• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Implementation of the security services.
4  *
5  * Authors : Stephen Smalley, <sds@tycho.nsa.gov>
6  *	     James Morris <jmorris@redhat.com>
7  *
8  * Updated: Trusted Computer Solutions, Inc. <dgoeddel@trustedcs.com>
9  *
10  *	Support for enhanced MLS infrastructure.
11  *	Support for context based audit filters.
12  *
13  * Updated: Frank Mayer <mayerf@tresys.com> and Karl MacMillan <kmacmillan@tresys.com>
14  *
15  *	Added conditional policy language extensions
16  *
17  * Updated: Hewlett-Packard <paul@paul-moore.com>
18  *
19  *      Added support for NetLabel
20  *      Added support for the policy capability bitmap
21  *
22  * Updated: Chad Sellers <csellers@tresys.com>
23  *
24  *  Added validation of kernel classes and permissions
25  *
26  * Updated: KaiGai Kohei <kaigai@ak.jp.nec.com>
27  *
28  *  Added support for bounds domain and audit messaged on masked permissions
29  *
30  * Updated: Guido Trentalancia <guido@trentalancia.com>
31  *
32  *  Added support for runtime switching of the policy type
33  *
34  * Copyright (C) 2008, 2009 NEC Corporation
35  * Copyright (C) 2006, 2007 Hewlett-Packard Development Company, L.P.
36  * Copyright (C) 2004-2006 Trusted Computer Solutions, Inc.
37  * Copyright (C) 2003 - 2004, 2006 Tresys Technology, LLC
38  * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com>
39  */
40 #include <linux/kernel.h>
41 #include <linux/slab.h>
42 #include <linux/string.h>
43 #include <linux/spinlock.h>
44 #include <linux/rcupdate.h>
45 #include <linux/errno.h>
46 #include <linux/in.h>
47 #include <linux/sched.h>
48 #include <linux/audit.h>
49 #include <linux/vmalloc.h>
50 #include <net/netlabel.h>
51 
52 #include "flask.h"
53 #include "avc.h"
54 #include "avc_ss.h"
55 #include "security.h"
56 #include "context.h"
57 #include "policydb.h"
58 #include "sidtab.h"
59 #include "services.h"
60 #include "conditional.h"
61 #include "mls.h"
62 #include "objsec.h"
63 #include "netlabel.h"
64 #include "xfrm.h"
65 #include "ebitmap.h"
66 #include "audit.h"
67 #include "policycap_names.h"
68 
69 struct convert_context_args {
70 	struct selinux_state *state;
71 	struct policydb *oldp;
72 	struct policydb *newp;
73 };
74 
75 struct selinux_policy_convert_data {
76 	struct convert_context_args args;
77 	struct sidtab_convert_params sidtab_params;
78 };
79 
80 /* Forward declaration. */
81 static int context_struct_to_string(struct policydb *policydb,
82 				    struct context *context,
83 				    char **scontext,
84 				    u32 *scontext_len);
85 
86 static int sidtab_entry_to_string(struct policydb *policydb,
87 				  struct sidtab *sidtab,
88 				  struct sidtab_entry *entry,
89 				  char **scontext,
90 				  u32 *scontext_len);
91 
92 static void context_struct_compute_av(struct policydb *policydb,
93 				      struct context *scontext,
94 				      struct context *tcontext,
95 				      u16 tclass,
96 				      struct av_decision *avd,
97 				      struct extended_perms *xperms);
98 
selinux_set_mapping(struct policydb * pol,struct security_class_mapping * map,struct selinux_map * out_map)99 static int selinux_set_mapping(struct policydb *pol,
100 			       struct security_class_mapping *map,
101 			       struct selinux_map *out_map)
102 {
103 	u16 i, j;
104 	unsigned k;
105 	bool print_unknown_handle = false;
106 
107 	/* Find number of classes in the input mapping */
108 	if (!map)
109 		return -EINVAL;
110 	i = 0;
111 	while (map[i].name)
112 		i++;
113 
114 	/* Allocate space for the class records, plus one for class zero */
115 	out_map->mapping = kcalloc(++i, sizeof(*out_map->mapping), GFP_ATOMIC);
116 	if (!out_map->mapping)
117 		return -ENOMEM;
118 
119 	/* Store the raw class and permission values */
120 	j = 0;
121 	while (map[j].name) {
122 		struct security_class_mapping *p_in = map + (j++);
123 		struct selinux_mapping *p_out = out_map->mapping + j;
124 
125 		/* An empty class string skips ahead */
126 		if (!strcmp(p_in->name, "")) {
127 			p_out->num_perms = 0;
128 			continue;
129 		}
130 
131 		p_out->value = string_to_security_class(pol, p_in->name);
132 		if (!p_out->value) {
133 			pr_info("SELinux:  Class %s not defined in policy.\n",
134 			       p_in->name);
135 			if (pol->reject_unknown)
136 				goto err;
137 			p_out->num_perms = 0;
138 			print_unknown_handle = true;
139 			continue;
140 		}
141 
142 		k = 0;
143 		while (p_in->perms[k]) {
144 			/* An empty permission string skips ahead */
145 			if (!*p_in->perms[k]) {
146 				k++;
147 				continue;
148 			}
149 			p_out->perms[k] = string_to_av_perm(pol, p_out->value,
150 							    p_in->perms[k]);
151 			if (!p_out->perms[k]) {
152 				pr_info("SELinux:  Permission %s in class %s not defined in policy.\n",
153 				       p_in->perms[k], p_in->name);
154 				if (pol->reject_unknown)
155 					goto err;
156 				print_unknown_handle = true;
157 			}
158 
159 			k++;
160 		}
161 		p_out->num_perms = k;
162 	}
163 
164 	if (print_unknown_handle)
165 		pr_info("SELinux: the above unknown classes and permissions will be %s\n",
166 		       pol->allow_unknown ? "allowed" : "denied");
167 
168 	out_map->size = i;
169 	return 0;
170 err:
171 	kfree(out_map->mapping);
172 	out_map->mapping = NULL;
173 	return -EINVAL;
174 }
175 
176 /*
177  * Get real, policy values from mapped values
178  */
179 
unmap_class(struct selinux_map * map,u16 tclass)180 static u16 unmap_class(struct selinux_map *map, u16 tclass)
181 {
182 	if (tclass < map->size)
183 		return map->mapping[tclass].value;
184 
185 	return tclass;
186 }
187 
188 /*
189  * Get kernel value for class from its policy value
190  */
map_class(struct selinux_map * map,u16 pol_value)191 static u16 map_class(struct selinux_map *map, u16 pol_value)
192 {
193 	u16 i;
194 
195 	for (i = 1; i < map->size; i++) {
196 		if (map->mapping[i].value == pol_value)
197 			return i;
198 	}
199 
200 	return SECCLASS_NULL;
201 }
202 
map_decision(struct selinux_map * map,u16 tclass,struct av_decision * avd,int allow_unknown)203 static void map_decision(struct selinux_map *map,
204 			 u16 tclass, struct av_decision *avd,
205 			 int allow_unknown)
206 {
207 	if (tclass < map->size) {
208 		struct selinux_mapping *mapping = &map->mapping[tclass];
209 		unsigned int i, n = mapping->num_perms;
210 		u32 result;
211 
212 		for (i = 0, result = 0; i < n; i++) {
213 			if (avd->allowed & mapping->perms[i])
214 				result |= 1<<i;
215 			if (allow_unknown && !mapping->perms[i])
216 				result |= 1<<i;
217 		}
218 		avd->allowed = result;
219 
220 		for (i = 0, result = 0; i < n; i++)
221 			if (avd->auditallow & mapping->perms[i])
222 				result |= 1<<i;
223 		avd->auditallow = result;
224 
225 		for (i = 0, result = 0; i < n; i++) {
226 			if (avd->auditdeny & mapping->perms[i])
227 				result |= 1<<i;
228 			if (!allow_unknown && !mapping->perms[i])
229 				result |= 1<<i;
230 		}
231 		/*
232 		 * In case the kernel has a bug and requests a permission
233 		 * between num_perms and the maximum permission number, we
234 		 * should audit that denial
235 		 */
236 		for (; i < (sizeof(u32)*8); i++)
237 			result |= 1<<i;
238 		avd->auditdeny = result;
239 	}
240 }
241 
security_mls_enabled(struct selinux_state * state)242 int security_mls_enabled(struct selinux_state *state)
243 {
244 	int mls_enabled;
245 	struct selinux_policy *policy;
246 
247 	if (!selinux_initialized(state))
248 		return 0;
249 
250 	rcu_read_lock();
251 	policy = rcu_dereference(state->policy);
252 	mls_enabled = policy->policydb.mls_enabled;
253 	rcu_read_unlock();
254 	return mls_enabled;
255 }
256 
257 /*
258  * Return the boolean value of a constraint expression
259  * when it is applied to the specified source and target
260  * security contexts.
261  *
262  * xcontext is a special beast...  It is used by the validatetrans rules
263  * only.  For these rules, scontext is the context before the transition,
264  * tcontext is the context after the transition, and xcontext is the context
265  * of the process performing the transition.  All other callers of
266  * constraint_expr_eval should pass in NULL for xcontext.
267  */
constraint_expr_eval(struct policydb * policydb,struct context * scontext,struct context * tcontext,struct context * xcontext,struct constraint_expr * cexpr)268 static int constraint_expr_eval(struct policydb *policydb,
269 				struct context *scontext,
270 				struct context *tcontext,
271 				struct context *xcontext,
272 				struct constraint_expr *cexpr)
273 {
274 	u32 val1, val2;
275 	struct context *c;
276 	struct role_datum *r1, *r2;
277 	struct mls_level *l1, *l2;
278 	struct constraint_expr *e;
279 	int s[CEXPR_MAXDEPTH];
280 	int sp = -1;
281 
282 	for (e = cexpr; e; e = e->next) {
283 		switch (e->expr_type) {
284 		case CEXPR_NOT:
285 			BUG_ON(sp < 0);
286 			s[sp] = !s[sp];
287 			break;
288 		case CEXPR_AND:
289 			BUG_ON(sp < 1);
290 			sp--;
291 			s[sp] &= s[sp + 1];
292 			break;
293 		case CEXPR_OR:
294 			BUG_ON(sp < 1);
295 			sp--;
296 			s[sp] |= s[sp + 1];
297 			break;
298 		case CEXPR_ATTR:
299 			if (sp == (CEXPR_MAXDEPTH - 1))
300 				return 0;
301 			switch (e->attr) {
302 			case CEXPR_USER:
303 				val1 = scontext->user;
304 				val2 = tcontext->user;
305 				break;
306 			case CEXPR_TYPE:
307 				val1 = scontext->type;
308 				val2 = tcontext->type;
309 				break;
310 			case CEXPR_ROLE:
311 				val1 = scontext->role;
312 				val2 = tcontext->role;
313 				r1 = policydb->role_val_to_struct[val1 - 1];
314 				r2 = policydb->role_val_to_struct[val2 - 1];
315 				switch (e->op) {
316 				case CEXPR_DOM:
317 					s[++sp] = ebitmap_get_bit(&r1->dominates,
318 								  val2 - 1);
319 					continue;
320 				case CEXPR_DOMBY:
321 					s[++sp] = ebitmap_get_bit(&r2->dominates,
322 								  val1 - 1);
323 					continue;
324 				case CEXPR_INCOMP:
325 					s[++sp] = (!ebitmap_get_bit(&r1->dominates,
326 								    val2 - 1) &&
327 						   !ebitmap_get_bit(&r2->dominates,
328 								    val1 - 1));
329 					continue;
330 				default:
331 					break;
332 				}
333 				break;
334 			case CEXPR_L1L2:
335 				l1 = &(scontext->range.level[0]);
336 				l2 = &(tcontext->range.level[0]);
337 				goto mls_ops;
338 			case CEXPR_L1H2:
339 				l1 = &(scontext->range.level[0]);
340 				l2 = &(tcontext->range.level[1]);
341 				goto mls_ops;
342 			case CEXPR_H1L2:
343 				l1 = &(scontext->range.level[1]);
344 				l2 = &(tcontext->range.level[0]);
345 				goto mls_ops;
346 			case CEXPR_H1H2:
347 				l1 = &(scontext->range.level[1]);
348 				l2 = &(tcontext->range.level[1]);
349 				goto mls_ops;
350 			case CEXPR_L1H1:
351 				l1 = &(scontext->range.level[0]);
352 				l2 = &(scontext->range.level[1]);
353 				goto mls_ops;
354 			case CEXPR_L2H2:
355 				l1 = &(tcontext->range.level[0]);
356 				l2 = &(tcontext->range.level[1]);
357 				goto mls_ops;
358 mls_ops:
359 			switch (e->op) {
360 			case CEXPR_EQ:
361 				s[++sp] = mls_level_eq(l1, l2);
362 				continue;
363 			case CEXPR_NEQ:
364 				s[++sp] = !mls_level_eq(l1, l2);
365 				continue;
366 			case CEXPR_DOM:
367 				s[++sp] = mls_level_dom(l1, l2);
368 				continue;
369 			case CEXPR_DOMBY:
370 				s[++sp] = mls_level_dom(l2, l1);
371 				continue;
372 			case CEXPR_INCOMP:
373 				s[++sp] = mls_level_incomp(l2, l1);
374 				continue;
375 			default:
376 				BUG();
377 				return 0;
378 			}
379 			break;
380 			default:
381 				BUG();
382 				return 0;
383 			}
384 
385 			switch (e->op) {
386 			case CEXPR_EQ:
387 				s[++sp] = (val1 == val2);
388 				break;
389 			case CEXPR_NEQ:
390 				s[++sp] = (val1 != val2);
391 				break;
392 			default:
393 				BUG();
394 				return 0;
395 			}
396 			break;
397 		case CEXPR_NAMES:
398 			if (sp == (CEXPR_MAXDEPTH-1))
399 				return 0;
400 			c = scontext;
401 			if (e->attr & CEXPR_TARGET)
402 				c = tcontext;
403 			else if (e->attr & CEXPR_XTARGET) {
404 				c = xcontext;
405 				if (!c) {
406 					BUG();
407 					return 0;
408 				}
409 			}
410 			if (e->attr & CEXPR_USER)
411 				val1 = c->user;
412 			else if (e->attr & CEXPR_ROLE)
413 				val1 = c->role;
414 			else if (e->attr & CEXPR_TYPE)
415 				val1 = c->type;
416 			else {
417 				BUG();
418 				return 0;
419 			}
420 
421 			switch (e->op) {
422 			case CEXPR_EQ:
423 				s[++sp] = ebitmap_get_bit(&e->names, val1 - 1);
424 				break;
425 			case CEXPR_NEQ:
426 				s[++sp] = !ebitmap_get_bit(&e->names, val1 - 1);
427 				break;
428 			default:
429 				BUG();
430 				return 0;
431 			}
432 			break;
433 		default:
434 			BUG();
435 			return 0;
436 		}
437 	}
438 
439 	BUG_ON(sp != 0);
440 	return s[0];
441 }
442 
443 /*
444  * security_dump_masked_av - dumps masked permissions during
445  * security_compute_av due to RBAC, MLS/Constraint and Type bounds.
446  */
dump_masked_av_helper(void * k,void * d,void * args)447 static int dump_masked_av_helper(void *k, void *d, void *args)
448 {
449 	struct perm_datum *pdatum = d;
450 	char **permission_names = args;
451 
452 	BUG_ON(pdatum->value < 1 || pdatum->value > 32);
453 
454 	permission_names[pdatum->value - 1] = (char *)k;
455 
456 	return 0;
457 }
458 
security_dump_masked_av(struct policydb * policydb,struct context * scontext,struct context * tcontext,u16 tclass,u32 permissions,const char * reason)459 static void security_dump_masked_av(struct policydb *policydb,
460 				    struct context *scontext,
461 				    struct context *tcontext,
462 				    u16 tclass,
463 				    u32 permissions,
464 				    const char *reason)
465 {
466 	struct common_datum *common_dat;
467 	struct class_datum *tclass_dat;
468 	struct audit_buffer *ab;
469 	char *tclass_name;
470 	char *scontext_name = NULL;
471 	char *tcontext_name = NULL;
472 	char *permission_names[32];
473 	int index;
474 	u32 length;
475 	bool need_comma = false;
476 
477 	if (!permissions)
478 		return;
479 
480 	tclass_name = sym_name(policydb, SYM_CLASSES, tclass - 1);
481 	tclass_dat = policydb->class_val_to_struct[tclass - 1];
482 	common_dat = tclass_dat->comdatum;
483 
484 	/* init permission_names */
485 	if (common_dat &&
486 	    hashtab_map(&common_dat->permissions.table,
487 			dump_masked_av_helper, permission_names) < 0)
488 		goto out;
489 
490 	if (hashtab_map(&tclass_dat->permissions.table,
491 			dump_masked_av_helper, permission_names) < 0)
492 		goto out;
493 
494 	/* get scontext/tcontext in text form */
495 	if (context_struct_to_string(policydb, scontext,
496 				     &scontext_name, &length) < 0)
497 		goto out;
498 
499 	if (context_struct_to_string(policydb, tcontext,
500 				     &tcontext_name, &length) < 0)
501 		goto out;
502 
503 	/* audit a message */
504 	ab = audit_log_start(audit_context(),
505 			     GFP_ATOMIC, AUDIT_SELINUX_ERR);
506 	if (!ab)
507 		goto out;
508 
509 	audit_log_format(ab, "op=security_compute_av reason=%s "
510 			 "scontext=%s tcontext=%s tclass=%s perms=",
511 			 reason, scontext_name, tcontext_name, tclass_name);
512 
513 	for (index = 0; index < 32; index++) {
514 		u32 mask = (1 << index);
515 
516 		if ((mask & permissions) == 0)
517 			continue;
518 
519 		audit_log_format(ab, "%s%s",
520 				 need_comma ? "," : "",
521 				 permission_names[index]
522 				 ? permission_names[index] : "????");
523 		need_comma = true;
524 	}
525 	audit_log_end(ab);
526 out:
527 	/* release scontext/tcontext */
528 	kfree(tcontext_name);
529 	kfree(scontext_name);
530 
531 	return;
532 }
533 
534 /*
535  * security_boundary_permission - drops violated permissions
536  * on boundary constraint.
537  */
type_attribute_bounds_av(struct policydb * policydb,struct context * scontext,struct context * tcontext,u16 tclass,struct av_decision * avd)538 static void type_attribute_bounds_av(struct policydb *policydb,
539 				     struct context *scontext,
540 				     struct context *tcontext,
541 				     u16 tclass,
542 				     struct av_decision *avd)
543 {
544 	struct context lo_scontext;
545 	struct context lo_tcontext, *tcontextp = tcontext;
546 	struct av_decision lo_avd;
547 	struct type_datum *source;
548 	struct type_datum *target;
549 	u32 masked = 0;
550 
551 	source = policydb->type_val_to_struct[scontext->type - 1];
552 	BUG_ON(!source);
553 
554 	if (!source->bounds)
555 		return;
556 
557 	target = policydb->type_val_to_struct[tcontext->type - 1];
558 	BUG_ON(!target);
559 
560 	memset(&lo_avd, 0, sizeof(lo_avd));
561 
562 	memcpy(&lo_scontext, scontext, sizeof(lo_scontext));
563 	lo_scontext.type = source->bounds;
564 
565 	if (target->bounds) {
566 		memcpy(&lo_tcontext, tcontext, sizeof(lo_tcontext));
567 		lo_tcontext.type = target->bounds;
568 		tcontextp = &lo_tcontext;
569 	}
570 
571 	context_struct_compute_av(policydb, &lo_scontext,
572 				  tcontextp,
573 				  tclass,
574 				  &lo_avd,
575 				  NULL);
576 
577 	masked = ~lo_avd.allowed & avd->allowed;
578 
579 	if (likely(!masked))
580 		return;		/* no masked permission */
581 
582 	/* mask violated permissions */
583 	avd->allowed &= ~masked;
584 
585 	/* audit masked permissions */
586 	security_dump_masked_av(policydb, scontext, tcontext,
587 				tclass, masked, "bounds");
588 }
589 
590 /*
591  * flag which drivers have permissions
592  * only looking for ioctl based extended permssions
593  */
services_compute_xperms_drivers(struct extended_perms * xperms,struct avtab_node * node)594 void services_compute_xperms_drivers(
595 		struct extended_perms *xperms,
596 		struct avtab_node *node)
597 {
598 	unsigned int i;
599 
600 	if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
601 		/* if one or more driver has all permissions allowed */
602 		for (i = 0; i < ARRAY_SIZE(xperms->drivers.p); i++)
603 			xperms->drivers.p[i] |= node->datum.u.xperms->perms.p[i];
604 	} else if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
605 		/* if allowing permissions within a driver */
606 		security_xperm_set(xperms->drivers.p,
607 					node->datum.u.xperms->driver);
608 	}
609 
610 	/* If no ioctl commands are allowed, ignore auditallow and auditdeny */
611 	if (node->key.specified & AVTAB_XPERMS_ALLOWED)
612 		xperms->len = 1;
613 }
614 
615 /*
616  * Compute access vectors and extended permissions based on a context
617  * structure pair for the permissions in a particular class.
618  */
context_struct_compute_av(struct policydb * policydb,struct context * scontext,struct context * tcontext,u16 tclass,struct av_decision * avd,struct extended_perms * xperms)619 static void context_struct_compute_av(struct policydb *policydb,
620 				      struct context *scontext,
621 				      struct context *tcontext,
622 				      u16 tclass,
623 				      struct av_decision *avd,
624 				      struct extended_perms *xperms)
625 {
626 	struct constraint_node *constraint;
627 	struct role_allow *ra;
628 	struct avtab_key avkey;
629 	struct avtab_node *node;
630 	struct class_datum *tclass_datum;
631 	struct ebitmap *sattr, *tattr;
632 	struct ebitmap_node *snode, *tnode;
633 	unsigned int i, j;
634 
635 	avd->allowed = 0;
636 	avd->auditallow = 0;
637 	avd->auditdeny = 0xffffffff;
638 	if (xperms) {
639 		memset(&xperms->drivers, 0, sizeof(xperms->drivers));
640 		xperms->len = 0;
641 	}
642 
643 	if (unlikely(!tclass || tclass > policydb->p_classes.nprim)) {
644 		if (printk_ratelimit())
645 			pr_warn("SELinux:  Invalid class %hu\n", tclass);
646 		return;
647 	}
648 
649 	tclass_datum = policydb->class_val_to_struct[tclass - 1];
650 
651 	/*
652 	 * If a specific type enforcement rule was defined for
653 	 * this permission check, then use it.
654 	 */
655 	avkey.target_class = tclass;
656 	avkey.specified = AVTAB_AV | AVTAB_XPERMS;
657 	sattr = &policydb->type_attr_map_array[scontext->type - 1];
658 	tattr = &policydb->type_attr_map_array[tcontext->type - 1];
659 	ebitmap_for_each_positive_bit(sattr, snode, i) {
660 		ebitmap_for_each_positive_bit(tattr, tnode, j) {
661 			avkey.source_type = i + 1;
662 			avkey.target_type = j + 1;
663 			for (node = avtab_search_node(&policydb->te_avtab,
664 						      &avkey);
665 			     node;
666 			     node = avtab_search_node_next(node, avkey.specified)) {
667 				if (node->key.specified == AVTAB_ALLOWED)
668 					avd->allowed |= node->datum.u.data;
669 				else if (node->key.specified == AVTAB_AUDITALLOW)
670 					avd->auditallow |= node->datum.u.data;
671 				else if (node->key.specified == AVTAB_AUDITDENY)
672 					avd->auditdeny &= node->datum.u.data;
673 				else if (xperms && (node->key.specified & AVTAB_XPERMS))
674 					services_compute_xperms_drivers(xperms, node);
675 			}
676 
677 			/* Check conditional av table for additional permissions */
678 			cond_compute_av(&policydb->te_cond_avtab, &avkey,
679 					avd, xperms);
680 
681 		}
682 	}
683 
684 	/*
685 	 * Remove any permissions prohibited by a constraint (this includes
686 	 * the MLS policy).
687 	 */
688 	constraint = tclass_datum->constraints;
689 	while (constraint) {
690 		if ((constraint->permissions & (avd->allowed)) &&
691 		    !constraint_expr_eval(policydb, scontext, tcontext, NULL,
692 					  constraint->expr)) {
693 			avd->allowed &= ~(constraint->permissions);
694 		}
695 		constraint = constraint->next;
696 	}
697 
698 	/*
699 	 * If checking process transition permission and the
700 	 * role is changing, then check the (current_role, new_role)
701 	 * pair.
702 	 */
703 	if (tclass == policydb->process_class &&
704 	    (avd->allowed & policydb->process_trans_perms) &&
705 	    scontext->role != tcontext->role) {
706 		for (ra = policydb->role_allow; ra; ra = ra->next) {
707 			if (scontext->role == ra->role &&
708 			    tcontext->role == ra->new_role)
709 				break;
710 		}
711 		if (!ra)
712 			avd->allowed &= ~policydb->process_trans_perms;
713 	}
714 
715 	/*
716 	 * If the given source and target types have boundary
717 	 * constraint, lazy checks have to mask any violated
718 	 * permission and notice it to userspace via audit.
719 	 */
720 	type_attribute_bounds_av(policydb, scontext, tcontext,
721 				 tclass, avd);
722 }
723 
security_validtrans_handle_fail(struct selinux_state * state,struct selinux_policy * policy,struct sidtab_entry * oentry,struct sidtab_entry * nentry,struct sidtab_entry * tentry,u16 tclass)724 static int security_validtrans_handle_fail(struct selinux_state *state,
725 					struct selinux_policy *policy,
726 					struct sidtab_entry *oentry,
727 					struct sidtab_entry *nentry,
728 					struct sidtab_entry *tentry,
729 					u16 tclass)
730 {
731 	struct policydb *p = &policy->policydb;
732 	struct sidtab *sidtab = policy->sidtab;
733 	char *o = NULL, *n = NULL, *t = NULL;
734 	u32 olen, nlen, tlen;
735 
736 	if (sidtab_entry_to_string(p, sidtab, oentry, &o, &olen))
737 		goto out;
738 	if (sidtab_entry_to_string(p, sidtab, nentry, &n, &nlen))
739 		goto out;
740 	if (sidtab_entry_to_string(p, sidtab, tentry, &t, &tlen))
741 		goto out;
742 	audit_log(audit_context(), GFP_ATOMIC, AUDIT_SELINUX_ERR,
743 		  "op=security_validate_transition seresult=denied"
744 		  " oldcontext=%s newcontext=%s taskcontext=%s tclass=%s",
745 		  o, n, t, sym_name(p, SYM_CLASSES, tclass-1));
746 out:
747 	kfree(o);
748 	kfree(n);
749 	kfree(t);
750 
751 	if (!enforcing_enabled(state))
752 		return 0;
753 	return -EPERM;
754 }
755 
security_compute_validatetrans(struct selinux_state * state,u32 oldsid,u32 newsid,u32 tasksid,u16 orig_tclass,bool user)756 static int security_compute_validatetrans(struct selinux_state *state,
757 					  u32 oldsid, u32 newsid, u32 tasksid,
758 					  u16 orig_tclass, bool user)
759 {
760 	struct selinux_policy *policy;
761 	struct policydb *policydb;
762 	struct sidtab *sidtab;
763 	struct sidtab_entry *oentry;
764 	struct sidtab_entry *nentry;
765 	struct sidtab_entry *tentry;
766 	struct class_datum *tclass_datum;
767 	struct constraint_node *constraint;
768 	u16 tclass;
769 	int rc = 0;
770 
771 
772 	if (!selinux_initialized(state))
773 		return 0;
774 
775 	rcu_read_lock();
776 
777 	policy = rcu_dereference(state->policy);
778 	policydb = &policy->policydb;
779 	sidtab = policy->sidtab;
780 
781 	if (!user)
782 		tclass = unmap_class(&policy->map, orig_tclass);
783 	else
784 		tclass = orig_tclass;
785 
786 	if (!tclass || tclass > policydb->p_classes.nprim) {
787 		rc = -EINVAL;
788 		goto out;
789 	}
790 	tclass_datum = policydb->class_val_to_struct[tclass - 1];
791 
792 	oentry = sidtab_search_entry(sidtab, oldsid);
793 	if (!oentry) {
794 		pr_err("SELinux: %s:  unrecognized SID %d\n",
795 			__func__, oldsid);
796 		rc = -EINVAL;
797 		goto out;
798 	}
799 
800 	nentry = sidtab_search_entry(sidtab, newsid);
801 	if (!nentry) {
802 		pr_err("SELinux: %s:  unrecognized SID %d\n",
803 			__func__, newsid);
804 		rc = -EINVAL;
805 		goto out;
806 	}
807 
808 	tentry = sidtab_search_entry(sidtab, tasksid);
809 	if (!tentry) {
810 		pr_err("SELinux: %s:  unrecognized SID %d\n",
811 			__func__, tasksid);
812 		rc = -EINVAL;
813 		goto out;
814 	}
815 
816 	constraint = tclass_datum->validatetrans;
817 	while (constraint) {
818 		if (!constraint_expr_eval(policydb, &oentry->context,
819 					  &nentry->context, &tentry->context,
820 					  constraint->expr)) {
821 			if (user)
822 				rc = -EPERM;
823 			else
824 				rc = security_validtrans_handle_fail(state,
825 								policy,
826 								oentry,
827 								nentry,
828 								tentry,
829 								tclass);
830 			goto out;
831 		}
832 		constraint = constraint->next;
833 	}
834 
835 out:
836 	rcu_read_unlock();
837 	return rc;
838 }
839 
security_validate_transition_user(struct selinux_state * state,u32 oldsid,u32 newsid,u32 tasksid,u16 tclass)840 int security_validate_transition_user(struct selinux_state *state,
841 				      u32 oldsid, u32 newsid, u32 tasksid,
842 				      u16 tclass)
843 {
844 	return security_compute_validatetrans(state, oldsid, newsid, tasksid,
845 					      tclass, true);
846 }
847 
security_validate_transition(struct selinux_state * state,u32 oldsid,u32 newsid,u32 tasksid,u16 orig_tclass)848 int security_validate_transition(struct selinux_state *state,
849 				 u32 oldsid, u32 newsid, u32 tasksid,
850 				 u16 orig_tclass)
851 {
852 	return security_compute_validatetrans(state, oldsid, newsid, tasksid,
853 					      orig_tclass, false);
854 }
855 
856 /*
857  * security_bounded_transition - check whether the given
858  * transition is directed to bounded, or not.
859  * It returns 0, if @newsid is bounded by @oldsid.
860  * Otherwise, it returns error code.
861  *
862  * @oldsid : current security identifier
863  * @newsid : destinated security identifier
864  */
security_bounded_transition(struct selinux_state * state,u32 old_sid,u32 new_sid)865 int security_bounded_transition(struct selinux_state *state,
866 				u32 old_sid, u32 new_sid)
867 {
868 	struct selinux_policy *policy;
869 	struct policydb *policydb;
870 	struct sidtab *sidtab;
871 	struct sidtab_entry *old_entry, *new_entry;
872 	struct type_datum *type;
873 	int index;
874 	int rc;
875 
876 	if (!selinux_initialized(state))
877 		return 0;
878 
879 	rcu_read_lock();
880 	policy = rcu_dereference(state->policy);
881 	policydb = &policy->policydb;
882 	sidtab = policy->sidtab;
883 
884 	rc = -EINVAL;
885 	old_entry = sidtab_search_entry(sidtab, old_sid);
886 	if (!old_entry) {
887 		pr_err("SELinux: %s: unrecognized SID %u\n",
888 		       __func__, old_sid);
889 		goto out;
890 	}
891 
892 	rc = -EINVAL;
893 	new_entry = sidtab_search_entry(sidtab, new_sid);
894 	if (!new_entry) {
895 		pr_err("SELinux: %s: unrecognized SID %u\n",
896 		       __func__, new_sid);
897 		goto out;
898 	}
899 
900 	rc = 0;
901 	/* type/domain unchanged */
902 	if (old_entry->context.type == new_entry->context.type)
903 		goto out;
904 
905 	index = new_entry->context.type;
906 	while (true) {
907 		type = policydb->type_val_to_struct[index - 1];
908 		BUG_ON(!type);
909 
910 		/* not bounded anymore */
911 		rc = -EPERM;
912 		if (!type->bounds)
913 			break;
914 
915 		/* @newsid is bounded by @oldsid */
916 		rc = 0;
917 		if (type->bounds == old_entry->context.type)
918 			break;
919 
920 		index = type->bounds;
921 	}
922 
923 	if (rc) {
924 		char *old_name = NULL;
925 		char *new_name = NULL;
926 		u32 length;
927 
928 		if (!sidtab_entry_to_string(policydb, sidtab, old_entry,
929 					    &old_name, &length) &&
930 		    !sidtab_entry_to_string(policydb, sidtab, new_entry,
931 					    &new_name, &length)) {
932 			audit_log(audit_context(),
933 				  GFP_ATOMIC, AUDIT_SELINUX_ERR,
934 				  "op=security_bounded_transition "
935 				  "seresult=denied "
936 				  "oldcontext=%s newcontext=%s",
937 				  old_name, new_name);
938 		}
939 		kfree(new_name);
940 		kfree(old_name);
941 	}
942 out:
943 	rcu_read_unlock();
944 
945 	return rc;
946 }
947 
avd_init(struct selinux_policy * policy,struct av_decision * avd)948 static void avd_init(struct selinux_policy *policy, struct av_decision *avd)
949 {
950 	avd->allowed = 0;
951 	avd->auditallow = 0;
952 	avd->auditdeny = 0xffffffff;
953 	if (policy)
954 		avd->seqno = policy->latest_granting;
955 	else
956 		avd->seqno = 0;
957 	avd->flags = 0;
958 }
959 
services_compute_xperms_decision(struct extended_perms_decision * xpermd,struct avtab_node * node)960 void services_compute_xperms_decision(struct extended_perms_decision *xpermd,
961 					struct avtab_node *node)
962 {
963 	unsigned int i;
964 
965 	if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
966 		if (xpermd->driver != node->datum.u.xperms->driver)
967 			return;
968 	} else if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
969 		if (!security_xperm_test(node->datum.u.xperms->perms.p,
970 					xpermd->driver))
971 			return;
972 	} else {
973 		BUG();
974 	}
975 
976 	if (node->key.specified == AVTAB_XPERMS_ALLOWED) {
977 		xpermd->used |= XPERMS_ALLOWED;
978 		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
979 			memset(xpermd->allowed->p, 0xff,
980 					sizeof(xpermd->allowed->p));
981 		}
982 		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
983 			for (i = 0; i < ARRAY_SIZE(xpermd->allowed->p); i++)
984 				xpermd->allowed->p[i] |=
985 					node->datum.u.xperms->perms.p[i];
986 		}
987 	} else if (node->key.specified == AVTAB_XPERMS_AUDITALLOW) {
988 		xpermd->used |= XPERMS_AUDITALLOW;
989 		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
990 			memset(xpermd->auditallow->p, 0xff,
991 					sizeof(xpermd->auditallow->p));
992 		}
993 		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
994 			for (i = 0; i < ARRAY_SIZE(xpermd->auditallow->p); i++)
995 				xpermd->auditallow->p[i] |=
996 					node->datum.u.xperms->perms.p[i];
997 		}
998 	} else if (node->key.specified == AVTAB_XPERMS_DONTAUDIT) {
999 		xpermd->used |= XPERMS_DONTAUDIT;
1000 		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
1001 			memset(xpermd->dontaudit->p, 0xff,
1002 					sizeof(xpermd->dontaudit->p));
1003 		}
1004 		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
1005 			for (i = 0; i < ARRAY_SIZE(xpermd->dontaudit->p); i++)
1006 				xpermd->dontaudit->p[i] |=
1007 					node->datum.u.xperms->perms.p[i];
1008 		}
1009 	} else {
1010 		BUG();
1011 	}
1012 }
1013 
security_compute_xperms_decision(struct selinux_state * state,u32 ssid,u32 tsid,u16 orig_tclass,u8 driver,struct extended_perms_decision * xpermd)1014 void security_compute_xperms_decision(struct selinux_state *state,
1015 				      u32 ssid,
1016 				      u32 tsid,
1017 				      u16 orig_tclass,
1018 				      u8 driver,
1019 				      struct extended_perms_decision *xpermd)
1020 {
1021 	struct selinux_policy *policy;
1022 	struct policydb *policydb;
1023 	struct sidtab *sidtab;
1024 	u16 tclass;
1025 	struct context *scontext, *tcontext;
1026 	struct avtab_key avkey;
1027 	struct avtab_node *node;
1028 	struct ebitmap *sattr, *tattr;
1029 	struct ebitmap_node *snode, *tnode;
1030 	unsigned int i, j;
1031 
1032 	xpermd->driver = driver;
1033 	xpermd->used = 0;
1034 	memset(xpermd->allowed->p, 0, sizeof(xpermd->allowed->p));
1035 	memset(xpermd->auditallow->p, 0, sizeof(xpermd->auditallow->p));
1036 	memset(xpermd->dontaudit->p, 0, sizeof(xpermd->dontaudit->p));
1037 
1038 	rcu_read_lock();
1039 	if (!selinux_initialized(state))
1040 		goto allow;
1041 
1042 	policy = rcu_dereference(state->policy);
1043 	policydb = &policy->policydb;
1044 	sidtab = policy->sidtab;
1045 
1046 	scontext = sidtab_search(sidtab, ssid);
1047 	if (!scontext) {
1048 		pr_err("SELinux: %s:  unrecognized SID %d\n",
1049 		       __func__, ssid);
1050 		goto out;
1051 	}
1052 
1053 	tcontext = sidtab_search(sidtab, tsid);
1054 	if (!tcontext) {
1055 		pr_err("SELinux: %s:  unrecognized SID %d\n",
1056 		       __func__, tsid);
1057 		goto out;
1058 	}
1059 
1060 	tclass = unmap_class(&policy->map, orig_tclass);
1061 	if (unlikely(orig_tclass && !tclass)) {
1062 		if (policydb->allow_unknown)
1063 			goto allow;
1064 		goto out;
1065 	}
1066 
1067 
1068 	if (unlikely(!tclass || tclass > policydb->p_classes.nprim)) {
1069 		pr_warn_ratelimited("SELinux:  Invalid class %hu\n", tclass);
1070 		goto out;
1071 	}
1072 
1073 	avkey.target_class = tclass;
1074 	avkey.specified = AVTAB_XPERMS;
1075 	sattr = &policydb->type_attr_map_array[scontext->type - 1];
1076 	tattr = &policydb->type_attr_map_array[tcontext->type - 1];
1077 	ebitmap_for_each_positive_bit(sattr, snode, i) {
1078 		ebitmap_for_each_positive_bit(tattr, tnode, j) {
1079 			avkey.source_type = i + 1;
1080 			avkey.target_type = j + 1;
1081 			for (node = avtab_search_node(&policydb->te_avtab,
1082 						      &avkey);
1083 			     node;
1084 			     node = avtab_search_node_next(node, avkey.specified))
1085 				services_compute_xperms_decision(xpermd, node);
1086 
1087 			cond_compute_xperms(&policydb->te_cond_avtab,
1088 						&avkey, xpermd);
1089 		}
1090 	}
1091 out:
1092 	rcu_read_unlock();
1093 	return;
1094 allow:
1095 	memset(xpermd->allowed->p, 0xff, sizeof(xpermd->allowed->p));
1096 	goto out;
1097 }
1098 
1099 /**
1100  * security_compute_av - Compute access vector decisions.
1101  * @ssid: source security identifier
1102  * @tsid: target security identifier
1103  * @tclass: target security class
1104  * @avd: access vector decisions
1105  * @xperms: extended permissions
1106  *
1107  * Compute a set of access vector decisions based on the
1108  * SID pair (@ssid, @tsid) for the permissions in @tclass.
1109  */
security_compute_av(struct selinux_state * state,u32 ssid,u32 tsid,u16 orig_tclass,struct av_decision * avd,struct extended_perms * xperms)1110 void security_compute_av(struct selinux_state *state,
1111 			 u32 ssid,
1112 			 u32 tsid,
1113 			 u16 orig_tclass,
1114 			 struct av_decision *avd,
1115 			 struct extended_perms *xperms)
1116 {
1117 	struct selinux_policy *policy;
1118 	struct policydb *policydb;
1119 	struct sidtab *sidtab;
1120 	u16 tclass;
1121 	struct context *scontext = NULL, *tcontext = NULL;
1122 
1123 	rcu_read_lock();
1124 	policy = rcu_dereference(state->policy);
1125 	avd_init(policy, avd);
1126 	xperms->len = 0;
1127 	if (!selinux_initialized(state))
1128 		goto allow;
1129 
1130 	policydb = &policy->policydb;
1131 	sidtab = policy->sidtab;
1132 
1133 	scontext = sidtab_search(sidtab, ssid);
1134 	if (!scontext) {
1135 		pr_err("SELinux: %s:  unrecognized SID %d\n",
1136 		       __func__, ssid);
1137 		goto out;
1138 	}
1139 
1140 	/* permissive domain? */
1141 	if (ebitmap_get_bit(&policydb->permissive_map, scontext->type))
1142 		avd->flags |= AVD_FLAGS_PERMISSIVE;
1143 
1144 	tcontext = sidtab_search(sidtab, tsid);
1145 	if (!tcontext) {
1146 		pr_err("SELinux: %s:  unrecognized SID %d\n",
1147 		       __func__, tsid);
1148 		goto out;
1149 	}
1150 
1151 	tclass = unmap_class(&policy->map, orig_tclass);
1152 	if (unlikely(orig_tclass && !tclass)) {
1153 		if (policydb->allow_unknown)
1154 			goto allow;
1155 		goto out;
1156 	}
1157 	context_struct_compute_av(policydb, scontext, tcontext, tclass, avd,
1158 				  xperms);
1159 	map_decision(&policy->map, orig_tclass, avd,
1160 		     policydb->allow_unknown);
1161 out:
1162 	rcu_read_unlock();
1163 	return;
1164 allow:
1165 	avd->allowed = 0xffffffff;
1166 	goto out;
1167 }
1168 
security_compute_av_user(struct selinux_state * state,u32 ssid,u32 tsid,u16 tclass,struct av_decision * avd)1169 void security_compute_av_user(struct selinux_state *state,
1170 			      u32 ssid,
1171 			      u32 tsid,
1172 			      u16 tclass,
1173 			      struct av_decision *avd)
1174 {
1175 	struct selinux_policy *policy;
1176 	struct policydb *policydb;
1177 	struct sidtab *sidtab;
1178 	struct context *scontext = NULL, *tcontext = NULL;
1179 
1180 	rcu_read_lock();
1181 	policy = rcu_dereference(state->policy);
1182 	avd_init(policy, avd);
1183 	if (!selinux_initialized(state))
1184 		goto allow;
1185 
1186 	policydb = &policy->policydb;
1187 	sidtab = policy->sidtab;
1188 
1189 	scontext = sidtab_search(sidtab, ssid);
1190 	if (!scontext) {
1191 		pr_err("SELinux: %s:  unrecognized SID %d\n",
1192 		       __func__, ssid);
1193 		goto out;
1194 	}
1195 
1196 	/* permissive domain? */
1197 	if (ebitmap_get_bit(&policydb->permissive_map, scontext->type))
1198 		avd->flags |= AVD_FLAGS_PERMISSIVE;
1199 
1200 	tcontext = sidtab_search(sidtab, tsid);
1201 	if (!tcontext) {
1202 		pr_err("SELinux: %s:  unrecognized SID %d\n",
1203 		       __func__, tsid);
1204 		goto out;
1205 	}
1206 
1207 	if (unlikely(!tclass)) {
1208 		if (policydb->allow_unknown)
1209 			goto allow;
1210 		goto out;
1211 	}
1212 
1213 	context_struct_compute_av(policydb, scontext, tcontext, tclass, avd,
1214 				  NULL);
1215  out:
1216 	rcu_read_unlock();
1217 	return;
1218 allow:
1219 	avd->allowed = 0xffffffff;
1220 	goto out;
1221 }
1222 
1223 /*
1224  * Write the security context string representation of
1225  * the context structure `context' into a dynamically
1226  * allocated string of the correct size.  Set `*scontext'
1227  * to point to this string and set `*scontext_len' to
1228  * the length of the string.
1229  */
context_struct_to_string(struct policydb * p,struct context * context,char ** scontext,u32 * scontext_len)1230 static int context_struct_to_string(struct policydb *p,
1231 				    struct context *context,
1232 				    char **scontext, u32 *scontext_len)
1233 {
1234 	char *scontextp;
1235 
1236 	if (scontext)
1237 		*scontext = NULL;
1238 	*scontext_len = 0;
1239 
1240 	if (context->len) {
1241 		*scontext_len = context->len;
1242 		if (scontext) {
1243 			*scontext = kstrdup(context->str, GFP_ATOMIC);
1244 			if (!(*scontext))
1245 				return -ENOMEM;
1246 		}
1247 		return 0;
1248 	}
1249 
1250 	/* Compute the size of the context. */
1251 	*scontext_len += strlen(sym_name(p, SYM_USERS, context->user - 1)) + 1;
1252 	*scontext_len += strlen(sym_name(p, SYM_ROLES, context->role - 1)) + 1;
1253 	*scontext_len += strlen(sym_name(p, SYM_TYPES, context->type - 1)) + 1;
1254 	*scontext_len += mls_compute_context_len(p, context);
1255 
1256 	if (!scontext)
1257 		return 0;
1258 
1259 	/* Allocate space for the context; caller must free this space. */
1260 	scontextp = kmalloc(*scontext_len, GFP_ATOMIC);
1261 	if (!scontextp)
1262 		return -ENOMEM;
1263 	*scontext = scontextp;
1264 
1265 	/*
1266 	 * Copy the user name, role name and type name into the context.
1267 	 */
1268 	scontextp += sprintf(scontextp, "%s:%s:%s",
1269 		sym_name(p, SYM_USERS, context->user - 1),
1270 		sym_name(p, SYM_ROLES, context->role - 1),
1271 		sym_name(p, SYM_TYPES, context->type - 1));
1272 
1273 	mls_sid_to_context(p, context, &scontextp);
1274 
1275 	*scontextp = 0;
1276 
1277 	return 0;
1278 }
1279 
sidtab_entry_to_string(struct policydb * p,struct sidtab * sidtab,struct sidtab_entry * entry,char ** scontext,u32 * scontext_len)1280 static int sidtab_entry_to_string(struct policydb *p,
1281 				  struct sidtab *sidtab,
1282 				  struct sidtab_entry *entry,
1283 				  char **scontext, u32 *scontext_len)
1284 {
1285 	int rc = sidtab_sid2str_get(sidtab, entry, scontext, scontext_len);
1286 
1287 	if (rc != -ENOENT)
1288 		return rc;
1289 
1290 	rc = context_struct_to_string(p, &entry->context, scontext,
1291 				      scontext_len);
1292 	if (!rc && scontext)
1293 		sidtab_sid2str_put(sidtab, entry, *scontext, *scontext_len);
1294 	return rc;
1295 }
1296 
1297 #include "initial_sid_to_string.h"
1298 
security_sidtab_hash_stats(struct selinux_state * state,char * page)1299 int security_sidtab_hash_stats(struct selinux_state *state, char *page)
1300 {
1301 	struct selinux_policy *policy;
1302 	int rc;
1303 
1304 	if (!selinux_initialized(state)) {
1305 		pr_err("SELinux: %s:  called before initial load_policy\n",
1306 		       __func__);
1307 		return -EINVAL;
1308 	}
1309 
1310 	rcu_read_lock();
1311 	policy = rcu_dereference(state->policy);
1312 	rc = sidtab_hash_stats(policy->sidtab, page);
1313 	rcu_read_unlock();
1314 
1315 	return rc;
1316 }
1317 
security_get_initial_sid_context(u32 sid)1318 const char *security_get_initial_sid_context(u32 sid)
1319 {
1320 	if (unlikely(sid > SECINITSID_NUM))
1321 		return NULL;
1322 	return initial_sid_to_string[sid];
1323 }
1324 
security_sid_to_context_core(struct selinux_state * state,u32 sid,char ** scontext,u32 * scontext_len,int force,int only_invalid)1325 static int security_sid_to_context_core(struct selinux_state *state,
1326 					u32 sid, char **scontext,
1327 					u32 *scontext_len, int force,
1328 					int only_invalid)
1329 {
1330 	struct selinux_policy *policy;
1331 	struct policydb *policydb;
1332 	struct sidtab *sidtab;
1333 	struct sidtab_entry *entry;
1334 	int rc = 0;
1335 
1336 	if (scontext)
1337 		*scontext = NULL;
1338 	*scontext_len  = 0;
1339 
1340 	if (!selinux_initialized(state)) {
1341 		if (sid <= SECINITSID_NUM) {
1342 			char *scontextp;
1343 			const char *s = initial_sid_to_string[sid];
1344 
1345 			if (!s)
1346 				return -EINVAL;
1347 			*scontext_len = strlen(s) + 1;
1348 			if (!scontext)
1349 				return 0;
1350 			scontextp = kmemdup(s, *scontext_len, GFP_ATOMIC);
1351 			if (!scontextp)
1352 				return -ENOMEM;
1353 			*scontext = scontextp;
1354 			return 0;
1355 		}
1356 		pr_err("SELinux: %s:  called before initial "
1357 		       "load_policy on unknown SID %d\n", __func__, sid);
1358 		return -EINVAL;
1359 	}
1360 	rcu_read_lock();
1361 	policy = rcu_dereference(state->policy);
1362 	policydb = &policy->policydb;
1363 	sidtab = policy->sidtab;
1364 
1365 	if (force)
1366 		entry = sidtab_search_entry_force(sidtab, sid);
1367 	else
1368 		entry = sidtab_search_entry(sidtab, sid);
1369 	if (!entry) {
1370 		pr_err("SELinux: %s:  unrecognized SID %d\n",
1371 			__func__, sid);
1372 		rc = -EINVAL;
1373 		goto out_unlock;
1374 	}
1375 	if (only_invalid && !entry->context.len)
1376 		goto out_unlock;
1377 
1378 	rc = sidtab_entry_to_string(policydb, sidtab, entry, scontext,
1379 				    scontext_len);
1380 
1381 out_unlock:
1382 	rcu_read_unlock();
1383 	return rc;
1384 
1385 }
1386 
1387 /**
1388  * security_sid_to_context - Obtain a context for a given SID.
1389  * @sid: security identifier, SID
1390  * @scontext: security context
1391  * @scontext_len: length in bytes
1392  *
1393  * Write the string representation of the context associated with @sid
1394  * into a dynamically allocated string of the correct size.  Set @scontext
1395  * to point to this string and set @scontext_len to the length of the string.
1396  */
security_sid_to_context(struct selinux_state * state,u32 sid,char ** scontext,u32 * scontext_len)1397 int security_sid_to_context(struct selinux_state *state,
1398 			    u32 sid, char **scontext, u32 *scontext_len)
1399 {
1400 	return security_sid_to_context_core(state, sid, scontext,
1401 					    scontext_len, 0, 0);
1402 }
1403 
security_sid_to_context_force(struct selinux_state * state,u32 sid,char ** scontext,u32 * scontext_len)1404 int security_sid_to_context_force(struct selinux_state *state, u32 sid,
1405 				  char **scontext, u32 *scontext_len)
1406 {
1407 	return security_sid_to_context_core(state, sid, scontext,
1408 					    scontext_len, 1, 0);
1409 }
1410 
1411 /**
1412  * security_sid_to_context_inval - Obtain a context for a given SID if it
1413  *                                 is invalid.
1414  * @sid: security identifier, SID
1415  * @scontext: security context
1416  * @scontext_len: length in bytes
1417  *
1418  * Write the string representation of the context associated with @sid
1419  * into a dynamically allocated string of the correct size, but only if the
1420  * context is invalid in the current policy.  Set @scontext to point to
1421  * this string (or NULL if the context is valid) and set @scontext_len to
1422  * the length of the string (or 0 if the context is valid).
1423  */
security_sid_to_context_inval(struct selinux_state * state,u32 sid,char ** scontext,u32 * scontext_len)1424 int security_sid_to_context_inval(struct selinux_state *state, u32 sid,
1425 				  char **scontext, u32 *scontext_len)
1426 {
1427 	return security_sid_to_context_core(state, sid, scontext,
1428 					    scontext_len, 1, 1);
1429 }
1430 
1431 /*
1432  * Caveat:  Mutates scontext.
1433  */
string_to_context_struct(struct policydb * pol,struct sidtab * sidtabp,char * scontext,struct context * ctx,u32 def_sid)1434 static int string_to_context_struct(struct policydb *pol,
1435 				    struct sidtab *sidtabp,
1436 				    char *scontext,
1437 				    struct context *ctx,
1438 				    u32 def_sid)
1439 {
1440 	struct role_datum *role;
1441 	struct type_datum *typdatum;
1442 	struct user_datum *usrdatum;
1443 	char *scontextp, *p, oldc;
1444 	int rc = 0;
1445 
1446 	context_init(ctx);
1447 
1448 	/* Parse the security context. */
1449 
1450 	rc = -EINVAL;
1451 	scontextp = (char *) scontext;
1452 
1453 	/* Extract the user. */
1454 	p = scontextp;
1455 	while (*p && *p != ':')
1456 		p++;
1457 
1458 	if (*p == 0)
1459 		goto out;
1460 
1461 	*p++ = 0;
1462 
1463 	usrdatum = symtab_search(&pol->p_users, scontextp);
1464 	if (!usrdatum)
1465 		goto out;
1466 
1467 	ctx->user = usrdatum->value;
1468 
1469 	/* Extract role. */
1470 	scontextp = p;
1471 	while (*p && *p != ':')
1472 		p++;
1473 
1474 	if (*p == 0)
1475 		goto out;
1476 
1477 	*p++ = 0;
1478 
1479 	role = symtab_search(&pol->p_roles, scontextp);
1480 	if (!role)
1481 		goto out;
1482 	ctx->role = role->value;
1483 
1484 	/* Extract type. */
1485 	scontextp = p;
1486 	while (*p && *p != ':')
1487 		p++;
1488 	oldc = *p;
1489 	*p++ = 0;
1490 
1491 	typdatum = symtab_search(&pol->p_types, scontextp);
1492 	if (!typdatum || typdatum->attribute)
1493 		goto out;
1494 
1495 	ctx->type = typdatum->value;
1496 
1497 	rc = mls_context_to_sid(pol, oldc, p, ctx, sidtabp, def_sid);
1498 	if (rc)
1499 		goto out;
1500 
1501 	/* Check the validity of the new context. */
1502 	rc = -EINVAL;
1503 	if (!policydb_context_isvalid(pol, ctx))
1504 		goto out;
1505 	rc = 0;
1506 out:
1507 	if (rc)
1508 		context_destroy(ctx);
1509 	return rc;
1510 }
1511 
security_context_to_sid_core(struct selinux_state * state,const char * scontext,u32 scontext_len,u32 * sid,u32 def_sid,gfp_t gfp_flags,int force)1512 static int security_context_to_sid_core(struct selinux_state *state,
1513 					const char *scontext, u32 scontext_len,
1514 					u32 *sid, u32 def_sid, gfp_t gfp_flags,
1515 					int force)
1516 {
1517 	struct selinux_policy *policy;
1518 	struct policydb *policydb;
1519 	struct sidtab *sidtab;
1520 	char *scontext2, *str = NULL;
1521 	struct context context;
1522 	int rc = 0;
1523 
1524 	/* An empty security context is never valid. */
1525 	if (!scontext_len)
1526 		return -EINVAL;
1527 
1528 	/* Copy the string to allow changes and ensure a NUL terminator */
1529 	scontext2 = kmemdup_nul(scontext, scontext_len, gfp_flags);
1530 	if (!scontext2)
1531 		return -ENOMEM;
1532 
1533 	if (!selinux_initialized(state)) {
1534 		int i;
1535 
1536 		for (i = 1; i < SECINITSID_NUM; i++) {
1537 			const char *s = initial_sid_to_string[i];
1538 
1539 			if (s && !strcmp(s, scontext2)) {
1540 				*sid = i;
1541 				goto out;
1542 			}
1543 		}
1544 		*sid = SECINITSID_KERNEL;
1545 		goto out;
1546 	}
1547 	*sid = SECSID_NULL;
1548 
1549 	if (force) {
1550 		/* Save another copy for storing in uninterpreted form */
1551 		rc = -ENOMEM;
1552 		str = kstrdup(scontext2, gfp_flags);
1553 		if (!str)
1554 			goto out;
1555 	}
1556 retry:
1557 	rcu_read_lock();
1558 	policy = rcu_dereference(state->policy);
1559 	policydb = &policy->policydb;
1560 	sidtab = policy->sidtab;
1561 	rc = string_to_context_struct(policydb, sidtab, scontext2,
1562 				      &context, def_sid);
1563 	if (rc == -EINVAL && force) {
1564 		context.str = str;
1565 		context.len = strlen(str) + 1;
1566 		str = NULL;
1567 	} else if (rc)
1568 		goto out_unlock;
1569 	rc = sidtab_context_to_sid(sidtab, &context, sid);
1570 	if (rc == -ESTALE) {
1571 		rcu_read_unlock();
1572 		if (context.str) {
1573 			str = context.str;
1574 			context.str = NULL;
1575 		}
1576 		context_destroy(&context);
1577 		goto retry;
1578 	}
1579 	context_destroy(&context);
1580 out_unlock:
1581 	rcu_read_unlock();
1582 out:
1583 	kfree(scontext2);
1584 	kfree(str);
1585 	return rc;
1586 }
1587 
1588 /**
1589  * security_context_to_sid - Obtain a SID for a given security context.
1590  * @scontext: security context
1591  * @scontext_len: length in bytes
1592  * @sid: security identifier, SID
1593  * @gfp: context for the allocation
1594  *
1595  * Obtains a SID associated with the security context that
1596  * has the string representation specified by @scontext.
1597  * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1598  * memory is available, or 0 on success.
1599  */
security_context_to_sid(struct selinux_state * state,const char * scontext,u32 scontext_len,u32 * sid,gfp_t gfp)1600 int security_context_to_sid(struct selinux_state *state,
1601 			    const char *scontext, u32 scontext_len, u32 *sid,
1602 			    gfp_t gfp)
1603 {
1604 	return security_context_to_sid_core(state, scontext, scontext_len,
1605 					    sid, SECSID_NULL, gfp, 0);
1606 }
1607 
security_context_str_to_sid(struct selinux_state * state,const char * scontext,u32 * sid,gfp_t gfp)1608 int security_context_str_to_sid(struct selinux_state *state,
1609 				const char *scontext, u32 *sid, gfp_t gfp)
1610 {
1611 	return security_context_to_sid(state, scontext, strlen(scontext),
1612 				       sid, gfp);
1613 }
1614 
1615 /**
1616  * security_context_to_sid_default - Obtain a SID for a given security context,
1617  * falling back to specified default if needed.
1618  *
1619  * @scontext: security context
1620  * @scontext_len: length in bytes
1621  * @sid: security identifier, SID
1622  * @def_sid: default SID to assign on error
1623  *
1624  * Obtains a SID associated with the security context that
1625  * has the string representation specified by @scontext.
1626  * The default SID is passed to the MLS layer to be used to allow
1627  * kernel labeling of the MLS field if the MLS field is not present
1628  * (for upgrading to MLS without full relabel).
1629  * Implicitly forces adding of the context even if it cannot be mapped yet.
1630  * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1631  * memory is available, or 0 on success.
1632  */
security_context_to_sid_default(struct selinux_state * state,const char * scontext,u32 scontext_len,u32 * sid,u32 def_sid,gfp_t gfp_flags)1633 int security_context_to_sid_default(struct selinux_state *state,
1634 				    const char *scontext, u32 scontext_len,
1635 				    u32 *sid, u32 def_sid, gfp_t gfp_flags)
1636 {
1637 	return security_context_to_sid_core(state, scontext, scontext_len,
1638 					    sid, def_sid, gfp_flags, 1);
1639 }
1640 
security_context_to_sid_force(struct selinux_state * state,const char * scontext,u32 scontext_len,u32 * sid)1641 int security_context_to_sid_force(struct selinux_state *state,
1642 				  const char *scontext, u32 scontext_len,
1643 				  u32 *sid)
1644 {
1645 	return security_context_to_sid_core(state, scontext, scontext_len,
1646 					    sid, SECSID_NULL, GFP_KERNEL, 1);
1647 }
1648 
compute_sid_handle_invalid_context(struct selinux_state * state,struct selinux_policy * policy,struct sidtab_entry * sentry,struct sidtab_entry * tentry,u16 tclass,struct context * newcontext)1649 static int compute_sid_handle_invalid_context(
1650 	struct selinux_state *state,
1651 	struct selinux_policy *policy,
1652 	struct sidtab_entry *sentry,
1653 	struct sidtab_entry *tentry,
1654 	u16 tclass,
1655 	struct context *newcontext)
1656 {
1657 	struct policydb *policydb = &policy->policydb;
1658 	struct sidtab *sidtab = policy->sidtab;
1659 	char *s = NULL, *t = NULL, *n = NULL;
1660 	u32 slen, tlen, nlen;
1661 	struct audit_buffer *ab;
1662 
1663 	if (sidtab_entry_to_string(policydb, sidtab, sentry, &s, &slen))
1664 		goto out;
1665 	if (sidtab_entry_to_string(policydb, sidtab, tentry, &t, &tlen))
1666 		goto out;
1667 	if (context_struct_to_string(policydb, newcontext, &n, &nlen))
1668 		goto out;
1669 	ab = audit_log_start(audit_context(), GFP_ATOMIC, AUDIT_SELINUX_ERR);
1670 	audit_log_format(ab,
1671 			 "op=security_compute_sid invalid_context=");
1672 	/* no need to record the NUL with untrusted strings */
1673 	audit_log_n_untrustedstring(ab, n, nlen - 1);
1674 	audit_log_format(ab, " scontext=%s tcontext=%s tclass=%s",
1675 			 s, t, sym_name(policydb, SYM_CLASSES, tclass-1));
1676 	audit_log_end(ab);
1677 out:
1678 	kfree(s);
1679 	kfree(t);
1680 	kfree(n);
1681 	if (!enforcing_enabled(state))
1682 		return 0;
1683 	return -EACCES;
1684 }
1685 
filename_compute_type(struct policydb * policydb,struct context * newcontext,u32 stype,u32 ttype,u16 tclass,const char * objname)1686 static void filename_compute_type(struct policydb *policydb,
1687 				  struct context *newcontext,
1688 				  u32 stype, u32 ttype, u16 tclass,
1689 				  const char *objname)
1690 {
1691 	struct filename_trans_key ft;
1692 	struct filename_trans_datum *datum;
1693 
1694 	/*
1695 	 * Most filename trans rules are going to live in specific directories
1696 	 * like /dev or /var/run.  This bitmap will quickly skip rule searches
1697 	 * if the ttype does not contain any rules.
1698 	 */
1699 	if (!ebitmap_get_bit(&policydb->filename_trans_ttypes, ttype))
1700 		return;
1701 
1702 	ft.ttype = ttype;
1703 	ft.tclass = tclass;
1704 	ft.name = objname;
1705 
1706 	datum = policydb_filenametr_search(policydb, &ft);
1707 	while (datum) {
1708 		if (ebitmap_get_bit(&datum->stypes, stype - 1)) {
1709 			newcontext->type = datum->otype;
1710 			return;
1711 		}
1712 		datum = datum->next;
1713 	}
1714 }
1715 
security_compute_sid(struct selinux_state * state,u32 ssid,u32 tsid,u16 orig_tclass,u32 specified,const char * objname,u32 * out_sid,bool kern)1716 static int security_compute_sid(struct selinux_state *state,
1717 				u32 ssid,
1718 				u32 tsid,
1719 				u16 orig_tclass,
1720 				u32 specified,
1721 				const char *objname,
1722 				u32 *out_sid,
1723 				bool kern)
1724 {
1725 	struct selinux_policy *policy;
1726 	struct policydb *policydb;
1727 	struct sidtab *sidtab;
1728 	struct class_datum *cladatum;
1729 	struct context *scontext, *tcontext, newcontext;
1730 	struct sidtab_entry *sentry, *tentry;
1731 	struct avtab_key avkey;
1732 	struct avtab_datum *avdatum;
1733 	struct avtab_node *node;
1734 	u16 tclass;
1735 	int rc = 0;
1736 	bool sock;
1737 
1738 	if (!selinux_initialized(state)) {
1739 		switch (orig_tclass) {
1740 		case SECCLASS_PROCESS: /* kernel value */
1741 			*out_sid = ssid;
1742 			break;
1743 		default:
1744 			*out_sid = tsid;
1745 			break;
1746 		}
1747 		goto out;
1748 	}
1749 
1750 retry:
1751 	cladatum = NULL;
1752 	context_init(&newcontext);
1753 
1754 	rcu_read_lock();
1755 
1756 	policy = rcu_dereference(state->policy);
1757 
1758 	if (kern) {
1759 		tclass = unmap_class(&policy->map, orig_tclass);
1760 		sock = security_is_socket_class(orig_tclass);
1761 	} else {
1762 		tclass = orig_tclass;
1763 		sock = security_is_socket_class(map_class(&policy->map,
1764 							  tclass));
1765 	}
1766 
1767 	policydb = &policy->policydb;
1768 	sidtab = policy->sidtab;
1769 
1770 	sentry = sidtab_search_entry(sidtab, ssid);
1771 	if (!sentry) {
1772 		pr_err("SELinux: %s:  unrecognized SID %d\n",
1773 		       __func__, ssid);
1774 		rc = -EINVAL;
1775 		goto out_unlock;
1776 	}
1777 	tentry = sidtab_search_entry(sidtab, tsid);
1778 	if (!tentry) {
1779 		pr_err("SELinux: %s:  unrecognized SID %d\n",
1780 		       __func__, tsid);
1781 		rc = -EINVAL;
1782 		goto out_unlock;
1783 	}
1784 
1785 	scontext = &sentry->context;
1786 	tcontext = &tentry->context;
1787 
1788 	if (tclass && tclass <= policydb->p_classes.nprim)
1789 		cladatum = policydb->class_val_to_struct[tclass - 1];
1790 
1791 	/* Set the user identity. */
1792 	switch (specified) {
1793 	case AVTAB_TRANSITION:
1794 	case AVTAB_CHANGE:
1795 		if (cladatum && cladatum->default_user == DEFAULT_TARGET) {
1796 			newcontext.user = tcontext->user;
1797 		} else {
1798 			/* notice this gets both DEFAULT_SOURCE and unset */
1799 			/* Use the process user identity. */
1800 			newcontext.user = scontext->user;
1801 		}
1802 		break;
1803 	case AVTAB_MEMBER:
1804 		/* Use the related object owner. */
1805 		newcontext.user = tcontext->user;
1806 		break;
1807 	}
1808 
1809 	/* Set the role to default values. */
1810 	if (cladatum && cladatum->default_role == DEFAULT_SOURCE) {
1811 		newcontext.role = scontext->role;
1812 	} else if (cladatum && cladatum->default_role == DEFAULT_TARGET) {
1813 		newcontext.role = tcontext->role;
1814 	} else {
1815 		if ((tclass == policydb->process_class) || sock)
1816 			newcontext.role = scontext->role;
1817 		else
1818 			newcontext.role = OBJECT_R_VAL;
1819 	}
1820 
1821 	/* Set the type to default values. */
1822 	if (cladatum && cladatum->default_type == DEFAULT_SOURCE) {
1823 		newcontext.type = scontext->type;
1824 	} else if (cladatum && cladatum->default_type == DEFAULT_TARGET) {
1825 		newcontext.type = tcontext->type;
1826 	} else {
1827 		if ((tclass == policydb->process_class) || sock) {
1828 			/* Use the type of process. */
1829 			newcontext.type = scontext->type;
1830 		} else {
1831 			/* Use the type of the related object. */
1832 			newcontext.type = tcontext->type;
1833 		}
1834 	}
1835 
1836 	/* Look for a type transition/member/change rule. */
1837 	avkey.source_type = scontext->type;
1838 	avkey.target_type = tcontext->type;
1839 	avkey.target_class = tclass;
1840 	avkey.specified = specified;
1841 	avdatum = avtab_search(&policydb->te_avtab, &avkey);
1842 
1843 	/* If no permanent rule, also check for enabled conditional rules */
1844 	if (!avdatum) {
1845 		node = avtab_search_node(&policydb->te_cond_avtab, &avkey);
1846 		for (; node; node = avtab_search_node_next(node, specified)) {
1847 			if (node->key.specified & AVTAB_ENABLED) {
1848 				avdatum = &node->datum;
1849 				break;
1850 			}
1851 		}
1852 	}
1853 
1854 	if (avdatum) {
1855 		/* Use the type from the type transition/member/change rule. */
1856 		newcontext.type = avdatum->u.data;
1857 	}
1858 
1859 	/* if we have a objname this is a file trans check so check those rules */
1860 	if (objname)
1861 		filename_compute_type(policydb, &newcontext, scontext->type,
1862 				      tcontext->type, tclass, objname);
1863 
1864 	/* Check for class-specific changes. */
1865 	if (specified & AVTAB_TRANSITION) {
1866 		/* Look for a role transition rule. */
1867 		struct role_trans_datum *rtd;
1868 		struct role_trans_key rtk = {
1869 			.role = scontext->role,
1870 			.type = tcontext->type,
1871 			.tclass = tclass,
1872 		};
1873 
1874 		rtd = policydb_roletr_search(policydb, &rtk);
1875 		if (rtd)
1876 			newcontext.role = rtd->new_role;
1877 	}
1878 
1879 	/* Set the MLS attributes.
1880 	   This is done last because it may allocate memory. */
1881 	rc = mls_compute_sid(policydb, scontext, tcontext, tclass, specified,
1882 			     &newcontext, sock);
1883 	if (rc)
1884 		goto out_unlock;
1885 
1886 	/* Check the validity of the context. */
1887 	if (!policydb_context_isvalid(policydb, &newcontext)) {
1888 		rc = compute_sid_handle_invalid_context(state, policy, sentry,
1889 							tentry, tclass,
1890 							&newcontext);
1891 		if (rc)
1892 			goto out_unlock;
1893 	}
1894 	/* Obtain the sid for the context. */
1895 	rc = sidtab_context_to_sid(sidtab, &newcontext, out_sid);
1896 	if (rc == -ESTALE) {
1897 		rcu_read_unlock();
1898 		context_destroy(&newcontext);
1899 		goto retry;
1900 	}
1901 out_unlock:
1902 	rcu_read_unlock();
1903 	context_destroy(&newcontext);
1904 out:
1905 	return rc;
1906 }
1907 
1908 /**
1909  * security_transition_sid - Compute the SID for a new subject/object.
1910  * @ssid: source security identifier
1911  * @tsid: target security identifier
1912  * @tclass: target security class
1913  * @out_sid: security identifier for new subject/object
1914  *
1915  * Compute a SID to use for labeling a new subject or object in the
1916  * class @tclass based on a SID pair (@ssid, @tsid).
1917  * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1918  * if insufficient memory is available, or %0 if the new SID was
1919  * computed successfully.
1920  */
security_transition_sid(struct selinux_state * state,u32 ssid,u32 tsid,u16 tclass,const struct qstr * qstr,u32 * out_sid)1921 int security_transition_sid(struct selinux_state *state,
1922 			    u32 ssid, u32 tsid, u16 tclass,
1923 			    const struct qstr *qstr, u32 *out_sid)
1924 {
1925 	return security_compute_sid(state, ssid, tsid, tclass,
1926 				    AVTAB_TRANSITION,
1927 				    qstr ? qstr->name : NULL, out_sid, true);
1928 }
1929 
security_transition_sid_user(struct selinux_state * state,u32 ssid,u32 tsid,u16 tclass,const char * objname,u32 * out_sid)1930 int security_transition_sid_user(struct selinux_state *state,
1931 				 u32 ssid, u32 tsid, u16 tclass,
1932 				 const char *objname, u32 *out_sid)
1933 {
1934 	return security_compute_sid(state, ssid, tsid, tclass,
1935 				    AVTAB_TRANSITION,
1936 				    objname, out_sid, false);
1937 }
1938 
1939 /**
1940  * security_member_sid - Compute the SID for member selection.
1941  * @ssid: source security identifier
1942  * @tsid: target security identifier
1943  * @tclass: target security class
1944  * @out_sid: security identifier for selected member
1945  *
1946  * Compute a SID to use when selecting a member of a polyinstantiated
1947  * object of class @tclass based on a SID pair (@ssid, @tsid).
1948  * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1949  * if insufficient memory is available, or %0 if the SID was
1950  * computed successfully.
1951  */
security_member_sid(struct selinux_state * state,u32 ssid,u32 tsid,u16 tclass,u32 * out_sid)1952 int security_member_sid(struct selinux_state *state,
1953 			u32 ssid,
1954 			u32 tsid,
1955 			u16 tclass,
1956 			u32 *out_sid)
1957 {
1958 	return security_compute_sid(state, ssid, tsid, tclass,
1959 				    AVTAB_MEMBER, NULL,
1960 				    out_sid, false);
1961 }
1962 
1963 /**
1964  * security_change_sid - Compute the SID for object relabeling.
1965  * @ssid: source security identifier
1966  * @tsid: target security identifier
1967  * @tclass: target security class
1968  * @out_sid: security identifier for selected member
1969  *
1970  * Compute a SID to use for relabeling an object of class @tclass
1971  * based on a SID pair (@ssid, @tsid).
1972  * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1973  * if insufficient memory is available, or %0 if the SID was
1974  * computed successfully.
1975  */
security_change_sid(struct selinux_state * state,u32 ssid,u32 tsid,u16 tclass,u32 * out_sid)1976 int security_change_sid(struct selinux_state *state,
1977 			u32 ssid,
1978 			u32 tsid,
1979 			u16 tclass,
1980 			u32 *out_sid)
1981 {
1982 	return security_compute_sid(state,
1983 				    ssid, tsid, tclass, AVTAB_CHANGE, NULL,
1984 				    out_sid, false);
1985 }
1986 
convert_context_handle_invalid_context(struct selinux_state * state,struct policydb * policydb,struct context * context)1987 static inline int convert_context_handle_invalid_context(
1988 	struct selinux_state *state,
1989 	struct policydb *policydb,
1990 	struct context *context)
1991 {
1992 	char *s;
1993 	u32 len;
1994 
1995 	if (enforcing_enabled(state))
1996 		return -EINVAL;
1997 
1998 	if (!context_struct_to_string(policydb, context, &s, &len)) {
1999 		pr_warn("SELinux:  Context %s would be invalid if enforcing\n",
2000 			s);
2001 		kfree(s);
2002 	}
2003 	return 0;
2004 }
2005 
2006 /*
2007  * Convert the values in the security context
2008  * structure `oldc' from the values specified
2009  * in the policy `p->oldp' to the values specified
2010  * in the policy `p->newp', storing the new context
2011  * in `newc'.  Verify that the context is valid
2012  * under the new policy.
2013  */
convert_context(struct context * oldc,struct context * newc,void * p)2014 static int convert_context(struct context *oldc, struct context *newc, void *p)
2015 {
2016 	struct convert_context_args *args;
2017 	struct ocontext *oc;
2018 	struct role_datum *role;
2019 	struct type_datum *typdatum;
2020 	struct user_datum *usrdatum;
2021 	char *s;
2022 	u32 len;
2023 	int rc;
2024 
2025 	args = p;
2026 
2027 	if (oldc->str) {
2028 		s = kstrdup(oldc->str, GFP_KERNEL);
2029 		if (!s)
2030 			return -ENOMEM;
2031 
2032 		rc = string_to_context_struct(args->newp, NULL, s,
2033 					      newc, SECSID_NULL);
2034 		if (rc == -EINVAL) {
2035 			/*
2036 			 * Retain string representation for later mapping.
2037 			 *
2038 			 * IMPORTANT: We need to copy the contents of oldc->str
2039 			 * back into s again because string_to_context_struct()
2040 			 * may have garbled it.
2041 			 */
2042 			memcpy(s, oldc->str, oldc->len);
2043 			context_init(newc);
2044 			newc->str = s;
2045 			newc->len = oldc->len;
2046 			return 0;
2047 		}
2048 		kfree(s);
2049 		if (rc) {
2050 			/* Other error condition, e.g. ENOMEM. */
2051 			pr_err("SELinux:   Unable to map context %s, rc = %d.\n",
2052 			       oldc->str, -rc);
2053 			return rc;
2054 		}
2055 		pr_info("SELinux:  Context %s became valid (mapped).\n",
2056 			oldc->str);
2057 		return 0;
2058 	}
2059 
2060 	context_init(newc);
2061 
2062 	/* Convert the user. */
2063 	rc = -EINVAL;
2064 	usrdatum = symtab_search(&args->newp->p_users,
2065 				 sym_name(args->oldp,
2066 					  SYM_USERS, oldc->user - 1));
2067 	if (!usrdatum)
2068 		goto bad;
2069 	newc->user = usrdatum->value;
2070 
2071 	/* Convert the role. */
2072 	rc = -EINVAL;
2073 	role = symtab_search(&args->newp->p_roles,
2074 			     sym_name(args->oldp, SYM_ROLES, oldc->role - 1));
2075 	if (!role)
2076 		goto bad;
2077 	newc->role = role->value;
2078 
2079 	/* Convert the type. */
2080 	rc = -EINVAL;
2081 	typdatum = symtab_search(&args->newp->p_types,
2082 				 sym_name(args->oldp,
2083 					  SYM_TYPES, oldc->type - 1));
2084 	if (!typdatum)
2085 		goto bad;
2086 	newc->type = typdatum->value;
2087 
2088 	/* Convert the MLS fields if dealing with MLS policies */
2089 	if (args->oldp->mls_enabled && args->newp->mls_enabled) {
2090 		rc = mls_convert_context(args->oldp, args->newp, oldc, newc);
2091 		if (rc)
2092 			goto bad;
2093 	} else if (!args->oldp->mls_enabled && args->newp->mls_enabled) {
2094 		/*
2095 		 * Switching between non-MLS and MLS policy:
2096 		 * ensure that the MLS fields of the context for all
2097 		 * existing entries in the sidtab are filled in with a
2098 		 * suitable default value, likely taken from one of the
2099 		 * initial SIDs.
2100 		 */
2101 		oc = args->newp->ocontexts[OCON_ISID];
2102 		while (oc && oc->sid[0] != SECINITSID_UNLABELED)
2103 			oc = oc->next;
2104 		rc = -EINVAL;
2105 		if (!oc) {
2106 			pr_err("SELinux:  unable to look up"
2107 				" the initial SIDs list\n");
2108 			goto bad;
2109 		}
2110 		rc = mls_range_set(newc, &oc->context[0].range);
2111 		if (rc)
2112 			goto bad;
2113 	}
2114 
2115 	/* Check the validity of the new context. */
2116 	if (!policydb_context_isvalid(args->newp, newc)) {
2117 		rc = convert_context_handle_invalid_context(args->state,
2118 							args->oldp,
2119 							oldc);
2120 		if (rc)
2121 			goto bad;
2122 	}
2123 
2124 	return 0;
2125 bad:
2126 	/* Map old representation to string and save it. */
2127 	rc = context_struct_to_string(args->oldp, oldc, &s, &len);
2128 	if (rc)
2129 		return rc;
2130 	context_destroy(newc);
2131 	newc->str = s;
2132 	newc->len = len;
2133 	pr_info("SELinux:  Context %s became invalid (unmapped).\n",
2134 		newc->str);
2135 	return 0;
2136 }
2137 
security_load_policycaps(struct selinux_state * state,struct selinux_policy * policy)2138 static void security_load_policycaps(struct selinux_state *state,
2139 				struct selinux_policy *policy)
2140 {
2141 	struct policydb *p;
2142 	unsigned int i;
2143 	struct ebitmap_node *node;
2144 
2145 	p = &policy->policydb;
2146 
2147 	for (i = 0; i < ARRAY_SIZE(state->policycap); i++)
2148 		WRITE_ONCE(state->policycap[i],
2149 			ebitmap_get_bit(&p->policycaps, i));
2150 
2151 	for (i = 0; i < ARRAY_SIZE(selinux_policycap_names); i++)
2152 		pr_info("SELinux:  policy capability %s=%d\n",
2153 			selinux_policycap_names[i],
2154 			ebitmap_get_bit(&p->policycaps, i));
2155 
2156 	ebitmap_for_each_positive_bit(&p->policycaps, node, i) {
2157 		if (i >= ARRAY_SIZE(selinux_policycap_names))
2158 			pr_info("SELinux:  unknown policy capability %u\n",
2159 				i);
2160 	}
2161 }
2162 
2163 static int security_preserve_bools(struct selinux_policy *oldpolicy,
2164 				struct selinux_policy *newpolicy);
2165 
selinux_policy_free(struct selinux_policy * policy)2166 static void selinux_policy_free(struct selinux_policy *policy)
2167 {
2168 	if (!policy)
2169 		return;
2170 
2171 	sidtab_destroy(policy->sidtab);
2172 	kfree(policy->map.mapping);
2173 	policydb_destroy(&policy->policydb);
2174 	kfree(policy->sidtab);
2175 	kfree(policy);
2176 }
2177 
selinux_policy_cond_free(struct selinux_policy * policy)2178 static void selinux_policy_cond_free(struct selinux_policy *policy)
2179 {
2180 	cond_policydb_destroy_dup(&policy->policydb);
2181 	kfree(policy);
2182 }
2183 
selinux_policy_cancel(struct selinux_state * state,struct selinux_load_state * load_state)2184 void selinux_policy_cancel(struct selinux_state *state,
2185 			   struct selinux_load_state *load_state)
2186 {
2187 	struct selinux_policy *oldpolicy;
2188 
2189 	oldpolicy = rcu_dereference_protected(state->policy,
2190 					lockdep_is_held(&state->policy_mutex));
2191 
2192 	sidtab_cancel_convert(oldpolicy->sidtab);
2193 	selinux_policy_free(load_state->policy);
2194 	kfree(load_state->convert_data);
2195 }
2196 
selinux_notify_policy_change(struct selinux_state * state,u32 seqno)2197 static void selinux_notify_policy_change(struct selinux_state *state,
2198 					u32 seqno)
2199 {
2200 	/* Flush external caches and notify userspace of policy load */
2201 	avc_ss_reset(state->avc, seqno);
2202 	selnl_notify_policyload(seqno);
2203 	selinux_status_update_policyload(state, seqno);
2204 	selinux_netlbl_cache_invalidate();
2205 	selinux_xfrm_notify_policyload();
2206 }
2207 
selinux_policy_commit(struct selinux_state * state,struct selinux_load_state * load_state)2208 void selinux_policy_commit(struct selinux_state *state,
2209 			   struct selinux_load_state *load_state)
2210 {
2211 	struct selinux_policy *oldpolicy, *newpolicy = load_state->policy;
2212 	unsigned long flags;
2213 	u32 seqno;
2214 
2215 	oldpolicy = rcu_dereference_protected(state->policy,
2216 					lockdep_is_held(&state->policy_mutex));
2217 
2218 	/* If switching between different policy types, log MLS status */
2219 	if (oldpolicy) {
2220 		if (oldpolicy->policydb.mls_enabled && !newpolicy->policydb.mls_enabled)
2221 			pr_info("SELinux: Disabling MLS support...\n");
2222 		else if (!oldpolicy->policydb.mls_enabled && newpolicy->policydb.mls_enabled)
2223 			pr_info("SELinux: Enabling MLS support...\n");
2224 	}
2225 
2226 	/* Set latest granting seqno for new policy. */
2227 	if (oldpolicy)
2228 		newpolicy->latest_granting = oldpolicy->latest_granting + 1;
2229 	else
2230 		newpolicy->latest_granting = 1;
2231 	seqno = newpolicy->latest_granting;
2232 
2233 	/* Install the new policy. */
2234 	if (oldpolicy) {
2235 		sidtab_freeze_begin(oldpolicy->sidtab, &flags);
2236 		rcu_assign_pointer(state->policy, newpolicy);
2237 		sidtab_freeze_end(oldpolicy->sidtab, &flags);
2238 	} else {
2239 		rcu_assign_pointer(state->policy, newpolicy);
2240 	}
2241 
2242 	/* Load the policycaps from the new policy */
2243 	security_load_policycaps(state, newpolicy);
2244 
2245 	if (!selinux_initialized(state)) {
2246 		/*
2247 		 * After first policy load, the security server is
2248 		 * marked as initialized and ready to handle requests and
2249 		 * any objects created prior to policy load are then labeled.
2250 		 */
2251 		selinux_mark_initialized(state);
2252 		selinux_complete_init();
2253 	}
2254 
2255 	/* Free the old policy */
2256 	synchronize_rcu();
2257 	selinux_policy_free(oldpolicy);
2258 	kfree(load_state->convert_data);
2259 
2260 	/* Notify others of the policy change */
2261 	selinux_notify_policy_change(state, seqno);
2262 }
2263 
2264 /**
2265  * security_load_policy - Load a security policy configuration.
2266  * @data: binary policy data
2267  * @len: length of data in bytes
2268  *
2269  * Load a new set of security policy configuration data,
2270  * validate it and convert the SID table as necessary.
2271  * This function will flush the access vector cache after
2272  * loading the new policy.
2273  */
security_load_policy(struct selinux_state * state,void * data,size_t len,struct selinux_load_state * load_state)2274 int security_load_policy(struct selinux_state *state, void *data, size_t len,
2275 			 struct selinux_load_state *load_state)
2276 {
2277 	struct selinux_policy *newpolicy, *oldpolicy;
2278 	struct selinux_policy_convert_data *convert_data;
2279 	int rc = 0;
2280 	struct policy_file file = { data, len }, *fp = &file;
2281 
2282 	newpolicy = kzalloc(sizeof(*newpolicy), GFP_KERNEL);
2283 	if (!newpolicy)
2284 		return -ENOMEM;
2285 
2286 	newpolicy->sidtab = kzalloc(sizeof(*newpolicy->sidtab), GFP_KERNEL);
2287 	if (!newpolicy->sidtab) {
2288 		rc = -ENOMEM;
2289 		goto err_policy;
2290 	}
2291 
2292 	rc = policydb_read(&newpolicy->policydb, fp);
2293 	if (rc)
2294 		goto err_sidtab;
2295 
2296 	newpolicy->policydb.len = len;
2297 	rc = selinux_set_mapping(&newpolicy->policydb, secclass_map,
2298 				&newpolicy->map);
2299 	if (rc)
2300 		goto err_policydb;
2301 
2302 	rc = policydb_load_isids(&newpolicy->policydb, newpolicy->sidtab);
2303 	if (rc) {
2304 		pr_err("SELinux:  unable to load the initial SIDs\n");
2305 		goto err_mapping;
2306 	}
2307 
2308 	if (!selinux_initialized(state)) {
2309 		/* First policy load, so no need to preserve state from old policy */
2310 		load_state->policy = newpolicy;
2311 		load_state->convert_data = NULL;
2312 		return 0;
2313 	}
2314 
2315 	oldpolicy = rcu_dereference_protected(state->policy,
2316 					lockdep_is_held(&state->policy_mutex));
2317 
2318 	/* Preserve active boolean values from the old policy */
2319 	rc = security_preserve_bools(oldpolicy, newpolicy);
2320 	if (rc) {
2321 		pr_err("SELinux:  unable to preserve booleans\n");
2322 		goto err_free_isids;
2323 	}
2324 
2325 	convert_data = kmalloc(sizeof(*convert_data), GFP_KERNEL);
2326 	if (!convert_data) {
2327 		rc = -ENOMEM;
2328 		goto err_free_isids;
2329 	}
2330 
2331 	/*
2332 	 * Convert the internal representations of contexts
2333 	 * in the new SID table.
2334 	 */
2335 	convert_data->args.state = state;
2336 	convert_data->args.oldp = &oldpolicy->policydb;
2337 	convert_data->args.newp = &newpolicy->policydb;
2338 
2339 	convert_data->sidtab_params.func = convert_context;
2340 	convert_data->sidtab_params.args = &convert_data->args;
2341 	convert_data->sidtab_params.target = newpolicy->sidtab;
2342 
2343 	rc = sidtab_convert(oldpolicy->sidtab, &convert_data->sidtab_params);
2344 	if (rc) {
2345 		pr_err("SELinux:  unable to convert the internal"
2346 			" representation of contexts in the new SID"
2347 			" table\n");
2348 		goto err_free_convert_data;
2349 	}
2350 
2351 	load_state->policy = newpolicy;
2352 	load_state->convert_data = convert_data;
2353 	return 0;
2354 
2355 err_free_convert_data:
2356 	kfree(convert_data);
2357 err_free_isids:
2358 	sidtab_destroy(newpolicy->sidtab);
2359 err_mapping:
2360 	kfree(newpolicy->map.mapping);
2361 err_policydb:
2362 	policydb_destroy(&newpolicy->policydb);
2363 err_sidtab:
2364 	kfree(newpolicy->sidtab);
2365 err_policy:
2366 	kfree(newpolicy);
2367 
2368 	return rc;
2369 }
2370 
2371 /**
2372  * ocontext_to_sid - Helper to safely get sid for an ocontext
2373  * @sidtab: SID table
2374  * @c: ocontext structure
2375  * @index: index of the context entry (0 or 1)
2376  * @out_sid: pointer to the resulting SID value
2377  *
2378  * For all ocontexts except OCON_ISID the SID fields are populated
2379  * on-demand when needed. Since updating the SID value is an SMP-sensitive
2380  * operation, this helper must be used to do that safely.
2381  *
2382  * WARNING: This function may return -ESTALE, indicating that the caller
2383  * must retry the operation after re-acquiring the policy pointer!
2384  */
ocontext_to_sid(struct sidtab * sidtab,struct ocontext * c,size_t index,u32 * out_sid)2385 static int ocontext_to_sid(struct sidtab *sidtab, struct ocontext *c,
2386 			   size_t index, u32 *out_sid)
2387 {
2388 	int rc;
2389 	u32 sid;
2390 
2391 	/* Ensure the associated sidtab entry is visible to this thread. */
2392 	sid = smp_load_acquire(&c->sid[index]);
2393 	if (!sid) {
2394 		rc = sidtab_context_to_sid(sidtab, &c->context[index], &sid);
2395 		if (rc)
2396 			return rc;
2397 
2398 		/*
2399 		 * Ensure the new sidtab entry is visible to other threads
2400 		 * when they see the SID.
2401 		 */
2402 		smp_store_release(&c->sid[index], sid);
2403 	}
2404 	*out_sid = sid;
2405 	return 0;
2406 }
2407 
2408 /**
2409  * security_port_sid - Obtain the SID for a port.
2410  * @protocol: protocol number
2411  * @port: port number
2412  * @out_sid: security identifier
2413  */
security_port_sid(struct selinux_state * state,u8 protocol,u16 port,u32 * out_sid)2414 int security_port_sid(struct selinux_state *state,
2415 		      u8 protocol, u16 port, u32 *out_sid)
2416 {
2417 	struct selinux_policy *policy;
2418 	struct policydb *policydb;
2419 	struct sidtab *sidtab;
2420 	struct ocontext *c;
2421 	int rc;
2422 
2423 	if (!selinux_initialized(state)) {
2424 		*out_sid = SECINITSID_PORT;
2425 		return 0;
2426 	}
2427 
2428 retry:
2429 	rc = 0;
2430 	rcu_read_lock();
2431 	policy = rcu_dereference(state->policy);
2432 	policydb = &policy->policydb;
2433 	sidtab = policy->sidtab;
2434 
2435 	c = policydb->ocontexts[OCON_PORT];
2436 	while (c) {
2437 		if (c->u.port.protocol == protocol &&
2438 		    c->u.port.low_port <= port &&
2439 		    c->u.port.high_port >= port)
2440 			break;
2441 		c = c->next;
2442 	}
2443 
2444 	if (c) {
2445 		rc = ocontext_to_sid(sidtab, c, 0, out_sid);
2446 		if (rc == -ESTALE) {
2447 			rcu_read_unlock();
2448 			goto retry;
2449 		}
2450 		if (rc)
2451 			goto out;
2452 	} else {
2453 		*out_sid = SECINITSID_PORT;
2454 	}
2455 
2456 out:
2457 	rcu_read_unlock();
2458 	return rc;
2459 }
2460 
2461 /**
2462  * security_pkey_sid - Obtain the SID for a pkey.
2463  * @subnet_prefix: Subnet Prefix
2464  * @pkey_num: pkey number
2465  * @out_sid: security identifier
2466  */
security_ib_pkey_sid(struct selinux_state * state,u64 subnet_prefix,u16 pkey_num,u32 * out_sid)2467 int security_ib_pkey_sid(struct selinux_state *state,
2468 			 u64 subnet_prefix, u16 pkey_num, u32 *out_sid)
2469 {
2470 	struct selinux_policy *policy;
2471 	struct policydb *policydb;
2472 	struct sidtab *sidtab;
2473 	struct ocontext *c;
2474 	int rc;
2475 
2476 	if (!selinux_initialized(state)) {
2477 		*out_sid = SECINITSID_UNLABELED;
2478 		return 0;
2479 	}
2480 
2481 retry:
2482 	rc = 0;
2483 	rcu_read_lock();
2484 	policy = rcu_dereference(state->policy);
2485 	policydb = &policy->policydb;
2486 	sidtab = policy->sidtab;
2487 
2488 	c = policydb->ocontexts[OCON_IBPKEY];
2489 	while (c) {
2490 		if (c->u.ibpkey.low_pkey <= pkey_num &&
2491 		    c->u.ibpkey.high_pkey >= pkey_num &&
2492 		    c->u.ibpkey.subnet_prefix == subnet_prefix)
2493 			break;
2494 
2495 		c = c->next;
2496 	}
2497 
2498 	if (c) {
2499 		rc = ocontext_to_sid(sidtab, c, 0, out_sid);
2500 		if (rc == -ESTALE) {
2501 			rcu_read_unlock();
2502 			goto retry;
2503 		}
2504 		if (rc)
2505 			goto out;
2506 	} else
2507 		*out_sid = SECINITSID_UNLABELED;
2508 
2509 out:
2510 	rcu_read_unlock();
2511 	return rc;
2512 }
2513 
2514 /**
2515  * security_ib_endport_sid - Obtain the SID for a subnet management interface.
2516  * @dev_name: device name
2517  * @port: port number
2518  * @out_sid: security identifier
2519  */
security_ib_endport_sid(struct selinux_state * state,const char * dev_name,u8 port_num,u32 * out_sid)2520 int security_ib_endport_sid(struct selinux_state *state,
2521 			    const char *dev_name, u8 port_num, u32 *out_sid)
2522 {
2523 	struct selinux_policy *policy;
2524 	struct policydb *policydb;
2525 	struct sidtab *sidtab;
2526 	struct ocontext *c;
2527 	int rc;
2528 
2529 	if (!selinux_initialized(state)) {
2530 		*out_sid = SECINITSID_UNLABELED;
2531 		return 0;
2532 	}
2533 
2534 retry:
2535 	rc = 0;
2536 	rcu_read_lock();
2537 	policy = rcu_dereference(state->policy);
2538 	policydb = &policy->policydb;
2539 	sidtab = policy->sidtab;
2540 
2541 	c = policydb->ocontexts[OCON_IBENDPORT];
2542 	while (c) {
2543 		if (c->u.ibendport.port == port_num &&
2544 		    !strncmp(c->u.ibendport.dev_name,
2545 			     dev_name,
2546 			     IB_DEVICE_NAME_MAX))
2547 			break;
2548 
2549 		c = c->next;
2550 	}
2551 
2552 	if (c) {
2553 		rc = ocontext_to_sid(sidtab, c, 0, out_sid);
2554 		if (rc == -ESTALE) {
2555 			rcu_read_unlock();
2556 			goto retry;
2557 		}
2558 		if (rc)
2559 			goto out;
2560 	} else
2561 		*out_sid = SECINITSID_UNLABELED;
2562 
2563 out:
2564 	rcu_read_unlock();
2565 	return rc;
2566 }
2567 
2568 /**
2569  * security_netif_sid - Obtain the SID for a network interface.
2570  * @name: interface name
2571  * @if_sid: interface SID
2572  */
security_netif_sid(struct selinux_state * state,char * name,u32 * if_sid)2573 int security_netif_sid(struct selinux_state *state,
2574 		       char *name, u32 *if_sid)
2575 {
2576 	struct selinux_policy *policy;
2577 	struct policydb *policydb;
2578 	struct sidtab *sidtab;
2579 	int rc;
2580 	struct ocontext *c;
2581 
2582 	if (!selinux_initialized(state)) {
2583 		*if_sid = SECINITSID_NETIF;
2584 		return 0;
2585 	}
2586 
2587 retry:
2588 	rc = 0;
2589 	rcu_read_lock();
2590 	policy = rcu_dereference(state->policy);
2591 	policydb = &policy->policydb;
2592 	sidtab = policy->sidtab;
2593 
2594 	c = policydb->ocontexts[OCON_NETIF];
2595 	while (c) {
2596 		if (strcmp(name, c->u.name) == 0)
2597 			break;
2598 		c = c->next;
2599 	}
2600 
2601 	if (c) {
2602 		rc = ocontext_to_sid(sidtab, c, 0, if_sid);
2603 		if (rc == -ESTALE) {
2604 			rcu_read_unlock();
2605 			goto retry;
2606 		}
2607 		if (rc)
2608 			goto out;
2609 	} else
2610 		*if_sid = SECINITSID_NETIF;
2611 
2612 out:
2613 	rcu_read_unlock();
2614 	return rc;
2615 }
2616 
match_ipv6_addrmask(u32 * input,u32 * addr,u32 * mask)2617 static int match_ipv6_addrmask(u32 *input, u32 *addr, u32 *mask)
2618 {
2619 	int i, fail = 0;
2620 
2621 	for (i = 0; i < 4; i++)
2622 		if (addr[i] != (input[i] & mask[i])) {
2623 			fail = 1;
2624 			break;
2625 		}
2626 
2627 	return !fail;
2628 }
2629 
2630 /**
2631  * security_node_sid - Obtain the SID for a node (host).
2632  * @domain: communication domain aka address family
2633  * @addrp: address
2634  * @addrlen: address length in bytes
2635  * @out_sid: security identifier
2636  */
security_node_sid(struct selinux_state * state,u16 domain,void * addrp,u32 addrlen,u32 * out_sid)2637 int security_node_sid(struct selinux_state *state,
2638 		      u16 domain,
2639 		      void *addrp,
2640 		      u32 addrlen,
2641 		      u32 *out_sid)
2642 {
2643 	struct selinux_policy *policy;
2644 	struct policydb *policydb;
2645 	struct sidtab *sidtab;
2646 	int rc;
2647 	struct ocontext *c;
2648 
2649 	if (!selinux_initialized(state)) {
2650 		*out_sid = SECINITSID_NODE;
2651 		return 0;
2652 	}
2653 
2654 retry:
2655 	rcu_read_lock();
2656 	policy = rcu_dereference(state->policy);
2657 	policydb = &policy->policydb;
2658 	sidtab = policy->sidtab;
2659 
2660 	switch (domain) {
2661 	case AF_INET: {
2662 		u32 addr;
2663 
2664 		rc = -EINVAL;
2665 		if (addrlen != sizeof(u32))
2666 			goto out;
2667 
2668 		addr = *((u32 *)addrp);
2669 
2670 		c = policydb->ocontexts[OCON_NODE];
2671 		while (c) {
2672 			if (c->u.node.addr == (addr & c->u.node.mask))
2673 				break;
2674 			c = c->next;
2675 		}
2676 		break;
2677 	}
2678 
2679 	case AF_INET6:
2680 		rc = -EINVAL;
2681 		if (addrlen != sizeof(u64) * 2)
2682 			goto out;
2683 		c = policydb->ocontexts[OCON_NODE6];
2684 		while (c) {
2685 			if (match_ipv6_addrmask(addrp, c->u.node6.addr,
2686 						c->u.node6.mask))
2687 				break;
2688 			c = c->next;
2689 		}
2690 		break;
2691 
2692 	default:
2693 		rc = 0;
2694 		*out_sid = SECINITSID_NODE;
2695 		goto out;
2696 	}
2697 
2698 	if (c) {
2699 		rc = ocontext_to_sid(sidtab, c, 0, out_sid);
2700 		if (rc == -ESTALE) {
2701 			rcu_read_unlock();
2702 			goto retry;
2703 		}
2704 		if (rc)
2705 			goto out;
2706 	} else {
2707 		*out_sid = SECINITSID_NODE;
2708 	}
2709 
2710 	rc = 0;
2711 out:
2712 	rcu_read_unlock();
2713 	return rc;
2714 }
2715 
2716 #define SIDS_NEL 25
2717 
2718 /**
2719  * security_get_user_sids - Obtain reachable SIDs for a user.
2720  * @fromsid: starting SID
2721  * @username: username
2722  * @sids: array of reachable SIDs for user
2723  * @nel: number of elements in @sids
2724  *
2725  * Generate the set of SIDs for legal security contexts
2726  * for a given user that can be reached by @fromsid.
2727  * Set *@sids to point to a dynamically allocated
2728  * array containing the set of SIDs.  Set *@nel to the
2729  * number of elements in the array.
2730  */
2731 
security_get_user_sids(struct selinux_state * state,u32 fromsid,char * username,u32 ** sids,u32 * nel)2732 int security_get_user_sids(struct selinux_state *state,
2733 			   u32 fromsid,
2734 			   char *username,
2735 			   u32 **sids,
2736 			   u32 *nel)
2737 {
2738 	struct selinux_policy *policy;
2739 	struct policydb *policydb;
2740 	struct sidtab *sidtab;
2741 	struct context *fromcon, usercon;
2742 	u32 *mysids = NULL, *mysids2, sid;
2743 	u32 i, j, mynel, maxnel = SIDS_NEL;
2744 	struct user_datum *user;
2745 	struct role_datum *role;
2746 	struct ebitmap_node *rnode, *tnode;
2747 	int rc;
2748 
2749 	*sids = NULL;
2750 	*nel = 0;
2751 
2752 	if (!selinux_initialized(state))
2753 		return 0;
2754 
2755 	mysids = kcalloc(maxnel, sizeof(*mysids), GFP_KERNEL);
2756 	if (!mysids)
2757 		return -ENOMEM;
2758 
2759 retry:
2760 	mynel = 0;
2761 	rcu_read_lock();
2762 	policy = rcu_dereference(state->policy);
2763 	policydb = &policy->policydb;
2764 	sidtab = policy->sidtab;
2765 
2766 	context_init(&usercon);
2767 
2768 	rc = -EINVAL;
2769 	fromcon = sidtab_search(sidtab, fromsid);
2770 	if (!fromcon)
2771 		goto out_unlock;
2772 
2773 	rc = -EINVAL;
2774 	user = symtab_search(&policydb->p_users, username);
2775 	if (!user)
2776 		goto out_unlock;
2777 
2778 	usercon.user = user->value;
2779 
2780 	ebitmap_for_each_positive_bit(&user->roles, rnode, i) {
2781 		role = policydb->role_val_to_struct[i];
2782 		usercon.role = i + 1;
2783 		ebitmap_for_each_positive_bit(&role->types, tnode, j) {
2784 			usercon.type = j + 1;
2785 
2786 			if (mls_setup_user_range(policydb, fromcon, user,
2787 						 &usercon))
2788 				continue;
2789 
2790 			rc = sidtab_context_to_sid(sidtab, &usercon, &sid);
2791 			if (rc == -ESTALE) {
2792 				rcu_read_unlock();
2793 				goto retry;
2794 			}
2795 			if (rc)
2796 				goto out_unlock;
2797 			if (mynel < maxnel) {
2798 				mysids[mynel++] = sid;
2799 			} else {
2800 				rc = -ENOMEM;
2801 				maxnel += SIDS_NEL;
2802 				mysids2 = kcalloc(maxnel, sizeof(*mysids2), GFP_ATOMIC);
2803 				if (!mysids2)
2804 					goto out_unlock;
2805 				memcpy(mysids2, mysids, mynel * sizeof(*mysids2));
2806 				kfree(mysids);
2807 				mysids = mysids2;
2808 				mysids[mynel++] = sid;
2809 			}
2810 		}
2811 	}
2812 	rc = 0;
2813 out_unlock:
2814 	rcu_read_unlock();
2815 	if (rc || !mynel) {
2816 		kfree(mysids);
2817 		return rc;
2818 	}
2819 
2820 	rc = -ENOMEM;
2821 	mysids2 = kcalloc(mynel, sizeof(*mysids2), GFP_KERNEL);
2822 	if (!mysids2) {
2823 		kfree(mysids);
2824 		return rc;
2825 	}
2826 	for (i = 0, j = 0; i < mynel; i++) {
2827 		struct av_decision dummy_avd;
2828 		rc = avc_has_perm_noaudit(state,
2829 					  fromsid, mysids[i],
2830 					  SECCLASS_PROCESS, /* kernel value */
2831 					  PROCESS__TRANSITION, AVC_STRICT,
2832 					  &dummy_avd);
2833 		if (!rc)
2834 			mysids2[j++] = mysids[i];
2835 		cond_resched();
2836 	}
2837 	kfree(mysids);
2838 	*sids = mysids2;
2839 	*nel = j;
2840 	return 0;
2841 }
2842 
2843 /**
2844  * __security_genfs_sid - Helper to obtain a SID for a file in a filesystem
2845  * @fstype: filesystem type
2846  * @path: path from root of mount
2847  * @sclass: file security class
2848  * @sid: SID for path
2849  *
2850  * Obtain a SID to use for a file in a filesystem that
2851  * cannot support xattr or use a fixed labeling behavior like
2852  * transition SIDs or task SIDs.
2853  *
2854  * WARNING: This function may return -ESTALE, indicating that the caller
2855  * must retry the operation after re-acquiring the policy pointer!
2856  */
__security_genfs_sid(struct selinux_policy * policy,const char * fstype,char * path,u16 orig_sclass,u32 * sid)2857 static inline int __security_genfs_sid(struct selinux_policy *policy,
2858 				       const char *fstype,
2859 				       char *path,
2860 				       u16 orig_sclass,
2861 				       u32 *sid)
2862 {
2863 	struct policydb *policydb = &policy->policydb;
2864 	struct sidtab *sidtab = policy->sidtab;
2865 	int len;
2866 	u16 sclass;
2867 	struct genfs *genfs;
2868 	struct ocontext *c;
2869 	int cmp = 0;
2870 
2871 	while (path[0] == '/' && path[1] == '/')
2872 		path++;
2873 
2874 	sclass = unmap_class(&policy->map, orig_sclass);
2875 	*sid = SECINITSID_UNLABELED;
2876 
2877 	for (genfs = policydb->genfs; genfs; genfs = genfs->next) {
2878 		cmp = strcmp(fstype, genfs->fstype);
2879 		if (cmp <= 0)
2880 			break;
2881 	}
2882 
2883 	if (!genfs || cmp)
2884 		return -ENOENT;
2885 
2886 	for (c = genfs->head; c; c = c->next) {
2887 		len = strlen(c->u.name);
2888 		if ((!c->v.sclass || sclass == c->v.sclass) &&
2889 		    (strncmp(c->u.name, path, len) == 0))
2890 			break;
2891 	}
2892 
2893 	if (!c)
2894 		return -ENOENT;
2895 
2896 	return ocontext_to_sid(sidtab, c, 0, sid);
2897 }
2898 
2899 /**
2900  * security_genfs_sid - Obtain a SID for a file in a filesystem
2901  * @fstype: filesystem type
2902  * @path: path from root of mount
2903  * @sclass: file security class
2904  * @sid: SID for path
2905  *
2906  * Acquire policy_rwlock before calling __security_genfs_sid() and release
2907  * it afterward.
2908  */
security_genfs_sid(struct selinux_state * state,const char * fstype,char * path,u16 orig_sclass,u32 * sid)2909 int security_genfs_sid(struct selinux_state *state,
2910 		       const char *fstype,
2911 		       char *path,
2912 		       u16 orig_sclass,
2913 		       u32 *sid)
2914 {
2915 	struct selinux_policy *policy;
2916 	int retval;
2917 
2918 	if (!selinux_initialized(state)) {
2919 		*sid = SECINITSID_UNLABELED;
2920 		return 0;
2921 	}
2922 
2923 	do {
2924 		rcu_read_lock();
2925 		policy = rcu_dereference(state->policy);
2926 		retval = __security_genfs_sid(policy, fstype, path,
2927 					      orig_sclass, sid);
2928 		rcu_read_unlock();
2929 	} while (retval == -ESTALE);
2930 	return retval;
2931 }
2932 
selinux_policy_genfs_sid(struct selinux_policy * policy,const char * fstype,char * path,u16 orig_sclass,u32 * sid)2933 int selinux_policy_genfs_sid(struct selinux_policy *policy,
2934 			const char *fstype,
2935 			char *path,
2936 			u16 orig_sclass,
2937 			u32 *sid)
2938 {
2939 	/* no lock required, policy is not yet accessible by other threads */
2940 	return __security_genfs_sid(policy, fstype, path, orig_sclass, sid);
2941 }
2942 
2943 /**
2944  * security_fs_use - Determine how to handle labeling for a filesystem.
2945  * @sb: superblock in question
2946  */
security_fs_use(struct selinux_state * state,struct super_block * sb)2947 int security_fs_use(struct selinux_state *state, struct super_block *sb)
2948 {
2949 	struct selinux_policy *policy;
2950 	struct policydb *policydb;
2951 	struct sidtab *sidtab;
2952 	int rc;
2953 	struct ocontext *c;
2954 	struct superblock_security_struct *sbsec = sb->s_security;
2955 	const char *fstype = sb->s_type->name;
2956 
2957 	if (!selinux_initialized(state)) {
2958 		sbsec->behavior = SECURITY_FS_USE_NONE;
2959 		sbsec->sid = SECINITSID_UNLABELED;
2960 		return 0;
2961 	}
2962 
2963 retry:
2964 	rc = 0;
2965 	rcu_read_lock();
2966 	policy = rcu_dereference(state->policy);
2967 	policydb = &policy->policydb;
2968 	sidtab = policy->sidtab;
2969 
2970 	c = policydb->ocontexts[OCON_FSUSE];
2971 	while (c) {
2972 		if (strcmp(fstype, c->u.name) == 0)
2973 			break;
2974 		c = c->next;
2975 	}
2976 
2977 	if (c) {
2978 		sbsec->behavior = c->v.behavior;
2979 		rc = ocontext_to_sid(sidtab, c, 0, &sbsec->sid);
2980 		if (rc == -ESTALE) {
2981 			rcu_read_unlock();
2982 			goto retry;
2983 		}
2984 		if (rc)
2985 			goto out;
2986 	} else {
2987 		rc = __security_genfs_sid(policy, fstype, "/",
2988 					SECCLASS_DIR, &sbsec->sid);
2989 		if (rc == -ESTALE) {
2990 			rcu_read_unlock();
2991 			goto retry;
2992 		}
2993 		if (rc) {
2994 			sbsec->behavior = SECURITY_FS_USE_NONE;
2995 			rc = 0;
2996 		} else {
2997 			sbsec->behavior = SECURITY_FS_USE_GENFS;
2998 		}
2999 	}
3000 
3001 out:
3002 	rcu_read_unlock();
3003 	return rc;
3004 }
3005 
security_get_bools(struct selinux_policy * policy,u32 * len,char *** names,int ** values)3006 int security_get_bools(struct selinux_policy *policy,
3007 		       u32 *len, char ***names, int **values)
3008 {
3009 	struct policydb *policydb;
3010 	u32 i;
3011 	int rc;
3012 
3013 	policydb = &policy->policydb;
3014 
3015 	*names = NULL;
3016 	*values = NULL;
3017 
3018 	rc = 0;
3019 	*len = policydb->p_bools.nprim;
3020 	if (!*len)
3021 		goto out;
3022 
3023 	rc = -ENOMEM;
3024 	*names = kcalloc(*len, sizeof(char *), GFP_ATOMIC);
3025 	if (!*names)
3026 		goto err;
3027 
3028 	rc = -ENOMEM;
3029 	*values = kcalloc(*len, sizeof(int), GFP_ATOMIC);
3030 	if (!*values)
3031 		goto err;
3032 
3033 	for (i = 0; i < *len; i++) {
3034 		(*values)[i] = policydb->bool_val_to_struct[i]->state;
3035 
3036 		rc = -ENOMEM;
3037 		(*names)[i] = kstrdup(sym_name(policydb, SYM_BOOLS, i),
3038 				      GFP_ATOMIC);
3039 		if (!(*names)[i])
3040 			goto err;
3041 	}
3042 	rc = 0;
3043 out:
3044 	return rc;
3045 err:
3046 	if (*names) {
3047 		for (i = 0; i < *len; i++)
3048 			kfree((*names)[i]);
3049 		kfree(*names);
3050 	}
3051 	kfree(*values);
3052 	*len = 0;
3053 	*names = NULL;
3054 	*values = NULL;
3055 	goto out;
3056 }
3057 
3058 
security_set_bools(struct selinux_state * state,u32 len,int * values)3059 int security_set_bools(struct selinux_state *state, u32 len, int *values)
3060 {
3061 	struct selinux_policy *newpolicy, *oldpolicy;
3062 	int rc;
3063 	u32 i, seqno = 0;
3064 
3065 	if (!selinux_initialized(state))
3066 		return -EINVAL;
3067 
3068 	oldpolicy = rcu_dereference_protected(state->policy,
3069 					lockdep_is_held(&state->policy_mutex));
3070 
3071 	/* Consistency check on number of booleans, should never fail */
3072 	if (WARN_ON(len != oldpolicy->policydb.p_bools.nprim))
3073 		return -EINVAL;
3074 
3075 	newpolicy = kmemdup(oldpolicy, sizeof(*newpolicy), GFP_KERNEL);
3076 	if (!newpolicy)
3077 		return -ENOMEM;
3078 
3079 	/*
3080 	 * Deep copy only the parts of the policydb that might be
3081 	 * modified as a result of changing booleans.
3082 	 */
3083 	rc = cond_policydb_dup(&newpolicy->policydb, &oldpolicy->policydb);
3084 	if (rc) {
3085 		kfree(newpolicy);
3086 		return -ENOMEM;
3087 	}
3088 
3089 	/* Update the boolean states in the copy */
3090 	for (i = 0; i < len; i++) {
3091 		int new_state = !!values[i];
3092 		int old_state = newpolicy->policydb.bool_val_to_struct[i]->state;
3093 
3094 		if (new_state != old_state) {
3095 			audit_log(audit_context(), GFP_ATOMIC,
3096 				AUDIT_MAC_CONFIG_CHANGE,
3097 				"bool=%s val=%d old_val=%d auid=%u ses=%u",
3098 				sym_name(&newpolicy->policydb, SYM_BOOLS, i),
3099 				new_state,
3100 				old_state,
3101 				from_kuid(&init_user_ns, audit_get_loginuid(current)),
3102 				audit_get_sessionid(current));
3103 			newpolicy->policydb.bool_val_to_struct[i]->state = new_state;
3104 		}
3105 	}
3106 
3107 	/* Re-evaluate the conditional rules in the copy */
3108 	evaluate_cond_nodes(&newpolicy->policydb);
3109 
3110 	/* Set latest granting seqno for new policy */
3111 	newpolicy->latest_granting = oldpolicy->latest_granting + 1;
3112 	seqno = newpolicy->latest_granting;
3113 
3114 	/* Install the new policy */
3115 	rcu_assign_pointer(state->policy, newpolicy);
3116 
3117 	/*
3118 	 * Free the conditional portions of the old policydb
3119 	 * that were copied for the new policy, and the oldpolicy
3120 	 * structure itself but not what it references.
3121 	 */
3122 	synchronize_rcu();
3123 	selinux_policy_cond_free(oldpolicy);
3124 
3125 	/* Notify others of the policy change */
3126 	selinux_notify_policy_change(state, seqno);
3127 	return 0;
3128 }
3129 
security_get_bool_value(struct selinux_state * state,u32 index)3130 int security_get_bool_value(struct selinux_state *state,
3131 			    u32 index)
3132 {
3133 	struct selinux_policy *policy;
3134 	struct policydb *policydb;
3135 	int rc;
3136 	u32 len;
3137 
3138 	if (!selinux_initialized(state))
3139 		return 0;
3140 
3141 	rcu_read_lock();
3142 	policy = rcu_dereference(state->policy);
3143 	policydb = &policy->policydb;
3144 
3145 	rc = -EFAULT;
3146 	len = policydb->p_bools.nprim;
3147 	if (index >= len)
3148 		goto out;
3149 
3150 	rc = policydb->bool_val_to_struct[index]->state;
3151 out:
3152 	rcu_read_unlock();
3153 	return rc;
3154 }
3155 
security_preserve_bools(struct selinux_policy * oldpolicy,struct selinux_policy * newpolicy)3156 static int security_preserve_bools(struct selinux_policy *oldpolicy,
3157 				struct selinux_policy *newpolicy)
3158 {
3159 	int rc, *bvalues = NULL;
3160 	char **bnames = NULL;
3161 	struct cond_bool_datum *booldatum;
3162 	u32 i, nbools = 0;
3163 
3164 	rc = security_get_bools(oldpolicy, &nbools, &bnames, &bvalues);
3165 	if (rc)
3166 		goto out;
3167 	for (i = 0; i < nbools; i++) {
3168 		booldatum = symtab_search(&newpolicy->policydb.p_bools,
3169 					bnames[i]);
3170 		if (booldatum)
3171 			booldatum->state = bvalues[i];
3172 	}
3173 	evaluate_cond_nodes(&newpolicy->policydb);
3174 
3175 out:
3176 	if (bnames) {
3177 		for (i = 0; i < nbools; i++)
3178 			kfree(bnames[i]);
3179 	}
3180 	kfree(bnames);
3181 	kfree(bvalues);
3182 	return rc;
3183 }
3184 
3185 /*
3186  * security_sid_mls_copy() - computes a new sid based on the given
3187  * sid and the mls portion of mls_sid.
3188  */
security_sid_mls_copy(struct selinux_state * state,u32 sid,u32 mls_sid,u32 * new_sid)3189 int security_sid_mls_copy(struct selinux_state *state,
3190 			  u32 sid, u32 mls_sid, u32 *new_sid)
3191 {
3192 	struct selinux_policy *policy;
3193 	struct policydb *policydb;
3194 	struct sidtab *sidtab;
3195 	struct context *context1;
3196 	struct context *context2;
3197 	struct context newcon;
3198 	char *s;
3199 	u32 len;
3200 	int rc;
3201 
3202 	if (!selinux_initialized(state)) {
3203 		*new_sid = sid;
3204 		return 0;
3205 	}
3206 
3207 retry:
3208 	rc = 0;
3209 	context_init(&newcon);
3210 
3211 	rcu_read_lock();
3212 	policy = rcu_dereference(state->policy);
3213 	policydb = &policy->policydb;
3214 	sidtab = policy->sidtab;
3215 
3216 	if (!policydb->mls_enabled) {
3217 		*new_sid = sid;
3218 		goto out_unlock;
3219 	}
3220 
3221 	rc = -EINVAL;
3222 	context1 = sidtab_search(sidtab, sid);
3223 	if (!context1) {
3224 		pr_err("SELinux: %s:  unrecognized SID %d\n",
3225 			__func__, sid);
3226 		goto out_unlock;
3227 	}
3228 
3229 	rc = -EINVAL;
3230 	context2 = sidtab_search(sidtab, mls_sid);
3231 	if (!context2) {
3232 		pr_err("SELinux: %s:  unrecognized SID %d\n",
3233 			__func__, mls_sid);
3234 		goto out_unlock;
3235 	}
3236 
3237 	newcon.user = context1->user;
3238 	newcon.role = context1->role;
3239 	newcon.type = context1->type;
3240 	rc = mls_context_cpy(&newcon, context2);
3241 	if (rc)
3242 		goto out_unlock;
3243 
3244 	/* Check the validity of the new context. */
3245 	if (!policydb_context_isvalid(policydb, &newcon)) {
3246 		rc = convert_context_handle_invalid_context(state, policydb,
3247 							&newcon);
3248 		if (rc) {
3249 			if (!context_struct_to_string(policydb, &newcon, &s,
3250 						      &len)) {
3251 				struct audit_buffer *ab;
3252 
3253 				ab = audit_log_start(audit_context(),
3254 						     GFP_ATOMIC,
3255 						     AUDIT_SELINUX_ERR);
3256 				audit_log_format(ab,
3257 						 "op=security_sid_mls_copy invalid_context=");
3258 				/* don't record NUL with untrusted strings */
3259 				audit_log_n_untrustedstring(ab, s, len - 1);
3260 				audit_log_end(ab);
3261 				kfree(s);
3262 			}
3263 			goto out_unlock;
3264 		}
3265 	}
3266 	rc = sidtab_context_to_sid(sidtab, &newcon, new_sid);
3267 	if (rc == -ESTALE) {
3268 		rcu_read_unlock();
3269 		context_destroy(&newcon);
3270 		goto retry;
3271 	}
3272 out_unlock:
3273 	rcu_read_unlock();
3274 	context_destroy(&newcon);
3275 	return rc;
3276 }
3277 
3278 /**
3279  * security_net_peersid_resolve - Compare and resolve two network peer SIDs
3280  * @nlbl_sid: NetLabel SID
3281  * @nlbl_type: NetLabel labeling protocol type
3282  * @xfrm_sid: XFRM SID
3283  *
3284  * Description:
3285  * Compare the @nlbl_sid and @xfrm_sid values and if the two SIDs can be
3286  * resolved into a single SID it is returned via @peer_sid and the function
3287  * returns zero.  Otherwise @peer_sid is set to SECSID_NULL and the function
3288  * returns a negative value.  A table summarizing the behavior is below:
3289  *
3290  *                                 | function return |      @sid
3291  *   ------------------------------+-----------------+-----------------
3292  *   no peer labels                |        0        |    SECSID_NULL
3293  *   single peer label             |        0        |    <peer_label>
3294  *   multiple, consistent labels   |        0        |    <peer_label>
3295  *   multiple, inconsistent labels |    -<errno>     |    SECSID_NULL
3296  *
3297  */
security_net_peersid_resolve(struct selinux_state * state,u32 nlbl_sid,u32 nlbl_type,u32 xfrm_sid,u32 * peer_sid)3298 int security_net_peersid_resolve(struct selinux_state *state,
3299 				 u32 nlbl_sid, u32 nlbl_type,
3300 				 u32 xfrm_sid,
3301 				 u32 *peer_sid)
3302 {
3303 	struct selinux_policy *policy;
3304 	struct policydb *policydb;
3305 	struct sidtab *sidtab;
3306 	int rc;
3307 	struct context *nlbl_ctx;
3308 	struct context *xfrm_ctx;
3309 
3310 	*peer_sid = SECSID_NULL;
3311 
3312 	/* handle the common (which also happens to be the set of easy) cases
3313 	 * right away, these two if statements catch everything involving a
3314 	 * single or absent peer SID/label */
3315 	if (xfrm_sid == SECSID_NULL) {
3316 		*peer_sid = nlbl_sid;
3317 		return 0;
3318 	}
3319 	/* NOTE: an nlbl_type == NETLBL_NLTYPE_UNLABELED is a "fallback" label
3320 	 * and is treated as if nlbl_sid == SECSID_NULL when a XFRM SID/label
3321 	 * is present */
3322 	if (nlbl_sid == SECSID_NULL || nlbl_type == NETLBL_NLTYPE_UNLABELED) {
3323 		*peer_sid = xfrm_sid;
3324 		return 0;
3325 	}
3326 
3327 	if (!selinux_initialized(state))
3328 		return 0;
3329 
3330 	rcu_read_lock();
3331 	policy = rcu_dereference(state->policy);
3332 	policydb = &policy->policydb;
3333 	sidtab = policy->sidtab;
3334 
3335 	/*
3336 	 * We don't need to check initialized here since the only way both
3337 	 * nlbl_sid and xfrm_sid are not equal to SECSID_NULL would be if the
3338 	 * security server was initialized and state->initialized was true.
3339 	 */
3340 	if (!policydb->mls_enabled) {
3341 		rc = 0;
3342 		goto out;
3343 	}
3344 
3345 	rc = -EINVAL;
3346 	nlbl_ctx = sidtab_search(sidtab, nlbl_sid);
3347 	if (!nlbl_ctx) {
3348 		pr_err("SELinux: %s:  unrecognized SID %d\n",
3349 		       __func__, nlbl_sid);
3350 		goto out;
3351 	}
3352 	rc = -EINVAL;
3353 	xfrm_ctx = sidtab_search(sidtab, xfrm_sid);
3354 	if (!xfrm_ctx) {
3355 		pr_err("SELinux: %s:  unrecognized SID %d\n",
3356 		       __func__, xfrm_sid);
3357 		goto out;
3358 	}
3359 	rc = (mls_context_cmp(nlbl_ctx, xfrm_ctx) ? 0 : -EACCES);
3360 	if (rc)
3361 		goto out;
3362 
3363 	/* at present NetLabel SIDs/labels really only carry MLS
3364 	 * information so if the MLS portion of the NetLabel SID
3365 	 * matches the MLS portion of the labeled XFRM SID/label
3366 	 * then pass along the XFRM SID as it is the most
3367 	 * expressive */
3368 	*peer_sid = xfrm_sid;
3369 out:
3370 	rcu_read_unlock();
3371 	return rc;
3372 }
3373 
get_classes_callback(void * k,void * d,void * args)3374 static int get_classes_callback(void *k, void *d, void *args)
3375 {
3376 	struct class_datum *datum = d;
3377 	char *name = k, **classes = args;
3378 	int value = datum->value - 1;
3379 
3380 	classes[value] = kstrdup(name, GFP_ATOMIC);
3381 	if (!classes[value])
3382 		return -ENOMEM;
3383 
3384 	return 0;
3385 }
3386 
security_get_classes(struct selinux_policy * policy,char *** classes,int * nclasses)3387 int security_get_classes(struct selinux_policy *policy,
3388 			 char ***classes, int *nclasses)
3389 {
3390 	struct policydb *policydb;
3391 	int rc;
3392 
3393 	policydb = &policy->policydb;
3394 
3395 	rc = -ENOMEM;
3396 	*nclasses = policydb->p_classes.nprim;
3397 	*classes = kcalloc(*nclasses, sizeof(**classes), GFP_ATOMIC);
3398 	if (!*classes)
3399 		goto out;
3400 
3401 	rc = hashtab_map(&policydb->p_classes.table, get_classes_callback,
3402 			 *classes);
3403 	if (rc) {
3404 		int i;
3405 		for (i = 0; i < *nclasses; i++)
3406 			kfree((*classes)[i]);
3407 		kfree(*classes);
3408 	}
3409 
3410 out:
3411 	return rc;
3412 }
3413 
get_permissions_callback(void * k,void * d,void * args)3414 static int get_permissions_callback(void *k, void *d, void *args)
3415 {
3416 	struct perm_datum *datum = d;
3417 	char *name = k, **perms = args;
3418 	int value = datum->value - 1;
3419 
3420 	perms[value] = kstrdup(name, GFP_ATOMIC);
3421 	if (!perms[value])
3422 		return -ENOMEM;
3423 
3424 	return 0;
3425 }
3426 
security_get_permissions(struct selinux_policy * policy,char * class,char *** perms,int * nperms)3427 int security_get_permissions(struct selinux_policy *policy,
3428 			     char *class, char ***perms, int *nperms)
3429 {
3430 	struct policydb *policydb;
3431 	int rc, i;
3432 	struct class_datum *match;
3433 
3434 	policydb = &policy->policydb;
3435 
3436 	rc = -EINVAL;
3437 	match = symtab_search(&policydb->p_classes, class);
3438 	if (!match) {
3439 		pr_err("SELinux: %s:  unrecognized class %s\n",
3440 			__func__, class);
3441 		goto out;
3442 	}
3443 
3444 	rc = -ENOMEM;
3445 	*nperms = match->permissions.nprim;
3446 	*perms = kcalloc(*nperms, sizeof(**perms), GFP_ATOMIC);
3447 	if (!*perms)
3448 		goto out;
3449 
3450 	if (match->comdatum) {
3451 		rc = hashtab_map(&match->comdatum->permissions.table,
3452 				 get_permissions_callback, *perms);
3453 		if (rc)
3454 			goto err;
3455 	}
3456 
3457 	rc = hashtab_map(&match->permissions.table, get_permissions_callback,
3458 			 *perms);
3459 	if (rc)
3460 		goto err;
3461 
3462 out:
3463 	return rc;
3464 
3465 err:
3466 	for (i = 0; i < *nperms; i++)
3467 		kfree((*perms)[i]);
3468 	kfree(*perms);
3469 	return rc;
3470 }
3471 
security_get_reject_unknown(struct selinux_state * state)3472 int security_get_reject_unknown(struct selinux_state *state)
3473 {
3474 	struct selinux_policy *policy;
3475 	int value;
3476 
3477 	if (!selinux_initialized(state))
3478 		return 0;
3479 
3480 	rcu_read_lock();
3481 	policy = rcu_dereference(state->policy);
3482 	value = policy->policydb.reject_unknown;
3483 	rcu_read_unlock();
3484 	return value;
3485 }
3486 
security_get_allow_unknown(struct selinux_state * state)3487 int security_get_allow_unknown(struct selinux_state *state)
3488 {
3489 	struct selinux_policy *policy;
3490 	int value;
3491 
3492 	if (!selinux_initialized(state))
3493 		return 0;
3494 
3495 	rcu_read_lock();
3496 	policy = rcu_dereference(state->policy);
3497 	value = policy->policydb.allow_unknown;
3498 	rcu_read_unlock();
3499 	return value;
3500 }
3501 
3502 /**
3503  * security_policycap_supported - Check for a specific policy capability
3504  * @req_cap: capability
3505  *
3506  * Description:
3507  * This function queries the currently loaded policy to see if it supports the
3508  * capability specified by @req_cap.  Returns true (1) if the capability is
3509  * supported, false (0) if it isn't supported.
3510  *
3511  */
security_policycap_supported(struct selinux_state * state,unsigned int req_cap)3512 int security_policycap_supported(struct selinux_state *state,
3513 				 unsigned int req_cap)
3514 {
3515 	struct selinux_policy *policy;
3516 	int rc;
3517 
3518 	if (!selinux_initialized(state))
3519 		return 0;
3520 
3521 	rcu_read_lock();
3522 	policy = rcu_dereference(state->policy);
3523 	rc = ebitmap_get_bit(&policy->policydb.policycaps, req_cap);
3524 	rcu_read_unlock();
3525 
3526 	return rc;
3527 }
3528 
3529 struct selinux_audit_rule {
3530 	u32 au_seqno;
3531 	struct context au_ctxt;
3532 };
3533 
selinux_audit_rule_free(void * vrule)3534 void selinux_audit_rule_free(void *vrule)
3535 {
3536 	struct selinux_audit_rule *rule = vrule;
3537 
3538 	if (rule) {
3539 		context_destroy(&rule->au_ctxt);
3540 		kfree(rule);
3541 	}
3542 }
3543 
selinux_audit_rule_init(u32 field,u32 op,char * rulestr,void ** vrule)3544 int selinux_audit_rule_init(u32 field, u32 op, char *rulestr, void **vrule)
3545 {
3546 	struct selinux_state *state = &selinux_state;
3547 	struct selinux_policy *policy;
3548 	struct policydb *policydb;
3549 	struct selinux_audit_rule *tmprule;
3550 	struct role_datum *roledatum;
3551 	struct type_datum *typedatum;
3552 	struct user_datum *userdatum;
3553 	struct selinux_audit_rule **rule = (struct selinux_audit_rule **)vrule;
3554 	int rc = 0;
3555 
3556 	*rule = NULL;
3557 
3558 	if (!selinux_initialized(state))
3559 		return -EOPNOTSUPP;
3560 
3561 	switch (field) {
3562 	case AUDIT_SUBJ_USER:
3563 	case AUDIT_SUBJ_ROLE:
3564 	case AUDIT_SUBJ_TYPE:
3565 	case AUDIT_OBJ_USER:
3566 	case AUDIT_OBJ_ROLE:
3567 	case AUDIT_OBJ_TYPE:
3568 		/* only 'equals' and 'not equals' fit user, role, and type */
3569 		if (op != Audit_equal && op != Audit_not_equal)
3570 			return -EINVAL;
3571 		break;
3572 	case AUDIT_SUBJ_SEN:
3573 	case AUDIT_SUBJ_CLR:
3574 	case AUDIT_OBJ_LEV_LOW:
3575 	case AUDIT_OBJ_LEV_HIGH:
3576 		/* we do not allow a range, indicated by the presence of '-' */
3577 		if (strchr(rulestr, '-'))
3578 			return -EINVAL;
3579 		break;
3580 	default:
3581 		/* only the above fields are valid */
3582 		return -EINVAL;
3583 	}
3584 
3585 	tmprule = kzalloc(sizeof(struct selinux_audit_rule), GFP_KERNEL);
3586 	if (!tmprule)
3587 		return -ENOMEM;
3588 
3589 	context_init(&tmprule->au_ctxt);
3590 
3591 	rcu_read_lock();
3592 	policy = rcu_dereference(state->policy);
3593 	policydb = &policy->policydb;
3594 
3595 	tmprule->au_seqno = policy->latest_granting;
3596 
3597 	switch (field) {
3598 	case AUDIT_SUBJ_USER:
3599 	case AUDIT_OBJ_USER:
3600 		rc = -EINVAL;
3601 		userdatum = symtab_search(&policydb->p_users, rulestr);
3602 		if (!userdatum)
3603 			goto out;
3604 		tmprule->au_ctxt.user = userdatum->value;
3605 		break;
3606 	case AUDIT_SUBJ_ROLE:
3607 	case AUDIT_OBJ_ROLE:
3608 		rc = -EINVAL;
3609 		roledatum = symtab_search(&policydb->p_roles, rulestr);
3610 		if (!roledatum)
3611 			goto out;
3612 		tmprule->au_ctxt.role = roledatum->value;
3613 		break;
3614 	case AUDIT_SUBJ_TYPE:
3615 	case AUDIT_OBJ_TYPE:
3616 		rc = -EINVAL;
3617 		typedatum = symtab_search(&policydb->p_types, rulestr);
3618 		if (!typedatum)
3619 			goto out;
3620 		tmprule->au_ctxt.type = typedatum->value;
3621 		break;
3622 	case AUDIT_SUBJ_SEN:
3623 	case AUDIT_SUBJ_CLR:
3624 	case AUDIT_OBJ_LEV_LOW:
3625 	case AUDIT_OBJ_LEV_HIGH:
3626 		rc = mls_from_string(policydb, rulestr, &tmprule->au_ctxt,
3627 				     GFP_ATOMIC);
3628 		if (rc)
3629 			goto out;
3630 		break;
3631 	}
3632 	rc = 0;
3633 out:
3634 	rcu_read_unlock();
3635 
3636 	if (rc) {
3637 		selinux_audit_rule_free(tmprule);
3638 		tmprule = NULL;
3639 	}
3640 
3641 	*rule = tmprule;
3642 
3643 	return rc;
3644 }
3645 
3646 /* Check to see if the rule contains any selinux fields */
selinux_audit_rule_known(struct audit_krule * rule)3647 int selinux_audit_rule_known(struct audit_krule *rule)
3648 {
3649 	int i;
3650 
3651 	for (i = 0; i < rule->field_count; i++) {
3652 		struct audit_field *f = &rule->fields[i];
3653 		switch (f->type) {
3654 		case AUDIT_SUBJ_USER:
3655 		case AUDIT_SUBJ_ROLE:
3656 		case AUDIT_SUBJ_TYPE:
3657 		case AUDIT_SUBJ_SEN:
3658 		case AUDIT_SUBJ_CLR:
3659 		case AUDIT_OBJ_USER:
3660 		case AUDIT_OBJ_ROLE:
3661 		case AUDIT_OBJ_TYPE:
3662 		case AUDIT_OBJ_LEV_LOW:
3663 		case AUDIT_OBJ_LEV_HIGH:
3664 			return 1;
3665 		}
3666 	}
3667 
3668 	return 0;
3669 }
3670 
selinux_audit_rule_match(u32 sid,u32 field,u32 op,void * vrule)3671 int selinux_audit_rule_match(u32 sid, u32 field, u32 op, void *vrule)
3672 {
3673 	struct selinux_state *state = &selinux_state;
3674 	struct selinux_policy *policy;
3675 	struct context *ctxt;
3676 	struct mls_level *level;
3677 	struct selinux_audit_rule *rule = vrule;
3678 	int match = 0;
3679 
3680 	if (unlikely(!rule)) {
3681 		WARN_ONCE(1, "selinux_audit_rule_match: missing rule\n");
3682 		return -ENOENT;
3683 	}
3684 
3685 	if (!selinux_initialized(state))
3686 		return 0;
3687 
3688 	rcu_read_lock();
3689 
3690 	policy = rcu_dereference(state->policy);
3691 
3692 	if (rule->au_seqno < policy->latest_granting) {
3693 		match = -ESTALE;
3694 		goto out;
3695 	}
3696 
3697 	ctxt = sidtab_search(policy->sidtab, sid);
3698 	if (unlikely(!ctxt)) {
3699 		WARN_ONCE(1, "selinux_audit_rule_match: unrecognized SID %d\n",
3700 			  sid);
3701 		match = -ENOENT;
3702 		goto out;
3703 	}
3704 
3705 	/* a field/op pair that is not caught here will simply fall through
3706 	   without a match */
3707 	switch (field) {
3708 	case AUDIT_SUBJ_USER:
3709 	case AUDIT_OBJ_USER:
3710 		switch (op) {
3711 		case Audit_equal:
3712 			match = (ctxt->user == rule->au_ctxt.user);
3713 			break;
3714 		case Audit_not_equal:
3715 			match = (ctxt->user != rule->au_ctxt.user);
3716 			break;
3717 		}
3718 		break;
3719 	case AUDIT_SUBJ_ROLE:
3720 	case AUDIT_OBJ_ROLE:
3721 		switch (op) {
3722 		case Audit_equal:
3723 			match = (ctxt->role == rule->au_ctxt.role);
3724 			break;
3725 		case Audit_not_equal:
3726 			match = (ctxt->role != rule->au_ctxt.role);
3727 			break;
3728 		}
3729 		break;
3730 	case AUDIT_SUBJ_TYPE:
3731 	case AUDIT_OBJ_TYPE:
3732 		switch (op) {
3733 		case Audit_equal:
3734 			match = (ctxt->type == rule->au_ctxt.type);
3735 			break;
3736 		case Audit_not_equal:
3737 			match = (ctxt->type != rule->au_ctxt.type);
3738 			break;
3739 		}
3740 		break;
3741 	case AUDIT_SUBJ_SEN:
3742 	case AUDIT_SUBJ_CLR:
3743 	case AUDIT_OBJ_LEV_LOW:
3744 	case AUDIT_OBJ_LEV_HIGH:
3745 		level = ((field == AUDIT_SUBJ_SEN ||
3746 			  field == AUDIT_OBJ_LEV_LOW) ?
3747 			 &ctxt->range.level[0] : &ctxt->range.level[1]);
3748 		switch (op) {
3749 		case Audit_equal:
3750 			match = mls_level_eq(&rule->au_ctxt.range.level[0],
3751 					     level);
3752 			break;
3753 		case Audit_not_equal:
3754 			match = !mls_level_eq(&rule->au_ctxt.range.level[0],
3755 					      level);
3756 			break;
3757 		case Audit_lt:
3758 			match = (mls_level_dom(&rule->au_ctxt.range.level[0],
3759 					       level) &&
3760 				 !mls_level_eq(&rule->au_ctxt.range.level[0],
3761 					       level));
3762 			break;
3763 		case Audit_le:
3764 			match = mls_level_dom(&rule->au_ctxt.range.level[0],
3765 					      level);
3766 			break;
3767 		case Audit_gt:
3768 			match = (mls_level_dom(level,
3769 					      &rule->au_ctxt.range.level[0]) &&
3770 				 !mls_level_eq(level,
3771 					       &rule->au_ctxt.range.level[0]));
3772 			break;
3773 		case Audit_ge:
3774 			match = mls_level_dom(level,
3775 					      &rule->au_ctxt.range.level[0]);
3776 			break;
3777 		}
3778 	}
3779 
3780 out:
3781 	rcu_read_unlock();
3782 	return match;
3783 }
3784 
3785 static int (*aurule_callback)(void) = audit_update_lsm_rules;
3786 
aurule_avc_callback(u32 event)3787 static int aurule_avc_callback(u32 event)
3788 {
3789 	int err = 0;
3790 
3791 	if (event == AVC_CALLBACK_RESET && aurule_callback)
3792 		err = aurule_callback();
3793 	return err;
3794 }
3795 
aurule_init(void)3796 static int __init aurule_init(void)
3797 {
3798 	int err;
3799 
3800 	err = avc_add_callback(aurule_avc_callback, AVC_CALLBACK_RESET);
3801 	if (err)
3802 		panic("avc_add_callback() failed, error %d\n", err);
3803 
3804 	return err;
3805 }
3806 __initcall(aurule_init);
3807 
3808 #ifdef CONFIG_NETLABEL
3809 /**
3810  * security_netlbl_cache_add - Add an entry to the NetLabel cache
3811  * @secattr: the NetLabel packet security attributes
3812  * @sid: the SELinux SID
3813  *
3814  * Description:
3815  * Attempt to cache the context in @ctx, which was derived from the packet in
3816  * @skb, in the NetLabel subsystem cache.  This function assumes @secattr has
3817  * already been initialized.
3818  *
3819  */
security_netlbl_cache_add(struct netlbl_lsm_secattr * secattr,u32 sid)3820 static void security_netlbl_cache_add(struct netlbl_lsm_secattr *secattr,
3821 				      u32 sid)
3822 {
3823 	u32 *sid_cache;
3824 
3825 	sid_cache = kmalloc(sizeof(*sid_cache), GFP_ATOMIC);
3826 	if (sid_cache == NULL)
3827 		return;
3828 	secattr->cache = netlbl_secattr_cache_alloc(GFP_ATOMIC);
3829 	if (secattr->cache == NULL) {
3830 		kfree(sid_cache);
3831 		return;
3832 	}
3833 
3834 	*sid_cache = sid;
3835 	secattr->cache->free = kfree;
3836 	secattr->cache->data = sid_cache;
3837 	secattr->flags |= NETLBL_SECATTR_CACHE;
3838 }
3839 
3840 /**
3841  * security_netlbl_secattr_to_sid - Convert a NetLabel secattr to a SELinux SID
3842  * @secattr: the NetLabel packet security attributes
3843  * @sid: the SELinux SID
3844  *
3845  * Description:
3846  * Convert the given NetLabel security attributes in @secattr into a
3847  * SELinux SID.  If the @secattr field does not contain a full SELinux
3848  * SID/context then use SECINITSID_NETMSG as the foundation.  If possible the
3849  * 'cache' field of @secattr is set and the CACHE flag is set; this is to
3850  * allow the @secattr to be used by NetLabel to cache the secattr to SID
3851  * conversion for future lookups.  Returns zero on success, negative values on
3852  * failure.
3853  *
3854  */
security_netlbl_secattr_to_sid(struct selinux_state * state,struct netlbl_lsm_secattr * secattr,u32 * sid)3855 int security_netlbl_secattr_to_sid(struct selinux_state *state,
3856 				   struct netlbl_lsm_secattr *secattr,
3857 				   u32 *sid)
3858 {
3859 	struct selinux_policy *policy;
3860 	struct policydb *policydb;
3861 	struct sidtab *sidtab;
3862 	int rc;
3863 	struct context *ctx;
3864 	struct context ctx_new;
3865 
3866 	if (!selinux_initialized(state)) {
3867 		*sid = SECSID_NULL;
3868 		return 0;
3869 	}
3870 
3871 retry:
3872 	rc = 0;
3873 	rcu_read_lock();
3874 	policy = rcu_dereference(state->policy);
3875 	policydb = &policy->policydb;
3876 	sidtab = policy->sidtab;
3877 
3878 	if (secattr->flags & NETLBL_SECATTR_CACHE)
3879 		*sid = *(u32 *)secattr->cache->data;
3880 	else if (secattr->flags & NETLBL_SECATTR_SECID)
3881 		*sid = secattr->attr.secid;
3882 	else if (secattr->flags & NETLBL_SECATTR_MLS_LVL) {
3883 		rc = -EIDRM;
3884 		ctx = sidtab_search(sidtab, SECINITSID_NETMSG);
3885 		if (ctx == NULL)
3886 			goto out;
3887 
3888 		context_init(&ctx_new);
3889 		ctx_new.user = ctx->user;
3890 		ctx_new.role = ctx->role;
3891 		ctx_new.type = ctx->type;
3892 		mls_import_netlbl_lvl(policydb, &ctx_new, secattr);
3893 		if (secattr->flags & NETLBL_SECATTR_MLS_CAT) {
3894 			rc = mls_import_netlbl_cat(policydb, &ctx_new, secattr);
3895 			if (rc)
3896 				goto out;
3897 		}
3898 		rc = -EIDRM;
3899 		if (!mls_context_isvalid(policydb, &ctx_new)) {
3900 			ebitmap_destroy(&ctx_new.range.level[0].cat);
3901 			goto out;
3902 		}
3903 
3904 		rc = sidtab_context_to_sid(sidtab, &ctx_new, sid);
3905 		ebitmap_destroy(&ctx_new.range.level[0].cat);
3906 		if (rc == -ESTALE) {
3907 			rcu_read_unlock();
3908 			goto retry;
3909 		}
3910 		if (rc)
3911 			goto out;
3912 
3913 		security_netlbl_cache_add(secattr, *sid);
3914 	} else
3915 		*sid = SECSID_NULL;
3916 
3917 out:
3918 	rcu_read_unlock();
3919 	return rc;
3920 }
3921 
3922 /**
3923  * security_netlbl_sid_to_secattr - Convert a SELinux SID to a NetLabel secattr
3924  * @sid: the SELinux SID
3925  * @secattr: the NetLabel packet security attributes
3926  *
3927  * Description:
3928  * Convert the given SELinux SID in @sid into a NetLabel security attribute.
3929  * Returns zero on success, negative values on failure.
3930  *
3931  */
security_netlbl_sid_to_secattr(struct selinux_state * state,u32 sid,struct netlbl_lsm_secattr * secattr)3932 int security_netlbl_sid_to_secattr(struct selinux_state *state,
3933 				   u32 sid, struct netlbl_lsm_secattr *secattr)
3934 {
3935 	struct selinux_policy *policy;
3936 	struct policydb *policydb;
3937 	int rc;
3938 	struct context *ctx;
3939 
3940 	if (!selinux_initialized(state))
3941 		return 0;
3942 
3943 	rcu_read_lock();
3944 	policy = rcu_dereference(state->policy);
3945 	policydb = &policy->policydb;
3946 
3947 	rc = -ENOENT;
3948 	ctx = sidtab_search(policy->sidtab, sid);
3949 	if (ctx == NULL)
3950 		goto out;
3951 
3952 	rc = -ENOMEM;
3953 	secattr->domain = kstrdup(sym_name(policydb, SYM_TYPES, ctx->type - 1),
3954 				  GFP_ATOMIC);
3955 	if (secattr->domain == NULL)
3956 		goto out;
3957 
3958 	secattr->attr.secid = sid;
3959 	secattr->flags |= NETLBL_SECATTR_DOMAIN_CPY | NETLBL_SECATTR_SECID;
3960 	mls_export_netlbl_lvl(policydb, ctx, secattr);
3961 	rc = mls_export_netlbl_cat(policydb, ctx, secattr);
3962 out:
3963 	rcu_read_unlock();
3964 	return rc;
3965 }
3966 #endif /* CONFIG_NETLABEL */
3967 
3968 /**
3969  * security_read_policy - read the policy.
3970  * @data: binary policy data
3971  * @len: length of data in bytes
3972  *
3973  */
security_read_policy(struct selinux_state * state,void ** data,size_t * len)3974 int security_read_policy(struct selinux_state *state,
3975 			 void **data, size_t *len)
3976 {
3977 	struct selinux_policy *policy;
3978 	int rc;
3979 	struct policy_file fp;
3980 
3981 	policy = rcu_dereference_protected(
3982 			state->policy, lockdep_is_held(&state->policy_mutex));
3983 	if (!policy)
3984 		return -EINVAL;
3985 
3986 	*len = policy->policydb.len;
3987 	*data = vmalloc_user(*len);
3988 	if (!*data)
3989 		return -ENOMEM;
3990 
3991 	fp.data = *data;
3992 	fp.len = *len;
3993 
3994 	rc = policydb_write(&policy->policydb, &fp);
3995 	if (rc)
3996 		return rc;
3997 
3998 	*len = (unsigned long)fp.data - (unsigned long)*data;
3999 	return 0;
4000 
4001 }
4002