• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  * Scatterlist Cryptographic API.
4  *
5  * Copyright (c) 2002 James Morris <jmorris@intercode.com.au>
6  * Copyright (c) 2002 David S. Miller (davem@redhat.com)
7  * Copyright (c) 2005 Herbert Xu <herbert@gondor.apana.org.au>
8  *
9  * Portions derived from Cryptoapi, by Alexander Kjeldaas <astor@fast.no>
10  * and Nettle, by Niels Möller.
11  */
12 #ifndef _LINUX_CRYPTO_H
13 #define _LINUX_CRYPTO_H
14 
15 #include <linux/atomic.h>
16 #include <linux/kernel.h>
17 #include <linux/list.h>
18 #include <linux/bug.h>
19 #include <linux/refcount.h>
20 #include <linux/slab.h>
21 #include <linux/completion.h>
22 
23 /*
24  * Autoloaded crypto modules should only use a prefixed name to avoid allowing
25  * arbitrary modules to be loaded. Loading from userspace may still need the
26  * unprefixed names, so retains those aliases as well.
27  * This uses __MODULE_INFO directly instead of MODULE_ALIAS because pre-4.3
28  * gcc (e.g. avr32 toolchain) uses __LINE__ for uniqueness, and this macro
29  * expands twice on the same line. Instead, use a separate base name for the
30  * alias.
31  */
32 #define MODULE_ALIAS_CRYPTO(name)	\
33 		__MODULE_INFO(alias, alias_userspace, name);	\
34 		__MODULE_INFO(alias, alias_crypto, "crypto-" name)
35 
36 /*
37  * Algorithm masks and types.
38  */
39 #define CRYPTO_ALG_TYPE_MASK		0x0000000f
40 #define CRYPTO_ALG_TYPE_CIPHER		0x00000001
41 #define CRYPTO_ALG_TYPE_COMPRESS	0x00000002
42 #define CRYPTO_ALG_TYPE_AEAD		0x00000003
43 #define CRYPTO_ALG_TYPE_SKCIPHER	0x00000005
44 #define CRYPTO_ALG_TYPE_KPP		0x00000008
45 #define CRYPTO_ALG_TYPE_ACOMPRESS	0x0000000a
46 #define CRYPTO_ALG_TYPE_SCOMPRESS	0x0000000b
47 #define CRYPTO_ALG_TYPE_RNG		0x0000000c
48 #define CRYPTO_ALG_TYPE_AKCIPHER	0x0000000d
49 #define CRYPTO_ALG_TYPE_HASH		0x0000000e
50 #define CRYPTO_ALG_TYPE_SHASH		0x0000000e
51 #define CRYPTO_ALG_TYPE_AHASH		0x0000000f
52 
53 #define CRYPTO_ALG_TYPE_HASH_MASK	0x0000000e
54 #define CRYPTO_ALG_TYPE_AHASH_MASK	0x0000000e
55 #define CRYPTO_ALG_TYPE_ACOMPRESS_MASK	0x0000000e
56 
57 #define CRYPTO_ALG_LARVAL		0x00000010
58 #define CRYPTO_ALG_DEAD			0x00000020
59 #define CRYPTO_ALG_DYING		0x00000040
60 #define CRYPTO_ALG_ASYNC		0x00000080
61 
62 /*
63  * Set if the algorithm (or an algorithm which it uses) requires another
64  * algorithm of the same type to handle corner cases.
65  */
66 #define CRYPTO_ALG_NEED_FALLBACK	0x00000100
67 
68 /*
69  * Set if the algorithm has passed automated run-time testing.  Note that
70  * if there is no run-time testing for a given algorithm it is considered
71  * to have passed.
72  */
73 
74 #define CRYPTO_ALG_TESTED		0x00000400
75 
76 /*
77  * Set if the algorithm is an instance that is built from templates.
78  */
79 #define CRYPTO_ALG_INSTANCE		0x00000800
80 
81 /* Set this bit if the algorithm provided is hardware accelerated but
82  * not available to userspace via instruction set or so.
83  */
84 #define CRYPTO_ALG_KERN_DRIVER_ONLY	0x00001000
85 
86 /*
87  * Mark a cipher as a service implementation only usable by another
88  * cipher and never by a normal user of the kernel crypto API
89  */
90 #define CRYPTO_ALG_INTERNAL		0x00002000
91 
92 /*
93  * Set if the algorithm has a ->setkey() method but can be used without
94  * calling it first, i.e. there is a default key.
95  */
96 #define CRYPTO_ALG_OPTIONAL_KEY		0x00004000
97 
98 /*
99  * Don't trigger module loading
100  */
101 #define CRYPTO_NOLOAD			0x00008000
102 
103 /*
104  * The algorithm may allocate memory during request processing, i.e. during
105  * encryption, decryption, or hashing.  Users can request an algorithm with this
106  * flag unset if they can't handle memory allocation failures.
107  *
108  * This flag is currently only implemented for algorithms of type "skcipher",
109  * "aead", "ahash", "shash", and "cipher".  Algorithms of other types might not
110  * have this flag set even if they allocate memory.
111  *
112  * In some edge cases, algorithms can allocate memory regardless of this flag.
113  * To avoid these cases, users must obey the following usage constraints:
114  *    skcipher:
115  *	- The IV buffer and all scatterlist elements must be aligned to the
116  *	  algorithm's alignmask.
117  *	- If the data were to be divided into chunks of size
118  *	  crypto_skcipher_walksize() (with any remainder going at the end), no
119  *	  chunk can cross a page boundary or a scatterlist element boundary.
120  *    aead:
121  *	- The IV buffer and all scatterlist elements must be aligned to the
122  *	  algorithm's alignmask.
123  *	- The first scatterlist element must contain all the associated data,
124  *	  and its pages must be !PageHighMem.
125  *	- If the plaintext/ciphertext were to be divided into chunks of size
126  *	  crypto_aead_walksize() (with the remainder going at the end), no chunk
127  *	  can cross a page boundary or a scatterlist element boundary.
128  *    ahash:
129  *	- The result buffer must be aligned to the algorithm's alignmask.
130  *	- crypto_ahash_finup() must not be used unless the algorithm implements
131  *	  ->finup() natively.
132  */
133 #define CRYPTO_ALG_ALLOCATES_MEMORY	0x00010000
134 
135 /*
136  * Transform masks and values (for crt_flags).
137  */
138 #define CRYPTO_TFM_NEED_KEY		0x00000001
139 
140 #define CRYPTO_TFM_REQ_MASK		0x000fff00
141 #define CRYPTO_TFM_REQ_FORBID_WEAK_KEYS	0x00000100
142 #define CRYPTO_TFM_REQ_MAY_SLEEP	0x00000200
143 #define CRYPTO_TFM_REQ_MAY_BACKLOG	0x00000400
144 
145 /*
146  * Miscellaneous stuff.
147  */
148 #define CRYPTO_MAX_ALG_NAME		128
149 
150 /*
151  * The macro CRYPTO_MINALIGN_ATTR (along with the void * type in the actual
152  * declaration) is used to ensure that the crypto_tfm context structure is
153  * aligned correctly for the given architecture so that there are no alignment
154  * faults for C data types.  On architectures that support non-cache coherent
155  * DMA, such as ARM or arm64, it also takes into account the minimal alignment
156  * that is required to ensure that the context struct member does not share any
157  * cachelines with the rest of the struct. This is needed to ensure that cache
158  * maintenance for non-coherent DMA (cache invalidation in particular) does not
159  * affect data that may be accessed by the CPU concurrently.
160  */
161 #define CRYPTO_MINALIGN ARCH_KMALLOC_MINALIGN
162 
163 #define CRYPTO_MINALIGN_ATTR __attribute__ ((__aligned__(CRYPTO_MINALIGN)))
164 
165 struct scatterlist;
166 struct crypto_async_request;
167 struct crypto_tfm;
168 struct crypto_type;
169 
170 typedef void (*crypto_completion_t)(struct crypto_async_request *req, int err);
171 
172 /**
173  * DOC: Block Cipher Context Data Structures
174  *
175  * These data structures define the operating context for each block cipher
176  * type.
177  */
178 
179 struct crypto_async_request {
180 	struct list_head list;
181 	crypto_completion_t complete;
182 	void *data;
183 	struct crypto_tfm *tfm;
184 
185 	u32 flags;
186 };
187 
188 /**
189  * DOC: Block Cipher Algorithm Definitions
190  *
191  * These data structures define modular crypto algorithm implementations,
192  * managed via crypto_register_alg() and crypto_unregister_alg().
193  */
194 
195 /**
196  * struct cipher_alg - single-block symmetric ciphers definition
197  * @cia_min_keysize: Minimum key size supported by the transformation. This is
198  *		     the smallest key length supported by this transformation
199  *		     algorithm. This must be set to one of the pre-defined
200  *		     values as this is not hardware specific. Possible values
201  *		     for this field can be found via git grep "_MIN_KEY_SIZE"
202  *		     include/crypto/
203  * @cia_max_keysize: Maximum key size supported by the transformation. This is
204  *		    the largest key length supported by this transformation
205  *		    algorithm. This must be set to one of the pre-defined values
206  *		    as this is not hardware specific. Possible values for this
207  *		    field can be found via git grep "_MAX_KEY_SIZE"
208  *		    include/crypto/
209  * @cia_setkey: Set key for the transformation. This function is used to either
210  *	        program a supplied key into the hardware or store the key in the
211  *	        transformation context for programming it later. Note that this
212  *	        function does modify the transformation context. This function
213  *	        can be called multiple times during the existence of the
214  *	        transformation object, so one must make sure the key is properly
215  *	        reprogrammed into the hardware. This function is also
216  *	        responsible for checking the key length for validity.
217  * @cia_encrypt: Encrypt a single block. This function is used to encrypt a
218  *		 single block of data, which must be @cra_blocksize big. This
219  *		 always operates on a full @cra_blocksize and it is not possible
220  *		 to encrypt a block of smaller size. The supplied buffers must
221  *		 therefore also be at least of @cra_blocksize size. Both the
222  *		 input and output buffers are always aligned to @cra_alignmask.
223  *		 In case either of the input or output buffer supplied by user
224  *		 of the crypto API is not aligned to @cra_alignmask, the crypto
225  *		 API will re-align the buffers. The re-alignment means that a
226  *		 new buffer will be allocated, the data will be copied into the
227  *		 new buffer, then the processing will happen on the new buffer,
228  *		 then the data will be copied back into the original buffer and
229  *		 finally the new buffer will be freed. In case a software
230  *		 fallback was put in place in the @cra_init call, this function
231  *		 might need to use the fallback if the algorithm doesn't support
232  *		 all of the key sizes. In case the key was stored in
233  *		 transformation context, the key might need to be re-programmed
234  *		 into the hardware in this function. This function shall not
235  *		 modify the transformation context, as this function may be
236  *		 called in parallel with the same transformation object.
237  * @cia_decrypt: Decrypt a single block. This is a reverse counterpart to
238  *		 @cia_encrypt, and the conditions are exactly the same.
239  *
240  * All fields are mandatory and must be filled.
241  */
242 struct cipher_alg {
243 	unsigned int cia_min_keysize;
244 	unsigned int cia_max_keysize;
245 	int (*cia_setkey)(struct crypto_tfm *tfm, const u8 *key,
246 	                  unsigned int keylen);
247 	void (*cia_encrypt)(struct crypto_tfm *tfm, u8 *dst, const u8 *src);
248 	void (*cia_decrypt)(struct crypto_tfm *tfm, u8 *dst, const u8 *src);
249 };
250 
251 /**
252  * struct compress_alg - compression/decompression algorithm
253  * @coa_compress: Compress a buffer of specified length, storing the resulting
254  *		  data in the specified buffer. Return the length of the
255  *		  compressed data in dlen.
256  * @coa_decompress: Decompress the source buffer, storing the uncompressed
257  *		    data in the specified buffer. The length of the data is
258  *		    returned in dlen.
259  *
260  * All fields are mandatory.
261  */
262 struct compress_alg {
263 	int (*coa_compress)(struct crypto_tfm *tfm, const u8 *src,
264 			    unsigned int slen, u8 *dst, unsigned int *dlen);
265 	int (*coa_decompress)(struct crypto_tfm *tfm, const u8 *src,
266 			      unsigned int slen, u8 *dst, unsigned int *dlen);
267 };
268 
269 #ifdef CONFIG_CRYPTO_STATS
270 /*
271  * struct crypto_istat_aead - statistics for AEAD algorithm
272  * @encrypt_cnt:	number of encrypt requests
273  * @encrypt_tlen:	total data size handled by encrypt requests
274  * @decrypt_cnt:	number of decrypt requests
275  * @decrypt_tlen:	total data size handled by decrypt requests
276  * @err_cnt:		number of error for AEAD requests
277  */
278 struct crypto_istat_aead {
279 	atomic64_t encrypt_cnt;
280 	atomic64_t encrypt_tlen;
281 	atomic64_t decrypt_cnt;
282 	atomic64_t decrypt_tlen;
283 	atomic64_t err_cnt;
284 };
285 
286 /*
287  * struct crypto_istat_akcipher - statistics for akcipher algorithm
288  * @encrypt_cnt:	number of encrypt requests
289  * @encrypt_tlen:	total data size handled by encrypt requests
290  * @decrypt_cnt:	number of decrypt requests
291  * @decrypt_tlen:	total data size handled by decrypt requests
292  * @verify_cnt:		number of verify operation
293  * @sign_cnt:		number of sign requests
294  * @err_cnt:		number of error for akcipher requests
295  */
296 struct crypto_istat_akcipher {
297 	atomic64_t encrypt_cnt;
298 	atomic64_t encrypt_tlen;
299 	atomic64_t decrypt_cnt;
300 	atomic64_t decrypt_tlen;
301 	atomic64_t verify_cnt;
302 	atomic64_t sign_cnt;
303 	atomic64_t err_cnt;
304 };
305 
306 /*
307  * struct crypto_istat_cipher - statistics for cipher algorithm
308  * @encrypt_cnt:	number of encrypt requests
309  * @encrypt_tlen:	total data size handled by encrypt requests
310  * @decrypt_cnt:	number of decrypt requests
311  * @decrypt_tlen:	total data size handled by decrypt requests
312  * @err_cnt:		number of error for cipher requests
313  */
314 struct crypto_istat_cipher {
315 	atomic64_t encrypt_cnt;
316 	atomic64_t encrypt_tlen;
317 	atomic64_t decrypt_cnt;
318 	atomic64_t decrypt_tlen;
319 	atomic64_t err_cnt;
320 };
321 
322 /*
323  * struct crypto_istat_compress - statistics for compress algorithm
324  * @compress_cnt:	number of compress requests
325  * @compress_tlen:	total data size handled by compress requests
326  * @decompress_cnt:	number of decompress requests
327  * @decompress_tlen:	total data size handled by decompress requests
328  * @err_cnt:		number of error for compress requests
329  */
330 struct crypto_istat_compress {
331 	atomic64_t compress_cnt;
332 	atomic64_t compress_tlen;
333 	atomic64_t decompress_cnt;
334 	atomic64_t decompress_tlen;
335 	atomic64_t err_cnt;
336 };
337 
338 /*
339  * struct crypto_istat_hash - statistics for has algorithm
340  * @hash_cnt:		number of hash requests
341  * @hash_tlen:		total data size hashed
342  * @err_cnt:		number of error for hash requests
343  */
344 struct crypto_istat_hash {
345 	atomic64_t hash_cnt;
346 	atomic64_t hash_tlen;
347 	atomic64_t err_cnt;
348 };
349 
350 /*
351  * struct crypto_istat_kpp - statistics for KPP algorithm
352  * @setsecret_cnt:		number of setsecrey operation
353  * @generate_public_key_cnt:	number of generate_public_key operation
354  * @compute_shared_secret_cnt:	number of compute_shared_secret operation
355  * @err_cnt:			number of error for KPP requests
356  */
357 struct crypto_istat_kpp {
358 	atomic64_t setsecret_cnt;
359 	atomic64_t generate_public_key_cnt;
360 	atomic64_t compute_shared_secret_cnt;
361 	atomic64_t err_cnt;
362 };
363 
364 /*
365  * struct crypto_istat_rng: statistics for RNG algorithm
366  * @generate_cnt:	number of RNG generate requests
367  * @generate_tlen:	total data size of generated data by the RNG
368  * @seed_cnt:		number of times the RNG was seeded
369  * @err_cnt:		number of error for RNG requests
370  */
371 struct crypto_istat_rng {
372 	atomic64_t generate_cnt;
373 	atomic64_t generate_tlen;
374 	atomic64_t seed_cnt;
375 	atomic64_t err_cnt;
376 };
377 #endif /* CONFIG_CRYPTO_STATS */
378 
379 #define cra_cipher	cra_u.cipher
380 #define cra_compress	cra_u.compress
381 
382 /**
383  * struct crypto_alg - definition of a cryptograpic cipher algorithm
384  * @cra_flags: Flags describing this transformation. See include/linux/crypto.h
385  *	       CRYPTO_ALG_* flags for the flags which go in here. Those are
386  *	       used for fine-tuning the description of the transformation
387  *	       algorithm.
388  * @cra_blocksize: Minimum block size of this transformation. The size in bytes
389  *		   of the smallest possible unit which can be transformed with
390  *		   this algorithm. The users must respect this value.
391  *		   In case of HASH transformation, it is possible for a smaller
392  *		   block than @cra_blocksize to be passed to the crypto API for
393  *		   transformation, in case of any other transformation type, an
394  * 		   error will be returned upon any attempt to transform smaller
395  *		   than @cra_blocksize chunks.
396  * @cra_ctxsize: Size of the operational context of the transformation. This
397  *		 value informs the kernel crypto API about the memory size
398  *		 needed to be allocated for the transformation context.
399  * @cra_alignmask: Alignment mask for the input and output data buffer. The data
400  *		   buffer containing the input data for the algorithm must be
401  *		   aligned to this alignment mask. The data buffer for the
402  *		   output data must be aligned to this alignment mask. Note that
403  *		   the Crypto API will do the re-alignment in software, but
404  *		   only under special conditions and there is a performance hit.
405  *		   The re-alignment happens at these occasions for different
406  *		   @cra_u types: cipher -- For both input data and output data
407  *		   buffer; ahash -- For output hash destination buf; shash --
408  *		   For output hash destination buf.
409  *		   This is needed on hardware which is flawed by design and
410  *		   cannot pick data from arbitrary addresses.
411  * @cra_priority: Priority of this transformation implementation. In case
412  *		  multiple transformations with same @cra_name are available to
413  *		  the Crypto API, the kernel will use the one with highest
414  *		  @cra_priority.
415  * @cra_name: Generic name (usable by multiple implementations) of the
416  *	      transformation algorithm. This is the name of the transformation
417  *	      itself. This field is used by the kernel when looking up the
418  *	      providers of particular transformation.
419  * @cra_driver_name: Unique name of the transformation provider. This is the
420  *		     name of the provider of the transformation. This can be any
421  *		     arbitrary value, but in the usual case, this contains the
422  *		     name of the chip or provider and the name of the
423  *		     transformation algorithm.
424  * @cra_type: Type of the cryptographic transformation. This is a pointer to
425  *	      struct crypto_type, which implements callbacks common for all
426  *	      transformation types. There are multiple options, such as
427  *	      &crypto_skcipher_type, &crypto_ahash_type, &crypto_rng_type.
428  *	      This field might be empty. In that case, there are no common
429  *	      callbacks. This is the case for: cipher, compress, shash.
430  * @cra_u: Callbacks implementing the transformation. This is a union of
431  *	   multiple structures. Depending on the type of transformation selected
432  *	   by @cra_type and @cra_flags above, the associated structure must be
433  *	   filled with callbacks. This field might be empty. This is the case
434  *	   for ahash, shash.
435  * @cra_init: Initialize the cryptographic transformation object. This function
436  *	      is used to initialize the cryptographic transformation object.
437  *	      This function is called only once at the instantiation time, right
438  *	      after the transformation context was allocated. In case the
439  *	      cryptographic hardware has some special requirements which need to
440  *	      be handled by software, this function shall check for the precise
441  *	      requirement of the transformation and put any software fallbacks
442  *	      in place.
443  * @cra_exit: Deinitialize the cryptographic transformation object. This is a
444  *	      counterpart to @cra_init, used to remove various changes set in
445  *	      @cra_init.
446  * @cra_u.cipher: Union member which contains a single-block symmetric cipher
447  *		  definition. See @struct @cipher_alg.
448  * @cra_u.compress: Union member which contains a (de)compression algorithm.
449  *		    See @struct @compress_alg.
450  * @cra_module: Owner of this transformation implementation. Set to THIS_MODULE
451  * @cra_list: internally used
452  * @cra_users: internally used
453  * @cra_refcnt: internally used
454  * @cra_destroy: internally used
455  *
456  * @stats: union of all possible crypto_istat_xxx structures
457  * @stats.aead:		statistics for AEAD algorithm
458  * @stats.akcipher:	statistics for akcipher algorithm
459  * @stats.cipher:	statistics for cipher algorithm
460  * @stats.compress:	statistics for compress algorithm
461  * @stats.hash:		statistics for hash algorithm
462  * @stats.rng:		statistics for rng algorithm
463  * @stats.kpp:		statistics for KPP algorithm
464  *
465  * The struct crypto_alg describes a generic Crypto API algorithm and is common
466  * for all of the transformations. Any variable not documented here shall not
467  * be used by a cipher implementation as it is internal to the Crypto API.
468  */
469 struct crypto_alg {
470 	struct list_head cra_list;
471 	struct list_head cra_users;
472 
473 	u32 cra_flags;
474 	unsigned int cra_blocksize;
475 	unsigned int cra_ctxsize;
476 	unsigned int cra_alignmask;
477 
478 	int cra_priority;
479 	refcount_t cra_refcnt;
480 
481 	char cra_name[CRYPTO_MAX_ALG_NAME];
482 	char cra_driver_name[CRYPTO_MAX_ALG_NAME];
483 
484 	const struct crypto_type *cra_type;
485 
486 	union {
487 		struct cipher_alg cipher;
488 		struct compress_alg compress;
489 	} cra_u;
490 
491 	int (*cra_init)(struct crypto_tfm *tfm);
492 	void (*cra_exit)(struct crypto_tfm *tfm);
493 	void (*cra_destroy)(struct crypto_alg *alg);
494 
495 	struct module *cra_module;
496 
497 #ifdef CONFIG_CRYPTO_STATS
498 	union {
499 		struct crypto_istat_aead aead;
500 		struct crypto_istat_akcipher akcipher;
501 		struct crypto_istat_cipher cipher;
502 		struct crypto_istat_compress compress;
503 		struct crypto_istat_hash hash;
504 		struct crypto_istat_rng rng;
505 		struct crypto_istat_kpp kpp;
506 	} stats;
507 #endif /* CONFIG_CRYPTO_STATS */
508 
509 } CRYPTO_MINALIGN_ATTR;
510 
511 #ifdef CONFIG_CRYPTO_STATS
512 void crypto_stats_init(struct crypto_alg *alg);
513 void crypto_stats_get(struct crypto_alg *alg);
514 void crypto_stats_aead_encrypt(unsigned int cryptlen, struct crypto_alg *alg, int ret);
515 void crypto_stats_aead_decrypt(unsigned int cryptlen, struct crypto_alg *alg, int ret);
516 void crypto_stats_ahash_update(unsigned int nbytes, int ret, struct crypto_alg *alg);
517 void crypto_stats_ahash_final(unsigned int nbytes, int ret, struct crypto_alg *alg);
518 void crypto_stats_akcipher_encrypt(unsigned int src_len, int ret, struct crypto_alg *alg);
519 void crypto_stats_akcipher_decrypt(unsigned int src_len, int ret, struct crypto_alg *alg);
520 void crypto_stats_akcipher_sign(int ret, struct crypto_alg *alg);
521 void crypto_stats_akcipher_verify(int ret, struct crypto_alg *alg);
522 void crypto_stats_compress(unsigned int slen, int ret, struct crypto_alg *alg);
523 void crypto_stats_decompress(unsigned int slen, int ret, struct crypto_alg *alg);
524 void crypto_stats_kpp_set_secret(struct crypto_alg *alg, int ret);
525 void crypto_stats_kpp_generate_public_key(struct crypto_alg *alg, int ret);
526 void crypto_stats_kpp_compute_shared_secret(struct crypto_alg *alg, int ret);
527 void crypto_stats_rng_seed(struct crypto_alg *alg, int ret);
528 void crypto_stats_rng_generate(struct crypto_alg *alg, unsigned int dlen, int ret);
529 void crypto_stats_skcipher_encrypt(unsigned int cryptlen, int ret, struct crypto_alg *alg);
530 void crypto_stats_skcipher_decrypt(unsigned int cryptlen, int ret, struct crypto_alg *alg);
531 #else
crypto_stats_init(struct crypto_alg * alg)532 static inline void crypto_stats_init(struct crypto_alg *alg)
533 {}
crypto_stats_get(struct crypto_alg * alg)534 static inline void crypto_stats_get(struct crypto_alg *alg)
535 {}
crypto_stats_aead_encrypt(unsigned int cryptlen,struct crypto_alg * alg,int ret)536 static inline void crypto_stats_aead_encrypt(unsigned int cryptlen, struct crypto_alg *alg, int ret)
537 {}
crypto_stats_aead_decrypt(unsigned int cryptlen,struct crypto_alg * alg,int ret)538 static inline void crypto_stats_aead_decrypt(unsigned int cryptlen, struct crypto_alg *alg, int ret)
539 {}
crypto_stats_ahash_update(unsigned int nbytes,int ret,struct crypto_alg * alg)540 static inline void crypto_stats_ahash_update(unsigned int nbytes, int ret, struct crypto_alg *alg)
541 {}
crypto_stats_ahash_final(unsigned int nbytes,int ret,struct crypto_alg * alg)542 static inline void crypto_stats_ahash_final(unsigned int nbytes, int ret, struct crypto_alg *alg)
543 {}
crypto_stats_akcipher_encrypt(unsigned int src_len,int ret,struct crypto_alg * alg)544 static inline void crypto_stats_akcipher_encrypt(unsigned int src_len, int ret, struct crypto_alg *alg)
545 {}
crypto_stats_akcipher_decrypt(unsigned int src_len,int ret,struct crypto_alg * alg)546 static inline void crypto_stats_akcipher_decrypt(unsigned int src_len, int ret, struct crypto_alg *alg)
547 {}
crypto_stats_akcipher_sign(int ret,struct crypto_alg * alg)548 static inline void crypto_stats_akcipher_sign(int ret, struct crypto_alg *alg)
549 {}
crypto_stats_akcipher_verify(int ret,struct crypto_alg * alg)550 static inline void crypto_stats_akcipher_verify(int ret, struct crypto_alg *alg)
551 {}
crypto_stats_compress(unsigned int slen,int ret,struct crypto_alg * alg)552 static inline void crypto_stats_compress(unsigned int slen, int ret, struct crypto_alg *alg)
553 {}
crypto_stats_decompress(unsigned int slen,int ret,struct crypto_alg * alg)554 static inline void crypto_stats_decompress(unsigned int slen, int ret, struct crypto_alg *alg)
555 {}
crypto_stats_kpp_set_secret(struct crypto_alg * alg,int ret)556 static inline void crypto_stats_kpp_set_secret(struct crypto_alg *alg, int ret)
557 {}
crypto_stats_kpp_generate_public_key(struct crypto_alg * alg,int ret)558 static inline void crypto_stats_kpp_generate_public_key(struct crypto_alg *alg, int ret)
559 {}
crypto_stats_kpp_compute_shared_secret(struct crypto_alg * alg,int ret)560 static inline void crypto_stats_kpp_compute_shared_secret(struct crypto_alg *alg, int ret)
561 {}
crypto_stats_rng_seed(struct crypto_alg * alg,int ret)562 static inline void crypto_stats_rng_seed(struct crypto_alg *alg, int ret)
563 {}
crypto_stats_rng_generate(struct crypto_alg * alg,unsigned int dlen,int ret)564 static inline void crypto_stats_rng_generate(struct crypto_alg *alg, unsigned int dlen, int ret)
565 {}
crypto_stats_skcipher_encrypt(unsigned int cryptlen,int ret,struct crypto_alg * alg)566 static inline void crypto_stats_skcipher_encrypt(unsigned int cryptlen, int ret, struct crypto_alg *alg)
567 {}
crypto_stats_skcipher_decrypt(unsigned int cryptlen,int ret,struct crypto_alg * alg)568 static inline void crypto_stats_skcipher_decrypt(unsigned int cryptlen, int ret, struct crypto_alg *alg)
569 {}
570 #endif
571 /*
572  * A helper struct for waiting for completion of async crypto ops
573  */
574 struct crypto_wait {
575 	struct completion completion;
576 	int err;
577 };
578 
579 /*
580  * Macro for declaring a crypto op async wait object on stack
581  */
582 #define DECLARE_CRYPTO_WAIT(_wait) \
583 	struct crypto_wait _wait = { \
584 		COMPLETION_INITIALIZER_ONSTACK((_wait).completion), 0 }
585 
586 /*
587  * Async ops completion helper functioons
588  */
589 void crypto_req_done(struct crypto_async_request *req, int err);
590 
crypto_wait_req(int err,struct crypto_wait * wait)591 static inline int crypto_wait_req(int err, struct crypto_wait *wait)
592 {
593 	switch (err) {
594 	case -EINPROGRESS:
595 	case -EBUSY:
596 		wait_for_completion(&wait->completion);
597 		reinit_completion(&wait->completion);
598 		err = wait->err;
599 		break;
600 	}
601 
602 	return err;
603 }
604 
crypto_init_wait(struct crypto_wait * wait)605 static inline void crypto_init_wait(struct crypto_wait *wait)
606 {
607 	init_completion(&wait->completion);
608 }
609 
610 /*
611  * Algorithm registration interface.
612  */
613 int crypto_register_alg(struct crypto_alg *alg);
614 void crypto_unregister_alg(struct crypto_alg *alg);
615 int crypto_register_algs(struct crypto_alg *algs, int count);
616 void crypto_unregister_algs(struct crypto_alg *algs, int count);
617 
618 /*
619  * Algorithm query interface.
620  */
621 int crypto_has_alg(const char *name, u32 type, u32 mask);
622 
623 /*
624  * Transforms: user-instantiated objects which encapsulate algorithms
625  * and core processing logic.  Managed via crypto_alloc_*() and
626  * crypto_free_*(), as well as the various helpers below.
627  */
628 
629 struct crypto_tfm {
630 
631 	u32 crt_flags;
632 
633 	int node;
634 
635 	void (*exit)(struct crypto_tfm *tfm);
636 
637 	struct crypto_alg *__crt_alg;
638 
639 	void *__crt_ctx[] CRYPTO_MINALIGN_ATTR;
640 };
641 
642 struct crypto_cipher {
643 	struct crypto_tfm base;
644 };
645 
646 struct crypto_comp {
647 	struct crypto_tfm base;
648 };
649 
650 enum {
651 	CRYPTOA_UNSPEC,
652 	CRYPTOA_ALG,
653 	CRYPTOA_TYPE,
654 	CRYPTOA_U32,
655 	__CRYPTOA_MAX,
656 };
657 
658 #define CRYPTOA_MAX (__CRYPTOA_MAX - 1)
659 
660 /* Maximum number of (rtattr) parameters for each template. */
661 #define CRYPTO_MAX_ATTRS 32
662 
663 struct crypto_attr_alg {
664 	char name[CRYPTO_MAX_ALG_NAME];
665 };
666 
667 struct crypto_attr_type {
668 	u32 type;
669 	u32 mask;
670 };
671 
672 struct crypto_attr_u32 {
673 	u32 num;
674 };
675 
676 /*
677  * Transform user interface.
678  */
679 
680 struct crypto_tfm *crypto_alloc_base(const char *alg_name, u32 type, u32 mask);
681 void crypto_destroy_tfm(void *mem, struct crypto_tfm *tfm);
682 
crypto_free_tfm(struct crypto_tfm * tfm)683 static inline void crypto_free_tfm(struct crypto_tfm *tfm)
684 {
685 	return crypto_destroy_tfm(tfm, tfm);
686 }
687 
688 int alg_test(const char *driver, const char *alg, u32 type, u32 mask);
689 
690 /*
691  * Transform helpers which query the underlying algorithm.
692  */
crypto_tfm_alg_name(struct crypto_tfm * tfm)693 static inline const char *crypto_tfm_alg_name(struct crypto_tfm *tfm)
694 {
695 	return tfm->__crt_alg->cra_name;
696 }
697 
crypto_tfm_alg_driver_name(struct crypto_tfm * tfm)698 static inline const char *crypto_tfm_alg_driver_name(struct crypto_tfm *tfm)
699 {
700 	return tfm->__crt_alg->cra_driver_name;
701 }
702 
crypto_tfm_alg_priority(struct crypto_tfm * tfm)703 static inline int crypto_tfm_alg_priority(struct crypto_tfm *tfm)
704 {
705 	return tfm->__crt_alg->cra_priority;
706 }
707 
crypto_tfm_alg_type(struct crypto_tfm * tfm)708 static inline u32 crypto_tfm_alg_type(struct crypto_tfm *tfm)
709 {
710 	return tfm->__crt_alg->cra_flags & CRYPTO_ALG_TYPE_MASK;
711 }
712 
crypto_tfm_alg_blocksize(struct crypto_tfm * tfm)713 static inline unsigned int crypto_tfm_alg_blocksize(struct crypto_tfm *tfm)
714 {
715 	return tfm->__crt_alg->cra_blocksize;
716 }
717 
crypto_tfm_alg_alignmask(struct crypto_tfm * tfm)718 static inline unsigned int crypto_tfm_alg_alignmask(struct crypto_tfm *tfm)
719 {
720 	return tfm->__crt_alg->cra_alignmask;
721 }
722 
crypto_tfm_get_flags(struct crypto_tfm * tfm)723 static inline u32 crypto_tfm_get_flags(struct crypto_tfm *tfm)
724 {
725 	return tfm->crt_flags;
726 }
727 
crypto_tfm_set_flags(struct crypto_tfm * tfm,u32 flags)728 static inline void crypto_tfm_set_flags(struct crypto_tfm *tfm, u32 flags)
729 {
730 	tfm->crt_flags |= flags;
731 }
732 
crypto_tfm_clear_flags(struct crypto_tfm * tfm,u32 flags)733 static inline void crypto_tfm_clear_flags(struct crypto_tfm *tfm, u32 flags)
734 {
735 	tfm->crt_flags &= ~flags;
736 }
737 
crypto_tfm_ctx(struct crypto_tfm * tfm)738 static inline void *crypto_tfm_ctx(struct crypto_tfm *tfm)
739 {
740 	return tfm->__crt_ctx;
741 }
742 
crypto_tfm_ctx_alignment(void)743 static inline unsigned int crypto_tfm_ctx_alignment(void)
744 {
745 	struct crypto_tfm *tfm;
746 	return __alignof__(tfm->__crt_ctx);
747 }
748 
749 /**
750  * DOC: Single Block Cipher API
751  *
752  * The single block cipher API is used with the ciphers of type
753  * CRYPTO_ALG_TYPE_CIPHER (listed as type "cipher" in /proc/crypto).
754  *
755  * Using the single block cipher API calls, operations with the basic cipher
756  * primitive can be implemented. These cipher primitives exclude any block
757  * chaining operations including IV handling.
758  *
759  * The purpose of this single block cipher API is to support the implementation
760  * of templates or other concepts that only need to perform the cipher operation
761  * on one block at a time. Templates invoke the underlying cipher primitive
762  * block-wise and process either the input or the output data of these cipher
763  * operations.
764  */
765 
__crypto_cipher_cast(struct crypto_tfm * tfm)766 static inline struct crypto_cipher *__crypto_cipher_cast(struct crypto_tfm *tfm)
767 {
768 	return (struct crypto_cipher *)tfm;
769 }
770 
771 /**
772  * crypto_alloc_cipher() - allocate single block cipher handle
773  * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
774  *	     single block cipher
775  * @type: specifies the type of the cipher
776  * @mask: specifies the mask for the cipher
777  *
778  * Allocate a cipher handle for a single block cipher. The returned struct
779  * crypto_cipher is the cipher handle that is required for any subsequent API
780  * invocation for that single block cipher.
781  *
782  * Return: allocated cipher handle in case of success; IS_ERR() is true in case
783  *	   of an error, PTR_ERR() returns the error code.
784  */
crypto_alloc_cipher(const char * alg_name,u32 type,u32 mask)785 static inline struct crypto_cipher *crypto_alloc_cipher(const char *alg_name,
786 							u32 type, u32 mask)
787 {
788 	type &= ~CRYPTO_ALG_TYPE_MASK;
789 	type |= CRYPTO_ALG_TYPE_CIPHER;
790 	mask |= CRYPTO_ALG_TYPE_MASK;
791 
792 	return __crypto_cipher_cast(crypto_alloc_base(alg_name, type, mask));
793 }
794 
crypto_cipher_tfm(struct crypto_cipher * tfm)795 static inline struct crypto_tfm *crypto_cipher_tfm(struct crypto_cipher *tfm)
796 {
797 	return &tfm->base;
798 }
799 
800 /**
801  * crypto_free_cipher() - zeroize and free the single block cipher handle
802  * @tfm: cipher handle to be freed
803  */
crypto_free_cipher(struct crypto_cipher * tfm)804 static inline void crypto_free_cipher(struct crypto_cipher *tfm)
805 {
806 	crypto_free_tfm(crypto_cipher_tfm(tfm));
807 }
808 
809 /**
810  * crypto_has_cipher() - Search for the availability of a single block cipher
811  * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
812  *	     single block cipher
813  * @type: specifies the type of the cipher
814  * @mask: specifies the mask for the cipher
815  *
816  * Return: true when the single block cipher is known to the kernel crypto API;
817  *	   false otherwise
818  */
crypto_has_cipher(const char * alg_name,u32 type,u32 mask)819 static inline int crypto_has_cipher(const char *alg_name, u32 type, u32 mask)
820 {
821 	type &= ~CRYPTO_ALG_TYPE_MASK;
822 	type |= CRYPTO_ALG_TYPE_CIPHER;
823 	mask |= CRYPTO_ALG_TYPE_MASK;
824 
825 	return crypto_has_alg(alg_name, type, mask);
826 }
827 
828 /**
829  * crypto_cipher_blocksize() - obtain block size for cipher
830  * @tfm: cipher handle
831  *
832  * The block size for the single block cipher referenced with the cipher handle
833  * tfm is returned. The caller may use that information to allocate appropriate
834  * memory for the data returned by the encryption or decryption operation
835  *
836  * Return: block size of cipher
837  */
crypto_cipher_blocksize(struct crypto_cipher * tfm)838 static inline unsigned int crypto_cipher_blocksize(struct crypto_cipher *tfm)
839 {
840 	return crypto_tfm_alg_blocksize(crypto_cipher_tfm(tfm));
841 }
842 
crypto_cipher_alignmask(struct crypto_cipher * tfm)843 static inline unsigned int crypto_cipher_alignmask(struct crypto_cipher *tfm)
844 {
845 	return crypto_tfm_alg_alignmask(crypto_cipher_tfm(tfm));
846 }
847 
crypto_cipher_get_flags(struct crypto_cipher * tfm)848 static inline u32 crypto_cipher_get_flags(struct crypto_cipher *tfm)
849 {
850 	return crypto_tfm_get_flags(crypto_cipher_tfm(tfm));
851 }
852 
crypto_cipher_set_flags(struct crypto_cipher * tfm,u32 flags)853 static inline void crypto_cipher_set_flags(struct crypto_cipher *tfm,
854 					   u32 flags)
855 {
856 	crypto_tfm_set_flags(crypto_cipher_tfm(tfm), flags);
857 }
858 
crypto_cipher_clear_flags(struct crypto_cipher * tfm,u32 flags)859 static inline void crypto_cipher_clear_flags(struct crypto_cipher *tfm,
860 					     u32 flags)
861 {
862 	crypto_tfm_clear_flags(crypto_cipher_tfm(tfm), flags);
863 }
864 
865 /**
866  * crypto_cipher_setkey() - set key for cipher
867  * @tfm: cipher handle
868  * @key: buffer holding the key
869  * @keylen: length of the key in bytes
870  *
871  * The caller provided key is set for the single block cipher referenced by the
872  * cipher handle.
873  *
874  * Note, the key length determines the cipher type. Many block ciphers implement
875  * different cipher modes depending on the key size, such as AES-128 vs AES-192
876  * vs. AES-256. When providing a 16 byte key for an AES cipher handle, AES-128
877  * is performed.
878  *
879  * Return: 0 if the setting of the key was successful; < 0 if an error occurred
880  */
881 int crypto_cipher_setkey(struct crypto_cipher *tfm,
882 			 const u8 *key, unsigned int keylen);
883 
884 /**
885  * crypto_cipher_encrypt_one() - encrypt one block of plaintext
886  * @tfm: cipher handle
887  * @dst: points to the buffer that will be filled with the ciphertext
888  * @src: buffer holding the plaintext to be encrypted
889  *
890  * Invoke the encryption operation of one block. The caller must ensure that
891  * the plaintext and ciphertext buffers are at least one block in size.
892  */
893 void crypto_cipher_encrypt_one(struct crypto_cipher *tfm,
894 			       u8 *dst, const u8 *src);
895 
896 /**
897  * crypto_cipher_decrypt_one() - decrypt one block of ciphertext
898  * @tfm: cipher handle
899  * @dst: points to the buffer that will be filled with the plaintext
900  * @src: buffer holding the ciphertext to be decrypted
901  *
902  * Invoke the decryption operation of one block. The caller must ensure that
903  * the plaintext and ciphertext buffers are at least one block in size.
904  */
905 void crypto_cipher_decrypt_one(struct crypto_cipher *tfm,
906 			       u8 *dst, const u8 *src);
907 
__crypto_comp_cast(struct crypto_tfm * tfm)908 static inline struct crypto_comp *__crypto_comp_cast(struct crypto_tfm *tfm)
909 {
910 	return (struct crypto_comp *)tfm;
911 }
912 
crypto_alloc_comp(const char * alg_name,u32 type,u32 mask)913 static inline struct crypto_comp *crypto_alloc_comp(const char *alg_name,
914 						    u32 type, u32 mask)
915 {
916 	type &= ~CRYPTO_ALG_TYPE_MASK;
917 	type |= CRYPTO_ALG_TYPE_COMPRESS;
918 	mask |= CRYPTO_ALG_TYPE_MASK;
919 
920 	return __crypto_comp_cast(crypto_alloc_base(alg_name, type, mask));
921 }
922 
crypto_comp_tfm(struct crypto_comp * tfm)923 static inline struct crypto_tfm *crypto_comp_tfm(struct crypto_comp *tfm)
924 {
925 	return &tfm->base;
926 }
927 
crypto_free_comp(struct crypto_comp * tfm)928 static inline void crypto_free_comp(struct crypto_comp *tfm)
929 {
930 	crypto_free_tfm(crypto_comp_tfm(tfm));
931 }
932 
crypto_has_comp(const char * alg_name,u32 type,u32 mask)933 static inline int crypto_has_comp(const char *alg_name, u32 type, u32 mask)
934 {
935 	type &= ~CRYPTO_ALG_TYPE_MASK;
936 	type |= CRYPTO_ALG_TYPE_COMPRESS;
937 	mask |= CRYPTO_ALG_TYPE_MASK;
938 
939 	return crypto_has_alg(alg_name, type, mask);
940 }
941 
crypto_comp_name(struct crypto_comp * tfm)942 static inline const char *crypto_comp_name(struct crypto_comp *tfm)
943 {
944 	return crypto_tfm_alg_name(crypto_comp_tfm(tfm));
945 }
946 
947 int crypto_comp_compress(struct crypto_comp *tfm,
948 			 const u8 *src, unsigned int slen,
949 			 u8 *dst, unsigned int *dlen);
950 
951 int crypto_comp_decompress(struct crypto_comp *tfm,
952 			   const u8 *src, unsigned int slen,
953 			   u8 *dst, unsigned int *dlen);
954 
955 #endif	/* _LINUX_CRYPTO_H */
956 
957