpus++;
8731 /* Idle cpu can't have misfit task */
8732 continue;
8733 }
8734
8735 if (local_group)
8736 continue;
8737
8738 /* Check for a misfit task on the cpu */
8739 if (env->sd->flags & SD_ASYM_CPUCAPACITY &&
8740 sgs->group_misfit_task_load < rq->misfit_task_load) {
8741 sgs->group_misfit_task_load = rq->misfit_task_load;
8742 *sg_status |= SG_OVERLOAD;
8743 }
8744 }
8745
8746 /* Isolated CPU has no weight */
8747 if (!group->group_weight) {
8748 sgs->group_capacity = 0;
8749 sgs->avg_load = 0;
8750 sgs->group_type = group_has_spare;
8751 sgs->group_weight = group->group_weight;
8752 return;
8753 }
8754
8755 /* Check if dst CPU is idle and preferred to this group */
8756 if (env->sd->flags & SD_ASYM_PACKING &&
8757 env->idle != CPU_NOT_IDLE &&
8758 sgs->sum_h_nr_running &&
8759 sched_asym_prefer(env->dst_cpu, group->asym_prefer_cpu)) {
8760 sgs->group_asym_packing = 1;
8761 }
8762
8763 sgs->group_capacity = group->sgc->capacity;
8764
8765 sgs->group_weight = group->group_weight;
8766
8767 sgs->group_type = group_classify(env->sd->imbalance_pct, group, sgs);
8768
8769 /* Computing avg_load makes sense only when group is overloaded */
8770 if (sgs->group_type == group_overloaded)
8771 sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) /
8772 sgs->group_capacity;
8773 }
8774
8775 /**
8776 * update_sd_pick_busiest - return 1 on busiest group
8777 * @env: The load balancing environment.
8778 * @sds: sched_domain statistics
8779 * @sg: sched_group candidate to be checked for being the busiest
8780 * @sgs: sched_group statistics
8781 *
8782 * Determine if @sg is a busier group than the previously selected
8783 * busiest group.
8784 *
8785 * Return: %true if @sg is a busier group than the previously selected
8786 * busiest group. %false otherwise.
8787 */
update_sd_pick_busiest(struct lb_env * env,struct sd_lb_stats * sds,struct sched_group * sg,struct sg_lb_stats * sgs)8788 static bool update_sd_pick_busiest(struct lb_env *env,
8789 struct sd_lb_stats *sds,
8790 struct sched_group *sg,
8791 struct sg_lb_stats *sgs)
8792 {
8793 struct sg_lb_stats *busiest = &sds->busiest_stat;
8794
8795 /* Make sure that there is at least one task to pull */
8796 if (!sgs->sum_h_nr_running)
8797 return false;
8798
8799 /*
8800 * Don't try to pull misfit tasks we can't help.
8801 * We can use max_capacity here as reduction in capacity on some
8802 * CPUs in the group should either be possible to resolve
8803 * internally or be covered by avg_load imbalance (eventually).
8804 */
8805 if (sgs->group_type == group_misfit_task &&
8806 (!group_smaller_max_cpu_capacity(sg, sds->local) ||
8807 sds->local_stat.group_type != group_has_spare))
8808 return false;
8809
8810 if (sgs->group_type > busiest->group_type)
8811 return true;
8812
8813 if (sgs->group_type < busiest->group_type)
8814 return false;
8815
8816 /*
8817 * The candidate and the current busiest group are the same type of
8818 * group. Let check which one is the busiest according to the type.
8819 */
8820
8821 switch (sgs->group_type) {
8822 case group_overloaded:
8823 /* Select the overloaded group with highest avg_load. */
8824 if (sgs->avg_load <= busiest->avg_load)
8825 return false;
8826 break;
8827
8828 case group_imbalanced:
8829 /*
8830 * Select the 1st imbalanced group as we don't have any way to
8831 * choose one more than another.
8832 */
8833 return false;
8834
8835 case group_asym_packing:
8836 /* Prefer to move from lowest priority CPU's work */
8837 if (sched_asym_prefer(sg->asym_prefer_cpu, sds->busiest->asym_prefer_cpu))
8838 return false;
8839 break;
8840
8841 case group_misfit_task:
8842 /*
8843 * If we have more than one misfit sg go with the biggest
8844 * misfit.
8845 */
8846 if (sgs->group_misfit_task_load < busiest->group_misfit_task_load)
8847 return false;
8848 break;
8849
8850 case group_fully_busy:
8851 /*
8852 * Select the fully busy group with highest avg_load. In
8853 * theory, there is no need to pull task from such kind of
8854 * group because tasks have all compute capacity that they need
8855 * but we can still improve the overall throughput by reducing
8856 * contention when accessing shared HW resources.
8857 *
8858 * XXX for now avg_load is not computed and always 0 so we
8859 * select the 1st one.
8860 */
8861 if (sgs->avg_load <= busiest->avg_load)
8862 return false;
8863 break;
8864
8865 case group_has_spare:
8866 /*
8867 * Select not overloaded group with lowest number of idle cpus
8868 * and highest number of running tasks. We could also compare
8869 * the spare capacity which is more stable but it can end up
8870 * that the group has less spare capacity but finally more idle
8871 * CPUs which means less opportunity to pull tasks.
8872 */
8873 if (sgs->idle_cpus > busiest->idle_cpus)
8874 return false;
8875 else if ((sgs->idle_cpus == busiest->idle_cpus) &&
8876 (sgs->sum_nr_running <= busiest->sum_nr_running))
8877 return false;
8878
8879 break;
8880 }
8881
8882 /*
8883 * Candidate sg has no more than one task per CPU and has higher
8884 * per-CPU capacity. Migrating tasks to less capable CPUs may harm
8885 * throughput. Maximize throughput, power/energy consequences are not
8886 * considered.
8887 */
8888 if ((env->sd->flags & SD_ASYM_CPUCAPACITY) &&
8889 (sgs->group_type <= group_fully_busy) &&
8890 (group_smaller_min_cpu_capacity(sds->local, sg)))
8891 return false;
8892
8893 return true;
8894 }
8895
8896 #ifdef CONFIG_NUMA_BALANCING
fbq_classify_group(struct sg_lb_stats * sgs)8897 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
8898 {
8899 if (sgs->sum_h_nr_running > sgs->nr_numa_running)
8900 return regular;
8901 if (sgs->sum_h_nr_running > sgs->nr_preferred_running)
8902 return remote;
8903 return all;
8904 }
8905
fbq_classify_rq(struct rq * rq)8906 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
8907 {
8908 if (rq->nr_running > rq->nr_numa_running)
8909 return regular;
8910 if (rq->nr_running > rq->nr_preferred_running)
8911 return remote;
8912 return all;
8913 }
8914 #else
fbq_classify_group(struct sg_lb_stats * sgs)8915 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
8916 {
8917 return all;
8918 }
8919
fbq_classify_rq(struct rq * rq)8920 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
8921 {
8922 return regular;
8923 }
8924 #endif /* CONFIG_NUMA_BALANCING */
8925
8926
8927 struct sg_lb_stats;
8928
8929 /*
8930 * task_running_on_cpu - return 1 if @p is running on @cpu.
8931 */
8932
task_running_on_cpu(int cpu,struct task_struct * p)8933 static unsigned int task_running_on_cpu(int cpu, struct task_struct *p)
8934 {
8935 /* Task has no contribution or is new */
8936 if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
8937 return 0;
8938
8939 if (task_on_rq_queued(p))
8940 return 1;
8941
8942 return 0;
8943 }
8944
8945 /**
8946 * idle_cpu_without - would a given CPU be idle without p ?
8947 * @cpu: the processor on which idleness is tested.
8948 * @p: task which should be ignored.
8949 *
8950 * Return: 1 if the CPU would be idle. 0 otherwise.
8951 */
idle_cpu_without(int cpu,struct task_struct * p)8952 static int idle_cpu_without(int cpu, struct task_struct *p)
8953 {
8954 struct rq *rq = cpu_rq(cpu);
8955
8956 if (rq->curr != rq->idle && rq->curr != p)
8957 return 0;
8958
8959 /*
8960 * rq->nr_running can't be used but an updated version without the
8961 * impact of p on cpu must be used instead. The updated nr_running
8962 * be computed and tested before calling idle_cpu_without().
8963 */
8964
8965 #ifdef CONFIG_SMP
8966 if (rq->ttwu_pending)
8967 return 0;
8968 #endif
8969
8970 return 1;
8971 }
8972
8973 /*
8974 * update_sg_wakeup_stats - Update sched_group's statistics for wakeup.
8975 * @sd: The sched_domain level to look for idlest group.
8976 * @group: sched_group whose statistics are to be updated.
8977 * @sgs: variable to hold the statistics for this group.
8978 * @p: The task for which we look for the idlest group/CPU.
8979 */
update_sg_wakeup_stats(struct sched_domain * sd,struct sched_group * group,struct sg_lb_stats * sgs,struct task_struct * p)8980 static inline void update_sg_wakeup_stats(struct sched_domain *sd,
8981 struct sched_group *group,
8982 struct sg_lb_stats *sgs,
8983 struct task_struct *p)
8984 {
8985 int i, nr_running;
8986
8987 memset(sgs, 0, sizeof(*sgs));
8988
8989 for_each_cpu(i, sched_group_span(group)) {
8990 struct rq *rq = cpu_rq(i);
8991 unsigned int local;
8992
8993 sgs->group_load += cpu_load_without(rq, p);
8994 sgs->group_util += cpu_util_without(i, p);
8995 sgs->group_runnable += cpu_runnable_without(rq, p);
8996 local = task_running_on_cpu(i, p);
8997 sgs->sum_h_nr_running += rq->cfs.h_nr_running - local;
8998
8999 nr_running = rq->nr_running - local;
9000 sgs->sum_nr_running += nr_running;
9001
9002 /*
9003 * No need to call idle_cpu_without() if nr_running is not 0
9004 */
9005 if (!nr_running && idle_cpu_without(i, p))
9006 sgs->idle_cpus++;
9007
9008 }
9009
9010 /* Check if task fits in the group */
9011 if (sd->flags & SD_ASYM_CPUCAPACITY &&
9012 !task_fits_capacity(p, group->sgc->max_capacity)) {
9013 sgs->group_misfit_task_load = 1;
9014 }
9015
9016 sgs->group_capacity = group->sgc->capacity;
9017
9018 sgs->group_weight = group->group_weight;
9019
9020 sgs->group_type = group_classify(sd->imbalance_pct, group, sgs);
9021
9022 /*
9023 * Computing avg_load makes sense only when group is fully busy or
9024 * overloaded
9025 */
9026 if (sgs->group_type == group_fully_busy ||
9027 sgs->group_type == group_overloaded)
9028 sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) /
9029 sgs->group_capacity;
9030 }
9031
update_pick_idlest(struct sched_group * idlest,struct sg_lb_stats * idlest_sgs,struct sched_group * group,struct sg_lb_stats * sgs)9032 static bool update_pick_idlest(struct sched_group *idlest,
9033 struct sg_lb_stats *idlest_sgs,
9034 struct sched_group *group,
9035 struct sg_lb_stats *sgs)
9036 {
9037 if (sgs->group_type < idlest_sgs->group_type)
9038 return true;
9039
9040 if (sgs->group_type > idlest_sgs->group_type)
9041 return false;
9042
9043 /*
9044 * The candidate and the current idlest group are the same type of
9045 * group. Let check which one is the idlest according to the type.
9046 */
9047
9048 switch (sgs->group_type) {
9049 case group_overloaded:
9050 case group_fully_busy:
9051 /* Select the group with lowest avg_load. */
9052 if (idlest_sgs->avg_load <= sgs->avg_load)
9053 return false;
9054 break;
9055
9056 case group_imbalanced:
9057 case group_asym_packing:
9058 /* Those types are not used in the slow wakeup path */
9059 return false;
9060
9061 case group_misfit_task:
9062 /* Select group with the highest max capacity */
9063 if (idlest->sgc->max_capacity >= group->sgc->max_capacity)
9064 return false;
9065 break;
9066
9067 case group_has_spare:
9068 /* Select group with most idle CPUs */
9069 if (idlest_sgs->idle_cpus > sgs->idle_cpus)
9070 return false;
9071
9072 /* Select group with lowest group_util */
9073 if (idlest_sgs->idle_cpus == sgs->idle_cpus &&
9074 idlest_sgs->group_util <= sgs->group_util)
9075 return false;
9076
9077 break;
9078 }
9079
9080 return true;
9081 }
9082
9083 /*
9084 * find_idlest_group() finds and returns the least busy CPU group within the
9085 * domain.
9086 *
9087 * Assumes p is allowed on at least one CPU in sd.
9088 */
9089 static struct sched_group *
find_idlest_group(struct sched_domain * sd,struct task_struct * p,int this_cpu)9090 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
9091 {
9092 struct sched_group *idlest = NULL, *local = NULL, *group = sd->groups;
9093 struct sg_lb_stats local_sgs, tmp_sgs;
9094 struct sg_lb_stats *sgs;
9095 unsigned long imbalance;
9096 struct sg_lb_stats idlest_sgs = {
9097 .avg_load = UINT_MAX,
9098 .group_type = group_overloaded,
9099 };
9100 #ifdef CONFIG_CPU_ISOLATION_OPT
9101 cpumask_t allowed_cpus;
9102
9103 cpumask_andnot(&allowed_cpus, p->cpus_ptr, cpu_isolated_mask);
9104 #endif
9105
9106 imbalance = scale_load_down(NICE_0_LOAD) *
9107 (sd->imbalance_pct-100) / 100;
9108
9109 do {
9110 int local_group;
9111
9112 /* Skip over this group if it has no CPUs allowed */
9113 #ifdef CONFIG_CPU_ISOLATION_OPT
9114 if (!cpumask_intersects(sched_group_span(group),
9115 &allowed_cpus))
9116 #else
9117 if (!cpumask_intersects(sched_group_span(group),
9118 p->cpus_ptr))
9119 #endif
9120 continue;
9121
9122 local_group = cpumask_test_cpu(this_cpu,
9123 sched_group_span(group));
9124
9125 if (local_group) {
9126 sgs = &local_sgs;
9127 local = group;
9128 } else {
9129 sgs = &tmp_sgs;
9130 }
9131
9132 update_sg_wakeup_stats(sd, group, sgs, p);
9133
9134 if (!local_group && update_pick_idlest(idlest, &idlest_sgs, group, sgs)) {
9135 idlest = group;
9136 idlest_sgs = *sgs;
9137 }
9138
9139 } while (group = group->next, group != sd->groups);
9140
9141
9142 /* There is no idlest group to push tasks to */
9143 if (!idlest)
9144 return NULL;
9145
9146 /* The local group has been skipped because of CPU affinity */
9147 if (!local)
9148 return idlest;
9149
9150 /*
9151 * If the local group is idler than the selected idlest group
9152 * don't try and push the task.
9153 */
9154 if (local_sgs.group_type < idlest_sgs.group_type)
9155 return NULL;
9156
9157 /*
9158 * If the local group is busier than the selected idlest group
9159 * try and push the task.
9160 */
9161 if (local_sgs.group_type > idlest_sgs.group_type)
9162 return idlest;
9163
9164 switch (local_sgs.group_type) {
9165 case group_overloaded:
9166 case group_fully_busy:
9167 /*
9168 * When comparing groups across NUMA domains, it's possible for
9169 * the local domain to be very lightly loaded relative to the
9170 * remote domains but "imbalance" skews the comparison making
9171 * remote CPUs look much more favourable. When considering
9172 * cross-domain, add imbalance to the load on the remote node
9173 * and consider staying local.
9174 */
9175
9176 if ((sd->flags & SD_NUMA) &&
9177 ((idlest_sgs.avg_load + imbalance) >= local_sgs.avg_load))
9178 return NULL;
9179
9180 /*
9181 * If the local group is less loaded than the selected
9182 * idlest group don't try and push any tasks.
9183 */
9184 if (idlest_sgs.avg_load >= (local_sgs.avg_load + imbalance))
9185 return NULL;
9186
9187 if (100 * local_sgs.avg_load <= sd->imbalance_pct * idlest_sgs.avg_load)
9188 return NULL;
9189 break;
9190
9191 case group_imbalanced:
9192 case group_asym_packing:
9193 /* Those type are not used in the slow wakeup path */
9194 return NULL;
9195
9196 case group_misfit_task:
9197 /* Select group with the highest max capacity */
9198 if (local->sgc->max_capacity >= idlest->sgc->max_capacity)
9199 return NULL;
9200 break;
9201
9202 case group_has_spare:
9203 if (sd->flags & SD_NUMA) {
9204 #ifdef CONFIG_NUMA_BALANCING
9205 int idlest_cpu;
9206 /*
9207 * If there is spare capacity at NUMA, try to select
9208 * the preferred node
9209 */
9210 if (cpu_to_node(this_cpu) == p->numa_preferred_nid)
9211 return NULL;
9212
9213 idlest_cpu = cpumask_first(sched_group_span(idlest));
9214 if (cpu_to_node(idlest_cpu) == p->numa_preferred_nid)
9215 return idlest;
9216 #endif
9217 /*
9218 * Otherwise, keep the task on this node to stay close
9219 * its wakeup source and improve locality. If there is
9220 * a real need of migration, periodic load balance will
9221 * take care of it.
9222 */
9223 if (local_sgs.idle_cpus)
9224 return NULL;
9225 }
9226
9227 /*
9228 * Select group with highest number of idle CPUs. We could also
9229 * compare the utilization which is more stable but it can end
9230 * up that the group has less spare capacity but finally more
9231 * idle CPUs which means more opportunity to run task.
9232 */
9233 if (local_sgs.idle_cpus >= idlest_sgs.idle_cpus)
9234 return NULL;
9235 break;
9236 }
9237
9238 return idlest;
9239 }
9240
9241 /**
9242 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
9243 * @env: The load balancing environment.
9244 * @sds: variable to hold the statistics for this sched_domain.
9245 */
9246
update_sd_lb_stats(struct lb_env * env,struct sd_lb_stats * sds)9247 static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
9248 {
9249 struct sched_domain *child = env->sd->child;
9250 struct sched_group *sg = env->sd->groups;
9251 struct sg_lb_stats *local = &sds->local_stat;
9252 struct sg_lb_stats tmp_sgs;
9253 int sg_status = 0;
9254
9255 #ifdef CONFIG_NO_HZ_COMMON
9256 if (env->idle == CPU_NEWLY_IDLE && READ_ONCE(nohz.has_blocked))
9257 env->flags |= LBF_NOHZ_STATS;
9258 #endif
9259
9260 do {
9261 struct sg_lb_stats *sgs = &tmp_sgs;
9262 int local_group;
9263
9264 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(sg));
9265 if (local_group) {
9266 sds->local = sg;
9267 sgs = local;
9268
9269 if (env->idle != CPU_NEWLY_IDLE ||
9270 time_after_eq(jiffies, sg->sgc->next_update))
9271 update_group_capacity(env->sd, env->dst_cpu);
9272 }
9273
9274 update_sg_lb_stats(env, sg, sgs, &sg_status);
9275
9276 if (local_group)
9277 goto next_group;
9278
9279
9280 if (update_sd_pick_busiest(env, sds, sg, sgs)) {
9281 sds->busiest = sg;
9282 sds->busiest_stat = *sgs;
9283 }
9284
9285 next_group:
9286 /* Now, start updating sd_lb_stats */
9287 sds->total_load += sgs->group_load;
9288 sds->total_capacity += sgs->group_capacity;
9289
9290 sg = sg->next;
9291 } while (sg != env->sd->groups);
9292
9293 /* Tag domain that child domain prefers tasks go to siblings first */
9294 sds->prefer_sibling = child && child->flags & SD_PREFER_SIBLING;
9295
9296 #ifdef CONFIG_NO_HZ_COMMON
9297 if ((env->flags & LBF_NOHZ_AGAIN) &&
9298 cpumask_subset(nohz.idle_cpus_mask, sched_domain_span(env->sd))) {
9299
9300 WRITE_ONCE(nohz.next_blocked,
9301 jiffies + msecs_to_jiffies(LOAD_AVG_PERIOD));
9302 }
9303 #endif
9304
9305 if (env->sd->flags & SD_NUMA)
9306 env->fbq_type = fbq_classify_group(&sds->busiest_stat);
9307
9308 if (!env->sd->parent) {
9309 struct root_domain *rd = env->dst_rq->rd;
9310
9311 /* update overload indicator if we are at root domain */
9312 WRITE_ONCE(rd->overload, sg_status & SG_OVERLOAD);
9313
9314 /* Update over-utilization (tipping point, U >= 0) indicator */
9315 WRITE_ONCE(rd->overutilized, sg_status & SG_OVERUTILIZED);
9316 trace_sched_overutilized_tp(rd, sg_status & SG_OVERUTILIZED);
9317 } else if (sg_status & SG_OVERUTILIZED) {
9318 struct root_domain *rd = env->dst_rq->rd;
9319
9320 WRITE_ONCE(rd->overutilized, SG_OVERUTILIZED);
9321 trace_sched_overutilized_tp(rd, SG_OVERUTILIZED);
9322 }
9323 }
9324
adjust_numa_imbalance(int imbalance,int nr_running)9325 static inline long adjust_numa_imbalance(int imbalance, int nr_running)
9326 {
9327 unsigned int imbalance_min;
9328
9329 /*
9330 * Allow a small imbalance based on a simple pair of communicating
9331 * tasks that remain local when the source domain is almost idle.
9332 */
9333 imbalance_min = 2;
9334 if (nr_running <= imbalance_min)
9335 return 0;
9336
9337 return imbalance;
9338 }
9339
9340 /**
9341 * calculate_imbalance - Calculate the amount of imbalance present within the
9342 * groups of a given sched_domain during load balance.
9343 * @env: load balance environment
9344 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
9345 */
calculate_imbalance(struct lb_env * env,struct sd_lb_stats * sds)9346 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
9347 {
9348 struct sg_lb_stats *local, *busiest;
9349
9350 local = &sds->local_stat;
9351 busiest = &sds->busiest_stat;
9352
9353 if (busiest->group_type == group_misfit_task) {
9354 /* Set imbalance to allow misfit tasks to be balanced. */
9355 env->migration_type = migrate_misfit;
9356 env->imbalance = 1;
9357 return;
9358 }
9359
9360 if (busiest->group_type == group_asym_packing) {
9361 /*
9362 * In case of asym capacity, we will try to migrate all load to
9363 * the preferred CPU.
9364 */
9365 env->migration_type = migrate_task;
9366 env->imbalance = busiest->sum_h_nr_running;
9367 return;
9368 }
9369
9370 if (busiest->group_type == group_imbalanced) {
9371 /*
9372 * In the group_imb case we cannot rely on group-wide averages
9373 * to ensure CPU-load equilibrium, try to move any task to fix
9374 * the imbalance. The next load balance will take care of
9375 * balancing back the system.
9376 */
9377 env->migration_type = migrate_task;
9378 env->imbalance = 1;
9379 return;
9380 }
9381
9382 /*
9383 * Try to use spare capacity of local group without overloading it or
9384 * emptying busiest.
9385 */
9386 if (local->group_type == group_has_spare) {
9387 if ((busiest->group_type > group_fully_busy) &&
9388 !(env->sd->flags & SD_SHARE_PKG_RESOURCES)) {
9389 /*
9390 * If busiest is overloaded, try to fill spare
9391 * capacity. This might end up creating spare capacity
9392 * in busiest or busiest still being overloaded but
9393 * there is no simple way to directly compute the
9394 * amount of load to migrate in order to balance the
9395 * system.
9396 */
9397 env->migration_type = migrate_util;
9398 env->imbalance = max(local->group_capacity, local->group_util) -
9399 local->group_util;
9400
9401 /*
9402 * In some cases, the group's utilization is max or even
9403 * higher than capacity because of migrations but the
9404 * local CPU is (newly) idle. There is at least one
9405 * waiting task in this overloaded busiest group. Let's
9406 * try to pull it.
9407 */
9408 if (env->idle != CPU_NOT_IDLE && env->imbalance == 0) {
9409 env->migration_type = migrate_task;
9410 env->imbalance = 1;
9411 }
9412
9413 return;
9414 }
9415
9416 if (busiest->group_weight == 1 || sds->prefer_sibling) {
9417 unsigned int nr_diff = busiest->sum_nr_running;
9418 /*
9419 * When prefer sibling, evenly spread running tasks on
9420 * groups.
9421 */
9422 env->migration_type = migrate_task;
9423 lsub_positive(&nr_diff, local->sum_nr_running);
9424 env->imbalance = nr_diff >> 1;
9425 } else {
9426
9427 /*
9428 * If there is no overload, we just want to even the number of
9429 * idle cpus.
9430 */
9431 env->migration_type = migrate_task;
9432 env->imbalance = max_t(long, 0, (local->idle_cpus -
9433 busiest->idle_cpus) >> 1);
9434 }
9435
9436 /* Consider allowing a small imbalance between NUMA groups */
9437 if (env->sd->flags & SD_NUMA)
9438 env->imbalance = adjust_numa_imbalance(env->imbalance,
9439 busiest->sum_nr_running);
9440
9441 return;
9442 }
9443
9444 /*
9445 * Local is fully busy but has to take more load to relieve the
9446 * busiest group
9447 */
9448 if (local->group_type < group_overloaded) {
9449 /*
9450 * Local will become overloaded so the avg_load metrics are
9451 * finally needed.
9452 */
9453
9454 local->avg_load = (local->group_load * SCHED_CAPACITY_SCALE) /
9455 local->group_capacity;
9456
9457 sds->avg_load = (sds->total_load * SCHED_CAPACITY_SCALE) /
9458 sds->total_capacity;
9459 /*
9460 * If the local group is more loaded than the selected
9461 * busiest group don't try to pull any tasks.
9462 */
9463 if (local->avg_load >= busiest->avg_load) {
9464 env->imbalance = 0;
9465 return;
9466 }
9467 }
9468
9469 /*
9470 * Both group are or will become overloaded and we're trying to get all
9471 * the CPUs to the average_load, so we don't want to push ourselves
9472 * above the average load, nor do we wish to reduce the max loaded CPU
9473 * below the average load. At the same time, we also don't want to
9474 * reduce the group load below the group capacity. Thus we look for
9475 * the minimum possible imbalance.
9476 */
9477 env->migration_type = migrate_load;
9478 env->imbalance = min(
9479 (busiest->avg_load - sds->avg_load) * busiest->group_capacity,
9480 (sds->avg_load - local->avg_load) * local->group_capacity
9481 ) / SCHED_CAPACITY_SCALE;
9482 }
9483
9484 /******* find_busiest_group() helpers end here *********************/
9485
9486 /*
9487 * Decision matrix according to the local and busiest group type:
9488 *
9489 * busiest \ local has_spare fully_busy misfit asym imbalanced overloaded
9490 * has_spare nr_idle balanced N/A N/A balanced balanced
9491 * fully_busy nr_idle nr_idle N/A N/A balanced balanced
9492 * misfit_task force N/A N/A N/A force force
9493 * asym_packing force force N/A N/A force force
9494 * imbalanced force force N/A N/A force force
9495 * overloaded force force N/A N/A force avg_load
9496 *
9497 * N/A : Not Applicable because already filtered while updating
9498 * statistics.
9499 * balanced : The system is balanced for these 2 groups.
9500 * force : Calculate the imbalance as load migration is probably needed.
9501 * avg_load : Only if imbalance is significant enough.
9502 * nr_idle : dst_cpu is not busy and the number of idle CPUs is quite
9503 * different in groups.
9504 */
9505
9506 /**
9507 * find_busiest_group - Returns the busiest group within the sched_domain
9508 * if there is an imbalance.
9509 *
9510 * Also calculates the amount of runnable load which should be moved
9511 * to restore balance.
9512 *
9513 * @env: The load balancing environment.
9514 *
9515 * Return: - The busiest group if imbalance exists.
9516 */
find_busiest_group(struct lb_env * env)9517 static struct sched_group *find_busiest_group(struct lb_env *env)
9518 {
9519 struct sg_lb_stats *local, *busiest;
9520 struct sd_lb_stats sds;
9521
9522 init_sd_lb_stats(&sds);
9523
9524 /*
9525 * Compute the various statistics relevant for load balancing at
9526 * this level.
9527 */
9528 update_sd_lb_stats(env, &sds);
9529
9530 if (sched_energy_enabled()) {
9531 struct root_domain *rd = env->dst_rq->rd;
9532
9533 if (rcu_dereference(rd->pd) && !READ_ONCE(rd->overutilized))
9534 goto out_balanced;
9535 }
9536
9537 local = &sds.local_stat;
9538 busiest = &sds.busiest_stat;
9539
9540 /* There is no busy sibling group to pull tasks from */
9541 if (!sds.busiest)
9542 goto out_balanced;
9543
9544 /* Misfit tasks should be dealt with regardless of the avg load */
9545 if (busiest->group_type == group_misfit_task)
9546 goto force_balance;
9547
9548 /* ASYM feature bypasses nice load balance check */
9549 if (busiest->group_type == group_asym_packing)
9550 goto force_balance;
9551
9552 /*
9553 * If the busiest group is imbalanced the below checks don't
9554 * work because they assume all things are equal, which typically
9555 * isn't true due to cpus_ptr constraints and the like.
9556 */
9557 if (busiest->group_type == group_imbalanced)
9558 goto force_balance;
9559
9560 /*
9561 * If the local group is busier than the selected busiest group
9562 * don't try and pull any tasks.
9563 */
9564 if (local->group_type > busiest->group_type)
9565 goto out_balanced;
9566
9567 /*
9568 * When groups are overloaded, use the avg_load to ensure fairness
9569 * between tasks.
9570 */
9571 if (local->group_type == group_overloaded) {
9572 /*
9573 * If the local group is more loaded than the selected
9574 * busiest group don't try to pull any tasks.
9575 */
9576 if (local->avg_load >= busiest->avg_load)
9577 goto out_balanced;
9578
9579 /* XXX broken for overlapping NUMA groups */
9580 sds.avg_load = (sds.total_load * SCHED_CAPACITY_SCALE) /
9581 sds.total_capacity;
9582
9583 /*
9584 * Don't pull any tasks if this group is already above the
9585 * domain average load.
9586 */
9587 if (local->avg_load >= sds.avg_load)
9588 goto out_balanced;
9589
9590 /*
9591 * If the busiest group is more loaded, use imbalance_pct to be
9592 * conservative.
9593 */
9594 if (100 * busiest->avg_load <=
9595 env->sd->imbalance_pct * local->avg_load)
9596 goto out_balanced;
9597 }
9598
9599 /* Try to move all excess tasks to child's sibling domain */
9600 if (sds.prefer_sibling && local->group_type == group_has_spare &&
9601 busiest->sum_nr_running > local->sum_nr_running + 1)
9602 goto force_balance;
9603
9604 if (busiest->group_type != group_overloaded) {
9605 if (env->idle == CPU_NOT_IDLE)
9606 /*
9607 * If the busiest group is not overloaded (and as a
9608 * result the local one too) but this CPU is already
9609 * busy, let another idle CPU try to pull task.
9610 */
9611 goto out_balanced;
9612
9613 if (busiest->group_weight > 1 &&
9614 local->idle_cpus <= (busiest->idle_cpus + 1))
9615 /*
9616 * If the busiest group is not overloaded
9617 * and there is no imbalance between this and busiest
9618 * group wrt idle CPUs, it is balanced. The imbalance
9619 * becomes significant if the diff is greater than 1
9620 * otherwise we might end up to just move the imbalance
9621 * on another group. Of course this applies only if
9622 * there is more than 1 CPU per group.
9623 */
9624 goto out_balanced;
9625
9626 if (busiest->sum_h_nr_running == 1)
9627 /*
9628 * busiest doesn't have any tasks waiting to run
9629 */
9630 goto out_balanced;
9631 }
9632
9633 force_balance:
9634 /* Looks like there is an imbalance. Compute it */
9635 calculate_imbalance(env, &sds);
9636 return env->imbalance ? sds.busiest : NULL;
9637
9638 out_balanced:
9639 env->imbalance = 0;
9640 return NULL;
9641 }
9642
9643 /*
9644 * find_busiest_queue - find the busiest runqueue among the CPUs in the group.
9645 */
find_busiest_queue(struct lb_env * env,struct sched_group * group)9646 static struct rq *find_busiest_queue(struct lb_env *env,
9647 struct sched_group *group)
9648 {
9649 struct rq *busiest = NULL, *rq;
9650 unsigned long busiest_util = 0, busiest_load = 0, busiest_capacity = 1;
9651 unsigned int busiest_nr = 0;
9652 int i;
9653
9654 for_each_cpu_and(i, sched_group_span(group), env->cpus) {
9655 unsigned long capacity, load, util;
9656 unsigned int nr_running;
9657 enum fbq_type rt;
9658
9659 rq = cpu_rq(i);
9660 rt = fbq_classify_rq(rq);
9661
9662 /*
9663 * We classify groups/runqueues into three groups:
9664 * - regular: there are !numa tasks
9665 * - remote: there are numa tasks that run on the 'wrong' node
9666 * - all: there is no distinction
9667 *
9668 * In order to avoid migrating ideally placed numa tasks,
9669 * ignore those when there's better options.
9670 *
9671 * If we ignore the actual busiest queue to migrate another
9672 * task, the next balance pass can still reduce the busiest
9673 * queue by moving tasks around inside the node.
9674 *
9675 * If we cannot move enough load due to this classification
9676 * the next pass will adjust the group classification and
9677 * allow migration of more tasks.
9678 *
9679 * Both cases only affect the total convergence complexity.
9680 */
9681 if (rt > env->fbq_type)
9682 continue;
9683
9684 if (cpu_isolated(i))
9685 continue;
9686
9687 capacity = capacity_of(i);
9688 nr_running = rq->cfs.h_nr_running;
9689
9690 /*
9691 * For ASYM_CPUCAPACITY domains, don't pick a CPU that could
9692 * eventually lead to active_balancing high->low capacity.
9693 * Higher per-CPU capacity is considered better than balancing
9694 * average load.
9695 */
9696 if (env->sd->flags & SD_ASYM_CPUCAPACITY &&
9697 capacity_of(env->dst_cpu) < capacity &&
9698 nr_running == 1)
9699 continue;
9700
9701 switch (env->migration_type) {
9702 case migrate_load:
9703 /*
9704 * When comparing with load imbalance, use cpu_load()
9705 * which is not scaled with the CPU capacity.
9706 */
9707 load = cpu_load(rq);
9708
9709 if (nr_running == 1 && load > env->imbalance &&
9710 !check_cpu_capacity(rq, env->sd))
9711 break;
9712
9713 /*
9714 * For the load comparisons with the other CPUs,
9715 * consider the cpu_load() scaled with the CPU
9716 * capacity, so that the load can be moved away
9717 * from the CPU that is potentially running at a
9718 * lower capacity.
9719 *
9720 * Thus we're looking for max(load_i / capacity_i),
9721 * crosswise multiplication to rid ourselves of the
9722 * division works out to:
9723 * load_i * capacity_j > load_j * capacity_i;
9724 * where j is our previous maximum.
9725 */
9726 if (load * busiest_capacity > busiest_load * capacity) {
9727 busiest_load = load;
9728 busiest_capacity = capacity;
9729 busiest = rq;
9730 }
9731 break;
9732
9733 case migrate_util:
9734 util = cpu_util(cpu_of(rq));
9735
9736 /*
9737 * Don't try to pull utilization from a CPU with one
9738 * running task. Whatever its utilization, we will fail
9739 * detach the task.
9740 */
9741 if (nr_running <= 1)
9742 continue;
9743
9744 if (busiest_util < util) {
9745 busiest_util = util;
9746 busiest = rq;
9747 }
9748 break;
9749
9750 case migrate_task:
9751 if (busiest_nr < nr_running) {
9752 busiest_nr = nr_running;
9753 busiest = rq;
9754 }
9755 break;
9756
9757 case migrate_misfit:
9758 /*
9759 * For ASYM_CPUCAPACITY domains with misfit tasks we
9760 * simply seek the "biggest" misfit task.
9761 */
9762 if (rq->misfit_task_load > busiest_load) {
9763 busiest_load = rq->misfit_task_load;
9764 busiest = rq;
9765 }
9766
9767 break;
9768
9769 }
9770 }
9771
9772 return busiest;
9773 }
9774
9775 /*
9776 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
9777 * so long as it is large enough.
9778 */
9779 #define MAX_PINNED_INTERVAL 512
9780
9781 static inline bool
asym_active_balance(struct lb_env * env)9782 asym_active_balance(struct lb_env *env)
9783 {
9784 /*
9785 * ASYM_PACKING needs to force migrate tasks from busy but
9786 * lower priority CPUs in order to pack all tasks in the
9787 * highest priority CPUs.
9788 */
9789 return env->idle != CPU_NOT_IDLE && (env->sd->flags & SD_ASYM_PACKING) &&
9790 sched_asym_prefer(env->dst_cpu, env->src_cpu);
9791 }
9792
9793 static inline bool
voluntary_active_balance(struct lb_env * env)9794 voluntary_active_balance(struct lb_env *env)
9795 {
9796 struct sched_domain *sd = env->sd;
9797
9798 if (asym_active_balance(env))
9799 return 1;
9800
9801 /*
9802 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
9803 * It's worth migrating the task if the src_cpu's capacity is reduced
9804 * because of other sched_class or IRQs if more capacity stays
9805 * available on dst_cpu.
9806 */
9807 if ((env->idle != CPU_NOT_IDLE) &&
9808 (env->src_rq->cfs.h_nr_running == 1)) {
9809 if ((check_cpu_capacity(env->src_rq, sd)) &&
9810 (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
9811 return 1;
9812 }
9813
9814 if (env->migration_type == migrate_misfit)
9815 return 1;
9816
9817 return 0;
9818 }
9819
need_active_balance(struct lb_env * env)9820 static int need_active_balance(struct lb_env *env)
9821 {
9822 struct sched_domain *sd = env->sd;
9823
9824 if (voluntary_active_balance(env))
9825 return 1;
9826
9827 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
9828 }
9829
9830 #ifdef CONFIG_CPU_ISOLATION_OPT
group_balance_cpu_not_isolated(struct sched_group * sg)9831 int group_balance_cpu_not_isolated(struct sched_group *sg)
9832 {
9833 cpumask_t cpus;
9834
9835 cpumask_and(&cpus, sched_group_span(sg), group_balance_mask(sg));
9836 cpumask_andnot(&cpus, &cpus, cpu_isolated_mask);
9837 return cpumask_first(&cpus);
9838 }
9839 #endif
9840
9841 static int active_load_balance_cpu_stop(void *data);
9842
should_we_balance(struct lb_env * env)9843 static int should_we_balance(struct lb_env *env)
9844 {
9845 struct sched_group *sg = env->sd->groups;
9846 int cpu;
9847
9848 /*
9849 * Ensure the balancing environment is consistent; can happen
9850 * when the softirq triggers 'during' hotplug.
9851 */
9852 if (!cpumask_test_cpu(env->dst_cpu, env->cpus))
9853 return 0;
9854
9855 /*
9856 * In the newly idle case, we will allow all the CPUs
9857 * to do the newly idle load balance.
9858 */
9859 if (env->idle == CPU_NEWLY_IDLE)
9860 return 1;
9861
9862 /* Try to find first idle CPU */
9863 for_each_cpu_and(cpu, group_balance_mask(sg), env->cpus) {
9864 if (!idle_cpu(cpu) || cpu_isolated(cpu))
9865 continue;
9866
9867 /* Are we the first idle CPU? */
9868 return cpu == env->dst_cpu;
9869 }
9870
9871 /* Are we the first CPU of this group ? */
9872 return group_balance_cpu_not_isolated(sg) == env->dst_cpu;
9873 }
9874
9875 /*
9876 * Check this_cpu to ensure it is balanced within domain. Attempt to move
9877 * tasks if there is an imbalance.
9878 */
load_balance(int this_cpu,struct rq * this_rq,struct sched_domain * sd,enum cpu_idle_type idle,int * continue_balancing)9879 static int load_balance(int this_cpu, struct rq *this_rq,
9880 struct sched_domain *sd, enum cpu_idle_type idle,
9881 int *continue_balancing)
9882 {
9883 int ld_moved, cur_ld_moved, active_balance = 0;
9884 struct sched_domain *sd_parent = sd->parent;
9885 struct sched_group *group;
9886 struct rq *busiest;
9887 struct rq_flags rf;
9888 struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
9889
9890 struct lb_env env = {
9891 .sd = sd,
9892 .dst_cpu = this_cpu,
9893 .dst_rq = this_rq,
9894 .dst_grpmask = sched_group_span(sd->groups),
9895 .idle = idle,
9896 .loop_break = sched_nr_migrate_break,
9897 .cpus = cpus,
9898 .fbq_type = all,
9899 .tasks = LIST_HEAD_INIT(env.tasks),
9900 };
9901
9902 cpumask_and(cpus, sched_domain_span(sd), cpu_active_mask);
9903
9904 schedstat_inc(sd->lb_count[idle]);
9905
9906 redo:
9907 if (!should_we_balance(&env)) {
9908 *continue_balancing = 0;
9909 goto out_balanced;
9910 }
9911
9912 group = find_busiest_group(&env);
9913 if (!group) {
9914 schedstat_inc(sd->lb_nobusyg[idle]);
9915 goto out_balanced;
9916 }
9917
9918 busiest = find_busiest_queue(&env, group);
9919 if (!busiest) {
9920 schedstat_inc(sd->lb_nobusyq[idle]);
9921 goto out_balanced;
9922 }
9923
9924 BUG_ON(busiest == env.dst_rq);
9925
9926 schedstat_add(sd->lb_imbalance[idle], env.imbalance);
9927
9928 env.src_cpu = busiest->cpu;
9929 env.src_rq = busiest;
9930
9931 ld_moved = 0;
9932 if (busiest->nr_running > 1) {
9933 /*
9934 * Attempt to move tasks. If find_busiest_group has found
9935 * an imbalance but busiest->nr_running <= 1, the group is
9936 * still unbalanced. ld_moved simply stays zero, so it is
9937 * correctly treated as an imbalance.
9938 */
9939 env.flags |= LBF_ALL_PINNED;
9940 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
9941
9942 more_balance:
9943 rq_lock_irqsave(busiest, &rf);
9944 update_rq_clock(busiest);
9945
9946 /*
9947 * cur_ld_moved - load moved in current iteration
9948 * ld_moved - cumulative load moved across iterations
9949 */
9950 cur_ld_moved = detach_tasks(&env);
9951
9952 /*
9953 * We've detached some tasks from busiest_rq. Every
9954 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
9955 * unlock busiest->lock, and we are able to be sure
9956 * that nobody can manipulate the tasks in parallel.
9957 * See task_rq_lock() family for the details.
9958 */
9959
9960 rq_unlock(busiest, &rf);
9961
9962 if (cur_ld_moved) {
9963 attach_tasks(&env);
9964 ld_moved += cur_ld_moved;
9965 }
9966
9967 local_irq_restore(rf.flags);
9968
9969 if (env.flags & LBF_NEED_BREAK) {
9970 env.flags &= ~LBF_NEED_BREAK;
9971 goto more_balance;
9972 }
9973
9974 /*
9975 * Revisit (affine) tasks on src_cpu that couldn't be moved to
9976 * us and move them to an alternate dst_cpu in our sched_group
9977 * where they can run. The upper limit on how many times we
9978 * iterate on same src_cpu is dependent on number of CPUs in our
9979 * sched_group.
9980 *
9981 * This changes load balance semantics a bit on who can move
9982 * load to a given_cpu. In addition to the given_cpu itself
9983 * (or a ilb_cpu acting on its behalf where given_cpu is
9984 * nohz-idle), we now have balance_cpu in a position to move
9985 * load to given_cpu. In rare situations, this may cause
9986 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
9987 * _independently_ and at _same_ time to move some load to
9988 * given_cpu) causing exceess load to be moved to given_cpu.
9989 * This however should not happen so much in practice and
9990 * moreover subsequent load balance cycles should correct the
9991 * excess load moved.
9992 */
9993 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
9994
9995 /* Prevent to re-select dst_cpu via env's CPUs */
9996 __cpumask_clear_cpu(env.dst_cpu, env.cpus);
9997
9998 env.dst_rq = cpu_rq(env.new_dst_cpu);
9999 env.dst_cpu = env.new_dst_cpu;
10000 env.flags &= ~LBF_DST_PINNED;
10001 env.loop = 0;
10002 env.loop_break = sched_nr_migrate_break;
10003
10004 /*
10005 * Go back to "more_balance" rather than "redo" since we
10006 * need to continue with same src_cpu.
10007 */
10008 goto more_balance;
10009 }
10010
10011 /*
10012 * We failed to reach balance because of affinity.
10013 */
10014 if (sd_parent) {
10015 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
10016
10017 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
10018 *group_imbalance = 1;
10019 }
10020
10021 /* All tasks on this runqueue were pinned by CPU affinity */
10022 if (unlikely(env.flags & LBF_ALL_PINNED)) {
10023 __cpumask_clear_cpu(cpu_of(busiest), cpus);
10024 /*
10025 * Attempting to continue load balancing at the current
10026 * sched_domain level only makes sense if there are
10027 * active CPUs remaining as possible busiest CPUs to
10028 * pull load from which are not contained within the
10029 * destination group that is receiving any migrated
10030 * load.
10031 */
10032 if (!cpumask_subset(cpus, env.dst_grpmask)) {
10033 env.loop = 0;
10034 env.loop_break = sched_nr_migrate_break;
10035 goto redo;
10036 }
10037 goto out_all_pinned;
10038 }
10039 }
10040
10041 if (!ld_moved) {
10042 schedstat_inc(sd->lb_failed[idle]);
10043 /*
10044 * Increment the failure counter only on periodic balance.
10045 * We do not want newidle balance, which can be very
10046 * frequent, pollute the failure counter causing
10047 * excessive cache_hot migrations and active balances.
10048 */
10049 if (idle != CPU_NEWLY_IDLE)
10050 sd->nr_balance_failed++;
10051
10052 if (need_active_balance(&env)) {
10053 unsigned long flags;
10054
10055 raw_spin_lock_irqsave(&busiest->lock, flags);
10056
10057 /*
10058 * Don't kick the active_load_balance_cpu_stop,
10059 * if the curr task on busiest CPU can't be
10060 * moved to this_cpu:
10061 */
10062 if (!cpumask_test_cpu(this_cpu, busiest->curr->cpus_ptr)) {
10063 raw_spin_unlock_irqrestore(&busiest->lock,
10064 flags);
10065 env.flags |= LBF_ALL_PINNED;
10066 goto out_one_pinned;
10067 }
10068
10069 /*
10070 * ->active_balance synchronizes accesses to
10071 * ->active_balance_work. Once set, it's cleared
10072 * only after active load balance is finished.
10073 */
10074 if (!busiest->active_balance &&
10075 !cpu_isolated(cpu_of(busiest))) {
10076 busiest->active_balance = 1;
10077 busiest->push_cpu = this_cpu;
10078 active_balance = 1;
10079 }
10080 raw_spin_unlock_irqrestore(&busiest->lock, flags);
10081
10082 if (active_balance) {
10083 stop_one_cpu_nowait(cpu_of(busiest),
10084 active_load_balance_cpu_stop, busiest,
10085 &busiest->active_balance_work);
10086 }
10087
10088 /* We've kicked active balancing, force task migration. */
10089 sd->nr_balance_failed = sd->cache_nice_tries+1;
10090 }
10091 } else
10092 sd->nr_balance_failed = 0;
10093
10094 if (likely(!active_balance) || voluntary_active_balance(&env)) {
10095 /* We were unbalanced, so reset the balancing interval */
10096 sd->balance_interval = sd->min_interval;
10097 } else {
10098 /*
10099 * If we've begun active balancing, start to back off. This
10100 * case may not be covered by the all_pinned logic if there
10101 * is only 1 task on the busy runqueue (because we don't call
10102 * detach_tasks).
10103 */
10104 if (sd->balance_interval < sd->max_interval)
10105 sd->balance_interval *= 2;
10106 }
10107
10108 goto out;
10109
10110 out_balanced:
10111 /*
10112 * We reach balance although we may have faced some affinity
10113 * constraints. Clear the imbalance flag only if other tasks got
10114 * a chance to move and fix the imbalance.
10115 */
10116 if (sd_parent && !(env.flags & LBF_ALL_PINNED)) {
10117 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
10118
10119 if (*group_imbalance)
10120 *group_imbalance = 0;
10121 }
10122
10123 out_all_pinned:
10124 /*
10125 * We reach balance because all tasks are pinned at this level so
10126 * we can't migrate them. Let the imbalance flag set so parent level
10127 * can try to migrate them.
10128 */
10129 schedstat_inc(sd->lb_balanced[idle]);
10130
10131 sd->nr_balance_failed = 0;
10132
10133 out_one_pinned:
10134 ld_moved = 0;
10135
10136 /*
10137 * newidle_balance() disregards balance intervals, so we could
10138 * repeatedly reach this code, which would lead to balance_interval
10139 * skyrocketting in a short amount of time. Skip the balance_interval
10140 * increase logic to avoid that.
10141 */
10142 if (env.idle == CPU_NEWLY_IDLE)
10143 goto out;
10144
10145 /* tune up the balancing interval */
10146 if ((env.flags & LBF_ALL_PINNED &&
10147 sd->balance_interval < MAX_PINNED_INTERVAL) ||
10148 sd->balance_interval < sd->max_interval)
10149 sd->balance_interval *= 2;
10150 out:
10151 return ld_moved;
10152 }
10153
10154 static inline unsigned long
get_sd_balance_interval(struct sched_domain * sd,int cpu_busy)10155 get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
10156 {
10157 unsigned long interval = sd->balance_interval;
10158
10159 if (cpu_busy)
10160 interval *= sd->busy_factor;
10161
10162 /* scale ms to jiffies */
10163 interval = msecs_to_jiffies(interval);
10164
10165 /*
10166 * Reduce likelihood of busy balancing at higher domains racing with
10167 * balancing at lower domains by preventing their balancing periods
10168 * from being multiples of each other.
10169 */
10170 if (cpu_busy)
10171 interval -= 1;
10172
10173 interval = clamp(interval, 1UL, max_load_balance_interval);
10174
10175 return interval;
10176 }
10177
10178 static inline void
update_next_balance(struct sched_domain * sd,unsigned long * next_balance)10179 update_next_balance(struct sched_domain *sd, unsigned long *next_balance)
10180 {
10181 unsigned long interval, next;
10182
10183 /* used by idle balance, so cpu_busy = 0 */
10184 interval = get_sd_balance_interval(sd, 0);
10185 next = sd->last_balance + interval;
10186
10187 if (time_after(*next_balance, next))
10188 *next_balance = next;
10189 }
10190
10191 /*
10192 * active_load_balance_cpu_stop is run by the CPU stopper. It pushes
10193 * running tasks off the busiest CPU onto idle CPUs. It requires at
10194 * least 1 task to be running on each physical CPU where possible, and
10195 * avoids physical / logical imbalances.
10196 */
active_load_balance_cpu_stop(void * data)10197 static int active_load_balance_cpu_stop(void *data)
10198 {
10199 struct rq *busiest_rq = data;
10200 int busiest_cpu = cpu_of(busiest_rq);
10201 int target_cpu = busiest_rq->push_cpu;
10202 struct rq *target_rq = cpu_rq(target_cpu);
10203 struct sched_domain *sd = NULL;
10204 struct task_struct *p = NULL;
10205 struct rq_flags rf;
10206 #ifdef CONFIG_SCHED_EAS
10207 struct task_struct *push_task;
10208 int push_task_detached = 0;
10209 #endif
10210
10211 rq_lock_irq(busiest_rq, &rf);
10212 /*
10213 * Between queueing the stop-work and running it is a hole in which
10214 * CPUs can become inactive. We should not move tasks from or to
10215 * inactive CPUs.
10216 */
10217 if (!cpu_active(busiest_cpu) || !cpu_active(target_cpu))
10218 goto out_unlock;
10219
10220 /* Make sure the requested CPU hasn't gone down in the meantime: */
10221 if (unlikely(busiest_cpu != smp_processor_id() ||
10222 !busiest_rq->active_balance))
10223 goto out_unlock;
10224
10225 /* Is there any task to move? */
10226 if (busiest_rq->nr_running <= 1)
10227 goto out_unlock;
10228
10229 /*
10230 * This condition is "impossible", if it occurs
10231 * we need to fix it. Originally reported by
10232 * Bjorn Helgaas on a 128-CPU setup.
10233 */
10234 BUG_ON(busiest_rq == target_rq);
10235
10236 #ifdef CONFIG_SCHED_EAS
10237 push_task = busiest_rq->push_task;
10238 target_cpu = busiest_rq->push_cpu;
10239 if (push_task) {
10240 struct lb_env env = {
10241 .sd = sd,
10242 .dst_cpu = target_cpu,
10243 .dst_rq = target_rq,
10244 .src_cpu = busiest_rq->cpu,
10245 .src_rq = busiest_rq,
10246 .idle = CPU_IDLE,
10247 .flags = 0,
10248 .loop = 0,
10249 };
10250 if (task_on_rq_queued(push_task) &&
10251 push_task->state == TASK_RUNNING &&
10252 task_cpu(push_task) == busiest_cpu &&
10253 cpu_online(target_cpu)) {
10254 update_rq_clock(busiest_rq);
10255 detach_task(push_task, &env);
10256 push_task_detached = 1;
10257 }
10258 goto out_unlock;
10259 }
10260 #endif
10261
10262 /* Search for an sd spanning us and the target CPU. */
10263 rcu_read_lock();
10264 for_each_domain(target_cpu, sd) {
10265 if (cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
10266 break;
10267 }
10268
10269 if (likely(sd)) {
10270 struct lb_env env = {
10271 .sd = sd,
10272 .dst_cpu = target_cpu,
10273 .dst_rq = target_rq,
10274 .src_cpu = busiest_rq->cpu,
10275 .src_rq = busiest_rq,
10276 .idle = CPU_IDLE,
10277 /*
10278 * can_migrate_task() doesn't need to compute new_dst_cpu
10279 * for active balancing. Since we have CPU_IDLE, but no
10280 * @dst_grpmask we need to make that test go away with lying
10281 * about DST_PINNED.
10282 */
10283 .flags = LBF_DST_PINNED,
10284 };
10285
10286 schedstat_inc(sd->alb_count);
10287 update_rq_clock(busiest_rq);
10288
10289 p = detach_one_task(&env);
10290 if (p) {
10291 schedstat_inc(sd->alb_pushed);
10292 /* Active balancing done, reset the failure counter. */
10293 sd->nr_balance_failed = 0;
10294 } else {
10295 schedstat_inc(sd->alb_failed);
10296 }
10297 }
10298 rcu_read_unlock();
10299 out_unlock:
10300 busiest_rq->active_balance = 0;
10301
10302 #ifdef CONFIG_SCHED_EAS
10303 push_task = busiest_rq->push_task;
10304 if (push_task)
10305 busiest_rq->push_task = NULL;
10306 #endif
10307 rq_unlock(busiest_rq, &rf);
10308
10309 #ifdef CONFIG_SCHED_EAS
10310 if (push_task) {
10311 if (push_task_detached)
10312 attach_one_task(target_rq, push_task);
10313
10314 put_task_struct(push_task);
10315 }
10316 #endif
10317
10318 if (p)
10319 attach_one_task(target_rq, p);
10320
10321 local_irq_enable();
10322
10323 return 0;
10324 }
10325
10326 static DEFINE_SPINLOCK(balancing);
10327
10328 /*
10329 * Scale the max load_balance interval with the number of CPUs in the system.
10330 * This trades load-balance latency on larger machines for less cross talk.
10331 */
update_max_interval(void)10332 void update_max_interval(void)
10333 {
10334 unsigned int available_cpus;
10335 #ifdef CONFIG_CPU_ISOLATION_OPT
10336 cpumask_t avail_mask;
10337
10338 cpumask_andnot(&avail_mask, cpu_online_mask, cpu_isolated_mask);
10339 available_cpus = cpumask_weight(&avail_mask);
10340 #else
10341 available_cpus = num_online_cpus();
10342 #endif
10343
10344 max_load_balance_interval = HZ*available_cpus/10;
10345 }
10346
10347 /*
10348 * It checks each scheduling domain to see if it is due to be balanced,
10349 * and initiates a balancing operation if so.
10350 *
10351 * Balancing parameters are set up in init_sched_domains.
10352 */
rebalance_domains(struct rq * rq,enum cpu_idle_type idle)10353 static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
10354 {
10355 int continue_balancing = 1;
10356 int cpu = rq->cpu;
10357 int busy = idle != CPU_IDLE && !sched_idle_cpu(cpu);
10358 unsigned long interval;
10359 struct sched_domain *sd;
10360 /* Earliest time when we have to do rebalance again */
10361 unsigned long next_balance = jiffies + 60*HZ;
10362 int update_next_balance = 0;
10363 int need_serialize, need_decay = 0;
10364 u64 max_cost = 0;
10365
10366 rcu_read_lock();
10367 for_each_domain(cpu, sd) {
10368 /*
10369 * Decay the newidle max times here because this is a regular
10370 * visit to all the domains. Decay ~1% per second.
10371 */
10372 if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
10373 sd->max_newidle_lb_cost =
10374 (sd->max_newidle_lb_cost * 253) / 256;
10375 sd->next_decay_max_lb_cost = jiffies + HZ;
10376 need_decay = 1;
10377 }
10378 max_cost += sd->max_newidle_lb_cost;
10379
10380 /*
10381 * Stop the load balance at this level. There is another
10382 * CPU in our sched group which is doing load balancing more
10383 * actively.
10384 */
10385 if (!continue_balancing) {
10386 if (need_decay)
10387 continue;
10388 break;
10389 }
10390
10391 interval = get_sd_balance_interval(sd, busy);
10392
10393 need_serialize = sd->flags & SD_SERIALIZE;
10394 if (need_serialize) {
10395 if (!spin_trylock(&balancing))
10396 goto out;
10397 }
10398
10399 if (time_after_eq(jiffies, sd->last_balance + interval)) {
10400 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
10401 /*
10402 * The LBF_DST_PINNED logic could have changed
10403 * env->dst_cpu, so we can't know our idle
10404 * state even if we migrated tasks. Update it.
10405 */
10406 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
10407 busy = idle != CPU_IDLE && !sched_idle_cpu(cpu);
10408 }
10409 sd->last_balance = jiffies;
10410 interval = get_sd_balance_interval(sd, busy);
10411 }
10412 if (need_serialize)
10413 spin_unlock(&balancing);
10414 out:
10415 if (time_after(next_balance, sd->last_balance + interval)) {
10416 next_balance = sd->last_balance + interval;
10417 update_next_balance = 1;
10418 }
10419 }
10420 if (need_decay) {
10421 /*
10422 * Ensure the rq-wide value also decays but keep it at a
10423 * reasonable floor to avoid funnies with rq->avg_idle.
10424 */
10425 rq->max_idle_balance_cost =
10426 max((u64)sysctl_sched_migration_cost, max_cost);
10427 }
10428 rcu_read_unlock();
10429
10430 /*
10431 * next_balance will be updated only when there is a need.
10432 * When the cpu is attached to null domain for ex, it will not be
10433 * updated.
10434 */
10435 if (likely(update_next_balance)) {
10436 rq->next_balance = next_balance;
10437
10438 #ifdef CONFIG_NO_HZ_COMMON
10439 /*
10440 * If this CPU has been elected to perform the nohz idle
10441 * balance. Other idle CPUs have already rebalanced with
10442 * nohz_idle_balance() and nohz.next_balance has been
10443 * updated accordingly. This CPU is now running the idle load
10444 * balance for itself and we need to update the
10445 * nohz.next_balance accordingly.
10446 */
10447 if ((idle == CPU_IDLE) && time_after(nohz.next_balance, rq->next_balance))
10448 nohz.next_balance = rq->next_balance;
10449 #endif
10450 }
10451 }
10452
on_null_domain(struct rq * rq)10453 static inline int on_null_domain(struct rq *rq)
10454 {
10455 return unlikely(!rcu_dereference_sched(rq->sd));
10456 }
10457
10458 #ifdef CONFIG_NO_HZ_COMMON
10459 /*
10460 * idle load balancing details
10461 * - When one of the busy CPUs notice that there may be an idle rebalancing
10462 * needed, they will kick the idle load balancer, which then does idle
10463 * load balancing for all the idle CPUs.
10464 * - HK_FLAG_MISC CPUs are used for this task, because HK_FLAG_SCHED not set
10465 * anywhere yet.
10466 */
10467
find_new_ilb(void)10468 static inline int find_new_ilb(void)
10469 {
10470 int ilb;
10471
10472 for_each_cpu_and(ilb, nohz.idle_cpus_mask,
10473 housekeeping_cpumask(HK_FLAG_MISC)) {
10474 if (cpu_isolated(ilb))
10475 continue;
10476
10477 if (idle_cpu(ilb))
10478 return ilb;
10479 }
10480
10481 return nr_cpu_ids;
10482 }
10483
10484 /*
10485 * Kick a CPU to do the nohz balancing, if it is time for it. We pick any
10486 * idle CPU in the HK_FLAG_MISC housekeeping set (if there is one).
10487 */
kick_ilb(unsigned int flags)10488 static void kick_ilb(unsigned int flags)
10489 {
10490 int ilb_cpu;
10491
10492 /*
10493 * Increase nohz.next_balance only when if full ilb is triggered but
10494 * not if we only update stats.
10495 */
10496 if (flags & NOHZ_BALANCE_KICK)
10497 nohz.next_balance = jiffies+1;
10498
10499 ilb_cpu = find_new_ilb();
10500
10501 if (ilb_cpu >= nr_cpu_ids)
10502 return;
10503
10504 /*
10505 * Access to rq::nohz_csd is serialized by NOHZ_KICK_MASK; he who sets
10506 * the first flag owns it; cleared by nohz_csd_func().
10507 */
10508 flags = atomic_fetch_or(flags, nohz_flags(ilb_cpu));
10509 if (flags & NOHZ_KICK_MASK)
10510 return;
10511
10512 /*
10513 * This way we generate an IPI on the target CPU which
10514 * is idle. And the softirq performing nohz idle load balance
10515 * will be run before returning from the IPI.
10516 */
10517 smp_call_function_single_async(ilb_cpu, &cpu_rq(ilb_cpu)->nohz_csd);
10518 }
10519
10520 /*
10521 * Current decision point for kicking the idle load balancer in the presence
10522 * of idle CPUs in the system.
10523 */
nohz_balancer_kick(struct rq * rq)10524 static void nohz_balancer_kick(struct rq *rq)
10525 {
10526 unsigned long now = jiffies;
10527 struct sched_domain_shared *sds;
10528 struct sched_domain *sd;
10529 int nr_busy, i, cpu = rq->cpu;
10530 unsigned int flags = 0;
10531 cpumask_t cpumask;
10532
10533 if (unlikely(rq->idle_balance))
10534 return;
10535
10536 /*
10537 * We may be recently in ticked or tickless idle mode. At the first
10538 * busy tick after returning from idle, we will update the busy stats.
10539 */
10540 nohz_balance_exit_idle(rq);
10541
10542 /*
10543 * None are in tickless mode and hence no need for NOHZ idle load
10544 * balancing.
10545 */
10546 #ifdef CONFIG_CPU_ISOLATION_OPT
10547 cpumask_andnot(&cpumask, nohz.idle_cpus_mask, cpu_isolated_mask);
10548 if (cpumask_empty(&cpumask))
10549 return;
10550 #else
10551 cpumask_copy(&cpumask, nohz.idle_cpus_mask);
10552 if (likely(!atomic_read(&nohz.nr_cpus)))
10553 return;
10554 #endif
10555
10556 if (READ_ONCE(nohz.has_blocked) &&
10557 time_after(now, READ_ONCE(nohz.next_blocked)))
10558 flags = NOHZ_STATS_KICK;
10559
10560 if (time_before(now, nohz.next_balance))
10561 goto out;
10562
10563 if (rq->nr_running >= 2) {
10564 flags = NOHZ_KICK_MASK;
10565 goto out;
10566 }
10567
10568 rcu_read_lock();
10569
10570 sd = rcu_dereference(rq->sd);
10571 if (sd) {
10572 /*
10573 * If there's a CFS task and the current CPU has reduced
10574 * capacity; kick the ILB to see if there's a better CPU to run
10575 * on.
10576 */
10577 if (rq->cfs.h_nr_running >= 1 && check_cpu_capacity(rq, sd)) {
10578 flags = NOHZ_KICK_MASK;
10579 goto unlock;
10580 }
10581 }
10582
10583 sd = rcu_dereference(per_cpu(sd_asym_packing, cpu));
10584 if (sd) {
10585 /*
10586 * When ASYM_PACKING; see if there's a more preferred CPU
10587 * currently idle; in which case, kick the ILB to move tasks
10588 * around.
10589 */
10590 for_each_cpu_and(i, sched_domain_span(sd), &cpumask) {
10591 if (sched_asym_prefer(i, cpu)) {
10592 flags = NOHZ_KICK_MASK;
10593 goto unlock;
10594 }
10595 }
10596 }
10597
10598 sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, cpu));
10599 if (sd) {
10600 /*
10601 * When ASYM_CPUCAPACITY; see if there's a higher capacity CPU
10602 * to run the misfit task on.
10603 */
10604 if (check_misfit_status(rq, sd)) {
10605 flags = NOHZ_KICK_MASK;
10606 goto unlock;
10607 }
10608
10609 /*
10610 * For asymmetric systems, we do not want to nicely balance
10611 * cache use, instead we want to embrace asymmetry and only
10612 * ensure tasks have enough CPU capacity.
10613 *
10614 * Skip the LLC logic because it's not relevant in that case.
10615 */
10616 goto unlock;
10617 }
10618
10619 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
10620 if (sds) {
10621 /*
10622 * If there is an imbalance between LLC domains (IOW we could
10623 * increase the overall cache use), we need some less-loaded LLC
10624 * domain to pull some load. Likewise, we may need to spread
10625 * load within the current LLC domain (e.g. packed SMT cores but
10626 * other CPUs are idle). We can't really know from here how busy
10627 * the others are - so just get a nohz balance going if it looks
10628 * like this LLC domain has tasks we could move.
10629 */
10630 nr_busy = atomic_read(&sds->nr_busy_cpus);
10631 if (nr_busy > 1) {
10632 flags = NOHZ_KICK_MASK;
10633 goto unlock;
10634 }
10635 }
10636 unlock:
10637 rcu_read_unlock();
10638 out:
10639 if (flags)
10640 kick_ilb(flags);
10641 }
10642
set_cpu_sd_state_busy(int cpu)10643 static void set_cpu_sd_state_busy(int cpu)
10644 {
10645 struct sched_domain *sd;
10646
10647 rcu_read_lock();
10648 sd = rcu_dereference(per_cpu(sd_llc, cpu));
10649
10650 if (!sd || !sd->nohz_idle)
10651 goto unlock;
10652 sd->nohz_idle = 0;
10653
10654 atomic_inc(&sd->shared->nr_busy_cpus);
10655 unlock:
10656 rcu_read_unlock();
10657 }
10658
nohz_balance_exit_idle(struct rq * rq)10659 void nohz_balance_exit_idle(struct rq *rq)
10660 {
10661 SCHED_WARN_ON(rq != this_rq());
10662
10663 if (likely(!rq->nohz_tick_stopped))
10664 return;
10665
10666 rq->nohz_tick_stopped = 0;
10667 cpumask_clear_cpu(rq->cpu, nohz.idle_cpus_mask);
10668 atomic_dec(&nohz.nr_cpus);
10669
10670 set_cpu_sd_state_busy(rq->cpu);
10671 }
10672
set_cpu_sd_state_idle(int cpu)10673 static void set_cpu_sd_state_idle(int cpu)
10674 {
10675 struct sched_domain *sd;
10676
10677 rcu_read_lock();
10678 sd = rcu_dereference(per_cpu(sd_llc, cpu));
10679
10680 if (!sd || sd->nohz_idle)
10681 goto unlock;
10682 sd->nohz_idle = 1;
10683
10684 atomic_dec(&sd->shared->nr_busy_cpus);
10685 unlock:
10686 rcu_read_unlock();
10687 }
10688
10689 /*
10690 * This routine will record that the CPU is going idle with tick stopped.
10691 * This info will be used in performing idle load balancing in the future.
10692 */
nohz_balance_enter_idle(int cpu)10693 void nohz_balance_enter_idle(int cpu)
10694 {
10695 struct rq *rq = cpu_rq(cpu);
10696
10697 SCHED_WARN_ON(cpu != smp_processor_id());
10698
10699 /* If this CPU is going down, then nothing needs to be done: */
10700 if (!cpu_active(cpu))
10701 return;
10702
10703 /* Spare idle load balancing on CPUs that don't want to be disturbed: */
10704 if (!housekeeping_cpu(cpu, HK_FLAG_SCHED))
10705 return;
10706
10707 /*
10708 * Can be set safely without rq->lock held
10709 * If a clear happens, it will have evaluated last additions because
10710 * rq->lock is held during the check and the clear
10711 */
10712 rq->has_blocked_load = 1;
10713
10714 /*
10715 * The tick is still stopped but load could have been added in the
10716 * meantime. We set the nohz.has_blocked flag to trig a check of the
10717 * *_avg. The CPU is already part of nohz.idle_cpus_mask so the clear
10718 * of nohz.has_blocked can only happen after checking the new load
10719 */
10720 if (rq->nohz_tick_stopped)
10721 goto out;
10722
10723 /* If we're a completely isolated CPU, we don't play: */
10724 if (on_null_domain(rq))
10725 return;
10726
10727 rq->nohz_tick_stopped = 1;
10728
10729 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
10730 atomic_inc(&nohz.nr_cpus);
10731
10732 /*
10733 * Ensures that if nohz_idle_balance() fails to observe our
10734 * @idle_cpus_mask store, it must observe the @has_blocked
10735 * store.
10736 */
10737 smp_mb__after_atomic();
10738
10739 set_cpu_sd_state_idle(cpu);
10740
10741 out:
10742 /*
10743 * Each time a cpu enter idle, we assume that it has blocked load and
10744 * enable the periodic update of the load of idle cpus
10745 */
10746 WRITE_ONCE(nohz.has_blocked, 1);
10747 }
10748
10749 /*
10750 * Internal function that runs load balance for all idle cpus. The load balance
10751 * can be a simple update of blocked load or a complete load balance with
10752 * tasks movement depending of flags.
10753 * The function returns false if the loop has stopped before running
10754 * through all idle CPUs.
10755 */
_nohz_idle_balance(struct rq * this_rq,unsigned int flags,enum cpu_idle_type idle)10756 static bool _nohz_idle_balance(struct rq *this_rq, unsigned int flags,
10757 enum cpu_idle_type idle)
10758 {
10759 /* Earliest time when we have to do rebalance again */
10760 unsigned long now = jiffies;
10761 unsigned long next_balance = now + 60*HZ;
10762 bool has_blocked_load = false;
10763 int update_next_balance = 0;
10764 int this_cpu = this_rq->cpu;
10765 int balance_cpu;
10766 int ret = false;
10767 struct rq *rq;
10768 cpumask_t cpus;
10769
10770 SCHED_WARN_ON((flags & NOHZ_KICK_MASK) == NOHZ_BALANCE_KICK);
10771
10772 /*
10773 * We assume there will be no idle load after this update and clear
10774 * the has_blocked flag. If a cpu enters idle in the mean time, it will
10775 * set the has_blocked flag and trig another update of idle load.
10776 * Because a cpu that becomes idle, is added to idle_cpus_mask before
10777 * setting the flag, we are sure to not clear the state and not
10778 * check the load of an idle cpu.
10779 */
10780 WRITE_ONCE(nohz.has_blocked, 0);
10781
10782 /*
10783 * Ensures that if we miss the CPU, we must see the has_blocked
10784 * store from nohz_balance_enter_idle().
10785 */
10786 smp_mb();
10787
10788 #ifdef CONFIG_CPU_ISOLATION_OPT
10789 cpumask_andnot(&cpus, nohz.idle_cpus_mask, cpu_isolated_mask);
10790 #else
10791 cpumask_copy(&cpus, nohz.idle_cpus_mask);
10792 #endif
10793
10794 for_each_cpu(balance_cpu, &cpus) {
10795 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
10796 continue;
10797
10798 /*
10799 * If this CPU gets work to do, stop the load balancing
10800 * work being done for other CPUs. Next load
10801 * balancing owner will pick it up.
10802 */
10803 if (need_resched()) {
10804 has_blocked_load = true;
10805 goto abort;
10806 }
10807
10808 rq = cpu_rq(balance_cpu);
10809
10810 has_blocked_load |= update_nohz_stats(rq, true);
10811
10812 /*
10813 * If time for next balance is due,
10814 * do the balance.
10815 */
10816 if (time_after_eq(jiffies, rq->next_balance)) {
10817 struct rq_flags rf;
10818
10819 rq_lock_irqsave(rq, &rf);
10820 update_rq_clock(rq);
10821 rq_unlock_irqrestore(rq, &rf);
10822
10823 if (flags & NOHZ_BALANCE_KICK)
10824 rebalance_domains(rq, CPU_IDLE);
10825 }
10826
10827 if (time_after(next_balance, rq->next_balance)) {
10828 next_balance = rq->next_balance;
10829 update_next_balance = 1;
10830 }
10831 }
10832
10833 /*
10834 * next_balance will be updated only when there is a need.
10835 * When the CPU is attached to null domain for ex, it will not be
10836 * updated.
10837 */
10838 if (likely(update_next_balance))
10839 nohz.next_balance = next_balance;
10840
10841 /* Newly idle CPU doesn't need an update */
10842 if (idle != CPU_NEWLY_IDLE) {
10843 update_blocked_averages(this_cpu);
10844 has_blocked_load |= this_rq->has_blocked_load;
10845 }
10846
10847 if (flags & NOHZ_BALANCE_KICK)
10848 rebalance_domains(this_rq, CPU_IDLE);
10849
10850 WRITE_ONCE(nohz.next_blocked,
10851 now + msecs_to_jiffies(LOAD_AVG_PERIOD));
10852
10853 /* The full idle balance loop has been done */
10854 ret = true;
10855
10856 abort:
10857 /* There is still blocked load, enable periodic update */
10858 if (has_blocked_load)
10859 WRITE_ONCE(nohz.has_blocked, 1);
10860
10861 return ret;
10862 }
10863
10864 /*
10865 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
10866 * rebalancing for all the cpus for whom scheduler ticks are stopped.
10867 */
nohz_idle_balance(struct rq * this_rq,enum cpu_idle_type idle)10868 static bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
10869 {
10870 unsigned int flags = this_rq->nohz_idle_balance;
10871
10872 if (!flags)
10873 return false;
10874
10875 this_rq->nohz_idle_balance = 0;
10876
10877 if (idle != CPU_IDLE)
10878 return false;
10879
10880 _nohz_idle_balance(this_rq, flags, idle);
10881
10882 return true;
10883 }
10884
nohz_newidle_balance(struct rq * this_rq)10885 static void nohz_newidle_balance(struct rq *this_rq)
10886 {
10887 int this_cpu = this_rq->cpu;
10888
10889 /*
10890 * This CPU doesn't want to be disturbed by scheduler
10891 * housekeeping
10892 */
10893 if (!housekeeping_cpu(this_cpu, HK_FLAG_SCHED))
10894 return;
10895
10896 /* Will wake up very soon. No time for doing anything else*/
10897 if (this_rq->avg_idle < sysctl_sched_migration_cost)
10898 return;
10899
10900 /* Don't need to update blocked load of idle CPUs*/
10901 if (!READ_ONCE(nohz.has_blocked) ||
10902 time_before(jiffies, READ_ONCE(nohz.next_blocked)))
10903 return;
10904
10905 raw_spin_unlock(&this_rq->lock);
10906 /*
10907 * This CPU is going to be idle and blocked load of idle CPUs
10908 * need to be updated. Run the ilb locally as it is a good
10909 * candidate for ilb instead of waking up another idle CPU.
10910 * Kick an normal ilb if we failed to do the update.
10911 */
10912 if (!_nohz_idle_balance(this_rq, NOHZ_STATS_KICK, CPU_NEWLY_IDLE))
10913 kick_ilb(NOHZ_STATS_KICK);
10914 raw_spin_lock(&this_rq->lock);
10915 }
10916
10917 #else /* !CONFIG_NO_HZ_COMMON */
nohz_balancer_kick(struct rq * rq)10918 static inline void nohz_balancer_kick(struct rq *rq) { }
10919
nohz_idle_balance(struct rq * this_rq,enum cpu_idle_type idle)10920 static inline bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
10921 {
10922 return false;
10923 }
10924
nohz_newidle_balance(struct rq * this_rq)10925 static inline void nohz_newidle_balance(struct rq *this_rq) { }
10926 #endif /* CONFIG_NO_HZ_COMMON */
10927
10928 /*
10929 * idle_balance is called by schedule() if this_cpu is about to become
10930 * idle. Attempts to pull tasks from other CPUs.
10931 *
10932 * Returns:
10933 * < 0 - we released the lock and there are !fair tasks present
10934 * 0 - failed, no new tasks
10935 * > 0 - success, new (fair) tasks present
10936 */
newidle_balance(struct rq * this_rq,struct rq_flags * rf)10937 static int newidle_balance(struct rq *this_rq, struct rq_flags *rf)
10938 {
10939 unsigned long next_balance = jiffies + HZ;
10940 int this_cpu = this_rq->cpu;
10941 struct sched_domain *sd;
10942 int pulled_task = 0;
10943 u64 curr_cost = 0;
10944
10945 if (cpu_isolated(this_cpu))
10946 return 0;
10947
10948 update_misfit_status(NULL, this_rq);
10949 /*
10950 * We must set idle_stamp _before_ calling idle_balance(), such that we
10951 * measure the duration of idle_balance() as idle time.
10952 */
10953 this_rq->idle_stamp = rq_clock(this_rq);
10954
10955 /*
10956 * Do not pull tasks towards !active CPUs...
10957 */
10958 if (!cpu_active(this_cpu))
10959 return 0;
10960
10961 /*
10962 * This is OK, because current is on_cpu, which avoids it being picked
10963 * for load-balance and preemption/IRQs are still disabled avoiding
10964 * further scheduler activity on it and we're being very careful to
10965 * re-start the picking loop.
10966 */
10967 rq_unpin_lock(this_rq, rf);
10968
10969 if (this_rq->avg_idle < sysctl_sched_migration_cost ||
10970 !READ_ONCE(this_rq->rd->overload)) {
10971
10972 rcu_read_lock();
10973 sd = rcu_dereference_check_sched_domain(this_rq->sd);
10974 if (sd)
10975 update_next_balance(sd, &next_balance);
10976 rcu_read_unlock();
10977
10978 nohz_newidle_balance(this_rq);
10979
10980 goto out;
10981 }
10982
10983 raw_spin_unlock(&this_rq->lock);
10984
10985 update_blocked_averages(this_cpu);
10986 rcu_read_lock();
10987 for_each_domain(this_cpu, sd) {
10988 int continue_balancing = 1;
10989 u64 t0, domain_cost;
10990
10991 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
10992 update_next_balance(sd, &next_balance);
10993 break;
10994 }
10995
10996 if (sd->flags & SD_BALANCE_NEWIDLE) {
10997 t0 = sched_clock_cpu(this_cpu);
10998
10999 pulled_task = load_balance(this_cpu, this_rq,
11000 sd, CPU_NEWLY_IDLE,
11001 &continue_balancing);
11002
11003 domain_cost = sched_clock_cpu(this_cpu) - t0;
11004 if (domain_cost > sd->max_newidle_lb_cost)
11005 sd->max_newidle_lb_cost = domain_cost;
11006
11007 curr_cost += domain_cost;
11008 }
11009
11010 update_next_balance(sd, &next_balance);
11011
11012 /*
11013 * Stop searching for tasks to pull if there are
11014 * now runnable tasks on this rq.
11015 */
11016 if (pulled_task || this_rq->nr_running > 0)
11017 break;
11018 }
11019 rcu_read_unlock();
11020
11021 raw_spin_lock(&this_rq->lock);
11022
11023 if (curr_cost > this_rq->max_idle_balance_cost)
11024 this_rq->max_idle_balance_cost = curr_cost;
11025
11026 out:
11027 /*
11028 * While browsing the domains, we released the rq lock, a task could
11029 * have been enqueued in the meantime. Since we're not going idle,
11030 * pretend we pulled a task.
11031 */
11032 if (this_rq->cfs.h_nr_running && !pulled_task)
11033 pulled_task = 1;
11034
11035 /* Move the next balance forward */
11036 if (time_after(this_rq->next_balance, next_balance))
11037 this_rq->next_balance = next_balance;
11038
11039 /* Is there a task of a high priority class? */
11040 if (this_rq->nr_running != this_rq->cfs.h_nr_running)
11041 pulled_task = -1;
11042
11043 if (pulled_task)
11044 this_rq->idle_stamp = 0;
11045
11046 rq_repin_lock(this_rq, rf);
11047
11048 return pulled_task;
11049 }
11050
11051 /*
11052 * run_rebalance_domains is triggered when needed from the scheduler tick.
11053 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
11054 */
run_rebalance_domains(struct softirq_action * h)11055 static __latent_entropy void run_rebalance_domains(struct softirq_action *h)
11056 {
11057 struct rq *this_rq = this_rq();
11058 enum cpu_idle_type idle = this_rq->idle_balance ?
11059 CPU_IDLE : CPU_NOT_IDLE;
11060
11061 /*
11062 * Since core isolation doesn't update nohz.idle_cpus_mask, there
11063 * is a possibility this nohz kicked cpu could be isolated. Hence
11064 * return if the cpu is isolated.
11065 */
11066 if (cpu_isolated(this_rq->cpu))
11067 return;
11068
11069 /*
11070 * If this CPU has a pending nohz_balance_kick, then do the
11071 * balancing on behalf of the other idle CPUs whose ticks are
11072 * stopped. Do nohz_idle_balance *before* rebalance_domains to
11073 * give the idle CPUs a chance to load balance. Else we may
11074 * load balance only within the local sched_domain hierarchy
11075 * and abort nohz_idle_balance altogether if we pull some load.
11076 */
11077 if (nohz_idle_balance(this_rq, idle))
11078 return;
11079
11080 /* normal load balance */
11081 update_blocked_averages(this_rq->cpu);
11082 rebalance_domains(this_rq, idle);
11083 }
11084
11085 /*
11086 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
11087 */
trigger_load_balance(struct rq * rq)11088 void trigger_load_balance(struct rq *rq)
11089 {
11090 /* Don't need to rebalance while attached to NULL domain or
11091 * cpu is isolated.
11092 */
11093 if (unlikely(on_null_domain(rq)) || cpu_isolated(cpu_of(rq)))
11094 return;
11095
11096 if (time_after_eq(jiffies, rq->next_balance))
11097 raise_softirq(SCHED_SOFTIRQ);
11098
11099 nohz_balancer_kick(rq);
11100 }
11101
rq_online_fair(struct rq * rq)11102 static void rq_online_fair(struct rq *rq)
11103 {
11104 update_sysctl();
11105
11106 update_runtime_enabled(rq);
11107 }
11108
rq_offline_fair(struct rq * rq)11109 static void rq_offline_fair(struct rq *rq)
11110 {
11111 update_sysctl();
11112
11113 /* Ensure any throttled groups are reachable by pick_next_task */
11114 unthrottle_offline_cfs_rqs(rq);
11115 }
11116
11117 #ifdef CONFIG_SCHED_EAS
11118 static inline int
kick_active_balance(struct rq * rq,struct task_struct * p,int new_cpu)11119 kick_active_balance(struct rq *rq, struct task_struct *p, int new_cpu)
11120 {
11121 unsigned long flags;
11122 int rc = 0;
11123
11124 if (cpu_of(rq) == new_cpu)
11125 return rc;
11126
11127 /* Invoke active balance to force migrate currently running task */
11128 raw_spin_lock_irqsave(&rq->lock, flags);
11129 if (!rq->active_balance) {
11130 rq->active_balance = 1;
11131 rq->push_cpu = new_cpu;
11132 get_task_struct(p);
11133 rq->push_task = p;
11134 rc = 1;
11135 }
11136 raw_spin_unlock_irqrestore(&rq->lock, flags);
11137 return rc;
11138 }
11139
11140 DEFINE_RAW_SPINLOCK(migration_lock);
check_for_migration_fair(struct rq * rq,struct task_struct * p)11141 static void check_for_migration_fair(struct rq *rq, struct task_struct *p)
11142 {
11143 int active_balance;
11144 int new_cpu = -1;
11145 int prev_cpu = task_cpu(p);
11146 int ret;
11147
11148 #ifdef CONFIG_SCHED_RTG
11149 bool need_down_migrate = false;
11150 struct cpumask *rtg_target = find_rtg_target(p);
11151
11152 if (rtg_target &&
11153 (capacity_orig_of(prev_cpu) >
11154 capacity_orig_of(cpumask_first(rtg_target))))
11155 need_down_migrate = true;
11156 #endif
11157
11158 if (rq->misfit_task_load) {
11159 if (rq->curr->state != TASK_RUNNING ||
11160 rq->curr->nr_cpus_allowed == 1)
11161 return;
11162
11163 raw_spin_lock(&migration_lock);
11164 #ifdef CONFIG_SCHED_RTG
11165 if (rtg_target) {
11166 new_cpu = find_rtg_cpu(p);
11167
11168 if (new_cpu != -1 && need_down_migrate &&
11169 cpumask_test_cpu(new_cpu, rtg_target) &&
11170 idle_cpu(new_cpu))
11171 goto do_active_balance;
11172
11173 if (new_cpu != -1 &&
11174 capacity_orig_of(new_cpu) > capacity_orig_of(prev_cpu))
11175 goto do_active_balance;
11176
11177 goto out_unlock;
11178 }
11179 #endif
11180 rcu_read_lock();
11181 new_cpu = find_energy_efficient_cpu(p, prev_cpu);
11182 rcu_read_unlock();
11183
11184 if (new_cpu == -1 ||
11185 capacity_orig_of(new_cpu) <= capacity_orig_of(prev_cpu))
11186 goto out_unlock;
11187 #ifdef CONFIG_SCHED_RTG
11188 do_active_balance:
11189 #endif
11190 active_balance = kick_active_balance(rq, p, new_cpu);
11191 if (active_balance) {
11192 mark_reserved(new_cpu);
11193 raw_spin_unlock(&migration_lock);
11194 ret = stop_one_cpu_nowait(prev_cpu,
11195 active_load_balance_cpu_stop, rq,
11196 &rq->active_balance_work);
11197 if (!ret)
11198 clear_reserved(new_cpu);
11199 else
11200 wake_up_if_idle(new_cpu);
11201 return;
11202 }
11203 out_unlock:
11204 raw_spin_unlock(&migration_lock);
11205 }
11206 }
11207 #endif /* CONFIG_SCHED_EAS */
11208 #endif /* CONFIG_SMP */
11209
11210 /*
11211 * scheduler tick hitting a task of our scheduling class.
11212 *
11213 * NOTE: This function can be called remotely by the tick offload that
11214 * goes along full dynticks. Therefore no local assumption can be made
11215 * and everything must be accessed through the @rq and @curr passed in
11216 * parameters.
11217 */
task_tick_fair(struct rq * rq,struct task_struct * curr,int queued)11218 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
11219 {
11220 struct cfs_rq *cfs_rq;
11221 struct sched_entity *se = &curr->se;
11222
11223 for_each_sched_entity(se) {
11224 cfs_rq = cfs_rq_of(se);
11225 entity_tick(cfs_rq, se, queued);
11226 }
11227
11228 if (static_branch_unlikely(&sched_numa_balancing))
11229 task_tick_numa(rq, curr);
11230
11231 update_misfit_status(curr, rq);
11232 update_overutilized_status(task_rq(curr));
11233 }
11234
11235 /*
11236 * called on fork with the child task as argument from the parent's context
11237 * - child not yet on the tasklist
11238 * - preemption disabled
11239 */
task_fork_fair(struct task_struct * p)11240 static void task_fork_fair(struct task_struct *p)
11241 {
11242 struct cfs_rq *cfs_rq;
11243 struct sched_entity *se = &p->se, *curr;
11244 struct rq *rq = this_rq();
11245 struct rq_flags rf;
11246
11247 rq_lock(rq, &rf);
11248 update_rq_clock(rq);
11249
11250 cfs_rq = task_cfs_rq(current);
11251 curr = cfs_rq->curr;
11252 if (curr) {
11253 update_curr(cfs_rq);
11254 se->vruntime = curr->vruntime;
11255 }
11256 place_entity(cfs_rq, se, 1);
11257
11258 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
11259 /*
11260 * Upon rescheduling, sched_class::put_prev_task() will place
11261 * 'current' within the tree based on its new key value.
11262 */
11263 swap(curr->vruntime, se->vruntime);
11264 resched_curr(rq);
11265 }
11266
11267 se->vruntime -= cfs_rq->min_vruntime;
11268 rq_unlock(rq, &rf);
11269 }
11270
11271 /*
11272 * Priority of the task has changed. Check to see if we preempt
11273 * the current task.
11274 */
11275 static void
prio_changed_fair(struct rq * rq,struct task_struct * p,int oldprio)11276 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
11277 {
11278 if (!task_on_rq_queued(p))
11279 return;
11280
11281 if (rq->cfs.nr_running == 1)
11282 return;
11283
11284 /*
11285 * Reschedule if we are currently running on this runqueue and
11286 * our priority decreased, or if we are not currently running on
11287 * this runqueue and our priority is higher than the current's
11288 */
11289 if (rq->curr == p) {
11290 if (p->prio > oldprio)
11291 resched_curr(rq);
11292 } else
11293 check_preempt_curr(rq, p, 0);
11294 }
11295
vruntime_normalized(struct task_struct * p)11296 static inline bool vruntime_normalized(struct task_struct *p)
11297 {
11298 struct sched_entity *se = &p->se;
11299
11300 /*
11301 * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases,
11302 * the dequeue_entity(.flags=0) will already have normalized the
11303 * vruntime.
11304 */
11305 if (p->on_rq)
11306 return true;
11307
11308 /*
11309 * When !on_rq, vruntime of the task has usually NOT been normalized.
11310 * But there are some cases where it has already been normalized:
11311 *
11312 * - A forked child which is waiting for being woken up by
11313 * wake_up_new_task().
11314 * - A task which has been woken up by try_to_wake_up() and
11315 * waiting for actually being woken up by sched_ttwu_pending().
11316 */
11317 if (!se->sum_exec_runtime ||
11318 (p->state == TASK_WAKING && p->sched_remote_wakeup))
11319 return true;
11320
11321 return false;
11322 }
11323
11324 #ifdef CONFIG_FAIR_GROUP_SCHED
11325 /*
11326 * Propagate the changes of the sched_entity across the tg tree to make it
11327 * visible to the root
11328 */
propagate_entity_cfs_rq(struct sched_entity * se)11329 static void propagate_entity_cfs_rq(struct sched_entity *se)
11330 {
11331 struct cfs_rq *cfs_rq;
11332
11333 list_add_leaf_cfs_rq(cfs_rq_of(se));
11334
11335 /* Start to propagate at parent */
11336 se = se->parent;
11337
11338 for_each_sched_entity(se) {
11339 cfs_rq = cfs_rq_of(se);
11340
11341 if (!cfs_rq_throttled(cfs_rq)){
11342 update_load_avg(cfs_rq, se, UPDATE_TG);
11343 list_add_leaf_cfs_rq(cfs_rq);
11344 continue;
11345 }
11346
11347 if (list_add_leaf_cfs_rq(cfs_rq))
11348 break;
11349 }
11350 }
11351 #else
propagate_entity_cfs_rq(struct sched_entity * se)11352 static void propagate_entity_cfs_rq(struct sched_entity *se) { }
11353 #endif
11354
detach_entity_cfs_rq(struct sched_entity * se)11355 static void detach_entity_cfs_rq(struct sched_entity *se)
11356 {
11357 struct cfs_rq *cfs_rq = cfs_rq_of(se);
11358
11359 /* Catch up with the cfs_rq and remove our load when we leave */
11360 update_load_avg(cfs_rq, se, 0);
11361 detach_entity_load_avg(cfs_rq, se);
11362 update_tg_load_avg(cfs_rq);
11363 propagate_entity_cfs_rq(se);
11364 }
11365
attach_entity_cfs_rq(struct sched_entity * se)11366 static void attach_entity_cfs_rq(struct sched_entity *se)
11367 {
11368 struct cfs_rq *cfs_rq = cfs_rq_of(se);
11369
11370 #ifdef CONFIG_FAIR_GROUP_SCHED
11371 /*
11372 * Since the real-depth could have been changed (only FAIR
11373 * class maintain depth value), reset depth properly.
11374 */
11375 se->depth = se->parent ? se->parent->depth + 1 : 0;
11376 #endif
11377
11378 /* Synchronize entity with its cfs_rq */
11379 update_load_avg(cfs_rq, se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD);
11380 attach_entity_load_avg(cfs_rq, se);
11381 update_tg_load_avg(cfs_rq);
11382 propagate_entity_cfs_rq(se);
11383 }
11384
detach_task_cfs_rq(struct task_struct * p)11385 static void detach_task_cfs_rq(struct task_struct *p)
11386 {
11387 struct sched_entity *se = &p->se;
11388 struct cfs_rq *cfs_rq = cfs_rq_of(se);
11389
11390 if (!vruntime_normalized(p)) {
11391 /*
11392 * Fix up our vruntime so that the current sleep doesn't
11393 * cause 'unlimited' sleep bonus.
11394 */
11395 place_entity(cfs_rq, se, 0);
11396 se->vruntime -= cfs_rq->min_vruntime;
11397 }
11398
11399 detach_entity_cfs_rq(se);
11400 }
11401
attach_task_cfs_rq(struct task_struct * p)11402 static void attach_task_cfs_rq(struct task_struct *p)
11403 {
11404 struct sched_entity *se = &p->se;
11405 struct cfs_rq *cfs_rq = cfs_rq_of(se);
11406
11407 attach_entity_cfs_rq(se);
11408
11409 if (!vruntime_normalized(p))
11410 se->vruntime += cfs_rq->min_vruntime;
11411 }
11412
switched_from_fair(struct rq * rq,struct task_struct * p)11413 static void switched_from_fair(struct rq *rq, struct task_struct *p)
11414 {
11415 detach_task_cfs_rq(p);
11416 }
11417
switched_to_fair(struct rq * rq,struct task_struct * p)11418 static void switched_to_fair(struct rq *rq, struct task_struct *p)
11419 {
11420 attach_task_cfs_rq(p);
11421
11422 if (task_on_rq_queued(p)) {
11423 /*
11424 * We were most likely switched from sched_rt, so
11425 * kick off the schedule if running, otherwise just see
11426 * if we can still preempt the current task.
11427 */
11428 if (rq->curr == p)
11429 resched_curr(rq);
11430 else
11431 check_preempt_curr(rq, p, 0);
11432 }
11433 }
11434
11435 /* Account for a task changing its policy or group.
11436 *
11437 * This routine is mostly called to set cfs_rq->curr field when a task
11438 * migrates between groups/classes.
11439 */
set_next_task_fair(struct rq * rq,struct task_struct * p,bool first)11440 static void set_next_task_fair(struct rq *rq, struct task_struct *p, bool first)
11441 {
11442 struct sched_entity *se = &p->se;
11443
11444 #ifdef CONFIG_SMP
11445 if (task_on_rq_queued(p)) {
11446 /*
11447 * Move the next running task to the front of the list, so our
11448 * cfs_tasks list becomes MRU one.
11449 */
11450 list_move(&se->group_node, &rq->cfs_tasks);
11451 }
11452 #endif
11453
11454 for_each_sched_entity(se) {
11455 struct cfs_rq *cfs_rq = cfs_rq_of(se);
11456
11457 set_next_entity(cfs_rq, se);
11458 /* ensure bandwidth has been allocated on our new cfs_rq */
11459 account_cfs_rq_runtime(cfs_rq, 0);
11460 }
11461 }
11462
init_cfs_rq(struct cfs_rq * cfs_rq)11463 void init_cfs_rq(struct cfs_rq *cfs_rq)
11464 {
11465 cfs_rq->tasks_timeline = RB_ROOT_CACHED;
11466 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
11467 #ifndef CONFIG_64BIT
11468 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
11469 #endif
11470 #ifdef CONFIG_SMP
11471 raw_spin_lock_init(&cfs_rq->removed.lock);
11472 #endif
11473 }
11474
11475 #ifdef CONFIG_FAIR_GROUP_SCHED
task_set_group_fair(struct task_struct * p)11476 static void task_set_group_fair(struct task_struct *p)
11477 {
11478 struct sched_entity *se = &p->se;
11479
11480 set_task_rq(p, task_cpu(p));
11481 se->depth = se->parent ? se->parent->depth + 1 : 0;
11482 }
11483
task_move_group_fair(struct task_struct * p)11484 static void task_move_group_fair(struct task_struct *p)
11485 {
11486 detach_task_cfs_rq(p);
11487 set_task_rq(p, task_cpu(p));
11488
11489 #ifdef CONFIG_SMP
11490 /* Tell se's cfs_rq has been changed -- migrated */
11491 p->se.avg.last_update_time = 0;
11492 #endif
11493 attach_task_cfs_rq(p);
11494 }
11495
task_change_group_fair(struct task_struct * p,int type)11496 static void task_change_group_fair(struct task_struct *p, int type)
11497 {
11498 switch (type) {
11499 case TASK_SET_GROUP:
11500 task_set_group_fair(p);
11501 break;
11502
11503 case TASK_MOVE_GROUP:
11504 task_move_group_fair(p);
11505 break;
11506 }
11507 }
11508
free_fair_sched_group(struct task_group * tg)11509 void free_fair_sched_group(struct task_group *tg)
11510 {
11511 int i;
11512
11513 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
11514
11515 for_each_possible_cpu(i) {
11516 if (tg->cfs_rq)
11517 kfree(tg->cfs_rq[i]);
11518 if (tg->se)
11519 kfree(tg->se[i]);
11520 }
11521
11522 kfree(tg->cfs_rq);
11523 kfree(tg->se);
11524 }
11525
alloc_fair_sched_group(struct task_group * tg,struct task_group * parent)11526 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
11527 {
11528 struct sched_entity *se;
11529 struct cfs_rq *cfs_rq;
11530 int i;
11531
11532 tg->cfs_rq = kcalloc(nr_cpu_ids, sizeof(cfs_rq), GFP_KERNEL);
11533 if (!tg->cfs_rq)
11534 goto err;
11535 tg->se = kcalloc(nr_cpu_ids, sizeof(se), GFP_KERNEL);
11536 if (!tg->se)
11537 goto err;
11538
11539 tg->shares = NICE_0_LOAD;
11540
11541 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
11542
11543 for_each_possible_cpu(i) {
11544 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
11545 GFP_KERNEL, cpu_to_node(i));
11546 if (!cfs_rq)
11547 goto err;
11548
11549 se = kzalloc_node(sizeof(struct sched_entity),
11550 GFP_KERNEL, cpu_to_node(i));
11551 if (!se)
11552 goto err_free_rq;
11553
11554 init_cfs_rq(cfs_rq);
11555 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
11556 init_entity_runnable_average(se);
11557 }
11558
11559 return 1;
11560
11561 err_free_rq:
11562 kfree(cfs_rq);
11563 err:
11564 return 0;
11565 }
11566
online_fair_sched_group(struct task_group * tg)11567 void online_fair_sched_group(struct task_group *tg)
11568 {
11569 struct sched_entity *se;
11570 struct rq_flags rf;
11571 struct rq *rq;
11572 int i;
11573
11574 for_each_possible_cpu(i) {
11575 rq = cpu_rq(i);
11576 se = tg->se[i];
11577 rq_lock_irq(rq, &rf);
11578 update_rq_clock(rq);
11579 attach_entity_cfs_rq(se);
11580 sync_throttle(tg, i);
11581 rq_unlock_irq(rq, &rf);
11582 }
11583 }
11584
unregister_fair_sched_group(struct task_group * tg)11585 void unregister_fair_sched_group(struct task_group *tg)
11586 {
11587 unsigned long flags;
11588 struct rq *rq;
11589 int cpu;
11590
11591 for_each_possible_cpu(cpu) {
11592 if (tg->se[cpu])
11593 remove_entity_load_avg(tg->se[cpu]);
11594
11595 /*
11596 * Only empty task groups can be destroyed; so we can speculatively
11597 * check on_list without danger of it being re-added.
11598 */
11599 if (!tg->cfs_rq[cpu]->on_list)
11600 continue;
11601
11602 rq = cpu_rq(cpu);
11603
11604 raw_spin_lock_irqsave(&rq->lock, flags);
11605 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
11606 raw_spin_unlock_irqrestore(&rq->lock, flags);
11607 }
11608 }
11609
init_tg_cfs_entry(struct task_group * tg,struct cfs_rq * cfs_rq,struct sched_entity * se,int cpu,struct sched_entity * parent)11610 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
11611 struct sched_entity *se, int cpu,
11612 struct sched_entity *parent)
11613 {
11614 struct rq *rq = cpu_rq(cpu);
11615
11616 cfs_rq->tg = tg;
11617 cfs_rq->rq = rq;
11618 init_cfs_rq_runtime(cfs_rq);
11619
11620 tg->cfs_rq[cpu] = cfs_rq;
11621 tg->se[cpu] = se;
11622
11623 /* se could be NULL for root_task_group */
11624 if (!se)
11625 return;
11626
11627 if (!parent) {
11628 se->cfs_rq = &rq->cfs;
11629 se->depth = 0;
11630 } else {
11631 se->cfs_rq = parent->my_q;
11632 se->depth = parent->depth + 1;
11633 }
11634
11635 se->my_q = cfs_rq;
11636 /* guarantee group entities always have weight */
11637 update_load_set(&se->load, NICE_0_LOAD);
11638 se->parent = parent;
11639 }
11640
11641 static DEFINE_MUTEX(shares_mutex);
11642
sched_group_set_shares(struct task_group * tg,unsigned long shares)11643 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
11644 {
11645 int i;
11646
11647 /*
11648 * We can't change the weight of the root cgroup.
11649 */
11650 if (!tg->se[0])
11651 return -EINVAL;
11652
11653 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
11654
11655 mutex_lock(&shares_mutex);
11656 if (tg->shares == shares)
11657 goto done;
11658
11659 tg->shares = shares;
11660 for_each_possible_cpu(i) {
11661 struct rq *rq = cpu_rq(i);
11662 struct sched_entity *se = tg->se[i];
11663 struct rq_flags rf;
11664
11665 /* Propagate contribution to hierarchy */
11666 rq_lock_irqsave(rq, &rf);
11667 update_rq_clock(rq);
11668 for_each_sched_entity(se) {
11669 update_load_avg(cfs_rq_of(se), se, UPDATE_TG);
11670 update_cfs_group(se);
11671 }
11672 rq_unlock_irqrestore(rq, &rf);
11673 }
11674
11675 done:
11676 mutex_unlock(&shares_mutex);
11677 return 0;
11678 }
11679 #else /* CONFIG_FAIR_GROUP_SCHED */
11680
free_fair_sched_group(struct task_group * tg)11681 void free_fair_sched_group(struct task_group *tg) { }
11682
alloc_fair_sched_group(struct task_group * tg,struct task_group * parent)11683 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
11684 {
11685 return 1;
11686 }
11687
online_fair_sched_group(struct task_group * tg)11688 void online_fair_sched_group(struct task_group *tg) { }
11689
unregister_fair_sched_group(struct task_group * tg)11690 void unregister_fair_sched_group(struct task_group *tg) { }
11691
11692 #endif /* CONFIG_FAIR_GROUP_SCHED */
11693
11694
get_rr_interval_fair(struct rq * rq,struct task_struct * task)11695 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
11696 {
11697 struct sched_entity *se = &task->se;
11698 unsigned int rr_interval = 0;
11699
11700 /*
11701 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
11702 * idle runqueue:
11703 */
11704 if (rq->cfs.load.weight)
11705 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
11706
11707 return rr_interval;
11708 }
11709
11710 /*
11711 * All the scheduling class methods:
11712 */
11713 const struct sched_class fair_sched_class
11714 __section("__fair_sched_class") = {
11715 .enqueue_task = enqueue_task_fair,
11716 .dequeue_task = dequeue_task_fair,
11717 .yield_task = yield_task_fair,
11718 .yield_to_task = yield_to_task_fair,
11719
11720 .check_preempt_curr = check_preempt_wakeup,
11721
11722 .pick_next_task = __pick_next_task_fair,
11723 .put_prev_task = put_prev_task_fair,
11724 .set_next_task = set_next_task_fair,
11725
11726 #ifdef CONFIG_SMP
11727 .balance = balance_fair,
11728 .select_task_rq = select_task_rq_fair,
11729 .migrate_task_rq = migrate_task_rq_fair,
11730
11731 .rq_online = rq_online_fair,
11732 .rq_offline = rq_offline_fair,
11733
11734 .task_dead = task_dead_fair,
11735 .set_cpus_allowed = set_cpus_allowed_common,
11736 #endif
11737
11738 .task_tick = task_tick_fair,
11739 .task_fork = task_fork_fair,
11740
11741 .prio_changed = prio_changed_fair,
11742 .switched_from = switched_from_fair,
11743 .switched_to = switched_to_fair,
11744
11745 .get_rr_interval = get_rr_interval_fair,
11746
11747 .update_curr = update_curr_fair,
11748
11749 #ifdef CONFIG_FAIR_GROUP_SCHED
11750 .task_change_group = task_change_group_fair,
11751 #endif
11752
11753 #ifdef CONFIG_UCLAMP_TASK
11754 .uclamp_enabled = 1,
11755 #endif
11756 #ifdef CONFIG_SCHED_WALT
11757 .fixup_walt_sched_stats = walt_fixup_sched_stats_fair,
11758 #endif
11759 #ifdef CONFIG_SCHED_EAS
11760 .check_for_migration = check_for_migration_fair,
11761 #endif
11762 };
11763
11764 #ifdef CONFIG_SCHED_DEBUG
print_cfs_stats(struct seq_file * m,int cpu)11765 void print_cfs_stats(struct seq_file *m, int cpu)
11766 {
11767 struct cfs_rq *cfs_rq, *pos;
11768
11769 rcu_read_lock();
11770 for_each_leaf_cfs_rq_safe(cpu_rq(cpu), cfs_rq, pos)
11771 print_cfs_rq(m, cpu, cfs_rq);
11772 rcu_read_unlock();
11773 }
11774
11775 #ifdef CONFIG_NUMA_BALANCING
show_numa_stats(struct task_struct * p,struct seq_file * m)11776 void show_numa_stats(struct task_struct *p, struct seq_file *m)
11777 {
11778 int node;
11779 unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;
11780 struct numa_group *ng;
11781
11782 rcu_read_lock();
11783 ng = rcu_dereference(p->numa_group);
11784 for_each_online_node(node) {
11785 if (p->numa_faults) {
11786 tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
11787 tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
11788 }
11789 if (ng) {
11790 gsf = ng->faults[task_faults_idx(NUMA_MEM, node, 0)],
11791 gpf = ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
11792 }
11793 print_numa_stats(m, node, tsf, tpf, gsf, gpf);
11794 }
11795 rcu_read_unlock();
11796 }
11797 #endif /* CONFIG_NUMA_BALANCING */
11798 #endif /* CONFIG_SCHED_DEBUG */
11799
init_sched_fair_class(void)11800 __init void init_sched_fair_class(void)
11801 {
11802 #ifdef CONFIG_SMP
11803 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
11804
11805 #ifdef CONFIG_NO_HZ_COMMON
11806 nohz.next_balance = jiffies;
11807 nohz.next_blocked = jiffies;
11808 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
11809 #endif
11810 #endif /* SMP */
11811
11812 }
11813
11814 /* WALT sched implementation begins here */
11815 #ifdef CONFIG_SCHED_WALT
11816
11817 #ifdef CONFIG_CFS_BANDWIDTH
11818
walt_init_cfs_rq_stats(struct cfs_rq * cfs_rq)11819 static void walt_init_cfs_rq_stats(struct cfs_rq *cfs_rq)
11820 {
11821 cfs_rq->walt_stats.cumulative_runnable_avg_scaled = 0;
11822 }
11823
walt_inc_cfs_rq_stats(struct cfs_rq * cfs_rq,struct task_struct * p)11824 static void walt_inc_cfs_rq_stats(struct cfs_rq *cfs_rq, struct task_struct *p)
11825 {
11826 fixup_cumulative_runnable_avg(&cfs_rq->walt_stats,
11827 p->ravg.demand_scaled);
11828 }
11829
walt_dec_cfs_rq_stats(struct cfs_rq * cfs_rq,struct task_struct * p)11830 static void walt_dec_cfs_rq_stats(struct cfs_rq *cfs_rq, struct task_struct *p)
11831 {
11832 fixup_cumulative_runnable_avg(&cfs_rq->walt_stats,
11833 -(s64)p->ravg.demand_scaled);
11834 }
11835
walt_inc_throttled_cfs_rq_stats(struct walt_sched_stats * stats,struct cfs_rq * tcfs_rq)11836 static void walt_inc_throttled_cfs_rq_stats(struct walt_sched_stats *stats,
11837 struct cfs_rq *tcfs_rq)
11838 {
11839 struct rq *rq = rq_of(tcfs_rq);
11840
11841 fixup_cumulative_runnable_avg(stats,
11842 tcfs_rq->walt_stats.cumulative_runnable_avg_scaled);
11843
11844 if (stats == &rq->walt_stats)
11845 walt_fixup_cum_window_demand(rq,
11846 tcfs_rq->walt_stats.cumulative_runnable_avg_scaled);
11847
11848 }
11849
walt_dec_throttled_cfs_rq_stats(struct walt_sched_stats * stats,struct cfs_rq * tcfs_rq)11850 static void walt_dec_throttled_cfs_rq_stats(struct walt_sched_stats *stats,
11851 struct cfs_rq *tcfs_rq)
11852 {
11853 struct rq *rq = rq_of(tcfs_rq);
11854
11855 fixup_cumulative_runnable_avg(stats,
11856 -tcfs_rq->walt_stats.cumulative_runnable_avg_scaled);
11857
11858 /*
11859 * We remove the throttled cfs_rq's tasks's contribution from the
11860 * cumulative window demand so that the same can be added
11861 * unconditionally when the cfs_rq is unthrottled.
11862 */
11863 if (stats == &rq->walt_stats)
11864 walt_fixup_cum_window_demand(rq,
11865 -tcfs_rq->walt_stats.cumulative_runnable_avg_scaled);
11866 }
11867
walt_fixup_sched_stats_fair(struct rq * rq,struct task_struct * p,u16 updated_demand_scaled)11868 static void walt_fixup_sched_stats_fair(struct rq *rq, struct task_struct *p,
11869 u16 updated_demand_scaled)
11870 {
11871 struct cfs_rq *cfs_rq;
11872 struct sched_entity *se = &p->se;
11873 s64 task_load_delta = (s64)updated_demand_scaled -
11874 p->ravg.demand_scaled;
11875
11876 for_each_sched_entity(se) {
11877 cfs_rq = cfs_rq_of(se);
11878
11879 fixup_cumulative_runnable_avg(&cfs_rq->walt_stats,
11880 task_load_delta);
11881 if (cfs_rq_throttled(cfs_rq))
11882 break;
11883 }
11884
11885 /* Fix up rq->walt_stats only if we didn't find any throttled cfs_rq */
11886 if (!se) {
11887 fixup_cumulative_runnable_avg(&rq->walt_stats,
11888 task_load_delta);
11889 walt_fixup_cum_window_demand(rq, task_load_delta);
11890 }
11891 }
11892
11893 #else /* CONFIG_CFS_BANDWIDTH */
walt_fixup_sched_stats_fair(struct rq * rq,struct task_struct * p,u16 updated_demand_scaled)11894 static void walt_fixup_sched_stats_fair(struct rq *rq, struct task_struct *p,
11895 u16 updated_demand_scaled)
11896 {
11897 fixup_walt_sched_stats_common(rq, p, updated_demand_scaled);
11898 }
11899 #endif /* CONFIG_CFS_BANDWIDTH */
11900 #endif /* CONFIG_SCHED_WALT */
11901
11902 /*
11903 * Helper functions to facilitate extracting info from tracepoints.
11904 */
11905
sched_trace_cfs_rq_avg(struct cfs_rq * cfs_rq)11906 const struct sched_avg *sched_trace_cfs_rq_avg(struct cfs_rq *cfs_rq)
11907 {
11908 #ifdef CONFIG_SMP
11909 return cfs_rq ? &cfs_rq->avg : NULL;
11910 #else
11911 return NULL;
11912 #endif
11913 }
11914 EXPORT_SYMBOL_GPL(sched_trace_cfs_rq_avg);
11915
sched_trace_cfs_rq_path(struct cfs_rq * cfs_rq,char * str,int len)11916 char *sched_trace_cfs_rq_path(struct cfs_rq *cfs_rq, char *str, int len)
11917 {
11918 if (!cfs_rq) {
11919 if (str)
11920 strlcpy(str, "(null)", len);
11921 else
11922 return NULL;
11923 }
11924
11925 cfs_rq_tg_path(cfs_rq, str, len);
11926 return str;
11927 }
11928 EXPORT_SYMBOL_GPL(sched_trace_cfs_rq_path);
11929
sched_trace_cfs_rq_cpu(struct cfs_rq * cfs_rq)11930 int sched_trace_cfs_rq_cpu(struct cfs_rq *cfs_rq)
11931 {
11932 return cfs_rq ? cpu_of(rq_of(cfs_rq)) : -1;
11933 }
11934 EXPORT_SYMBOL_GPL(sched_trace_cfs_rq_cpu);
11935
sched_trace_rq_avg_rt(struct rq * rq)11936 const struct sched_avg *sched_trace_rq_avg_rt(struct rq *rq)
11937 {
11938 #ifdef CONFIG_SMP
11939 return rq ? &rq->avg_rt : NULL;
11940 #else
11941 return NULL;
11942 #endif
11943 }
11944 EXPORT_SYMBOL_GPL(sched_trace_rq_avg_rt);
11945
sched_trace_rq_avg_dl(struct rq * rq)11946 const struct sched_avg *sched_trace_rq_avg_dl(struct rq *rq)
11947 {
11948 #ifdef CONFIG_SMP
11949 return rq ? &rq->avg_dl : NULL;
11950 #else
11951 return NULL;
11952 #endif
11953 }
11954 EXPORT_SYMBOL_GPL(sched_trace_rq_avg_dl);
11955
sched_trace_rq_avg_irq(struct rq * rq)11956 const struct sched_avg *sched_trace_rq_avg_irq(struct rq *rq)
11957 {
11958 #if defined(CONFIG_SMP) && defined(CONFIG_HAVE_SCHED_AVG_IRQ)
11959 return rq ? &rq->avg_irq : NULL;
11960 #else
11961 return NULL;
11962 #endif
11963 }
11964 EXPORT_SYMBOL_GPL(sched_trace_rq_avg_irq);
11965
sched_trace_rq_cpu(struct rq * rq)11966 int sched_trace_rq_cpu(struct rq *rq)
11967 {
11968 return rq ? cpu_of(rq) : -1;
11969 }
11970 EXPORT_SYMBOL_GPL(sched_trace_rq_cpu);
11971
sched_trace_rq_cpu_capacity(struct rq * rq)11972 int sched_trace_rq_cpu_capacity(struct rq *rq)
11973 {
11974 return rq ?
11975 #ifdef CONFIG_SMP
11976 rq->cpu_capacity
11977 #else
11978 SCHED_CAPACITY_SCALE
11979 #endif
11980 : -1;
11981 }
11982 EXPORT_SYMBOL_GPL(sched_trace_rq_cpu_capacity);
11983
sched_trace_rd_span(struct root_domain * rd)11984 const struct cpumask *sched_trace_rd_span(struct root_domain *rd)
11985 {
11986 #ifdef CONFIG_SMP
11987 return rd ? rd->span : NULL;
11988 #else
11989 return NULL;
11990 #endif
11991 }
11992 EXPORT_SYMBOL_GPL(sched_trace_rd_span);
11993
sched_trace_rq_nr_running(struct rq * rq)11994 int sched_trace_rq_nr_running(struct rq *rq)
11995 {
11996 return rq ? rq->nr_running : -1;
11997 }
11998 EXPORT_SYMBOL_GPL(sched_trace_rq_nr_running);
11999