1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * linux/ipc/sem.c
4 * Copyright (C) 1992 Krishna Balasubramanian
5 * Copyright (C) 1995 Eric Schenk, Bruno Haible
6 *
7 * /proc/sysvipc/sem support (c) 1999 Dragos Acostachioaie <dragos@iname.com>
8 *
9 * SMP-threaded, sysctl's added
10 * (c) 1999 Manfred Spraul <manfred@colorfullife.com>
11 * Enforced range limit on SEM_UNDO
12 * (c) 2001 Red Hat Inc
13 * Lockless wakeup
14 * (c) 2003 Manfred Spraul <manfred@colorfullife.com>
15 * (c) 2016 Davidlohr Bueso <dave@stgolabs.net>
16 * Further wakeup optimizations, documentation
17 * (c) 2010 Manfred Spraul <manfred@colorfullife.com>
18 *
19 * support for audit of ipc object properties and permission changes
20 * Dustin Kirkland <dustin.kirkland@us.ibm.com>
21 *
22 * namespaces support
23 * OpenVZ, SWsoft Inc.
24 * Pavel Emelianov <xemul@openvz.org>
25 *
26 * Implementation notes: (May 2010)
27 * This file implements System V semaphores.
28 *
29 * User space visible behavior:
30 * - FIFO ordering for semop() operations (just FIFO, not starvation
31 * protection)
32 * - multiple semaphore operations that alter the same semaphore in
33 * one semop() are handled.
34 * - sem_ctime (time of last semctl()) is updated in the IPC_SET, SETVAL and
35 * SETALL calls.
36 * - two Linux specific semctl() commands: SEM_STAT, SEM_INFO.
37 * - undo adjustments at process exit are limited to 0..SEMVMX.
38 * - namespace are supported.
39 * - SEMMSL, SEMMNS, SEMOPM and SEMMNI can be configured at runtine by writing
40 * to /proc/sys/kernel/sem.
41 * - statistics about the usage are reported in /proc/sysvipc/sem.
42 *
43 * Internals:
44 * - scalability:
45 * - all global variables are read-mostly.
46 * - semop() calls and semctl(RMID) are synchronized by RCU.
47 * - most operations do write operations (actually: spin_lock calls) to
48 * the per-semaphore array structure.
49 * Thus: Perfect SMP scaling between independent semaphore arrays.
50 * If multiple semaphores in one array are used, then cache line
51 * trashing on the semaphore array spinlock will limit the scaling.
52 * - semncnt and semzcnt are calculated on demand in count_semcnt()
53 * - the task that performs a successful semop() scans the list of all
54 * sleeping tasks and completes any pending operations that can be fulfilled.
55 * Semaphores are actively given to waiting tasks (necessary for FIFO).
56 * (see update_queue())
57 * - To improve the scalability, the actual wake-up calls are performed after
58 * dropping all locks. (see wake_up_sem_queue_prepare())
59 * - All work is done by the waker, the woken up task does not have to do
60 * anything - not even acquiring a lock or dropping a refcount.
61 * - A woken up task may not even touch the semaphore array anymore, it may
62 * have been destroyed already by a semctl(RMID).
63 * - UNDO values are stored in an array (one per process and per
64 * semaphore array, lazily allocated). For backwards compatibility, multiple
65 * modes for the UNDO variables are supported (per process, per thread)
66 * (see copy_semundo, CLONE_SYSVSEM)
67 * - There are two lists of the pending operations: a per-array list
68 * and per-semaphore list (stored in the array). This allows to achieve FIFO
69 * ordering without always scanning all pending operations.
70 * The worst-case behavior is nevertheless O(N^2) for N wakeups.
71 */
72
73 #include <linux/compat.h>
74 #include <linux/slab.h>
75 #include <linux/spinlock.h>
76 #include <linux/init.h>
77 #include <linux/proc_fs.h>
78 #include <linux/time.h>
79 #include <linux/security.h>
80 #include <linux/syscalls.h>
81 #include <linux/audit.h>
82 #include <linux/capability.h>
83 #include <linux/seq_file.h>
84 #include <linux/rwsem.h>
85 #include <linux/nsproxy.h>
86 #include <linux/ipc_namespace.h>
87 #include <linux/sched/wake_q.h>
88 #include <linux/nospec.h>
89 #include <linux/rhashtable.h>
90
91 #include <linux/uaccess.h>
92 #include "util.h"
93
94 /* One semaphore structure for each semaphore in the system. */
95 struct sem {
96 int semval; /* current value */
97 /*
98 * PID of the process that last modified the semaphore. For
99 * Linux, specifically these are:
100 * - semop
101 * - semctl, via SETVAL and SETALL.
102 * - at task exit when performing undo adjustments (see exit_sem).
103 */
104 struct pid *sempid;
105 spinlock_t lock; /* spinlock for fine-grained semtimedop */
106 struct list_head pending_alter; /* pending single-sop operations */
107 /* that alter the semaphore */
108 struct list_head pending_const; /* pending single-sop operations */
109 /* that do not alter the semaphore*/
110 time64_t sem_otime; /* candidate for sem_otime */
111 } ____cacheline_aligned_in_smp;
112
113 /* One sem_array data structure for each set of semaphores in the system. */
114 struct sem_array {
115 struct kern_ipc_perm sem_perm; /* permissions .. see ipc.h */
116 time64_t sem_ctime; /* create/last semctl() time */
117 struct list_head pending_alter; /* pending operations */
118 /* that alter the array */
119 struct list_head pending_const; /* pending complex operations */
120 /* that do not alter semvals */
121 struct list_head list_id; /* undo requests on this array */
122 int sem_nsems; /* no. of semaphores in array */
123 int complex_count; /* pending complex operations */
124 unsigned int use_global_lock;/* >0: global lock required */
125
126 struct sem sems[];
127 } __randomize_layout;
128
129 /* One queue for each sleeping process in the system. */
130 struct sem_queue {
131 struct list_head list; /* queue of pending operations */
132 struct task_struct *sleeper; /* this process */
133 struct sem_undo *undo; /* undo structure */
134 struct pid *pid; /* process id of requesting process */
135 int status; /* completion status of operation */
136 struct sembuf *sops; /* array of pending operations */
137 struct sembuf *blocking; /* the operation that blocked */
138 int nsops; /* number of operations */
139 bool alter; /* does *sops alter the array? */
140 bool dupsop; /* sops on more than one sem_num */
141 };
142
143 /* Each task has a list of undo requests. They are executed automatically
144 * when the process exits.
145 */
146 struct sem_undo {
147 struct list_head list_proc; /* per-process list: *
148 * all undos from one process
149 * rcu protected */
150 struct rcu_head rcu; /* rcu struct for sem_undo */
151 struct sem_undo_list *ulp; /* back ptr to sem_undo_list */
152 struct list_head list_id; /* per semaphore array list:
153 * all undos for one array */
154 int semid; /* semaphore set identifier */
155 short *semadj; /* array of adjustments */
156 /* one per semaphore */
157 };
158
159 /* sem_undo_list controls shared access to the list of sem_undo structures
160 * that may be shared among all a CLONE_SYSVSEM task group.
161 */
162 struct sem_undo_list {
163 refcount_t refcnt;
164 spinlock_t lock;
165 struct list_head list_proc;
166 };
167
168
169 #define sem_ids(ns) ((ns)->ids[IPC_SEM_IDS])
170
171 static int newary(struct ipc_namespace *, struct ipc_params *);
172 static void freeary(struct ipc_namespace *, struct kern_ipc_perm *);
173 #ifdef CONFIG_PROC_FS
174 static int sysvipc_sem_proc_show(struct seq_file *s, void *it);
175 #endif
176
177 #define SEMMSL_FAST 256 /* 512 bytes on stack */
178 #define SEMOPM_FAST 64 /* ~ 372 bytes on stack */
179
180 /*
181 * Switching from the mode suitable for simple ops
182 * to the mode for complex ops is costly. Therefore:
183 * use some hysteresis
184 */
185 #define USE_GLOBAL_LOCK_HYSTERESIS 10
186
187 /*
188 * Locking:
189 * a) global sem_lock() for read/write
190 * sem_undo.id_next,
191 * sem_array.complex_count,
192 * sem_array.pending{_alter,_const},
193 * sem_array.sem_undo
194 *
195 * b) global or semaphore sem_lock() for read/write:
196 * sem_array.sems[i].pending_{const,alter}:
197 *
198 * c) special:
199 * sem_undo_list.list_proc:
200 * * undo_list->lock for write
201 * * rcu for read
202 * use_global_lock:
203 * * global sem_lock() for write
204 * * either local or global sem_lock() for read.
205 *
206 * Memory ordering:
207 * Most ordering is enforced by using spin_lock() and spin_unlock().
208 *
209 * Exceptions:
210 * 1) use_global_lock: (SEM_BARRIER_1)
211 * Setting it from non-zero to 0 is a RELEASE, this is ensured by
212 * using smp_store_release(): Immediately after setting it to 0,
213 * a simple op can start.
214 * Testing if it is non-zero is an ACQUIRE, this is ensured by using
215 * smp_load_acquire().
216 * Setting it from 0 to non-zero must be ordered with regards to
217 * this smp_load_acquire(), this is guaranteed because the smp_load_acquire()
218 * is inside a spin_lock() and after a write from 0 to non-zero a
219 * spin_lock()+spin_unlock() is done.
220 *
221 * 2) queue.status: (SEM_BARRIER_2)
222 * Initialization is done while holding sem_lock(), so no further barrier is
223 * required.
224 * Setting it to a result code is a RELEASE, this is ensured by both a
225 * smp_store_release() (for case a) and while holding sem_lock()
226 * (for case b).
227 * The AQUIRE when reading the result code without holding sem_lock() is
228 * achieved by using READ_ONCE() + smp_acquire__after_ctrl_dep().
229 * (case a above).
230 * Reading the result code while holding sem_lock() needs no further barriers,
231 * the locks inside sem_lock() enforce ordering (case b above)
232 *
233 * 3) current->state:
234 * current->state is set to TASK_INTERRUPTIBLE while holding sem_lock().
235 * The wakeup is handled using the wake_q infrastructure. wake_q wakeups may
236 * happen immediately after calling wake_q_add. As wake_q_add_safe() is called
237 * when holding sem_lock(), no further barriers are required.
238 *
239 * See also ipc/mqueue.c for more details on the covered races.
240 */
241
242 #define sc_semmsl sem_ctls[0]
243 #define sc_semmns sem_ctls[1]
244 #define sc_semopm sem_ctls[2]
245 #define sc_semmni sem_ctls[3]
246
sem_init_ns(struct ipc_namespace * ns)247 void sem_init_ns(struct ipc_namespace *ns)
248 {
249 ns->sc_semmsl = SEMMSL;
250 ns->sc_semmns = SEMMNS;
251 ns->sc_semopm = SEMOPM;
252 ns->sc_semmni = SEMMNI;
253 ns->used_sems = 0;
254 ipc_init_ids(&ns->ids[IPC_SEM_IDS]);
255 }
256
257 #ifdef CONFIG_IPC_NS
sem_exit_ns(struct ipc_namespace * ns)258 void sem_exit_ns(struct ipc_namespace *ns)
259 {
260 free_ipcs(ns, &sem_ids(ns), freeary);
261 idr_destroy(&ns->ids[IPC_SEM_IDS].ipcs_idr);
262 rhashtable_destroy(&ns->ids[IPC_SEM_IDS].key_ht);
263 }
264 #endif
265
sem_init(void)266 void __init sem_init(void)
267 {
268 sem_init_ns(&init_ipc_ns);
269 ipc_init_proc_interface("sysvipc/sem",
270 " key semid perms nsems uid gid cuid cgid otime ctime\n",
271 IPC_SEM_IDS, sysvipc_sem_proc_show);
272 }
273
274 /**
275 * unmerge_queues - unmerge queues, if possible.
276 * @sma: semaphore array
277 *
278 * The function unmerges the wait queues if complex_count is 0.
279 * It must be called prior to dropping the global semaphore array lock.
280 */
unmerge_queues(struct sem_array * sma)281 static void unmerge_queues(struct sem_array *sma)
282 {
283 struct sem_queue *q, *tq;
284
285 /* complex operations still around? */
286 if (sma->complex_count)
287 return;
288 /*
289 * We will switch back to simple mode.
290 * Move all pending operation back into the per-semaphore
291 * queues.
292 */
293 list_for_each_entry_safe(q, tq, &sma->pending_alter, list) {
294 struct sem *curr;
295 curr = &sma->sems[q->sops[0].sem_num];
296
297 list_add_tail(&q->list, &curr->pending_alter);
298 }
299 INIT_LIST_HEAD(&sma->pending_alter);
300 }
301
302 /**
303 * merge_queues - merge single semop queues into global queue
304 * @sma: semaphore array
305 *
306 * This function merges all per-semaphore queues into the global queue.
307 * It is necessary to achieve FIFO ordering for the pending single-sop
308 * operations when a multi-semop operation must sleep.
309 * Only the alter operations must be moved, the const operations can stay.
310 */
merge_queues(struct sem_array * sma)311 static void merge_queues(struct sem_array *sma)
312 {
313 int i;
314 for (i = 0; i < sma->sem_nsems; i++) {
315 struct sem *sem = &sma->sems[i];
316
317 list_splice_init(&sem->pending_alter, &sma->pending_alter);
318 }
319 }
320
sem_rcu_free(struct rcu_head * head)321 static void sem_rcu_free(struct rcu_head *head)
322 {
323 struct kern_ipc_perm *p = container_of(head, struct kern_ipc_perm, rcu);
324 struct sem_array *sma = container_of(p, struct sem_array, sem_perm);
325
326 security_sem_free(&sma->sem_perm);
327 kvfree(sma);
328 }
329
330 /*
331 * Enter the mode suitable for non-simple operations:
332 * Caller must own sem_perm.lock.
333 */
complexmode_enter(struct sem_array * sma)334 static void complexmode_enter(struct sem_array *sma)
335 {
336 int i;
337 struct sem *sem;
338
339 if (sma->use_global_lock > 0) {
340 /*
341 * We are already in global lock mode.
342 * Nothing to do, just reset the
343 * counter until we return to simple mode.
344 */
345 sma->use_global_lock = USE_GLOBAL_LOCK_HYSTERESIS;
346 return;
347 }
348 sma->use_global_lock = USE_GLOBAL_LOCK_HYSTERESIS;
349
350 for (i = 0; i < sma->sem_nsems; i++) {
351 sem = &sma->sems[i];
352 spin_lock(&sem->lock);
353 spin_unlock(&sem->lock);
354 }
355 }
356
357 /*
358 * Try to leave the mode that disallows simple operations:
359 * Caller must own sem_perm.lock.
360 */
complexmode_tryleave(struct sem_array * sma)361 static void complexmode_tryleave(struct sem_array *sma)
362 {
363 if (sma->complex_count) {
364 /* Complex ops are sleeping.
365 * We must stay in complex mode
366 */
367 return;
368 }
369 if (sma->use_global_lock == 1) {
370
371 /* See SEM_BARRIER_1 for purpose/pairing */
372 smp_store_release(&sma->use_global_lock, 0);
373 } else {
374 sma->use_global_lock--;
375 }
376 }
377
378 #define SEM_GLOBAL_LOCK (-1)
379 /*
380 * If the request contains only one semaphore operation, and there are
381 * no complex transactions pending, lock only the semaphore involved.
382 * Otherwise, lock the entire semaphore array, since we either have
383 * multiple semaphores in our own semops, or we need to look at
384 * semaphores from other pending complex operations.
385 */
sem_lock(struct sem_array * sma,struct sembuf * sops,int nsops)386 static inline int sem_lock(struct sem_array *sma, struct sembuf *sops,
387 int nsops)
388 {
389 struct sem *sem;
390 int idx;
391
392 if (nsops != 1) {
393 /* Complex operation - acquire a full lock */
394 ipc_lock_object(&sma->sem_perm);
395
396 /* Prevent parallel simple ops */
397 complexmode_enter(sma);
398 return SEM_GLOBAL_LOCK;
399 }
400
401 /*
402 * Only one semaphore affected - try to optimize locking.
403 * Optimized locking is possible if no complex operation
404 * is either enqueued or processed right now.
405 *
406 * Both facts are tracked by use_global_mode.
407 */
408 idx = array_index_nospec(sops->sem_num, sma->sem_nsems);
409 sem = &sma->sems[idx];
410
411 /*
412 * Initial check for use_global_lock. Just an optimization,
413 * no locking, no memory barrier.
414 */
415 if (!sma->use_global_lock) {
416 /*
417 * It appears that no complex operation is around.
418 * Acquire the per-semaphore lock.
419 */
420 spin_lock(&sem->lock);
421
422 /* see SEM_BARRIER_1 for purpose/pairing */
423 if (!smp_load_acquire(&sma->use_global_lock)) {
424 /* fast path successful! */
425 return sops->sem_num;
426 }
427 spin_unlock(&sem->lock);
428 }
429
430 /* slow path: acquire the full lock */
431 ipc_lock_object(&sma->sem_perm);
432
433 if (sma->use_global_lock == 0) {
434 /*
435 * The use_global_lock mode ended while we waited for
436 * sma->sem_perm.lock. Thus we must switch to locking
437 * with sem->lock.
438 * Unlike in the fast path, there is no need to recheck
439 * sma->use_global_lock after we have acquired sem->lock:
440 * We own sma->sem_perm.lock, thus use_global_lock cannot
441 * change.
442 */
443 spin_lock(&sem->lock);
444
445 ipc_unlock_object(&sma->sem_perm);
446 return sops->sem_num;
447 } else {
448 /*
449 * Not a false alarm, thus continue to use the global lock
450 * mode. No need for complexmode_enter(), this was done by
451 * the caller that has set use_global_mode to non-zero.
452 */
453 return SEM_GLOBAL_LOCK;
454 }
455 }
456
sem_unlock(struct sem_array * sma,int locknum)457 static inline void sem_unlock(struct sem_array *sma, int locknum)
458 {
459 if (locknum == SEM_GLOBAL_LOCK) {
460 unmerge_queues(sma);
461 complexmode_tryleave(sma);
462 ipc_unlock_object(&sma->sem_perm);
463 } else {
464 struct sem *sem = &sma->sems[locknum];
465 spin_unlock(&sem->lock);
466 }
467 }
468
469 /*
470 * sem_lock_(check_) routines are called in the paths where the rwsem
471 * is not held.
472 *
473 * The caller holds the RCU read lock.
474 */
sem_obtain_object(struct ipc_namespace * ns,int id)475 static inline struct sem_array *sem_obtain_object(struct ipc_namespace *ns, int id)
476 {
477 struct kern_ipc_perm *ipcp = ipc_obtain_object_idr(&sem_ids(ns), id);
478
479 if (IS_ERR(ipcp))
480 return ERR_CAST(ipcp);
481
482 return container_of(ipcp, struct sem_array, sem_perm);
483 }
484
sem_obtain_object_check(struct ipc_namespace * ns,int id)485 static inline struct sem_array *sem_obtain_object_check(struct ipc_namespace *ns,
486 int id)
487 {
488 struct kern_ipc_perm *ipcp = ipc_obtain_object_check(&sem_ids(ns), id);
489
490 if (IS_ERR(ipcp))
491 return ERR_CAST(ipcp);
492
493 return container_of(ipcp, struct sem_array, sem_perm);
494 }
495
sem_lock_and_putref(struct sem_array * sma)496 static inline void sem_lock_and_putref(struct sem_array *sma)
497 {
498 sem_lock(sma, NULL, -1);
499 ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
500 }
501
sem_rmid(struct ipc_namespace * ns,struct sem_array * s)502 static inline void sem_rmid(struct ipc_namespace *ns, struct sem_array *s)
503 {
504 ipc_rmid(&sem_ids(ns), &s->sem_perm);
505 }
506
sem_alloc(size_t nsems)507 static struct sem_array *sem_alloc(size_t nsems)
508 {
509 struct sem_array *sma;
510
511 if (nsems > (INT_MAX - sizeof(*sma)) / sizeof(sma->sems[0]))
512 return NULL;
513
514 sma = kvzalloc(struct_size(sma, sems, nsems), GFP_KERNEL_ACCOUNT);
515 if (unlikely(!sma))
516 return NULL;
517
518 return sma;
519 }
520
521 /**
522 * newary - Create a new semaphore set
523 * @ns: namespace
524 * @params: ptr to the structure that contains key, semflg and nsems
525 *
526 * Called with sem_ids.rwsem held (as a writer)
527 */
newary(struct ipc_namespace * ns,struct ipc_params * params)528 static int newary(struct ipc_namespace *ns, struct ipc_params *params)
529 {
530 int retval;
531 struct sem_array *sma;
532 key_t key = params->key;
533 int nsems = params->u.nsems;
534 int semflg = params->flg;
535 int i;
536
537 if (!nsems)
538 return -EINVAL;
539 if (ns->used_sems + nsems > ns->sc_semmns)
540 return -ENOSPC;
541
542 sma = sem_alloc(nsems);
543 if (!sma)
544 return -ENOMEM;
545
546 sma->sem_perm.mode = (semflg & S_IRWXUGO);
547 sma->sem_perm.key = key;
548
549 sma->sem_perm.security = NULL;
550 retval = security_sem_alloc(&sma->sem_perm);
551 if (retval) {
552 kvfree(sma);
553 return retval;
554 }
555
556 for (i = 0; i < nsems; i++) {
557 INIT_LIST_HEAD(&sma->sems[i].pending_alter);
558 INIT_LIST_HEAD(&sma->sems[i].pending_const);
559 spin_lock_init(&sma->sems[i].lock);
560 }
561
562 sma->complex_count = 0;
563 sma->use_global_lock = USE_GLOBAL_LOCK_HYSTERESIS;
564 INIT_LIST_HEAD(&sma->pending_alter);
565 INIT_LIST_HEAD(&sma->pending_const);
566 INIT_LIST_HEAD(&sma->list_id);
567 sma->sem_nsems = nsems;
568 sma->sem_ctime = ktime_get_real_seconds();
569
570 /* ipc_addid() locks sma upon success. */
571 retval = ipc_addid(&sem_ids(ns), &sma->sem_perm, ns->sc_semmni);
572 if (retval < 0) {
573 ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
574 return retval;
575 }
576 ns->used_sems += nsems;
577
578 sem_unlock(sma, -1);
579 rcu_read_unlock();
580
581 return sma->sem_perm.id;
582 }
583
584
585 /*
586 * Called with sem_ids.rwsem and ipcp locked.
587 */
sem_more_checks(struct kern_ipc_perm * ipcp,struct ipc_params * params)588 static int sem_more_checks(struct kern_ipc_perm *ipcp, struct ipc_params *params)
589 {
590 struct sem_array *sma;
591
592 sma = container_of(ipcp, struct sem_array, sem_perm);
593 if (params->u.nsems > sma->sem_nsems)
594 return -EINVAL;
595
596 return 0;
597 }
598
ksys_semget(key_t key,int nsems,int semflg)599 long ksys_semget(key_t key, int nsems, int semflg)
600 {
601 struct ipc_namespace *ns;
602 static const struct ipc_ops sem_ops = {
603 .getnew = newary,
604 .associate = security_sem_associate,
605 .more_checks = sem_more_checks,
606 };
607 struct ipc_params sem_params;
608
609 ns = current->nsproxy->ipc_ns;
610
611 if (nsems < 0 || nsems > ns->sc_semmsl)
612 return -EINVAL;
613
614 sem_params.key = key;
615 sem_params.flg = semflg;
616 sem_params.u.nsems = nsems;
617
618 return ipcget(ns, &sem_ids(ns), &sem_ops, &sem_params);
619 }
620
SYSCALL_DEFINE3(semget,key_t,key,int,nsems,int,semflg)621 SYSCALL_DEFINE3(semget, key_t, key, int, nsems, int, semflg)
622 {
623 return ksys_semget(key, nsems, semflg);
624 }
625
626 /**
627 * perform_atomic_semop[_slow] - Attempt to perform semaphore
628 * operations on a given array.
629 * @sma: semaphore array
630 * @q: struct sem_queue that describes the operation
631 *
632 * Caller blocking are as follows, based the value
633 * indicated by the semaphore operation (sem_op):
634 *
635 * (1) >0 never blocks.
636 * (2) 0 (wait-for-zero operation): semval is non-zero.
637 * (3) <0 attempting to decrement semval to a value smaller than zero.
638 *
639 * Returns 0 if the operation was possible.
640 * Returns 1 if the operation is impossible, the caller must sleep.
641 * Returns <0 for error codes.
642 */
perform_atomic_semop_slow(struct sem_array * sma,struct sem_queue * q)643 static int perform_atomic_semop_slow(struct sem_array *sma, struct sem_queue *q)
644 {
645 int result, sem_op, nsops;
646 struct pid *pid;
647 struct sembuf *sop;
648 struct sem *curr;
649 struct sembuf *sops;
650 struct sem_undo *un;
651
652 sops = q->sops;
653 nsops = q->nsops;
654 un = q->undo;
655
656 for (sop = sops; sop < sops + nsops; sop++) {
657 int idx = array_index_nospec(sop->sem_num, sma->sem_nsems);
658 curr = &sma->sems[idx];
659 sem_op = sop->sem_op;
660 result = curr->semval;
661
662 if (!sem_op && result)
663 goto would_block;
664
665 result += sem_op;
666 if (result < 0)
667 goto would_block;
668 if (result > SEMVMX)
669 goto out_of_range;
670
671 if (sop->sem_flg & SEM_UNDO) {
672 int undo = un->semadj[sop->sem_num] - sem_op;
673 /* Exceeding the undo range is an error. */
674 if (undo < (-SEMAEM - 1) || undo > SEMAEM)
675 goto out_of_range;
676 un->semadj[sop->sem_num] = undo;
677 }
678
679 curr->semval = result;
680 }
681
682 sop--;
683 pid = q->pid;
684 while (sop >= sops) {
685 ipc_update_pid(&sma->sems[sop->sem_num].sempid, pid);
686 sop--;
687 }
688
689 return 0;
690
691 out_of_range:
692 result = -ERANGE;
693 goto undo;
694
695 would_block:
696 q->blocking = sop;
697
698 if (sop->sem_flg & IPC_NOWAIT)
699 result = -EAGAIN;
700 else
701 result = 1;
702
703 undo:
704 sop--;
705 while (sop >= sops) {
706 sem_op = sop->sem_op;
707 sma->sems[sop->sem_num].semval -= sem_op;
708 if (sop->sem_flg & SEM_UNDO)
709 un->semadj[sop->sem_num] += sem_op;
710 sop--;
711 }
712
713 return result;
714 }
715
perform_atomic_semop(struct sem_array * sma,struct sem_queue * q)716 static int perform_atomic_semop(struct sem_array *sma, struct sem_queue *q)
717 {
718 int result, sem_op, nsops;
719 struct sembuf *sop;
720 struct sem *curr;
721 struct sembuf *sops;
722 struct sem_undo *un;
723
724 sops = q->sops;
725 nsops = q->nsops;
726 un = q->undo;
727
728 if (unlikely(q->dupsop))
729 return perform_atomic_semop_slow(sma, q);
730
731 /*
732 * We scan the semaphore set twice, first to ensure that the entire
733 * operation can succeed, therefore avoiding any pointless writes
734 * to shared memory and having to undo such changes in order to block
735 * until the operations can go through.
736 */
737 for (sop = sops; sop < sops + nsops; sop++) {
738 int idx = array_index_nospec(sop->sem_num, sma->sem_nsems);
739
740 curr = &sma->sems[idx];
741 sem_op = sop->sem_op;
742 result = curr->semval;
743
744 if (!sem_op && result)
745 goto would_block; /* wait-for-zero */
746
747 result += sem_op;
748 if (result < 0)
749 goto would_block;
750
751 if (result > SEMVMX)
752 return -ERANGE;
753
754 if (sop->sem_flg & SEM_UNDO) {
755 int undo = un->semadj[sop->sem_num] - sem_op;
756
757 /* Exceeding the undo range is an error. */
758 if (undo < (-SEMAEM - 1) || undo > SEMAEM)
759 return -ERANGE;
760 }
761 }
762
763 for (sop = sops; sop < sops + nsops; sop++) {
764 curr = &sma->sems[sop->sem_num];
765 sem_op = sop->sem_op;
766 result = curr->semval;
767
768 if (sop->sem_flg & SEM_UNDO) {
769 int undo = un->semadj[sop->sem_num] - sem_op;
770
771 un->semadj[sop->sem_num] = undo;
772 }
773 curr->semval += sem_op;
774 ipc_update_pid(&curr->sempid, q->pid);
775 }
776
777 return 0;
778
779 would_block:
780 q->blocking = sop;
781 return sop->sem_flg & IPC_NOWAIT ? -EAGAIN : 1;
782 }
783
wake_up_sem_queue_prepare(struct sem_queue * q,int error,struct wake_q_head * wake_q)784 static inline void wake_up_sem_queue_prepare(struct sem_queue *q, int error,
785 struct wake_q_head *wake_q)
786 {
787 struct task_struct *sleeper;
788
789 sleeper = get_task_struct(q->sleeper);
790
791 /* see SEM_BARRIER_2 for purpuse/pairing */
792 smp_store_release(&q->status, error);
793
794 wake_q_add_safe(wake_q, sleeper);
795 }
796
unlink_queue(struct sem_array * sma,struct sem_queue * q)797 static void unlink_queue(struct sem_array *sma, struct sem_queue *q)
798 {
799 list_del(&q->list);
800 if (q->nsops > 1)
801 sma->complex_count--;
802 }
803
804 /** check_restart(sma, q)
805 * @sma: semaphore array
806 * @q: the operation that just completed
807 *
808 * update_queue is O(N^2) when it restarts scanning the whole queue of
809 * waiting operations. Therefore this function checks if the restart is
810 * really necessary. It is called after a previously waiting operation
811 * modified the array.
812 * Note that wait-for-zero operations are handled without restart.
813 */
check_restart(struct sem_array * sma,struct sem_queue * q)814 static inline int check_restart(struct sem_array *sma, struct sem_queue *q)
815 {
816 /* pending complex alter operations are too difficult to analyse */
817 if (!list_empty(&sma->pending_alter))
818 return 1;
819
820 /* we were a sleeping complex operation. Too difficult */
821 if (q->nsops > 1)
822 return 1;
823
824 /* It is impossible that someone waits for the new value:
825 * - complex operations always restart.
826 * - wait-for-zero are handled seperately.
827 * - q is a previously sleeping simple operation that
828 * altered the array. It must be a decrement, because
829 * simple increments never sleep.
830 * - If there are older (higher priority) decrements
831 * in the queue, then they have observed the original
832 * semval value and couldn't proceed. The operation
833 * decremented to value - thus they won't proceed either.
834 */
835 return 0;
836 }
837
838 /**
839 * wake_const_ops - wake up non-alter tasks
840 * @sma: semaphore array.
841 * @semnum: semaphore that was modified.
842 * @wake_q: lockless wake-queue head.
843 *
844 * wake_const_ops must be called after a semaphore in a semaphore array
845 * was set to 0. If complex const operations are pending, wake_const_ops must
846 * be called with semnum = -1, as well as with the number of each modified
847 * semaphore.
848 * The tasks that must be woken up are added to @wake_q. The return code
849 * is stored in q->pid.
850 * The function returns 1 if at least one operation was completed successfully.
851 */
wake_const_ops(struct sem_array * sma,int semnum,struct wake_q_head * wake_q)852 static int wake_const_ops(struct sem_array *sma, int semnum,
853 struct wake_q_head *wake_q)
854 {
855 struct sem_queue *q, *tmp;
856 struct list_head *pending_list;
857 int semop_completed = 0;
858
859 if (semnum == -1)
860 pending_list = &sma->pending_const;
861 else
862 pending_list = &sma->sems[semnum].pending_const;
863
864 list_for_each_entry_safe(q, tmp, pending_list, list) {
865 int error = perform_atomic_semop(sma, q);
866
867 if (error > 0)
868 continue;
869 /* operation completed, remove from queue & wakeup */
870 unlink_queue(sma, q);
871
872 wake_up_sem_queue_prepare(q, error, wake_q);
873 if (error == 0)
874 semop_completed = 1;
875 }
876
877 return semop_completed;
878 }
879
880 /**
881 * do_smart_wakeup_zero - wakeup all wait for zero tasks
882 * @sma: semaphore array
883 * @sops: operations that were performed
884 * @nsops: number of operations
885 * @wake_q: lockless wake-queue head
886 *
887 * Checks all required queue for wait-for-zero operations, based
888 * on the actual changes that were performed on the semaphore array.
889 * The function returns 1 if at least one operation was completed successfully.
890 */
do_smart_wakeup_zero(struct sem_array * sma,struct sembuf * sops,int nsops,struct wake_q_head * wake_q)891 static int do_smart_wakeup_zero(struct sem_array *sma, struct sembuf *sops,
892 int nsops, struct wake_q_head *wake_q)
893 {
894 int i;
895 int semop_completed = 0;
896 int got_zero = 0;
897
898 /* first: the per-semaphore queues, if known */
899 if (sops) {
900 for (i = 0; i < nsops; i++) {
901 int num = sops[i].sem_num;
902
903 if (sma->sems[num].semval == 0) {
904 got_zero = 1;
905 semop_completed |= wake_const_ops(sma, num, wake_q);
906 }
907 }
908 } else {
909 /*
910 * No sops means modified semaphores not known.
911 * Assume all were changed.
912 */
913 for (i = 0; i < sma->sem_nsems; i++) {
914 if (sma->sems[i].semval == 0) {
915 got_zero = 1;
916 semop_completed |= wake_const_ops(sma, i, wake_q);
917 }
918 }
919 }
920 /*
921 * If one of the modified semaphores got 0,
922 * then check the global queue, too.
923 */
924 if (got_zero)
925 semop_completed |= wake_const_ops(sma, -1, wake_q);
926
927 return semop_completed;
928 }
929
930
931 /**
932 * update_queue - look for tasks that can be completed.
933 * @sma: semaphore array.
934 * @semnum: semaphore that was modified.
935 * @wake_q: lockless wake-queue head.
936 *
937 * update_queue must be called after a semaphore in a semaphore array
938 * was modified. If multiple semaphores were modified, update_queue must
939 * be called with semnum = -1, as well as with the number of each modified
940 * semaphore.
941 * The tasks that must be woken up are added to @wake_q. The return code
942 * is stored in q->pid.
943 * The function internally checks if const operations can now succeed.
944 *
945 * The function return 1 if at least one semop was completed successfully.
946 */
update_queue(struct sem_array * sma,int semnum,struct wake_q_head * wake_q)947 static int update_queue(struct sem_array *sma, int semnum, struct wake_q_head *wake_q)
948 {
949 struct sem_queue *q, *tmp;
950 struct list_head *pending_list;
951 int semop_completed = 0;
952
953 if (semnum == -1)
954 pending_list = &sma->pending_alter;
955 else
956 pending_list = &sma->sems[semnum].pending_alter;
957
958 again:
959 list_for_each_entry_safe(q, tmp, pending_list, list) {
960 int error, restart;
961
962 /* If we are scanning the single sop, per-semaphore list of
963 * one semaphore and that semaphore is 0, then it is not
964 * necessary to scan further: simple increments
965 * that affect only one entry succeed immediately and cannot
966 * be in the per semaphore pending queue, and decrements
967 * cannot be successful if the value is already 0.
968 */
969 if (semnum != -1 && sma->sems[semnum].semval == 0)
970 break;
971
972 error = perform_atomic_semop(sma, q);
973
974 /* Does q->sleeper still need to sleep? */
975 if (error > 0)
976 continue;
977
978 unlink_queue(sma, q);
979
980 if (error) {
981 restart = 0;
982 } else {
983 semop_completed = 1;
984 do_smart_wakeup_zero(sma, q->sops, q->nsops, wake_q);
985 restart = check_restart(sma, q);
986 }
987
988 wake_up_sem_queue_prepare(q, error, wake_q);
989 if (restart)
990 goto again;
991 }
992 return semop_completed;
993 }
994
995 /**
996 * set_semotime - set sem_otime
997 * @sma: semaphore array
998 * @sops: operations that modified the array, may be NULL
999 *
1000 * sem_otime is replicated to avoid cache line trashing.
1001 * This function sets one instance to the current time.
1002 */
set_semotime(struct sem_array * sma,struct sembuf * sops)1003 static void set_semotime(struct sem_array *sma, struct sembuf *sops)
1004 {
1005 if (sops == NULL) {
1006 sma->sems[0].sem_otime = ktime_get_real_seconds();
1007 } else {
1008 sma->sems[sops[0].sem_num].sem_otime =
1009 ktime_get_real_seconds();
1010 }
1011 }
1012
1013 /**
1014 * do_smart_update - optimized update_queue
1015 * @sma: semaphore array
1016 * @sops: operations that were performed
1017 * @nsops: number of operations
1018 * @otime: force setting otime
1019 * @wake_q: lockless wake-queue head
1020 *
1021 * do_smart_update() does the required calls to update_queue and wakeup_zero,
1022 * based on the actual changes that were performed on the semaphore array.
1023 * Note that the function does not do the actual wake-up: the caller is
1024 * responsible for calling wake_up_q().
1025 * It is safe to perform this call after dropping all locks.
1026 */
do_smart_update(struct sem_array * sma,struct sembuf * sops,int nsops,int otime,struct wake_q_head * wake_q)1027 static void do_smart_update(struct sem_array *sma, struct sembuf *sops, int nsops,
1028 int otime, struct wake_q_head *wake_q)
1029 {
1030 int i;
1031
1032 otime |= do_smart_wakeup_zero(sma, sops, nsops, wake_q);
1033
1034 if (!list_empty(&sma->pending_alter)) {
1035 /* semaphore array uses the global queue - just process it. */
1036 otime |= update_queue(sma, -1, wake_q);
1037 } else {
1038 if (!sops) {
1039 /*
1040 * No sops, thus the modified semaphores are not
1041 * known. Check all.
1042 */
1043 for (i = 0; i < sma->sem_nsems; i++)
1044 otime |= update_queue(sma, i, wake_q);
1045 } else {
1046 /*
1047 * Check the semaphores that were increased:
1048 * - No complex ops, thus all sleeping ops are
1049 * decrease.
1050 * - if we decreased the value, then any sleeping
1051 * semaphore ops wont be able to run: If the
1052 * previous value was too small, then the new
1053 * value will be too small, too.
1054 */
1055 for (i = 0; i < nsops; i++) {
1056 if (sops[i].sem_op > 0) {
1057 otime |= update_queue(sma,
1058 sops[i].sem_num, wake_q);
1059 }
1060 }
1061 }
1062 }
1063 if (otime)
1064 set_semotime(sma, sops);
1065 }
1066
1067 /*
1068 * check_qop: Test if a queued operation sleeps on the semaphore semnum
1069 */
check_qop(struct sem_array * sma,int semnum,struct sem_queue * q,bool count_zero)1070 static int check_qop(struct sem_array *sma, int semnum, struct sem_queue *q,
1071 bool count_zero)
1072 {
1073 struct sembuf *sop = q->blocking;
1074
1075 /*
1076 * Linux always (since 0.99.10) reported a task as sleeping on all
1077 * semaphores. This violates SUS, therefore it was changed to the
1078 * standard compliant behavior.
1079 * Give the administrators a chance to notice that an application
1080 * might misbehave because it relies on the Linux behavior.
1081 */
1082 pr_info_once("semctl(GETNCNT/GETZCNT) is since 3.16 Single Unix Specification compliant.\n"
1083 "The task %s (%d) triggered the difference, watch for misbehavior.\n",
1084 current->comm, task_pid_nr(current));
1085
1086 if (sop->sem_num != semnum)
1087 return 0;
1088
1089 if (count_zero && sop->sem_op == 0)
1090 return 1;
1091 if (!count_zero && sop->sem_op < 0)
1092 return 1;
1093
1094 return 0;
1095 }
1096
1097 /* The following counts are associated to each semaphore:
1098 * semncnt number of tasks waiting on semval being nonzero
1099 * semzcnt number of tasks waiting on semval being zero
1100 *
1101 * Per definition, a task waits only on the semaphore of the first semop
1102 * that cannot proceed, even if additional operation would block, too.
1103 */
count_semcnt(struct sem_array * sma,ushort semnum,bool count_zero)1104 static int count_semcnt(struct sem_array *sma, ushort semnum,
1105 bool count_zero)
1106 {
1107 struct list_head *l;
1108 struct sem_queue *q;
1109 int semcnt;
1110
1111 semcnt = 0;
1112 /* First: check the simple operations. They are easy to evaluate */
1113 if (count_zero)
1114 l = &sma->sems[semnum].pending_const;
1115 else
1116 l = &sma->sems[semnum].pending_alter;
1117
1118 list_for_each_entry(q, l, list) {
1119 /* all task on a per-semaphore list sleep on exactly
1120 * that semaphore
1121 */
1122 semcnt++;
1123 }
1124
1125 /* Then: check the complex operations. */
1126 list_for_each_entry(q, &sma->pending_alter, list) {
1127 semcnt += check_qop(sma, semnum, q, count_zero);
1128 }
1129 if (count_zero) {
1130 list_for_each_entry(q, &sma->pending_const, list) {
1131 semcnt += check_qop(sma, semnum, q, count_zero);
1132 }
1133 }
1134 return semcnt;
1135 }
1136
1137 /* Free a semaphore set. freeary() is called with sem_ids.rwsem locked
1138 * as a writer and the spinlock for this semaphore set hold. sem_ids.rwsem
1139 * remains locked on exit.
1140 */
freeary(struct ipc_namespace * ns,struct kern_ipc_perm * ipcp)1141 static void freeary(struct ipc_namespace *ns, struct kern_ipc_perm *ipcp)
1142 {
1143 struct sem_undo *un, *tu;
1144 struct sem_queue *q, *tq;
1145 struct sem_array *sma = container_of(ipcp, struct sem_array, sem_perm);
1146 int i;
1147 DEFINE_WAKE_Q(wake_q);
1148
1149 /* Free the existing undo structures for this semaphore set. */
1150 ipc_assert_locked_object(&sma->sem_perm);
1151 list_for_each_entry_safe(un, tu, &sma->list_id, list_id) {
1152 list_del(&un->list_id);
1153 spin_lock(&un->ulp->lock);
1154 un->semid = -1;
1155 list_del_rcu(&un->list_proc);
1156 spin_unlock(&un->ulp->lock);
1157 kfree_rcu(un, rcu);
1158 }
1159
1160 /* Wake up all pending processes and let them fail with EIDRM. */
1161 list_for_each_entry_safe(q, tq, &sma->pending_const, list) {
1162 unlink_queue(sma, q);
1163 wake_up_sem_queue_prepare(q, -EIDRM, &wake_q);
1164 }
1165
1166 list_for_each_entry_safe(q, tq, &sma->pending_alter, list) {
1167 unlink_queue(sma, q);
1168 wake_up_sem_queue_prepare(q, -EIDRM, &wake_q);
1169 }
1170 for (i = 0; i < sma->sem_nsems; i++) {
1171 struct sem *sem = &sma->sems[i];
1172 list_for_each_entry_safe(q, tq, &sem->pending_const, list) {
1173 unlink_queue(sma, q);
1174 wake_up_sem_queue_prepare(q, -EIDRM, &wake_q);
1175 }
1176 list_for_each_entry_safe(q, tq, &sem->pending_alter, list) {
1177 unlink_queue(sma, q);
1178 wake_up_sem_queue_prepare(q, -EIDRM, &wake_q);
1179 }
1180 ipc_update_pid(&sem->sempid, NULL);
1181 }
1182
1183 /* Remove the semaphore set from the IDR */
1184 sem_rmid(ns, sma);
1185 sem_unlock(sma, -1);
1186 rcu_read_unlock();
1187
1188 wake_up_q(&wake_q);
1189 ns->used_sems -= sma->sem_nsems;
1190 ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
1191 }
1192
copy_semid_to_user(void __user * buf,struct semid64_ds * in,int version)1193 static unsigned long copy_semid_to_user(void __user *buf, struct semid64_ds *in, int version)
1194 {
1195 switch (version) {
1196 case IPC_64:
1197 return copy_to_user(buf, in, sizeof(*in));
1198 case IPC_OLD:
1199 {
1200 struct semid_ds out;
1201
1202 memset(&out, 0, sizeof(out));
1203
1204 ipc64_perm_to_ipc_perm(&in->sem_perm, &out.sem_perm);
1205
1206 out.sem_otime = in->sem_otime;
1207 out.sem_ctime = in->sem_ctime;
1208 out.sem_nsems = in->sem_nsems;
1209
1210 return copy_to_user(buf, &out, sizeof(out));
1211 }
1212 default:
1213 return -EINVAL;
1214 }
1215 }
1216
get_semotime(struct sem_array * sma)1217 static time64_t get_semotime(struct sem_array *sma)
1218 {
1219 int i;
1220 time64_t res;
1221
1222 res = sma->sems[0].sem_otime;
1223 for (i = 1; i < sma->sem_nsems; i++) {
1224 time64_t to = sma->sems[i].sem_otime;
1225
1226 if (to > res)
1227 res = to;
1228 }
1229 return res;
1230 }
1231
semctl_stat(struct ipc_namespace * ns,int semid,int cmd,struct semid64_ds * semid64)1232 static int semctl_stat(struct ipc_namespace *ns, int semid,
1233 int cmd, struct semid64_ds *semid64)
1234 {
1235 struct sem_array *sma;
1236 time64_t semotime;
1237 int err;
1238
1239 memset(semid64, 0, sizeof(*semid64));
1240
1241 rcu_read_lock();
1242 if (cmd == SEM_STAT || cmd == SEM_STAT_ANY) {
1243 sma = sem_obtain_object(ns, semid);
1244 if (IS_ERR(sma)) {
1245 err = PTR_ERR(sma);
1246 goto out_unlock;
1247 }
1248 } else { /* IPC_STAT */
1249 sma = sem_obtain_object_check(ns, semid);
1250 if (IS_ERR(sma)) {
1251 err = PTR_ERR(sma);
1252 goto out_unlock;
1253 }
1254 }
1255
1256 /* see comment for SHM_STAT_ANY */
1257 if (cmd == SEM_STAT_ANY)
1258 audit_ipc_obj(&sma->sem_perm);
1259 else {
1260 err = -EACCES;
1261 if (ipcperms(ns, &sma->sem_perm, S_IRUGO))
1262 goto out_unlock;
1263 }
1264
1265 err = security_sem_semctl(&sma->sem_perm, cmd);
1266 if (err)
1267 goto out_unlock;
1268
1269 ipc_lock_object(&sma->sem_perm);
1270
1271 if (!ipc_valid_object(&sma->sem_perm)) {
1272 ipc_unlock_object(&sma->sem_perm);
1273 err = -EIDRM;
1274 goto out_unlock;
1275 }
1276
1277 kernel_to_ipc64_perm(&sma->sem_perm, &semid64->sem_perm);
1278 semotime = get_semotime(sma);
1279 semid64->sem_otime = semotime;
1280 semid64->sem_ctime = sma->sem_ctime;
1281 #ifndef CONFIG_64BIT
1282 semid64->sem_otime_high = semotime >> 32;
1283 semid64->sem_ctime_high = sma->sem_ctime >> 32;
1284 #endif
1285 semid64->sem_nsems = sma->sem_nsems;
1286
1287 if (cmd == IPC_STAT) {
1288 /*
1289 * As defined in SUS:
1290 * Return 0 on success
1291 */
1292 err = 0;
1293 } else {
1294 /*
1295 * SEM_STAT and SEM_STAT_ANY (both Linux specific)
1296 * Return the full id, including the sequence number
1297 */
1298 err = sma->sem_perm.id;
1299 }
1300 ipc_unlock_object(&sma->sem_perm);
1301 out_unlock:
1302 rcu_read_unlock();
1303 return err;
1304 }
1305
semctl_info(struct ipc_namespace * ns,int semid,int cmd,void __user * p)1306 static int semctl_info(struct ipc_namespace *ns, int semid,
1307 int cmd, void __user *p)
1308 {
1309 struct seminfo seminfo;
1310 int max_idx;
1311 int err;
1312
1313 err = security_sem_semctl(NULL, cmd);
1314 if (err)
1315 return err;
1316
1317 memset(&seminfo, 0, sizeof(seminfo));
1318 seminfo.semmni = ns->sc_semmni;
1319 seminfo.semmns = ns->sc_semmns;
1320 seminfo.semmsl = ns->sc_semmsl;
1321 seminfo.semopm = ns->sc_semopm;
1322 seminfo.semvmx = SEMVMX;
1323 seminfo.semmnu = SEMMNU;
1324 seminfo.semmap = SEMMAP;
1325 seminfo.semume = SEMUME;
1326 down_read(&sem_ids(ns).rwsem);
1327 if (cmd == SEM_INFO) {
1328 seminfo.semusz = sem_ids(ns).in_use;
1329 seminfo.semaem = ns->used_sems;
1330 } else {
1331 seminfo.semusz = SEMUSZ;
1332 seminfo.semaem = SEMAEM;
1333 }
1334 max_idx = ipc_get_maxidx(&sem_ids(ns));
1335 up_read(&sem_ids(ns).rwsem);
1336 if (copy_to_user(p, &seminfo, sizeof(struct seminfo)))
1337 return -EFAULT;
1338 return (max_idx < 0) ? 0 : max_idx;
1339 }
1340
semctl_setval(struct ipc_namespace * ns,int semid,int semnum,int val)1341 static int semctl_setval(struct ipc_namespace *ns, int semid, int semnum,
1342 int val)
1343 {
1344 struct sem_undo *un;
1345 struct sem_array *sma;
1346 struct sem *curr;
1347 int err;
1348 DEFINE_WAKE_Q(wake_q);
1349
1350 if (val > SEMVMX || val < 0)
1351 return -ERANGE;
1352
1353 rcu_read_lock();
1354 sma = sem_obtain_object_check(ns, semid);
1355 if (IS_ERR(sma)) {
1356 rcu_read_unlock();
1357 return PTR_ERR(sma);
1358 }
1359
1360 if (semnum < 0 || semnum >= sma->sem_nsems) {
1361 rcu_read_unlock();
1362 return -EINVAL;
1363 }
1364
1365
1366 if (ipcperms(ns, &sma->sem_perm, S_IWUGO)) {
1367 rcu_read_unlock();
1368 return -EACCES;
1369 }
1370
1371 err = security_sem_semctl(&sma->sem_perm, SETVAL);
1372 if (err) {
1373 rcu_read_unlock();
1374 return -EACCES;
1375 }
1376
1377 sem_lock(sma, NULL, -1);
1378
1379 if (!ipc_valid_object(&sma->sem_perm)) {
1380 sem_unlock(sma, -1);
1381 rcu_read_unlock();
1382 return -EIDRM;
1383 }
1384
1385 semnum = array_index_nospec(semnum, sma->sem_nsems);
1386 curr = &sma->sems[semnum];
1387
1388 ipc_assert_locked_object(&sma->sem_perm);
1389 list_for_each_entry(un, &sma->list_id, list_id)
1390 un->semadj[semnum] = 0;
1391
1392 curr->semval = val;
1393 ipc_update_pid(&curr->sempid, task_tgid(current));
1394 sma->sem_ctime = ktime_get_real_seconds();
1395 /* maybe some queued-up processes were waiting for this */
1396 do_smart_update(sma, NULL, 0, 0, &wake_q);
1397 sem_unlock(sma, -1);
1398 rcu_read_unlock();
1399 wake_up_q(&wake_q);
1400 return 0;
1401 }
1402
semctl_main(struct ipc_namespace * ns,int semid,int semnum,int cmd,void __user * p)1403 static int semctl_main(struct ipc_namespace *ns, int semid, int semnum,
1404 int cmd, void __user *p)
1405 {
1406 struct sem_array *sma;
1407 struct sem *curr;
1408 int err, nsems;
1409 ushort fast_sem_io[SEMMSL_FAST];
1410 ushort *sem_io = fast_sem_io;
1411 DEFINE_WAKE_Q(wake_q);
1412
1413 rcu_read_lock();
1414 sma = sem_obtain_object_check(ns, semid);
1415 if (IS_ERR(sma)) {
1416 rcu_read_unlock();
1417 return PTR_ERR(sma);
1418 }
1419
1420 nsems = sma->sem_nsems;
1421
1422 err = -EACCES;
1423 if (ipcperms(ns, &sma->sem_perm, cmd == SETALL ? S_IWUGO : S_IRUGO))
1424 goto out_rcu_wakeup;
1425
1426 err = security_sem_semctl(&sma->sem_perm, cmd);
1427 if (err)
1428 goto out_rcu_wakeup;
1429
1430 err = -EACCES;
1431 switch (cmd) {
1432 case GETALL:
1433 {
1434 ushort __user *array = p;
1435 int i;
1436
1437 sem_lock(sma, NULL, -1);
1438 if (!ipc_valid_object(&sma->sem_perm)) {
1439 err = -EIDRM;
1440 goto out_unlock;
1441 }
1442 if (nsems > SEMMSL_FAST) {
1443 if (!ipc_rcu_getref(&sma->sem_perm)) {
1444 err = -EIDRM;
1445 goto out_unlock;
1446 }
1447 sem_unlock(sma, -1);
1448 rcu_read_unlock();
1449 sem_io = kvmalloc_array(nsems, sizeof(ushort),
1450 GFP_KERNEL);
1451 if (sem_io == NULL) {
1452 ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
1453 return -ENOMEM;
1454 }
1455
1456 rcu_read_lock();
1457 sem_lock_and_putref(sma);
1458 if (!ipc_valid_object(&sma->sem_perm)) {
1459 err = -EIDRM;
1460 goto out_unlock;
1461 }
1462 }
1463 for (i = 0; i < sma->sem_nsems; i++)
1464 sem_io[i] = sma->sems[i].semval;
1465 sem_unlock(sma, -1);
1466 rcu_read_unlock();
1467 err = 0;
1468 if (copy_to_user(array, sem_io, nsems*sizeof(ushort)))
1469 err = -EFAULT;
1470 goto out_free;
1471 }
1472 case SETALL:
1473 {
1474 int i;
1475 struct sem_undo *un;
1476
1477 if (!ipc_rcu_getref(&sma->sem_perm)) {
1478 err = -EIDRM;
1479 goto out_rcu_wakeup;
1480 }
1481 rcu_read_unlock();
1482
1483 if (nsems > SEMMSL_FAST) {
1484 sem_io = kvmalloc_array(nsems, sizeof(ushort),
1485 GFP_KERNEL);
1486 if (sem_io == NULL) {
1487 ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
1488 return -ENOMEM;
1489 }
1490 }
1491
1492 if (copy_from_user(sem_io, p, nsems*sizeof(ushort))) {
1493 ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
1494 err = -EFAULT;
1495 goto out_free;
1496 }
1497
1498 for (i = 0; i < nsems; i++) {
1499 if (sem_io[i] > SEMVMX) {
1500 ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
1501 err = -ERANGE;
1502 goto out_free;
1503 }
1504 }
1505 rcu_read_lock();
1506 sem_lock_and_putref(sma);
1507 if (!ipc_valid_object(&sma->sem_perm)) {
1508 err = -EIDRM;
1509 goto out_unlock;
1510 }
1511
1512 for (i = 0; i < nsems; i++) {
1513 sma->sems[i].semval = sem_io[i];
1514 ipc_update_pid(&sma->sems[i].sempid, task_tgid(current));
1515 }
1516
1517 ipc_assert_locked_object(&sma->sem_perm);
1518 list_for_each_entry(un, &sma->list_id, list_id) {
1519 for (i = 0; i < nsems; i++)
1520 un->semadj[i] = 0;
1521 }
1522 sma->sem_ctime = ktime_get_real_seconds();
1523 /* maybe some queued-up processes were waiting for this */
1524 do_smart_update(sma, NULL, 0, 0, &wake_q);
1525 err = 0;
1526 goto out_unlock;
1527 }
1528 /* GETVAL, GETPID, GETNCTN, GETZCNT: fall-through */
1529 }
1530 err = -EINVAL;
1531 if (semnum < 0 || semnum >= nsems)
1532 goto out_rcu_wakeup;
1533
1534 sem_lock(sma, NULL, -1);
1535 if (!ipc_valid_object(&sma->sem_perm)) {
1536 err = -EIDRM;
1537 goto out_unlock;
1538 }
1539
1540 semnum = array_index_nospec(semnum, nsems);
1541 curr = &sma->sems[semnum];
1542
1543 switch (cmd) {
1544 case GETVAL:
1545 err = curr->semval;
1546 goto out_unlock;
1547 case GETPID:
1548 err = pid_vnr(curr->sempid);
1549 goto out_unlock;
1550 case GETNCNT:
1551 err = count_semcnt(sma, semnum, 0);
1552 goto out_unlock;
1553 case GETZCNT:
1554 err = count_semcnt(sma, semnum, 1);
1555 goto out_unlock;
1556 }
1557
1558 out_unlock:
1559 sem_unlock(sma, -1);
1560 out_rcu_wakeup:
1561 rcu_read_unlock();
1562 wake_up_q(&wake_q);
1563 out_free:
1564 if (sem_io != fast_sem_io)
1565 kvfree(sem_io);
1566 return err;
1567 }
1568
1569 static inline unsigned long
copy_semid_from_user(struct semid64_ds * out,void __user * buf,int version)1570 copy_semid_from_user(struct semid64_ds *out, void __user *buf, int version)
1571 {
1572 switch (version) {
1573 case IPC_64:
1574 if (copy_from_user(out, buf, sizeof(*out)))
1575 return -EFAULT;
1576 return 0;
1577 case IPC_OLD:
1578 {
1579 struct semid_ds tbuf_old;
1580
1581 if (copy_from_user(&tbuf_old, buf, sizeof(tbuf_old)))
1582 return -EFAULT;
1583
1584 out->sem_perm.uid = tbuf_old.sem_perm.uid;
1585 out->sem_perm.gid = tbuf_old.sem_perm.gid;
1586 out->sem_perm.mode = tbuf_old.sem_perm.mode;
1587
1588 return 0;
1589 }
1590 default:
1591 return -EINVAL;
1592 }
1593 }
1594
1595 /*
1596 * This function handles some semctl commands which require the rwsem
1597 * to be held in write mode.
1598 * NOTE: no locks must be held, the rwsem is taken inside this function.
1599 */
semctl_down(struct ipc_namespace * ns,int semid,int cmd,struct semid64_ds * semid64)1600 static int semctl_down(struct ipc_namespace *ns, int semid,
1601 int cmd, struct semid64_ds *semid64)
1602 {
1603 struct sem_array *sma;
1604 int err;
1605 struct kern_ipc_perm *ipcp;
1606
1607 down_write(&sem_ids(ns).rwsem);
1608 rcu_read_lock();
1609
1610 ipcp = ipcctl_obtain_check(ns, &sem_ids(ns), semid, cmd,
1611 &semid64->sem_perm, 0);
1612 if (IS_ERR(ipcp)) {
1613 err = PTR_ERR(ipcp);
1614 goto out_unlock1;
1615 }
1616
1617 sma = container_of(ipcp, struct sem_array, sem_perm);
1618
1619 err = security_sem_semctl(&sma->sem_perm, cmd);
1620 if (err)
1621 goto out_unlock1;
1622
1623 switch (cmd) {
1624 case IPC_RMID:
1625 sem_lock(sma, NULL, -1);
1626 /* freeary unlocks the ipc object and rcu */
1627 freeary(ns, ipcp);
1628 goto out_up;
1629 case IPC_SET:
1630 sem_lock(sma, NULL, -1);
1631 err = ipc_update_perm(&semid64->sem_perm, ipcp);
1632 if (err)
1633 goto out_unlock0;
1634 sma->sem_ctime = ktime_get_real_seconds();
1635 break;
1636 default:
1637 err = -EINVAL;
1638 goto out_unlock1;
1639 }
1640
1641 out_unlock0:
1642 sem_unlock(sma, -1);
1643 out_unlock1:
1644 rcu_read_unlock();
1645 out_up:
1646 up_write(&sem_ids(ns).rwsem);
1647 return err;
1648 }
1649
ksys_semctl(int semid,int semnum,int cmd,unsigned long arg,int version)1650 static long ksys_semctl(int semid, int semnum, int cmd, unsigned long arg, int version)
1651 {
1652 struct ipc_namespace *ns;
1653 void __user *p = (void __user *)arg;
1654 struct semid64_ds semid64;
1655 int err;
1656
1657 if (semid < 0)
1658 return -EINVAL;
1659
1660 ns = current->nsproxy->ipc_ns;
1661
1662 switch (cmd) {
1663 case IPC_INFO:
1664 case SEM_INFO:
1665 return semctl_info(ns, semid, cmd, p);
1666 case IPC_STAT:
1667 case SEM_STAT:
1668 case SEM_STAT_ANY:
1669 err = semctl_stat(ns, semid, cmd, &semid64);
1670 if (err < 0)
1671 return err;
1672 if (copy_semid_to_user(p, &semid64, version))
1673 err = -EFAULT;
1674 return err;
1675 case GETALL:
1676 case GETVAL:
1677 case GETPID:
1678 case GETNCNT:
1679 case GETZCNT:
1680 case SETALL:
1681 return semctl_main(ns, semid, semnum, cmd, p);
1682 case SETVAL: {
1683 int val;
1684 #if defined(CONFIG_64BIT) && defined(__BIG_ENDIAN)
1685 /* big-endian 64bit */
1686 val = arg >> 32;
1687 #else
1688 /* 32bit or little-endian 64bit */
1689 val = arg;
1690 #endif
1691 return semctl_setval(ns, semid, semnum, val);
1692 }
1693 case IPC_SET:
1694 if (copy_semid_from_user(&semid64, p, version))
1695 return -EFAULT;
1696 fallthrough;
1697 case IPC_RMID:
1698 return semctl_down(ns, semid, cmd, &semid64);
1699 default:
1700 return -EINVAL;
1701 }
1702 }
1703
SYSCALL_DEFINE4(semctl,int,semid,int,semnum,int,cmd,unsigned long,arg)1704 SYSCALL_DEFINE4(semctl, int, semid, int, semnum, int, cmd, unsigned long, arg)
1705 {
1706 return ksys_semctl(semid, semnum, cmd, arg, IPC_64);
1707 }
1708
1709 #ifdef CONFIG_ARCH_WANT_IPC_PARSE_VERSION
ksys_old_semctl(int semid,int semnum,int cmd,unsigned long arg)1710 long ksys_old_semctl(int semid, int semnum, int cmd, unsigned long arg)
1711 {
1712 int version = ipc_parse_version(&cmd);
1713
1714 return ksys_semctl(semid, semnum, cmd, arg, version);
1715 }
1716
SYSCALL_DEFINE4(old_semctl,int,semid,int,semnum,int,cmd,unsigned long,arg)1717 SYSCALL_DEFINE4(old_semctl, int, semid, int, semnum, int, cmd, unsigned long, arg)
1718 {
1719 return ksys_old_semctl(semid, semnum, cmd, arg);
1720 }
1721 #endif
1722
1723 #ifdef CONFIG_COMPAT
1724
1725 struct compat_semid_ds {
1726 struct compat_ipc_perm sem_perm;
1727 old_time32_t sem_otime;
1728 old_time32_t sem_ctime;
1729 compat_uptr_t sem_base;
1730 compat_uptr_t sem_pending;
1731 compat_uptr_t sem_pending_last;
1732 compat_uptr_t undo;
1733 unsigned short sem_nsems;
1734 };
1735
copy_compat_semid_from_user(struct semid64_ds * out,void __user * buf,int version)1736 static int copy_compat_semid_from_user(struct semid64_ds *out, void __user *buf,
1737 int version)
1738 {
1739 memset(out, 0, sizeof(*out));
1740 if (version == IPC_64) {
1741 struct compat_semid64_ds __user *p = buf;
1742 return get_compat_ipc64_perm(&out->sem_perm, &p->sem_perm);
1743 } else {
1744 struct compat_semid_ds __user *p = buf;
1745 return get_compat_ipc_perm(&out->sem_perm, &p->sem_perm);
1746 }
1747 }
1748
copy_compat_semid_to_user(void __user * buf,struct semid64_ds * in,int version)1749 static int copy_compat_semid_to_user(void __user *buf, struct semid64_ds *in,
1750 int version)
1751 {
1752 if (version == IPC_64) {
1753 struct compat_semid64_ds v;
1754 memset(&v, 0, sizeof(v));
1755 to_compat_ipc64_perm(&v.sem_perm, &in->sem_perm);
1756 v.sem_otime = lower_32_bits(in->sem_otime);
1757 v.sem_otime_high = upper_32_bits(in->sem_otime);
1758 v.sem_ctime = lower_32_bits(in->sem_ctime);
1759 v.sem_ctime_high = upper_32_bits(in->sem_ctime);
1760 v.sem_nsems = in->sem_nsems;
1761 return copy_to_user(buf, &v, sizeof(v));
1762 } else {
1763 struct compat_semid_ds v;
1764 memset(&v, 0, sizeof(v));
1765 to_compat_ipc_perm(&v.sem_perm, &in->sem_perm);
1766 v.sem_otime = in->sem_otime;
1767 v.sem_ctime = in->sem_ctime;
1768 v.sem_nsems = in->sem_nsems;
1769 return copy_to_user(buf, &v, sizeof(v));
1770 }
1771 }
1772
compat_ksys_semctl(int semid,int semnum,int cmd,int arg,int version)1773 static long compat_ksys_semctl(int semid, int semnum, int cmd, int arg, int version)
1774 {
1775 void __user *p = compat_ptr(arg);
1776 struct ipc_namespace *ns;
1777 struct semid64_ds semid64;
1778 int err;
1779
1780 ns = current->nsproxy->ipc_ns;
1781
1782 if (semid < 0)
1783 return -EINVAL;
1784
1785 switch (cmd & (~IPC_64)) {
1786 case IPC_INFO:
1787 case SEM_INFO:
1788 return semctl_info(ns, semid, cmd, p);
1789 case IPC_STAT:
1790 case SEM_STAT:
1791 case SEM_STAT_ANY:
1792 err = semctl_stat(ns, semid, cmd, &semid64);
1793 if (err < 0)
1794 return err;
1795 if (copy_compat_semid_to_user(p, &semid64, version))
1796 err = -EFAULT;
1797 return err;
1798 case GETVAL:
1799 case GETPID:
1800 case GETNCNT:
1801 case GETZCNT:
1802 case GETALL:
1803 case SETALL:
1804 return semctl_main(ns, semid, semnum, cmd, p);
1805 case SETVAL:
1806 return semctl_setval(ns, semid, semnum, arg);
1807 case IPC_SET:
1808 if (copy_compat_semid_from_user(&semid64, p, version))
1809 return -EFAULT;
1810 fallthrough;
1811 case IPC_RMID:
1812 return semctl_down(ns, semid, cmd, &semid64);
1813 default:
1814 return -EINVAL;
1815 }
1816 }
1817
COMPAT_SYSCALL_DEFINE4(semctl,int,semid,int,semnum,int,cmd,int,arg)1818 COMPAT_SYSCALL_DEFINE4(semctl, int, semid, int, semnum, int, cmd, int, arg)
1819 {
1820 return compat_ksys_semctl(semid, semnum, cmd, arg, IPC_64);
1821 }
1822
1823 #ifdef CONFIG_ARCH_WANT_COMPAT_IPC_PARSE_VERSION
compat_ksys_old_semctl(int semid,int semnum,int cmd,int arg)1824 long compat_ksys_old_semctl(int semid, int semnum, int cmd, int arg)
1825 {
1826 int version = compat_ipc_parse_version(&cmd);
1827
1828 return compat_ksys_semctl(semid, semnum, cmd, arg, version);
1829 }
1830
COMPAT_SYSCALL_DEFINE4(old_semctl,int,semid,int,semnum,int,cmd,int,arg)1831 COMPAT_SYSCALL_DEFINE4(old_semctl, int, semid, int, semnum, int, cmd, int, arg)
1832 {
1833 return compat_ksys_old_semctl(semid, semnum, cmd, arg);
1834 }
1835 #endif
1836 #endif
1837
1838 /* If the task doesn't already have a undo_list, then allocate one
1839 * here. We guarantee there is only one thread using this undo list,
1840 * and current is THE ONE
1841 *
1842 * If this allocation and assignment succeeds, but later
1843 * portions of this code fail, there is no need to free the sem_undo_list.
1844 * Just let it stay associated with the task, and it'll be freed later
1845 * at exit time.
1846 *
1847 * This can block, so callers must hold no locks.
1848 */
get_undo_list(struct sem_undo_list ** undo_listp)1849 static inline int get_undo_list(struct sem_undo_list **undo_listp)
1850 {
1851 struct sem_undo_list *undo_list;
1852
1853 undo_list = current->sysvsem.undo_list;
1854 if (!undo_list) {
1855 undo_list = kzalloc(sizeof(*undo_list), GFP_KERNEL_ACCOUNT);
1856 if (undo_list == NULL)
1857 return -ENOMEM;
1858 spin_lock_init(&undo_list->lock);
1859 refcount_set(&undo_list->refcnt, 1);
1860 INIT_LIST_HEAD(&undo_list->list_proc);
1861
1862 current->sysvsem.undo_list = undo_list;
1863 }
1864 *undo_listp = undo_list;
1865 return 0;
1866 }
1867
__lookup_undo(struct sem_undo_list * ulp,int semid)1868 static struct sem_undo *__lookup_undo(struct sem_undo_list *ulp, int semid)
1869 {
1870 struct sem_undo *un;
1871
1872 list_for_each_entry_rcu(un, &ulp->list_proc, list_proc,
1873 spin_is_locked(&ulp->lock)) {
1874 if (un->semid == semid)
1875 return un;
1876 }
1877 return NULL;
1878 }
1879
lookup_undo(struct sem_undo_list * ulp,int semid)1880 static struct sem_undo *lookup_undo(struct sem_undo_list *ulp, int semid)
1881 {
1882 struct sem_undo *un;
1883
1884 assert_spin_locked(&ulp->lock);
1885
1886 un = __lookup_undo(ulp, semid);
1887 if (un) {
1888 list_del_rcu(&un->list_proc);
1889 list_add_rcu(&un->list_proc, &ulp->list_proc);
1890 }
1891 return un;
1892 }
1893
1894 /**
1895 * find_alloc_undo - lookup (and if not present create) undo array
1896 * @ns: namespace
1897 * @semid: semaphore array id
1898 *
1899 * The function looks up (and if not present creates) the undo structure.
1900 * The size of the undo structure depends on the size of the semaphore
1901 * array, thus the alloc path is not that straightforward.
1902 * Lifetime-rules: sem_undo is rcu-protected, on success, the function
1903 * performs a rcu_read_lock().
1904 */
find_alloc_undo(struct ipc_namespace * ns,int semid)1905 static struct sem_undo *find_alloc_undo(struct ipc_namespace *ns, int semid)
1906 {
1907 struct sem_array *sma;
1908 struct sem_undo_list *ulp;
1909 struct sem_undo *un, *new;
1910 int nsems, error;
1911
1912 error = get_undo_list(&ulp);
1913 if (error)
1914 return ERR_PTR(error);
1915
1916 rcu_read_lock();
1917 spin_lock(&ulp->lock);
1918 un = lookup_undo(ulp, semid);
1919 spin_unlock(&ulp->lock);
1920 if (likely(un != NULL))
1921 goto out;
1922
1923 /* no undo structure around - allocate one. */
1924 /* step 1: figure out the size of the semaphore array */
1925 sma = sem_obtain_object_check(ns, semid);
1926 if (IS_ERR(sma)) {
1927 rcu_read_unlock();
1928 return ERR_CAST(sma);
1929 }
1930
1931 nsems = sma->sem_nsems;
1932 if (!ipc_rcu_getref(&sma->sem_perm)) {
1933 rcu_read_unlock();
1934 un = ERR_PTR(-EIDRM);
1935 goto out;
1936 }
1937 rcu_read_unlock();
1938
1939 /* step 2: allocate new undo structure */
1940 new = kzalloc(sizeof(struct sem_undo) + sizeof(short)*nsems, GFP_KERNEL_ACCOUNT);
1941 if (!new) {
1942 ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
1943 return ERR_PTR(-ENOMEM);
1944 }
1945
1946 /* step 3: Acquire the lock on semaphore array */
1947 rcu_read_lock();
1948 sem_lock_and_putref(sma);
1949 if (!ipc_valid_object(&sma->sem_perm)) {
1950 sem_unlock(sma, -1);
1951 rcu_read_unlock();
1952 kfree(new);
1953 un = ERR_PTR(-EIDRM);
1954 goto out;
1955 }
1956 spin_lock(&ulp->lock);
1957
1958 /*
1959 * step 4: check for races: did someone else allocate the undo struct?
1960 */
1961 un = lookup_undo(ulp, semid);
1962 if (un) {
1963 kfree(new);
1964 goto success;
1965 }
1966 /* step 5: initialize & link new undo structure */
1967 new->semadj = (short *) &new[1];
1968 new->ulp = ulp;
1969 new->semid = semid;
1970 assert_spin_locked(&ulp->lock);
1971 list_add_rcu(&new->list_proc, &ulp->list_proc);
1972 ipc_assert_locked_object(&sma->sem_perm);
1973 list_add(&new->list_id, &sma->list_id);
1974 un = new;
1975
1976 success:
1977 spin_unlock(&ulp->lock);
1978 sem_unlock(sma, -1);
1979 out:
1980 return un;
1981 }
1982
do_semtimedop(int semid,struct sembuf __user * tsops,unsigned nsops,const struct timespec64 * timeout)1983 static long do_semtimedop(int semid, struct sembuf __user *tsops,
1984 unsigned nsops, const struct timespec64 *timeout)
1985 {
1986 int error = -EINVAL;
1987 struct sem_array *sma;
1988 struct sembuf fast_sops[SEMOPM_FAST];
1989 struct sembuf *sops = fast_sops, *sop;
1990 struct sem_undo *un;
1991 int max, locknum;
1992 bool undos = false, alter = false, dupsop = false;
1993 struct sem_queue queue;
1994 unsigned long dup = 0, jiffies_left = 0;
1995 struct ipc_namespace *ns;
1996
1997 ns = current->nsproxy->ipc_ns;
1998
1999 if (nsops < 1 || semid < 0)
2000 return -EINVAL;
2001 if (nsops > ns->sc_semopm)
2002 return -E2BIG;
2003 if (nsops > SEMOPM_FAST) {
2004 sops = kvmalloc_array(nsops, sizeof(*sops),
2005 GFP_KERNEL_ACCOUNT);
2006 if (sops == NULL)
2007 return -ENOMEM;
2008 }
2009
2010 if (copy_from_user(sops, tsops, nsops * sizeof(*tsops))) {
2011 error = -EFAULT;
2012 goto out_free;
2013 }
2014
2015 if (timeout) {
2016 if (timeout->tv_sec < 0 || timeout->tv_nsec < 0 ||
2017 timeout->tv_nsec >= 1000000000L) {
2018 error = -EINVAL;
2019 goto out_free;
2020 }
2021 jiffies_left = timespec64_to_jiffies(timeout);
2022 }
2023
2024 max = 0;
2025 for (sop = sops; sop < sops + nsops; sop++) {
2026 unsigned long mask = 1ULL << ((sop->sem_num) % BITS_PER_LONG);
2027
2028 if (sop->sem_num >= max)
2029 max = sop->sem_num;
2030 if (sop->sem_flg & SEM_UNDO)
2031 undos = true;
2032 if (dup & mask) {
2033 /*
2034 * There was a previous alter access that appears
2035 * to have accessed the same semaphore, thus use
2036 * the dupsop logic. "appears", because the detection
2037 * can only check % BITS_PER_LONG.
2038 */
2039 dupsop = true;
2040 }
2041 if (sop->sem_op != 0) {
2042 alter = true;
2043 dup |= mask;
2044 }
2045 }
2046
2047 if (undos) {
2048 /* On success, find_alloc_undo takes the rcu_read_lock */
2049 un = find_alloc_undo(ns, semid);
2050 if (IS_ERR(un)) {
2051 error = PTR_ERR(un);
2052 goto out_free;
2053 }
2054 } else {
2055 un = NULL;
2056 rcu_read_lock();
2057 }
2058
2059 sma = sem_obtain_object_check(ns, semid);
2060 if (IS_ERR(sma)) {
2061 rcu_read_unlock();
2062 error = PTR_ERR(sma);
2063 goto out_free;
2064 }
2065
2066 error = -EFBIG;
2067 if (max >= sma->sem_nsems) {
2068 rcu_read_unlock();
2069 goto out_free;
2070 }
2071
2072 error = -EACCES;
2073 if (ipcperms(ns, &sma->sem_perm, alter ? S_IWUGO : S_IRUGO)) {
2074 rcu_read_unlock();
2075 goto out_free;
2076 }
2077
2078 error = security_sem_semop(&sma->sem_perm, sops, nsops, alter);
2079 if (error) {
2080 rcu_read_unlock();
2081 goto out_free;
2082 }
2083
2084 error = -EIDRM;
2085 locknum = sem_lock(sma, sops, nsops);
2086 /*
2087 * We eventually might perform the following check in a lockless
2088 * fashion, considering ipc_valid_object() locking constraints.
2089 * If nsops == 1 and there is no contention for sem_perm.lock, then
2090 * only a per-semaphore lock is held and it's OK to proceed with the
2091 * check below. More details on the fine grained locking scheme
2092 * entangled here and why it's RMID race safe on comments at sem_lock()
2093 */
2094 if (!ipc_valid_object(&sma->sem_perm))
2095 goto out_unlock_free;
2096 /*
2097 * semid identifiers are not unique - find_alloc_undo may have
2098 * allocated an undo structure, it was invalidated by an RMID
2099 * and now a new array with received the same id. Check and fail.
2100 * This case can be detected checking un->semid. The existence of
2101 * "un" itself is guaranteed by rcu.
2102 */
2103 if (un && un->semid == -1)
2104 goto out_unlock_free;
2105
2106 queue.sops = sops;
2107 queue.nsops = nsops;
2108 queue.undo = un;
2109 queue.pid = task_tgid(current);
2110 queue.alter = alter;
2111 queue.dupsop = dupsop;
2112
2113 error = perform_atomic_semop(sma, &queue);
2114 if (error == 0) { /* non-blocking succesfull path */
2115 DEFINE_WAKE_Q(wake_q);
2116
2117 /*
2118 * If the operation was successful, then do
2119 * the required updates.
2120 */
2121 if (alter)
2122 do_smart_update(sma, sops, nsops, 1, &wake_q);
2123 else
2124 set_semotime(sma, sops);
2125
2126 sem_unlock(sma, locknum);
2127 rcu_read_unlock();
2128 wake_up_q(&wake_q);
2129
2130 goto out_free;
2131 }
2132 if (error < 0) /* non-blocking error path */
2133 goto out_unlock_free;
2134
2135 /*
2136 * We need to sleep on this operation, so we put the current
2137 * task into the pending queue and go to sleep.
2138 */
2139 if (nsops == 1) {
2140 struct sem *curr;
2141 int idx = array_index_nospec(sops->sem_num, sma->sem_nsems);
2142 curr = &sma->sems[idx];
2143
2144 if (alter) {
2145 if (sma->complex_count) {
2146 list_add_tail(&queue.list,
2147 &sma->pending_alter);
2148 } else {
2149
2150 list_add_tail(&queue.list,
2151 &curr->pending_alter);
2152 }
2153 } else {
2154 list_add_tail(&queue.list, &curr->pending_const);
2155 }
2156 } else {
2157 if (!sma->complex_count)
2158 merge_queues(sma);
2159
2160 if (alter)
2161 list_add_tail(&queue.list, &sma->pending_alter);
2162 else
2163 list_add_tail(&queue.list, &sma->pending_const);
2164
2165 sma->complex_count++;
2166 }
2167
2168 do {
2169 /* memory ordering ensured by the lock in sem_lock() */
2170 WRITE_ONCE(queue.status, -EINTR);
2171 queue.sleeper = current;
2172
2173 /* memory ordering is ensured by the lock in sem_lock() */
2174 __set_current_state(TASK_INTERRUPTIBLE);
2175 sem_unlock(sma, locknum);
2176 rcu_read_unlock();
2177
2178 if (timeout)
2179 jiffies_left = schedule_timeout(jiffies_left);
2180 else
2181 schedule();
2182
2183 /*
2184 * fastpath: the semop has completed, either successfully or
2185 * not, from the syscall pov, is quite irrelevant to us at this
2186 * point; we're done.
2187 *
2188 * We _do_ care, nonetheless, about being awoken by a signal or
2189 * spuriously. The queue.status is checked again in the
2190 * slowpath (aka after taking sem_lock), such that we can detect
2191 * scenarios where we were awakened externally, during the
2192 * window between wake_q_add() and wake_up_q().
2193 */
2194 error = READ_ONCE(queue.status);
2195 if (error != -EINTR) {
2196 /* see SEM_BARRIER_2 for purpose/pairing */
2197 smp_acquire__after_ctrl_dep();
2198 goto out_free;
2199 }
2200
2201 rcu_read_lock();
2202 locknum = sem_lock(sma, sops, nsops);
2203
2204 if (!ipc_valid_object(&sma->sem_perm))
2205 goto out_unlock_free;
2206
2207 /*
2208 * No necessity for any barrier: We are protect by sem_lock()
2209 */
2210 error = READ_ONCE(queue.status);
2211
2212 /*
2213 * If queue.status != -EINTR we are woken up by another process.
2214 * Leave without unlink_queue(), but with sem_unlock().
2215 */
2216 if (error != -EINTR)
2217 goto out_unlock_free;
2218
2219 /*
2220 * If an interrupt occurred we have to clean up the queue.
2221 */
2222 if (timeout && jiffies_left == 0)
2223 error = -EAGAIN;
2224 } while (error == -EINTR && !signal_pending(current)); /* spurious */
2225
2226 unlink_queue(sma, &queue);
2227
2228 out_unlock_free:
2229 sem_unlock(sma, locknum);
2230 rcu_read_unlock();
2231 out_free:
2232 if (sops != fast_sops)
2233 kvfree(sops);
2234 return error;
2235 }
2236
ksys_semtimedop(int semid,struct sembuf __user * tsops,unsigned int nsops,const struct __kernel_timespec __user * timeout)2237 long ksys_semtimedop(int semid, struct sembuf __user *tsops,
2238 unsigned int nsops, const struct __kernel_timespec __user *timeout)
2239 {
2240 if (timeout) {
2241 struct timespec64 ts;
2242 if (get_timespec64(&ts, timeout))
2243 return -EFAULT;
2244 return do_semtimedop(semid, tsops, nsops, &ts);
2245 }
2246 return do_semtimedop(semid, tsops, nsops, NULL);
2247 }
2248
SYSCALL_DEFINE4(semtimedop,int,semid,struct sembuf __user *,tsops,unsigned int,nsops,const struct __kernel_timespec __user *,timeout)2249 SYSCALL_DEFINE4(semtimedop, int, semid, struct sembuf __user *, tsops,
2250 unsigned int, nsops, const struct __kernel_timespec __user *, timeout)
2251 {
2252 return ksys_semtimedop(semid, tsops, nsops, timeout);
2253 }
2254
2255 #ifdef CONFIG_COMPAT_32BIT_TIME
compat_ksys_semtimedop(int semid,struct sembuf __user * tsems,unsigned int nsops,const struct old_timespec32 __user * timeout)2256 long compat_ksys_semtimedop(int semid, struct sembuf __user *tsems,
2257 unsigned int nsops,
2258 const struct old_timespec32 __user *timeout)
2259 {
2260 if (timeout) {
2261 struct timespec64 ts;
2262 if (get_old_timespec32(&ts, timeout))
2263 return -EFAULT;
2264 return do_semtimedop(semid, tsems, nsops, &ts);
2265 }
2266 return do_semtimedop(semid, tsems, nsops, NULL);
2267 }
2268
SYSCALL_DEFINE4(semtimedop_time32,int,semid,struct sembuf __user *,tsems,unsigned int,nsops,const struct old_timespec32 __user *,timeout)2269 SYSCALL_DEFINE4(semtimedop_time32, int, semid, struct sembuf __user *, tsems,
2270 unsigned int, nsops,
2271 const struct old_timespec32 __user *, timeout)
2272 {
2273 return compat_ksys_semtimedop(semid, tsems, nsops, timeout);
2274 }
2275 #endif
2276
SYSCALL_DEFINE3(semop,int,semid,struct sembuf __user *,tsops,unsigned,nsops)2277 SYSCALL_DEFINE3(semop, int, semid, struct sembuf __user *, tsops,
2278 unsigned, nsops)
2279 {
2280 return do_semtimedop(semid, tsops, nsops, NULL);
2281 }
2282
2283 /* If CLONE_SYSVSEM is set, establish sharing of SEM_UNDO state between
2284 * parent and child tasks.
2285 */
2286
copy_semundo(unsigned long clone_flags,struct task_struct * tsk)2287 int copy_semundo(unsigned long clone_flags, struct task_struct *tsk)
2288 {
2289 struct sem_undo_list *undo_list;
2290 int error;
2291
2292 if (clone_flags & CLONE_SYSVSEM) {
2293 error = get_undo_list(&undo_list);
2294 if (error)
2295 return error;
2296 refcount_inc(&undo_list->refcnt);
2297 tsk->sysvsem.undo_list = undo_list;
2298 } else
2299 tsk->sysvsem.undo_list = NULL;
2300
2301 return 0;
2302 }
2303
2304 /*
2305 * add semadj values to semaphores, free undo structures.
2306 * undo structures are not freed when semaphore arrays are destroyed
2307 * so some of them may be out of date.
2308 * IMPLEMENTATION NOTE: There is some confusion over whether the
2309 * set of adjustments that needs to be done should be done in an atomic
2310 * manner or not. That is, if we are attempting to decrement the semval
2311 * should we queue up and wait until we can do so legally?
2312 * The original implementation attempted to do this (queue and wait).
2313 * The current implementation does not do so. The POSIX standard
2314 * and SVID should be consulted to determine what behavior is mandated.
2315 */
exit_sem(struct task_struct * tsk)2316 void exit_sem(struct task_struct *tsk)
2317 {
2318 struct sem_undo_list *ulp;
2319
2320 ulp = tsk->sysvsem.undo_list;
2321 if (!ulp)
2322 return;
2323 tsk->sysvsem.undo_list = NULL;
2324
2325 if (!refcount_dec_and_test(&ulp->refcnt))
2326 return;
2327
2328 for (;;) {
2329 struct sem_array *sma;
2330 struct sem_undo *un;
2331 int semid, i;
2332 DEFINE_WAKE_Q(wake_q);
2333
2334 cond_resched();
2335
2336 rcu_read_lock();
2337 un = list_entry_rcu(ulp->list_proc.next,
2338 struct sem_undo, list_proc);
2339 if (&un->list_proc == &ulp->list_proc) {
2340 /*
2341 * We must wait for freeary() before freeing this ulp,
2342 * in case we raced with last sem_undo. There is a small
2343 * possibility where we exit while freeary() didn't
2344 * finish unlocking sem_undo_list.
2345 */
2346 spin_lock(&ulp->lock);
2347 spin_unlock(&ulp->lock);
2348 rcu_read_unlock();
2349 break;
2350 }
2351 spin_lock(&ulp->lock);
2352 semid = un->semid;
2353 spin_unlock(&ulp->lock);
2354
2355 /* exit_sem raced with IPC_RMID, nothing to do */
2356 if (semid == -1) {
2357 rcu_read_unlock();
2358 continue;
2359 }
2360
2361 sma = sem_obtain_object_check(tsk->nsproxy->ipc_ns, semid);
2362 /* exit_sem raced with IPC_RMID, nothing to do */
2363 if (IS_ERR(sma)) {
2364 rcu_read_unlock();
2365 continue;
2366 }
2367
2368 sem_lock(sma, NULL, -1);
2369 /* exit_sem raced with IPC_RMID, nothing to do */
2370 if (!ipc_valid_object(&sma->sem_perm)) {
2371 sem_unlock(sma, -1);
2372 rcu_read_unlock();
2373 continue;
2374 }
2375 un = __lookup_undo(ulp, semid);
2376 if (un == NULL) {
2377 /* exit_sem raced with IPC_RMID+semget() that created
2378 * exactly the same semid. Nothing to do.
2379 */
2380 sem_unlock(sma, -1);
2381 rcu_read_unlock();
2382 continue;
2383 }
2384
2385 /* remove un from the linked lists */
2386 ipc_assert_locked_object(&sma->sem_perm);
2387 list_del(&un->list_id);
2388
2389 spin_lock(&ulp->lock);
2390 list_del_rcu(&un->list_proc);
2391 spin_unlock(&ulp->lock);
2392
2393 /* perform adjustments registered in un */
2394 for (i = 0; i < sma->sem_nsems; i++) {
2395 struct sem *semaphore = &sma->sems[i];
2396 if (un->semadj[i]) {
2397 semaphore->semval += un->semadj[i];
2398 /*
2399 * Range checks of the new semaphore value,
2400 * not defined by sus:
2401 * - Some unices ignore the undo entirely
2402 * (e.g. HP UX 11i 11.22, Tru64 V5.1)
2403 * - some cap the value (e.g. FreeBSD caps
2404 * at 0, but doesn't enforce SEMVMX)
2405 *
2406 * Linux caps the semaphore value, both at 0
2407 * and at SEMVMX.
2408 *
2409 * Manfred <manfred@colorfullife.com>
2410 */
2411 if (semaphore->semval < 0)
2412 semaphore->semval = 0;
2413 if (semaphore->semval > SEMVMX)
2414 semaphore->semval = SEMVMX;
2415 ipc_update_pid(&semaphore->sempid, task_tgid(current));
2416 }
2417 }
2418 /* maybe some queued-up processes were waiting for this */
2419 do_smart_update(sma, NULL, 0, 1, &wake_q);
2420 sem_unlock(sma, -1);
2421 rcu_read_unlock();
2422 wake_up_q(&wake_q);
2423
2424 kfree_rcu(un, rcu);
2425 }
2426 kfree(ulp);
2427 }
2428
2429 #ifdef CONFIG_PROC_FS
sysvipc_sem_proc_show(struct seq_file * s,void * it)2430 static int sysvipc_sem_proc_show(struct seq_file *s, void *it)
2431 {
2432 struct user_namespace *user_ns = seq_user_ns(s);
2433 struct kern_ipc_perm *ipcp = it;
2434 struct sem_array *sma = container_of(ipcp, struct sem_array, sem_perm);
2435 time64_t sem_otime;
2436
2437 /*
2438 * The proc interface isn't aware of sem_lock(), it calls
2439 * ipc_lock_object() directly (in sysvipc_find_ipc).
2440 * In order to stay compatible with sem_lock(), we must
2441 * enter / leave complex_mode.
2442 */
2443 complexmode_enter(sma);
2444
2445 sem_otime = get_semotime(sma);
2446
2447 seq_printf(s,
2448 "%10d %10d %4o %10u %5u %5u %5u %5u %10llu %10llu\n",
2449 sma->sem_perm.key,
2450 sma->sem_perm.id,
2451 sma->sem_perm.mode,
2452 sma->sem_nsems,
2453 from_kuid_munged(user_ns, sma->sem_perm.uid),
2454 from_kgid_munged(user_ns, sma->sem_perm.gid),
2455 from_kuid_munged(user_ns, sma->sem_perm.cuid),
2456 from_kgid_munged(user_ns, sma->sem_perm.cgid),
2457 sem_otime,
2458 sma->sem_ctime);
2459
2460 complexmode_tryleave(sma);
2461
2462 return 0;
2463 }
2464 #endif
2465