• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/kernel/signal.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  *
7  *  1997-11-02  Modified for POSIX.1b signals by Richard Henderson
8  *
9  *  2003-06-02  Jim Houston - Concurrent Computer Corp.
10  *		Changes to use preallocated sigqueue structures
11  *		to allow signals to be sent reliably.
12  */
13 
14 #include <linux/slab.h>
15 #include <linux/export.h>
16 #include <linux/init.h>
17 #include <linux/sched/mm.h>
18 #include <linux/sched/user.h>
19 #include <linux/sched/debug.h>
20 #include <linux/sched/task.h>
21 #include <linux/sched/task_stack.h>
22 #include <linux/sched/cputime.h>
23 #include <linux/file.h>
24 #include <linux/fs.h>
25 #include <linux/proc_fs.h>
26 #include <linux/tty.h>
27 #include <linux/binfmts.h>
28 #include <linux/coredump.h>
29 #include <linux/security.h>
30 #include <linux/syscalls.h>
31 #include <linux/ptrace.h>
32 #include <linux/signal.h>
33 #include <linux/signalfd.h>
34 #include <linux/ratelimit.h>
35 #include <linux/tracehook.h>
36 #include <linux/capability.h>
37 #include <linux/freezer.h>
38 #include <linux/pid_namespace.h>
39 #include <linux/nsproxy.h>
40 #include <linux/user_namespace.h>
41 #include <linux/uprobes.h>
42 #include <linux/compat.h>
43 #include <linux/cn_proc.h>
44 #include <linux/compiler.h>
45 #include <linux/posix-timers.h>
46 #include <linux/livepatch.h>
47 #include <linux/cgroup.h>
48 #include <linux/audit.h>
49 
50 #define CREATE_TRACE_POINTS
51 #include <trace/events/signal.h>
52 
53 #include <asm/param.h>
54 #include <linux/uaccess.h>
55 #include <asm/unistd.h>
56 #include <asm/siginfo.h>
57 #include <asm/cacheflush.h>
58 
59 /*
60  * SLAB caches for signal bits.
61  */
62 
63 static struct kmem_cache *sigqueue_cachep;
64 
65 int print_fatal_signals __read_mostly;
66 
sig_handler(struct task_struct * t,int sig)67 static void __user *sig_handler(struct task_struct *t, int sig)
68 {
69 	return t->sighand->action[sig - 1].sa.sa_handler;
70 }
71 
sig_handler_ignored(void __user * handler,int sig)72 static inline bool sig_handler_ignored(void __user *handler, int sig)
73 {
74 	/* Is it explicitly or implicitly ignored? */
75 	return handler == SIG_IGN ||
76 	       (handler == SIG_DFL && sig_kernel_ignore(sig));
77 }
78 
sig_task_ignored(struct task_struct * t,int sig,bool force)79 static bool sig_task_ignored(struct task_struct *t, int sig, bool force)
80 {
81 	void __user *handler;
82 
83 	handler = sig_handler(t, sig);
84 
85 	/* SIGKILL and SIGSTOP may not be sent to the global init */
86 	if (unlikely(is_global_init(t) && sig_kernel_only(sig)))
87 		return true;
88 
89 	if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) &&
90 	    handler == SIG_DFL && !(force && sig_kernel_only(sig)))
91 		return true;
92 
93 	/* Only allow kernel generated signals to this kthread */
94 	if (unlikely((t->flags & PF_KTHREAD) &&
95 		     (handler == SIG_KTHREAD_KERNEL) && !force))
96 		return true;
97 
98 	return sig_handler_ignored(handler, sig);
99 }
100 
sig_ignored(struct task_struct * t,int sig,bool force)101 static bool sig_ignored(struct task_struct *t, int sig, bool force)
102 {
103 	/*
104 	 * Blocked signals are never ignored, since the
105 	 * signal handler may change by the time it is
106 	 * unblocked.
107 	 */
108 	if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig))
109 		return false;
110 
111 	/*
112 	 * Tracers may want to know about even ignored signal unless it
113 	 * is SIGKILL which can't be reported anyway but can be ignored
114 	 * by SIGNAL_UNKILLABLE task.
115 	 */
116 	if (t->ptrace && sig != SIGKILL)
117 		return false;
118 
119 	return sig_task_ignored(t, sig, force);
120 }
121 
122 /*
123  * Re-calculate pending state from the set of locally pending
124  * signals, globally pending signals, and blocked signals.
125  */
has_pending_signals(sigset_t * signal,sigset_t * blocked)126 static inline bool has_pending_signals(sigset_t *signal, sigset_t *blocked)
127 {
128 	unsigned long ready;
129 	long i;
130 
131 	switch (_NSIG_WORDS) {
132 	default:
133 		for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
134 			ready |= signal->sig[i] &~ blocked->sig[i];
135 		break;
136 
137 	case 4: ready  = signal->sig[3] &~ blocked->sig[3];
138 		ready |= signal->sig[2] &~ blocked->sig[2];
139 		ready |= signal->sig[1] &~ blocked->sig[1];
140 		ready |= signal->sig[0] &~ blocked->sig[0];
141 		break;
142 
143 	case 2: ready  = signal->sig[1] &~ blocked->sig[1];
144 		ready |= signal->sig[0] &~ blocked->sig[0];
145 		break;
146 
147 	case 1: ready  = signal->sig[0] &~ blocked->sig[0];
148 	}
149 	return ready !=	0;
150 }
151 
152 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
153 
recalc_sigpending_tsk(struct task_struct * t)154 static bool recalc_sigpending_tsk(struct task_struct *t)
155 {
156 	if ((t->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) ||
157 	    PENDING(&t->pending, &t->blocked) ||
158 	    PENDING(&t->signal->shared_pending, &t->blocked) ||
159 	    cgroup_task_frozen(t)) {
160 		set_tsk_thread_flag(t, TIF_SIGPENDING);
161 		return true;
162 	}
163 
164 	/*
165 	 * We must never clear the flag in another thread, or in current
166 	 * when it's possible the current syscall is returning -ERESTART*.
167 	 * So we don't clear it here, and only callers who know they should do.
168 	 */
169 	return false;
170 }
171 
172 /*
173  * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up.
174  * This is superfluous when called on current, the wakeup is a harmless no-op.
175  */
recalc_sigpending_and_wake(struct task_struct * t)176 void recalc_sigpending_and_wake(struct task_struct *t)
177 {
178 	if (recalc_sigpending_tsk(t))
179 		signal_wake_up(t, 0);
180 }
181 
recalc_sigpending(void)182 void recalc_sigpending(void)
183 {
184 	if (!recalc_sigpending_tsk(current) && !freezing(current) &&
185 	    !klp_patch_pending(current))
186 		clear_thread_flag(TIF_SIGPENDING);
187 
188 }
189 EXPORT_SYMBOL(recalc_sigpending);
190 
calculate_sigpending(void)191 void calculate_sigpending(void)
192 {
193 	/* Have any signals or users of TIF_SIGPENDING been delayed
194 	 * until after fork?
195 	 */
196 	spin_lock_irq(&current->sighand->siglock);
197 	set_tsk_thread_flag(current, TIF_SIGPENDING);
198 	recalc_sigpending();
199 	spin_unlock_irq(&current->sighand->siglock);
200 }
201 
202 /* Given the mask, find the first available signal that should be serviced. */
203 
204 #define SYNCHRONOUS_MASK \
205 	(sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \
206 	 sigmask(SIGTRAP) | sigmask(SIGFPE) | sigmask(SIGSYS))
207 
next_signal(struct sigpending * pending,sigset_t * mask)208 int next_signal(struct sigpending *pending, sigset_t *mask)
209 {
210 	unsigned long i, *s, *m, x;
211 	int sig = 0;
212 
213 	s = pending->signal.sig;
214 	m = mask->sig;
215 
216 	/*
217 	 * Handle the first word specially: it contains the
218 	 * synchronous signals that need to be dequeued first.
219 	 */
220 	x = *s &~ *m;
221 	if (x) {
222 		if (x & SYNCHRONOUS_MASK)
223 			x &= SYNCHRONOUS_MASK;
224 		sig = ffz(~x) + 1;
225 		return sig;
226 	}
227 
228 	switch (_NSIG_WORDS) {
229 	default:
230 		for (i = 1; i < _NSIG_WORDS; ++i) {
231 			x = *++s &~ *++m;
232 			if (!x)
233 				continue;
234 			sig = ffz(~x) + i*_NSIG_BPW + 1;
235 			break;
236 		}
237 		break;
238 
239 	case 2:
240 		x = s[1] &~ m[1];
241 		if (!x)
242 			break;
243 		sig = ffz(~x) + _NSIG_BPW + 1;
244 		break;
245 
246 	case 1:
247 		/* Nothing to do */
248 		break;
249 	}
250 
251 	return sig;
252 }
253 
print_dropped_signal(int sig)254 static inline void print_dropped_signal(int sig)
255 {
256 	static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10);
257 
258 	if (!print_fatal_signals)
259 		return;
260 
261 	if (!__ratelimit(&ratelimit_state))
262 		return;
263 
264 	pr_info("%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n",
265 				current->comm, current->pid, sig);
266 }
267 
268 /**
269  * task_set_jobctl_pending - set jobctl pending bits
270  * @task: target task
271  * @mask: pending bits to set
272  *
273  * Clear @mask from @task->jobctl.  @mask must be subset of
274  * %JOBCTL_PENDING_MASK | %JOBCTL_STOP_CONSUME | %JOBCTL_STOP_SIGMASK |
275  * %JOBCTL_TRAPPING.  If stop signo is being set, the existing signo is
276  * cleared.  If @task is already being killed or exiting, this function
277  * becomes noop.
278  *
279  * CONTEXT:
280  * Must be called with @task->sighand->siglock held.
281  *
282  * RETURNS:
283  * %true if @mask is set, %false if made noop because @task was dying.
284  */
task_set_jobctl_pending(struct task_struct * task,unsigned long mask)285 bool task_set_jobctl_pending(struct task_struct *task, unsigned long mask)
286 {
287 	BUG_ON(mask & ~(JOBCTL_PENDING_MASK | JOBCTL_STOP_CONSUME |
288 			JOBCTL_STOP_SIGMASK | JOBCTL_TRAPPING));
289 	BUG_ON((mask & JOBCTL_TRAPPING) && !(mask & JOBCTL_PENDING_MASK));
290 
291 	if (unlikely(fatal_signal_pending(task) || (task->flags & PF_EXITING)))
292 		return false;
293 
294 	if (mask & JOBCTL_STOP_SIGMASK)
295 		task->jobctl &= ~JOBCTL_STOP_SIGMASK;
296 
297 	task->jobctl |= mask;
298 	return true;
299 }
300 
301 /**
302  * task_clear_jobctl_trapping - clear jobctl trapping bit
303  * @task: target task
304  *
305  * If JOBCTL_TRAPPING is set, a ptracer is waiting for us to enter TRACED.
306  * Clear it and wake up the ptracer.  Note that we don't need any further
307  * locking.  @task->siglock guarantees that @task->parent points to the
308  * ptracer.
309  *
310  * CONTEXT:
311  * Must be called with @task->sighand->siglock held.
312  */
task_clear_jobctl_trapping(struct task_struct * task)313 void task_clear_jobctl_trapping(struct task_struct *task)
314 {
315 	if (unlikely(task->jobctl & JOBCTL_TRAPPING)) {
316 		task->jobctl &= ~JOBCTL_TRAPPING;
317 		smp_mb();	/* advised by wake_up_bit() */
318 		wake_up_bit(&task->jobctl, JOBCTL_TRAPPING_BIT);
319 	}
320 }
321 
322 /**
323  * task_clear_jobctl_pending - clear jobctl pending bits
324  * @task: target task
325  * @mask: pending bits to clear
326  *
327  * Clear @mask from @task->jobctl.  @mask must be subset of
328  * %JOBCTL_PENDING_MASK.  If %JOBCTL_STOP_PENDING is being cleared, other
329  * STOP bits are cleared together.
330  *
331  * If clearing of @mask leaves no stop or trap pending, this function calls
332  * task_clear_jobctl_trapping().
333  *
334  * CONTEXT:
335  * Must be called with @task->sighand->siglock held.
336  */
task_clear_jobctl_pending(struct task_struct * task,unsigned long mask)337 void task_clear_jobctl_pending(struct task_struct *task, unsigned long mask)
338 {
339 	BUG_ON(mask & ~JOBCTL_PENDING_MASK);
340 
341 	if (mask & JOBCTL_STOP_PENDING)
342 		mask |= JOBCTL_STOP_CONSUME | JOBCTL_STOP_DEQUEUED;
343 
344 	task->jobctl &= ~mask;
345 
346 	if (!(task->jobctl & JOBCTL_PENDING_MASK))
347 		task_clear_jobctl_trapping(task);
348 }
349 
350 /**
351  * task_participate_group_stop - participate in a group stop
352  * @task: task participating in a group stop
353  *
354  * @task has %JOBCTL_STOP_PENDING set and is participating in a group stop.
355  * Group stop states are cleared and the group stop count is consumed if
356  * %JOBCTL_STOP_CONSUME was set.  If the consumption completes the group
357  * stop, the appropriate `SIGNAL_*` flags are set.
358  *
359  * CONTEXT:
360  * Must be called with @task->sighand->siglock held.
361  *
362  * RETURNS:
363  * %true if group stop completion should be notified to the parent, %false
364  * otherwise.
365  */
task_participate_group_stop(struct task_struct * task)366 static bool task_participate_group_stop(struct task_struct *task)
367 {
368 	struct signal_struct *sig = task->signal;
369 	bool consume = task->jobctl & JOBCTL_STOP_CONSUME;
370 
371 	WARN_ON_ONCE(!(task->jobctl & JOBCTL_STOP_PENDING));
372 
373 	task_clear_jobctl_pending(task, JOBCTL_STOP_PENDING);
374 
375 	if (!consume)
376 		return false;
377 
378 	if (!WARN_ON_ONCE(sig->group_stop_count == 0))
379 		sig->group_stop_count--;
380 
381 	/*
382 	 * Tell the caller to notify completion iff we are entering into a
383 	 * fresh group stop.  Read comment in do_signal_stop() for details.
384 	 */
385 	if (!sig->group_stop_count && !(sig->flags & SIGNAL_STOP_STOPPED)) {
386 		signal_set_stop_flags(sig, SIGNAL_STOP_STOPPED);
387 		return true;
388 	}
389 	return false;
390 }
391 
task_join_group_stop(struct task_struct * task)392 void task_join_group_stop(struct task_struct *task)
393 {
394 	unsigned long mask = current->jobctl & JOBCTL_STOP_SIGMASK;
395 	struct signal_struct *sig = current->signal;
396 
397 	if (sig->group_stop_count) {
398 		sig->group_stop_count++;
399 		mask |= JOBCTL_STOP_CONSUME;
400 	} else if (!(sig->flags & SIGNAL_STOP_STOPPED))
401 		return;
402 
403 	/* Have the new thread join an on-going signal group stop */
404 	task_set_jobctl_pending(task, mask | JOBCTL_STOP_PENDING);
405 }
406 
407 /*
408  * allocate a new signal queue record
409  * - this may be called without locks if and only if t == current, otherwise an
410  *   appropriate lock must be held to stop the target task from exiting
411  */
412 static struct sigqueue *
__sigqueue_alloc(int sig,struct task_struct * t,gfp_t flags,int override_rlimit)413 __sigqueue_alloc(int sig, struct task_struct *t, gfp_t flags, int override_rlimit)
414 {
415 	struct sigqueue *q = NULL;
416 	struct user_struct *user;
417 	int sigpending;
418 
419 	/*
420 	 * Protect access to @t credentials. This can go away when all
421 	 * callers hold rcu read lock.
422 	 *
423 	 * NOTE! A pending signal will hold on to the user refcount,
424 	 * and we get/put the refcount only when the sigpending count
425 	 * changes from/to zero.
426 	 */
427 	rcu_read_lock();
428 	user = __task_cred(t)->user;
429 	sigpending = atomic_inc_return(&user->sigpending);
430 	if (sigpending == 1)
431 		get_uid(user);
432 	rcu_read_unlock();
433 
434 	if (override_rlimit || likely(sigpending <= task_rlimit(t, RLIMIT_SIGPENDING))) {
435 		q = kmem_cache_alloc(sigqueue_cachep, flags);
436 	} else {
437 		print_dropped_signal(sig);
438 	}
439 
440 	if (unlikely(q == NULL)) {
441 		if (atomic_dec_and_test(&user->sigpending))
442 			free_uid(user);
443 	} else {
444 		INIT_LIST_HEAD(&q->list);
445 		q->flags = 0;
446 		q->user = user;
447 	}
448 
449 	return q;
450 }
451 
__sigqueue_free(struct sigqueue * q)452 static void __sigqueue_free(struct sigqueue *q)
453 {
454 	if (q->flags & SIGQUEUE_PREALLOC)
455 		return;
456 	if (atomic_dec_and_test(&q->user->sigpending))
457 		free_uid(q->user);
458 	kmem_cache_free(sigqueue_cachep, q);
459 }
460 
flush_sigqueue(struct sigpending * queue)461 void flush_sigqueue(struct sigpending *queue)
462 {
463 	struct sigqueue *q;
464 
465 	sigemptyset(&queue->signal);
466 	while (!list_empty(&queue->list)) {
467 		q = list_entry(queue->list.next, struct sigqueue , list);
468 		list_del_init(&q->list);
469 		__sigqueue_free(q);
470 	}
471 }
472 
473 /*
474  * Flush all pending signals for this kthread.
475  */
flush_signals(struct task_struct * t)476 void flush_signals(struct task_struct *t)
477 {
478 	unsigned long flags;
479 
480 	spin_lock_irqsave(&t->sighand->siglock, flags);
481 	clear_tsk_thread_flag(t, TIF_SIGPENDING);
482 	flush_sigqueue(&t->pending);
483 	flush_sigqueue(&t->signal->shared_pending);
484 	spin_unlock_irqrestore(&t->sighand->siglock, flags);
485 }
486 EXPORT_SYMBOL(flush_signals);
487 
488 #ifdef CONFIG_POSIX_TIMERS
__flush_itimer_signals(struct sigpending * pending)489 static void __flush_itimer_signals(struct sigpending *pending)
490 {
491 	sigset_t signal, retain;
492 	struct sigqueue *q, *n;
493 
494 	signal = pending->signal;
495 	sigemptyset(&retain);
496 
497 	list_for_each_entry_safe(q, n, &pending->list, list) {
498 		int sig = q->info.si_signo;
499 
500 		if (likely(q->info.si_code != SI_TIMER)) {
501 			sigaddset(&retain, sig);
502 		} else {
503 			sigdelset(&signal, sig);
504 			list_del_init(&q->list);
505 			__sigqueue_free(q);
506 		}
507 	}
508 
509 	sigorsets(&pending->signal, &signal, &retain);
510 }
511 
flush_itimer_signals(void)512 void flush_itimer_signals(void)
513 {
514 	struct task_struct *tsk = current;
515 	unsigned long flags;
516 
517 	spin_lock_irqsave(&tsk->sighand->siglock, flags);
518 	__flush_itimer_signals(&tsk->pending);
519 	__flush_itimer_signals(&tsk->signal->shared_pending);
520 	spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
521 }
522 #endif
523 
ignore_signals(struct task_struct * t)524 void ignore_signals(struct task_struct *t)
525 {
526 	int i;
527 
528 	for (i = 0; i < _NSIG; ++i)
529 		t->sighand->action[i].sa.sa_handler = SIG_IGN;
530 
531 	flush_signals(t);
532 }
533 
534 /*
535  * Flush all handlers for a task.
536  */
537 
538 void
flush_signal_handlers(struct task_struct * t,int force_default)539 flush_signal_handlers(struct task_struct *t, int force_default)
540 {
541 	int i;
542 	struct k_sigaction *ka = &t->sighand->action[0];
543 	for (i = _NSIG ; i != 0 ; i--) {
544 		if (force_default || ka->sa.sa_handler != SIG_IGN)
545 			ka->sa.sa_handler = SIG_DFL;
546 		ka->sa.sa_flags = 0;
547 #ifdef __ARCH_HAS_SA_RESTORER
548 		ka->sa.sa_restorer = NULL;
549 #endif
550 		sigemptyset(&ka->sa.sa_mask);
551 		ka++;
552 	}
553 }
554 
unhandled_signal(struct task_struct * tsk,int sig)555 bool unhandled_signal(struct task_struct *tsk, int sig)
556 {
557 	void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler;
558 	if (is_global_init(tsk))
559 		return true;
560 
561 	if (handler != SIG_IGN && handler != SIG_DFL)
562 		return false;
563 
564 	/* if ptraced, let the tracer determine */
565 	return !tsk->ptrace;
566 }
567 
collect_signal(int sig,struct sigpending * list,kernel_siginfo_t * info,bool * resched_timer)568 static void collect_signal(int sig, struct sigpending *list, kernel_siginfo_t *info,
569 			   bool *resched_timer)
570 {
571 	struct sigqueue *q, *first = NULL;
572 
573 	/*
574 	 * Collect the siginfo appropriate to this signal.  Check if
575 	 * there is another siginfo for the same signal.
576 	*/
577 	list_for_each_entry(q, &list->list, list) {
578 		if (q->info.si_signo == sig) {
579 			if (first)
580 				goto still_pending;
581 			first = q;
582 		}
583 	}
584 
585 	sigdelset(&list->signal, sig);
586 
587 	if (first) {
588 still_pending:
589 		list_del_init(&first->list);
590 		copy_siginfo(info, &first->info);
591 
592 		*resched_timer =
593 			(first->flags & SIGQUEUE_PREALLOC) &&
594 			(info->si_code == SI_TIMER) &&
595 			(info->si_sys_private);
596 
597 		__sigqueue_free(first);
598 	} else {
599 		/*
600 		 * Ok, it wasn't in the queue.  This must be
601 		 * a fast-pathed signal or we must have been
602 		 * out of queue space.  So zero out the info.
603 		 */
604 		clear_siginfo(info);
605 		info->si_signo = sig;
606 		info->si_errno = 0;
607 		info->si_code = SI_USER;
608 		info->si_pid = 0;
609 		info->si_uid = 0;
610 	}
611 }
612 
__dequeue_signal(struct sigpending * pending,sigset_t * mask,kernel_siginfo_t * info,bool * resched_timer)613 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
614 			kernel_siginfo_t *info, bool *resched_timer)
615 {
616 	int sig = next_signal(pending, mask);
617 
618 	if (sig)
619 		collect_signal(sig, pending, info, resched_timer);
620 	return sig;
621 }
622 
623 /*
624  * Dequeue a signal and return the element to the caller, which is
625  * expected to free it.
626  *
627  * All callers have to hold the siglock.
628  */
dequeue_signal(struct task_struct * tsk,sigset_t * mask,kernel_siginfo_t * info)629 int dequeue_signal(struct task_struct *tsk, sigset_t *mask, kernel_siginfo_t *info)
630 {
631 	bool resched_timer = false;
632 	int signr;
633 
634 	/* We only dequeue private signals from ourselves, we don't let
635 	 * signalfd steal them
636 	 */
637 	signr = __dequeue_signal(&tsk->pending, mask, info, &resched_timer);
638 	if (!signr) {
639 		signr = __dequeue_signal(&tsk->signal->shared_pending,
640 					 mask, info, &resched_timer);
641 #ifdef CONFIG_POSIX_TIMERS
642 		/*
643 		 * itimer signal ?
644 		 *
645 		 * itimers are process shared and we restart periodic
646 		 * itimers in the signal delivery path to prevent DoS
647 		 * attacks in the high resolution timer case. This is
648 		 * compliant with the old way of self-restarting
649 		 * itimers, as the SIGALRM is a legacy signal and only
650 		 * queued once. Changing the restart behaviour to
651 		 * restart the timer in the signal dequeue path is
652 		 * reducing the timer noise on heavy loaded !highres
653 		 * systems too.
654 		 */
655 		if (unlikely(signr == SIGALRM)) {
656 			struct hrtimer *tmr = &tsk->signal->real_timer;
657 
658 			if (!hrtimer_is_queued(tmr) &&
659 			    tsk->signal->it_real_incr != 0) {
660 				hrtimer_forward(tmr, tmr->base->get_time(),
661 						tsk->signal->it_real_incr);
662 				hrtimer_restart(tmr);
663 			}
664 		}
665 #endif
666 	}
667 
668 	recalc_sigpending();
669 	if (!signr)
670 		return 0;
671 
672 	if (unlikely(sig_kernel_stop(signr))) {
673 		/*
674 		 * Set a marker that we have dequeued a stop signal.  Our
675 		 * caller might release the siglock and then the pending
676 		 * stop signal it is about to process is no longer in the
677 		 * pending bitmasks, but must still be cleared by a SIGCONT
678 		 * (and overruled by a SIGKILL).  So those cases clear this
679 		 * shared flag after we've set it.  Note that this flag may
680 		 * remain set after the signal we return is ignored or
681 		 * handled.  That doesn't matter because its only purpose
682 		 * is to alert stop-signal processing code when another
683 		 * processor has come along and cleared the flag.
684 		 */
685 		current->jobctl |= JOBCTL_STOP_DEQUEUED;
686 	}
687 #ifdef CONFIG_POSIX_TIMERS
688 	if (resched_timer) {
689 		/*
690 		 * Release the siglock to ensure proper locking order
691 		 * of timer locks outside of siglocks.  Note, we leave
692 		 * irqs disabled here, since the posix-timers code is
693 		 * about to disable them again anyway.
694 		 */
695 		spin_unlock(&tsk->sighand->siglock);
696 		posixtimer_rearm(info);
697 		spin_lock(&tsk->sighand->siglock);
698 
699 		/* Don't expose the si_sys_private value to userspace */
700 		info->si_sys_private = 0;
701 	}
702 #endif
703 	return signr;
704 }
705 EXPORT_SYMBOL_GPL(dequeue_signal);
706 
dequeue_synchronous_signal(kernel_siginfo_t * info)707 static int dequeue_synchronous_signal(kernel_siginfo_t *info)
708 {
709 	struct task_struct *tsk = current;
710 	struct sigpending *pending = &tsk->pending;
711 	struct sigqueue *q, *sync = NULL;
712 
713 	/*
714 	 * Might a synchronous signal be in the queue?
715 	 */
716 	if (!((pending->signal.sig[0] & ~tsk->blocked.sig[0]) & SYNCHRONOUS_MASK))
717 		return 0;
718 
719 	/*
720 	 * Return the first synchronous signal in the queue.
721 	 */
722 	list_for_each_entry(q, &pending->list, list) {
723 		/* Synchronous signals have a positive si_code */
724 		if ((q->info.si_code > SI_USER) &&
725 		    (sigmask(q->info.si_signo) & SYNCHRONOUS_MASK)) {
726 			sync = q;
727 			goto next;
728 		}
729 	}
730 	return 0;
731 next:
732 	/*
733 	 * Check if there is another siginfo for the same signal.
734 	 */
735 	list_for_each_entry_continue(q, &pending->list, list) {
736 		if (q->info.si_signo == sync->info.si_signo)
737 			goto still_pending;
738 	}
739 
740 	sigdelset(&pending->signal, sync->info.si_signo);
741 	recalc_sigpending();
742 still_pending:
743 	list_del_init(&sync->list);
744 	copy_siginfo(info, &sync->info);
745 	__sigqueue_free(sync);
746 	return info->si_signo;
747 }
748 
749 /*
750  * Tell a process that it has a new active signal..
751  *
752  * NOTE! we rely on the previous spin_lock to
753  * lock interrupts for us! We can only be called with
754  * "siglock" held, and the local interrupt must
755  * have been disabled when that got acquired!
756  *
757  * No need to set need_resched since signal event passing
758  * goes through ->blocked
759  */
signal_wake_up_state(struct task_struct * t,unsigned int state)760 void signal_wake_up_state(struct task_struct *t, unsigned int state)
761 {
762 	set_tsk_thread_flag(t, TIF_SIGPENDING);
763 	/*
764 	 * TASK_WAKEKILL also means wake it up in the stopped/traced/killable
765 	 * case. We don't check t->state here because there is a race with it
766 	 * executing another processor and just now entering stopped state.
767 	 * By using wake_up_state, we ensure the process will wake up and
768 	 * handle its death signal.
769 	 */
770 	if (!wake_up_state(t, state | TASK_INTERRUPTIBLE))
771 		kick_process(t);
772 }
773 
774 /*
775  * Remove signals in mask from the pending set and queue.
776  * Returns 1 if any signals were found.
777  *
778  * All callers must be holding the siglock.
779  */
flush_sigqueue_mask(sigset_t * mask,struct sigpending * s)780 static void flush_sigqueue_mask(sigset_t *mask, struct sigpending *s)
781 {
782 	struct sigqueue *q, *n;
783 	sigset_t m;
784 
785 	sigandsets(&m, mask, &s->signal);
786 	if (sigisemptyset(&m))
787 		return;
788 
789 	sigandnsets(&s->signal, &s->signal, mask);
790 	list_for_each_entry_safe(q, n, &s->list, list) {
791 		if (sigismember(mask, q->info.si_signo)) {
792 			list_del_init(&q->list);
793 			__sigqueue_free(q);
794 		}
795 	}
796 }
797 
is_si_special(const struct kernel_siginfo * info)798 static inline int is_si_special(const struct kernel_siginfo *info)
799 {
800 	return info <= SEND_SIG_PRIV;
801 }
802 
si_fromuser(const struct kernel_siginfo * info)803 static inline bool si_fromuser(const struct kernel_siginfo *info)
804 {
805 	return info == SEND_SIG_NOINFO ||
806 		(!is_si_special(info) && SI_FROMUSER(info));
807 }
808 
809 /*
810  * called with RCU read lock from check_kill_permission()
811  */
kill_ok_by_cred(struct task_struct * t)812 static bool kill_ok_by_cred(struct task_struct *t)
813 {
814 	const struct cred *cred = current_cred();
815 	const struct cred *tcred = __task_cred(t);
816 
817 	return uid_eq(cred->euid, tcred->suid) ||
818 	       uid_eq(cred->euid, tcred->uid) ||
819 	       uid_eq(cred->uid, tcred->suid) ||
820 	       uid_eq(cred->uid, tcred->uid) ||
821 	       ns_capable(tcred->user_ns, CAP_KILL);
822 }
823 
824 /*
825  * Bad permissions for sending the signal
826  * - the caller must hold the RCU read lock
827  */
check_kill_permission(int sig,struct kernel_siginfo * info,struct task_struct * t)828 static int check_kill_permission(int sig, struct kernel_siginfo *info,
829 				 struct task_struct *t)
830 {
831 	struct pid *sid;
832 	int error;
833 
834 	if (!valid_signal(sig))
835 		return -EINVAL;
836 
837 	if (!si_fromuser(info))
838 		return 0;
839 
840 	error = audit_signal_info(sig, t); /* Let audit system see the signal */
841 	if (error)
842 		return error;
843 
844 	if (!same_thread_group(current, t) &&
845 	    !kill_ok_by_cred(t)) {
846 		switch (sig) {
847 		case SIGCONT:
848 			sid = task_session(t);
849 			/*
850 			 * We don't return the error if sid == NULL. The
851 			 * task was unhashed, the caller must notice this.
852 			 */
853 			if (!sid || sid == task_session(current))
854 				break;
855 			fallthrough;
856 		default:
857 			return -EPERM;
858 		}
859 	}
860 
861 	return security_task_kill(t, info, sig, NULL);
862 }
863 
864 /**
865  * ptrace_trap_notify - schedule trap to notify ptracer
866  * @t: tracee wanting to notify tracer
867  *
868  * This function schedules sticky ptrace trap which is cleared on the next
869  * TRAP_STOP to notify ptracer of an event.  @t must have been seized by
870  * ptracer.
871  *
872  * If @t is running, STOP trap will be taken.  If trapped for STOP and
873  * ptracer is listening for events, tracee is woken up so that it can
874  * re-trap for the new event.  If trapped otherwise, STOP trap will be
875  * eventually taken without returning to userland after the existing traps
876  * are finished by PTRACE_CONT.
877  *
878  * CONTEXT:
879  * Must be called with @task->sighand->siglock held.
880  */
ptrace_trap_notify(struct task_struct * t)881 static void ptrace_trap_notify(struct task_struct *t)
882 {
883 	WARN_ON_ONCE(!(t->ptrace & PT_SEIZED));
884 	assert_spin_locked(&t->sighand->siglock);
885 
886 	task_set_jobctl_pending(t, JOBCTL_TRAP_NOTIFY);
887 	ptrace_signal_wake_up(t, t->jobctl & JOBCTL_LISTENING);
888 }
889 
890 /*
891  * Handle magic process-wide effects of stop/continue signals. Unlike
892  * the signal actions, these happen immediately at signal-generation
893  * time regardless of blocking, ignoring, or handling.  This does the
894  * actual continuing for SIGCONT, but not the actual stopping for stop
895  * signals. The process stop is done as a signal action for SIG_DFL.
896  *
897  * Returns true if the signal should be actually delivered, otherwise
898  * it should be dropped.
899  */
prepare_signal(int sig,struct task_struct * p,bool force)900 static bool prepare_signal(int sig, struct task_struct *p, bool force)
901 {
902 	struct signal_struct *signal = p->signal;
903 	struct task_struct *t;
904 	sigset_t flush;
905 
906 	if (signal->flags & (SIGNAL_GROUP_EXIT | SIGNAL_GROUP_COREDUMP)) {
907 		if (!(signal->flags & SIGNAL_GROUP_EXIT))
908 			return sig == SIGKILL;
909 		/*
910 		 * The process is in the middle of dying, nothing to do.
911 		 */
912 	} else if (sig_kernel_stop(sig)) {
913 		/*
914 		 * This is a stop signal.  Remove SIGCONT from all queues.
915 		 */
916 		siginitset(&flush, sigmask(SIGCONT));
917 		flush_sigqueue_mask(&flush, &signal->shared_pending);
918 		for_each_thread(p, t)
919 			flush_sigqueue_mask(&flush, &t->pending);
920 	} else if (sig == SIGCONT) {
921 		unsigned int why;
922 		/*
923 		 * Remove all stop signals from all queues, wake all threads.
924 		 */
925 		siginitset(&flush, SIG_KERNEL_STOP_MASK);
926 		flush_sigqueue_mask(&flush, &signal->shared_pending);
927 		for_each_thread(p, t) {
928 			flush_sigqueue_mask(&flush, &t->pending);
929 			task_clear_jobctl_pending(t, JOBCTL_STOP_PENDING);
930 			if (likely(!(t->ptrace & PT_SEIZED)))
931 				wake_up_state(t, __TASK_STOPPED);
932 			else
933 				ptrace_trap_notify(t);
934 		}
935 
936 		/*
937 		 * Notify the parent with CLD_CONTINUED if we were stopped.
938 		 *
939 		 * If we were in the middle of a group stop, we pretend it
940 		 * was already finished, and then continued. Since SIGCHLD
941 		 * doesn't queue we report only CLD_STOPPED, as if the next
942 		 * CLD_CONTINUED was dropped.
943 		 */
944 		why = 0;
945 		if (signal->flags & SIGNAL_STOP_STOPPED)
946 			why |= SIGNAL_CLD_CONTINUED;
947 		else if (signal->group_stop_count)
948 			why |= SIGNAL_CLD_STOPPED;
949 
950 		if (why) {
951 			/*
952 			 * The first thread which returns from do_signal_stop()
953 			 * will take ->siglock, notice SIGNAL_CLD_MASK, and
954 			 * notify its parent. See get_signal().
955 			 */
956 			signal_set_stop_flags(signal, why | SIGNAL_STOP_CONTINUED);
957 			signal->group_stop_count = 0;
958 			signal->group_exit_code = 0;
959 		}
960 	}
961 
962 	return !sig_ignored(p, sig, force);
963 }
964 
965 /*
966  * Test if P wants to take SIG.  After we've checked all threads with this,
967  * it's equivalent to finding no threads not blocking SIG.  Any threads not
968  * blocking SIG were ruled out because they are not running and already
969  * have pending signals.  Such threads will dequeue from the shared queue
970  * as soon as they're available, so putting the signal on the shared queue
971  * will be equivalent to sending it to one such thread.
972  */
wants_signal(int sig,struct task_struct * p)973 static inline bool wants_signal(int sig, struct task_struct *p)
974 {
975 	if (sigismember(&p->blocked, sig))
976 		return false;
977 
978 	if (p->flags & PF_EXITING)
979 		return false;
980 
981 	if (sig == SIGKILL)
982 		return true;
983 
984 	if (task_is_stopped_or_traced(p))
985 		return false;
986 
987 	return task_curr(p) || !signal_pending(p);
988 }
989 
complete_signal(int sig,struct task_struct * p,enum pid_type type)990 static void complete_signal(int sig, struct task_struct *p, enum pid_type type)
991 {
992 	struct signal_struct *signal = p->signal;
993 	struct task_struct *t;
994 
995 	/*
996 	 * Now find a thread we can wake up to take the signal off the queue.
997 	 *
998 	 * If the main thread wants the signal, it gets first crack.
999 	 * Probably the least surprising to the average bear.
1000 	 */
1001 	if (wants_signal(sig, p))
1002 		t = p;
1003 	else if ((type == PIDTYPE_PID) || thread_group_empty(p))
1004 		/*
1005 		 * There is just one thread and it does not need to be woken.
1006 		 * It will dequeue unblocked signals before it runs again.
1007 		 */
1008 		return;
1009 	else {
1010 		/*
1011 		 * Otherwise try to find a suitable thread.
1012 		 */
1013 		t = signal->curr_target;
1014 		while (!wants_signal(sig, t)) {
1015 			t = next_thread(t);
1016 			if (t == signal->curr_target)
1017 				/*
1018 				 * No thread needs to be woken.
1019 				 * Any eligible threads will see
1020 				 * the signal in the queue soon.
1021 				 */
1022 				return;
1023 		}
1024 		signal->curr_target = t;
1025 	}
1026 
1027 	/*
1028 	 * Found a killable thread.  If the signal will be fatal,
1029 	 * then start taking the whole group down immediately.
1030 	 */
1031 	if (sig_fatal(p, sig) &&
1032 	    !(signal->flags & SIGNAL_GROUP_EXIT) &&
1033 	    !sigismember(&t->real_blocked, sig) &&
1034 	    (sig == SIGKILL || !p->ptrace)) {
1035 		/*
1036 		 * This signal will be fatal to the whole group.
1037 		 */
1038 		if (!sig_kernel_coredump(sig)) {
1039 			/*
1040 			 * Start a group exit and wake everybody up.
1041 			 * This way we don't have other threads
1042 			 * running and doing things after a slower
1043 			 * thread has the fatal signal pending.
1044 			 */
1045 			signal->flags = SIGNAL_GROUP_EXIT;
1046 			signal->group_exit_code = sig;
1047 			signal->group_stop_count = 0;
1048 			t = p;
1049 			do {
1050 				task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1051 				sigaddset(&t->pending.signal, SIGKILL);
1052 				signal_wake_up(t, 1);
1053 			} while_each_thread(p, t);
1054 			return;
1055 		}
1056 	}
1057 
1058 	/*
1059 	 * The signal is already in the shared-pending queue.
1060 	 * Tell the chosen thread to wake up and dequeue it.
1061 	 */
1062 	signal_wake_up(t, sig == SIGKILL);
1063 	return;
1064 }
1065 
legacy_queue(struct sigpending * signals,int sig)1066 static inline bool legacy_queue(struct sigpending *signals, int sig)
1067 {
1068 	return (sig < SIGRTMIN) && sigismember(&signals->signal, sig);
1069 }
1070 
__send_signal(int sig,struct kernel_siginfo * info,struct task_struct * t,enum pid_type type,bool force)1071 static int __send_signal(int sig, struct kernel_siginfo *info, struct task_struct *t,
1072 			enum pid_type type, bool force)
1073 {
1074 	struct sigpending *pending;
1075 	struct sigqueue *q;
1076 	int override_rlimit;
1077 	int ret = 0, result;
1078 
1079 	assert_spin_locked(&t->sighand->siglock);
1080 
1081 	result = TRACE_SIGNAL_IGNORED;
1082 	if (!prepare_signal(sig, t, force))
1083 		goto ret;
1084 
1085 	pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending;
1086 	/*
1087 	 * Short-circuit ignored signals and support queuing
1088 	 * exactly one non-rt signal, so that we can get more
1089 	 * detailed information about the cause of the signal.
1090 	 */
1091 	result = TRACE_SIGNAL_ALREADY_PENDING;
1092 	if (legacy_queue(pending, sig))
1093 		goto ret;
1094 
1095 	result = TRACE_SIGNAL_DELIVERED;
1096 	/*
1097 	 * Skip useless siginfo allocation for SIGKILL and kernel threads.
1098 	 */
1099 	if ((sig == SIGKILL) || (t->flags & PF_KTHREAD))
1100 		goto out_set;
1101 
1102 	/*
1103 	 * Real-time signals must be queued if sent by sigqueue, or
1104 	 * some other real-time mechanism.  It is implementation
1105 	 * defined whether kill() does so.  We attempt to do so, on
1106 	 * the principle of least surprise, but since kill is not
1107 	 * allowed to fail with EAGAIN when low on memory we just
1108 	 * make sure at least one signal gets delivered and don't
1109 	 * pass on the info struct.
1110 	 */
1111 	if (sig < SIGRTMIN)
1112 		override_rlimit = (is_si_special(info) || info->si_code >= 0);
1113 	else
1114 		override_rlimit = 0;
1115 
1116 	q = __sigqueue_alloc(sig, t, GFP_ATOMIC, override_rlimit);
1117 	if (q) {
1118 		list_add_tail(&q->list, &pending->list);
1119 		switch ((unsigned long) info) {
1120 		case (unsigned long) SEND_SIG_NOINFO:
1121 			clear_siginfo(&q->info);
1122 			q->info.si_signo = sig;
1123 			q->info.si_errno = 0;
1124 			q->info.si_code = SI_USER;
1125 			q->info.si_pid = task_tgid_nr_ns(current,
1126 							task_active_pid_ns(t));
1127 			rcu_read_lock();
1128 			q->info.si_uid =
1129 				from_kuid_munged(task_cred_xxx(t, user_ns),
1130 						 current_uid());
1131 			rcu_read_unlock();
1132 			break;
1133 		case (unsigned long) SEND_SIG_PRIV:
1134 			clear_siginfo(&q->info);
1135 			q->info.si_signo = sig;
1136 			q->info.si_errno = 0;
1137 			q->info.si_code = SI_KERNEL;
1138 			q->info.si_pid = 0;
1139 			q->info.si_uid = 0;
1140 			break;
1141 		default:
1142 			copy_siginfo(&q->info, info);
1143 			break;
1144 		}
1145 	} else if (!is_si_special(info) &&
1146 		   sig >= SIGRTMIN && info->si_code != SI_USER) {
1147 		/*
1148 		 * Queue overflow, abort.  We may abort if the
1149 		 * signal was rt and sent by user using something
1150 		 * other than kill().
1151 		 */
1152 		result = TRACE_SIGNAL_OVERFLOW_FAIL;
1153 		ret = -EAGAIN;
1154 		goto ret;
1155 	} else {
1156 		/*
1157 		 * This is a silent loss of information.  We still
1158 		 * send the signal, but the *info bits are lost.
1159 		 */
1160 		result = TRACE_SIGNAL_LOSE_INFO;
1161 	}
1162 
1163 out_set:
1164 	signalfd_notify(t, sig);
1165 	sigaddset(&pending->signal, sig);
1166 
1167 	/* Let multiprocess signals appear after on-going forks */
1168 	if (type > PIDTYPE_TGID) {
1169 		struct multiprocess_signals *delayed;
1170 		hlist_for_each_entry(delayed, &t->signal->multiprocess, node) {
1171 			sigset_t *signal = &delayed->signal;
1172 			/* Can't queue both a stop and a continue signal */
1173 			if (sig == SIGCONT)
1174 				sigdelsetmask(signal, SIG_KERNEL_STOP_MASK);
1175 			else if (sig_kernel_stop(sig))
1176 				sigdelset(signal, SIGCONT);
1177 			sigaddset(signal, sig);
1178 		}
1179 	}
1180 
1181 	complete_signal(sig, t, type);
1182 ret:
1183 	trace_signal_generate(sig, info, t, type != PIDTYPE_PID, result);
1184 	return ret;
1185 }
1186 
has_si_pid_and_uid(struct kernel_siginfo * info)1187 static inline bool has_si_pid_and_uid(struct kernel_siginfo *info)
1188 {
1189 	bool ret = false;
1190 	switch (siginfo_layout(info->si_signo, info->si_code)) {
1191 	case SIL_KILL:
1192 	case SIL_CHLD:
1193 	case SIL_RT:
1194 		ret = true;
1195 		break;
1196 	case SIL_TIMER:
1197 	case SIL_POLL:
1198 	case SIL_FAULT:
1199 	case SIL_FAULT_MCEERR:
1200 	case SIL_FAULT_BNDERR:
1201 	case SIL_FAULT_PKUERR:
1202 	case SIL_SYS:
1203 		ret = false;
1204 		break;
1205 	}
1206 	return ret;
1207 }
1208 
send_signal(int sig,struct kernel_siginfo * info,struct task_struct * t,enum pid_type type)1209 static int send_signal(int sig, struct kernel_siginfo *info, struct task_struct *t,
1210 			enum pid_type type)
1211 {
1212 	/* Should SIGKILL or SIGSTOP be received by a pid namespace init? */
1213 	bool force = false;
1214 
1215 	if (info == SEND_SIG_NOINFO) {
1216 		/* Force if sent from an ancestor pid namespace */
1217 		force = !task_pid_nr_ns(current, task_active_pid_ns(t));
1218 	} else if (info == SEND_SIG_PRIV) {
1219 		/* Don't ignore kernel generated signals */
1220 		force = true;
1221 	} else if (has_si_pid_and_uid(info)) {
1222 		/* SIGKILL and SIGSTOP is special or has ids */
1223 		struct user_namespace *t_user_ns;
1224 
1225 		rcu_read_lock();
1226 		t_user_ns = task_cred_xxx(t, user_ns);
1227 		if (current_user_ns() != t_user_ns) {
1228 			kuid_t uid = make_kuid(current_user_ns(), info->si_uid);
1229 			info->si_uid = from_kuid_munged(t_user_ns, uid);
1230 		}
1231 		rcu_read_unlock();
1232 
1233 		/* A kernel generated signal? */
1234 		force = (info->si_code == SI_KERNEL);
1235 
1236 		/* From an ancestor pid namespace? */
1237 		if (!task_pid_nr_ns(current, task_active_pid_ns(t))) {
1238 			info->si_pid = 0;
1239 			force = true;
1240 		}
1241 	}
1242 	return __send_signal(sig, info, t, type, force);
1243 }
1244 
print_fatal_signal(int signr)1245 static void print_fatal_signal(int signr)
1246 {
1247 	struct pt_regs *regs = signal_pt_regs();
1248 	pr_info("potentially unexpected fatal signal %d.\n", signr);
1249 
1250 #if defined(__i386__) && !defined(__arch_um__)
1251 	pr_info("code at %08lx: ", regs->ip);
1252 	{
1253 		int i;
1254 		for (i = 0; i < 16; i++) {
1255 			unsigned char insn;
1256 
1257 			if (get_user(insn, (unsigned char *)(regs->ip + i)))
1258 				break;
1259 			pr_cont("%02x ", insn);
1260 		}
1261 	}
1262 	pr_cont("\n");
1263 #endif
1264 	preempt_disable();
1265 	show_regs(regs);
1266 	preempt_enable();
1267 }
1268 
setup_print_fatal_signals(char * str)1269 static int __init setup_print_fatal_signals(char *str)
1270 {
1271 	get_option (&str, &print_fatal_signals);
1272 
1273 	return 1;
1274 }
1275 
1276 __setup("print-fatal-signals=", setup_print_fatal_signals);
1277 
1278 int
__group_send_sig_info(int sig,struct kernel_siginfo * info,struct task_struct * p)1279 __group_send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p)
1280 {
1281 	return send_signal(sig, info, p, PIDTYPE_TGID);
1282 }
1283 
do_send_sig_info(int sig,struct kernel_siginfo * info,struct task_struct * p,enum pid_type type)1284 int do_send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p,
1285 			enum pid_type type)
1286 {
1287 	unsigned long flags;
1288 	int ret = -ESRCH;
1289 
1290 	if (lock_task_sighand(p, &flags)) {
1291 		ret = send_signal(sig, info, p, type);
1292 		unlock_task_sighand(p, &flags);
1293 	}
1294 
1295 	return ret;
1296 }
1297 
1298 /*
1299  * Force a signal that the process can't ignore: if necessary
1300  * we unblock the signal and change any SIG_IGN to SIG_DFL.
1301  *
1302  * Note: If we unblock the signal, we always reset it to SIG_DFL,
1303  * since we do not want to have a signal handler that was blocked
1304  * be invoked when user space had explicitly blocked it.
1305  *
1306  * We don't want to have recursive SIGSEGV's etc, for example,
1307  * that is why we also clear SIGNAL_UNKILLABLE.
1308  */
1309 static int
force_sig_info_to_task(struct kernel_siginfo * info,struct task_struct * t)1310 force_sig_info_to_task(struct kernel_siginfo *info, struct task_struct *t)
1311 {
1312 	unsigned long int flags;
1313 	int ret, blocked, ignored;
1314 	struct k_sigaction *action;
1315 	int sig = info->si_signo;
1316 
1317 	spin_lock_irqsave(&t->sighand->siglock, flags);
1318 	action = &t->sighand->action[sig-1];
1319 	ignored = action->sa.sa_handler == SIG_IGN;
1320 	blocked = sigismember(&t->blocked, sig);
1321 	if (blocked || ignored) {
1322 		action->sa.sa_handler = SIG_DFL;
1323 		if (blocked) {
1324 			sigdelset(&t->blocked, sig);
1325 			recalc_sigpending_and_wake(t);
1326 		}
1327 	}
1328 	/*
1329 	 * Don't clear SIGNAL_UNKILLABLE for traced tasks, users won't expect
1330 	 * debugging to leave init killable.
1331 	 */
1332 	if (action->sa.sa_handler == SIG_DFL && !t->ptrace)
1333 		t->signal->flags &= ~SIGNAL_UNKILLABLE;
1334 	ret = send_signal(sig, info, t, PIDTYPE_PID);
1335 	spin_unlock_irqrestore(&t->sighand->siglock, flags);
1336 
1337 	return ret;
1338 }
1339 
force_sig_info(struct kernel_siginfo * info)1340 int force_sig_info(struct kernel_siginfo *info)
1341 {
1342 	return force_sig_info_to_task(info, current);
1343 }
1344 
1345 /*
1346  * Nuke all other threads in the group.
1347  */
zap_other_threads(struct task_struct * p)1348 int zap_other_threads(struct task_struct *p)
1349 {
1350 	struct task_struct *t = p;
1351 	int count = 0;
1352 
1353 	p->signal->group_stop_count = 0;
1354 
1355 	while_each_thread(p, t) {
1356 		task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1357 		count++;
1358 
1359 		/* Don't bother with already dead threads */
1360 		if (t->exit_state)
1361 			continue;
1362 		sigaddset(&t->pending.signal, SIGKILL);
1363 		signal_wake_up(t, 1);
1364 	}
1365 
1366 	return count;
1367 }
1368 
__lock_task_sighand(struct task_struct * tsk,unsigned long * flags)1369 struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
1370 					   unsigned long *flags)
1371 {
1372 	struct sighand_struct *sighand;
1373 
1374 	rcu_read_lock();
1375 	for (;;) {
1376 		sighand = rcu_dereference(tsk->sighand);
1377 		if (unlikely(sighand == NULL))
1378 			break;
1379 
1380 		/*
1381 		 * This sighand can be already freed and even reused, but
1382 		 * we rely on SLAB_TYPESAFE_BY_RCU and sighand_ctor() which
1383 		 * initializes ->siglock: this slab can't go away, it has
1384 		 * the same object type, ->siglock can't be reinitialized.
1385 		 *
1386 		 * We need to ensure that tsk->sighand is still the same
1387 		 * after we take the lock, we can race with de_thread() or
1388 		 * __exit_signal(). In the latter case the next iteration
1389 		 * must see ->sighand == NULL.
1390 		 */
1391 		spin_lock_irqsave(&sighand->siglock, *flags);
1392 		if (likely(sighand == rcu_access_pointer(tsk->sighand)))
1393 			break;
1394 		spin_unlock_irqrestore(&sighand->siglock, *flags);
1395 	}
1396 	rcu_read_unlock();
1397 
1398 	return sighand;
1399 }
1400 
1401 /*
1402  * send signal info to all the members of a group
1403  */
group_send_sig_info(int sig,struct kernel_siginfo * info,struct task_struct * p,enum pid_type type)1404 int group_send_sig_info(int sig, struct kernel_siginfo *info,
1405 			struct task_struct *p, enum pid_type type)
1406 {
1407 	int ret;
1408 
1409 	rcu_read_lock();
1410 	ret = check_kill_permission(sig, info, p);
1411 	rcu_read_unlock();
1412 
1413 	if (!ret && sig)
1414 		ret = do_send_sig_info(sig, info, p, type);
1415 
1416 	return ret;
1417 }
1418 
1419 /*
1420  * __kill_pgrp_info() sends a signal to a process group: this is what the tty
1421  * control characters do (^C, ^Z etc)
1422  * - the caller must hold at least a readlock on tasklist_lock
1423  */
__kill_pgrp_info(int sig,struct kernel_siginfo * info,struct pid * pgrp)1424 int __kill_pgrp_info(int sig, struct kernel_siginfo *info, struct pid *pgrp)
1425 {
1426 	struct task_struct *p = NULL;
1427 	int retval, success;
1428 
1429 	success = 0;
1430 	retval = -ESRCH;
1431 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
1432 		int err = group_send_sig_info(sig, info, p, PIDTYPE_PGID);
1433 		success |= !err;
1434 		retval = err;
1435 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
1436 	return success ? 0 : retval;
1437 }
1438 
kill_pid_info(int sig,struct kernel_siginfo * info,struct pid * pid)1439 int kill_pid_info(int sig, struct kernel_siginfo *info, struct pid *pid)
1440 {
1441 	int error = -ESRCH;
1442 	struct task_struct *p;
1443 
1444 	for (;;) {
1445 		rcu_read_lock();
1446 		p = pid_task(pid, PIDTYPE_PID);
1447 		if (p)
1448 			error = group_send_sig_info(sig, info, p, PIDTYPE_TGID);
1449 		rcu_read_unlock();
1450 		if (likely(!p || error != -ESRCH))
1451 			return error;
1452 
1453 		/*
1454 		 * The task was unhashed in between, try again.  If it
1455 		 * is dead, pid_task() will return NULL, if we race with
1456 		 * de_thread() it will find the new leader.
1457 		 */
1458 	}
1459 }
1460 
kill_proc_info(int sig,struct kernel_siginfo * info,pid_t pid)1461 static int kill_proc_info(int sig, struct kernel_siginfo *info, pid_t pid)
1462 {
1463 	int error;
1464 	rcu_read_lock();
1465 	error = kill_pid_info(sig, info, find_vpid(pid));
1466 	rcu_read_unlock();
1467 	return error;
1468 }
1469 
kill_as_cred_perm(const struct cred * cred,struct task_struct * target)1470 static inline bool kill_as_cred_perm(const struct cred *cred,
1471 				     struct task_struct *target)
1472 {
1473 	const struct cred *pcred = __task_cred(target);
1474 
1475 	return uid_eq(cred->euid, pcred->suid) ||
1476 	       uid_eq(cred->euid, pcred->uid) ||
1477 	       uid_eq(cred->uid, pcred->suid) ||
1478 	       uid_eq(cred->uid, pcred->uid);
1479 }
1480 
1481 /*
1482  * The usb asyncio usage of siginfo is wrong.  The glibc support
1483  * for asyncio which uses SI_ASYNCIO assumes the layout is SIL_RT.
1484  * AKA after the generic fields:
1485  *	kernel_pid_t	si_pid;
1486  *	kernel_uid32_t	si_uid;
1487  *	sigval_t	si_value;
1488  *
1489  * Unfortunately when usb generates SI_ASYNCIO it assumes the layout
1490  * after the generic fields is:
1491  *	void __user 	*si_addr;
1492  *
1493  * This is a practical problem when there is a 64bit big endian kernel
1494  * and a 32bit userspace.  As the 32bit address will encoded in the low
1495  * 32bits of the pointer.  Those low 32bits will be stored at higher
1496  * address than appear in a 32 bit pointer.  So userspace will not
1497  * see the address it was expecting for it's completions.
1498  *
1499  * There is nothing in the encoding that can allow
1500  * copy_siginfo_to_user32 to detect this confusion of formats, so
1501  * handle this by requiring the caller of kill_pid_usb_asyncio to
1502  * notice when this situration takes place and to store the 32bit
1503  * pointer in sival_int, instead of sival_addr of the sigval_t addr
1504  * parameter.
1505  */
kill_pid_usb_asyncio(int sig,int errno,sigval_t addr,struct pid * pid,const struct cred * cred)1506 int kill_pid_usb_asyncio(int sig, int errno, sigval_t addr,
1507 			 struct pid *pid, const struct cred *cred)
1508 {
1509 	struct kernel_siginfo info;
1510 	struct task_struct *p;
1511 	unsigned long flags;
1512 	int ret = -EINVAL;
1513 
1514 	if (!valid_signal(sig))
1515 		return ret;
1516 
1517 	clear_siginfo(&info);
1518 	info.si_signo = sig;
1519 	info.si_errno = errno;
1520 	info.si_code = SI_ASYNCIO;
1521 	*((sigval_t *)&info.si_pid) = addr;
1522 
1523 	rcu_read_lock();
1524 	p = pid_task(pid, PIDTYPE_PID);
1525 	if (!p) {
1526 		ret = -ESRCH;
1527 		goto out_unlock;
1528 	}
1529 	if (!kill_as_cred_perm(cred, p)) {
1530 		ret = -EPERM;
1531 		goto out_unlock;
1532 	}
1533 	ret = security_task_kill(p, &info, sig, cred);
1534 	if (ret)
1535 		goto out_unlock;
1536 
1537 	if (sig) {
1538 		if (lock_task_sighand(p, &flags)) {
1539 			ret = __send_signal(sig, &info, p, PIDTYPE_TGID, false);
1540 			unlock_task_sighand(p, &flags);
1541 		} else
1542 			ret = -ESRCH;
1543 	}
1544 out_unlock:
1545 	rcu_read_unlock();
1546 	return ret;
1547 }
1548 EXPORT_SYMBOL_GPL(kill_pid_usb_asyncio);
1549 
1550 /*
1551  * kill_something_info() interprets pid in interesting ways just like kill(2).
1552  *
1553  * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1554  * is probably wrong.  Should make it like BSD or SYSV.
1555  */
1556 
kill_something_info(int sig,struct kernel_siginfo * info,pid_t pid)1557 static int kill_something_info(int sig, struct kernel_siginfo *info, pid_t pid)
1558 {
1559 	int ret;
1560 
1561 	if (pid > 0)
1562 		return kill_proc_info(sig, info, pid);
1563 
1564 	/* -INT_MIN is undefined.  Exclude this case to avoid a UBSAN warning */
1565 	if (pid == INT_MIN)
1566 		return -ESRCH;
1567 
1568 	read_lock(&tasklist_lock);
1569 	if (pid != -1) {
1570 		ret = __kill_pgrp_info(sig, info,
1571 				pid ? find_vpid(-pid) : task_pgrp(current));
1572 	} else {
1573 		int retval = 0, count = 0;
1574 		struct task_struct * p;
1575 
1576 		for_each_process(p) {
1577 			if (task_pid_vnr(p) > 1 &&
1578 					!same_thread_group(p, current)) {
1579 				int err = group_send_sig_info(sig, info, p,
1580 							      PIDTYPE_MAX);
1581 				++count;
1582 				if (err != -EPERM)
1583 					retval = err;
1584 			}
1585 		}
1586 		ret = count ? retval : -ESRCH;
1587 	}
1588 	read_unlock(&tasklist_lock);
1589 
1590 	return ret;
1591 }
1592 
1593 /*
1594  * These are for backward compatibility with the rest of the kernel source.
1595  */
1596 
send_sig_info(int sig,struct kernel_siginfo * info,struct task_struct * p)1597 int send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p)
1598 {
1599 	/*
1600 	 * Make sure legacy kernel users don't send in bad values
1601 	 * (normal paths check this in check_kill_permission).
1602 	 */
1603 	if (!valid_signal(sig))
1604 		return -EINVAL;
1605 
1606 	return do_send_sig_info(sig, info, p, PIDTYPE_PID);
1607 }
1608 EXPORT_SYMBOL(send_sig_info);
1609 
1610 #define __si_special(priv) \
1611 	((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1612 
1613 int
send_sig(int sig,struct task_struct * p,int priv)1614 send_sig(int sig, struct task_struct *p, int priv)
1615 {
1616 	return send_sig_info(sig, __si_special(priv), p);
1617 }
1618 EXPORT_SYMBOL(send_sig);
1619 
force_sig(int sig)1620 void force_sig(int sig)
1621 {
1622 	struct kernel_siginfo info;
1623 
1624 	clear_siginfo(&info);
1625 	info.si_signo = sig;
1626 	info.si_errno = 0;
1627 	info.si_code = SI_KERNEL;
1628 	info.si_pid = 0;
1629 	info.si_uid = 0;
1630 	force_sig_info(&info);
1631 }
1632 EXPORT_SYMBOL(force_sig);
1633 
1634 /*
1635  * When things go south during signal handling, we
1636  * will force a SIGSEGV. And if the signal that caused
1637  * the problem was already a SIGSEGV, we'll want to
1638  * make sure we don't even try to deliver the signal..
1639  */
force_sigsegv(int sig)1640 void force_sigsegv(int sig)
1641 {
1642 	struct task_struct *p = current;
1643 
1644 	if (sig == SIGSEGV) {
1645 		unsigned long flags;
1646 		spin_lock_irqsave(&p->sighand->siglock, flags);
1647 		p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL;
1648 		spin_unlock_irqrestore(&p->sighand->siglock, flags);
1649 	}
1650 	force_sig(SIGSEGV);
1651 }
1652 
force_sig_fault_to_task(int sig,int code,void __user * addr ___ARCH_SI_TRAPNO (int trapno)___ARCH_SI_IA64 (int imm,unsigned int flags,unsigned long isr),struct task_struct * t)1653 int force_sig_fault_to_task(int sig, int code, void __user *addr
1654 	___ARCH_SI_TRAPNO(int trapno)
1655 	___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr)
1656 	, struct task_struct *t)
1657 {
1658 	struct kernel_siginfo info;
1659 
1660 	clear_siginfo(&info);
1661 	info.si_signo = sig;
1662 	info.si_errno = 0;
1663 	info.si_code  = code;
1664 	info.si_addr  = addr;
1665 #ifdef __ARCH_SI_TRAPNO
1666 	info.si_trapno = trapno;
1667 #endif
1668 #ifdef __ia64__
1669 	info.si_imm = imm;
1670 	info.si_flags = flags;
1671 	info.si_isr = isr;
1672 #endif
1673 	return force_sig_info_to_task(&info, t);
1674 }
1675 
force_sig_fault(int sig,int code,void __user * addr ___ARCH_SI_TRAPNO (int trapno)___ARCH_SI_IA64 (int imm,unsigned int flags,unsigned long isr))1676 int force_sig_fault(int sig, int code, void __user *addr
1677 	___ARCH_SI_TRAPNO(int trapno)
1678 	___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr))
1679 {
1680 	return force_sig_fault_to_task(sig, code, addr
1681 				       ___ARCH_SI_TRAPNO(trapno)
1682 				       ___ARCH_SI_IA64(imm, flags, isr), current);
1683 }
1684 
send_sig_fault(int sig,int code,void __user * addr ___ARCH_SI_TRAPNO (int trapno)___ARCH_SI_IA64 (int imm,unsigned int flags,unsigned long isr),struct task_struct * t)1685 int send_sig_fault(int sig, int code, void __user *addr
1686 	___ARCH_SI_TRAPNO(int trapno)
1687 	___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr)
1688 	, struct task_struct *t)
1689 {
1690 	struct kernel_siginfo info;
1691 
1692 	clear_siginfo(&info);
1693 	info.si_signo = sig;
1694 	info.si_errno = 0;
1695 	info.si_code  = code;
1696 	info.si_addr  = addr;
1697 #ifdef __ARCH_SI_TRAPNO
1698 	info.si_trapno = trapno;
1699 #endif
1700 #ifdef __ia64__
1701 	info.si_imm = imm;
1702 	info.si_flags = flags;
1703 	info.si_isr = isr;
1704 #endif
1705 	return send_sig_info(info.si_signo, &info, t);
1706 }
1707 
force_sig_mceerr(int code,void __user * addr,short lsb)1708 int force_sig_mceerr(int code, void __user *addr, short lsb)
1709 {
1710 	struct kernel_siginfo info;
1711 
1712 	WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR));
1713 	clear_siginfo(&info);
1714 	info.si_signo = SIGBUS;
1715 	info.si_errno = 0;
1716 	info.si_code = code;
1717 	info.si_addr = addr;
1718 	info.si_addr_lsb = lsb;
1719 	return force_sig_info(&info);
1720 }
1721 
send_sig_mceerr(int code,void __user * addr,short lsb,struct task_struct * t)1722 int send_sig_mceerr(int code, void __user *addr, short lsb, struct task_struct *t)
1723 {
1724 	struct kernel_siginfo info;
1725 
1726 	WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR));
1727 	clear_siginfo(&info);
1728 	info.si_signo = SIGBUS;
1729 	info.si_errno = 0;
1730 	info.si_code = code;
1731 	info.si_addr = addr;
1732 	info.si_addr_lsb = lsb;
1733 	return send_sig_info(info.si_signo, &info, t);
1734 }
1735 EXPORT_SYMBOL(send_sig_mceerr);
1736 
force_sig_bnderr(void __user * addr,void __user * lower,void __user * upper)1737 int force_sig_bnderr(void __user *addr, void __user *lower, void __user *upper)
1738 {
1739 	struct kernel_siginfo info;
1740 
1741 	clear_siginfo(&info);
1742 	info.si_signo = SIGSEGV;
1743 	info.si_errno = 0;
1744 	info.si_code  = SEGV_BNDERR;
1745 	info.si_addr  = addr;
1746 	info.si_lower = lower;
1747 	info.si_upper = upper;
1748 	return force_sig_info(&info);
1749 }
1750 
1751 #ifdef SEGV_PKUERR
force_sig_pkuerr(void __user * addr,u32 pkey)1752 int force_sig_pkuerr(void __user *addr, u32 pkey)
1753 {
1754 	struct kernel_siginfo info;
1755 
1756 	clear_siginfo(&info);
1757 	info.si_signo = SIGSEGV;
1758 	info.si_errno = 0;
1759 	info.si_code  = SEGV_PKUERR;
1760 	info.si_addr  = addr;
1761 	info.si_pkey  = pkey;
1762 	return force_sig_info(&info);
1763 }
1764 #endif
1765 
1766 /* For the crazy architectures that include trap information in
1767  * the errno field, instead of an actual errno value.
1768  */
force_sig_ptrace_errno_trap(int errno,void __user * addr)1769 int force_sig_ptrace_errno_trap(int errno, void __user *addr)
1770 {
1771 	struct kernel_siginfo info;
1772 
1773 	clear_siginfo(&info);
1774 	info.si_signo = SIGTRAP;
1775 	info.si_errno = errno;
1776 	info.si_code  = TRAP_HWBKPT;
1777 	info.si_addr  = addr;
1778 	return force_sig_info(&info);
1779 }
1780 
kill_pgrp(struct pid * pid,int sig,int priv)1781 int kill_pgrp(struct pid *pid, int sig, int priv)
1782 {
1783 	int ret;
1784 
1785 	read_lock(&tasklist_lock);
1786 	ret = __kill_pgrp_info(sig, __si_special(priv), pid);
1787 	read_unlock(&tasklist_lock);
1788 
1789 	return ret;
1790 }
1791 EXPORT_SYMBOL(kill_pgrp);
1792 
kill_pid(struct pid * pid,int sig,int priv)1793 int kill_pid(struct pid *pid, int sig, int priv)
1794 {
1795 	return kill_pid_info(sig, __si_special(priv), pid);
1796 }
1797 EXPORT_SYMBOL(kill_pid);
1798 
1799 /*
1800  * These functions support sending signals using preallocated sigqueue
1801  * structures.  This is needed "because realtime applications cannot
1802  * afford to lose notifications of asynchronous events, like timer
1803  * expirations or I/O completions".  In the case of POSIX Timers
1804  * we allocate the sigqueue structure from the timer_create.  If this
1805  * allocation fails we are able to report the failure to the application
1806  * with an EAGAIN error.
1807  */
sigqueue_alloc(void)1808 struct sigqueue *sigqueue_alloc(void)
1809 {
1810 	struct sigqueue *q = __sigqueue_alloc(-1, current, GFP_KERNEL, 0);
1811 
1812 	if (q)
1813 		q->flags |= SIGQUEUE_PREALLOC;
1814 
1815 	return q;
1816 }
1817 
sigqueue_free(struct sigqueue * q)1818 void sigqueue_free(struct sigqueue *q)
1819 {
1820 	unsigned long flags;
1821 	spinlock_t *lock = &current->sighand->siglock;
1822 
1823 	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1824 	/*
1825 	 * We must hold ->siglock while testing q->list
1826 	 * to serialize with collect_signal() or with
1827 	 * __exit_signal()->flush_sigqueue().
1828 	 */
1829 	spin_lock_irqsave(lock, flags);
1830 	q->flags &= ~SIGQUEUE_PREALLOC;
1831 	/*
1832 	 * If it is queued it will be freed when dequeued,
1833 	 * like the "regular" sigqueue.
1834 	 */
1835 	if (!list_empty(&q->list))
1836 		q = NULL;
1837 	spin_unlock_irqrestore(lock, flags);
1838 
1839 	if (q)
1840 		__sigqueue_free(q);
1841 }
1842 
send_sigqueue(struct sigqueue * q,struct pid * pid,enum pid_type type)1843 int send_sigqueue(struct sigqueue *q, struct pid *pid, enum pid_type type)
1844 {
1845 	int sig = q->info.si_signo;
1846 	struct sigpending *pending;
1847 	struct task_struct *t;
1848 	unsigned long flags;
1849 	int ret, result;
1850 
1851 	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1852 
1853 	ret = -1;
1854 	rcu_read_lock();
1855 	t = pid_task(pid, type);
1856 	if (!t || !likely(lock_task_sighand(t, &flags)))
1857 		goto ret;
1858 
1859 	ret = 1; /* the signal is ignored */
1860 	result = TRACE_SIGNAL_IGNORED;
1861 	if (!prepare_signal(sig, t, false))
1862 		goto out;
1863 
1864 	ret = 0;
1865 	if (unlikely(!list_empty(&q->list))) {
1866 		/*
1867 		 * If an SI_TIMER entry is already queue just increment
1868 		 * the overrun count.
1869 		 */
1870 		BUG_ON(q->info.si_code != SI_TIMER);
1871 		q->info.si_overrun++;
1872 		result = TRACE_SIGNAL_ALREADY_PENDING;
1873 		goto out;
1874 	}
1875 	q->info.si_overrun = 0;
1876 
1877 	signalfd_notify(t, sig);
1878 	pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending;
1879 	list_add_tail(&q->list, &pending->list);
1880 	sigaddset(&pending->signal, sig);
1881 	complete_signal(sig, t, type);
1882 	result = TRACE_SIGNAL_DELIVERED;
1883 out:
1884 	trace_signal_generate(sig, &q->info, t, type != PIDTYPE_PID, result);
1885 	unlock_task_sighand(t, &flags);
1886 ret:
1887 	rcu_read_unlock();
1888 	return ret;
1889 }
1890 
do_notify_pidfd(struct task_struct * task)1891 static void do_notify_pidfd(struct task_struct *task)
1892 {
1893 	struct pid *pid;
1894 
1895 	WARN_ON(task->exit_state == 0);
1896 	pid = task_pid(task);
1897 	wake_up_all(&pid->wait_pidfd);
1898 }
1899 
1900 /*
1901  * Let a parent know about the death of a child.
1902  * For a stopped/continued status change, use do_notify_parent_cldstop instead.
1903  *
1904  * Returns true if our parent ignored us and so we've switched to
1905  * self-reaping.
1906  */
do_notify_parent(struct task_struct * tsk,int sig)1907 bool do_notify_parent(struct task_struct *tsk, int sig)
1908 {
1909 	struct kernel_siginfo info;
1910 	unsigned long flags;
1911 	struct sighand_struct *psig;
1912 	bool autoreap = false;
1913 	u64 utime, stime;
1914 
1915 	BUG_ON(sig == -1);
1916 
1917  	/* do_notify_parent_cldstop should have been called instead.  */
1918  	BUG_ON(task_is_stopped_or_traced(tsk));
1919 
1920 	BUG_ON(!tsk->ptrace &&
1921 	       (tsk->group_leader != tsk || !thread_group_empty(tsk)));
1922 
1923 	/* Wake up all pidfd waiters */
1924 	do_notify_pidfd(tsk);
1925 
1926 	if (sig != SIGCHLD) {
1927 		/*
1928 		 * This is only possible if parent == real_parent.
1929 		 * Check if it has changed security domain.
1930 		 */
1931 		if (tsk->parent_exec_id != READ_ONCE(tsk->parent->self_exec_id))
1932 			sig = SIGCHLD;
1933 	}
1934 
1935 	clear_siginfo(&info);
1936 	info.si_signo = sig;
1937 	info.si_errno = 0;
1938 	/*
1939 	 * We are under tasklist_lock here so our parent is tied to
1940 	 * us and cannot change.
1941 	 *
1942 	 * task_active_pid_ns will always return the same pid namespace
1943 	 * until a task passes through release_task.
1944 	 *
1945 	 * write_lock() currently calls preempt_disable() which is the
1946 	 * same as rcu_read_lock(), but according to Oleg, this is not
1947 	 * correct to rely on this
1948 	 */
1949 	rcu_read_lock();
1950 	info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(tsk->parent));
1951 	info.si_uid = from_kuid_munged(task_cred_xxx(tsk->parent, user_ns),
1952 				       task_uid(tsk));
1953 	rcu_read_unlock();
1954 
1955 	task_cputime(tsk, &utime, &stime);
1956 	info.si_utime = nsec_to_clock_t(utime + tsk->signal->utime);
1957 	info.si_stime = nsec_to_clock_t(stime + tsk->signal->stime);
1958 
1959 	info.si_status = tsk->exit_code & 0x7f;
1960 	if (tsk->exit_code & 0x80)
1961 		info.si_code = CLD_DUMPED;
1962 	else if (tsk->exit_code & 0x7f)
1963 		info.si_code = CLD_KILLED;
1964 	else {
1965 		info.si_code = CLD_EXITED;
1966 		info.si_status = tsk->exit_code >> 8;
1967 	}
1968 
1969 	psig = tsk->parent->sighand;
1970 	spin_lock_irqsave(&psig->siglock, flags);
1971 	if (!tsk->ptrace && sig == SIGCHLD &&
1972 	    (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
1973 	     (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
1974 		/*
1975 		 * We are exiting and our parent doesn't care.  POSIX.1
1976 		 * defines special semantics for setting SIGCHLD to SIG_IGN
1977 		 * or setting the SA_NOCLDWAIT flag: we should be reaped
1978 		 * automatically and not left for our parent's wait4 call.
1979 		 * Rather than having the parent do it as a magic kind of
1980 		 * signal handler, we just set this to tell do_exit that we
1981 		 * can be cleaned up without becoming a zombie.  Note that
1982 		 * we still call __wake_up_parent in this case, because a
1983 		 * blocked sys_wait4 might now return -ECHILD.
1984 		 *
1985 		 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
1986 		 * is implementation-defined: we do (if you don't want
1987 		 * it, just use SIG_IGN instead).
1988 		 */
1989 		autoreap = true;
1990 		if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
1991 			sig = 0;
1992 	}
1993 	/*
1994 	 * Send with __send_signal as si_pid and si_uid are in the
1995 	 * parent's namespaces.
1996 	 */
1997 	if (valid_signal(sig) && sig)
1998 		__send_signal(sig, &info, tsk->parent, PIDTYPE_TGID, false);
1999 	__wake_up_parent(tsk, tsk->parent);
2000 	spin_unlock_irqrestore(&psig->siglock, flags);
2001 
2002 	return autoreap;
2003 }
2004 
2005 /**
2006  * do_notify_parent_cldstop - notify parent of stopped/continued state change
2007  * @tsk: task reporting the state change
2008  * @for_ptracer: the notification is for ptracer
2009  * @why: CLD_{CONTINUED|STOPPED|TRAPPED} to report
2010  *
2011  * Notify @tsk's parent that the stopped/continued state has changed.  If
2012  * @for_ptracer is %false, @tsk's group leader notifies to its real parent.
2013  * If %true, @tsk reports to @tsk->parent which should be the ptracer.
2014  *
2015  * CONTEXT:
2016  * Must be called with tasklist_lock at least read locked.
2017  */
do_notify_parent_cldstop(struct task_struct * tsk,bool for_ptracer,int why)2018 static void do_notify_parent_cldstop(struct task_struct *tsk,
2019 				     bool for_ptracer, int why)
2020 {
2021 	struct kernel_siginfo info;
2022 	unsigned long flags;
2023 	struct task_struct *parent;
2024 	struct sighand_struct *sighand;
2025 	u64 utime, stime;
2026 
2027 	if (for_ptracer) {
2028 		parent = tsk->parent;
2029 	} else {
2030 		tsk = tsk->group_leader;
2031 		parent = tsk->real_parent;
2032 	}
2033 
2034 	clear_siginfo(&info);
2035 	info.si_signo = SIGCHLD;
2036 	info.si_errno = 0;
2037 	/*
2038 	 * see comment in do_notify_parent() about the following 4 lines
2039 	 */
2040 	rcu_read_lock();
2041 	info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(parent));
2042 	info.si_uid = from_kuid_munged(task_cred_xxx(parent, user_ns), task_uid(tsk));
2043 	rcu_read_unlock();
2044 
2045 	task_cputime(tsk, &utime, &stime);
2046 	info.si_utime = nsec_to_clock_t(utime);
2047 	info.si_stime = nsec_to_clock_t(stime);
2048 
2049  	info.si_code = why;
2050  	switch (why) {
2051  	case CLD_CONTINUED:
2052  		info.si_status = SIGCONT;
2053  		break;
2054  	case CLD_STOPPED:
2055  		info.si_status = tsk->signal->group_exit_code & 0x7f;
2056  		break;
2057  	case CLD_TRAPPED:
2058  		info.si_status = tsk->exit_code & 0x7f;
2059  		break;
2060  	default:
2061  		BUG();
2062  	}
2063 
2064 	sighand = parent->sighand;
2065 	spin_lock_irqsave(&sighand->siglock, flags);
2066 	if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
2067 	    !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
2068 		__group_send_sig_info(SIGCHLD, &info, parent);
2069 	/*
2070 	 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
2071 	 */
2072 	__wake_up_parent(tsk, parent);
2073 	spin_unlock_irqrestore(&sighand->siglock, flags);
2074 }
2075 
may_ptrace_stop(void)2076 static inline bool may_ptrace_stop(void)
2077 {
2078 	if (!likely(current->ptrace))
2079 		return false;
2080 	/*
2081 	 * Are we in the middle of do_coredump?
2082 	 * If so and our tracer is also part of the coredump stopping
2083 	 * is a deadlock situation, and pointless because our tracer
2084 	 * is dead so don't allow us to stop.
2085 	 * If SIGKILL was already sent before the caller unlocked
2086 	 * ->siglock we must see ->core_state != NULL. Otherwise it
2087 	 * is safe to enter schedule().
2088 	 *
2089 	 * This is almost outdated, a task with the pending SIGKILL can't
2090 	 * block in TASK_TRACED. But PTRACE_EVENT_EXIT can be reported
2091 	 * after SIGKILL was already dequeued.
2092 	 */
2093 	if (unlikely(current->mm->core_state) &&
2094 	    unlikely(current->mm == current->parent->mm))
2095 		return false;
2096 
2097 	return true;
2098 }
2099 
2100 
2101 /*
2102  * This must be called with current->sighand->siglock held.
2103  *
2104  * This should be the path for all ptrace stops.
2105  * We always set current->last_siginfo while stopped here.
2106  * That makes it a way to test a stopped process for
2107  * being ptrace-stopped vs being job-control-stopped.
2108  *
2109  * If we actually decide not to stop at all because the tracer
2110  * is gone, we keep current->exit_code unless clear_code.
2111  */
ptrace_stop(int exit_code,int why,int clear_code,kernel_siginfo_t * info)2112 static void ptrace_stop(int exit_code, int why, int clear_code, kernel_siginfo_t *info)
2113 	__releases(&current->sighand->siglock)
2114 	__acquires(&current->sighand->siglock)
2115 {
2116 	bool gstop_done = false;
2117 
2118 	if (arch_ptrace_stop_needed(exit_code, info)) {
2119 		/*
2120 		 * The arch code has something special to do before a
2121 		 * ptrace stop.  This is allowed to block, e.g. for faults
2122 		 * on user stack pages.  We can't keep the siglock while
2123 		 * calling arch_ptrace_stop, so we must release it now.
2124 		 * To preserve proper semantics, we must do this before
2125 		 * any signal bookkeeping like checking group_stop_count.
2126 		 */
2127 		spin_unlock_irq(&current->sighand->siglock);
2128 		arch_ptrace_stop(exit_code, info);
2129 		spin_lock_irq(&current->sighand->siglock);
2130 	}
2131 
2132 	/*
2133 	 * schedule() will not sleep if there is a pending signal that
2134 	 * can awaken the task.
2135 	 */
2136 	set_special_state(TASK_TRACED);
2137 
2138 	/*
2139 	 * We're committing to trapping.  TRACED should be visible before
2140 	 * TRAPPING is cleared; otherwise, the tracer might fail do_wait().
2141 	 * Also, transition to TRACED and updates to ->jobctl should be
2142 	 * atomic with respect to siglock and should be done after the arch
2143 	 * hook as siglock is released and regrabbed across it.
2144 	 *
2145 	 *     TRACER				    TRACEE
2146 	 *
2147 	 *     ptrace_attach()
2148 	 * [L]   wait_on_bit(JOBCTL_TRAPPING)	[S] set_special_state(TRACED)
2149 	 *     do_wait()
2150 	 *       set_current_state()                smp_wmb();
2151 	 *       ptrace_do_wait()
2152 	 *         wait_task_stopped()
2153 	 *           task_stopped_code()
2154 	 * [L]         task_is_traced()		[S] task_clear_jobctl_trapping();
2155 	 */
2156 	smp_wmb();
2157 
2158 	current->last_siginfo = info;
2159 	current->exit_code = exit_code;
2160 
2161 	/*
2162 	 * If @why is CLD_STOPPED, we're trapping to participate in a group
2163 	 * stop.  Do the bookkeeping.  Note that if SIGCONT was delievered
2164 	 * across siglock relocks since INTERRUPT was scheduled, PENDING
2165 	 * could be clear now.  We act as if SIGCONT is received after
2166 	 * TASK_TRACED is entered - ignore it.
2167 	 */
2168 	if (why == CLD_STOPPED && (current->jobctl & JOBCTL_STOP_PENDING))
2169 		gstop_done = task_participate_group_stop(current);
2170 
2171 	/* any trap clears pending STOP trap, STOP trap clears NOTIFY */
2172 	task_clear_jobctl_pending(current, JOBCTL_TRAP_STOP);
2173 	if (info && info->si_code >> 8 == PTRACE_EVENT_STOP)
2174 		task_clear_jobctl_pending(current, JOBCTL_TRAP_NOTIFY);
2175 
2176 	/* entering a trap, clear TRAPPING */
2177 	task_clear_jobctl_trapping(current);
2178 
2179 	spin_unlock_irq(&current->sighand->siglock);
2180 	read_lock(&tasklist_lock);
2181 	if (may_ptrace_stop()) {
2182 		/*
2183 		 * Notify parents of the stop.
2184 		 *
2185 		 * While ptraced, there are two parents - the ptracer and
2186 		 * the real_parent of the group_leader.  The ptracer should
2187 		 * know about every stop while the real parent is only
2188 		 * interested in the completion of group stop.  The states
2189 		 * for the two don't interact with each other.  Notify
2190 		 * separately unless they're gonna be duplicates.
2191 		 */
2192 		do_notify_parent_cldstop(current, true, why);
2193 		if (gstop_done && ptrace_reparented(current))
2194 			do_notify_parent_cldstop(current, false, why);
2195 
2196 		/*
2197 		 * Don't want to allow preemption here, because
2198 		 * sys_ptrace() needs this task to be inactive.
2199 		 *
2200 		 * XXX: implement read_unlock_no_resched().
2201 		 */
2202 		preempt_disable();
2203 		read_unlock(&tasklist_lock);
2204 		cgroup_enter_frozen();
2205 		preempt_enable_no_resched();
2206 		freezable_schedule();
2207 		cgroup_leave_frozen(true);
2208 	} else {
2209 		/*
2210 		 * By the time we got the lock, our tracer went away.
2211 		 * Don't drop the lock yet, another tracer may come.
2212 		 *
2213 		 * If @gstop_done, the ptracer went away between group stop
2214 		 * completion and here.  During detach, it would have set
2215 		 * JOBCTL_STOP_PENDING on us and we'll re-enter
2216 		 * TASK_STOPPED in do_signal_stop() on return, so notifying
2217 		 * the real parent of the group stop completion is enough.
2218 		 */
2219 		if (gstop_done)
2220 			do_notify_parent_cldstop(current, false, why);
2221 
2222 		/* tasklist protects us from ptrace_freeze_traced() */
2223 		__set_current_state(TASK_RUNNING);
2224 		if (clear_code)
2225 			current->exit_code = 0;
2226 		read_unlock(&tasklist_lock);
2227 	}
2228 
2229 	/*
2230 	 * We are back.  Now reacquire the siglock before touching
2231 	 * last_siginfo, so that we are sure to have synchronized with
2232 	 * any signal-sending on another CPU that wants to examine it.
2233 	 */
2234 	spin_lock_irq(&current->sighand->siglock);
2235 	current->last_siginfo = NULL;
2236 
2237 	/* LISTENING can be set only during STOP traps, clear it */
2238 	current->jobctl &= ~JOBCTL_LISTENING;
2239 
2240 	/*
2241 	 * Queued signals ignored us while we were stopped for tracing.
2242 	 * So check for any that we should take before resuming user mode.
2243 	 * This sets TIF_SIGPENDING, but never clears it.
2244 	 */
2245 	recalc_sigpending_tsk(current);
2246 }
2247 
ptrace_do_notify(int signr,int exit_code,int why)2248 static void ptrace_do_notify(int signr, int exit_code, int why)
2249 {
2250 	kernel_siginfo_t info;
2251 
2252 	clear_siginfo(&info);
2253 	info.si_signo = signr;
2254 	info.si_code = exit_code;
2255 	info.si_pid = task_pid_vnr(current);
2256 	info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
2257 
2258 	/* Let the debugger run.  */
2259 	ptrace_stop(exit_code, why, 1, &info);
2260 }
2261 
ptrace_notify(int exit_code)2262 void ptrace_notify(int exit_code)
2263 {
2264 	BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
2265 	if (unlikely(current->task_works))
2266 		task_work_run();
2267 
2268 	spin_lock_irq(&current->sighand->siglock);
2269 	ptrace_do_notify(SIGTRAP, exit_code, CLD_TRAPPED);
2270 	spin_unlock_irq(&current->sighand->siglock);
2271 }
2272 
2273 /**
2274  * do_signal_stop - handle group stop for SIGSTOP and other stop signals
2275  * @signr: signr causing group stop if initiating
2276  *
2277  * If %JOBCTL_STOP_PENDING is not set yet, initiate group stop with @signr
2278  * and participate in it.  If already set, participate in the existing
2279  * group stop.  If participated in a group stop (and thus slept), %true is
2280  * returned with siglock released.
2281  *
2282  * If ptraced, this function doesn't handle stop itself.  Instead,
2283  * %JOBCTL_TRAP_STOP is scheduled and %false is returned with siglock
2284  * untouched.  The caller must ensure that INTERRUPT trap handling takes
2285  * places afterwards.
2286  *
2287  * CONTEXT:
2288  * Must be called with @current->sighand->siglock held, which is released
2289  * on %true return.
2290  *
2291  * RETURNS:
2292  * %false if group stop is already cancelled or ptrace trap is scheduled.
2293  * %true if participated in group stop.
2294  */
do_signal_stop(int signr)2295 static bool do_signal_stop(int signr)
2296 	__releases(&current->sighand->siglock)
2297 {
2298 	struct signal_struct *sig = current->signal;
2299 
2300 	if (!(current->jobctl & JOBCTL_STOP_PENDING)) {
2301 		unsigned long gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME;
2302 		struct task_struct *t;
2303 
2304 		/* signr will be recorded in task->jobctl for retries */
2305 		WARN_ON_ONCE(signr & ~JOBCTL_STOP_SIGMASK);
2306 
2307 		if (!likely(current->jobctl & JOBCTL_STOP_DEQUEUED) ||
2308 		    unlikely(signal_group_exit(sig)))
2309 			return false;
2310 		/*
2311 		 * There is no group stop already in progress.  We must
2312 		 * initiate one now.
2313 		 *
2314 		 * While ptraced, a task may be resumed while group stop is
2315 		 * still in effect and then receive a stop signal and
2316 		 * initiate another group stop.  This deviates from the
2317 		 * usual behavior as two consecutive stop signals can't
2318 		 * cause two group stops when !ptraced.  That is why we
2319 		 * also check !task_is_stopped(t) below.
2320 		 *
2321 		 * The condition can be distinguished by testing whether
2322 		 * SIGNAL_STOP_STOPPED is already set.  Don't generate
2323 		 * group_exit_code in such case.
2324 		 *
2325 		 * This is not necessary for SIGNAL_STOP_CONTINUED because
2326 		 * an intervening stop signal is required to cause two
2327 		 * continued events regardless of ptrace.
2328 		 */
2329 		if (!(sig->flags & SIGNAL_STOP_STOPPED))
2330 			sig->group_exit_code = signr;
2331 
2332 		sig->group_stop_count = 0;
2333 
2334 		if (task_set_jobctl_pending(current, signr | gstop))
2335 			sig->group_stop_count++;
2336 
2337 		t = current;
2338 		while_each_thread(current, t) {
2339 			/*
2340 			 * Setting state to TASK_STOPPED for a group
2341 			 * stop is always done with the siglock held,
2342 			 * so this check has no races.
2343 			 */
2344 			if (!task_is_stopped(t) &&
2345 			    task_set_jobctl_pending(t, signr | gstop)) {
2346 				sig->group_stop_count++;
2347 				if (likely(!(t->ptrace & PT_SEIZED)))
2348 					signal_wake_up(t, 0);
2349 				else
2350 					ptrace_trap_notify(t);
2351 			}
2352 		}
2353 	}
2354 
2355 	if (likely(!current->ptrace)) {
2356 		int notify = 0;
2357 
2358 		/*
2359 		 * If there are no other threads in the group, or if there
2360 		 * is a group stop in progress and we are the last to stop,
2361 		 * report to the parent.
2362 		 */
2363 		if (task_participate_group_stop(current))
2364 			notify = CLD_STOPPED;
2365 
2366 		set_special_state(TASK_STOPPED);
2367 		spin_unlock_irq(&current->sighand->siglock);
2368 
2369 		/*
2370 		 * Notify the parent of the group stop completion.  Because
2371 		 * we're not holding either the siglock or tasklist_lock
2372 		 * here, ptracer may attach inbetween; however, this is for
2373 		 * group stop and should always be delivered to the real
2374 		 * parent of the group leader.  The new ptracer will get
2375 		 * its notification when this task transitions into
2376 		 * TASK_TRACED.
2377 		 */
2378 		if (notify) {
2379 			read_lock(&tasklist_lock);
2380 			do_notify_parent_cldstop(current, false, notify);
2381 			read_unlock(&tasklist_lock);
2382 		}
2383 
2384 		/* Now we don't run again until woken by SIGCONT or SIGKILL */
2385 		cgroup_enter_frozen();
2386 		freezable_schedule();
2387 		return true;
2388 	} else {
2389 		/*
2390 		 * While ptraced, group stop is handled by STOP trap.
2391 		 * Schedule it and let the caller deal with it.
2392 		 */
2393 		task_set_jobctl_pending(current, JOBCTL_TRAP_STOP);
2394 		return false;
2395 	}
2396 }
2397 
2398 /**
2399  * do_jobctl_trap - take care of ptrace jobctl traps
2400  *
2401  * When PT_SEIZED, it's used for both group stop and explicit
2402  * SEIZE/INTERRUPT traps.  Both generate PTRACE_EVENT_STOP trap with
2403  * accompanying siginfo.  If stopped, lower eight bits of exit_code contain
2404  * the stop signal; otherwise, %SIGTRAP.
2405  *
2406  * When !PT_SEIZED, it's used only for group stop trap with stop signal
2407  * number as exit_code and no siginfo.
2408  *
2409  * CONTEXT:
2410  * Must be called with @current->sighand->siglock held, which may be
2411  * released and re-acquired before returning with intervening sleep.
2412  */
do_jobctl_trap(void)2413 static void do_jobctl_trap(void)
2414 {
2415 	struct signal_struct *signal = current->signal;
2416 	int signr = current->jobctl & JOBCTL_STOP_SIGMASK;
2417 
2418 	if (current->ptrace & PT_SEIZED) {
2419 		if (!signal->group_stop_count &&
2420 		    !(signal->flags & SIGNAL_STOP_STOPPED))
2421 			signr = SIGTRAP;
2422 		WARN_ON_ONCE(!signr);
2423 		ptrace_do_notify(signr, signr | (PTRACE_EVENT_STOP << 8),
2424 				 CLD_STOPPED);
2425 	} else {
2426 		WARN_ON_ONCE(!signr);
2427 		ptrace_stop(signr, CLD_STOPPED, 0, NULL);
2428 		current->exit_code = 0;
2429 	}
2430 }
2431 
2432 /**
2433  * do_freezer_trap - handle the freezer jobctl trap
2434  *
2435  * Puts the task into frozen state, if only the task is not about to quit.
2436  * In this case it drops JOBCTL_TRAP_FREEZE.
2437  *
2438  * CONTEXT:
2439  * Must be called with @current->sighand->siglock held,
2440  * which is always released before returning.
2441  */
do_freezer_trap(void)2442 static void do_freezer_trap(void)
2443 	__releases(&current->sighand->siglock)
2444 {
2445 	/*
2446 	 * If there are other trap bits pending except JOBCTL_TRAP_FREEZE,
2447 	 * let's make another loop to give it a chance to be handled.
2448 	 * In any case, we'll return back.
2449 	 */
2450 	if ((current->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) !=
2451 	     JOBCTL_TRAP_FREEZE) {
2452 		spin_unlock_irq(&current->sighand->siglock);
2453 		return;
2454 	}
2455 
2456 	/*
2457 	 * Now we're sure that there is no pending fatal signal and no
2458 	 * pending traps. Clear TIF_SIGPENDING to not get out of schedule()
2459 	 * immediately (if there is a non-fatal signal pending), and
2460 	 * put the task into sleep.
2461 	 */
2462 	__set_current_state(TASK_INTERRUPTIBLE);
2463 	clear_thread_flag(TIF_SIGPENDING);
2464 	spin_unlock_irq(&current->sighand->siglock);
2465 	cgroup_enter_frozen();
2466 	freezable_schedule();
2467 }
2468 
ptrace_signal(int signr,kernel_siginfo_t * info)2469 static int ptrace_signal(int signr, kernel_siginfo_t *info)
2470 {
2471 	/*
2472 	 * We do not check sig_kernel_stop(signr) but set this marker
2473 	 * unconditionally because we do not know whether debugger will
2474 	 * change signr. This flag has no meaning unless we are going
2475 	 * to stop after return from ptrace_stop(). In this case it will
2476 	 * be checked in do_signal_stop(), we should only stop if it was
2477 	 * not cleared by SIGCONT while we were sleeping. See also the
2478 	 * comment in dequeue_signal().
2479 	 */
2480 	current->jobctl |= JOBCTL_STOP_DEQUEUED;
2481 	ptrace_stop(signr, CLD_TRAPPED, 0, info);
2482 
2483 	/* We're back.  Did the debugger cancel the sig?  */
2484 	signr = current->exit_code;
2485 	if (signr == 0)
2486 		return signr;
2487 
2488 	current->exit_code = 0;
2489 
2490 	/*
2491 	 * Update the siginfo structure if the signal has
2492 	 * changed.  If the debugger wanted something
2493 	 * specific in the siginfo structure then it should
2494 	 * have updated *info via PTRACE_SETSIGINFO.
2495 	 */
2496 	if (signr != info->si_signo) {
2497 		clear_siginfo(info);
2498 		info->si_signo = signr;
2499 		info->si_errno = 0;
2500 		info->si_code = SI_USER;
2501 		rcu_read_lock();
2502 		info->si_pid = task_pid_vnr(current->parent);
2503 		info->si_uid = from_kuid_munged(current_user_ns(),
2504 						task_uid(current->parent));
2505 		rcu_read_unlock();
2506 	}
2507 
2508 	/* If the (new) signal is now blocked, requeue it.  */
2509 	if (sigismember(&current->blocked, signr)) {
2510 		send_signal(signr, info, current, PIDTYPE_PID);
2511 		signr = 0;
2512 	}
2513 
2514 	return signr;
2515 }
2516 
get_signal(struct ksignal * ksig)2517 bool get_signal(struct ksignal *ksig)
2518 {
2519 	struct sighand_struct *sighand = current->sighand;
2520 	struct signal_struct *signal = current->signal;
2521 	int signr;
2522 
2523 	if (unlikely(uprobe_deny_signal()))
2524 		return false;
2525 
2526 	/*
2527 	 * Do this once, we can't return to user-mode if freezing() == T.
2528 	 * do_signal_stop() and ptrace_stop() do freezable_schedule() and
2529 	 * thus do not need another check after return.
2530 	 */
2531 	try_to_freeze();
2532 
2533 relock:
2534 	spin_lock_irq(&sighand->siglock);
2535 	/*
2536 	 * Make sure we can safely read ->jobctl() in task_work add. As Oleg
2537 	 * states:
2538 	 *
2539 	 * It pairs with mb (implied by cmpxchg) before READ_ONCE. So we
2540 	 * roughly have
2541 	 *
2542 	 *	task_work_add:				get_signal:
2543 	 *	STORE(task->task_works, new_work);	STORE(task->jobctl);
2544 	 *	mb();					mb();
2545 	 *	LOAD(task->jobctl);			LOAD(task->task_works);
2546 	 *
2547 	 * and we can rely on STORE-MB-LOAD [ in task_work_add].
2548 	 */
2549 	smp_store_mb(current->jobctl, current->jobctl & ~JOBCTL_TASK_WORK);
2550 	if (unlikely(current->task_works)) {
2551 		spin_unlock_irq(&sighand->siglock);
2552 		task_work_run();
2553 		goto relock;
2554 	}
2555 
2556 	/*
2557 	 * Every stopped thread goes here after wakeup. Check to see if
2558 	 * we should notify the parent, prepare_signal(SIGCONT) encodes
2559 	 * the CLD_ si_code into SIGNAL_CLD_MASK bits.
2560 	 */
2561 	if (unlikely(signal->flags & SIGNAL_CLD_MASK)) {
2562 		int why;
2563 
2564 		if (signal->flags & SIGNAL_CLD_CONTINUED)
2565 			why = CLD_CONTINUED;
2566 		else
2567 			why = CLD_STOPPED;
2568 
2569 		signal->flags &= ~SIGNAL_CLD_MASK;
2570 
2571 		spin_unlock_irq(&sighand->siglock);
2572 
2573 		/*
2574 		 * Notify the parent that we're continuing.  This event is
2575 		 * always per-process and doesn't make whole lot of sense
2576 		 * for ptracers, who shouldn't consume the state via
2577 		 * wait(2) either, but, for backward compatibility, notify
2578 		 * the ptracer of the group leader too unless it's gonna be
2579 		 * a duplicate.
2580 		 */
2581 		read_lock(&tasklist_lock);
2582 		do_notify_parent_cldstop(current, false, why);
2583 
2584 		if (ptrace_reparented(current->group_leader))
2585 			do_notify_parent_cldstop(current->group_leader,
2586 						true, why);
2587 		read_unlock(&tasklist_lock);
2588 
2589 		goto relock;
2590 	}
2591 
2592 	/* Has this task already been marked for death? */
2593 	if (signal_group_exit(signal)) {
2594 		ksig->info.si_signo = signr = SIGKILL;
2595 		sigdelset(&current->pending.signal, SIGKILL);
2596 		trace_signal_deliver(SIGKILL, SEND_SIG_NOINFO,
2597 				&sighand->action[SIGKILL - 1]);
2598 		recalc_sigpending();
2599 		goto fatal;
2600 	}
2601 
2602 	for (;;) {
2603 		struct k_sigaction *ka;
2604 
2605 		if (unlikely(current->jobctl & JOBCTL_STOP_PENDING) &&
2606 		    do_signal_stop(0))
2607 			goto relock;
2608 
2609 		if (unlikely(current->jobctl &
2610 			     (JOBCTL_TRAP_MASK | JOBCTL_TRAP_FREEZE))) {
2611 			if (current->jobctl & JOBCTL_TRAP_MASK) {
2612 				do_jobctl_trap();
2613 				spin_unlock_irq(&sighand->siglock);
2614 			} else if (current->jobctl & JOBCTL_TRAP_FREEZE)
2615 				do_freezer_trap();
2616 
2617 			goto relock;
2618 		}
2619 
2620 		/*
2621 		 * If the task is leaving the frozen state, let's update
2622 		 * cgroup counters and reset the frozen bit.
2623 		 */
2624 		if (unlikely(cgroup_task_frozen(current))) {
2625 			spin_unlock_irq(&sighand->siglock);
2626 			cgroup_leave_frozen(false);
2627 			goto relock;
2628 		}
2629 
2630 		/*
2631 		 * Signals generated by the execution of an instruction
2632 		 * need to be delivered before any other pending signals
2633 		 * so that the instruction pointer in the signal stack
2634 		 * frame points to the faulting instruction.
2635 		 */
2636 		signr = dequeue_synchronous_signal(&ksig->info);
2637 		if (!signr)
2638 			signr = dequeue_signal(current, &current->blocked, &ksig->info);
2639 
2640 		if (!signr)
2641 			break; /* will return 0 */
2642 
2643 		if (unlikely(current->ptrace) && signr != SIGKILL) {
2644 			signr = ptrace_signal(signr, &ksig->info);
2645 			if (!signr)
2646 				continue;
2647 		}
2648 
2649 		ka = &sighand->action[signr-1];
2650 
2651 		/* Trace actually delivered signals. */
2652 		trace_signal_deliver(signr, &ksig->info, ka);
2653 
2654 		if (ka->sa.sa_handler == SIG_IGN) /* Do nothing.  */
2655 			continue;
2656 		if (ka->sa.sa_handler != SIG_DFL) {
2657 			/* Run the handler.  */
2658 			ksig->ka = *ka;
2659 
2660 			if (ka->sa.sa_flags & SA_ONESHOT)
2661 				ka->sa.sa_handler = SIG_DFL;
2662 
2663 			break; /* will return non-zero "signr" value */
2664 		}
2665 
2666 		/*
2667 		 * Now we are doing the default action for this signal.
2668 		 */
2669 		if (sig_kernel_ignore(signr)) /* Default is nothing. */
2670 			continue;
2671 
2672 		/*
2673 		 * Global init gets no signals it doesn't want.
2674 		 * Container-init gets no signals it doesn't want from same
2675 		 * container.
2676 		 *
2677 		 * Note that if global/container-init sees a sig_kernel_only()
2678 		 * signal here, the signal must have been generated internally
2679 		 * or must have come from an ancestor namespace. In either
2680 		 * case, the signal cannot be dropped.
2681 		 */
2682 		if (unlikely(signal->flags & SIGNAL_UNKILLABLE) &&
2683 				!sig_kernel_only(signr))
2684 			continue;
2685 
2686 		if (sig_kernel_stop(signr)) {
2687 			/*
2688 			 * The default action is to stop all threads in
2689 			 * the thread group.  The job control signals
2690 			 * do nothing in an orphaned pgrp, but SIGSTOP
2691 			 * always works.  Note that siglock needs to be
2692 			 * dropped during the call to is_orphaned_pgrp()
2693 			 * because of lock ordering with tasklist_lock.
2694 			 * This allows an intervening SIGCONT to be posted.
2695 			 * We need to check for that and bail out if necessary.
2696 			 */
2697 			if (signr != SIGSTOP) {
2698 				spin_unlock_irq(&sighand->siglock);
2699 
2700 				/* signals can be posted during this window */
2701 
2702 				if (is_current_pgrp_orphaned())
2703 					goto relock;
2704 
2705 				spin_lock_irq(&sighand->siglock);
2706 			}
2707 
2708 			if (likely(do_signal_stop(ksig->info.si_signo))) {
2709 				/* It released the siglock.  */
2710 				goto relock;
2711 			}
2712 
2713 			/*
2714 			 * We didn't actually stop, due to a race
2715 			 * with SIGCONT or something like that.
2716 			 */
2717 			continue;
2718 		}
2719 
2720 	fatal:
2721 		spin_unlock_irq(&sighand->siglock);
2722 		if (unlikely(cgroup_task_frozen(current)))
2723 			cgroup_leave_frozen(true);
2724 
2725 		/*
2726 		 * Anything else is fatal, maybe with a core dump.
2727 		 */
2728 		current->flags |= PF_SIGNALED;
2729 
2730 		if (sig_kernel_coredump(signr)) {
2731 			if (print_fatal_signals)
2732 				print_fatal_signal(ksig->info.si_signo);
2733 			proc_coredump_connector(current);
2734 			/*
2735 			 * If it was able to dump core, this kills all
2736 			 * other threads in the group and synchronizes with
2737 			 * their demise.  If we lost the race with another
2738 			 * thread getting here, it set group_exit_code
2739 			 * first and our do_group_exit call below will use
2740 			 * that value and ignore the one we pass it.
2741 			 */
2742 			do_coredump(&ksig->info);
2743 		}
2744 
2745 		/*
2746 		 * Death signals, no core dump.
2747 		 */
2748 		do_group_exit(ksig->info.si_signo);
2749 		/* NOTREACHED */
2750 	}
2751 	spin_unlock_irq(&sighand->siglock);
2752 
2753 	ksig->sig = signr;
2754 	return ksig->sig > 0;
2755 }
2756 
2757 /**
2758  * signal_delivered -
2759  * @ksig:		kernel signal struct
2760  * @stepping:		nonzero if debugger single-step or block-step in use
2761  *
2762  * This function should be called when a signal has successfully been
2763  * delivered. It updates the blocked signals accordingly (@ksig->ka.sa.sa_mask
2764  * is always blocked, and the signal itself is blocked unless %SA_NODEFER
2765  * is set in @ksig->ka.sa.sa_flags.  Tracing is notified.
2766  */
signal_delivered(struct ksignal * ksig,int stepping)2767 static void signal_delivered(struct ksignal *ksig, int stepping)
2768 {
2769 	sigset_t blocked;
2770 
2771 	/* A signal was successfully delivered, and the
2772 	   saved sigmask was stored on the signal frame,
2773 	   and will be restored by sigreturn.  So we can
2774 	   simply clear the restore sigmask flag.  */
2775 	clear_restore_sigmask();
2776 
2777 	sigorsets(&blocked, &current->blocked, &ksig->ka.sa.sa_mask);
2778 	if (!(ksig->ka.sa.sa_flags & SA_NODEFER))
2779 		sigaddset(&blocked, ksig->sig);
2780 	set_current_blocked(&blocked);
2781 	tracehook_signal_handler(stepping);
2782 }
2783 
signal_setup_done(int failed,struct ksignal * ksig,int stepping)2784 void signal_setup_done(int failed, struct ksignal *ksig, int stepping)
2785 {
2786 	if (failed)
2787 		force_sigsegv(ksig->sig);
2788 	else
2789 		signal_delivered(ksig, stepping);
2790 }
2791 
2792 /*
2793  * It could be that complete_signal() picked us to notify about the
2794  * group-wide signal. Other threads should be notified now to take
2795  * the shared signals in @which since we will not.
2796  */
retarget_shared_pending(struct task_struct * tsk,sigset_t * which)2797 static void retarget_shared_pending(struct task_struct *tsk, sigset_t *which)
2798 {
2799 	sigset_t retarget;
2800 	struct task_struct *t;
2801 
2802 	sigandsets(&retarget, &tsk->signal->shared_pending.signal, which);
2803 	if (sigisemptyset(&retarget))
2804 		return;
2805 
2806 	t = tsk;
2807 	while_each_thread(tsk, t) {
2808 		if (t->flags & PF_EXITING)
2809 			continue;
2810 
2811 		if (!has_pending_signals(&retarget, &t->blocked))
2812 			continue;
2813 		/* Remove the signals this thread can handle. */
2814 		sigandsets(&retarget, &retarget, &t->blocked);
2815 
2816 		if (!signal_pending(t))
2817 			signal_wake_up(t, 0);
2818 
2819 		if (sigisemptyset(&retarget))
2820 			break;
2821 	}
2822 }
2823 
exit_signals(struct task_struct * tsk)2824 void exit_signals(struct task_struct *tsk)
2825 {
2826 	int group_stop = 0;
2827 	sigset_t unblocked;
2828 
2829 	/*
2830 	 * @tsk is about to have PF_EXITING set - lock out users which
2831 	 * expect stable threadgroup.
2832 	 */
2833 	cgroup_threadgroup_change_begin(tsk);
2834 
2835 	if (thread_group_empty(tsk) || signal_group_exit(tsk->signal)) {
2836 		tsk->flags |= PF_EXITING;
2837 		cgroup_threadgroup_change_end(tsk);
2838 		return;
2839 	}
2840 
2841 	spin_lock_irq(&tsk->sighand->siglock);
2842 	/*
2843 	 * From now this task is not visible for group-wide signals,
2844 	 * see wants_signal(), do_signal_stop().
2845 	 */
2846 	tsk->flags |= PF_EXITING;
2847 
2848 	cgroup_threadgroup_change_end(tsk);
2849 
2850 	if (!signal_pending(tsk))
2851 		goto out;
2852 
2853 	unblocked = tsk->blocked;
2854 	signotset(&unblocked);
2855 	retarget_shared_pending(tsk, &unblocked);
2856 
2857 	if (unlikely(tsk->jobctl & JOBCTL_STOP_PENDING) &&
2858 	    task_participate_group_stop(tsk))
2859 		group_stop = CLD_STOPPED;
2860 out:
2861 	spin_unlock_irq(&tsk->sighand->siglock);
2862 
2863 	/*
2864 	 * If group stop has completed, deliver the notification.  This
2865 	 * should always go to the real parent of the group leader.
2866 	 */
2867 	if (unlikely(group_stop)) {
2868 		read_lock(&tasklist_lock);
2869 		do_notify_parent_cldstop(tsk, false, group_stop);
2870 		read_unlock(&tasklist_lock);
2871 	}
2872 }
2873 
2874 /*
2875  * System call entry points.
2876  */
2877 
2878 /**
2879  *  sys_restart_syscall - restart a system call
2880  */
SYSCALL_DEFINE0(restart_syscall)2881 SYSCALL_DEFINE0(restart_syscall)
2882 {
2883 	struct restart_block *restart = &current->restart_block;
2884 	return restart->fn(restart);
2885 }
2886 
do_no_restart_syscall(struct restart_block * param)2887 long do_no_restart_syscall(struct restart_block *param)
2888 {
2889 	return -EINTR;
2890 }
2891 
__set_task_blocked(struct task_struct * tsk,const sigset_t * newset)2892 static void __set_task_blocked(struct task_struct *tsk, const sigset_t *newset)
2893 {
2894 	if (signal_pending(tsk) && !thread_group_empty(tsk)) {
2895 		sigset_t newblocked;
2896 		/* A set of now blocked but previously unblocked signals. */
2897 		sigandnsets(&newblocked, newset, &current->blocked);
2898 		retarget_shared_pending(tsk, &newblocked);
2899 	}
2900 	tsk->blocked = *newset;
2901 	recalc_sigpending();
2902 }
2903 
2904 /**
2905  * set_current_blocked - change current->blocked mask
2906  * @newset: new mask
2907  *
2908  * It is wrong to change ->blocked directly, this helper should be used
2909  * to ensure the process can't miss a shared signal we are going to block.
2910  */
set_current_blocked(sigset_t * newset)2911 void set_current_blocked(sigset_t *newset)
2912 {
2913 	sigdelsetmask(newset, sigmask(SIGKILL) | sigmask(SIGSTOP));
2914 	__set_current_blocked(newset);
2915 }
2916 
__set_current_blocked(const sigset_t * newset)2917 void __set_current_blocked(const sigset_t *newset)
2918 {
2919 	struct task_struct *tsk = current;
2920 
2921 	/*
2922 	 * In case the signal mask hasn't changed, there is nothing we need
2923 	 * to do. The current->blocked shouldn't be modified by other task.
2924 	 */
2925 	if (sigequalsets(&tsk->blocked, newset))
2926 		return;
2927 
2928 	spin_lock_irq(&tsk->sighand->siglock);
2929 	__set_task_blocked(tsk, newset);
2930 	spin_unlock_irq(&tsk->sighand->siglock);
2931 }
2932 
2933 /*
2934  * This is also useful for kernel threads that want to temporarily
2935  * (or permanently) block certain signals.
2936  *
2937  * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
2938  * interface happily blocks "unblockable" signals like SIGKILL
2939  * and friends.
2940  */
sigprocmask(int how,sigset_t * set,sigset_t * oldset)2941 int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
2942 {
2943 	struct task_struct *tsk = current;
2944 	sigset_t newset;
2945 
2946 	/* Lockless, only current can change ->blocked, never from irq */
2947 	if (oldset)
2948 		*oldset = tsk->blocked;
2949 
2950 	switch (how) {
2951 	case SIG_BLOCK:
2952 		sigorsets(&newset, &tsk->blocked, set);
2953 		break;
2954 	case SIG_UNBLOCK:
2955 		sigandnsets(&newset, &tsk->blocked, set);
2956 		break;
2957 	case SIG_SETMASK:
2958 		newset = *set;
2959 		break;
2960 	default:
2961 		return -EINVAL;
2962 	}
2963 
2964 	__set_current_blocked(&newset);
2965 	return 0;
2966 }
2967 EXPORT_SYMBOL(sigprocmask);
2968 
2969 /*
2970  * The api helps set app-provided sigmasks.
2971  *
2972  * This is useful for syscalls such as ppoll, pselect, io_pgetevents and
2973  * epoll_pwait where a new sigmask is passed from userland for the syscalls.
2974  *
2975  * Note that it does set_restore_sigmask() in advance, so it must be always
2976  * paired with restore_saved_sigmask_unless() before return from syscall.
2977  */
set_user_sigmask(const sigset_t __user * umask,size_t sigsetsize)2978 int set_user_sigmask(const sigset_t __user *umask, size_t sigsetsize)
2979 {
2980 	sigset_t kmask;
2981 
2982 	if (!umask)
2983 		return 0;
2984 	if (sigsetsize != sizeof(sigset_t))
2985 		return -EINVAL;
2986 	if (copy_from_user(&kmask, umask, sizeof(sigset_t)))
2987 		return -EFAULT;
2988 
2989 	set_restore_sigmask();
2990 	current->saved_sigmask = current->blocked;
2991 	set_current_blocked(&kmask);
2992 
2993 	return 0;
2994 }
2995 
2996 #ifdef CONFIG_COMPAT
set_compat_user_sigmask(const compat_sigset_t __user * umask,size_t sigsetsize)2997 int set_compat_user_sigmask(const compat_sigset_t __user *umask,
2998 			    size_t sigsetsize)
2999 {
3000 	sigset_t kmask;
3001 
3002 	if (!umask)
3003 		return 0;
3004 	if (sigsetsize != sizeof(compat_sigset_t))
3005 		return -EINVAL;
3006 	if (get_compat_sigset(&kmask, umask))
3007 		return -EFAULT;
3008 
3009 	set_restore_sigmask();
3010 	current->saved_sigmask = current->blocked;
3011 	set_current_blocked(&kmask);
3012 
3013 	return 0;
3014 }
3015 #endif
3016 
3017 /**
3018  *  sys_rt_sigprocmask - change the list of currently blocked signals
3019  *  @how: whether to add, remove, or set signals
3020  *  @nset: stores pending signals
3021  *  @oset: previous value of signal mask if non-null
3022  *  @sigsetsize: size of sigset_t type
3023  */
SYSCALL_DEFINE4(rt_sigprocmask,int,how,sigset_t __user *,nset,sigset_t __user *,oset,size_t,sigsetsize)3024 SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, nset,
3025 		sigset_t __user *, oset, size_t, sigsetsize)
3026 {
3027 	sigset_t old_set, new_set;
3028 	int error;
3029 
3030 	/* XXX: Don't preclude handling different sized sigset_t's.  */
3031 	if (sigsetsize != sizeof(sigset_t))
3032 		return -EINVAL;
3033 
3034 	old_set = current->blocked;
3035 
3036 	if (nset) {
3037 		if (copy_from_user(&new_set, nset, sizeof(sigset_t)))
3038 			return -EFAULT;
3039 		sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
3040 
3041 		error = sigprocmask(how, &new_set, NULL);
3042 		if (error)
3043 			return error;
3044 	}
3045 
3046 	if (oset) {
3047 		if (copy_to_user(oset, &old_set, sizeof(sigset_t)))
3048 			return -EFAULT;
3049 	}
3050 
3051 	return 0;
3052 }
3053 
3054 #ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE4(rt_sigprocmask,int,how,compat_sigset_t __user *,nset,compat_sigset_t __user *,oset,compat_size_t,sigsetsize)3055 COMPAT_SYSCALL_DEFINE4(rt_sigprocmask, int, how, compat_sigset_t __user *, nset,
3056 		compat_sigset_t __user *, oset, compat_size_t, sigsetsize)
3057 {
3058 	sigset_t old_set = current->blocked;
3059 
3060 	/* XXX: Don't preclude handling different sized sigset_t's.  */
3061 	if (sigsetsize != sizeof(sigset_t))
3062 		return -EINVAL;
3063 
3064 	if (nset) {
3065 		sigset_t new_set;
3066 		int error;
3067 		if (get_compat_sigset(&new_set, nset))
3068 			return -EFAULT;
3069 		sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
3070 
3071 		error = sigprocmask(how, &new_set, NULL);
3072 		if (error)
3073 			return error;
3074 	}
3075 	return oset ? put_compat_sigset(oset, &old_set, sizeof(*oset)) : 0;
3076 }
3077 #endif
3078 
do_sigpending(sigset_t * set)3079 static void do_sigpending(sigset_t *set)
3080 {
3081 	spin_lock_irq(&current->sighand->siglock);
3082 	sigorsets(set, &current->pending.signal,
3083 		  &current->signal->shared_pending.signal);
3084 	spin_unlock_irq(&current->sighand->siglock);
3085 
3086 	/* Outside the lock because only this thread touches it.  */
3087 	sigandsets(set, &current->blocked, set);
3088 }
3089 
3090 /**
3091  *  sys_rt_sigpending - examine a pending signal that has been raised
3092  *			while blocked
3093  *  @uset: stores pending signals
3094  *  @sigsetsize: size of sigset_t type or larger
3095  */
SYSCALL_DEFINE2(rt_sigpending,sigset_t __user *,uset,size_t,sigsetsize)3096 SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, uset, size_t, sigsetsize)
3097 {
3098 	sigset_t set;
3099 
3100 	if (sigsetsize > sizeof(*uset))
3101 		return -EINVAL;
3102 
3103 	do_sigpending(&set);
3104 
3105 	if (copy_to_user(uset, &set, sigsetsize))
3106 		return -EFAULT;
3107 
3108 	return 0;
3109 }
3110 
3111 #ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE2(rt_sigpending,compat_sigset_t __user *,uset,compat_size_t,sigsetsize)3112 COMPAT_SYSCALL_DEFINE2(rt_sigpending, compat_sigset_t __user *, uset,
3113 		compat_size_t, sigsetsize)
3114 {
3115 	sigset_t set;
3116 
3117 	if (sigsetsize > sizeof(*uset))
3118 		return -EINVAL;
3119 
3120 	do_sigpending(&set);
3121 
3122 	return put_compat_sigset(uset, &set, sigsetsize);
3123 }
3124 #endif
3125 
3126 static const struct {
3127 	unsigned char limit, layout;
3128 } sig_sicodes[] = {
3129 	[SIGILL]  = { NSIGILL,  SIL_FAULT },
3130 	[SIGFPE]  = { NSIGFPE,  SIL_FAULT },
3131 	[SIGSEGV] = { NSIGSEGV, SIL_FAULT },
3132 	[SIGBUS]  = { NSIGBUS,  SIL_FAULT },
3133 	[SIGTRAP] = { NSIGTRAP, SIL_FAULT },
3134 #if defined(SIGEMT)
3135 	[SIGEMT]  = { NSIGEMT,  SIL_FAULT },
3136 #endif
3137 	[SIGCHLD] = { NSIGCHLD, SIL_CHLD },
3138 	[SIGPOLL] = { NSIGPOLL, SIL_POLL },
3139 	[SIGSYS]  = { NSIGSYS,  SIL_SYS },
3140 };
3141 
known_siginfo_layout(unsigned sig,int si_code)3142 static bool known_siginfo_layout(unsigned sig, int si_code)
3143 {
3144 	if (si_code == SI_KERNEL)
3145 		return true;
3146 	else if ((si_code > SI_USER)) {
3147 		if (sig_specific_sicodes(sig)) {
3148 			if (si_code <= sig_sicodes[sig].limit)
3149 				return true;
3150 		}
3151 		else if (si_code <= NSIGPOLL)
3152 			return true;
3153 	}
3154 	else if (si_code >= SI_DETHREAD)
3155 		return true;
3156 	else if (si_code == SI_ASYNCNL)
3157 		return true;
3158 	return false;
3159 }
3160 
siginfo_layout(unsigned sig,int si_code)3161 enum siginfo_layout siginfo_layout(unsigned sig, int si_code)
3162 {
3163 	enum siginfo_layout layout = SIL_KILL;
3164 	if ((si_code > SI_USER) && (si_code < SI_KERNEL)) {
3165 		if ((sig < ARRAY_SIZE(sig_sicodes)) &&
3166 		    (si_code <= sig_sicodes[sig].limit)) {
3167 			layout = sig_sicodes[sig].layout;
3168 			/* Handle the exceptions */
3169 			if ((sig == SIGBUS) &&
3170 			    (si_code >= BUS_MCEERR_AR) && (si_code <= BUS_MCEERR_AO))
3171 				layout = SIL_FAULT_MCEERR;
3172 			else if ((sig == SIGSEGV) && (si_code == SEGV_BNDERR))
3173 				layout = SIL_FAULT_BNDERR;
3174 #ifdef SEGV_PKUERR
3175 			else if ((sig == SIGSEGV) && (si_code == SEGV_PKUERR))
3176 				layout = SIL_FAULT_PKUERR;
3177 #endif
3178 		}
3179 		else if (si_code <= NSIGPOLL)
3180 			layout = SIL_POLL;
3181 	} else {
3182 		if (si_code == SI_TIMER)
3183 			layout = SIL_TIMER;
3184 		else if (si_code == SI_SIGIO)
3185 			layout = SIL_POLL;
3186 		else if (si_code < 0)
3187 			layout = SIL_RT;
3188 	}
3189 	return layout;
3190 }
3191 
si_expansion(const siginfo_t __user * info)3192 static inline char __user *si_expansion(const siginfo_t __user *info)
3193 {
3194 	return ((char __user *)info) + sizeof(struct kernel_siginfo);
3195 }
3196 
copy_siginfo_to_user(siginfo_t __user * to,const kernel_siginfo_t * from)3197 int copy_siginfo_to_user(siginfo_t __user *to, const kernel_siginfo_t *from)
3198 {
3199 	char __user *expansion = si_expansion(to);
3200 	if (copy_to_user(to, from , sizeof(struct kernel_siginfo)))
3201 		return -EFAULT;
3202 	if (clear_user(expansion, SI_EXPANSION_SIZE))
3203 		return -EFAULT;
3204 	return 0;
3205 }
3206 
post_copy_siginfo_from_user(kernel_siginfo_t * info,const siginfo_t __user * from)3207 static int post_copy_siginfo_from_user(kernel_siginfo_t *info,
3208 				       const siginfo_t __user *from)
3209 {
3210 	if (unlikely(!known_siginfo_layout(info->si_signo, info->si_code))) {
3211 		char __user *expansion = si_expansion(from);
3212 		char buf[SI_EXPANSION_SIZE];
3213 		int i;
3214 		/*
3215 		 * An unknown si_code might need more than
3216 		 * sizeof(struct kernel_siginfo) bytes.  Verify all of the
3217 		 * extra bytes are 0.  This guarantees copy_siginfo_to_user
3218 		 * will return this data to userspace exactly.
3219 		 */
3220 		if (copy_from_user(&buf, expansion, SI_EXPANSION_SIZE))
3221 			return -EFAULT;
3222 		for (i = 0; i < SI_EXPANSION_SIZE; i++) {
3223 			if (buf[i] != 0)
3224 				return -E2BIG;
3225 		}
3226 	}
3227 	return 0;
3228 }
3229 
__copy_siginfo_from_user(int signo,kernel_siginfo_t * to,const siginfo_t __user * from)3230 static int __copy_siginfo_from_user(int signo, kernel_siginfo_t *to,
3231 				    const siginfo_t __user *from)
3232 {
3233 	if (copy_from_user(to, from, sizeof(struct kernel_siginfo)))
3234 		return -EFAULT;
3235 	to->si_signo = signo;
3236 	return post_copy_siginfo_from_user(to, from);
3237 }
3238 
copy_siginfo_from_user(kernel_siginfo_t * to,const siginfo_t __user * from)3239 int copy_siginfo_from_user(kernel_siginfo_t *to, const siginfo_t __user *from)
3240 {
3241 	if (copy_from_user(to, from, sizeof(struct kernel_siginfo)))
3242 		return -EFAULT;
3243 	return post_copy_siginfo_from_user(to, from);
3244 }
3245 
3246 #ifdef CONFIG_COMPAT
3247 /**
3248  * copy_siginfo_to_external32 - copy a kernel siginfo into a compat user siginfo
3249  * @to: compat siginfo destination
3250  * @from: kernel siginfo source
3251  *
3252  * Note: This function does not work properly for the SIGCHLD on x32, but
3253  * fortunately it doesn't have to.  The only valid callers for this function are
3254  * copy_siginfo_to_user32, which is overriden for x32 and the coredump code.
3255  * The latter does not care because SIGCHLD will never cause a coredump.
3256  */
copy_siginfo_to_external32(struct compat_siginfo * to,const struct kernel_siginfo * from)3257 void copy_siginfo_to_external32(struct compat_siginfo *to,
3258 		const struct kernel_siginfo *from)
3259 {
3260 	memset(to, 0, sizeof(*to));
3261 
3262 	to->si_signo = from->si_signo;
3263 	to->si_errno = from->si_errno;
3264 	to->si_code  = from->si_code;
3265 	switch(siginfo_layout(from->si_signo, from->si_code)) {
3266 	case SIL_KILL:
3267 		to->si_pid = from->si_pid;
3268 		to->si_uid = from->si_uid;
3269 		break;
3270 	case SIL_TIMER:
3271 		to->si_tid     = from->si_tid;
3272 		to->si_overrun = from->si_overrun;
3273 		to->si_int     = from->si_int;
3274 		break;
3275 	case SIL_POLL:
3276 		to->si_band = from->si_band;
3277 		to->si_fd   = from->si_fd;
3278 		break;
3279 	case SIL_FAULT:
3280 		to->si_addr = ptr_to_compat(from->si_addr);
3281 #ifdef __ARCH_SI_TRAPNO
3282 		to->si_trapno = from->si_trapno;
3283 #endif
3284 		break;
3285 	case SIL_FAULT_MCEERR:
3286 		to->si_addr = ptr_to_compat(from->si_addr);
3287 #ifdef __ARCH_SI_TRAPNO
3288 		to->si_trapno = from->si_trapno;
3289 #endif
3290 		to->si_addr_lsb = from->si_addr_lsb;
3291 		break;
3292 	case SIL_FAULT_BNDERR:
3293 		to->si_addr = ptr_to_compat(from->si_addr);
3294 #ifdef __ARCH_SI_TRAPNO
3295 		to->si_trapno = from->si_trapno;
3296 #endif
3297 		to->si_lower = ptr_to_compat(from->si_lower);
3298 		to->si_upper = ptr_to_compat(from->si_upper);
3299 		break;
3300 	case SIL_FAULT_PKUERR:
3301 		to->si_addr = ptr_to_compat(from->si_addr);
3302 #ifdef __ARCH_SI_TRAPNO
3303 		to->si_trapno = from->si_trapno;
3304 #endif
3305 		to->si_pkey = from->si_pkey;
3306 		break;
3307 	case SIL_CHLD:
3308 		to->si_pid = from->si_pid;
3309 		to->si_uid = from->si_uid;
3310 		to->si_status = from->si_status;
3311 		to->si_utime = from->si_utime;
3312 		to->si_stime = from->si_stime;
3313 		break;
3314 	case SIL_RT:
3315 		to->si_pid = from->si_pid;
3316 		to->si_uid = from->si_uid;
3317 		to->si_int = from->si_int;
3318 		break;
3319 	case SIL_SYS:
3320 		to->si_call_addr = ptr_to_compat(from->si_call_addr);
3321 		to->si_syscall   = from->si_syscall;
3322 		to->si_arch      = from->si_arch;
3323 		break;
3324 	}
3325 }
3326 
__copy_siginfo_to_user32(struct compat_siginfo __user * to,const struct kernel_siginfo * from)3327 int __copy_siginfo_to_user32(struct compat_siginfo __user *to,
3328 			   const struct kernel_siginfo *from)
3329 {
3330 	struct compat_siginfo new;
3331 
3332 	copy_siginfo_to_external32(&new, from);
3333 	if (copy_to_user(to, &new, sizeof(struct compat_siginfo)))
3334 		return -EFAULT;
3335 	return 0;
3336 }
3337 
post_copy_siginfo_from_user32(kernel_siginfo_t * to,const struct compat_siginfo * from)3338 static int post_copy_siginfo_from_user32(kernel_siginfo_t *to,
3339 					 const struct compat_siginfo *from)
3340 {
3341 	clear_siginfo(to);
3342 	to->si_signo = from->si_signo;
3343 	to->si_errno = from->si_errno;
3344 	to->si_code  = from->si_code;
3345 	switch(siginfo_layout(from->si_signo, from->si_code)) {
3346 	case SIL_KILL:
3347 		to->si_pid = from->si_pid;
3348 		to->si_uid = from->si_uid;
3349 		break;
3350 	case SIL_TIMER:
3351 		to->si_tid     = from->si_tid;
3352 		to->si_overrun = from->si_overrun;
3353 		to->si_int     = from->si_int;
3354 		break;
3355 	case SIL_POLL:
3356 		to->si_band = from->si_band;
3357 		to->si_fd   = from->si_fd;
3358 		break;
3359 	case SIL_FAULT:
3360 		to->si_addr = compat_ptr(from->si_addr);
3361 #ifdef __ARCH_SI_TRAPNO
3362 		to->si_trapno = from->si_trapno;
3363 #endif
3364 		break;
3365 	case SIL_FAULT_MCEERR:
3366 		to->si_addr = compat_ptr(from->si_addr);
3367 #ifdef __ARCH_SI_TRAPNO
3368 		to->si_trapno = from->si_trapno;
3369 #endif
3370 		to->si_addr_lsb = from->si_addr_lsb;
3371 		break;
3372 	case SIL_FAULT_BNDERR:
3373 		to->si_addr = compat_ptr(from->si_addr);
3374 #ifdef __ARCH_SI_TRAPNO
3375 		to->si_trapno = from->si_trapno;
3376 #endif
3377 		to->si_lower = compat_ptr(from->si_lower);
3378 		to->si_upper = compat_ptr(from->si_upper);
3379 		break;
3380 	case SIL_FAULT_PKUERR:
3381 		to->si_addr = compat_ptr(from->si_addr);
3382 #ifdef __ARCH_SI_TRAPNO
3383 		to->si_trapno = from->si_trapno;
3384 #endif
3385 		to->si_pkey = from->si_pkey;
3386 		break;
3387 	case SIL_CHLD:
3388 		to->si_pid    = from->si_pid;
3389 		to->si_uid    = from->si_uid;
3390 		to->si_status = from->si_status;
3391 #ifdef CONFIG_X86_X32_ABI
3392 		if (in_x32_syscall()) {
3393 			to->si_utime = from->_sifields._sigchld_x32._utime;
3394 			to->si_stime = from->_sifields._sigchld_x32._stime;
3395 		} else
3396 #endif
3397 		{
3398 			to->si_utime = from->si_utime;
3399 			to->si_stime = from->si_stime;
3400 		}
3401 		break;
3402 	case SIL_RT:
3403 		to->si_pid = from->si_pid;
3404 		to->si_uid = from->si_uid;
3405 		to->si_int = from->si_int;
3406 		break;
3407 	case SIL_SYS:
3408 		to->si_call_addr = compat_ptr(from->si_call_addr);
3409 		to->si_syscall   = from->si_syscall;
3410 		to->si_arch      = from->si_arch;
3411 		break;
3412 	}
3413 	return 0;
3414 }
3415 
__copy_siginfo_from_user32(int signo,struct kernel_siginfo * to,const struct compat_siginfo __user * ufrom)3416 static int __copy_siginfo_from_user32(int signo, struct kernel_siginfo *to,
3417 				      const struct compat_siginfo __user *ufrom)
3418 {
3419 	struct compat_siginfo from;
3420 
3421 	if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo)))
3422 		return -EFAULT;
3423 
3424 	from.si_signo = signo;
3425 	return post_copy_siginfo_from_user32(to, &from);
3426 }
3427 
copy_siginfo_from_user32(struct kernel_siginfo * to,const struct compat_siginfo __user * ufrom)3428 int copy_siginfo_from_user32(struct kernel_siginfo *to,
3429 			     const struct compat_siginfo __user *ufrom)
3430 {
3431 	struct compat_siginfo from;
3432 
3433 	if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo)))
3434 		return -EFAULT;
3435 
3436 	return post_copy_siginfo_from_user32(to, &from);
3437 }
3438 #endif /* CONFIG_COMPAT */
3439 
3440 /**
3441  *  do_sigtimedwait - wait for queued signals specified in @which
3442  *  @which: queued signals to wait for
3443  *  @info: if non-null, the signal's siginfo is returned here
3444  *  @ts: upper bound on process time suspension
3445  */
do_sigtimedwait(const sigset_t * which,kernel_siginfo_t * info,const struct timespec64 * ts)3446 static int do_sigtimedwait(const sigset_t *which, kernel_siginfo_t *info,
3447 		    const struct timespec64 *ts)
3448 {
3449 	ktime_t *to = NULL, timeout = KTIME_MAX;
3450 	struct task_struct *tsk = current;
3451 	sigset_t mask = *which;
3452 	int sig, ret = 0;
3453 
3454 	if (ts) {
3455 		if (!timespec64_valid(ts))
3456 			return -EINVAL;
3457 		timeout = timespec64_to_ktime(*ts);
3458 		to = &timeout;
3459 	}
3460 
3461 	/*
3462 	 * Invert the set of allowed signals to get those we want to block.
3463 	 */
3464 	sigdelsetmask(&mask, sigmask(SIGKILL) | sigmask(SIGSTOP));
3465 	signotset(&mask);
3466 
3467 	spin_lock_irq(&tsk->sighand->siglock);
3468 	sig = dequeue_signal(tsk, &mask, info);
3469 	if (!sig && timeout) {
3470 		/*
3471 		 * None ready, temporarily unblock those we're interested
3472 		 * while we are sleeping in so that we'll be awakened when
3473 		 * they arrive. Unblocking is always fine, we can avoid
3474 		 * set_current_blocked().
3475 		 */
3476 		tsk->real_blocked = tsk->blocked;
3477 		sigandsets(&tsk->blocked, &tsk->blocked, &mask);
3478 		recalc_sigpending();
3479 		spin_unlock_irq(&tsk->sighand->siglock);
3480 
3481 		__set_current_state(TASK_INTERRUPTIBLE);
3482 		ret = freezable_schedule_hrtimeout_range(to, tsk->timer_slack_ns,
3483 							 HRTIMER_MODE_REL);
3484 		spin_lock_irq(&tsk->sighand->siglock);
3485 		__set_task_blocked(tsk, &tsk->real_blocked);
3486 		sigemptyset(&tsk->real_blocked);
3487 		sig = dequeue_signal(tsk, &mask, info);
3488 	}
3489 	spin_unlock_irq(&tsk->sighand->siglock);
3490 
3491 	if (sig)
3492 		return sig;
3493 	return ret ? -EINTR : -EAGAIN;
3494 }
3495 
3496 /**
3497  *  sys_rt_sigtimedwait - synchronously wait for queued signals specified
3498  *			in @uthese
3499  *  @uthese: queued signals to wait for
3500  *  @uinfo: if non-null, the signal's siginfo is returned here
3501  *  @uts: upper bound on process time suspension
3502  *  @sigsetsize: size of sigset_t type
3503  */
SYSCALL_DEFINE4(rt_sigtimedwait,const sigset_t __user *,uthese,siginfo_t __user *,uinfo,const struct __kernel_timespec __user *,uts,size_t,sigsetsize)3504 SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese,
3505 		siginfo_t __user *, uinfo,
3506 		const struct __kernel_timespec __user *, uts,
3507 		size_t, sigsetsize)
3508 {
3509 	sigset_t these;
3510 	struct timespec64 ts;
3511 	kernel_siginfo_t info;
3512 	int ret;
3513 
3514 	/* XXX: Don't preclude handling different sized sigset_t's.  */
3515 	if (sigsetsize != sizeof(sigset_t))
3516 		return -EINVAL;
3517 
3518 	if (copy_from_user(&these, uthese, sizeof(these)))
3519 		return -EFAULT;
3520 
3521 	if (uts) {
3522 		if (get_timespec64(&ts, uts))
3523 			return -EFAULT;
3524 	}
3525 
3526 	ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
3527 
3528 	if (ret > 0 && uinfo) {
3529 		if (copy_siginfo_to_user(uinfo, &info))
3530 			ret = -EFAULT;
3531 	}
3532 
3533 	return ret;
3534 }
3535 
3536 #ifdef CONFIG_COMPAT_32BIT_TIME
SYSCALL_DEFINE4(rt_sigtimedwait_time32,const sigset_t __user *,uthese,siginfo_t __user *,uinfo,const struct old_timespec32 __user *,uts,size_t,sigsetsize)3537 SYSCALL_DEFINE4(rt_sigtimedwait_time32, const sigset_t __user *, uthese,
3538 		siginfo_t __user *, uinfo,
3539 		const struct old_timespec32 __user *, uts,
3540 		size_t, sigsetsize)
3541 {
3542 	sigset_t these;
3543 	struct timespec64 ts;
3544 	kernel_siginfo_t info;
3545 	int ret;
3546 
3547 	if (sigsetsize != sizeof(sigset_t))
3548 		return -EINVAL;
3549 
3550 	if (copy_from_user(&these, uthese, sizeof(these)))
3551 		return -EFAULT;
3552 
3553 	if (uts) {
3554 		if (get_old_timespec32(&ts, uts))
3555 			return -EFAULT;
3556 	}
3557 
3558 	ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
3559 
3560 	if (ret > 0 && uinfo) {
3561 		if (copy_siginfo_to_user(uinfo, &info))
3562 			ret = -EFAULT;
3563 	}
3564 
3565 	return ret;
3566 }
3567 #endif
3568 
3569 #ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time64,compat_sigset_t __user *,uthese,struct compat_siginfo __user *,uinfo,struct __kernel_timespec __user *,uts,compat_size_t,sigsetsize)3570 COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time64, compat_sigset_t __user *, uthese,
3571 		struct compat_siginfo __user *, uinfo,
3572 		struct __kernel_timespec __user *, uts, compat_size_t, sigsetsize)
3573 {
3574 	sigset_t s;
3575 	struct timespec64 t;
3576 	kernel_siginfo_t info;
3577 	long ret;
3578 
3579 	if (sigsetsize != sizeof(sigset_t))
3580 		return -EINVAL;
3581 
3582 	if (get_compat_sigset(&s, uthese))
3583 		return -EFAULT;
3584 
3585 	if (uts) {
3586 		if (get_timespec64(&t, uts))
3587 			return -EFAULT;
3588 	}
3589 
3590 	ret = do_sigtimedwait(&s, &info, uts ? &t : NULL);
3591 
3592 	if (ret > 0 && uinfo) {
3593 		if (copy_siginfo_to_user32(uinfo, &info))
3594 			ret = -EFAULT;
3595 	}
3596 
3597 	return ret;
3598 }
3599 
3600 #ifdef CONFIG_COMPAT_32BIT_TIME
COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time32,compat_sigset_t __user *,uthese,struct compat_siginfo __user *,uinfo,struct old_timespec32 __user *,uts,compat_size_t,sigsetsize)3601 COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time32, compat_sigset_t __user *, uthese,
3602 		struct compat_siginfo __user *, uinfo,
3603 		struct old_timespec32 __user *, uts, compat_size_t, sigsetsize)
3604 {
3605 	sigset_t s;
3606 	struct timespec64 t;
3607 	kernel_siginfo_t info;
3608 	long ret;
3609 
3610 	if (sigsetsize != sizeof(sigset_t))
3611 		return -EINVAL;
3612 
3613 	if (get_compat_sigset(&s, uthese))
3614 		return -EFAULT;
3615 
3616 	if (uts) {
3617 		if (get_old_timespec32(&t, uts))
3618 			return -EFAULT;
3619 	}
3620 
3621 	ret = do_sigtimedwait(&s, &info, uts ? &t : NULL);
3622 
3623 	if (ret > 0 && uinfo) {
3624 		if (copy_siginfo_to_user32(uinfo, &info))
3625 			ret = -EFAULT;
3626 	}
3627 
3628 	return ret;
3629 }
3630 #endif
3631 #endif
3632 
prepare_kill_siginfo(int sig,struct kernel_siginfo * info)3633 static inline void prepare_kill_siginfo(int sig, struct kernel_siginfo *info)
3634 {
3635 	clear_siginfo(info);
3636 	info->si_signo = sig;
3637 	info->si_errno = 0;
3638 	info->si_code = SI_USER;
3639 	info->si_pid = task_tgid_vnr(current);
3640 	info->si_uid = from_kuid_munged(current_user_ns(), current_uid());
3641 }
3642 
3643 /**
3644  *  sys_kill - send a signal to a process
3645  *  @pid: the PID of the process
3646  *  @sig: signal to be sent
3647  */
SYSCALL_DEFINE2(kill,pid_t,pid,int,sig)3648 SYSCALL_DEFINE2(kill, pid_t, pid, int, sig)
3649 {
3650 	struct kernel_siginfo info;
3651 
3652 	prepare_kill_siginfo(sig, &info);
3653 
3654 	return kill_something_info(sig, &info, pid);
3655 }
3656 
3657 /*
3658  * Verify that the signaler and signalee either are in the same pid namespace
3659  * or that the signaler's pid namespace is an ancestor of the signalee's pid
3660  * namespace.
3661  */
access_pidfd_pidns(struct pid * pid)3662 static bool access_pidfd_pidns(struct pid *pid)
3663 {
3664 	struct pid_namespace *active = task_active_pid_ns(current);
3665 	struct pid_namespace *p = ns_of_pid(pid);
3666 
3667 	for (;;) {
3668 		if (!p)
3669 			return false;
3670 		if (p == active)
3671 			break;
3672 		p = p->parent;
3673 	}
3674 
3675 	return true;
3676 }
3677 
copy_siginfo_from_user_any(kernel_siginfo_t * kinfo,siginfo_t * info)3678 static int copy_siginfo_from_user_any(kernel_siginfo_t *kinfo, siginfo_t *info)
3679 {
3680 #ifdef CONFIG_COMPAT
3681 	/*
3682 	 * Avoid hooking up compat syscalls and instead handle necessary
3683 	 * conversions here. Note, this is a stop-gap measure and should not be
3684 	 * considered a generic solution.
3685 	 */
3686 	if (in_compat_syscall())
3687 		return copy_siginfo_from_user32(
3688 			kinfo, (struct compat_siginfo __user *)info);
3689 #endif
3690 	return copy_siginfo_from_user(kinfo, info);
3691 }
3692 
pidfd_to_pid(const struct file * file)3693 static struct pid *pidfd_to_pid(const struct file *file)
3694 {
3695 	struct pid *pid;
3696 
3697 	pid = pidfd_pid(file);
3698 	if (!IS_ERR(pid))
3699 		return pid;
3700 
3701 	return tgid_pidfd_to_pid(file);
3702 }
3703 
3704 /**
3705  * sys_pidfd_send_signal - Signal a process through a pidfd
3706  * @pidfd:  file descriptor of the process
3707  * @sig:    signal to send
3708  * @info:   signal info
3709  * @flags:  future flags
3710  *
3711  * The syscall currently only signals via PIDTYPE_PID which covers
3712  * kill(<positive-pid>, <signal>. It does not signal threads or process
3713  * groups.
3714  * In order to extend the syscall to threads and process groups the @flags
3715  * argument should be used. In essence, the @flags argument will determine
3716  * what is signaled and not the file descriptor itself. Put in other words,
3717  * grouping is a property of the flags argument not a property of the file
3718  * descriptor.
3719  *
3720  * Return: 0 on success, negative errno on failure
3721  */
SYSCALL_DEFINE4(pidfd_send_signal,int,pidfd,int,sig,siginfo_t __user *,info,unsigned int,flags)3722 SYSCALL_DEFINE4(pidfd_send_signal, int, pidfd, int, sig,
3723 		siginfo_t __user *, info, unsigned int, flags)
3724 {
3725 	int ret;
3726 	struct fd f;
3727 	struct pid *pid;
3728 	kernel_siginfo_t kinfo;
3729 
3730 	/* Enforce flags be set to 0 until we add an extension. */
3731 	if (flags)
3732 		return -EINVAL;
3733 
3734 	f = fdget(pidfd);
3735 	if (!f.file)
3736 		return -EBADF;
3737 
3738 	/* Is this a pidfd? */
3739 	pid = pidfd_to_pid(f.file);
3740 	if (IS_ERR(pid)) {
3741 		ret = PTR_ERR(pid);
3742 		goto err;
3743 	}
3744 
3745 	ret = -EINVAL;
3746 	if (!access_pidfd_pidns(pid))
3747 		goto err;
3748 
3749 	if (info) {
3750 		ret = copy_siginfo_from_user_any(&kinfo, info);
3751 		if (unlikely(ret))
3752 			goto err;
3753 
3754 		ret = -EINVAL;
3755 		if (unlikely(sig != kinfo.si_signo))
3756 			goto err;
3757 
3758 		/* Only allow sending arbitrary signals to yourself. */
3759 		ret = -EPERM;
3760 		if ((task_pid(current) != pid) &&
3761 		    (kinfo.si_code >= 0 || kinfo.si_code == SI_TKILL))
3762 			goto err;
3763 	} else {
3764 		prepare_kill_siginfo(sig, &kinfo);
3765 	}
3766 
3767 	ret = kill_pid_info(sig, &kinfo, pid);
3768 
3769 err:
3770 	fdput(f);
3771 	return ret;
3772 }
3773 
3774 static int
do_send_specific(pid_t tgid,pid_t pid,int sig,struct kernel_siginfo * info)3775 do_send_specific(pid_t tgid, pid_t pid, int sig, struct kernel_siginfo *info)
3776 {
3777 	struct task_struct *p;
3778 	int error = -ESRCH;
3779 
3780 	rcu_read_lock();
3781 	p = find_task_by_vpid(pid);
3782 	if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) {
3783 		error = check_kill_permission(sig, info, p);
3784 		/*
3785 		 * The null signal is a permissions and process existence
3786 		 * probe.  No signal is actually delivered.
3787 		 */
3788 		if (!error && sig) {
3789 			error = do_send_sig_info(sig, info, p, PIDTYPE_PID);
3790 			/*
3791 			 * If lock_task_sighand() failed we pretend the task
3792 			 * dies after receiving the signal. The window is tiny,
3793 			 * and the signal is private anyway.
3794 			 */
3795 			if (unlikely(error == -ESRCH))
3796 				error = 0;
3797 		}
3798 	}
3799 	rcu_read_unlock();
3800 
3801 	return error;
3802 }
3803 
do_tkill(pid_t tgid,pid_t pid,int sig)3804 static int do_tkill(pid_t tgid, pid_t pid, int sig)
3805 {
3806 	struct kernel_siginfo info;
3807 
3808 	clear_siginfo(&info);
3809 	info.si_signo = sig;
3810 	info.si_errno = 0;
3811 	info.si_code = SI_TKILL;
3812 	info.si_pid = task_tgid_vnr(current);
3813 	info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
3814 
3815 	return do_send_specific(tgid, pid, sig, &info);
3816 }
3817 
3818 /**
3819  *  sys_tgkill - send signal to one specific thread
3820  *  @tgid: the thread group ID of the thread
3821  *  @pid: the PID of the thread
3822  *  @sig: signal to be sent
3823  *
3824  *  This syscall also checks the @tgid and returns -ESRCH even if the PID
3825  *  exists but it's not belonging to the target process anymore. This
3826  *  method solves the problem of threads exiting and PIDs getting reused.
3827  */
SYSCALL_DEFINE3(tgkill,pid_t,tgid,pid_t,pid,int,sig)3828 SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig)
3829 {
3830 	/* This is only valid for single tasks */
3831 	if (pid <= 0 || tgid <= 0)
3832 		return -EINVAL;
3833 
3834 	return do_tkill(tgid, pid, sig);
3835 }
3836 
3837 /**
3838  *  sys_tkill - send signal to one specific task
3839  *  @pid: the PID of the task
3840  *  @sig: signal to be sent
3841  *
3842  *  Send a signal to only one task, even if it's a CLONE_THREAD task.
3843  */
SYSCALL_DEFINE2(tkill,pid_t,pid,int,sig)3844 SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig)
3845 {
3846 	/* This is only valid for single tasks */
3847 	if (pid <= 0)
3848 		return -EINVAL;
3849 
3850 	return do_tkill(0, pid, sig);
3851 }
3852 
do_rt_sigqueueinfo(pid_t pid,int sig,kernel_siginfo_t * info)3853 static int do_rt_sigqueueinfo(pid_t pid, int sig, kernel_siginfo_t *info)
3854 {
3855 	/* Not even root can pretend to send signals from the kernel.
3856 	 * Nor can they impersonate a kill()/tgkill(), which adds source info.
3857 	 */
3858 	if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
3859 	    (task_pid_vnr(current) != pid))
3860 		return -EPERM;
3861 
3862 	/* POSIX.1b doesn't mention process groups.  */
3863 	return kill_proc_info(sig, info, pid);
3864 }
3865 
3866 /**
3867  *  sys_rt_sigqueueinfo - send signal information to a signal
3868  *  @pid: the PID of the thread
3869  *  @sig: signal to be sent
3870  *  @uinfo: signal info to be sent
3871  */
SYSCALL_DEFINE3(rt_sigqueueinfo,pid_t,pid,int,sig,siginfo_t __user *,uinfo)3872 SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig,
3873 		siginfo_t __user *, uinfo)
3874 {
3875 	kernel_siginfo_t info;
3876 	int ret = __copy_siginfo_from_user(sig, &info, uinfo);
3877 	if (unlikely(ret))
3878 		return ret;
3879 	return do_rt_sigqueueinfo(pid, sig, &info);
3880 }
3881 
3882 #ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE3(rt_sigqueueinfo,compat_pid_t,pid,int,sig,struct compat_siginfo __user *,uinfo)3883 COMPAT_SYSCALL_DEFINE3(rt_sigqueueinfo,
3884 			compat_pid_t, pid,
3885 			int, sig,
3886 			struct compat_siginfo __user *, uinfo)
3887 {
3888 	kernel_siginfo_t info;
3889 	int ret = __copy_siginfo_from_user32(sig, &info, uinfo);
3890 	if (unlikely(ret))
3891 		return ret;
3892 	return do_rt_sigqueueinfo(pid, sig, &info);
3893 }
3894 #endif
3895 
do_rt_tgsigqueueinfo(pid_t tgid,pid_t pid,int sig,kernel_siginfo_t * info)3896 static int do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, kernel_siginfo_t *info)
3897 {
3898 	/* This is only valid for single tasks */
3899 	if (pid <= 0 || tgid <= 0)
3900 		return -EINVAL;
3901 
3902 	/* Not even root can pretend to send signals from the kernel.
3903 	 * Nor can they impersonate a kill()/tgkill(), which adds source info.
3904 	 */
3905 	if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
3906 	    (task_pid_vnr(current) != pid))
3907 		return -EPERM;
3908 
3909 	return do_send_specific(tgid, pid, sig, info);
3910 }
3911 
SYSCALL_DEFINE4(rt_tgsigqueueinfo,pid_t,tgid,pid_t,pid,int,sig,siginfo_t __user *,uinfo)3912 SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig,
3913 		siginfo_t __user *, uinfo)
3914 {
3915 	kernel_siginfo_t info;
3916 	int ret = __copy_siginfo_from_user(sig, &info, uinfo);
3917 	if (unlikely(ret))
3918 		return ret;
3919 	return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
3920 }
3921 
3922 #ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE4(rt_tgsigqueueinfo,compat_pid_t,tgid,compat_pid_t,pid,int,sig,struct compat_siginfo __user *,uinfo)3923 COMPAT_SYSCALL_DEFINE4(rt_tgsigqueueinfo,
3924 			compat_pid_t, tgid,
3925 			compat_pid_t, pid,
3926 			int, sig,
3927 			struct compat_siginfo __user *, uinfo)
3928 {
3929 	kernel_siginfo_t info;
3930 	int ret = __copy_siginfo_from_user32(sig, &info, uinfo);
3931 	if (unlikely(ret))
3932 		return ret;
3933 	return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
3934 }
3935 #endif
3936 
3937 /*
3938  * For kthreads only, must not be used if cloned with CLONE_SIGHAND
3939  */
kernel_sigaction(int sig,__sighandler_t action)3940 void kernel_sigaction(int sig, __sighandler_t action)
3941 {
3942 	spin_lock_irq(&current->sighand->siglock);
3943 	current->sighand->action[sig - 1].sa.sa_handler = action;
3944 	if (action == SIG_IGN) {
3945 		sigset_t mask;
3946 
3947 		sigemptyset(&mask);
3948 		sigaddset(&mask, sig);
3949 
3950 		flush_sigqueue_mask(&mask, &current->signal->shared_pending);
3951 		flush_sigqueue_mask(&mask, &current->pending);
3952 		recalc_sigpending();
3953 	}
3954 	spin_unlock_irq(&current->sighand->siglock);
3955 }
3956 EXPORT_SYMBOL(kernel_sigaction);
3957 
sigaction_compat_abi(struct k_sigaction * act,struct k_sigaction * oact)3958 void __weak sigaction_compat_abi(struct k_sigaction *act,
3959 		struct k_sigaction *oact)
3960 {
3961 }
3962 
do_sigaction(int sig,struct k_sigaction * act,struct k_sigaction * oact)3963 int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
3964 {
3965 	struct task_struct *p = current, *t;
3966 	struct k_sigaction *k;
3967 	sigset_t mask;
3968 
3969 	if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
3970 		return -EINVAL;
3971 
3972 	k = &p->sighand->action[sig-1];
3973 
3974 	spin_lock_irq(&p->sighand->siglock);
3975 	if (oact)
3976 		*oact = *k;
3977 
3978 	sigaction_compat_abi(act, oact);
3979 
3980 	if (act) {
3981 		sigdelsetmask(&act->sa.sa_mask,
3982 			      sigmask(SIGKILL) | sigmask(SIGSTOP));
3983 		*k = *act;
3984 		/*
3985 		 * POSIX 3.3.1.3:
3986 		 *  "Setting a signal action to SIG_IGN for a signal that is
3987 		 *   pending shall cause the pending signal to be discarded,
3988 		 *   whether or not it is blocked."
3989 		 *
3990 		 *  "Setting a signal action to SIG_DFL for a signal that is
3991 		 *   pending and whose default action is to ignore the signal
3992 		 *   (for example, SIGCHLD), shall cause the pending signal to
3993 		 *   be discarded, whether or not it is blocked"
3994 		 */
3995 		if (sig_handler_ignored(sig_handler(p, sig), sig)) {
3996 			sigemptyset(&mask);
3997 			sigaddset(&mask, sig);
3998 			flush_sigqueue_mask(&mask, &p->signal->shared_pending);
3999 			for_each_thread(p, t)
4000 				flush_sigqueue_mask(&mask, &t->pending);
4001 		}
4002 	}
4003 
4004 	spin_unlock_irq(&p->sighand->siglock);
4005 	return 0;
4006 }
4007 
4008 static int
do_sigaltstack(const stack_t * ss,stack_t * oss,unsigned long sp,size_t min_ss_size)4009 do_sigaltstack (const stack_t *ss, stack_t *oss, unsigned long sp,
4010 		size_t min_ss_size)
4011 {
4012 	struct task_struct *t = current;
4013 
4014 	if (oss) {
4015 		memset(oss, 0, sizeof(stack_t));
4016 		oss->ss_sp = (void __user *) t->sas_ss_sp;
4017 		oss->ss_size = t->sas_ss_size;
4018 		oss->ss_flags = sas_ss_flags(sp) |
4019 			(current->sas_ss_flags & SS_FLAG_BITS);
4020 	}
4021 
4022 	if (ss) {
4023 		void __user *ss_sp = ss->ss_sp;
4024 		size_t ss_size = ss->ss_size;
4025 		unsigned ss_flags = ss->ss_flags;
4026 		int ss_mode;
4027 
4028 		if (unlikely(on_sig_stack(sp)))
4029 			return -EPERM;
4030 
4031 		ss_mode = ss_flags & ~SS_FLAG_BITS;
4032 		if (unlikely(ss_mode != SS_DISABLE && ss_mode != SS_ONSTACK &&
4033 				ss_mode != 0))
4034 			return -EINVAL;
4035 
4036 		if (ss_mode == SS_DISABLE) {
4037 			ss_size = 0;
4038 			ss_sp = NULL;
4039 		} else {
4040 			if (unlikely(ss_size < min_ss_size))
4041 				return -ENOMEM;
4042 		}
4043 
4044 		t->sas_ss_sp = (unsigned long) ss_sp;
4045 		t->sas_ss_size = ss_size;
4046 		t->sas_ss_flags = ss_flags;
4047 	}
4048 	return 0;
4049 }
4050 
SYSCALL_DEFINE2(sigaltstack,const stack_t __user *,uss,stack_t __user *,uoss)4051 SYSCALL_DEFINE2(sigaltstack,const stack_t __user *,uss, stack_t __user *,uoss)
4052 {
4053 	stack_t new, old;
4054 	int err;
4055 	if (uss && copy_from_user(&new, uss, sizeof(stack_t)))
4056 		return -EFAULT;
4057 	err = do_sigaltstack(uss ? &new : NULL, uoss ? &old : NULL,
4058 			      current_user_stack_pointer(),
4059 			      MINSIGSTKSZ);
4060 	if (!err && uoss && copy_to_user(uoss, &old, sizeof(stack_t)))
4061 		err = -EFAULT;
4062 	return err;
4063 }
4064 
restore_altstack(const stack_t __user * uss)4065 int restore_altstack(const stack_t __user *uss)
4066 {
4067 	stack_t new;
4068 	if (copy_from_user(&new, uss, sizeof(stack_t)))
4069 		return -EFAULT;
4070 	(void)do_sigaltstack(&new, NULL, current_user_stack_pointer(),
4071 			     MINSIGSTKSZ);
4072 	/* squash all but EFAULT for now */
4073 	return 0;
4074 }
4075 
__save_altstack(stack_t __user * uss,unsigned long sp)4076 int __save_altstack(stack_t __user *uss, unsigned long sp)
4077 {
4078 	struct task_struct *t = current;
4079 	int err = __put_user((void __user *)t->sas_ss_sp, &uss->ss_sp) |
4080 		__put_user(t->sas_ss_flags, &uss->ss_flags) |
4081 		__put_user(t->sas_ss_size, &uss->ss_size);
4082 	if (err)
4083 		return err;
4084 	if (t->sas_ss_flags & SS_AUTODISARM)
4085 		sas_ss_reset(t);
4086 	return 0;
4087 }
4088 
4089 #ifdef CONFIG_COMPAT
do_compat_sigaltstack(const compat_stack_t __user * uss_ptr,compat_stack_t __user * uoss_ptr)4090 static int do_compat_sigaltstack(const compat_stack_t __user *uss_ptr,
4091 				 compat_stack_t __user *uoss_ptr)
4092 {
4093 	stack_t uss, uoss;
4094 	int ret;
4095 
4096 	if (uss_ptr) {
4097 		compat_stack_t uss32;
4098 		if (copy_from_user(&uss32, uss_ptr, sizeof(compat_stack_t)))
4099 			return -EFAULT;
4100 		uss.ss_sp = compat_ptr(uss32.ss_sp);
4101 		uss.ss_flags = uss32.ss_flags;
4102 		uss.ss_size = uss32.ss_size;
4103 	}
4104 	ret = do_sigaltstack(uss_ptr ? &uss : NULL, &uoss,
4105 			     compat_user_stack_pointer(),
4106 			     COMPAT_MINSIGSTKSZ);
4107 	if (ret >= 0 && uoss_ptr)  {
4108 		compat_stack_t old;
4109 		memset(&old, 0, sizeof(old));
4110 		old.ss_sp = ptr_to_compat(uoss.ss_sp);
4111 		old.ss_flags = uoss.ss_flags;
4112 		old.ss_size = uoss.ss_size;
4113 		if (copy_to_user(uoss_ptr, &old, sizeof(compat_stack_t)))
4114 			ret = -EFAULT;
4115 	}
4116 	return ret;
4117 }
4118 
COMPAT_SYSCALL_DEFINE2(sigaltstack,const compat_stack_t __user *,uss_ptr,compat_stack_t __user *,uoss_ptr)4119 COMPAT_SYSCALL_DEFINE2(sigaltstack,
4120 			const compat_stack_t __user *, uss_ptr,
4121 			compat_stack_t __user *, uoss_ptr)
4122 {
4123 	return do_compat_sigaltstack(uss_ptr, uoss_ptr);
4124 }
4125 
compat_restore_altstack(const compat_stack_t __user * uss)4126 int compat_restore_altstack(const compat_stack_t __user *uss)
4127 {
4128 	int err = do_compat_sigaltstack(uss, NULL);
4129 	/* squash all but -EFAULT for now */
4130 	return err == -EFAULT ? err : 0;
4131 }
4132 
__compat_save_altstack(compat_stack_t __user * uss,unsigned long sp)4133 int __compat_save_altstack(compat_stack_t __user *uss, unsigned long sp)
4134 {
4135 	int err;
4136 	struct task_struct *t = current;
4137 	err = __put_user(ptr_to_compat((void __user *)t->sas_ss_sp),
4138 			 &uss->ss_sp) |
4139 		__put_user(t->sas_ss_flags, &uss->ss_flags) |
4140 		__put_user(t->sas_ss_size, &uss->ss_size);
4141 	if (err)
4142 		return err;
4143 	if (t->sas_ss_flags & SS_AUTODISARM)
4144 		sas_ss_reset(t);
4145 	return 0;
4146 }
4147 #endif
4148 
4149 #ifdef __ARCH_WANT_SYS_SIGPENDING
4150 
4151 /**
4152  *  sys_sigpending - examine pending signals
4153  *  @uset: where mask of pending signal is returned
4154  */
SYSCALL_DEFINE1(sigpending,old_sigset_t __user *,uset)4155 SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, uset)
4156 {
4157 	sigset_t set;
4158 
4159 	if (sizeof(old_sigset_t) > sizeof(*uset))
4160 		return -EINVAL;
4161 
4162 	do_sigpending(&set);
4163 
4164 	if (copy_to_user(uset, &set, sizeof(old_sigset_t)))
4165 		return -EFAULT;
4166 
4167 	return 0;
4168 }
4169 
4170 #ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE1(sigpending,compat_old_sigset_t __user *,set32)4171 COMPAT_SYSCALL_DEFINE1(sigpending, compat_old_sigset_t __user *, set32)
4172 {
4173 	sigset_t set;
4174 
4175 	do_sigpending(&set);
4176 
4177 	return put_user(set.sig[0], set32);
4178 }
4179 #endif
4180 
4181 #endif
4182 
4183 #ifdef __ARCH_WANT_SYS_SIGPROCMASK
4184 /**
4185  *  sys_sigprocmask - examine and change blocked signals
4186  *  @how: whether to add, remove, or set signals
4187  *  @nset: signals to add or remove (if non-null)
4188  *  @oset: previous value of signal mask if non-null
4189  *
4190  * Some platforms have their own version with special arguments;
4191  * others support only sys_rt_sigprocmask.
4192  */
4193 
SYSCALL_DEFINE3(sigprocmask,int,how,old_sigset_t __user *,nset,old_sigset_t __user *,oset)4194 SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, nset,
4195 		old_sigset_t __user *, oset)
4196 {
4197 	old_sigset_t old_set, new_set;
4198 	sigset_t new_blocked;
4199 
4200 	old_set = current->blocked.sig[0];
4201 
4202 	if (nset) {
4203 		if (copy_from_user(&new_set, nset, sizeof(*nset)))
4204 			return -EFAULT;
4205 
4206 		new_blocked = current->blocked;
4207 
4208 		switch (how) {
4209 		case SIG_BLOCK:
4210 			sigaddsetmask(&new_blocked, new_set);
4211 			break;
4212 		case SIG_UNBLOCK:
4213 			sigdelsetmask(&new_blocked, new_set);
4214 			break;
4215 		case SIG_SETMASK:
4216 			new_blocked.sig[0] = new_set;
4217 			break;
4218 		default:
4219 			return -EINVAL;
4220 		}
4221 
4222 		set_current_blocked(&new_blocked);
4223 	}
4224 
4225 	if (oset) {
4226 		if (copy_to_user(oset, &old_set, sizeof(*oset)))
4227 			return -EFAULT;
4228 	}
4229 
4230 	return 0;
4231 }
4232 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */
4233 
4234 #ifndef CONFIG_ODD_RT_SIGACTION
4235 /**
4236  *  sys_rt_sigaction - alter an action taken by a process
4237  *  @sig: signal to be sent
4238  *  @act: new sigaction
4239  *  @oact: used to save the previous sigaction
4240  *  @sigsetsize: size of sigset_t type
4241  */
SYSCALL_DEFINE4(rt_sigaction,int,sig,const struct sigaction __user *,act,struct sigaction __user *,oact,size_t,sigsetsize)4242 SYSCALL_DEFINE4(rt_sigaction, int, sig,
4243 		const struct sigaction __user *, act,
4244 		struct sigaction __user *, oact,
4245 		size_t, sigsetsize)
4246 {
4247 	struct k_sigaction new_sa, old_sa;
4248 	int ret;
4249 
4250 	/* XXX: Don't preclude handling different sized sigset_t's.  */
4251 	if (sigsetsize != sizeof(sigset_t))
4252 		return -EINVAL;
4253 
4254 	if (act && copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
4255 		return -EFAULT;
4256 
4257 	ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
4258 	if (ret)
4259 		return ret;
4260 
4261 	if (oact && copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
4262 		return -EFAULT;
4263 
4264 	return 0;
4265 }
4266 #ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE4(rt_sigaction,int,sig,const struct compat_sigaction __user *,act,struct compat_sigaction __user *,oact,compat_size_t,sigsetsize)4267 COMPAT_SYSCALL_DEFINE4(rt_sigaction, int, sig,
4268 		const struct compat_sigaction __user *, act,
4269 		struct compat_sigaction __user *, oact,
4270 		compat_size_t, sigsetsize)
4271 {
4272 	struct k_sigaction new_ka, old_ka;
4273 #ifdef __ARCH_HAS_SA_RESTORER
4274 	compat_uptr_t restorer;
4275 #endif
4276 	int ret;
4277 
4278 	/* XXX: Don't preclude handling different sized sigset_t's.  */
4279 	if (sigsetsize != sizeof(compat_sigset_t))
4280 		return -EINVAL;
4281 
4282 	if (act) {
4283 		compat_uptr_t handler;
4284 		ret = get_user(handler, &act->sa_handler);
4285 		new_ka.sa.sa_handler = compat_ptr(handler);
4286 #ifdef __ARCH_HAS_SA_RESTORER
4287 		ret |= get_user(restorer, &act->sa_restorer);
4288 		new_ka.sa.sa_restorer = compat_ptr(restorer);
4289 #endif
4290 		ret |= get_compat_sigset(&new_ka.sa.sa_mask, &act->sa_mask);
4291 		ret |= get_user(new_ka.sa.sa_flags, &act->sa_flags);
4292 		if (ret)
4293 			return -EFAULT;
4294 	}
4295 
4296 	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4297 	if (!ret && oact) {
4298 		ret = put_user(ptr_to_compat(old_ka.sa.sa_handler),
4299 			       &oact->sa_handler);
4300 		ret |= put_compat_sigset(&oact->sa_mask, &old_ka.sa.sa_mask,
4301 					 sizeof(oact->sa_mask));
4302 		ret |= put_user(old_ka.sa.sa_flags, &oact->sa_flags);
4303 #ifdef __ARCH_HAS_SA_RESTORER
4304 		ret |= put_user(ptr_to_compat(old_ka.sa.sa_restorer),
4305 				&oact->sa_restorer);
4306 #endif
4307 	}
4308 	return ret;
4309 }
4310 #endif
4311 #endif /* !CONFIG_ODD_RT_SIGACTION */
4312 
4313 #ifdef CONFIG_OLD_SIGACTION
SYSCALL_DEFINE3(sigaction,int,sig,const struct old_sigaction __user *,act,struct old_sigaction __user *,oact)4314 SYSCALL_DEFINE3(sigaction, int, sig,
4315 		const struct old_sigaction __user *, act,
4316 	        struct old_sigaction __user *, oact)
4317 {
4318 	struct k_sigaction new_ka, old_ka;
4319 	int ret;
4320 
4321 	if (act) {
4322 		old_sigset_t mask;
4323 		if (!access_ok(act, sizeof(*act)) ||
4324 		    __get_user(new_ka.sa.sa_handler, &act->sa_handler) ||
4325 		    __get_user(new_ka.sa.sa_restorer, &act->sa_restorer) ||
4326 		    __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
4327 		    __get_user(mask, &act->sa_mask))
4328 			return -EFAULT;
4329 #ifdef __ARCH_HAS_KA_RESTORER
4330 		new_ka.ka_restorer = NULL;
4331 #endif
4332 		siginitset(&new_ka.sa.sa_mask, mask);
4333 	}
4334 
4335 	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4336 
4337 	if (!ret && oact) {
4338 		if (!access_ok(oact, sizeof(*oact)) ||
4339 		    __put_user(old_ka.sa.sa_handler, &oact->sa_handler) ||
4340 		    __put_user(old_ka.sa.sa_restorer, &oact->sa_restorer) ||
4341 		    __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
4342 		    __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
4343 			return -EFAULT;
4344 	}
4345 
4346 	return ret;
4347 }
4348 #endif
4349 #ifdef CONFIG_COMPAT_OLD_SIGACTION
COMPAT_SYSCALL_DEFINE3(sigaction,int,sig,const struct compat_old_sigaction __user *,act,struct compat_old_sigaction __user *,oact)4350 COMPAT_SYSCALL_DEFINE3(sigaction, int, sig,
4351 		const struct compat_old_sigaction __user *, act,
4352 	        struct compat_old_sigaction __user *, oact)
4353 {
4354 	struct k_sigaction new_ka, old_ka;
4355 	int ret;
4356 	compat_old_sigset_t mask;
4357 	compat_uptr_t handler, restorer;
4358 
4359 	if (act) {
4360 		if (!access_ok(act, sizeof(*act)) ||
4361 		    __get_user(handler, &act->sa_handler) ||
4362 		    __get_user(restorer, &act->sa_restorer) ||
4363 		    __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
4364 		    __get_user(mask, &act->sa_mask))
4365 			return -EFAULT;
4366 
4367 #ifdef __ARCH_HAS_KA_RESTORER
4368 		new_ka.ka_restorer = NULL;
4369 #endif
4370 		new_ka.sa.sa_handler = compat_ptr(handler);
4371 		new_ka.sa.sa_restorer = compat_ptr(restorer);
4372 		siginitset(&new_ka.sa.sa_mask, mask);
4373 	}
4374 
4375 	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4376 
4377 	if (!ret && oact) {
4378 		if (!access_ok(oact, sizeof(*oact)) ||
4379 		    __put_user(ptr_to_compat(old_ka.sa.sa_handler),
4380 			       &oact->sa_handler) ||
4381 		    __put_user(ptr_to_compat(old_ka.sa.sa_restorer),
4382 			       &oact->sa_restorer) ||
4383 		    __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
4384 		    __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
4385 			return -EFAULT;
4386 	}
4387 	return ret;
4388 }
4389 #endif
4390 
4391 #ifdef CONFIG_SGETMASK_SYSCALL
4392 
4393 /*
4394  * For backwards compatibility.  Functionality superseded by sigprocmask.
4395  */
SYSCALL_DEFINE0(sgetmask)4396 SYSCALL_DEFINE0(sgetmask)
4397 {
4398 	/* SMP safe */
4399 	return current->blocked.sig[0];
4400 }
4401 
SYSCALL_DEFINE1(ssetmask,int,newmask)4402 SYSCALL_DEFINE1(ssetmask, int, newmask)
4403 {
4404 	int old = current->blocked.sig[0];
4405 	sigset_t newset;
4406 
4407 	siginitset(&newset, newmask);
4408 	set_current_blocked(&newset);
4409 
4410 	return old;
4411 }
4412 #endif /* CONFIG_SGETMASK_SYSCALL */
4413 
4414 #ifdef __ARCH_WANT_SYS_SIGNAL
4415 /*
4416  * For backwards compatibility.  Functionality superseded by sigaction.
4417  */
SYSCALL_DEFINE2(signal,int,sig,__sighandler_t,handler)4418 SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler)
4419 {
4420 	struct k_sigaction new_sa, old_sa;
4421 	int ret;
4422 
4423 	new_sa.sa.sa_handler = handler;
4424 	new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
4425 	sigemptyset(&new_sa.sa.sa_mask);
4426 
4427 	ret = do_sigaction(sig, &new_sa, &old_sa);
4428 
4429 	return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
4430 }
4431 #endif /* __ARCH_WANT_SYS_SIGNAL */
4432 
4433 #ifdef __ARCH_WANT_SYS_PAUSE
4434 
SYSCALL_DEFINE0(pause)4435 SYSCALL_DEFINE0(pause)
4436 {
4437 	while (!signal_pending(current)) {
4438 		__set_current_state(TASK_INTERRUPTIBLE);
4439 		schedule();
4440 	}
4441 	return -ERESTARTNOHAND;
4442 }
4443 
4444 #endif
4445 
sigsuspend(sigset_t * set)4446 static int sigsuspend(sigset_t *set)
4447 {
4448 	current->saved_sigmask = current->blocked;
4449 	set_current_blocked(set);
4450 
4451 	while (!signal_pending(current)) {
4452 		__set_current_state(TASK_INTERRUPTIBLE);
4453 		schedule();
4454 	}
4455 	set_restore_sigmask();
4456 	return -ERESTARTNOHAND;
4457 }
4458 
4459 /**
4460  *  sys_rt_sigsuspend - replace the signal mask for a value with the
4461  *	@unewset value until a signal is received
4462  *  @unewset: new signal mask value
4463  *  @sigsetsize: size of sigset_t type
4464  */
SYSCALL_DEFINE2(rt_sigsuspend,sigset_t __user *,unewset,size_t,sigsetsize)4465 SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize)
4466 {
4467 	sigset_t newset;
4468 
4469 	/* XXX: Don't preclude handling different sized sigset_t's.  */
4470 	if (sigsetsize != sizeof(sigset_t))
4471 		return -EINVAL;
4472 
4473 	if (copy_from_user(&newset, unewset, sizeof(newset)))
4474 		return -EFAULT;
4475 	return sigsuspend(&newset);
4476 }
4477 
4478 #ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE2(rt_sigsuspend,compat_sigset_t __user *,unewset,compat_size_t,sigsetsize)4479 COMPAT_SYSCALL_DEFINE2(rt_sigsuspend, compat_sigset_t __user *, unewset, compat_size_t, sigsetsize)
4480 {
4481 	sigset_t newset;
4482 
4483 	/* XXX: Don't preclude handling different sized sigset_t's.  */
4484 	if (sigsetsize != sizeof(sigset_t))
4485 		return -EINVAL;
4486 
4487 	if (get_compat_sigset(&newset, unewset))
4488 		return -EFAULT;
4489 	return sigsuspend(&newset);
4490 }
4491 #endif
4492 
4493 #ifdef CONFIG_OLD_SIGSUSPEND
SYSCALL_DEFINE1(sigsuspend,old_sigset_t,mask)4494 SYSCALL_DEFINE1(sigsuspend, old_sigset_t, mask)
4495 {
4496 	sigset_t blocked;
4497 	siginitset(&blocked, mask);
4498 	return sigsuspend(&blocked);
4499 }
4500 #endif
4501 #ifdef CONFIG_OLD_SIGSUSPEND3
SYSCALL_DEFINE3(sigsuspend,int,unused1,int,unused2,old_sigset_t,mask)4502 SYSCALL_DEFINE3(sigsuspend, int, unused1, int, unused2, old_sigset_t, mask)
4503 {
4504 	sigset_t blocked;
4505 	siginitset(&blocked, mask);
4506 	return sigsuspend(&blocked);
4507 }
4508 #endif
4509 
arch_vma_name(struct vm_area_struct * vma)4510 __weak const char *arch_vma_name(struct vm_area_struct *vma)
4511 {
4512 	return NULL;
4513 }
4514 
siginfo_buildtime_checks(void)4515 static inline void siginfo_buildtime_checks(void)
4516 {
4517 	BUILD_BUG_ON(sizeof(struct siginfo) != SI_MAX_SIZE);
4518 
4519 	/* Verify the offsets in the two siginfos match */
4520 #define CHECK_OFFSET(field) \
4521 	BUILD_BUG_ON(offsetof(siginfo_t, field) != offsetof(kernel_siginfo_t, field))
4522 
4523 	/* kill */
4524 	CHECK_OFFSET(si_pid);
4525 	CHECK_OFFSET(si_uid);
4526 
4527 	/* timer */
4528 	CHECK_OFFSET(si_tid);
4529 	CHECK_OFFSET(si_overrun);
4530 	CHECK_OFFSET(si_value);
4531 
4532 	/* rt */
4533 	CHECK_OFFSET(si_pid);
4534 	CHECK_OFFSET(si_uid);
4535 	CHECK_OFFSET(si_value);
4536 
4537 	/* sigchld */
4538 	CHECK_OFFSET(si_pid);
4539 	CHECK_OFFSET(si_uid);
4540 	CHECK_OFFSET(si_status);
4541 	CHECK_OFFSET(si_utime);
4542 	CHECK_OFFSET(si_stime);
4543 
4544 	/* sigfault */
4545 	CHECK_OFFSET(si_addr);
4546 	CHECK_OFFSET(si_addr_lsb);
4547 	CHECK_OFFSET(si_lower);
4548 	CHECK_OFFSET(si_upper);
4549 	CHECK_OFFSET(si_pkey);
4550 
4551 	/* sigpoll */
4552 	CHECK_OFFSET(si_band);
4553 	CHECK_OFFSET(si_fd);
4554 
4555 	/* sigsys */
4556 	CHECK_OFFSET(si_call_addr);
4557 	CHECK_OFFSET(si_syscall);
4558 	CHECK_OFFSET(si_arch);
4559 #undef CHECK_OFFSET
4560 
4561 	/* usb asyncio */
4562 	BUILD_BUG_ON(offsetof(struct siginfo, si_pid) !=
4563 		     offsetof(struct siginfo, si_addr));
4564 	if (sizeof(int) == sizeof(void __user *)) {
4565 		BUILD_BUG_ON(sizeof_field(struct siginfo, si_pid) !=
4566 			     sizeof(void __user *));
4567 	} else {
4568 		BUILD_BUG_ON((sizeof_field(struct siginfo, si_pid) +
4569 			      sizeof_field(struct siginfo, si_uid)) !=
4570 			     sizeof(void __user *));
4571 		BUILD_BUG_ON(offsetofend(struct siginfo, si_pid) !=
4572 			     offsetof(struct siginfo, si_uid));
4573 	}
4574 #ifdef CONFIG_COMPAT
4575 	BUILD_BUG_ON(offsetof(struct compat_siginfo, si_pid) !=
4576 		     offsetof(struct compat_siginfo, si_addr));
4577 	BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) !=
4578 		     sizeof(compat_uptr_t));
4579 	BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) !=
4580 		     sizeof_field(struct siginfo, si_pid));
4581 #endif
4582 }
4583 
signals_init(void)4584 void __init signals_init(void)
4585 {
4586 	siginfo_buildtime_checks();
4587 
4588 	sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC | SLAB_ACCOUNT);
4589 }
4590 
4591 #ifdef CONFIG_KGDB_KDB
4592 #include <linux/kdb.h>
4593 /*
4594  * kdb_send_sig - Allows kdb to send signals without exposing
4595  * signal internals.  This function checks if the required locks are
4596  * available before calling the main signal code, to avoid kdb
4597  * deadlocks.
4598  */
kdb_send_sig(struct task_struct * t,int sig)4599 void kdb_send_sig(struct task_struct *t, int sig)
4600 {
4601 	static struct task_struct *kdb_prev_t;
4602 	int new_t, ret;
4603 	if (!spin_trylock(&t->sighand->siglock)) {
4604 		kdb_printf("Can't do kill command now.\n"
4605 			   "The sigmask lock is held somewhere else in "
4606 			   "kernel, try again later\n");
4607 		return;
4608 	}
4609 	new_t = kdb_prev_t != t;
4610 	kdb_prev_t = t;
4611 	if (t->state != TASK_RUNNING && new_t) {
4612 		spin_unlock(&t->sighand->siglock);
4613 		kdb_printf("Process is not RUNNING, sending a signal from "
4614 			   "kdb risks deadlock\n"
4615 			   "on the run queue locks. "
4616 			   "The signal has _not_ been sent.\n"
4617 			   "Reissue the kill command if you want to risk "
4618 			   "the deadlock.\n");
4619 		return;
4620 	}
4621 	ret = send_signal(sig, SEND_SIG_PRIV, t, PIDTYPE_PID);
4622 	spin_unlock(&t->sighand->siglock);
4623 	if (ret)
4624 		kdb_printf("Fail to deliver Signal %d to process %d.\n",
4625 			   sig, t->pid);
4626 	else
4627 		kdb_printf("Signal %d is sent to process %d.\n", sig, t->pid);
4628 }
4629 #endif	/* CONFIG_KGDB_KDB */
4630